Science.gov

Sample records for single-stage single-switch bi-flyback

  1. Dynamic modeling of PWM and single-switch single-stage power factor correction converters

    NASA Astrophysics Data System (ADS)

    Zhu, Guangyong

    The concept of averaging has been used extensively in the modeling of power electronic circuits to overcome their inherent time-variant nature. Among various methods, the PWM switch modeling approach is most widely accepted in the study of closed-loop stability and transient response because of its accuracy and simplicity. However, a non-ideal PWM switch model considering conduction losses is not available except for converters operating in continuous conduction mode (CCM) and under small ripple conditions. Modeling of conduction losses under large ripple conditions has not been reported in the open literature, especially when the converter operates in discontinuous conduction mode (DCM). In this dissertation, new models are developed to include conduction losses in the non-ideal PWM switch model under CCM and DCM conditions. The developed model is verified through two converter examples and the effect of conduction losses on the steady state and dynamic responses of the converter is also studied. Another major constraint of the PWM switch modeling approach is that it heavily relies on finding the three-terminal PWM switch. This requirement severely limits its application in modeling single-switch single-stage power factor correction (PFC) converters, where more complex topological structures and switching actions are often encountered. In this work, we developed a new modeling approach which extends the PWM switch concept by identifying the charging and discharging voltages applied to the inductors. The new method can be easily applied to derive large-signal models for a large group of PFC converters and the procedure is elaborated through a specific example. Finally, analytical results regarding harmonic contents and power factors of various PWM converters in PFC applications are also presented here.

  2. Single Stage Single Switch Power Supply (S4PS)Design for Low Power HB-LED Lighting

    NASA Astrophysics Data System (ADS)

    Shrivastava, Ashish; Singh, Bhim

    2013-05-01

    This paper presents an improved power quality converter (IPQC)-based power supply design for high brightness light emitting diode (HB-LED) low power lighting. The IPQC circuit uses a Cuk buck-boost converter to operate it in a discontinuous conduction mode (DCM) using the voltage follower technique for the mitigation of harmonic contents present in the AC mains current. Subsequently, reduction in harmonic contents results in improving the power quality indices at the AC mains. Single-stage single switch converter topology is used, which has less component count, size and cost as compared to the two-stage converter topology. DCM operation has an advantage that only output voltage control loop is required as compared to three control loops required in the continuous conduction mode operation. An 18-W LED driver is designed, modeled and simulated using MATLAB/Simulink software for 220 V, 50 Hz AC mains. The performance of the proposed LED driver is observed in terms of total harmonic distortion of the input current (THDi), input power factor (PF) and crest factor (CF) taking into account the strict international standard of IEC 61000-3-2 for class C equipments.

  3. Single-stage Mars mission

    NASA Technical Reports Server (NTRS)

    1991-01-01

    President Bush established a three phase Space Exploration Initiative for the future of space exploration. The first phase is the design and construction of Space Station Freedom. The second phase is permanent lunar base. The last phase of the Initiative is the construction of a Mars outpost. The design presented is the concept of a single-stage Mars mission developed by the University of Minnesota Aerospace Design Course. The mission will last approximately 500 days including a 30-60 day stay on Mars.

  4. Ectopia cordis, a successful single stage thoracoabdominal repair.

    PubMed

    Samir, Khaled; Ghez, Olivier; Metras, Dominique; Kreitmann, Bernard

    2003-12-01

    This is a report of a case of the rare ectopia cordis malformation of the thoracoabdominal type without intracardiac anomalies. The patient had a successful single stage repair with reduction of the herniating heart and reconstruction of a cartilaginous cover to protect the heart. The result was very good and the follow up for 13 months was very satisfactory.

  5. High density propellant for single stage to orbit vehicles

    NASA Technical Reports Server (NTRS)

    Notardonato, J. J.; Masters, P. A.

    1976-01-01

    Mixed mode propulsion concepts are studied for advanced, single stage earth orbital transportation systems (SSTO) for use in the post-1990 time period. These propulsion concepts are based on the sequential and/or parallel use of high density impulse and high specific impulse propellants in a single stage to increase vehicle performance and reduce dry weight. Specifically, the mixed mode concept utilizes two propulsion systems with two different fuels (mode 1 and mode 2) with liquid oxygen as a common oxidizer. Mode 1 engines would burn a high bulk density fuel for lift-off and early ascent to minimize performance penalties associated with carrying fuel tankage to orbit. Mode 2 engines will complete orbital injection utilizing liquid hydrogen as the fuel.

  6. Single stage earth orbital reusable vehicle. Volume 6: Resources

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results of a conceptual study of the resource requirements for a single-stage earth-orbital vehicle are presented. All aspects of program costs for the design, manufacture, test, transportation, launch, and facility modifications were considered. The following program costs are discussed: configuration definition, cost groundrules and assumptions, program requirements, work breakdown structure, cost estimation methods, and cost analysis. High cost areas are identified.

  7. Single stage anaerobic digester at Tarleton State University. Final report

    SciTech Connect

    Not Available

    1980-01-01

    The design and operation of the demonstration plant facilities at Tarleton State University to produce methane in a single stage anaerobic digester are described. A combination of manures from hogs and poultry are used as feedstock. Uses for the methane, cost of the digester, and value of the energy produced are discussed. During the 21 months of operation, 310 people have visited the project. (DMC)

  8. Simulating the multistage environment for single-stage compressor experiments

    SciTech Connect

    Place, J.M.M.; Howard, M.A.; Cumpsty, N.A.

    1996-10-01

    The performance of a single-stage low-speed compressor has been measured both before and after the introduction of certain features of the multistage flow environment. The aim is to make the single-stage rig more appropriate for developing design rules for multistage compressors. End-wall blockage was generated by teeth on the hub and casing upstream of the rotor. A grid fitted upstream produced free-stream turbulence at rotor inlet typical of multistage machines and raised stage efficiency by 1.8 percent at the design point. The potential field that would be generated by blade rows downstream of an embedded stage was replicated by introducing a pressure loss screen at stage exit. This reduced the stator hub corner separation and increased the rotor pressure rise at flow rates below design, changing the shape of the pressure-rise characteristic markedly. These results highlight the importance of features of the flow environment that are often omitted from single-stage experiments and offer improved understanding of stage aerodynamics.

  9. Single-stage electronic ballast with high-power factor

    NASA Astrophysics Data System (ADS)

    Park, Chun-Yoon; Kwon, Jung-Min; Kwon, Bong-Hwan

    2014-03-01

    This article proposes a single-stage electronic ballast circuit with high-power factor. The proposed circuit was derived by sharing the switches of the power factor correction (PFC) and the half-bridge LCC resonant inverter. This integration of switches forms the proposed single-stage electronic ballast, which provides an almost unity power factor and a ripple-free input current by using a coupled inductor without increasing the voltage stress. In addition, it realises zero-voltage-switching (ZVS) by employing the self-oscillation technique. The saturable transformer constituting the self-oscillating drive limits the lamp current and dominates the switching frequency of the ballast. Therefore, the proposed single-stage ballast has the advantage of high-power factor, high efficiency, low cost and high reliability. Steady-state analysis of the PFC and the half-bridge LCC resonant inverter are described. The results of experiments performed using a 30 W fluorescent lamp are also presented to confirm the performance of the proposed ballast.

  10. The X-33 Program, Proving Single Stage to Orbit

    NASA Technical Reports Server (NTRS)

    Austin, Robert E.; Rising, Jerry J.

    1998-01-01

    The X-33, NASA's flagship for reusable space plane technology demonstration, is on course to permit a crucial decision for the nation by the end of this decade. Lockheed Martin Skunk Works, NASA's partner in this effort, has led a dedicated and talented industry and government team that have met and solved numerous challenges within the first 26 months. This program began by accepting the mandate that included two unprecedented and highly challenging goals: 1) demonstrate single stage to orbit technologies in flight and ground demonstration in less than 42 months and 2) demonstrate a new government and industry management relationship working together with industry in the lead.

  11. Giant neglected ameloblastoma: single stage treatment and clinicopathological review.

    PubMed

    Kalavrezos, Nicholas; Baldwin, David James; Walker, D Murray

    2008-10-01

    Giant ameloblastomas may present with massive swelling of the jaws. We report a giant ameloblastoma of the mandible in a Nigerian patient that measured 15.1x12.2x13.6cm and was managed with a single procedure. The tumour was removed by segmental mandibulectomy and reconstructed with a fibular free flap. The excess soft tissue was treated with a bilateral commissuroplasty. Single stage treatment that establishes early functional and aesthetic recovery offers advantages over multi staged procedures, and is therefore the treatment of choice for giant ameloblastomas.

  12. Characterization of Subsystems for a WB-003 Single Stage Shuttle

    NASA Technical Reports Server (NTRS)

    MacConochie, Ian O.; Lepsch, Roger A., Jr. (Technical Monitor)

    2002-01-01

    Subsystems for an all oxygen-hydrogen-single-stage shuttle are characterized for a vehicle designated WB-003. Features of the vehicle include all-electric actuation, fiber optics for information circuitry, fuel cells for power generation, and extensive use of composites for structure. The vehicle is sized for the delivery of a 25,000 lb. payload to a space station orbit without crew. When crew are being delivered, they are carried in a module in the payload bay with escape and manual override capabilities. The underlying reason for undertaking this task is to provide a framework for the study of the operations costs of the newer shuttles.

  13. Single-Stage Reconstruction of Both Cruciate Ligaments

    PubMed Central

    Andreoli, Mauro; Zicaro, Juan Pablo; Yacuzzi, Carlos; Costa-Paz, Matias

    2017-01-01

    Objectives: Isolated Anterior Cruciate Ligament (ACL) and Posterior Cruciate Ligament (PCL), or central pivot lesions are rare. These are frequently associated with collateral ligaments injuries. The purpose of this retrospective study was to evaluate clinical and functional outcomes of 4 patients with acute ACL and PCL injury who underwent a simultaneous single-stage arthroscopic reconstruction. Methods: The inclusion criteria were patients with isolated ACL and PCL injuries, with a minimum follow-up of 2 years. We evaluated the type of graft used, the surgical technique and postoperative complications. The scales used for clinical evaluation were the Knee Society Score (KSS), IKDC, Lysholm and Tegner. Knee stability was assessed using the KT-1000 arthrometer. Results: Three men and one woman, with an average age of 48 years (45 to 56 years) were evaluated. Three presented a sport injury and one a car accident. Mean follow-up was 8 years. In all patients allograft was used for ligament reconstruction. Average postoperative results were: KSS 74-82, Lysholm 76, IKDC 63 and Tegner 6. KT-1000 arthrometer showed an average difference of 4mm compared to the contralateral knee. One patient underwent reintervention due to meniscal injury. Conclusion: ACL and PCL simultaneous single-stage reconstruction is a really demanding surgery. We achieved good results using allograft for both ligaments reconstruction. No clinical or functional postoperative complications were recorded.

  14. Technology Requirements for Affordable Single-Stage Rocket Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Stanley, Douglas O.; Piland, William M.

    2004-01-01

    A number of manned Earth-to-orbit (ETO) vehicle options for replacing or complementing the current Space Transportation System are being examined under the Advanced Manned Launch System (AMLS) study. The introduction of a reusable single-stage vehicle (SSV) into the U.S. launch vehicle fleet early in the next century could greatly reduce ETO launch costs. As a part of the AMLS study, the conceptual design of an SSV using a wide variety of enhancing technologies has recently been completed and is described in this paper. This paper also identifies the major enabling and enhancing technologies for a reusable rocket-powered SSV and provides examples of the mission payoff potential of a variety of important technologies. This paper also discusses the impact of technology advancements on vehicle margins, complexity, and risk, all of which influence the total system cost.

  15. Design and development of single-stage-to-orbit vehicles

    NASA Astrophysics Data System (ADS)

    Billig, Frederick S.

    1990-12-01

    A procedure to guide the conceptual design of a single-stage-to-orbit vehicle is presented. Modeling based on historical databases is used to help define plausible flight trajectories and vehicle aerodynamics and to evaluate candidate propulsion cycles. Two conceptual configurations are introduced to examine the sensitivity of vehicle drag, engine cycle selection, and design characteristics on the amount of propelant required to accelerate to orbit. Results show that the choice of the optimum low-speed engine cycle, combined with the ram-scramjet (supersonic combustion ramjet) at high speed, is very sensitive to the engine air capture and vehicle drag coefficient at transonic speeds. For nominal drag and air capture characteristics, the high thrust and relatively low-efficiency ducted rocket/ram-scramjet cycle uses about the same weight of propellant as the highly efficient but lower-thrust turbojet ram-scramjet.

  16. Airbreathing/Rocket Single-Stage-to-Orbit Design Matrix

    NASA Technical Reports Server (NTRS)

    Hunt, James L.

    1995-01-01

    A definitive design/performance study was performed on a single-stage-to-orbit (SSTO) airbreathing propelled orbital vehicle with rocket propulsion augmentation in the Access to Space activities during 1993. A credible reference design was established, but by no means an optimum. The results supported the viability of SSTO airbreathing/rocket vehicles for operational scenarios and indicated compelling reasons to continue to explore the design matrix. This paper will (1) summarize the Access to Space design activity from the SSTO airbreathing/rocket perspective, (2) present an airbreathing/rocket SSTO design matrix established for continued optimization of the design space, and (3) focus on the compelling reasons for airbreathing vehicles in Access to Space scenarios.

  17. Single Stage Surgical Outcomes for Large Angle Intermittent Exotropia

    PubMed Central

    Yang, Min; Chen, Jingchang; Shen, Tao; Kang, Ying; Deng, Daming; Lin, Xiaoming; Wu, Heping; Chen, Qiwen; Ye, Xuelian; Li, Jianqun; Yan, Jianhua

    2016-01-01

    Although there were many prior studies about exotropia, few focused on large-angle intermittent exotropia. The goal of this study was to evaluate single-stage surgical outcomes for large-angle intermittent exotropia and analyze risk factors that may affect the success of surgery. Records from intermittent exotropia patients with exodeviations >60 prism diopters(PD) who were surgically treated at the Zhongshan Ophthalmic Center, of Sun Yat-Sen University were reviewed. Included within this review were data on, pre- and post-operative ocular motility, primary alignment, binocular vision and complications. Patients with exodeviations ≤70PD received two-muscle surgery, while those with exodeviations >70PD were subjected to a three-muscle procedure. A total of 40 records were reviewed. The mean exodeviation was 73±9PD at distance and 75±26PD at near. There were 25 patients received two-muscle surgery and 15 the three-muscle procedure. Orthophoria (deviation within 8PD) was obtained in 77.5% of these patients and the ratios of surgical under-correction and over-correction were 15% and 7.5% respectively. However, when combining ocular alignment with binocular vision as the success criteria, success rates decreased to 30%. No statistically significant differences in success rates were obtained between the two- and three-muscle surgery groups. Seven subjects experienced an abduction deficit during the initial postoperative stages, but eventually showed a full recovery. One patient required a second surgery for overcorrection. No statistically significant risk factors for poor outcome were revealed. Our data showed that single-stage two- and three-muscle surgeries for large-angle intermittent exotropia are effective in achieving a favorable outcome. PMID:26919493

  18. A Manual for Single Switch and Adaptive Software Programming. Computer Applications for Students with Physical, Sensory, Developmental, and Learning Disabilities.

    ERIC Educational Resources Information Center

    Burns, Edward

    This manual is intended as a guide and source of ideas for using single switches in adaptive software programming for people with disabilities who cannot use a traditional keyboard. The manual and associated program disk are comprised of over 100 programs, routines and files illustrating various uses of single switch and adaptive input devices.…

  19. NASA Glenn's Single-Stage Axial Compressor Facility Upgraded

    NASA Technical Reports Server (NTRS)

    Brokopp, Richard A.

    2004-01-01

    NASA Glenn Research Center's Single-Stage Axial Compressor Facility was upgraded in fiscal year 2003 to expand and improve its research capabilities for testing high-speed fans and compressors. The old 3000-hp drive motor and gearbox were removed and replaced with a refurbished 7000-hp drive motor and gearbox, with a maximum output speed of 21,240 rpm. The higher horsepower rating permits testing of fans and compressors with higher pressure ratio or higher flow. A new inline torquemeter was installed to provide an alternate measurement of fan and compressor efficiency, along with the standard pressure and temperature measurements. A refurbished compressor bearing housing was also installed with bidirectional rotation capability, so that a variety of existing hardware could be tested. Four new lubrication modules with backup capability were installed for the motor, gearbox, torquemeter, and compressor bearing housing, so that in case the primary pump fails, the backup will prevent damage to the rotating hardware. The combustion air supply line for the facility inlet air system was activated to provide dry air for repeatable inlet conditions. New flow conditioning hardware was installed in the facility inlet plenum tank, which greatly reduced the inlet turbulence. The new inlet can also be easily modified to accommodate 20- or 22-in.-diameter fans and compressors, so a variety of existing hardware from other facilities (such as Glenn's 9- by 15-Foot Low-Speed Wind Tunnel) can be tested in the Single-Stage Axial Compressor Facility. An exhaust line was also installed to provide bleed capability to remove the inlet boundary layer. To improve the operation and control of the facility, a new programmable logic controller (PLC) was installed to upgrade from hardwired relay logic to software logic. The PLC also enabled the usage of human-machine interface software to allow for easier operation of the facility and easier reconfiguration of the facility controls when

  20. High spatial resolution measurements in a single stage ram accelerator

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented in this paper. The ram accelerator is a ramjet-in-tube device which operates in a manner similar to that of a conventional ramjet. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Utilization of special highly instrumented sections of tube has allowed the recording of gas dynamic phenomena with high resolution. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) in a single stage gas mixture are presented and reveal the three-dimensional character of the flow field induced by projectile fins and the canting of the fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, three-dimensional CFD code. The knowledge gained from these experiments and simulations is useful in understanding the underlying nature of ram accelerator propulsive regimes, as well as assisting in the validation of three-dimensional CFD coded which model unsteady, chemically reactive flows.

  1. Development of a large cooling capacity single stage GM cryocooler

    NASA Astrophysics Data System (ADS)

    Yamada, K.

    2014-09-01

    Sumitomo Heavy Industries, Ltd. (SHI) has developed 4 K Gifford-McMahon (GM) cryocoolers for various cryogenic fields including Magnetic resonance imaging (MRI) systems. However, for the purpose of cooling high temperature superconductor (HTS) devices, the needs for cryocoolers with a large cooling capacity in the range of 20-30 K has been rapidly increasing. Recently, SHI developed a large cooling capacity single-stage GM cryocooler, for HTS applications. A typical cooling capacity is 46/52 W at 20 K or 85/96 W at 30 K with 6.9/7.9 kW input power at 50/60 Hz. The cooling capacity degradation caused by inclination is within 24%. And also, a low mechanical vibration and a low acoustic noise have been achieved because the displacer is driven by a motor instead of a pneumatic force. In addition, the cryocooler does not contain lead as a regenerator material, so it complies with restriction of hazardous substances (RoHS) directive.

  2. Single Stage Rocket Technology's real time data system

    NASA Technical Reports Server (NTRS)

    Voglewede, Steven D.

    1994-01-01

    The Single Stage Rocket Technology (SSRT) Delta Clipper Experimental (DC-X) Program is a United States Air Force Ballistic Missile Defense Organization (BMDO) rapid prototyping initiative that is currently demonstrating technology readiness for reusable suborbital rockets. The McDonnell Douglas DC-X rocket performed technology demonstrations at the U.S. Army White Sands Missile Range in New Mexico from April-October in 1993. The DC-X Flight Operations Control Center (FOCC) contains the ground control system that is used to monitor and control the DC-X vehicle and its Ground Support Systems (GSS). The FOCC is operated by a flight crew of three operators. Two operators manage the DC-X Flight Systems and one operator is the Ground Systems Manager. A group from McDonnell Douglas Aerospace at KSC developed the DC-X ground control system for the FOCC. This system is known as the Real Time Data System (RTDS). The RTDS is a distributed real time control and monitoring system that utilizes the latest available commercial off-the-shelf computer technology. The RTDS contains front end interfaces for the DC-X RF uplink/downlink and fiber optic interfaces to the GSS equipment. This paper describes the RTDS architecture and FOCC layout. The DC-X applications and ground operations are covered.

  3. Flow analyses in a single-stage propulsion pump

    SciTech Connect

    Lee, Y.T.; Hah, C.; Loellbach, J. |

    1996-04-01

    Steady-state analyses of the incompressible flow past a single-stage stator/rotor propulsion pump are presented and compared to experimental data. The purpose of the current study is to validate a numerical method for the design application of a typical propulsion pump and for the acoustic analysis based on predicted flowfields. A steady multiple-blade-row approach is used to calculate the flowfields of the stator and the rotor. The numerical method is based on a fully conservative control-volume technique. The Reynolds-averaged Navier-Stokes equations are solved along with the standard two-equation {kappa}-{epsilon} turbulence model. Numerical results for both mean flow and acoustic properties compare well with measurements in the wake of each blade row. The rotor blade has a thick boundary layer in the last quarter of the chord and the flow separates near the trailing edge. These features invalidate many Euler prediction results. Due to the dramatic reduction of the turbulent eddy viscosity in the thick boundary layer, the standard {kappa}-{epsilon} model cannot predict the correct local flow characteristics near the rotor trailing edge and in its near wake. Thus, a modification of the turbulence length scale in the turbulence model is applied in the thick boundary layer in response to the reduction of the turbulent eddy viscosity.

  4. Ultrafine coal single stage dewatering and briquetting process

    SciTech Connect

    Wilson, J.W.; Honaker, R.Q.

    1995-12-31

    It is well known that a large portion of the pyrite particles in the coal seams of the Illinois Basin are finely disseminated within the coal matrix. In order to liberate these micron size pyrite particles, one must use a fine grinding operation. The ultrafine coal particles are difficult to dewater and create problems in coal transportation, as well as in storage and handling at utility plants. The objective of this research project is to combine the ultrafine coal dewatering and briquetting processes into a single stage operation. This will be accomplished by the use of bitumen based emulsions for dewatering and a compaction device for briquetting. During this reporting period, several types of coal samples with various particle size distributions have been tested for use in the dewatering and briquetting processes. Furthermore, various bitumen emulsions have been tested to determine the optimum dewatering reagent. These dewatering and pelletizing tests were carried out using a lab-scale ram extruder. Discharge from the dewatering and briquetting processes was tested to determine compliance with current federal and state requirements. The influence of bitumen emulsion on the sulfur content of coal pellets made were also examined. In addition, a ram extruder which can be operated continuously to simulate a rotary press operation, has been built and is currently being tested for use in the fine coal dewatering and pelletizing process.

  5. Test of Single-Stage Axial-Flow Fan

    NASA Technical Reports Server (NTRS)

    Bell, E Barton

    1942-01-01

    A single-stage axial fan was built and tested in the shop of the propeller-research tunnel of the NACA. The fan comprised a simple 24-blade rotor having a diameter of 21 inches and a solidity of 0.86 and a set of 37 contravanes having a solidity of 1.33. The rotor was driven by a 25-horsepower motor capable of rotating at a speed of 3600 r.p.m. The fan was tested for volume, pressure, and efficiency over a range of delivery pressures and volumes for a wide range of contravane and blade-angle settings. The test results are presented in chart form in terms of nondimensional units in order that similar fans may be accurately designed with a minimum effort. The maximum efficiency (88 percent) was obtained by the fan at a blade angle of 30 degrees and a contravane angle of 70 degrees. An efficiency of 80 percent was obtained by the fan with the contravanes removed.

  6. Single Stage Contactor Testing Of The Next Generation Solvent Blend

    SciTech Connect

    Herman, D. T.; Peters, T. B.; Duignan, M. R.; Williams, M. R.; Poirier, M. R.; Brass, E. A.; Garrison, A. G.; Ketusky, E. T.

    2014-01-06

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility at the Savannah River Site (SRS) is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent to increase the cesium decontamination factor. To support this integration of NGS into the MCU facility the Savannah River National Laboratory (SRNL) performed testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing utilized a blend of BOBCalixC6 based solvent and the NGS with the new extractant, MaxCalix, as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 liquid-to-liquid centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. The results indicate that hydraulically, the NGS solvent performed hydraulically similar to the current solvent which was expected. For the organic carryover 93% of the solvent is predicted to be recovered from the stripping operation and 96% from the extraction operation. As for the mass transfer, the NGS solvent significantly improved the cesium DF by at least an order of magnitude when extrapolating the One-stage results to actual Seven-stage extraction operation with a stage efficiency of 95%.

  7. A Single-Switch Equalization Charger for Series-Connected Energy Storage Cells

    NASA Astrophysics Data System (ADS)

    Uno, Masatoshi; Tanaka, Koji

    Series-connected energy storage cells require cell equalizers in order to mitigate cell voltage imbalance. Conventional cell equalizers, however, consist of a number of switches or transformers that are considered not preferable in the viewpoint of circuit complexity and reliability. This paper proposes an equalization charger that consists of a single switch and passive components. Experimental performance tests showed that series-connected EDLCs could be charged up to the uniform voltage level by the proposed equalization charger though the initial voltages of the EDLCs were imbalanced.

  8. High Power, Repetitive, Stacked Blumlein Pulse Generators Commuted by a Single Switching Element

    NASA Astrophysics Data System (ADS)

    Bhawalkar, Jayant Dilip

    In this work, the stacked Blumlein pulsers developed at the University of Texas at Dallas were characterized and shown to be versatile sources of pulse power for a variety of applications. These devices consisted of several triaxial Blumleins stacked in series at one end. The lines were charged in parallel and synchronously commuted repetitively with a single switching element at the other end. In this way, relatively low charging voltages were multiplied to give a high discharge voltage across an arbitrary load without the need for complex Marx bank circuitry. Several pulser parameters such as the number of stacked Blumlein lines, line configuration, type of switching element, and the length of the lines, were varied and the waveform characteristics were observed and analyzed. It was shown that these devices are capable of generating fast rising waveforms with a wide range of peak voltage and current values. The generation of high power waveforms with pulse durations in the range of 80-600 ns was demonstrated without degradation of the voltage gains. The results of this work indicated that unlike generators based on stacked transmission lines, the effects of parasitic modes were not appreciable for the stacked Blumlein pulsers. Opportunities for tactically packaging these pulsers were also investigated and a significant reduction in their size and weight was demonstrated. For this, dielectric lifetime and Blumlein spacing studies were performed on small scale prototypes. In addition to production of intense X-ray pulses, the possible applications for these novel pulsers include driving magnetrons for high power microwave generation, pumping laser media, or powering e-beam diodes. They could also serve as compact, tabletop sources of high power pulses for various research experiments.

  9. Venturestar{trademark} single stage to orbit reusable launch vehicle program overview

    SciTech Connect

    Baumgartner, R.I.

    1997-01-01

    Lockheed Martin is developing the VentureStar{trademark} Single Stage To Orbit Reusable Launch Vehicle system. The VentureStar{trademark} launch system will drastically reduce the cost to place payloads in orbit. This paper describes the VentureStar{trademark} Single Stage To Orbit Reusable Launch Vehicle Program, system and technology. The technology to achieve VentureStar{trademark} will be demonstrated in the National Aeronautics and Space Administration X-33 Phase II Advanced Technology Demonstration Program. The X-33 program, vehicle, and technology are described herein. {copyright} {ital 1997 American Institute of Physics.}

  10. Design considerations for single-stage and two-stage pneumatic pellet injectors

    SciTech Connect

    Gouge, M.J.; Combs, S.K.; Fisher, P.W.; Milora, S.L.

    1988-09-01

    Performance of single-stage pneumatic pellet injectors is compared with several models for one-dimensional, compressible fluid flow. Agreement is quite good for models that reflect actual breech chamber geometry and incorporate nonideal effects such as gas friction. Several methods of improving the performance of single-stage pneumatic pellet injectors in the near term are outlined. The design and performance of two-stage pneumatic pellet injectors are discussed, and initial data from the two-stage pneumatic pellet injector test facility at Oak Ridge National Laboratory are presented. Finally, a concept for a repeating two-stage pneumatic pellet injector is described. 27 refs., 8 figs., 3 tabs.

  11. Lateral parascapular extrapleural approach for single-stage excision of dumb-bell neurofibroma.

    PubMed

    O'Reilly, G; Jackowski, A; Weiner, G; Thomas, D

    1994-01-01

    An excision of a T1 dumb-bell neurofibroma via a single-stage lateral parascapular extrapleural approach is described. The different surgical approaches that can be used to approach dumb-bell tumours are reviewed, together with the relevant literature.

  12. The role of the dental technician in fabricating the single-stage implant prosthesis.

    PubMed

    Fedoretz, M; Fedoretz, T

    1999-01-01

    With the initiation of the concept of osseointegration, the use of dental implants has become a predictable and frequently used addition to comprehensive planning and treatment of edentulous patients. Implantology poses challenges for the dental laboratory not present in any other existing specialty. Single-stage implant surgery represents such an innovation.

  13. Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter

    NASA Astrophysics Data System (ADS)

    Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim

    2016-08-01

    This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.

  14. Prediction of single stage limit language and adult language via Yusof-Goode approach

    NASA Astrophysics Data System (ADS)

    Lim, Wen Li; Yusof, Yuhani; Rosli, Norhayati

    2014-06-01

    Yusof-Goode (Y-G) rule, a new symbolization of representing rule in splicing system under framework of formal language theory to model the recombinant behaviors of DNA molecules, was introduced by Yusof in 2012. A language that contains the strings resulting from a splicing system is called splicing language. Limit language is a subset of splicing language where it is restricted to the molecules that will be present in the system after the reaction has run to completion. Adult language is a subset of limit language where it does not participate in further splicing. In this paper, the new concept of single stage splicing languages is introduced and some theorems have been formulated to stipulate the final state product of single stage limit languages of Yusof-Goode splicing system based on the characteristic of one initial string andone rule.

  15. High peak-power kilohertz laser system employing single-stage multi-pass amplification

    DOEpatents

    Shan, Bing; Wang, Chun; Chang, Zenghu

    2006-05-23

    The present invention describes a technique for achieving high peak power output in a laser employing single-stage, multi-pass amplification. High gain is achieved by employing a very small "seed" beam diameter in gain medium, and maintaining the small beam diameter for multiple high-gain pre-amplification passes through a pumped gain medium, then leading the beam out of the amplifier cavity, changing the beam diameter and sending it back to the amplifier cavity for additional, high-power amplification passes through the gain medium. In these power amplification passes, the beam diameter in gain medium is increased and carefully matched to the pump laser's beam diameter for high efficiency extraction of energy from the pumped gain medium. A method of "grooming" the beam by means of a far-field spatial filter in the process of changing the beam size within the single-stage amplifier is also described.

  16. Validation of a PC based program for single stage absorption heat pump

    SciTech Connect

    Zaltash, A.; Ally, M.R.

    1991-09-01

    An interactive computer code was developed to evaluate single stage absorption heat pump performance for temperature amplifier and heat amplifier modes using water as the refrigerant. This program performs the cycle calculations for single stage cycles based on the polynomial expressions developed to correlate experimental vapor-liquid-equilibrium (VLE) and specific enthalpy-concentration data for LiBr/water and (Li, K, Na)NO{sub 3}/water systems as well as the properties of pure water. The operating parameters obtained by this program were tested against mass and energy balances in documented cases and the results show that the maximum deviation between coefficient of performance (COP) values obtained by this software and the ones previously calculated is less than 3%. In addition, this program was used to study the effect of solution temperature leaving the absorber on the other operating parameters. This type of analysis could be used to improve and optimize cycle design. 4 refs.

  17. Validation of a PC based program for single stage absorption heat pump. Final report

    SciTech Connect

    Zaltash, A.; Ally, M.R.

    1991-09-01

    An interactive computer code was developed to evaluate single stage absorption heat pump performance for temperature amplifier and heat amplifier modes using water as the refrigerant. This program performs the cycle calculations for single stage cycles based on the polynomial expressions developed to correlate experimental vapor-liquid-equilibrium (VLE) and specific enthalpy-concentration data for LiBr/water and (Li, K, Na)NO{sub 3}/water systems as well as the properties of pure water. The operating parameters obtained by this program were tested against mass and energy balances in documented cases and the results show that the maximum deviation between coefficient of performance (COP) values obtained by this software and the ones previously calculated is less than 3%. In addition, this program was used to study the effect of solution temperature leaving the absorber on the other operating parameters. This type of analysis could be used to improve and optimize cycle design. 4 refs.

  18. Single-stage osseointegrated implants for nasal prosthodontic rehabilitation: A clinical report.

    PubMed

    de Carvalho, Bruna M D F; Freitas-Pontes, Karina M; de Negreiros, Wagner A; Verde, Marcus A R L

    2015-08-01

    Malignant tumors in the nasal region may be treated by means of invasive surgical procedures, with large facial losses. Nasal prostheses, retained by osseointegrated facial implants, instead of plastic surgery, will, in most patients, offer good biomechanical and cosmetic results. This clinical report describes the prosthetic rehabilitation of a patient with nasal cancer who had the entire nasal vestibule removed in a single-stage surgical procedure in order to shorten the rehabilitation time. The nasal prosthesis was built on a 3-magnet bar and was made of platinum silicone with intrinsic pigmentation, thereby restoring the patient's appearance and self-esteem. The authors concluded that single-stage implants may reduce the rehabilitation time to as little as 1 month, and the correct use of materials and techniques may significantly improve the nasal prosthesis.

  19. Project management lessons learned on SDIO's Delta Star and Single Stage Rocket Technology programs

    NASA Technical Reports Server (NTRS)

    Klevatt, Paul L.

    1992-01-01

    The topics are presented in viewgraph form and include the following: a Delta Star (Delta 183) Program Overview, lessons learned, and rapid prototyping and the Single Stage Rocket Technology (SSRT) Program. The basic objective of the Strategic Defense Initiative Programs are to quickly reduce key uncertainties to a manageable range of parameters and solutions, and to yield results applicable to focusing subsequent research dollars on high payoff areas.

  20. Single-stage repair of aortic coarctation and multiple concomitant cardiac lesions through a median sternotomy.

    PubMed

    Kervan, Umit; Yurdakok, Okan; Genc, Bahadir; Ozen, Anil; Saritas, Ahmet; Kucuker, Seref Alp; Pac, Mustafa

    2013-01-01

    Through a median sternotomy, we performed a single-stage repair of severe aortic coarctation, ventricular septal defect, patent foramen ovale, and mitral valve insufficiency. The severe aortic coarctation was repaired by interposing a synthetic graft between the distal ascending aorta and the descending aorta. We first repaired the coarctation with the 38-year-old man on cardiopulmonary bypass, before aortic cross-clamping, in order to shorten the cross-clamp time.

  1. Investigation of antimatter air-breathing propulsion for single-stage-to-orbit ships

    NASA Astrophysics Data System (ADS)

    Froning, H. D.

    Because the mutual annihilation of matter and antimatter releases all the energy that is stored within the physical structure of material mass, it provides the most powerful reaction that is possible for propulsive thrust. This paper considers the use of such annihilation energy for single-stage-to-orbit vehicles that would be powered by rocket and air-breathing propulsion and would reach and return from orbit with a single propulsive stage.

  2. Two-stage/single-stage reversible pump-turbine with supplying pump

    SciTech Connect

    Brcar, A.

    1980-08-12

    In a hydroelectric facility, a vertically mounted rotatable shaft is connected to a motor-generator and carries a pumpturbine with a supplying pump disposed below and immersed in water, the supplying pump disengaging from the shaft when the pump-turbine is driving the motor-generator and engaging the shaft when the motor-generator is driving the pump-turbine and supplying pump, thereby providing a two-stage pumping mode and a single-stage generating mode.

  3. System and method for single-phase, single-stage grid-interactive inverter

    DOEpatents

    Liu, Liming; Li, Hui

    2015-09-01

    The present invention provides for the integration of distributed renewable energy sources/storages utilizing a cascaded DC-AC inverter, thereby eliminating the need for a DC-DC converter. The ability to segment the energy sources and energy storages improves the maintenance capability and system reliability of the distributed generation system, as well as achieve wide range reactive power compensation. In the absence of a DC-DC converter, single stage energy conversion can be achieved to enhance energy conversion efficiency.

  4. Adaptive kanban control mechanism for a single-stage hybrid system

    NASA Astrophysics Data System (ADS)

    Korugan, Aybek; Gupta, Surendra M.

    2002-02-01

    In this paper, we consider a hybrid manufacturing system with two discrete production lines. Here the output of either production line can satisfy the demand for the same type of product without any penalties. The interarrival times for demand occurrences and service completions are exponentially distributed i.i.d. variables. In order to control this type of manufacturing system we suggest a single stage pull type control mechanism with adaptive kanbans and state independent routing of the production information.

  5. Single Stage to Orbit: Politics, Space Technology, and the Quest for Reusable Rocketry

    NASA Technical Reports Server (NTRS)

    Butrica, Andrew J.

    2003-01-01

    While the glories and tragedies of the space shuttle make headlines and move the nation, the story of the shuttle forms an inseparable part of a lesser-known but no less important drama-the search for a re-useable single-stage-to-orbit rocket. Here an award-winning student of space science, Andrew J. Butrica, examines the long and tangled history of this ambitious concept, from it first glimmerings in the 1920s, when technicians dismissed it as unfeasible, to its highly expensive heyday in the midst of the Cold War, when conservative-backed government programs struggled to produce an operational flight vehicle. Butrica finds a blending of far-sighted engineering and heavy-handed politics. To the first and oldest idea-that of the reusable rocket-powered single-stage- to-orbit vehicle-planners who belonged to what President Eisenhower referred to as the military-industrial complex added experimental (" X "), "aircraft-like" capabilities and, eventually, a "faster, cheaper, smaller" managerial approach. Single Stage to Orbit traces the interplay of technology, corporate interest, and politics, a combination that well served the conservative space agenda and ultimately triumphed-not in the realization of inexpensive, reliable space transport-but in a vision of space militarization and commercialization that would appear settled United States policy in the early twenty-first century. "The 'holy grail' of the spaceship movement has been the development of a vehicle that could accomplish single stage to orbit (SSTO) flight. This study describes the evolution of this concept from the 192'0s to the present, revealing a conservative space agenda that has not yet been the subject of historical analysis. As such, it makes an important contribution to space history literature."-Roger D. Launius, The Smithsonian Institution.

  6. Single-stage reconstruction of flexor tendons with vascularized tendon transfers.

    PubMed

    Cavadas, P C; Pérez-García, A; Thione, A; Lorca-García, C

    2015-03-01

    The reconstruction of finger flexor tendons with vascularized flexor digitorum superficialis (FDS) tendon grafts (flaps) based on the ulnar vessels as a single stage is not a popular technique. We reviewed 40 flexor tendon reconstructions (four flexor pollicis longus and 36 finger flexors) with vascularized FDS tendon grafts in 38 consecutive patients. The donor tendons were transferred based on the ulnar vessels as a single-stage procedure (37 pedicled flaps, three free flaps). Four patients required composite tendon and skin island transfer. Minimum follow-up was 12 months, and functional results were evaluated using a total active range of motion score. Multiple linear regression analysis was performed to evaluate the factors that could be associated with the postoperative total active range of motion. The average postoperative total active range of motion (excluding the thumbs) was 178.05° (SD 50°). The total active range of motion was significantly lower for patients who were reconstructed with free flaps and for those who required composite tendon and skin island flap. Age, right or left hand, donor/motor tendon and pulley reconstruction had no linear effect on total active range of motion. Overall results were comparable with a published series on staged tendon grafting but with a lower complication rate. Vascularized pedicled tendon grafts/flaps are useful in the reconstruction of defects of finger flexor tendons in a single stage, although its role in the reconstructive armamentarium remains to be clearly established.

  7. Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression

    NASA Astrophysics Data System (ADS)

    Varshnay, N. K.; Singh, A.; Benerji, N. S.

    2017-02-01

    Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression suitable for material processing applications are presented here. The laser incorporates in-built compact gas circulation and gas cooling to ensure fresh gas mixture between the electrodes for repetitive operation. A magnetically coupled tangential blower is used for gas circulation inside the laser chamber for repetitive operation. The exciter consists of C-C energy transfer circuit and thyratron is used as a high-voltage main switch with single-stage magnetic pulse compression (MPC) between thyratron and the laser electrodes. Low inductance of the laser head and uniform and intense pre-ionization are the main features of the electric circuit used in the laser. A 250 ns rise time voltage pulse was compressed to 100 ns duration with a single-stage magnetic pulse compressor using Ni-Zn ferrite cores. The laser can generate about 150 mJ at ˜100 Hz rep-rate reliably from a discharge volume of 100 cm 3. 2D spatial laser beam profile generated is presented here. The profile shows that the laser beam is completely filled with flat-top which is suitable for material processing applications. The SEM image of the microhole generated on copper target is presented here.

  8. Single-Switch Equalization Charger Using Multiple Stacked Buck-Boost Converters for Series-Connected Energy-Storage Modules

    NASA Astrophysics Data System (ADS)

    Uno, Masatoshi; Tanaka, Koji

    Series connections of energy-storage modules such as electric double-layer capacitors (EDLCs) and lithium-ion batteries result in voltage imbalance because of the nonuniform properties of individual modules. Conventional voltage equalizers based on traditional dc-dc converters require numerous switches and/or transformers, and therefore, their costs and complexity tend to increase. This paper proposes a novel single-switch equalization charger using multiple stacked buck-boost converters. The single-switch operation not only reduces the circuit complexity but also contributes to increasing the reliability. The fundamental operating principles and design procedures of key components are presented in detail. An experimental charge test using a 25W prototype of the proposed equalization charger was performed for four series-connected EDLC modules whose initial voltages were intentionally imbalanced. Experimental results demonstrated that the proposed equalization charger could charge the series-connected modules preferentially in the order of increasing module voltage and that all the modules could be charged up to a uniform voltage level.

  9. Immediate Single-Stage Reconstruction of Complex Frontofaciobasal Injuries: Part I

    PubMed Central

    Awadalla, Akram Mohamed; Ezzeddine, Hichem; Fawzy, Naglaaa; Saeed, Mohammad Al; Ahmad, Mohammad R.

    2014-01-01

    Objective To determine if immediate (within 6 hours of adequate resuscitation) single-stage repair of complex craniofacial injuries could be accomplished with acceptable morbidity and mortality taking into consideration the cosmetic appearance of the patient. Patients and Methods A total of 26 patients (19 men, 7 women) ranging in age from 8 to 58 years with Glasgow Coma Scale scores of 5 to 15 all had a combined single-stage repair of their complex craniofacial injuries within 6 hours of their admission. After initial assessment and adequate resuscitation, they were evaluated with three-dimensional computed tomography of the face and head. Coronal skin flap was used for maximum exposure for frontal sinus exenteration as well as dural repair, cortical debridement, calvarial reconstruction, and titanium mesh placement. Results Neurosurgical outcome at both the early and late evaluations was judged as good in 22 of 26 patients (85%), moderate in 3 of 26 (11%), and poor in 1 of the 26 (3.8%). Cosmetic surgical outcome at the early evaluation showed 17 of 26 (65%) to be excellent, 4 of 26 (15.5%) to be good, 4 patients (15.5%) to be fair, and 1 patient (3.8%) to be poor. At the late reevaluation, the fair had improved to good with an additional reconstructive procedure, and the poor had improved to fair with another surgery. There was no calvarial osteomyelitis, graft resorption, or intracranial abscess. Complications included three patients (11%): one (3.8%) had tension pneumocephaly and meningitis, one (3.8%) had delayed cerebrospinal fluid leak with recurrent attacks of meningitis, and one had a maxillary sinus infection (3.8%) secondary to front maxillary fistula. Conclusion The immediate single-stage repair of complex craniofacial injuries can be performed with acceptable results, a decreased need for reoperation, and improved cosmetic and functional outcomes. PMID:25844296

  10. Simulation model of a single-stage lithium bromide-water absorption cooling unit

    NASA Technical Reports Server (NTRS)

    Miao, D.

    1978-01-01

    A computer model of a LiBr-H2O single-stage absorption machine was developed. The model, utilizing a given set of design data such as water-flow rates and inlet or outlet temperatures of these flow rates but without knowing the interior characteristics of the machine (heat transfer rates and surface areas), can be used to predict or simulate off-design performance. Results from 130 off-design cases for a given commercial machine agree with the published data within 2 percent.

  11. 85,000-GPM, single-stage, single-suction LMFBR intermediate centrifugal pump

    SciTech Connect

    Fair, C.E.; Cook, M.E. Huber, K.A.; Rohde, R.

    1983-01-01

    The mechanical and hydraulic design features of the 85,000-gpm, single-stage, single-suction pump test article, which is designed to circulate liquid-sodium coolant in the intermediate heat-transport system of a Large-Scale Liquid Metal Fast Breeder Reactor (LS-LMFBR), are described. The design and analytical considerations used to satisfy the pump performance and operability requirements are presented. The validation of pump hydraulic performance using a hydraulic scale-model pump is discussed, as is the featute test for the mechanical-shaft seal system.

  12. Single-stage electrohydraulic servosystem for actuating on airflow valve with frequencies to 500 hertz

    NASA Technical Reports Server (NTRS)

    Webb, J. A., Jr.; Mehmed, O.; Lorenzo, C. F.

    1980-01-01

    An airflow valve and its electrohydraulic actuation servosystem are described. The servosystem uses a high-power, single-stage servovalve to obtain a dynamic response beyond that of systems designed with conventional two-stage servovalves. The electrohydraulic servosystem is analyzed and the limitations imposed on system performance by such nonlinearities as signal saturations and power limitations are discussed. Descriptions of the mechanical design concepts and developmental considerations are included. Dynamic data, in the form of sweep-frequency test results, are presented and comparison with analytical results obtained with an analog computer model is made.

  13. The Lifetime Estimate for ACSR Single-Stage Splice Connector Operating at Higher Temperatures

    SciTech Connect

    Wang, Jy-An John; Graziano, Joe; Chan, John

    2011-01-01

    This paper is the continuation of Part I effort to develop a protocol of integrating analytical and experimental approaches to evaluate the integrity of a full tension single-stage splice connector (SSC) assembly during service at high operating temperature.1The Part II efforts are mainly focused on the thermal mechanical testing, thermal-cycling simulation and its impact on the effective lifetime of the SSC system. The investigation indicates that thermal cycling temperature and frequency, conductor cable tension loading, and the compressive residual stress field within a SSC system have significant impact on the SSC integrity and the associated effective lifetime.

  14. Effects of relaxed static longitudinal stability on a single-stage-to-orbit vehicle design

    NASA Technical Reports Server (NTRS)

    Freeman, D. C., Jr.; Wilhite, A. W.

    1979-01-01

    The effects of relaxing longitudinal stability requirements on single stage to orbit space vehicles is studied. A comparison of the mass and performance characteristics of two vehicles, one designed for positive levels of longitudinal stability and the other designed with relaxed stability requirements in a computer aided design process is presented. Both vehicles, required to meet the same mission characteristics are described. Wind tunnel tests, conducted over a Mach number range from 0.3 to 4.63 to verify estimated aerodynamic characteristics, are discussed.

  15. Single-Trial Analysis of Inter-Beat Interval Perturbations Accompanying Single-Switch Scanning: Case Series of Three Children With Severe Spastic Quadriplegic Cerebral Palsy.

    PubMed

    Leung, Brian; Chau, Tom

    2016-02-01

    Single-switch access in conjunction with scanning remains a fundamental solution in restoring communication for many children with profound physical disabilities. However, untimely switch inaction and unintentional switch activations can lead to user frustration and impede functional communication. A previous preliminary study, in the context of a case series with three single-switch users, reported that correct, accidental and missed switch activations could elicit cardiac deceleration and increased phasic skin conductance on average, while deliberate switch non-use was associated with autonomic nonresponse. The present study investigated the possibility of using blood volume pulse recordings from the same three pediatric single-switch users to track the aforementioned switch events on a single-trial basis. Peaks of the line length time series derived from the empirical mode decomposition of the inter-beat interval time series matched, on average, a high percentage (above 80%) of single-switch events, while unmatched peaks coincided moderately (below 37%) with idle time during scanning. These results encourage further study of autonomic measures as complementary information channels to enhance single-switch access.

  16. Early experience with laparoscopic sleeve gastrectomy as a single-stage bariatric procedure.

    PubMed

    Lewis, Catherine E; Dhanasopon, Andrew; Dutson, Erik P; Mehran, Amir

    2009-10-01

    Laparoscopic sleeve gastrectomy (LSG) as a single-stage restrictive bariatric procedure is becoming increasingly popular, especially in patients who are high risk and/or superobese. Between November 21, 2006, and September 30, 2008, 42 patients underwent LSG at our institution. Average age was 47 +/- 11 years, average body mass index was 54 +/- 10 kg/m2, and 62 per cent were female. Preoperative indications for LSG included contraindication to laparoscopic Roux-en-Y gastric bypass (n = 11), severe coronary artery disease and/or congestive heart failure (n = 3), significant liver disease (n = 3), and patient preference (n = 4). Intraoperative indications for LSG included a foreshortened mesentery with inability to create a gastrojejunostomy (n = 13), extensive adhesions (n = 5), and intraoperative findings concerning for cirrhosis (n = 3). Twelve complications occurred in six patients: laparoscopic to open conversion (n = 1), reoperation (n = 3), nosocomial pneumonia (n = 1), wound infection (n = 1), bleeding (n = 1), pulmonary embolus (n = 1), readmission (n = 3), and superior splenic pole infarction. There was one death resulting from pulmonary embolism that occurred 2 weeks postoperatively. Preliminary excess body weight loss at 3, 6, 9, and 12 months was 29, 32 t, 38, and 30 per cent, respectively, and many patients had improvement or resolution of obesity-related comorbidities. Early review of our experience demonstrates that LSG may be an effective single-stage bariatric procedure. Additional follow up will be necessary to better define its long-term safety and efficacy.

  17. New technique for single-staged repair of aortic coarctation and coexisting cardiac disorder.

    PubMed

    Korkmaz, Askin Ali; Guden, Mustafa; Onan, Burak; Tarakci, Sevim Indelen; Demir, Ali Soner; Sagbas, Ertan; Sarikaya, Tugay

    2011-01-01

    The management of adults with aortic coarctation and a coexisting cardiac disorder is still a surgical challenge. Single-staged procedures have lower postoperative morbidity and mortality rates than do 2-staged procedures. We present our experience with arch-to-descending aorta bypass grafting in combination with intracardiac or ascending aortic aneurysm repair.From October 2004 through April 2010, 5 patients (4 men, 1 woman; mean age, 45.8 ± 9.4 yr) underwent anatomic bypass grafting of the arch to the descending aorta through a median sternotomy and concomitant repair of an intracardiac disorder or an ascending aortic aneurysm. Operative indications included coarctation of the aorta in all cases, together with severe mitral insufficiency arising from damaged chordae tendineae in 2 patients, ascending aortic aneurysm with aortic regurgitation in 2 patients, and coronary artery disease in 1 patient. Data from early and midterm follow-up were reviewed.There was no early or late death. Follow-up was complete for all patients, and the mean follow-up period was 34.8 ± 18 months (range, 18 mo-5 yr). All grafts were patent. No late graft-related sequelae or reoperations were observed.For single-staged repair of aortic coarctation with a coexistent cardiac disorder, we propose arch-to-descending aorta bypass through a median sternotomy as an alternative for selected patients.

  18. Single-stage laryngotracheal reconstruction for the treatment of subglottic stenosis in children

    PubMed Central

    Smith, Mariana Magnus; Schweiger, Cláudia; Manica, Denise; Meotti, Camila Degen; Eneas, Larissa Valency; Kuhl, Gabriel; Marostica, Paulo Jose Cauduro

    2012-01-01

    Summary Introduction: In recent decades, airway reconstruction has become the treatment of choice for subglottic stenosis (SGS) in children, which is performed in either single or multiple stages. However, there is evidence in the literature that single-stage surgery is more effective. Objective: To evaluate the success rate of single-stage laryngotracheoplasty (LTP) and cricotracheal resection (CTR) in patients that were treated in our hospital. Materials and Method: We performed a retrospective study of children undergoing laryngotracheal reconstruction. Results: Twenty-four children were included. The etiology of SGS was postintubation in 91.6% and congenital in 8.3%. One patient (4.2%) had grade 4 SGS, 17 (70.8%) presented with grade 3 SGS, 4 (16.6%) had grade 2 SGS, 1 (4.2%) had grade 3 SGS associated with glottic stenosis, and 1 (4.2%) had grade 3 SGS with tracheal stenosis. We performed 26 LTPs and 3 CTRs. Decannulation rates were 66% in the CTR procedures and 85.7% in the LTP procedures; the overall decannulation rate was 83.3%. All children presented with fever in the postoperative period, but were afebrile after the tube was removed. Conclusion: Our series showed a decannulation rate of 83.3%. PMID:25991938

  19. Heavy metal bioleaching and sludge stabilization in a single-stage reactor using indigenous acidophilic heterotrophs.

    PubMed

    Mehrotra, Akanksha; Sreekrishnan, T R

    2017-01-10

    Simultaneous sludge digestion and metal leaching (SSDML) have been reported at mesophilic temperature. It is generally perceived that while sludge stabilization is effected by heterotrophs at neutral pH, metal bioleaching is done by acidophilic autotrophs. However, little information is available on the microbial communities involved in the process. This study carried out SSDML in a single-stage reactor using sludge indigenous microorganisms and looked at the bacterial communities responsible for the process. Volatile suspended solids were reduced by more than 40%. The concentration of zinc, copper, chromium, cadmium and nickel decreased by more than 45% in the dry sludge. Acidophilic species of Alicyclobacillus genus were the dominant heterotrophs. A few heterotrophic bacteria were detected which can oxidize iron (Alicyclobacillus ferrooxydans, Alicyclobacillus ferripilum and Ferrimicrobium acidiphilum). Acidithiobacillus ferrooxidans (autotroph) was responsible for the oxidation of both iron and sulfur which lead to a change in the pH from neutral to acidic. The presence of acidophilic heterotrophs, which can oxidize either iron or sulfur, enhanced the efficiency of SSDML process with respect to sludge stabilization and metal leaching. This study shows that it is possible to carry out the SSDML in a single-stage reactor with indigenous microorganisms.

  20. Single-stage, batch, leach-bed, thermophilic anaerobic digestion of spent sugar beet pulp.

    PubMed

    Koppar, Abhay; Pullammanappallil, Pratap

    2008-05-01

    Spent sugar beet pulp as received was digested in a single-stage, batch, unmixed, leach-bed, laboratory scale thermophilic anaerobic digester. Biogasification of each 0.450 kg (wet weight) batch of spent pulp was initiated by inoculating with anaerobically digested liquor from previous run. The average methane yield was 0.336 m3 CH4 at STP (kgVS)(-1), the maximum methane production rate was 0.087 m3 CH4 at STP (kgVS)(-1)d(-1), average lag time to initiate methanogenesis was only 0.44 days and time required to achieve 95% methane yield was 8 days. The pH in the digesters ranged between 8.0 and 9.5. High rates of methane generation were sustained even at high pH values. The equivalent organic loading rate in the batch digesters was 4 kgCODm(-3)d(-1). The digestion process used here offers significant improvements over one-stage and two-stage systems reported in the literature with comparable performance as it is a single-stage system where the feedstock does not require size reduction, and mixing is not required in the digester.

  1. A tetrad of bicuspid aortic valve association: A single-stage repair

    PubMed Central

    Barik, Ramachandra; Patnaik, A. N.; Mishra, Ramesh C.; Kumari, N. Rama; Gulati, A. S.

    2012-01-01

    We report a 27 years old male who presented with a combination of both congenital and acquired cardiac defects. This syndrome complex includes congenital bicuspid aortic valve, Seller's grade II aortic regurgitation, juxta- subclavian coarctation, stenosis of ostium of left subclavian artery and ruptured sinus of Valsalva aneurysm without any evidence of infective endocarditis. This type of constellation is extremely rare. Neither coarctation of aorta with left subclavian artery stenosis nor the rupture of sinus Valsalva had a favorable pathology for percutaneus intervention. Taking account into morbidity associated with repeated surgery and anesthesia patient underwent a single stage surgical repair of both the defects by two surgical incisions. The approaches include median sternotomy for rupture of sinus of Valsalva and lateral thoracotomy for coarctation with left subclavian artery stenosis. The surgery was uneventful. After three months follow up echocardiography showed mild residual gradient across the repaired coarctation segment, mild aortic regurgitation and no residual left to right shunt. This patient is under follow up. This is an extremely rare case of single stage successful repair of coarctation and rupture of sinus of Valsalva associated with congenital bicuspid aortic valve. PMID:22629035

  2. Dual-Fuel Propulsion in Single-Stage Advanced Manned Launch System Vehicle

    NASA Technical Reports Server (NTRS)

    Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit

    1995-01-01

    As part of the United States Advanced Manned Launch System study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate-engine concept combining Russian RD-170 kerosene-fueled engines with space shuttle main engine-derivative engines: the kerosene- and hydrogen-fueled Russian RD-701 engine; and a dual-fuel, dual-expander engine. Analysis to determine vehicle weight and size characteristics was performed using conceptual-level design techniques. A response-surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicles with respect to several important propulsion-system and vehicle design parameters, in order to achieve minimum empty weight. The tools and methods employed in the analysis process are also summarized. In comparison with a reference hydrogen- fueled single-stage vehicle, results showed that the dual-fuel vehicles were from 10 to 30% lower in empty weight for the same payload capability, with the dual-expander engine types showing the greatest potential.

  3. Biological phosphorus removal in sequencing batch reactor with single-stage oxic process.

    PubMed

    Wang, Dong-Bo; Li, Xiao-Ming; Yang, Qi; Zeng, Guang-Ming; Liao, De-Xiang; Zhang, Jie

    2008-09-01

    The performance of biological phosphorus removal (BPR) in a sequencing batch reactor (SBR) with single-stage oxic process was investigated using simulated municipal wastewater. The experimental results showed that BPR could be achieved in a SBR without anaerobic phase, which was conventionally considered as a key phase for BPR. Phosphorus (P) concentration 0.22-1.79 mg L(-1) in effluent can be obtained after 4h aeration when P concentration in influent was about 15-20 mg L(-1), the dissolved oxygen (DO) was controlled at 3+/-0.2 mg L(-1) during aerobic phase and pH was maintained 7+/-0.1, which indicated the efficiencies of P removal were achieved 90% above. Experimental results also showed that P was mainly stored in the form of intracellular storage of polyphosphate (poly-P), and about 207.235 mg phosphates have been removed by the discharge of rich-phosphorus sludge for each SBR cycle. However, the energy storage poly-beta-hydroxyalkanoates (PHA) was almost kept constant at a low level (5-6 mg L(-1)) during the process. Those results showed that phosphate could be transformed to poly-P with single-stage oxic process without PHA accumulation, and BPR could be realized in net phosphate removal.

  4. Nontangent, Developed Contour Bulkheads for a Single-Stage Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Lepsch, Roger A., Jr.

    2000-01-01

    Dry weights for single-stage launch vehicles that incorporate nontangent, developed contour bulkheads are estimated and compared to a baseline vehicle with 1.414 aspect ratio ellipsoidal bulkheads. Weights, volumes, and heights of optimized bulkhead designs are computed using a preliminary design bulkhead analysis code. The dry weights of vehicles that incorporate the optimized bulkheads are predicted using a vehicle weights and sizing code. Two optimization approaches are employed. A structural-level method, where the vehicle's three major bulkhead regions are optimized separately and then incorporated into a model for computation of the vehicle dry weight, predicts a reduction of4365 lb (2.2 %) from the 200,679-lb baseline vehicle dry weight. In the second, vehicle-level, approach, the vehicle dry weight is the objective function for the optimization. For the vehicle-level analysis, modified bulkhead designs are analyzed and incorporated into the weights model for computation of a dry weight. The optimizer simultaneously manipulates design variables for all three bulkheads to reduce the dry weight. The vehicle-level analysis predicts a dry weight reduction of 5129 lb, a 2.6% reduction from the baseline weight. Based on these results, nontangent, developed contour bulkheads may provide substantial weight savings for single stage vehicles.

  5. Red Mud Catalytic Pyrolysis of Pinyon Juniper and Single-Stage Hydrotreatment of Oils

    SciTech Connect

    Agblevor, Foster A.; Elliott, Douglas C.; Santosa, Daniel M.; Olarte, Mariefel V.; Burton, Sarah D.; Swita, Marie; Beis, Sedat H.; Christian, Kyle; Sargent, Brandon

    2016-10-20

    Pinyon juniper biomass feedstocks, which cover a large acreage of rangeland in the western United States, are being eradicated and, therefore, considered as a convenient biomass feedstock for biofuel production. Pinyon juniper whole biomass (wood, bark, and leaves) were pyrolyzed in a pilot-scale bubbling fluidized-bed reactor at 450 °C, and the noncondensable gases were recycled to fluidize the reactor. Red mud was used as the in situ catalyst for the pyrolysis of the pinyon juniper biomass. The pyrolysis products were condensed in three stages, and products were analyzed for physicochemical properties. The condenser oil formed two phases with the aqueous fraction, whereas the electrostatic precipitator oils formed a single phase. The oil pH was 3.3; the higher heating value (HHV) was 28 MJ/kg; and the viscosity was less than 100 cP. There was a direct correlation between the viscosity of the oils and the alcohol/ether content of the oils, and this was also related to the aging rate of the oils. The catalytic pyrolysis oils were hydrotreated in a continuous single-stage benchtop hydrotreater to produce hydrocarbon fuels with a density of 0.80$-$0.82 cm3/g. The hydrotreater ran continuously for over 300 h with no significant catalyst deactivation or coke formation. This is the first time that such a long single-stage hydrotreatment has been demonstrated on biomass catalytic pyrolysis oils.

  6. Lumbar extracavitary corpectomy with a single stage circumferential arthrodesis: surgical technique and clinical series.

    PubMed

    Singh, Kern; Park, Daniel K

    2012-07-01

    Circumferential arthrodesis and reconstruction is necessary after a lumbar corpectomy in the setting of malignancy and infection. The advent of expandable cage technology now allows for safe anterior column reconstruction via a posterior approach with no transection and minimal retraction of the lumbar spinal nerve roots. Fifteen patients underwent a single-stage, circumferential corpectomy and anterior spinal reconstruction with an expandable cage via a midline, posterior, lateral lumbar extracavitary approach. Posterior segmental pedicle screw fixation and iliac crest bone graft was used in all cases. Fifteen lumbar extracavitary corpectomy nerve root-sparing procedures have been performed to date, with at least 1-year follow-up (12 tumors/3 infections). No patient suffered any neurological complications. One patient suffered from a postoperative myocardial infarction 10 days after the procedure. Two patients had medical complications that were treated without sequelae. We present a technical description and case series of patients undergoing a single-stage, circumferential corpectomy and anterior spinal reconstruction with an expandable cage via a midline, posterior, lateral lumbar extracavitary approach with at least 1-year follow-up. The technique is safe, technically feasible, and obviates an anterior approach in this oftentimes critically ill patient population.

  7. FINAL DESIGN OF ILC RTML EXTRACTION LINE FOR SINGLE STAGE BUNCH COMPRESSOR

    SciTech Connect

    Seletskiy, S.; Solyak, N.

    2011-03-28

    The use of single stage bunch compressor (BC) in the International Linear Collider (ILC) Damping Ring to the Main Linac beamline (RTML) requires new design for the extraction line (EL). The EL located downstream of the BC will be used for both an emergency abort dumping of the beam and the tune-up continuous train-by-train extraction. It must accept both compressed and uncompressed beam with energy spread of 3.54% and 0.15% respectively. In this paper we report the final design that allowed minimizing the length of such extraction line while offsetting the beam dumps from the main line by 5m distance required for acceptable radiation level in the service tunnel. Proposed extraction line can accommodate beams with different energy spreads at the same time providing the beam size suitable for the aluminum ball dump window. We described the final design of the ILC RTML extraction line located downstream of the new single-stage bunch compressor. The extraction line is only 24m long and is capable of accepting and transmitting 220kW of beam power. The EL can be used for both fast intra-train and continual extraction, and is capable of accepting both 0.15% and 3.54% energy spread beams at 5MeV and 4.37MeV respectively.

  8. Hearing rehabilitation with single-stage bilateral vibroplasty in a child with Franceschetti syndrome.

    PubMed

    Sargsyan, Sona; Rahne, Torsten; Kösling, Sabrina; Eichler, Gerburg; Plontke, Stefan K

    2014-05-01

    Hearing is of utmost importance for normal speech and social development. Even children who have mild or unilateral permanent hearing loss may experience difficulties with understanding speech, as well as problems with educational and psycho-social development. The increasing advantages of middle-ear implant technologies are opening new perspectives for restoring hearing. Active middle-ear implants can be used in children and adolescents with hearing loss. In addition to the well-documented results for improving speech intelligibility and quality of hearing in sensorineural hearing loss active middle-ear implants are now successfully used in patients with conductive and mixed hearing loss. In this article we present a case of successful, single-stage vibroplasty, on the right side with the fixation of the FMT on the stapes and PORP CLiP vibroplasty on the left side in a 6-year-old girl with bilateral mixed hearing loss and multiple dyslalia associated with Franceschetti syndrome (mandibulofacial dysostosis). CT revealed bilateral middle-ear malformations as well as an atretic right and stenotic left external auditory canal. Due to craniofacial dysmorphia airway and (post)operative, management is significantly more difficult in patients with a Franceschetti syndrome which in this case favoured a single-stage bilateral procedure. No intra- or postoperative surgical complications were reported. The middle-ear implants were activated 4 weeks after surgery. In the audiological examination 6 months after surgery, the child showed 100% speech intelligibility with activated implants on each side.

  9. Safety and Efficacy of Single-Stage Surgical Treatment for Congenital Scoliosis Associated with Intraspinal Mass

    PubMed Central

    Zhang, Bo-bo; Tao, Hui-ren; Wu, Tai-lin; Wang, Lin; Duan, Chun-guang; Zhang, Tao; Li, Tao; Yang, Wei-zhou; Liu, Ming; Ma, Jun

    2017-01-01

    For congenital scoliosis associated with intraspinal anomaly, surgical treatment is often advocated. However, the safety and efficacy of single-stage intraspinal mass resection and scoliosis correction remain unclear. The purpose of this study was to retrospectively evaluate the feasibility and risk factors of single-stage surgical treatment for congenital scoliosis associated with intraspinal mass. Patients’ clinical records were reviewed for demographic and radiographic data, operating time, intraoperative blood loss, perioperative complications, and postoperative pathologic results. Two female and 5 male patients with an average age of 19.14 ± 7.52 years (range, 11–31 years) were evaluated. Patients were followed for a minimum of 24 months after initial surgical treatment, with an average of 49.71 ± 32.90 months (range, 27–99 months). Spinal curvature was corrected from an average of 69.57 ± 20.44° to 29.14 ± 9.87°, demonstrating a mean correction rate of 55.05% ± 18.75%. No obvious loss of correction was observed at the final follow-up. Complications included transient neurologic deficit, cerebrospinal fluid leakage, and intraspinal mass recurrence in 1 patient each. There was no paralysis or permanent nerve damage. In conclusion, simultaneous intraspinal mass resection and scoliosis correction appears to be safe and effective. PMID:28117436

  10. Mathematical modeling of wire-duct single-stage electrostatic precipitators.

    PubMed

    Talaie, M R

    2005-09-30

    A two-dimensional mathematical model was developed to simulate the performance of wire-duct single-stage electrostatic precipitators (ESP). The model presented by Talaie et al. [M.R. Talaie, M. Taheri, J. Fathikaljahi, A new method to evaluate the voltage-current characteristics applicable for a single-stage electrostatic precipitator, J. Electrostat., 53 (3) (2001) 221-233] was used for prediction of electric field strength distribution and V-I characteristic for high-voltage wire-plate configuration. Simple Lagrangian approach was used to predict particle movement. Normal k-epsilon turbulent flow model with considering electrical body force due to ion and charged particle flow was used to evaluate gas velocity distribution. Ignoring the effect of particle movement and fluid flow, the results of electrical part of mathematical model are in good agreement with experimental data of Penny and Matick [G.W. Penny, R.E. Matrick, Potential in DC corona field, Trans. AIEE Part 1, 79 (1960) 91-99]. The prediction of corona sheath radius and its variation with particle loading and applied voltage is the main distinguishing feature of the present model. This fact was not included in the earlier models.

  11. Novel Regenerator Material Improving the Performance of a Single Stage Pulse Tube Cooler

    NASA Astrophysics Data System (ADS)

    Koettig, T.; Nawrodt, R.; Moldenhauer, S.; Thürk, M.; Seidel, P.

    2006-04-01

    The authors have undertaken basic research and prototype developments on various four valve pulse tube refrigerators (FVPTR) since several years. Systematic studies have been carried out to characterize the basics of the arising loss mechanisms of this type of pulse tube refrigerator with its active type of phase shifting. Recently, a single-stage FVPTR in coaxial arrangement has been designed for maximum refrigeration power at cooling temperatures below 30 K limited by an available electrical input power of 6.2 kW. At present the single stage cooler provides a cooling capacity of 10 W or 20 W at working temperatures of 22 K or 27 K, respectively. Instead of lead spheres, lead coated screens have been applied in the coldest part of the regenerator in order to decrease the pressure drop. The improvement of the refrigerator overcomes the well known shortcoming of a refrigerator with a regenerator partially filled with lead spheres at working-temperatures above 50 K. Numerical simulations of the thermodynamical process yield to continuative lead screen parameter studies. The results raise hope for achievable minimum temperatures down to 15 K. We report on the improved performance of the FVPTR due to the use of lead-coated screens.

  12. 386 mW/20 K single-stage Stirling-type pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Chen, Liubiao; Zhou, Qiang; Jin, Hai; Zhu, Wenxiu; Wang, Junjie; Zhou, Yuan

    2013-10-01

    Recently, we reported a single-stage Stirling-type pulse tube cryocooler (SPTC) that achieved a no-load temperature of 18.6 K and 0.2 W/20.6 K with 268 W input power at the frequency of 38 Hz. By further optimizing the regenerator, using the stainless steel screens only, a new SPTC driven by a dual-opposed linear compressor has been built and tested. At present, a lowest temperature of 15.5 K, which is a new record for single-stage SPTC, and 386 mW/20 K cooling power can be achieved with 246 W input power, which is comparable to the two-stage SPTC with a similar input power. The optimization process of regenerator will be presented in this paper. Experimental results indicate that it is important for SPTC to reduce the flow resistance of regenerator at the warm end and enhance the regenerative capacity of the cold end to improve the cooling performance. Lead spheres were also employed as part of the regenerator to achieve the possible lower temperature, but the test results show that there is no evident improvement in achieving lower temperature.

  13. Developments in laser wakefield accelerators: From single-stage to two-stage

    NASA Astrophysics Data System (ADS)

    Li, Wen-Tao; Wang, Wen-Tao; Liu, Jian-Sheng; Wang, Cheng; Zhang, Zhi-Jun; Qi, Rong; Yu, Chang-Hai; Li, Ru-Xin; Xu, Zhi-Zhan

    2015-01-01

    Laser wakefield accelerators (LWFAs) are compact accelerators which can produce femtosecond high-energy electron beams on a much smaller scale than the conventional radiofrequency accelerators. It is attributed to their high acceleration gradient which is about 3 orders of magnitude larger than the traditional ones. The past decade has witnessed the major breakthroughs and progress in developing the laser wakfield accelerators. To achieve the LWFAs suitable for applications, more and more attention has been paid to optimize the LWFAs for high-quality electron beams. A single-staged LWFA does not favor generating controllable electron beams beyond 1 GeV since electron injection and acceleration are coupled and cannot be independently controlled. Staged LWFAs provide a promising route to overcome this disadvantage by decoupling injection from acceleration and thus the electron-beam quality as well as the stability can be greatly improved. This paper provides an overview of the physical conceptions of the LWFA, as well as the major breakthroughs and progress in developing LWFAs from single-stage to two-stage LWFAs. Project supported by the National Natural Science Foundation of China (Grant Nos. 11127901, 11425418, and 61221064), the National Basic Research Program of China (Grant No. 2011CB808100), and the Science and Technology Talent Project of Shanghai City, China (Grant Nos. 12XD1405200 and 12ZR1451700).

  14. Downstream processing of antibodies: single-stage versus multi-stage aqueous two-phase extraction.

    PubMed

    Rosa, P A J; Azevedo, A M; Ferreira, I F; Sommerfeld, S; Bäcker, W; Aires-Barros, M R

    2009-12-11

    Single-stage and multi-stage strategies have been evaluated and compared for the purification of human antibodies using liquid-liquid extraction in aqueous two-phase systems (ATPSs) composed of polyethylene glycol 3350 (PEG 3350), dextran, and triethylene glycol diglutaric acid (TEG-COOH). The performance of single-stage extraction systems was firstly investigated by studying the effect of pH, TEG-COOH concentration and volume ratio on the partitioning of the different components of a Chinese hamster ovary (CHO) cells supernatant. It was observed that lower pH values and high TEG-COOH concentrations favoured the selective extraction of human immunoglobulin G (IgG) to the PEG-rich phase. Higher recovery yields, purities and percentage of contaminants removal were always achieved in the presence of the ligand, TEG-COOH. The extraction of IgG could be enhanced using higher volume ratios, however with a significant decrease in both purity and percentage of contaminants removal. The best single-stage extraction conditions were achieved for an ATPS containing 1.3% (w/w) TEG-COOH with a volume ratio of 2.2, which allowed the recovery of 96% of IgG in the PEG-rich phase with a final IgG concentration of 0.21mg/mL, a protein purity of 87% and a total purity of 43%. In order to enhance simultaneously both recovery yield and purity, a four stage cross-current operation was simulated and the corresponding liquid-liquid equilibrium (LLE) data determined. A predicted optimised scheme of a counter-current multi-stage aqueous two-phase extraction was hence described. IgG can be purified in the PEG-rich top phase with a final recovery yield of 95%, a final concentration of 1.04mg/mL and a protein purity of 93%, if a PEG/dextran ATPS containing 1.3% (w/w) TEG-COOH, 5 stages and volume ratio of 0.4 are used. Moreover, according to the LLE data of all CHO cells supernatant components, it was possible to observe that most of the cells supernatant contaminants can be removed during this

  15. Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents.

    PubMed

    Agon, N; Hrabovský, M; Chumak, O; Hlína, M; Kopecký, V; Masláni, A; Bosmans, A; Helsen, L; Skoblja, S; Van Oost, G; Vierendeels, J

    2016-01-01

    The renewable evolution in the energy industry and the depletion of natural resources are putting pressure on the waste industry to shift towards flexible treatment technologies with efficient materials and/or energy recovery. In this context, a thermochemical conversion method of recent interest is plasma gasification, which is capable of producing syngas from a wide variety of waste streams. The produced syngas can be valorized for both energetic (heat and/or electricity) and chemical (ammonia, hydrogen or liquid hydrocarbons) end-purposes. This paper evaluates the performance of experiments on a single-stage plasma gasification system for the treatment of refuse-derived fuel (RDF) from excavated waste. A comparative analysis of the syngas characteristics and process yields was done for seven cases with different types of gasifying agents (CO2+O2, H2O, CO2+H2O and O2+H2O). The syngas compositions were compared to the thermodynamic equilibrium compositions and the performance of the single-stage plasma gasification of RDF was compared to that of similar experiments with biomass and to the performance of a two-stage plasma gasification process with RDF. The temperature range of the experiment was from 1400 to 1600 K and for all cases, a medium calorific value syngas was produced with lower heating values up to 10.9 MJ/Nm(3), low levels of tar, high levels of CO and H2 and which composition was in good agreement to the equilibrium composition. The carbon conversion efficiency ranged from 80% to 100% and maximum cold gas efficiency and mechanical gasification efficiency of respectively 56% and 95%, were registered. Overall, the treatment of RDF proved to be less performant than that of biomass in the same system. Compared to a two-stage plasma gasification system, the produced syngas from the single-stage reactor showed more favourable characteristics, while the recovery of the solid residue as a vitrified slag is an advantage of the two-stage set-up.

  16. Single-stage nonintubated uniportal thoracoscopic resection of synchronous bilateral pulmonary nodules after coil labeling

    PubMed Central

    Zhang, Miao; Wang, Tao; Zhang, You-Wei; Wu, Wen-Bin; Wang, Heng; Xu, Rong-Hua

    2017-01-01

    Abstract Rationale: Preoperative localization of small pulmonary nodules is essential for precise resection, besides, the optimal treatment for pulmonary nodules is controversial and the prognosis without surgery is uncertain. Patient concerns: Herein we present a patient with compromised pulmonary function harboring synchronous triple ground-glass nodules located separately in different pulmonary lobes. Diagnoses: The pathological diagnosis of the nodules were chronic inflammation, inflammatory pseudotumor and atypical adenomatous hyperplasia, respectively. Interventions: The patient underwent single-stage, non-intubated thoracoscopic pulmonary wedge resection after computed tomography-guided coil labeling of the nodules. Outcomes: The postoperative recovery was encouragingly fast without obvious complications. Lessons: Non-intubated thoracoscopic pulmonary wedge resection is feasible for patients with compromised lung function, meanwhile, preoperative coil labeling of small nodules is reliable. PMID:28328859

  17. Feasibility Study of Laboratory Simulation of Single-Stage-to-Orbit Vehicle Base Heating

    NASA Technical Reports Server (NTRS)

    Park, Chung Sik; Sharma, Surendra; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    The feasibility of simulating in a laboratory the heating environment of the base region of the proposed reusable single-stage-to-orbit vehicle during its ascent is examined. The propellant is assumed to consist of hydrocarbon (RP1), liquid hydrogen (LH2), and liquid oxygen (LO2), which produces CO and H2 as the main combustible components of the exhaust effluent. Since afterburning in the recirculating region can dictate the temperature of the base flowfield and ensuing heating phenomena, laboratory simulation focuses on the thermochemistry of the afterburning. By extrapolating the Saturn V flight data, the Damkohler number, in the base region with afterburning for SSTO vehicle, is estimated to be between 30 and 140. It is shown that a flow with a Damkohler number of 1.8 to 25 can be produced in an impulse ground test facility. Even with such a reduced Damkohler number, the experiment can adequately reproduce the main features of the flight environment.

  18. The Integrity of ACSR Full Tension Single-Stage Splice Connector at Higher Operation Temperature

    SciTech Connect

    Wang, Jy-An John; Lara-Curzio, Edgar; King Jr, Thomas J

    2008-10-01

    Due to increases in power demand and limited investment in new infrastructure, existing overhead power transmission lines often need to operate at temperatures higher than those used for the original design criteria. This has led to the accelerated aging and degradation of splice connectors. It is manifested by the formation of hot-spots that have been revealed by infrared imaging during inspection. The implications of connector aging is two-fold: (1) significant increases in resistivity of the splice connector (i.e., less efficient transmission of electricity) and (2) significant reductions in the connector clamping strength, which could ultimately result in separation of the power transmission line at the joint. Therefore, the splice connector appears to be the weakest link in electric power transmission lines. This report presents a protocol for integrating analytical and experimental approaches to evaluate the integrity of full tension single-stage splice connector assemblies and the associated effective lifetime at high operating temperature.

  19. An implementable digital adaptive flight controller designed using stabilized single-stage algorithms

    NASA Technical Reports Server (NTRS)

    Alag, G.; Kaufman, H.

    1977-01-01

    An explicit adaptive controller, which makes direct use of on-line parameter identification, has been developed and applied to both the linearized and nonlinear equations of motion for the F-8 aircraft. This controller is composed of an on-line weighted least squares parameter identifier, a Kalman state filter, and a real model following control law designed using single-stage performance indices. The corresponding control gains are readily adjustable in accordance with parameter changes to ensure asymptotic stability if the conditions of perfect model following are satisfied, and stability in the sense of boundedness otherwise. Simulation experiments with realistic measurement noise indicate that the controller was effective in compensating for parameter variations and capable of rapid recovery from a set of erroneous initial parameter estimates which defined a set of destabilizing gains.

  20. An implementable digital adaptive flight controller designed using stabilized single stage algorithms

    NASA Technical Reports Server (NTRS)

    Kaufman, H.; Alag, G.

    1975-01-01

    Simple mechanical linkages have not solved the many control problems associated with high performance aircraft maneuvering throughout a wide flight envelope. One procedure for retaining uniform handling qualities over such an envelope is to implement a digital adaptive controller. Towards such an implementation an explicit adaptive controller which makes direct use of on-line parameter identification, has been developed and applied to both linearized and nonlinear equations of motion for a typical fighter aircraft. This controller is composed of an on-line weighted least squares parameter identifier, a Kalman state filter, and a model following control law designed using single stage performance indices. Simulation experiments with realistic measurement noise indicate that the proposed adaptive system has the potential for on-board implementation.

  1. Approach to key technologies identification for rocket powered single stage to orbit vehicles

    NASA Astrophysics Data System (ADS)

    Deneu, F.; Terrenoire, P.

    1996-03-01

    A reusable vertical take off, vertical landing rocket powered single stage to orbit vehicle has been studied as a part of the Aérospatiale future launchers systematic study policy. The main goal of this study is to investigate the key points of this kind of configurations, especially identify, classify and quantify the specific problems, key technologies, tools and test facilities needed and the development costs and schedule. Concurrent engineering techniques were used to take into account all the viewpoints (such as RAMS, abort, operations viewpoints) from the very beginning of this study in order to perform a multidisciplinary conceptual design. The configuration presented here is a conical shape, 60 m long, 1200 ton gross lift-off weight vehicle which delivers to and is able to bring back from a space station a 10 ton payload. This paper presents the study methodology, the systems requirements taken into account and the reference vehicle.

  2. Single stage to orbit mass budgets derived from propellant density and specific impulse

    SciTech Connect

    Whitehead, J.C.

    1996-06-06

    The trade between specific impulse (Isp) and density is examined in view of Single Stage To Orbit (SSTO) requirements. Mass allocations for vehicle hardware are derived from these two properties, for several propellant combinations and a dual-fuel case. This comparative analysis, based on flight-proven hardware, indicates that the higher density of several alternative propellants compensates for reduced Isp, when compared with cryogenic oxygen and hydrogen. Approximately half the orbiting mass of a rocket- propelled SSTO vehicle must be allocated to propulsion hardware and residuals. Using hydrogen as the only fuel requires a slightly greater fraction of orbiting mass for propulsion, because hydrogen engines and tanks are heavier than those for denser fuels. The advantage of burning both a dense fuel and hydrogen in succession depends strongly on tripropellant engine weight. The implications of the calculations for SSTO vehicle design are discussed, especially with regard to the necessity to minimize non-tankage structure.

  3. An adaptive guidance law for single stage to low earth orbit

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.

    1989-01-01

    An adaptive guidance algorithm based on a cubic spline representation of the ascent profile and imposition of a dynamic pressure constraint is studied for a single stage to low earth orbit. The flight path is divided into initial and terminal phases. In the initial phase, fully adaptive, and in the terminal phase, semi-adaptive, guidance schemes are used. The cubic spline paqrameters are determined by gradient optimization for maximum payload to orbit. In the terminal phase, a linear quadratic regulator is used to derive the optimal feedback gains to keep the vehicle close to the nominal path. The computational aspects of the guidance algorithm are examined and criteria are developed to ensure stability and convergence.

  4. Robust H∞ stabilization of a hard disk drive system with a single-stage actuator

    NASA Astrophysics Data System (ADS)

    Harno, Hendra G.; Kiin Woon, Raymond Song

    2015-04-01

    This paper considers a robust H∞ control problem for a hard disk drive system with a single stage actuator. The hard disk drive system is modeled as a linear time-invariant uncertain system where its uncertain parameters and high-order dynamics are considered as uncertainties satisfying integral quadratic constraints. The robust H∞ control problem is transformed into a nonlinear optimization problem with a pair of parameterized algebraic Riccati equations as nonconvex constraints. The nonlinear optimization problem is then solved using a differential evolution algorithm to find stabilizing solutions to the Riccati equations. These solutions are used for synthesizing an output feedback robust H∞ controller to stabilize the hard disk drive system with a specified disturbance attenuation level.

  5. An Air-Breathing Launch Vehicle Concept for Single-Stage-to-Orbit

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    1999-01-01

    The "Trailblazer" is a 300-lb payload, single-stage-to-orbit launch vehicle concept that uses air-breathing propulsion to reduce the required propellant fraction. The integration of air-breathing propulsion is done considering performance, structural and volumetric efficiency, complexity, and design risk. The resulting configuration is intended to be viable using near-term materials and structures. The aeropropulsion performance goal for the Trailblazer launch vehicle is an equivalent effective specific impulse (I*) of 500 sec. Preliminary analysis shows that this requires flight in the atmosphere to about Mach 10, and that the gross lift-off weight is 130,000 lb. The Trailblazer configuration and proposed propulsion system operating modes are described. Preliminary performance results are presented, and key technical issues are highlighted. An overview of the proposed program plan is given.

  6. A single-stage optical load-balanced switch for data centers.

    PubMed

    Huang, Qirui; Yeo, Yong-Kee; Zhou, Luying

    2012-10-22

    Load balancing is an attractive technique to achieve maximum throughput and optimal resource utilization in large-scale switching systems. However current electronic load-balanced switches suffer from severe problems in implementation cost, power consumption and scaling. To overcome these problems, in this paper we propose a single-stage optical load-balanced switch architecture based on an arrayed waveguide grating router (AWGR) in conjunction with fast tunable lasers. By reuse of the fast tunable lasers, the switch achieves both functions of load balancing and switching through the AWGR. With this architecture, proof-of-concept experiments have been conducted to investigate the feasibility of the optical load-balanced switch and to examine its physical performance. Compared to three-stage load-balanced switches, the reported switch needs only half of optical devices such as tunable lasers and AWGRs, which can provide a cost-effective solution for future data centers.

  7. Investigation of Single-Stage Modified Turbine of Mark 25 Torpedo Power Plant

    NASA Technical Reports Server (NTRS)

    Hoyt, Jack W.

    1947-01-01

    Efficiency investigations have been made on a single-stage modification of the turbine of a Mark 25 aerial torpedo to determine the performance of the unit with five different turbine nozzles. The output of the turbine blades was computed by analyzing the windage and mechanical-friction losses of the unit. The turbine was faund to be most efficient with a cast nozzle having sharp-edged inlets to the nine nozzle ports. An analysis af the effectiveness af the first and second stages of the standard Mark 25 torpedo turbine indicates that the first- stage turbine contributes nearly all the brake power produced at blade-jet speed ratios above 0.26.

  8. Projectile acceleration in a single-stage gun at breech pressures below 50 MPa

    NASA Astrophysics Data System (ADS)

    Sasoh, A.; Ohba, S.; Takayama, K.

    Experimental studies were carried out to investigate projectile acceleration in a single-stage gun at breech pressures below 50 MPa. The gun was driven by firing either liquid or solid propellant. In-bore projectile velocity was continuously recorded using the well-known, precise VISAR interferometer technique so that accurate projectile acceleration data could be deduced. Both the attained projectile acceleration and muzzle exit velocity depend upon the charge-to-mass ratio and the pressure at which the blow-out disk ruptures. The results obtained from these experiments render information on the interplay between propellant combustion and projectile acceleration for low in-bore pressure regimes, and they provide the input data required for adequate numerical simulation.

  9. Cystolithotomy during robotic radical prostatectomy: Single-stage procedure for concomitant bladder stones

    PubMed Central

    Tan, Gerald Y.; Sooriakumaran, Prasanna; Peters, David L.; Srivastava, Abhishek; Tewari, Ashutosh

    2012-01-01

    Asymptomatic concomitant vesical calculi are an occasional finding on routine radiologic staging and evaluation of patients with early prostate cancer. We report the first case of single-stage robotic cystolithotomy for multiple bladder stones in a 64-year-old man undergoing robotic-assisted radical prostatectomy, and discuss the approaches available for ensuring complete stone clearance in this unique setting. We show that concomitant bladder stone extraction during robotic-assisted radical prostatectomy is feasible and does not add significantly to operative time. This technique avoids the need to undergo additional general anesthetic procedures with potential complications such as bleeding, urethral stricture formation, and bladder perforation, prior to the prostatectomy. PMID:22557729

  10. Rocket-powered single-stage vehicle configuration selection and design

    NASA Technical Reports Server (NTRS)

    Stanley, Douglas O.; Engelund, Walter C.; Lepsch, Roger A.; Mcmillin, Mark; Wurster, Kathryn E.; Powell, Richard W.; Guinta, Anthony A.; Unal, Resit

    1993-01-01

    A reusable rocket-powered, single-stage launch vehicle has been designed as a part of NASA's Advanced Manned Launch System (AMLS) study to examine options for a next-generation manned space transportation system. The configuration selection process utilized a response surface methodology for multidisciplinary optimization. The methodology was utilized to determine the minimum dry weight entry vehicle to meet constraints on landing velocity and on subsonic, supersonic, and hypersonic trim and stability. Once the optimum configuration was determined, a multidisciplinary conceptual vehicle design was performed. This paper presents the results of the configuration selection methodology and summarizes the overall conceptual design process with special attention given to the individual disciplines of weights/ sizing, structures/materials, configuration, flight mechanics, aerodynamics, aeroheating, propulsion, and operations.

  11. Hirschsprung's disease management: from multi staged operation to single staged transanal pull-through.

    PubMed

    Wang, J X; Dahal, G R

    2009-06-01

    Hirschsprung's disease (HD) is a common congenital disease of colorectum. Although it was described more than one century ago, the effective treatment was established only half a century later. The initially treatment consisted of preoperative diverting colostomy, followed by definite pull-through and closure of colostomy on later date. A variety of procedures like Swenson, Duhamel, Rehbein and Soave were evolved with time. With the better understanding of pathogenesis and improvement on surgical technique, now the operation has become less extensive. In recent days, the classical 3 staged procedure is replaced by single staged procedure. All the procedure can be completed transanally. Since De la Torre in 1998, first reported total transanal endorectal pull-through, it became the most popular technique for the treatment of HD.

  12. 18 W single-stage single-frequency acoustically tailored Raman fiber amplifier.

    PubMed

    Vergien, Christopher; Dajani, Iyad; Robin, Craig

    2012-05-15

    A single-mode polarization-maintaining fiber doped to increase the Raman gain while suppressing stimulated Brillouin scattering (SBS) was utilized in a single-stage counter-pumped Raman fiber amplifier. The SBS suppression was achieved through the acoustic tailoring of the core. A pump probe experiment was conducted to characterize the Brillouin gain and indicated the existence of multiple Brillouin peaks. When the amplifier was seeded with approximately 15 mW of 1178 nm light, 11.5 W of cw output power was obtained with a linewidth ≤2 MHz. The application of a thermal gradient to further mitigate the SBS process increased the output power to 18 W, thus providing a net amplifier gain >30 dB.

  13. Dimension Determination of Precursive Stall Events in a Single Stage High Speed Compressor

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Qammar, Helen K.; Hartley, Tom T.

    1996-01-01

    This paper presents a study of the dynamics for a single-stage, axial-flow, high speed compressor core, specifically, the NASA Lewis rotor stage 37. Due to the overall blading design for this advanced core compressor, each stage has considerable tip loading and higher speed than most compressor designs, thus, the compressor operates closer to the stall margin. The onset of rotating stall is explained as bifurcations in the dynamics of axial compressors. Data taken from the compressor during a rotating stall event is analyzed. Through the use of a box-assisted correlation dimension methodology, the attractor dimension is determined during the bifurcations leading to rotating stall. The intent of this study is to examine the behavior of precursive stall events so as to predict the entrance into rotating stall. This information may provide a better means to identify, avoid or control the undesirable event of rotating stall formation in high speed compressor cores.

  14. Sleeve gastrectomy as a single-stage bariatric operation: indications and limitations.

    PubMed

    Daskalakis, Markos; Weiner, Rudolf A

    2009-01-01

    Sleeve gastrectomy (SG) was initially described as a first-step procedure followed by either biliopancreatic diversion with duodenal switch or Roux-en-Y gastric bypass in super-super obese patients. Multiple recent reports have documented SG as single therapy in the treatment of morbid obesity. However,the indications for this procedure are still under evaluation.Accumulating data demonstrate that SG can be an effective and safe procedure for super-super-obese or high-risk patients either as a single operation or as a bridge to more definitive surgery. SG can also be performed in patients who require anti-inflammatory medication or in patients with conditions such as Crohn's disease, cirrhosis, anemia, or severe osteoporosis which preclude intestinal bypass. Furthermore,SG represents not only a safe alternative for morbidly obese patients on anticoagulant medication or immunosuppressive agents but also for those with multiple intra-abdominal adhesions or after failed gastric banding. In addition, SG can be performed safely in morbid obese adolescents. The main limitation of this novel bariatric procedure is the lack of longterm data on sustained weight loss and resolution of obesity related comorbidities. Moreover, the fact that SG is an irreversible operation adds to its weakness as a bariatric procedure, at least until definitive results concerning its efficacy are obtained. SG is effective and safe as a single-stage procedure for certain cohorts of patients. However, the broad application of SG as a single-stage procedure in the bariatric field can be established only if the procedure is standardized and longterm results are available.

  15. Single stage, low noise, advanced technology fan. Volume 5: Fan acoustics. Section 1: Results and analysis

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.

    1976-01-01

    The acoustic tests and data analysis for a 0.508-scale fan vehicle of a 111,300 newton (25,000 pound) thrust, full-size engine, which would have application on an advanced transport aircraft, is described. The single-stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec (1,650 ft/sec) to achieve the desired pressure ratio in a single-stage fan with low radius ratio (0.38), and to maintain adequate stall margin. The fan has 44 tip-shrouded rotor blades and 90 outlet guide vanes. The two basic approaches taken in the acoustic design were: (1) minimization of noise at the source, and (2) suppression of the generated noise in the inlet and bypass exhaust duct. Suppression of the generated noise was accomplished in the inlet through use of the hybrid concept (wall acoustic treatment plus airflow acceleration suppression) and in the exhaust duct with extensive acoustic treatment including a splitter. The goal of the design was attainment of twenty effective perceived noise decibels (20 EPNdB) below current Federal Air Regulation noise standards for a full-scale fan at the takeoff, cutback, and approach conditions. The suppression goal of FAR 36-20 was not reached, but improvements in the technology of both front and aft fan-noise suppression were realized. The suppressed fan noise was shown to be consistent with the proposed federal regulation on aircraft noise.

  16. A Multidisciplinary Performance Analysis of a Lifting-Body Single-Stage-to-Orbit Vehicle

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Lepsch, Roger A.; Korte, J. J.; Wurster, Kathryn E.

    2000-01-01

    Lockheed Martin Skunk Works (LMSW) is currently developing a single-stage-to-orbit reusable launch vehicle called VentureStar(TM) A team at NASA Langley Research Center participated with LMSW in the screening and evaluation of a number of early VentureStar(TM) configurations. The performance analyses that supported these initial studies were conducted to assess the effect of a lifting body shape, linear aerospike engine and metallic thermal protection system (TPS) on the weight and performance of the vehicle. These performance studies were performed in a multidisciplinary fashion that indirectly linked the trajectory optimization with weight estimation and aerothermal analysis tools. This approach was necessary to develop optimized ascent and entry trajectories that met all vehicle design constraints. Significant improvements in ascent performance were achieved when the vehicle flew a lifting trajectory and varied the engine mixture ratio during flight. Also, a considerable reduction in empty weight was possible by adjusting the total oxidizer-to-fuel and liftoff thrust-to-weight ratios. However, the optimal ascent flight profile had to be altered to ensure that the vehicle could be trimmed in pitch using only the flow diverting capability of the aerospike engine. Likewise, the optimal entry trajectory had to be tailored to meet TPS heating rate and transition constraints while satisfying a crossrange requirement.

  17. Aortic root aneurysm in an adult patient with aortic coarctation: a single-stage approach.

    PubMed

    Ananiadou, Olga G; Koutsogiannidis, Charilaos; Ampatzidou, Fotini; Drossos, George E

    2012-09-01

    Coarctation of the aorta is a common congenital defect that may be undiagnosed until adulthood. Moreover, coarctation is associated with congenital and acquired cardiac pathology that may require surgical intervention. The management of an adult patient with aortic coarctation and an associated cardiac defect poses a great technical challenge since there are no standard guidelines for the therapy of such a complex pathology. Several extra-anatomic bypass grafting techniques have been described, including methods in which distal anastomosis is performed on the descending thoracic aorta, allowing simultaneous intracardiac repair. We report here a 37-year old man who was diagnosed with an aortic root aneurysm and aortic coarctation. The patient was treated electively with a single-stage approach through a median sternotomy that consisted of valve-sparing replacement of the aortic root and ascending-to-descending extra-anatomic aortic bypass, using a 18-mm Dacron graft. Firstly, the aortic root was replaced with the Yacoub remodelling procedure, and then the distal anastomosis was performed to the descending aorta, behind the heart, with the posterior pericardial approach. The extra-anatomic bypass graft was brought laterally from the right atrium and implanted in the ascending graft. Postoperative recovery was uneventful and a control computed tomographic angiogram 1 month after complete repair showed good results.

  18. Low energy single-staged anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for wastewater treatment.

    PubMed

    Aslam, Muhammad; McCarty, Perry L; Shin, Chungheon; Bae, Jaeho; Kim, Jeonghwan

    2017-03-06

    An aluminum dioxide (Al2O3) ceramic membrane was used in a single-stage anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for low-strength wastewater treatment. The AFCMBR was operated continuously for 395days at 25°C using a synthetic wastewater having a chemical oxygen demand (COD) averaging 260mg/L. A membrane net flux as high as 14.5-17L/m(2)h was achieved with only periodic maintenance cleaning, obtained by adding 25mg/L of sodium hypochlorite solution. No adverse effect of the maintenance cleaning on organic removal was observed. An average SCOD in the membrane permeate of 23mg/L was achieved with a 1h hydraulic retention time (HRT). Biosolids production averaged 0.014±0.007gVSS/gCOD removed. The estimated electrical energy required to operate the AFCMBR system was 0.039kWh/m(3), which is only about 17% of the electrical energy that could be generated with the methane produced.

  19. Trim drag reduction concepts for horizontal takeoff single-stage-to-Orbit vehicles

    NASA Technical Reports Server (NTRS)

    Shaughnessy, John D.; Gregory, Irene M.

    1991-01-01

    The results of a study to investigate concepts for minimizing trim drag of horizontal takeoff single-stage-to-orbit (SSTO) vehicles are presented. A generic hypersonic airbreathing conical configuration was used as the subject aircraft. The investigation indicates that extreme forward migration of the aerodynamic center as the vehicle accelerates to orbital velocities causes severe aerodynamic instability and trim moments that must be counteracted. Adequate stability can be provided by active control of elevons and rudder, but use of elevons to produce trim moments results in excessive trim drag and fuel consumption. To alleviate this problem, two solution concepts are examined. Active control of the center of gravity (COG) location to track the aerodynamic center decreases trim moment requirements, reduces elevon deflections, and leads to significant fuel savings. Active control of the direction of the thrust vector produces required trim moments, reduces elevon deflections, and also results in significant fuel savings. It is concluded that the combination of active flight control to provide stabilization, (COG) position control to minimize trim moment requirements, and thrust vectoring to generate required trim moments has the potential to significantly reduce fuel consumption during ascent to orbit of horizontal takeoff SSTO vehicles.

  20. Rocket-Induced Magnetohydrodynamic Ejector: A Single-Stage-to-Orbit Advanced Propulsion Concept

    NASA Technical Reports Server (NTRS)

    Cole, John; Campbell, Jonathan; Robertson, Anthony

    1995-01-01

    During the atmospheric boost phase of a rocket trajectory, magnetohydrodynamic (MHD) principles can be utilized to augment the thrust by several hundred percent without the input of additional energy. The concept is an MHD implementation of a thermodynamic ejector. Some ejector history is described and some test data showing the impressive thrust augmentation capabilities of thermodynamic ejectors are provided. A momentum and energy balance is used to derive the equations to predict the MHD ejector performance. Results of these equations are compared with the test data and then applied to a specific performance example. The rocket-induced MHD ejector (RIME) engine is described and a status of the technology and availability of the engine components is provided. A top level vehicle sizing analysis is performed by scaling existing MHD designs to the required flight vehicle levels. The vehicle can achieve orbit using conservative technology. Modest improvements are suggested using recently developed technologies, such as superconducting magnets, which can improve predicted performance well beyond those expected for current single-stage-to-orbit (SSTO) designs.

  1. Optoelectronic gain control of a microwave single stage GaAs MESFET amplifier

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    1988-01-01

    Gain control of a single stage GaAs MESFET amplifier is demonstrated by the use of optical illumination of photon energy greater than the GaAs bandgap. The optical illumination is supplied by a semiconductor laser diode and is coupled to the Schottky gate of the MESFET by an optical fiber. The increase in gain is observed to be as much as 5.15 dB when the MESFET is biased close to pinchoff, that is, V(sub gs) equals -1.5 V and with optical illumination of 1.5 mW. The computed maximum available gain (MAG) and current gain (bar h sub 21 bar) from the de-embedded s-parameters show that MAG is unaffected by optical illumination, however, bar h(sub 21)bar increases by more than 2 dB under optical illumination of 1.5 mW. The maximum frequency of oscillation (F sub max) and the unity current gain cut-off frequency (F sub t) obtained by extrapolating the MAG and bar h(sub 21)bar curves, respectively, show that the F(sub max) is insensitive to optical illumination but F(sub t) increases by 5 GHz.

  2. Single stage batch adsorber design for efficient Eosin yellow removal by polyaniline coated ligno-cellulose.

    PubMed

    Debnath, Sushanta; Ballav, Niladri; Maity, Arjun; Pillay, Kriveshini

    2015-01-01

    Polyaniline-coated lignin-based adsorbent (PLC) was synthesized and used for uptake of reactive dye eosin yellow (EY) from aqueous solution. The adsorption capability of the adsorbent was found to be more effective than the unmodified adsorbent (LC). In particular, the adsorption capability of the PLC was effective over a wider pH range. This could be owing to its higher point of zero charge, which is more favorable for the uptake of the anionic dye. Adsorption isotherm models suggested a monolayer adsorption was predominant. The mean free energy of adsorption (E(DR)) was found to have values between 8 and 16 kJ mol(-1) which suggests that an electrostatic mechanism of adsorption predominated over other underlying mechanisms. The adsorption process was also found to be spontaneous, with increasing negative free energy values observed at higher temperatures. Chemisorption process was supported by the changes in enthalpy above 40 kJ mol(-1) and by the results of desorption studies. This new adsorbent was also reusable and regenerable over four successive adsorption-desorption cycles. The single stage adsorber design revealed that PLC can be applicable as an effective biosorbent for the treatment of industrial effluents containing EY dye.

  3. A single-stage synthesis of dimethyl ether in liquid phase

    SciTech Connect

    Tartamella, T.L.; Lee, S.; Kulik, C.J.

    1994-12-31

    A novel, single-stage process for the synthesis of dimethyl ether (DME) has been developed using CO rich syngas in the liquid phase (LPDME). This process utilizes a three-phase, mechanically agitated slurry reactor and makes use of a dual catalyst system consisting of Cu/ZnO/Al{sub 2}O{sub 3} as the methanol synthesis catalyst and {gamma}-Al{sub 2}O{sub 3} for the subsequent conversion to DME. The catalyst is slurried in an inert mineral oil which facilitates effective heat removal. The process involves the synthesis of methanol as an inter-mediate in the production of DME. In doing so, there is a reduction of the chemical equilibrium limitations previously encountered in methanol synthesis alone. As a result, enhanced catalyst activity, per-pass conversion and reactor productivity over methanol synthesis is observed. The process excels over its liquid phase methanol counterpart (LPMeOH{trademark}) in many areas. Specifically, a increase in reactor productivity as high as 95% is attained in the production of DME over LPMeOH{trademark}. Also, a 60% increase in syngas conversion is attained over the production of methanol alone. Experimental studies compare reactor productivities for methanol vs. DME synthesis for several slurry ratios. Also, the effect of temperature and pressure on synthesis rates for methanol and DME are also examined.

  4. Injection blow moulding single stage process: Validation of the numerical simulation through tomography analysis

    NASA Astrophysics Data System (ADS)

    Biglione, Jordan; Béreaux, Yves; Charmeau, Jean-Yves

    2016-10-01

    The injection blow moulding single stage process has been made available on standard injection moulding machine. Both the injection moulding stage and the blow moulding stage are being taken care of in an injection mould. Thus the dimensions of this mould are those of a conventional injection moulding mould. The fact that the two stages are located in the same mould leads to a process more constrained than the conventional one. This process introduces temperature gradients, molecular orientation, high stretch rates and high cooling rates. These constraints lead to a small processing window. In practice, the preform has to remain sufficiently melted to be blown so that the process takes place between the melting temperature and the crystallization temperature. In our numerical approach, the polymer is supposed to be blown in its molten state. Hence we have identified the mechanical behaviour of the polymer in its molten state through dynamical rheology experiments. A viscous Cross model has been proved to be relevant to the problem. Thermal dependence is assumed by an Arrhenius law. The process is simulated through a finite element code (POLYFLOW software) in the Ansys Workbench framework. Thickness measurements using image analysis of tomography data are performed and comparisons with the simulation results show good agreements.

  5. Single-stage laparoscopic cholecystectomy and intraoperative endoscopic retrograde cholangiopancreatography: is this strategy feasible in Australia?

    PubMed

    March, Brayden; Burnett, David; Gani, Jon

    2016-11-01

    Currently in Australasia, concomitant cholecystolithiasis and choledocholithiasis are usually managed with two procedures: laparoscopic cholecystectomy (LC) and pre or postoperative endoscopic retrograde cholangiopancreatography (ERCP). This approach exposes the patient to the risk of complications from the common bile duct stone(s) while awaiting ERCP, the risks of the ERCP itself (particularly pancreatitis) and the need for a second anaesthetic. This article explores the evidence for a newer hybrid approach, single stage LC and intraoperative ERCP (SSLCE) and compares this approach with the commonly used alternatives. SSLCE offers reduced rates of pancreatitis, reduced length of hospital stay and reduced cost compared with the two-stage approach and requires only one anaesthetic. There is a reduced risk of bile leak compared with procedures that involve a choledochotomy, and ductal clearance rates are superior to trans-cystic exploration and equivalent to the standard two-stage approach. Barriers to widespread implementation relate largely to operating theatre logistics and availability of appropriate endoscopic expertise, although when bile duct stones are anticipated these issues are manageable. There is compelling justification in the literature to gather prospective evidence surrounding SSLCE in the Australian Healthcare system.

  6. Single stage, low noise, advanced technology fan. Volume 1: Aerodynamic design

    NASA Technical Reports Server (NTRS)

    Sullivan, T. J.; Younghans, J. L.; Little, D. R.

    1976-01-01

    The aerodynamic design for a half-scale fan vehicle, which would have application on an advanced transport aircraft, is described. The single stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec 11,650 ft/sec). The fan and booster components are designed in a scale model flow size convenient for testing with existing facility and vehicle hardware. The design corrected flow per unit annulus area at the fan face is 215 kg/sec sq m (44.0 lb m/sec sq ft) with a hub-tip ratio of 0.38 at the leading edge of the fan rotor. This results in an inlet corrected airflow of 117.9 kg/sec (259.9 lb m/sec) for the selected rotor tip diameter if 90.37 cm (35.58 in.). The variable geometry inlet is designed utilizing a combination of high throat Mach number and acoustic treatment in the inlet diffuser for noise suppression (hybrid inlet). A variable fan exhaust nozzle was assumed in conjunction with the variable inlet throat area to limit the required area change of the inlet throat at approach and hence limit the overall diffusion and inlet length. The fan exit duct design was primarily influenced by acoustic requirements, including length of suppressor wall treatment; length, thickness and position on a duct splitter for additional suppressor treatment; and duct surface Mach numbers.

  7. Single stage, low noise advanced technology fan. Volume 3: Acoustic design

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.; Mishler, R. B.

    1976-01-01

    The acoustic design for a half-scale fan vehicle, which would have application on an advanced transport aircraft, is described. The single stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec (1,650 ft/sec). The two basic approaches taken in the acoustic design were: (1) minimization of noise at the source, and (2) suppression of the generated noise in the inlet and bypass exhaust duct. Suppression of the generated noise is accomplished in the inlet through use of the hybrid concept (wall acoustic treatment plus airflow acceleration suppression) and in the exhaust duct with extensive acoustic treatment including a splitter. The goal of the design was attainment of twenty effective perceived noise decibels (20 EPNdB) below current Federal Air Regulation noise standards for a full-scale fan at the takeoff, cutback, and approach conditions. Predicted unsuppressed and suppressed fore and aft maximum perceived noise levels indicate that the cutback condition is the most critical with respect to the goal, which is probably unattainable for that condition. This is also true for aft radiated noise in the approach condition.

  8. Ultrafine coal single stage dewatering and briquetting process. Technical report, December 1, 1994--February 28, 1995

    SciTech Connect

    Wilson, J.W.

    1996-03-01

    It is well known that a large portion of the pyrite particles in the coal seams of the Illinois Basin, are finely disseminated within the coal matrix. In order to liberate these micron size pyrite particles, one must use a fine grinding operation. The ultrafine coal particles that are produced are difficult to dewater and they create problems in coal transportation as well as in its storage and handling at utility plants. The objective of this research project is to combine ultrafine coal dewatering and briquetting processes into a single stage operation. This will be accomplished by the use of bitumen based emulsions for dewatering and a compaction device for briquetting. During this reporting period, two types of coal samples have been tested for use in the dewatering and briquetting processes. These tests were carried out using Orimulsion as the dewatering reagent. A ram extruder that can be operated continuously is used to fabricate dewatered pellets. The influence of compaction pressure, curing time, binder concentration (2% to 5%), particle size, and compacting time on the performance of coal pellets have been evaluated in terms of their water resistance and wear vulnerability.

  9. Ultrafine coal single stage dewatering and briquetting process. Technical report, September 1--November 30, 1994

    SciTech Connect

    Wilson, J.W.; Honaker, R.Q.

    1994-12-31

    It is well known that a large portion of the pyrite particles in the coal seams of the Illinois Basin, are finely disseminated within the coal matrix. In order to liberate these micron size pyrite particles, one must use a fine grinding operation. The ultrafine coal particles that are produced are difficult to dewater and they create problems in coal transportation as well as in its storage and handling at utility plants. The objective of this research project is to combine ultrafine coal dewatering and briquetting processes into a single stage operation. This will be accomplished by the use of bitumen based emulsions for dewatering and a compaction device for briquetting. During this reporting period, two types of coal samples have been tested for use in the dewatering and briquetting processes. These tests were carried out in conjunction with a selected hydrophobic binder as the dewatering reagent and an uniaxial hydraulic press. The influence of compaction pressure and binder concentration (2 to 5%) on the performance of coal pellets have been evaluated in terms of their water and wear resistance. A laboratory scale ultrafine coal dewatering and briquetting extruder that can be operated continuously for coal pellets fabrication, has been designed and built, and will be available for testing in the next quarter.

  10. Single stage: dorsolateral onlay buccal mucosal urethroplasty for long anterior urethral strictures using perineal route

    PubMed Central

    Prabha, Vikram; Devaraju, Shishir; Vernekar, Ritesh; Hiremath, Murigendra

    2016-01-01

    ABSTRACT Objective To assess the outcome of single stage dorsolateral onlay buccal mucosal urethroplasty for long anterior urethral strictures (>4cm long) using a perineal incision. Materials and Methods From August 2010 to August 2013, 20 patients underwent BMG urethroplasty. The cause of stricture was Lichen sclerosis in 12 cases (60%), Instrumentation in 5 cases (25%), and unknown in 3 cases (15%). Strictures were approached through a perineal skin incision and penis was invaginated into it to access the entire urethra. All the grafts were placed dorsolaterally, preserving the bulbospongiosus muscle, central tendon of perineum and one-sided attachement of corpus spongiosum. Procedure was considered to be failure if the patient required instrumentation postoperatively. Results Mean stricture length was 8.5cm (range 4 to 12cm). Mean follow-up was 22.7 months (range 12 to 36 months). Overall success rate was 85%. There were 3 failures (meatal stenosis in 1, proximal stricture in 1 and whole length recurrent stricture in 1). Other complications included wound infection, urethrocutaneous fistula, brownish discharge per urethra and scrotal oedema. Conclusion Dorsolateral buccal mucosal urethroplasty for long anterior urethral strictures using a single perineal incision is simple, safe and easily reproducible by urologists with a good outcome. PMID:27286122

  11. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor

    SciTech Connect

    Mahesh Iyer; Himanshu Gupta; Danny Wong; Liang-Shih Fan

    2005-09-30

    Hydrogen production from coal gasification can be enhanced by driving the equilibrium limited Water Gas Shift reaction forward by incessantly removing the CO{sub 2} by-product via the carbonation of calcium oxide. This project aims at using the OSU patented high-reactivity mesoporous precipitated calcium carbonate sorbent for removing the CO{sub 2} product. Preliminary experiments demonstrate the show the superior performance of the PCC sorbent over other naturally occurring calcium sorbents. Gas composition analyses show the formation of 100% pure hydrogen. Novel calcination techniques could lead to smaller reactor footprint and single-stage reactors that can achieve maximum theoretical H{sub 2} production for multicyclic applications. Sub-atmospheric calcination studies reveal the effect of vacuum level, diluent gas flow rate, thermal properties of the diluent gas and the sorbent loading on the calcination kinetics which play an important role on the sorbent morphology. Steam, which can be easily separated from CO{sub 2}, is envisioned to be a potential diluent gas due to its enhanced thermal properties. Steam calcination studies at 700-850 C reveal improved sorbent morphology over regular nitrogen calcination. A mixture of 80% steam and 20% CO{sub 2} at ambient pressure was used to calcine the spent sorbent at 820 C thus lowering the calcination temperature. Regeneration of calcium sulfide to calcium carbonate was achieved by carbonating the calcium sulfide slurry by bubbling CO{sub 2} gas at room temperature.

  12. Real time guidance and propulsion control for single-stage-to-orbit airbreathing vehicles

    NASA Astrophysics Data System (ADS)

    Corban, John Eric

    1989-03-01

    Problems associated with on-board trajectory optimization and with the synthesis of guidance laws are addressed for ascent to low-Earth-orbit of an air-breathing, single-stage-to-orbit vehicle. A multi-mode propulsion system is assumed which incorporates turbojet, ramjet, SCRAMJET, and rocket engines. An energy state approximation is applied to a four-state dynamic model for flight of a point mass over a spherical non-rotating Earth. An algorithm for generating fuel-optimal climb profiles is derived via singular perturbation theory. This algorithm results from application of the minimum principle to a low order dynamic model that includes general functional dependence on angle of attack and a component of thrust normal to the flight path. Maximum dynamic pressure and maximum aerodynamic heating rate constraints are considered in addition to acceleration limits. Switching conditions are derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another. The use of bank angle to modulate the magnitude of the vertical component of lift is shown to improve the index of performance slightly. A nonlinear transformation technique is employed to derive a feedback controller for tracking the computed trajectory. Numerical results illustrate the nature of the resulting fuel-optimal climb paths and the performance of the feedback control law.

  13. Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste.

    PubMed

    Nagao, Norio; Tajima, Nobuyuki; Kawai, Minako; Niwa, Chiaki; Kurosawa, Norio; Matsuyama, Tatsushi; Yusoff, Fatimah Md; Toda, Tatsuki

    2012-08-01

    Anaerobic digestion of food waste was conducted at high OLR from 3.7 to 12.9 kg-VS m(-3) day(-1) for 225 days. Periods without organic loading were arranged between the each loading period. Stable operation at an OLR of 9.2 kg-VS (15.0 kg-COD) m(-3) day(-1) was achieved with a high VS reduction (91.8%) and high methane yield (455 mL g-VS-1). The cell density increased in the periods without organic loading, and reached to 10.9×10(10) cells mL(-1) on day 187, which was around 15 times higher than that of the seed sludge. There was a significant correlation between OLR and saturated TSS in the sludge (y=17.3e(0.1679×), r(2)=0.996, P<0.05). A theoretical maximum OLR of 10.5 kg-VS (17.0 kg-COD) m(-3) day(-1) was obtained for mesophilic single-stage wet anaerobic digestion that is able to maintain a stable operation with high methane yield and VS reduction.

  14. Aortic root aneurysm in an adult patient with aortic coarctation: a single-stage approach

    PubMed Central

    Ananiadou, Olga G.; Koutsogiannidis, Charilaos; Ampatzidou, Fotini; Drossos, George E.

    2012-01-01

    Coarctation of the aorta is a common congenital defect that may be undiagnosed until adulthood. Moreover, coarctation is associated with congenital and acquired cardiac pathology that may require surgical intervention. The management of an adult patient with aortic coarctation and an associated cardiac defect poses a great technical challenge since there are no standard guidelines for the therapy of such a complex pathology. Several extra-anatomic bypass grafting techniques have been described, including methods in which distal anastomosis is performed on the descending thoracic aorta, allowing simultaneous intracardiac repair. We report here a 37-year old man who was diagnosed with an aortic root aneurysm and aortic coarctation. The patient was treated electively with a single-stage approach through a median sternotomy that consisted of valve-sparing replacement of the aortic root and ascending-to-descending extra-anatomic aortic bypass, using a 18-mm Dacron graft. Firstly, the aortic root was replaced with the Yacoub remodelling procedure, and then the distal anastomosis was performed to the descending aorta, behind the heart, with the posterior pericardial approach. The extra-anatomic bypass graft was brought laterally from the right atrium and implanted in the ascending graft. Postoperative recovery was uneventful and a control computed tomographic angiogram 1 month after complete repair showed good results. PMID:22647969

  15. A Collaborative Analysis Tool for Thermal Protection Systems for Single Stage to Orbit Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Alexander, Reginald; Stanley, Thomas Troy

    2001-01-01

    Presented is a design tool and process that connects several disciplines which are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to all other systems, as is the case with SSTO vehicles with air breathing propulsion, which is currently being studied by the National Aeronautics and Space Administration (NASA). In particular, the thermal protection system (TPS) is linked directly to almost every major system. The propulsion system pushes the vehicle to velocities on the order of 15 times the speed of sound in the atmosphere before pulling up to go to orbit which results in high temperatures on the external surfaces of the vehicle. Thermal protection systems to maintain the structural integrity of the vehicle must be able to mitigate the heat transfer to the structure and be lightweight. Herein lies the interdependency, in that as the vehicle's speed increases, the TPS requirements are increased. And as TPS masses increase the effect on the propulsion system and all other systems is compounded. To adequately calculate the TPS mass of this type of vehicle several engineering disciplines and analytical tools must be used preferably in an environment that data is easily transferred and multiple iterations are easily facilitated.

  16. Single-stage bilateral pulmonary resections by video-assisted thoracic surgery for multiple small nodules

    PubMed Central

    Yao, Feng; Yang, Haitang

    2016-01-01

    Background Surgical treatment is thought to be the most effective strategy for multiple small nodules. However, in general, one-stage bilateral resection is not recommended due to its highly invasive nature. Methods Clinical records of patients undergoing one-stage bilateral resections of multiple pulmonary nodules between January 2009 and September 2014 in a single institution were retrospectively reviewed. Results Simultaneous bilateral pulmonary resection by conventional video-assisted thoracic surgery (VATS) was undertaken in 29 patients. Ground glass opacity (GGO) accounted for 71.9% (46/64) of total lesions, including 26 pure GGO and 20 mixed GGO lesions. One case underwent bilateral lobectomy that was complicated by postoperative dyspnea. Lobar-sublobar (L/SL) resection and bilateral sublobar resection (SL-SL) were conducted in 16 and 12 cases, respectively, and most of these cases had uneventful postoperative courses. There was no significant difference with regard to postoperative complications (P=0.703), duration of use of chest drains (P=0.485), between one- and two-stage groups. Mean postoperative follow-up in cases of primary lung cancer was 31.4 (range, 10–51) months. There was neither recurrence nor deaths at final follow-up. Conclusions Single-stage bilateral surgery in selected cases with synchronous bilateral multiple nodules (SBMNs) is feasible and associated with satisfactory outcomes. PMID:27076942

  17. Design analysis and risk assessment for a single stage to orbit nuclear thermal rocket

    NASA Astrophysics Data System (ADS)

    Labib, Satira I.

    Recent advances in high power density fuel materials have renewed interest in nuclear thermal rockets (NTRs) as a viable propulsion technology for future space exploration. This thesis describes the design of three NTR reactor engines designed for the single stage to orbit launch of payloads from 1-15 metric tons. Thermal hydraulic and rocket engine analyses indicate that the proposed rocket engines are able to reach specific impulses in excess of 700 seconds. Neutronics analyses performed using MCNP5 demonstrate that the hot excess reactivity, shutdown margin, and submersion criticality requirements are satisfied for each NTR reactor. The reactors each consist of a 40 cm diameter core packed with hexagonal tungsten cermet fuel elements. The core is surrounded by radial and axial beryllium reflectors and eight boron carbide control drums. At the same power level, the 40 cm reactor results in the lowest radiation dose rate of the three reactors. Radiation dose rates decrease to background levels ~3.5 km from the launch site. After a one-year decay time, all of the activated materials produced by an NTR launch would be classified as Class A low-level waste. The activation of air produces significant amounts of argon-41 and nitrogen-16 within 100 m of the launch. The derived air concentration, DAC, from the activation products decays to less than unity within two days, with only argon-41 remaining. After 10 minutes of full power operation the 120 cm core corresponding to a 15 MT payload contains 2.5 x 1013, 1.4 x 1012, 1.5 x 1012, and 7.8 x 10 7 Bq of 131I, 137Cs, 90Sr, and 239Pu respectively. The decay heat after shutdown increases with increasing reactor power with a maximum decay heat of 108 kW immediately after shutdown for the 15 MT payload.

  18. A parametric sensitivity study for single-stage-to-orbit hypersonic vehicles using trajectory optimization

    NASA Technical Reports Server (NTRS)

    Lovell, T. Alan; Schmidt, D. K.

    1994-01-01

    The class of hypersonic vehicle configurations with single stage-to-orbit (SSTO) capability reflect highly integrated airframe and propulsion systems. These designs are also known to exhibit a large degree of interaction between the airframe and engine dynamics. Consequently, even simplified hypersonic models are characterized by tightly coupled nonlinear equations of motion. In addition, hypersonic SSTO vehicles present a major system design challenge; the vehicle's overall mission performance is a function of its subsystem efficiencies including structural, aerodynamic, propulsive, and operational. Further, all subsystem efficiencies are interrelated, hence, independent optimization of the subsystems is not likely to lead to an optimum design. Thus, it is desired to know the effect of various subsystem efficiencies on overall mission performance. For the purposes of this analysis, mission performance will be measured in terms of the payload weight inserted into orbit. In this report, a trajectory optimization problem is formulated for a generic hypersonic lifting body for a specified orbit-injection mission. A solution method is outlined, and results are detailed for the generic vehicle, referred to as the baseline model. After evaluating the performance of the baseline model, a sensitivity study is presented to determine the effect of various subsystem efficiencies on mission performance. This consists of performing a parametric analysis of the basic design parameters, generating a matrix of configurations, and determining the mission performance of each configuration. Also, the performance loss due to constraining the total head load experienced by the vehicle is evaluated. The key results from this analysis include the formulation of the sizing problem for this vehicle class using trajectory optimization, characteristics of the optimal trajectories, and the subsystem design sensitivities.

  19. Collaborative Analysis Tool for Thermal Protection Systems for Single Stage to Orbit Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Alexander, Reginald Andrew; Stanley, Thomas Troy

    1999-01-01

    Presented is a design tool and process that connects several disciplines which are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system and in the case of SSTO vehicles with air breathing propulsion, which is currently being studied by the National Aeronautics and Space Administration (NASA); the thermal protection system (TPS) is linked directly to almost every major system. The propulsion system pushes the vehicle to velocities on the order of 15 times the speed of sound in the atmosphere before pulling up to go to orbit which results high temperatures on the external surfaces of the vehicle. Thermal protection systems to maintain the structural integrity of the vehicle must be able to mitigate the heat transfer to the structure and be lightweight. Herein lies the interdependency, in that as the vehicle's speed increases, the TPS requirements are increased. And as TPS masses increase the effect on the propulsion system and all other systems is compounded. To adequately determine insulation masses for a vehicle such as the one described above, the aeroheating loads must be calculated and the TPS thicknesses must be calculated for the entire vehicle. To accomplish this an ascent or reentry trajectory is obtained using the computer code Program to Optimize Simulated Trajectories (POST). The trajectory is then used to calculate the convective heat rates on several locations on the vehicles using the Miniature Version of the JA70 Aerodynamic Heating Computer Program (MINIVER). Once the heat rates are defined for each body point on the vehicle, then insulation thickness that are required to maintain the vehicle within structural limits are calculated using Systems Improved Numerical Differencing Analyzer (SINDA) models. If the TPS masses are too heavy for the performance of the vehicle the process may be repeated altering the trajectory or some other input to reduce

  20. Single stage circumferential lingual mucosal graft urethroplasty in near obliterative bulbar urethra stricture: A novel technique

    PubMed Central

    Sharma, Umesh; Yadav, Sher Singh; Tomar, Vinay; Garg, Amit

    2016-01-01

    Aims: This is a prospective study of the use and efficacy of a novel technique of circumferential tubularised lingual mucosal graft (LMG) in obliterative and near obliterative bulbar urethral stricture of >2 cm where excisional and augmented anastomotic urethroplasty are not feasible. Materials and Methods: The stenotic urethral segment was opened dorsally in midline and fibrosed urethra was excised taking care to preserve the healthy spongiosum tissue. LMG (av. Length 3 cm) was placed from one end of corporal body towards spongy tissue in a circumferential manner. Another LMG was placed in similar manner to deal with longer stricture. The urethra was tubularised over 14 Fr silicone catheter. Results: A total of 12 men, of mean age 47 years underwent this procedure. The mean follow up period was 11 months starting from July 2014 till manuscript submission. Follow up included voiding cystourethrogram at 3 weeks, cystoscopy at 3 months (one patient didn’t turned up) and subsequent follow up. Mean stricture length was 4.66 cm (range, 3–8.5 cm) and mean operative time was 195 min. (range, 160 to 200 min.). The technique was successful (normal voiding with no need for any post-operative procedure) in 11(91.6%) patients. One patient developed early recurrence at 4 month of surgery and had anastomotic stricture which was successfully managed by direct visual internal urethrotomy. Conclusion: Single stage circumferential tubularised graft urethroplasty is an excellent technique for strictures that include segments of obliterative and near obliterative diseased urethra. It provide a wider neourethra than patch graft urethroplasty. PMID:27141182

  1. MAGNESIUM ISOTOPE EVIDENCE FOR SINGLE STAGE FORMATION OF CB CHONDRULES BY COLLIDING PLANETESIMALS

    SciTech Connect

    Olsen, Mia B.; Schiller, Martin; Krot, Alexander N.; Bizzarro, Martin

    2013-10-10

    Chondrules are igneous spherical objects preserved in chondritic meteorites and believed to have formed during transient heating events in the solar protoplanetary disk. Chondrules present in the metal-rich CB chondrites show unusual chemical and petrologic features not observed in other chondrite groups, implying a markedly distinct formation mechanism. Here, we report high-precision Mg-isotope data for 10 skeletal olivine chondrules from the Hammadah al Hamra 237 (HH237) chondrite to probe the formation history of CB chondrules. The {sup 27}Al/{sup 24}Mg ratios of individual chondrules are positively correlated to their stable Mg-isotope composition (μ{sup 25}Mg), indicating that the correlated variability was imparted by a volatility-controlled process (evaporation/condensation). The mass-independent {sup 26}Mg composition (μ{sup 26}Mg*) of chondrules is consistent with single stage formation from an initially homogeneous magnesium reservoir if the observed μ{sup 25}Mg variability was generated by non-ideal Rayleigh-type evaporative fractionation characterized by a β value of 0.5142, in agreement with experimental work. The magnitude of the mass-dependent fractionation (∼300 ppm) is significantly lower than that suggested by the increase in {sup 27}Al/{sup 24}Mg values, indicating substantial suppression of isotopic fractionation during evaporative loss of Mg, possibly due to evaporation at high Mg partial pressure. Thus, the Mg-isotope data of skeletal chondrules from HH237 are consistent with their origin as melts produced in the impact-generated plume of colliding planetesimals. The inferred μ{sup 26}Mg* value of –3.87 ± 0.93 ppm for the CB parent body is significantly lower than the bulk solar system value of 4.5 ± 1.1 ppm inferred from CI chondrites, suggesting that CB chondrites accreted material comprising an early formed {sup 26}Al-free component.

  2. Single stage biological nitrogen removal by nitritation and anaerobic ammonium oxidation in biofilm systems.

    PubMed

    Helmer, C; Tromm, C; Hippen, A; Rosenwinkel, K H; Seyfried, C F; Kunst, S

    2001-01-01

    In full scale wastewater treatment plants with at times considerable deficits in the nitrogen balances, it could hitherto not be sufficiently explained which reactions are the cause of the nitrogen losses and which micro-organisms participate in the process. The single stage conversion of ammonium into gaseous end-products--which is henceforth referred to as deammonification--occurs particularly frequently in biofilm systems. In the meantime, one has succeeded to establish the deammonification processes in a continuous flow moving-bed pilot plant. In batch tests with the biofilm covered carriers, it was possible for the first time to examine the nitrogen conversion at the intact biofilm. Depending on the dissolved oxygen (DO) concentration, two autotrophic nitrogen converting reactions in the biofilm could be proven: one nitritation process under aerobic conditions and one anaerobic ammonium oxidation. With the anaerobic ammonium oxidation, ammonium as electron donor was converted with nitrite as electron acceptor. The end-product of this reaction was N2. Ammonium and nitrite did react in a stoichiometrical ratio of 1:1.37, a ratio which has in the very same dimension been described for the ANAMMOX-process (1:1.31 +/- 0.06). Via the oxygen concentration in the surrounding medium, it was possible to control the ratio of nitritation and anaerobic ammonium oxidation in the nitrogen conversion of the biofilm. Both processes were evenly balanced at a DO concentration of 0.7 mg/l, so that it was possible to achieve a direct, almost complete elimination of ammonium without addition of nitrite. One part of the provided ammonium did participate in the nitritation, the other in the anaerobic ammonium oxidation. Through the aerobic ammonium oxidation into nitrite within the outer oxygen supplied layers of the biofilm, the reaction partner was produced for the anaerobic ammonium oxidation within the inner layers of the biofilm.

  3. Collection of ultrafine diesel particulate matter (DPM) in cylindrical single-stage wet electrostatic precipitators.

    PubMed

    Saiyasitpanich, Phirun; Keener, Tim C; Lu, Mingming; Khang, Soon-Jai; Evans, Douglas E

    2006-12-15

    Long-term exposures to diesel particulate matter (DPM) emissions are linked to increasing adverse human health effects due to the potential association of DPM with carcinogenicity. Current diesel vehicular particulate emission regulations are based solely upon total mass concentration, albeit it is the submicrometer particles that are highly respirable and the most detrimental to human health. In this study, experiments were performed with a tubular single-stage wet electrostatic precipitator (wESP) to evaluate its performance for the removal of number-based DPM emissions. A nonroad diesel generator utilizing a low sulfur diesel fuel (500 ppmw) operating under varying load conditions was used as a stationary DPM emission source. An electrical low-pressure impactor (ELPI) was used to quantify the number concentration distributions of diesel particles in the diluted exhaust gas at each tested condition. The wESP was evaluated with respect to different operational control parameters such as applied voltage, gas residence time, etc., to determine their effect on overall collection efficiency, as well as particle size dependent collection efficiency. The results show that the total DPM number concentrations in the untreated diesel exhaust are in the magnitude of approximately108/cm(3) at all engine loads with the particle diameter modes between 20 and 40 nm. The measured collection efficiency of the wESP operating at 70 kV based on total particle numbers was 86% at 0 kW engine load and the efficiency decreased to 67% at 75 kW due to a decrease in gas residence time and an increase in particle concentrations. At a constant wESP voltage of 70 kV and at 75 kW engine load, the variation of gas residence time within the wESP from approximately 0.1 to approximately 0.4 s led to a substantial increase in the collection efficiency from 67% to 96%. In addition, collection efficiency was found to be directly related to the applied voltage, with increasing collection efficiency

  4. Implementation of a Single-Stage-To-Orbit (SSTO) model for stability and control analysis

    NASA Technical Reports Server (NTRS)

    Ingalls, Stephen A.

    1995-01-01

    Three NASA centers: Marshall Space Flight Center (MSFC), Langley Research Center (LaRC), and Johnson Space Center (JSC) are currently involved in studying a family of single-stage- and two-stage-to-orbit (SSTO/TSTO) vehicles to serve as the next generation space transportation system (STS). A rocketed winged-body is the current focus. The configuration (WB001) is a vertically-launched, horizontally-landing system with circular cross-section. Preliminary aerodynamic data was generated by LaRC and is a combination of wind-tunnel data, empirical methods, and Aerodynamic Preliminary Analysis System-(APAS) generated values. JSC's efforts involve descent trajectory design, stability analysis, and flight control system synthesis. Analysis of WB001's static stability indicates instability in 'tuck' (C(sub mu) less than 0: Mach = 0.30, alpha greater than 3.25 deg; Mach = 0.60, alpha greater than 8.04), an unstable dihedral effects (C(sub l(beta)) greater than 0: Mach = 30,alpha less than 12 deg.; Mach = 0.60, alpha less than 10.00 deg.), and, most significantly, an unstable weathercock stability derivative, C(sub n(beta)), at all angles of attack and subsonic Mach numbers. Longitudinal trim solutions for Mach = 0.30 and 0.60 indicate flight path angle possibilities ranging from around 12 (M = 0.30) to slightly over 20 degrees at Mach = 0.60. Trim angles of attack increase from 6.24 at Mach 0.60 and 10,000 feet to 17.7 deg. at Mach 0.30, sea-level. Lateral trim was attempted for a design cross-wind of 25.0 knots. The current vehicle aerodynamic and geometric characteristics will only yield a lateral trim solution at impractical tip-fin deflections (approximately equal to 43 deg.) and bank angles (21 deg.). A study of the lateral control surfaces, tip-fin controllers for WB001, indicate increased surface area would help address these instabilities, particularly the deficiency in C(sub n(beta)), but obviously at the expense of increased vehicle weight. Growth factors of

  5. A Collaborative Analysis Tool for Thermal Protection Systems for Single Stage to Orbit Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Alexander, Reginald A.; Stanley, Thomas Troy

    1999-01-01

    Presented is a design tool and process that connects several disciplines which are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system and in the case of SSTO vehicles with air breathing propulsion, which is currently being studied by the National Aeronautics and Space Administration (NASA); the thermal protection system (TPS) is linked directly to almost every major system. The propulsion system pushes the vehicle to velocities on the order of 15 times the speed of sound in the atmosphere before pulling up to go to orbit which results high temperatures on the external surfaces of the vehicle. Thermal protection systems to maintain the structural integrity of the vehicle must be able to mitigate the heat transfer to the structure and be lightweight. Herein lies the interdependency, in that as the vehicle's speed increases, the TPS requirements are increased. And as TPS masses increase the effect on the propulsion system and all other systems is compounded. To adequately determine insulation masses for a vehicle such as the one described above, the aeroheating loads must be calculated and the TPS thicknesses must be calculated for the entire vehicle. To accomplish this an ascent or reentry trajectory is obtained using the computer code Program to Optimize Simulated Trajectories (POST). The trajectory is then used to calculate the convective heat rates on several locations on the vehicles using the Miniature Version of the JA70 Aerodynamic Heating Computer Program (MINIVER). Once the heat rates are defined for each body point on the vehicle, then insulation thicknesses that are required to maintain the vehicle within structural limits are calculated using Systems Improved Numerical Differencing Analyzer (SINDA) models. If the TPS masses are too heavy for the performance of the vehicle the process may be repeated altering the trajectory or some other input to

  6. Area G perimeter surface-soil and single-stage water sampling: Environmental surveillance for fiscal year 95. Progress report

    SciTech Connect

    Childs, M.; Conrad, R.

    1997-09-01

    ESH-19 personnel collected soil and single-stage water samples around the perimeter of Area G at Los Alamos National Laboratory (LANL) during FY 95 to characterize possible radionuclide movement out of Area G through surface water and entrained sediment runoff. Soil samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241, and cesium-137. The single-stage water samples were analyzed for tritium and plutonium isotopes. All radiochemical data was compared with analogous samples collected during FY 93 and 94 and reported in LA-12986 and LA-13165-PR. Six surface soils were also submitted for metal analyses. These data were included with similar data generated for soil samples collected during FY 94 and compared with metals in background samples collected at the Area G expansion area.

  7. Feasibility study of generating ultra-high harmonic radiation with a single stage echo-enabled harmonic generation scheme

    NASA Astrophysics Data System (ADS)

    Zhou, Kaishang; Feng, Chao; Wang, Dong

    2016-10-01

    The echo enabled harmonic generation (EEHG) scheme holds the ability for the generation of fully coherent soft x-ray free-electron laser (FEL) pulses directly from external UV seeding sources. In this paper, we study the feasibility of using a single stage EEHG to generate coherent radiation in the "water window" and beyond. Using the high-order operating modes of the EEHG scheme, intensive numerical simulations have been performed considering various three-dimensional effects. The simulation results demonstrated that coherent soft x-ray radiation at 150th harmonic (1.77 nm) of the seed can be produced by a single stage EEHG. The decreasing of the final bunching factor at the desired harmonic caused by intra beam scattering (IBS) effect has also been analyzed.

  8. Modeling of DNA single stage splicing language via Yusof-Goode approach: One string with two rules

    NASA Astrophysics Data System (ADS)

    Lim, Wen Li; Yusof, Yuhani; Mudaber, Mohammad Hassan

    2015-02-01

    Splicing system plays a pivotal role in attempts to recombine sets of double-stranded DNA molecules when acted by restriction enzymes and ligase. Traditional method of finding the result of DNA recombination through experiment is both time and money consuming. Hence, finding the number of patterns of DNA single stage splicing language through formalism of splicing system is a way to optimize the searching process. From the biological perspective, it predicts the number of types of molecules that will exist in the system under existence of restriction enzymes and ligase. In this paper, some theorems, corollaries and examples that lead to the predictions of single stage splicing languages involving one pattern string and two rules are presented via Yusof-Goode approach.

  9. Applications of the Magnetocaloric Effect in Single-Stage, Multi-Stage and Continuous Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.

    2014-01-01

    Adiabatic demagnetization refrigerators (ADR), based on the magnetocaloric effect, are solid-state coolers that were the first to achieve cooling well into the sub-kelvin regime. Although supplanted by more powerful dilution refrigerators in the 1960s, ADRs have experienced a revival due to the needs of the space community for cooling astronomical instruments and detectors to temperatures below 100 mK. The earliest of these were single-stage refrigerators using superfluid helium as a heat sink. Their modest cooling power (<1 µW at 60 mK[1]) was sufficient for the small (6x6) detector arrays[2], but recent advances in arraying and multiplexing technologies[3] are generating a need for higher cooling power (5-10 µW), and lower temperature (<30 mK). Single-stage ADRs have both practical and fundamental limits to their operating range, as mass grows very rapidly as the operating range is expanded. This has led to the development of new architectures that introduce multi-staging as a way to improve operating range, efficiency and cooling power. Multi-staging also enables ADRs to be configured for continuous operation, which greatly improves cooling power per unit mass. This paper reviews the current field of adiabatic demagnetization refrigeration, beginning with a description of the magnetocaloric effect and its application in single-stage systems, and then describing the challenges and capabilities of multi-stage and continuous ADRs.

  10. Single-stage endovascular treatment in patients with severe extracranial large vessel stenosis and concomitant ipsilateral unruptured intracranial aneurysm

    PubMed Central

    Kaçar, Emre; Nas, Ömer Fatih; Erdoğan, Cüneyt; Hakyemez, Bahattin

    2015-01-01

    PURPOSE We aimed to evaluate the safety and effectiveness of single-stage endovascular treatment in patients with severe extracranial large vessel stenosis and concomitant ipsilateral unruptured intracranial aneurysm. METHODS Hospital database was screened for patients who underwent single-stage endovascular treatment between February 2008 and June 2013 and seven patients were identified. The procedures included unilateral carotid artery stenting (CAS) (n=4), bilateral CAS (n=2), and proximal left subclavian artery stenting (n=1) along with ipsilateral intracranial aneurysm treatment (n=7). The mean internal carotid artery stenosis was 81.6% (range, 70%–95%), and the subclavian artery stenosis was 90%. All aneurysms were unruptured. The mean aneurysm diameter was 7.7 mm (range, 5–13 mm). The aneurysms were ipsilateral to the internal carotid artery stenosis (internal carotid artery aneurysm) in five patients, and in the anterior communicating artery in one patient. The patient with subclavian artery stenosis had a fenestration aneurysm in the proximal basilar artery. Stenting of the extracranial large vessel stenosis was performed before aneurysm treatment in all patients. In two patients who underwent bilateral CAS, the contralateral carotid artery stenosis, which had no aneurysm distally, was treated initially. RESULTS There were no procedure-related complications or technical failure. The mean clinical follow-up period was 18 months (range, 9–34 months). One patient who underwent unilateral CAS experienced contralateral transient ischemic attack during the clinical follow-up. There was no restenosis on six-month follow-up angiograms, and all aneurysms were adequately occluded. CONCLUSION A single-stage procedure appears to be feasible for treatment of patients with severe extracranial large vessel stenosis and concomitant ipsilateral intracranial aneurysm. PMID:26359875

  11. Effect of Blade-surface Finish on Performance of a Single-stage Axial-flow Compressor

    NASA Technical Reports Server (NTRS)

    Moses, Jason J; Serovy, George, K

    1951-01-01

    A set of modified NACA 5509-34 rotor and stator blades was investigated with rough-machine, hand-filed, and highly polished surface finishes over a range of weight flows at six equivalent tip speeds from 672 to 1092 feet per second to determine the effect of blade-surface finish on the performance of a single-stage axial-flow compressor. Surface-finish effects decreased with increasing compressor speed and with decreasing flow at a given speed. In general, finishing blade surfaces below the roughness that may be considered aerodynamically smooth on the basis of an admissible-roughness formula will have no effect on compressor performance.

  12. Subsonic-to-Hypersonic Aerodynamic Characteristics for a Winged, Circular-Body, Single-Stage-to-Orbit Spacecraft Configuration

    NASA Technical Reports Server (NTRS)

    Phillips, W. P.; Engelund, W. C.

    1995-01-01

    Experimental aerodynamic characteristics were obtained for a generic, winged, circular-body, single-stage-to-orbit spacecraft configuration. The baseline configuration was longitudinally stable and trimmable at almost all Mach numbers from 0.15 to 10.0--with the exception occurring at low supersonic speeds. Landing speed and subsonic-to-hypersonic longitudinal stability and control appear to be within design guidelines. Lateral-directional instabilities found over the entire speed range, however, create a problem area for this configuration. Longitudinal aerodynamic predictions made utilizing the Aerodynamic Preliminary Analysis System (APAS) were in qualitative, often quantitative agreement with experimental values.

  13. A novel single-stage procedure for increasing the width of attached gingiva and eliminating the aberrant frenal attachment.

    PubMed

    Kumar, Santhosh; Suresh P, Gautham; Anand, K Meena

    2015-03-01

    Common treatment for buccal gingival recession caused by an aberrant frenal attachment includes elimination of the frenum and treatment of the gingival recession by soft tissue graft to increase the width of the attached gingiva that in turn results in root coverage. Keratinised gingival, if present in adequate amount, maintains the gingival health by protecting the marginal gingiva. This not only considers the desires of the patient but also explores the potential regenerative capacity of the tissues. This report describes a novel single-stage procedure for increasing the width of the attached gingiva and eliminating the aberrant frenal attachment.

  14. Autologous collagen induced chondrogenesis (ACIC: Shetty-Kim technique) - A matrix based acellular single stage arthroscopic cartilage repair technique.

    PubMed

    Shetty, Asode Ananthram; Kim, Seok Jung; Shetty, Vishvas; Jang, Jae Deog; Huh, Sung Woo; Lee, Dong Hwan

    2016-01-01

    The defects of articular cartilage in the knee joint are a common degenerative disease and currently there are several established techniques to treat this problem, each with their own advantages and shortcomings. Autologous chondrocyte implantation is the current gold standard but the technique is expensive, time-consuming and most versions require two stage procedures and an arthrotomy. Autologous collagen induced chondrogenesis (ACIC) is a single-stage arthroscopic procedure and we developed. This method uses microfracture technique with atelocollagen mixed with fibrin gel to treat articular cartilage defects. We introduce this ACIC techniques and its scientific background.

  15. Rapid Single-Stage Separation of Micrometer-Long and High-Purity Semiconducting Carbon Nanotubes by Gel Filtration

    NASA Astrophysics Data System (ADS)

    Thendie, Boanerges; Miyata, Yasumitsu; Kitaura, Ryo; Miyauchi, Yuhei; Matsuda, Kazunari; Shinohara, Hisanori

    2013-06-01

    We demonstrate the separation of high-purity, long semiconducting single-wall carbon nanotubes (s-SWCNTs) by single-stage gel filtration. Semiconducting SWCNTs are preferentially adsorbed on an allyl dextran-based gel column and then eluted with surfactant solution at a rate that depends on nanotube length as well as electronic type of nanotubes. These differences allow the separation of length-sorted and purity-enhanced s-SWCNTs by fractionated collection of the eluate, which provides the desired nanotubes for electronic device applications.

  16. Area G perimeter surface-soil and single-stage water sampling: Environmental surveillance for fiscal year 1993

    SciTech Connect

    Conrad, R.; Childs, M.; Rivera-Dirks, C.; Coriz, F.

    1995-07-01

    Area G, in Technical Area 54, has been the principle facility at Los Alamos National Laboratory for the storage and disposal of low-level and transuranic (TRU) radioactive wastes since 1957. The current environmental investigation consisted of ESH-19 personnel who collected soil and single-stage water samples around the perimeter of Area G to characterize possible contaminant movement through surface-water runoff. These samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241 (soil only), and cesium 137. The metals, mercury, lead, and barium, were analyzed using x-ray fluorescence.

  17. Comparative assessment of single-stage and two-stage anaerobic digestion for the treatment of thin stillage.

    PubMed

    Nasr, Noha; Elbeshbishy, Elsayed; Hafez, Hisham; Nakhla, George; El Naggar, M Hesham

    2012-05-01

    A comparative evaluation of single-stage and two-stage anaerobic digestion processes for biomethane and biohydrogen production using thin stillage was performed to assess the impact of separating the acidogenic and methanogenic stages on anaerobic digestion. Thin stillage, the main by-product from ethanol production, was characterized by high total chemical oxygen demand (TCOD) of 122 g/L and total volatile fatty acids (TVFAs) of 12 g/L. A maximum methane yield of 0.33 L CH(4)/gCOD(added) (STP) was achieved in the two-stage process while a single-stage process achieved a maximum yield of only 0.26 L CH(4)/gCOD(added) (STP). The separation of acidification stage increased the TVFAs to TCOD ratio from 10% in the raw thin stillage to 54% due to the conversion of carbohydrates into hydrogen and VFAs. Comparison of the two processes based on energy outcome revealed that an increase of 18.5% in the total energy yield was achieved using two-stage anaerobic digestion.

  18. SPECHT – Single-stage phosphopeptide enrichment and stable-isotope chemical tagging: Quantitative phosphoproteomics of insulin action in muscle

    PubMed Central

    Kettenbach, Arminja N.; Sano, Hiroyuki; Keller, Susanna R.; Lienhard, Gustav E.; Gerber, Scott A.

    2014-01-01

    The study of cellular signaling remains a significant challenge for translational and clinical research. In particular, robust and accurate methods for quantitative phosphoproteomics in tissues and tumors represent significant hurdles for such efforts. In the present work, we design, implement and validate a method for single-stage phosphopeptide enrichment and stable isotope chemical tagging, or SPECHT, that enables the use of iTRAQ, TMT and/or reductive dimethyl-labeling strategies to be applied to phosphoproteomics experiments performed on primary tissue. We develop and validate our approach using reductive dimethyl-labeling and HeLa cells in culture, and find these results indistinguishable from data generated from more traditional SILAC-labeled HeLa cells mixed at the cell level. We apply the SPECHT approach to the quantitative analysis of insulin signaling in a murine myotube cell line and muscle tissue, identify known as well as new phosphorylation events, and validate these phosphorylation sites using phospho-specific antibodies. Taken together, our work validates chemical tagging post-single-stage phosphoenrichment as a general strategy for studying cellular signaling in primary tissues. PMID:25463755

  19. Single-stage fermentation process for high-value biohythane production with the treatment of distillery spent-wash.

    PubMed

    Pasupuleti, Suresh Babu; Venkata Mohan, S

    2015-01-01

    The current communication reports the development of a single-stage biosystem for biohythane production from wastewater treatment. A semi-pilot scale bioreactor with 34 L capacity was used for this study. Maximum biohythane production of 147.5 ± 2.4 L was observed after five cycles of operation with production rate of 4.7 ± 0.1L/h. The biohythane composition (H2/(H2+CH4)) varied from 0.60 to 0.23 during stabilized fifth cycle of operation. During each cycle of operation, higher H2 fraction was noticed within 12h of cycle period followed by CH4 production for rest of operation (36 h). During biohythane production, COD removal efficiency of 60 ± 5% (SDR, 29.0 ± 1.9 kg CODr/m(3)-day) was also achieved. The synergistic function of volatile fatty acids (VFA) production and consumption during process in hybrid biosystem played vital role on the composition of biohythane. The single-stage biosystem facilitates production of high valued and cost efficient biofuel (biohythane) with fewer controls than individual acidogenic and methanogenic processes.

  20. Development and Design of a Single-Stage Cryogenic Modulator for Comprehensive Two-Dimensional Gas Chromatography.

    PubMed

    Mostafa, Ahmed; Górecki, Tadeusz

    2016-05-17

    A new liquid nitrogen-based single-stage cryogenic modulator was developed and characterized. In addition, a dedicated liquid nitrogen delivery system was developed. A well-defined restriction placed inside a deactivated fused silica capillary was used to increase the cooling surface area and provide very efficient trapping. At the same time, it enabled modulation of the carrier gas flow owing to changes in gas viscosity with temperature. Gas flow is almost unimpeded at the trapping temperature but reduced to nearly zero at the desorption temperature, which prevents analyte breakthrough. Peak widths for n-alkanes of 30-40 ms at half height were obtained. Most importantly, even the solvent peak could be modulated, which is not feasible with any commercially available thermal modulator. Evaluation of the newly developed system in two-dimensional gas chromatography (GC × GC) separations of some real samples such as regular gasoline and diesel fuel showed that the analytical performance of this single-stage modulator is fully competitive to those of the more complicated dual-stage modulators.

  1. Some triple-filament lead isotope ratio measurements and an absolute growth curve for single-stage leads

    USGS Publications Warehouse

    Stacey, J.S.; Delevaux, M.E.; Ulrych, T.J.

    1969-01-01

    Triple-filament analyses of three standard lead samples are used to calibrate a mass spectrometer in an absolute sense. The bias we measure is 0.0155 percent per mass unit, and the precision (for 95% confidence limits) is ??0.13% or less for all ratios relative to 204Pb. Although its precision is not quite so good as that of the lead-tetramethyl method in the analysis of large samples, the triple-filament method is less complex and is an attractive alternative for smaller sample sizes down to 500 ??g. Triple-filament data are presented for six possibly single-stage lead ores and one feldspar. These new data for ores are combined with corrected tetramethyl data for stratiform lead deposits to compute absolute parameters for a universal single-stage lead isotope growth curve. Absolute isotopic ratios for primeval lead have been determined by Oversby and because all the previous data for both meteorites and lead ores were similarly fractionated, the absolute value of 238U 204Pb = 9.09 ?? 0.06 for stratiform leads is little different from the value 8.99 ?? 0.05 originally computed by Ostic, Russell and Stanton. Absolute values for lead isotope ratios for all interlaboratory standard samples presently available from the literature are tabulated. ?? 1969.

  2. Single stage reconstruction of ruptured tendoachilles tendon with skin cover using distally based superficial sural artery flap.

    PubMed

    Abhyankar, Suhas V; Kulkarni, Ananta; Agarwal, Naveen Kumar

    2009-10-01

    Ruptured tendoachilles along with skin defect is a complex problem to reconstruct. Both things require a priority. Single stage reconstruction of ruptured tendoachilles tendon with skin cover using distally based superficial sural arterial flap allows us to perform both. This procedure gives excellent result, shortens the stay, thereby reducing the cost. This method is a simple solution to the complex problem like ruptured tendoachilles with skin defect. In this study, 6 patients with rupture of tendoachilles tendon due to penetrating injury, with skin defect are presented. The repair was done using aponeurotic part of tendoachilles tendon, taken from proximal part of tendoachilles in the midline measuring around 2 to 2.5 cm in width and 8 to 10 cm in length, with intact distal attachment. The tendon was turned upside down by 180 degrees and sutured to the distal stump of the tendoachilles tendon without tension. The skin defect was covered using distally based superficial sural artery flap in the same sitting. The follow-up period was 9 to 30 months. All patients showed good results. In one patient there was distal necrosis of 1.5 cm of the distally based superficial sural artery flap, which healed satisfactorily with conservative treatment. Single stage tendoachilles reconstruction can be used with good functional result and patient satisfaction.

  3. Evaluation of a miniaturised single-stage thermal modulator for comprehensive two-dimensional gas chromatography of petroleum contaminated soils.

    PubMed

    Jacobs, Matthew R; Edwards, Matthew; Górecki, Tadeusz; Nesterenko, Pavel N; Shellie, Robert A

    2016-09-09

    A novel miniaturised single-stage resistively heated thermal modulator was investigated as an alternative to cryogenic modulation for use in comprehensive two-dimensional gas chromatography (GC×GC). The single-stage thermal modulator described herein yielded average retention time relative standard deviations (RSD) of ≤0.2% RSD (first-dimension) and ≤3.4% RSD (second-dimension). The average peak widths generated by the modulator were 72±3ms, and the peak area precision was better than 5.3% RSD for a range of polar and non-polar test analytes. GC×GC analysis can be performed using this modulator without the requirement for cryogenic cooling or additional pressure control modules for flow modulation. The modulator and associated electronics are compact and amenable towards field analysis. The modulator was used for qualitative and quantitative characterisation of petroleum-contaminated soils derived from a sub-Antarctic research station at Macquarie Island. The limit of detection compared to standard 1D GC analysis was improved from 64 to 11mgkg(-1). An automated method of analysing and categorising samples using principal component analysis is presented.

  4. Analysis of the twice-line-frequency light flicker of an LED lamp driven by a single-stage PFC circuit

    NASA Astrophysics Data System (ADS)

    Li, Yi; Han, Gyung-Seok; Kim, Hee-Jun

    2014-07-01

    A large twice-line-frequency light flicker is a problem for a light-emitting-diode (LED) lamp driven by a single-stage power-factor-correction (PFC) circuit. This paper proposes a driving circuit for solving this problem. Furthermore, possible factors that influence the light flicker of a single-stage PFC driven LED lamp are analyzed. The theoretical analysis results are verified by using both simulations and experiments.

  5. High yield single stage conversion of glucose to hydrogen by photofermentation with continuous cultures of Rhodobacter capsulatus JP91.

    PubMed

    Abo-Hashesh, Mona; Desaunay, Nicolas; Hallenbeck, Patrick C

    2013-01-01

    Photofermentative hydrogen (H(2)) production from glucose with the photosynthetic bacterium Rhodobacter capsulatus JP91 (hup(-)) was examined using a photobioreactor operated in continuous mode. Stable and high hydrogen yields on glucose were obtained at three different retention times (HRTs; 24, 48 and 72 h). The H(2) production rates, varying between 0.57 and 0.81 mmol/h, and optical densities (OD(600 nm)) were similar for the different HRTs examined. However, the rate of glucose consumption was influenced by HRT being greater at HRT 24h than HRTs 48 and 72 h. The highest hydrogen yield, 9.0 ± 1.2 mol H(2)/mol glucose, was obtained at 48 h HRT. These results show that single stage photofermentative hydrogen production from glucose using photobioreactors operated in continuous culture mode gives high, nearly stoichiometric yields of hydrogen from glucose, and thus is considerably more promising than either two stage photofermentation or co-culture approaches.

  6. Bacterial and methanogenic archaeal communities during the single-stage anaerobic digestion of high-strength food wastewater.

    PubMed

    Jang, Hyun Min; Kim, Ji Hyun; Ha, Jeong Hyub; Park, Jong Moon

    2014-08-01

    Single-stage anaerobic digestion (AD) was operated to treat high-strength food wastewater (FWW) derived from food waste recycling facilities at two different organic loading rates (OLRs) of 3.5 (Phase I) and 7 (Phase II) kgCOD/m(3)d. Changes in composition of microbial communities were investigated using quantitative real-time PCR (qPCR) and barcoded-pyrosequencing. At the high FWW loading rate, AD showed efficient performance (i.e., organic matter removal and methane production). Bacterial communities were represented by the phyla Bacteroidetes, Firmicutes, Synergistetes and Actinobacteria. During the entire digestion process, the relative abundance phylum Chloroflexi decreased significantly. The qPCR analysis demonstrated that the methanogenic communities shifted from aceticlastic (Methanosarcinales) to hydrogenotrophic methanogens (Methanobacteriales and Methanomicrobiales) with high increase in the proportion of syntrophic bacterial communities. Canonical correspondence analysis revealed a strong relationship between reactor performance and microbial community shifts.

  7. Effects of increased leading-edge thickness on performance of a transonic rotor blade. [in single stage transonic compressor

    NASA Technical Reports Server (NTRS)

    Reid, L.; Urasek, D. C.

    1972-01-01

    A single-stage transonic compressor was tested with two rotor blade leading-edge configurations to investigate the effect of increased leading-edge thickness on the performance of a transonic blade row. The original rotor blade configuration was modified by cutting back the leading edge sufficiently to double the blade leading-edge thickness and thus the blade gap blockage in the tip region. At design speed this modification resulted in a decrease in rotor overall peak efficiency of four points. The major portion of this decrement in rotor overall peak efficienty was attributed to the flow conditions in the outer 30 percent of the blade span. At 70 and 90 percent of design speed, the modification had very little effect on rotor overall performance.

  8. Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)

    1995-01-01

    A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.

  9. Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)

    1994-01-01

    A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.

  10. An Equation of State study of a Boron Nitride rubber composite using a Single Stage Gas Gun

    NASA Astrophysics Data System (ADS)

    Taylor, Peter; Keightley, Peter

    2007-06-01

    The equation of state of a Boron Nitride powder / Neoprene / Polythene composite has been determined experimentally up to 5GPa using a single stage Helium gas gun. The newly commissioned gun operates using a fast acting gas valve breech, and is capable of launching a 65mm diameter flyer at up to 1km/s. A series of 1D plate impact experiments has been employed using a shock reverberation or ring-up technique in which the sample is sandwiched between layers of a higher shock impedence material. Manganin stress gauges are used to measure the stress levels and shock arrival times as the shocks reverberate within the sample layer. The Hugoniot has been determined from the measured stress and shock velocity at several impact velocities for the first shock. Subsequent reflected shocks within the sample have been measured and used to determine off Hugoniot states and hence Gruniesen Gamma in order to derive the equation of state.

  11. Single-Stage Operation for Giant Schwannoma at the Craniocervical Junction with Minimal Laminectomy: A Case Report and Literature Review

    PubMed Central

    Yoon, Sun; Park, Hunho; Lee, Kyu-Sung; Park, Seoung Woo

    2016-01-01

    Here we report a single-stage operation we performed on a patient with a large schwannoma that extended from the lower clivus to the cervico-thoracic junction caudally. A number of authors have previously performed multilevel laminectomy to remove giant schwannomas that extend for considerable length. This technique has caused cervical instability such as kyphosis or gooseneck deformity on several occasions. We removed the tumor with a left lateral suboccipital craniectomy with laminectomy only at C1 and without any subsequent surgery-related neurologic deficits. However, this technique requires meticulous preoperative evaluation on existence of Cerebrospinal fluid (CSF) cleft between the tumor and spinal cord on magnetic resonance imaging, of tumor origin located at the upper cervical root, and of detachment of tumor from the origin site. PMID:27800002

  12. Single-stage Dynamic Reanimation of the Smile in Irreversible Facial Paralysis by Free Functional Muscle Transfer

    PubMed Central

    Thiele, Jan; Bannasch, Holger; Stark, G. Bjoern; Eisenhardt, Steffen U.

    2015-01-01

    Unilateral facial paralysis is a common disease that is associated with significant functional, aesthetic and psychological issues. Though idiopathic facial paralysis (Bell’s palsy) is the most common diagnosis, patients can also present with a history of physical trauma, infectious disease, tumor, or iatrogenic facial paralysis. Early repair within one year of injury can be achieved by direct nerve repair, cross-face nerve grafting or regional nerve transfer. It is due to muscle atrophy that in long lasting facial paralysis complex reconstructive methods have to be applied. Instead of one single procedure, different surgical approaches have to be considered to alleviate the various components of the paralysis. The reconstruction of a spontaneous dynamic smile with a symmetric resting tone is a crucial factor to overcome the functional deficits and the social handicap that are associated with facial paralysis. Although numerous surgical techniques have been described, a two-stage approach with an initial cross-facial nerve grafting followed by a free functional muscle transfer is most frequently applied. In selected patients however, a single-stage reconstruction using the motor nerve to the masseter as donor nerve is superior to a two-stage repair. The gracilis muscle is most commonly used for reconstruction, as it presents with a constant anatomy, a simple dissection and minimal donor site morbidity. Here we demonstrate the pre-operative work-up, the post-operative management, and precisely describe the surgical procedure of single-stage microsurgical reconstruction of the smile by free functional gracilis muscle transfer in a step by step protocol. We further illustrate common pitfalls and provide useful tips which should enable the reader to truly comprehend the procedure. We further discuss indications and limitations of the technique and demonstrate representative results. PMID:25868011

  13. Single stage treatment of ankylosis of the temporomandibular joint using patient-specific total joint replacement and virtual surgical planning.

    PubMed

    Haq, Jahrad; Patel, Nishma; Weimer, Katherine; Matthews, N Shaun

    2014-04-01

    Ankylosis of the temporomandibular joint (TMJ) is a debilitating condition that can result in pain, trismus, and a poor quality of life. It can be caused by injury, infection, and rheumatoid disease. Current management includes gap arthroplasty, interpositional arthroplasty, and reconstruction. Traditionally, joints are reconstructed using stock implants, or the procedure is done in two stages with an additional computed tomography (CT) scan between the resective and reconstructive procedures and use of stereolithographic models to aid the design of the definitive prostheses. We describe a technique for the resection of ankylosis and reconstruction of the joint in a single operation using virtually designed custom-made implants. Five patients with ankylosis of the TMJ had a single stage operation with reconstruction between 2010 and 2012. All had preoperative high-resolution CT with contrast angiography. During an international web-based teleconference between the surgeon and the engineer a virtual resection of the ankylosis was done using the reconstructed CT images. The bespoke cutting guides and implants were designed virtually at the same time and were then manufactured precisely using computer-aided design and manufacture (CAD-CAM) over 6 weeks. After release of the ankylosis and reconstruction, the patients underwent an exercise regimen to improve mouth opening. Follow-up was for a minimum of 6 months. Four patients had one operation, and one patient had two. Median/Mean maximum incisal opening increased from 0.6mm before operation to 25 mm afterwards (range 23-27), and there was minimal surgical morbidity. This new method effectively treats ankylosis of the TMJ in a single stage procedure. Fewer operations and hospital stays, and the maintenance of overall clinical outcome are obvious advantages.

  14. Downstream processing of virus-like particles: single-stage and multi-stage aqueous two-phase extraction.

    PubMed

    Ladd Effio, Christopher; Wenger, Lukas; Ötes, Ozan; Oelmeier, Stefan A; Kneusel, Richard; Hubbuch, Jürgen

    2015-02-27

    The demand for vaccines against untreated diseases has enforced the research and development of virus-like particle (VLP) based vaccine candidates in recent years. Significant progress has been made in increasing VLP titres during upstream processing in bacteria, yeast and insect cells. Considering downstream processing, the separation of host cell impurities is predominantly achieved by time-intensive ultracentrifugation processes or numerous chromatography and filtration steps. In this work, we evaluate the potential of an alternative separation technology for VLPs: aqueous two-phase extraction (ATPE). The benefits of ATPE have been demonstrated for various biomolecules, but capacity and separation efficiency were observed to be low for large biomolecules such as VLPs or viruses. Both performance parameters were examined in detail in a case study on human B19 parvovirus-like particles derived from Spodoptera frugiperda Sf9 insect cells. A solubility-guided approach enabled the design of polyethylene (PEG) salt aqueous two-phase systems with a high capacity of up to 4.1mg/mL VLPs. Unique separation efficiencies were obtained by varying the molecular weight of PEG, the pH value and by using neutral salt additives. Further improvement of the separation of host cell impurities was achieved by multi-stage ATPE on a centrifugal partition chromatography (CPC) device in 500mL scale. While single-stage ATPE enabled a DNA clearance of 99.6%, multi-stage ATPE improved the separation of host cell proteins (HCPs). The HPLC purity ranged from 16.8% (100% VLP recovery) for the single-stage ATPE to 69.1% (40.1% VLP recovery) for the multi-stage ATPE. An alternative two-step downstream process is presented removing the ATPS forming polymer, cell debris and 99.77% DNA with a HPLC purity of 90.6% and a VLP recovery of 63.9%.

  15. Single-stage dynamic reanimation of the smile in irreversible facial paralysis by free functional muscle transfer.

    PubMed

    Thiele, Jan; Bannasch, Holger; Stark, G Bjoern; Eisenhardt, Steffen U

    2015-03-01

    Unilateral facial paralysis is a common disease that is associated with significant functional, aesthetic and psychological issues. Though idiopathic facial paralysis (Bell's palsy) is the most common diagnosis, patients can also present with a history of physical trauma, infectious disease, tumor, or iatrogenic facial paralysis. Early repair within one year of injury can be achieved by direct nerve repair, cross-face nerve grafting or regional nerve transfer. It is due to muscle atrophy that in long lasting facial paralysis complex reconstructive methods have to be applied. Instead of one single procedure, different surgical approaches have to be considered to alleviate the various components of the paralysis. The reconstruction of a spontaneous dynamic smile with a symmetric resting tone is a crucial factor to overcome the functional deficits and the social handicap that are associated with facial paralysis. Although numerous surgical techniques have been described, a two-stage approach with an initial cross-facial nerve grafting followed by a free functional muscle transfer is most frequently applied. In selected patients however, a single-stage reconstruction using the motor nerve to the masseter as donor nerve is superior to a two-stage repair. The gracilis muscle is most commonly used for reconstruction, as it presents with a constant anatomy, a simple dissection and minimal donor site morbidity. Here we demonstrate the pre-operative work-up, the post-operative management, and precisely describe the surgical procedure of single-stage microsurgical reconstruction of the smile by free functional gracilis muscle transfer in a step by step protocol. We further illustrate common pitfalls and provide useful tips which should enable the reader to truly comprehend the procedure. We further discuss indications and limitations of the technique and demonstrate representative results.

  16. Pilot Scale Single Stage Fine Coal Dewatering and Briquetting Process. Technical report, March 1, 1996 - May 31, 1996

    SciTech Connect

    Wilson, J.W.; Honaker, R.Q.; Ding, Y.; Ho, K.

    1996-12-31

    The primary goal for this ICCI coal research project is to effectively liberate coal from fnely disseminated minerals for Illinois Basin coal by using fine grinding and cleaning processes. However, because of the large surface area generated during the cleaning processes, it is difficult and uneconomic for conventional techniques to dewater the coal fines. In addition, these coal fine pose transportation, storage and handling problems at cleaning and utility facilities. The objective of this research is to combine dewatering and briquetting processes into a single stage operation that will solve the problems mentioned above. To build on the promising results obtained from the previous studies, a pilot scale commercial briquetting machine was used to evaluate this technique. The primary objective of the research in this reporting period is to determine the effectiveness of a single stage dewatering and briquetting technique using a commercial briquetting device. Two types of samples were prepared and the results of the -28 x 100 mesh samples are presented in this report. Modifications were made to the machine in an attempt to solve the back drainage problem. A total of six experiments were conducted and the results indicate that water resistance of coal briquettes increased as curing time increased. However, due to a deficiency of fine particles to bridge the gaps between the coarse particles, the wear resistance of the products declined. Also, at high roll speeds and compaction pressures, the coal briquettes produced tended to have higher moisture content and lower strength. On the other hand, at high feed rates, because of the screw extrusion effect, coal briquettes were produced with lower moisture content and higher strengths.

  17. Parametric study of ascent performance of a vertically launched hydrogen-fueled single-stage reusable transport

    NASA Technical Reports Server (NTRS)

    Rehder, J. J.

    1977-01-01

    Ascent performance characteristics were studied for a vertical-take-off, horizontal-landing, single-stage-to-orbit transport vehicle powered by hydrogen fuel rocket with a mixture of fixed- and dual-position nozzles. The analysis was made by systematically varying two sets of trajectory similarity parameters based on the propulsive and aerodynamic characteristics of the vehicle and by calculating a trajectory for each combination of the parameters. The propulsion parameters were the initial thrust-weight ratio, engine combination, and the two expansion ratios of the dual-position rocket nozzles. The aerodynamic parameters were the ratio of reference area to initial weight and the ratio of maximum allowable normal force to initial weight. A first-order analysis was carried out to determine the effect on the performance of including the engine mass penalty. This analysis indicates that the configuration with the lowest initial mass for a given payload requires all dual-position nozzles with initial expansion ratio of 50 and a final expansion ratio of 150.

  18. The Inguinal Adipodermal Graft: a Single-Stage Technique for Cranial Linear Grove-like Defects Correction

    PubMed Central

    Vlajcic, Zlatko; Zic, Rado

    2016-01-01

    Introduction: In reconstruction of post-traumatic craniofacial defects Palacos R-40 is mostly used by neurosurgeons and by maxillofacial surgeons after tumor removal with consequently noticeable irregularities on the shape of the cranial region and face. We harvested customized adipodermal (AD) graft in low inguinal region and use it as an inlay autologous graft for surface irregularities correction with a 100% survival and without noticeable reduction of the graft volume. Material and Methods: Between 2009 and 2015, an adipodermal gaft was used in 5 cases of craniofacial post-traumatic defects, 3 of which were due to Palacos R-40 cranial reconstruction and 2 connected to maxillofacial tumor removal and post-traumatic reconstruction. Results: There were no complications and a satisfactory aesthetic result was achieved in all cases. Conclusion: The inguinal inlay autologous AD graft is, due to our best knowledge, an original single-stage procedure for those typical cranial grove-like defects correction. It gives a wide option of different shapes with relatively easy to proceed and predictable result. PMID:27594750

  19. Structural Sizing of a 25,000-lb Payload, Air-Breathing Launch Vehicle For Single-Stage-To-Orbit

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.; Kosareo, Daniel N.; Palac, Don (Technical Monitor)

    2000-01-01

    In support of NASA's Air-Breathing Launch Vehicle (ABLV) study, a 25,000-lb payload version of the GTX (formerly Trailblazer) reference vehicle concept was developed. The GTX is a vertical lift-off, reusable, single-stage-to-orbit launch vehicle concept that uses hypersonic air-breathing propulsion in a rocket-based combined-cycle (RBCC) propulsion system to reduce the required propellant fraction. To achieve this goal the vehicle and propulsion system must be well integrated both aerodynamically and structurally to reduce weight. This study demonstrates the volumetric and structural efficiency of a vertical takeoff, horizontal landing, hypersonic vehicle with a circular cross section. A departure from the lifting body concepts, this design philosophy is even extended to the engines, which have semicircular nacelles symmetrically mounted on the vehicle. Material candidates with a potential for lightweight and simplicity have been selected from a set of near term technologies (5 to 10 years). To achieve the mission trajectory, preliminary weight estimates show the vehicle's gross lift-off weight is 1.26 x 10(exp 6) lb. The structural configuration of the GTX vehicle and its propulsion system are described. The vehicle design benefits are presented, and key technical issues are highlighted.

  20. The role of pH control on biohydrogen production by single stage hybrid dark- and photo-fermentation.

    PubMed

    Zagrodnik, R; Laniecki, M

    2015-10-01

    The role of pH control on biohydrogen production by co-culture of dark-fermentative Clostridium acetobutylicum and photofermentative Rhodobacter sphaeroides was studied. Single stage dark fermentation, photofermentation and hybrid co-culture systems were studied at different values of controlled and uncontrolled pH. Increasing pH during dark fermentation resulted in lower hydrogen production rate (HPR) and longer lag time for both controlled and uncontrolled conditions. However, it only slightly affected cumulative H2 volume. Results have shown that pH control at pH 7.5 increased photofermentative hydrogen production from 0.966 to 2.502 L H2/L(medium) when compared to uncontrolled process. Fixed pH value has proven to be an important control strategy also for the hybrid process and resulted in obtaining balanced co-culture of dark and photofermentative bacteria. Control of pH at 7.0 was found optimum for bacteria cooperation in the co-culture what resulted in obtaining 2.533 L H2/L(medium) and H2 yield of 6.22 mol H2/mol glucose.

  1. Feasibility of a responsive, hybrid propulsion augmented, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit launch system

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.

    1996-03-01

    A novel, reusable, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit (VTOL/SSTO) launch system concept, named HYP-SSTO, is presented in this paper. This launch vehicle system concept uses a highly coupled, main high performance liquid oxygen/liquid hydrogen (LOX/LH2) propulsion system, that is used only for launch, with a hybrid auxiliary propulsion system which is used during final orbit insertion, major orbit maneuvering, and landing propulsive burn phases of flight. By using a hybrid propulsion system for major orbit maneuver burns and landing, this launch system concept has many advantages over conventional VTOL/SSTO concepts that use LOX/LH2 propulsion system(s) burns for all phases of flight. Because hybrid propulsion systems are relatively simple and inert by their nature, this concept has the potential to support short turnaround times between launches, be economical to develop, and be competitive in terms of overall system life-cycle cost. This paper provides a technical description of the novel, reusable HYP-SSTO launch system concept. Launch capability performance, as well as major design and operational system attributes, are identified and discussed.

  2. Computational Study of a McDonnell Douglas Single-Stage-to-Orbit Vehicle Concept for Aerodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Prabhu, Ramadas K.

    1996-01-01

    This paper presents the results of a computational flow analysis of the McDonnell Douglas single-stage-to-orbit vehicle concept designated as the 24U. This study was made to determine the aerodynamic characteristics of the vehicle with and without body flaps over an angle of attack range of 20-40 deg. Computations were made at a flight Mach number of 20 at 200,000 ft. altitude with equilibrium air, and a Mach number of 6 with CF4 gas. The software package FELISA (Finite Element Langley imperial College Sawansea Ames) was used for all the computations. The FELISA software consists of unstructured surface and volume grid generators, and inviscid flow solvers with (1) perfect gas option for subsonic, transonic, and low supersonic speeds, and (2) perfect gas, equilibrium air, and CF4 options for hypersonic speeds. The hypersonic flow solvers with equilibrium air and CF4 options were used in the present studies. Results are compared with other computational results and hypersonic CF4 tunnel test data.

  3. Structural refinement of 00Cr13Ni5Mo2 supermartensitic stainless steel during single-stage intercritical tempering

    NASA Astrophysics Data System (ADS)

    Xu, Da-kun; Liu, Yong-chang; Ma, Zong-qing; Li, Hui-jun; Yan, Ze-sheng

    2014-03-01

    The 00Cr13Ni5Mo2 supermartensitic stainless steel was first tempered at 570-730°C for 2 h to observe the microstructure and hardness changes. The tempering temperature was set to 600, 650, and 700°C, which is below, equal to, and above the austenite transformation start temperature, respectively, for each holding period to investigate the effects of tempering time on the structure and properties of the steel. The microstructure of the specimens was examined by optical microscopy and transmission electronic microscopy, and the phase composition was detected by X-ray diffraction. As expected, lath refinement was observed in the steel tempered at 700°C, and the refinement degree significantly depended on the tempering time. Contrary to normal steel softening by tempering, the hardness performance of the steel was significantly enhanced primarily because of the refinement of martensite laths after single-stage intercritical tempering. It is believed that the reverse transformation of martensite (α') to austenite (γ) is responsible for the refinement.

  4. Heat transfer and oil flow studies on a single-stage-to-orbit control-configured winged entry vehicle

    NASA Technical Reports Server (NTRS)

    Helms, V. T., III; Bradley, P. F.

    1984-01-01

    Results are presented for oil flow and phase change paint heat transfer tests conducted on a 0.006 scale model of a proposed single stage to orbit control configured vehicle. The data were taken at angles of attack up to 40 deg at a free stream Mach number of 10 for Reynolds numbers based on model length of 0.5 x 10 to the 6th power, 1.0 x 10 to the 6th power and 2.0 x 10 to the 6th power. The magnitude and distribution of heating are characterized in terms of angle of attack and Reynolds number aided by an analysis of the flow data which are used to suggest the presence of various three dimensional flow structures that produce the observed heating patterns. Of particular interest are streak heating patterns that result in high localized heat transfer rates on the wing windward surface at low to moderate angles of attack. These streaks are caused by the bow-shock/wing-shock interaction and formation of the wing-shock. Embedded vorticity was found to be associated with these interactions.

  5. Dynamic Behavior of Single-Stage Bellows of Titanium-Nickel Shape Memory Alloy Under Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Semba, Hiromasa; Okabe, Nagatoshi; Yamaji, Toru; Okita, Keisuke; Yamauchi, Kiyoshi

    The dynamic behavior of TiNi shape memory alloy (SMA) bellows is examined in light of its potential use as elements in seismic protection devices. Dynamic property results obtained from cyclic tests under tension-compression loading of TiNi SMA single-stage bellows, with different shapes and with different heat treatments, are reported as a function of displacement amplitude and frequency. It was found that the displacement-force loops were almost symmetric with respect to the central point for almost all specimens. The normalized secant stiffness diminishes significantly with increasing bulge height as well as displacement amplitude. From hysteretic cycles, an equivalent damping of about 15% was recognized for longtime-aged bellows with relatively high bulge height. Frequencies, in the range of interest for seismic applications, had a small influence on damping values. Under the conditions studied in this research, the bellows had better damping performance in a martensite phase than in a rhombohedral phase. SMA bellows in martensite phase subjected to the longtime-ageing have great potential as an element in seismic devices.

  6. Abort performance for a winged-body single-stage to orbit vehicle. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Lyon, Jeffery A.

    1995-01-01

    Optimal control theory is employed to determine the performance of abort to orbit (ATO) and return to launch site (RTLS) maneuvers for a single-stage to orbit vehicle. The vehicle configuration examined is a seven engine, winged-body vehicle, that lifts-off vertically and lands horizontally. The abort maneuvers occur as the vehicle ascends to orbit and are initiated when the vehicle suffers an engine failure. The optimal control problems are numerically solved in discretized form via a nonlinear programming (NLP) algorithm. A description highlighting the attributes of this NLP method is provided. ATO maneuver results show that the vehicle is capable of ascending to orbit with a single engine failure at lift-off. Two engine out ATO maneuvers are not possible from the launch pad, but are possible after launch when the thrust to weight ratio becomes sufficiently large. Results show that single engine out RTLS maneuvers can be made for up to 180 seconds after lift-off and that there are scenarios for which RTLS maneuvers should be performed instead of ATP maneuvers.

  7. Effects of Hot Streak Shape on Rotor Heating in a High-Subsonic Single-Stage Turbine

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Gundy-Burlet, Karen L.; Norvig, Peter (Technical Monitor)

    1999-01-01

    Experimental data have shown that combustor temperature non-uniformities can lead to the excessive heating of first-stage rotor blades in turbines. This heating of the rotor blades can lead to thermal fatigue and degrade turbine performance. The results of recent studies have shown that variations in the circumferential location (clocking) of the hot streak relative to the first-stage vane airfoils can be used to minimize the adverse effects of the hot streak. The effects of the hot streak/airfoil count ratio on the heating patterns of turbine airfoils have also been evaluated. In the present investigation, three-dimensional unsteady Navier-Stokes simulations have been performed for a single-stage high-pressure turbine operating in high subsonic flow. In addition to a simulation of the baseline turbine, simulations have been performed for circular and elliptical hot streaks of varying sizes in an effort to represent different combustor designs. The predicted results for the baseline simulation show good agreement with the available experimental data. The results of the hot streak simulations indicate: that a) elliptical hot streaks mix more rapidly than circular hot streaks, b) for small hot streak surface area the average rotor temperature is not a strong function of hot streak temperature ratio or shape, and c) hot streaks with larger surface area interact with the secondary flows at the rotor hub endwall, generating an additional high temperature region.

  8. Structural Sizing of a 25,000-lb Payload, Air-breathing Launch Vehicle for Single-stage-to-orbit

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.; Kosareo, Daniel N.

    2001-01-01

    In support of NASA's Air-Breathing Launch Vehicle (ABLV) study, a 25,000-lb payload version of the GTX (formerly Trailblazer) reference vehicle concept was developed. The GTX is a vertical lift-off, reusable, single-stage-to-orbit launch vehicle concept that uses hypersonic air-breathing propulsion in a rocket-based combined-cycle (RBCC) propulsion system to reduce the required propellant fraction. To achieve this goal the vehicle and propulsion system must be well integrated both aerodynamically and structurally to reduce weight. This study demonstrates the volumetric and structural efficiency of a vertical takeoff, horizontal landing, hypersonic vehicle with a circular cross section. A departure from the lifting body concepts, this design philosophy is even extended to the engines, which have semicircular nacelles symmetrically mounted on the vehicle. Material candidates with a potential for lightweight and simplicity have been selected from a set of near term technologies (five to ten years). To achieve the mission trajectory, preliminary weight estimates show the vehicle's gross lift-off weight is 1.26 x 10(exp 6) lb. The structural configuration of the GTX vehicle and its propulsion system are described. The vehicle design benefits are presented, and key technical issues are highlighted.

  9. A high-order positivity-preserving single-stage single-step method for the ideal magnetohydrodynamic equations

    NASA Astrophysics Data System (ADS)

    Christlieb, Andrew J.; Feng, Xiao; Seal, David C.; Tang, Qi

    2016-07-01

    We propose a high-order finite difference weighted ENO (WENO) method for the ideal magnetohydrodynamics (MHD) equations. The proposed method is single-stage (i.e., it has no internal stages to store), single-step (i.e., it has no time history that needs to be stored), maintains a discrete divergence-free condition on the magnetic field, and has the capacity to preserve the positivity of the density and pressure. To accomplish this, we use a Taylor discretization of the Picard integral formulation (PIF) of the finite difference WENO method proposed in Christlieb et al. (2015) [23], where the focus is on a high-order discretization of the fluxes (as opposed to the conserved variables). We use the version where fluxes are expanded to third-order accuracy in time, and for the fluid variables space is discretized using the classical fifth-order finite difference WENO discretization. We use constrained transport in order to obtain divergence-free magnetic fields, which means that we simultaneously evolve the magnetohydrodynamic (that has an evolution equation for the magnetic field) and magnetic potential equations alongside each other, and set the magnetic field to be the (discrete) curl of the magnetic potential after each time step. In this work, we compute these derivatives to fourth-order accuracy. In order to retain a single-stage, single-step method, we develop a novel Lax-Wendroff discretization for the evolution of the magnetic potential, where we start with technology used for Hamilton-Jacobi equations in order to construct a non-oscillatory magnetic field. The end result is an algorithm that is similar to our previous work Christlieb et al. (2014) [8], but this time the time stepping is replaced through a Taylor method with the addition of a positivity-preserving limiter. Finally, positivity preservation is realized by introducing a parameterized flux limiter that considers a linear combination of high and low-order numerical fluxes. The choice of the free

  10. Characterization and single-stage denitrification anaerobic digestion of spent stream from the hydrolysis-fermentation-combustion process

    NASA Astrophysics Data System (ADS)

    Singh, Ramnik

    The demand for ethanol as an oxygenate and octane booster in automobile fuel is growing. A number of processes are being investigated for conversion of biomass to ethanol. The Hydrolysis-Fermentation-Combustion (HFC) process for fuel ethanol production developed at the University of California Forest Products Laboratory, Richmond, California is at the stage of technology transfer following over two decades of research and development. This study addresses the technology to be used in treatment of spent streams to be discharged from this process. The treatment design combines a single stage denitrification and anaerobic digestion (SSDAD) for the biological treatment of a representative stream from this process. A typical spent stream contained a wide range of soluble organic materials including: unfermented sugars, components of the feedstocks solubilized in the hydrolysis, acid degradation products of carbohydrates, cleavage products of lignin, water-soluble extractives and phenolics, terpenes and other unfermented organic material, and nitrate ion from the nitric acid used as a catalyst in the hydrolysis reaction. Three sets of experiments were conducted in laboratory scale anaerobic digesters. Commonly available anaerobic sludge from local sewage treatment plants was used as a starter seed and was successfully acclimated to the high nitrate substrate leading to enrichment of denitrifiers. Necessary nutrients and trace elements were identified and supplied to satisfy the obligatory requirements of different groups of bacterial groups present. A major finding was the unique role of ammonium hydroxide in controlling pH leading to steady-state operation of the digester. At steady state operation the reduction in COD was 65%, the nitrate reduction was 88% and the nitrite reduction was 100%. Nitrate was reduced to safe nitrogen gas without buildup of any intermediate products. Organic material was converted to useful methane gas and carbon dioxide. The SSDAD system was

  11. Pilot scale single stage fine coal dewatering and briquetting process. Final technical report, September 1, 1995--August 31, 1996

    SciTech Connect

    Wilson, J.W.; Honaker, R.Q.; Ding, Y.

    1997-05-01

    The primary goal of the ongoing ICCI coal preparation research project is to reduce ash and sulfur content in coal by using fine grinding and other coal cleaning processes. The ultrafine coal particles that result from the grinding and cleaning operations are difficult to dewater, and create problems in their storage, handling and transportation. The objective of this research is to combine the dewatering and briquetting processes of fine coal preparation into a single stage operation, thereby enhancing the economic viability of utilizing fine coal. A bitumen based emulsion, Orimulsion, has proven to be an effective hydrophobic binder, which helps not only with the briquetting process but also in the expulsion of water from the coal. Encouraging results from the use of a ram extruder briquetting device led to experimentation in the production of briquettes using a lab scale roll briquetting device. In the first quarter of this reporting year, a commercially available lab scale roll briquetting machine was employed (Komarek B-100). Further testing was conducted for the rest of the year with the use of a pilot scale model (Komarek B220-A). Briquettes were produced and evaluated by comparing results developed by adjusting various parameters of the briquetting machines and feed material. Results further substantiate previous findings that curing time dictates both moisture content and strengths of briquettes, and slower roll speeds produce more robust briquettes. A statistical model was set up to determine the optimal range of operating parameters. The statistical model generated from these results provided basic relationships between the roll speed and briquette form pressure.

  12. Pilot scale single stage fine coal dewatering and briquetting process. Technical report, September 1--November 30, 1995

    SciTech Connect

    Wilson, J.W.; Ding, Y.; Honaker, R.Q.

    1995-12-31

    The primary goal of the current coal preparation research is to reduce the ash and sulfur content from coal, using fine grinding and various coal cleaning processes to separate finely disseminated mineral matter and pyrite from coal. Small coal particles are produced by the grinding operation, thus the ultrafine coal becomes very difficult to dewater. In addition, the ultrafine coal also creates problems during its transportation, storage and handling at utility plants. The current research is seeking to combine ultrafine coal dewatering and briquetting processes into a single stage operation, using hydrophobic binders as coal dewatering and binding reagents with the help of a compaction device. From previous tests, it has been found that coal pellets with a moisture content of less than 15% and good wear and water resistance can be successfully fabricated at pressures of less than 6,000 psi using a lab scale ram extruder. The primary objective of the research described in this quarter has been to extend the lab scale ultrafine coal dewatering and briquetting process into a pilot scale operation, based on the test data obtained from earlier research. A standard roller briquetting machine was used to dewater fine coal-binder mixtures during the briquetting process. The operating parameters, including moisture content of feed, feed rate, and roller speed, were evaluated on the basis of the performance of the briquettes. Briquettes fabricated at rates of up to 108 pellets per minute exhibited satisfactory water and wear resistance, i.e., less than 7.5% cured moisture and less than 8.3% weight loss after 6 min. of tumbling. Also, coal-binder samples with moisture contents of 40 percent have been successfully dewatered and briquetted. Briquetting of fine coal was possible under current feeding conditions, however, a better feeding system must be designed to further improve the quality of dewatered coal briquettes.

  13. A review of findings of a study of rocket based combined cycle engines applied to extensively axisymmetric single stage to orbit vehicles

    NASA Technical Reports Server (NTRS)

    Foster, Richard W.

    1992-01-01

    Extensively axisymmetric and non-axisymmetric Single Stage To Orbit (SSTO) vehicles are considered. The information is presented in viewgraph form and the following topics are presented: payload comparisons; payload as a percent of dry weight - a system hardware cost indicator; life cycle cost estimations; operations and support costs estimation; selected engine type; and rocket engine specific impulse calculation.

  14. Microbial community structure and dynamics in two-stage vs single-stage thermophilic anaerobic digestion of mixed swine slurry and market bio-waste.

    PubMed

    Merlino, Giuseppe; Rizzi, Aurora; Schievano, Andrea; Tenca, Alberto; Scaglia, Barbara; Oberti, Roberto; Adani, Fabrizio; Daffonchio, Daniele

    2013-04-15

    The microbial community of a thermophilic two-stage process was monitored during two-months operation and compared to a conventional single-stage process. Qualitative and quantitative microbial dynamics were analysed by Denaturing Gradient Gel Electrophoresis (DGGE) and real-time PCR techniques, respectively. The bacterial community was dominated by heat-shock resistant, spore-forming clostridia in the two-stage process, whereas a more diverse and dynamic community (Firmicutes, Bacteroidetes, Synergistes) was observed in the single-stage process. A significant evolution of bacterial community occurred over time in the acidogenic phase of the two-phase process with the selection of few dominant species associated to stable hydrogen production. The archaeal community, dominated by the acetoclastic Methanosarcinales in both methanogen reactors, showed a significant diversity change in the single-stage process after a period of adaptation to the feeding conditions, compared to a constant stability in the methanogenic reactor of the two-stage process. The more diverse and dynamic bacterial and archaeal community of single-stage process compared to the two-stage process accounted for the best degradation activity, and consequently the best performance, in this reactor. The microbiological perspective proved a useful tool for a better understanding and comparison of anaerobic digestion processes.

  15. 3-Port Single-Stage PV & Battery Converter Improves Efficiency and Cost in Combined PV/Battery Systems

    SciTech Connect

    Bundschuh, Paul

    2013-03-23

    industry’s first single-stage multi-port hybrid power converter. This unique low cost approach eliminates the hybrid power conversion bottlenecks when integrating batteries into PV systems. As result this product will significantly accelerate market adoption of these systems.

  16. Flow Field in a Single-Stage Model Air Turbine With Seal Rings and Pre-Swirled Purge Flow

    NASA Astrophysics Data System (ADS)

    Dunn, Dennis M.

    Modern gas turbines operate at high mainstream gas temperatures and pressures, which requires high durability materials. A method of preventing these hot gases from leaking into the turbine cavities is essential for improved reliability and cost reduction. Utilizing bleed-off air from the compressor to cool internal components has been a common solution, but at the cost of decreasing turbine performance. The present work thoroughly describes the complex flow field between the mainstream gas and a single rotor-stator disk cavity, and mechanisms of mainstream gas ingestion. A combined approach of experimental measurement and numerical simulation are performed on the flow in a single-stage model gas turbine. Mainstream gas ingestion into the cavity is further reduced by utilizing two axially overlapping seal rings, one on the rotor disk and the other on the stator wall. Secondary purge air is injected into the rotor-stator cavity pre-swirled through the stator radially inboard of the two seal rings. Flow field predictions from the simulations are compared against experimental measurements of static pressure, velocity, and tracer gas concentration acquired in a nearly identical model configuration. Operational conditions were performed with a main airflow Reynolds number of 7.86e4 and a rotor disk speed of 3000rpm. Additionally the rotational Reynolds number was 8.74 e5 with a purge air nondimensional flow rate cw=4806. The simulation models a 1/14 rotationally periodic sector of the turbine rig, consisting of four rotor blades and four stator vanes. Gambit was used to generate the three-dimensional unstructured grids ranging from 10 to 20 million cells. Effects of turbulence were modeled using the single-equation Spalart-Allmaras as well as the realizable k-epsilon models. Computations were performed using FLUENT for both a simplified steady-state and subsequent time-dependent formulation. Simulation results show larger scale structures across the entire sector angle

  17. Preliminary Sizing Completed for Single- Stage-To-Orbit Launch Vehicles Powered By Rocket-Based Combined Cycle Technology

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.

    2002-01-01

    Single-stage-to-orbit (SSTO) propulsion remains an elusive goal for launch vehicles. The physics of the problem is leading developers to a search for higher propulsion performance than is available with all-rocket power. Rocket-based combined cycle (RBCC) technology provides additional propulsion performance that may enable SSTO flight. Structural efficiency is also a major driving force in enabling SSTO flight. Increases in performance with RBCC propulsion are offset with the added size of the propulsion system. Geometrical considerations must be exploited to minimize the weight. Integration of the propulsion system with the vehicle must be carefully planned such that aeroperformance is not degraded and the air-breathing performance is enhanced. Consequently, the vehicle's structural architecture becomes one with the propulsion system architecture. Geometrical considerations applied to the integrated vehicle lead to low drag and high structural and volumetric efficiency. Sizing of the SSTO launch vehicle (GTX) is itself an elusive task. The weight of the vehicle depends strongly on the propellant required to meet the mission requirements. Changes in propellant requirements result in changes in the size of the vehicle, which in turn, affect the weight of the vehicle and change the propellant requirements. An iterative approach is necessary to size the vehicle to meet the flight requirements. GTX Sizer was developed to do exactly this. The governing geometry was built into a spreadsheet model along with scaling relationships. The scaling laws attempt to maintain structural integrity as the vehicle size is changed. Key aerodynamic relationships are maintained as the vehicle size is changed. The closed weight and center of gravity are displayed graphically on a plot of the synthesized vehicle. In addition, comprehensive tabular data of the subsystem weights and centers of gravity are generated. The model has been verified for accuracy with finite element analysis. The

  18. Rapid near-optimal trajectory generation and guidance law development for single-stage-to-orbit airbreathing vehicles

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Flandro, G. A.; Corban, J. E.

    1990-01-01

    General problems associated with on-board trajectory optimization, propulsion system cycle selection, and with the synthesis of guidance laws were addressed for an ascent to low-earth-orbit of an air-breathing single-stage-to-orbit vehicle. The NASA Generic Hypersonic Aerodynamic Model Example and the Langley Accelerator aerodynamic sets were acquired and implemented. Work related to the development of purely analytic aerodynamic models was also performed at a low level. A generic model of a multi-mode propulsion system was developed that includes turbojet, ramjet, scramjet, and rocket engine cycles. Provisions were made in the dynamic model for a component of thrust normal to the flight path. Computational results, which characterize the nonlinear sensitivity of scramjet performance to changes in vehicle angle of attack, were obtained and incorporated into the engine model. Additional trajectory constraints were introduced: maximum dynamic pressure; maximum aerodynamic heating rate per unit area; angle of attack and lift limits; and limits on acceleration both along and normal to the flight path. The remainder of the effort focused on required modifications to a previously derived algorithm when the model complexity cited above was added. In particular, analytic switching conditions were derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another for two cases: the case in which engine cycle operations can overlap, and the case in which engine cycle operations are mutually exclusive. The resulting guidance algorithm was implemented in software and exercised extensively. It was found that the approximations associated with the assumed time scale separation employed in this work are reasonable except over the Mach range from roughly 5 to 8. This phenomenon is due to the very large thrust capability of scramjets in this Mach regime when sized to meet the requirement for ascent to orbit. By accounting for flight path

  19. Comparison of a 250 kV single-stage accelerator mass spectrometer with a 5 MV tandem accelerator mass spectrometer--fitness for purpose in bioanalysis.

    PubMed

    Young, G C; Corless, S; Felgate, C C; Colthup, P V

    2008-12-01

    The introduction of 'compact' accelerator mass spectrometers into biomedical science, including use in drug metabolism and bioanalytical applications, is an exciting recent development. Comparisons are presented here between a more established and relatively large tandem accelerator which operates at up to 5 MV and a conventional laboratory-sized 250 kV single-stage accelerator mass spectrometer. Biological samples were enriched with low levels of radiocarbon, then converted into graphite prior to analysis on each of the two instruments. The data obtained showed the single-stage instrument to be capable of delivering comparable results, and thus able to provide similar study support, with that provided by the 5 MV instrument, without the significant overheads and complexities which are inherent to the operation of the larger instrument. We believe that the advent of these laboratory-sized accelerator mass spectrometry (AMS) instruments represents a real turning point in the potential for application of AMS by a wider user group.

  20. Single-stage Reconstruction of Elbow Flexion Associated with Massive Soft-Tissue Defect Using the Latissimus Dorsi Muscle Bipolar Rotational Transfer.

    PubMed

    Stevanovic, Milan V; Cuéllar, Vanessa G; Ghiassi, Alidad; Sharpe, Frances

    2016-09-01

    In the upper extremity, the latissimus dorsi muscle can be used as an ipsilateral rotational muscle flap for soft-tissue coverage or functional reconstruction of arm and elbow. Patients who have both major soft-tissue loss and functional deficits can be successfully treated with a single-stage functional latissimus dorsi rotational muscle transfer that provides simultaneous soft-tissue coverage and functional reconstruction.

  1. Static aerodynamic characteristics of a single-stage-to-orbit vehicle with low planform loading at Mach numbers from 0.3 to 4.63

    NASA Technical Reports Server (NTRS)

    Freeman, D. C., Jr.; Fournier, R. H.

    1977-01-01

    Transonic pressure and wind tunnel studies were performed to determine the longitudinal and lateral aerodynamic characteristics of a single-stage-to-orbit vehicle which utilizes an all metallic, hot structure, thermal protection system resulting in low planform loading. The model was tested over a Mach number range from 0.3 to 4.63 for angles of attack from -4 deg to 32 deg at both 0 deg and 5 deg sideslip.

  2. Results of Single-Staged Posterior Decompression and Circumferential Fusion Using a Transpedicular Approach to Correct a Kyphotic Deformity due to Thoracolumbar Spinal Tuberculosis

    PubMed Central

    Modi, Jayprakash; Soman, Shardul; Patel, Harshil; Dhanani, Shrikant

    2016-01-01

    Study Design This is a prospective study. Purpose The aim of this study was to investigate the results of single-staged posterior decompression and circumferential fusion using a transpedicular approach to correct a kyphotic deformity due to thoracolumbar spinal tuberculosis. Overview of Literature Surgical management is frequently an imperative choice to achieve spinal decompression and deformity correction due to tuberculosis to relieve pain, improve neurology, and reconstruct the spine stability. Since the time anterior radical debridement and noninstrumented fusion was described, it has become apparent that even anterior debridement and bone grafting was often unsatisfactory in correcting or preventing the progression of kyphosis deformity. With the advent of modern segmental spinal instrumentation systems, isolated posterior instrumentation; combined anterior and posterior fusion; and single-staged posterior decompression and circumferential fusion have been described by many authors for correcting angular deformity and stabilizing the spine; however, there is a lack of consensus regarding the most effective means of correcting the deformity due to thoracolumbar spinal tuberculosis. Methods This is a prospective study of 20 patients with thoracolumbar spinal tuberculosis who underwent surgery at our institute. Results Twenty patients who were started on antituberculosis treatment underwent surgery using a single-staged posterior approach involving fixation, decompression, and kyphosis correction. Preoperatively, all patients had varying degrees of neurological deficit and a 27.45° average kyphotic angle, which improved. At the 1-year follow-up, correction was maintained at 6.9°, and 55% of patients showed neurological improvement. None of the patients experienced neurological deterioration. Two patients with lumbar spine tuberculosis underwent revision surgery because of nonunion. Conclusions The procedure of posterior decompression, fixation, and

  3. Difference of Postoperative Stool Frequency in Hirschsprung Disease According to Anastomosis Level in a Single-Stage, Laparoscopy-Assisted Transanal Endorectal Pull-Through Procedure

    PubMed Central

    Oh, Chaeyoun; Lee, Sanghoon; Lee, Suk-Koo; Seo, Jeong-Meen

    2016-01-01

    Abstract Anorectal innervation that governs sensation, motor function, and rectal accommodation can be influenced by the type of surgical procedure used to treat children with Hirschsprung disease. At our institution, we began to perform single-stage, laparoscopy-assisted transanal endorectal pull-through (LATEP) with submucosal dissection and anastomosis of the ganglionated bowel at 2 different levels relative to the dentate line. This retrospective study describes postoperative stool frequency changes in response to this procedure. Forty infants who underwent single-stage LATEP between September 2003 and April 2012 in a single center by the same surgeon were included in our analysis. The patients were divided in 2 groups: Group A (n = 23) underwent submucosal dissection and anastomosis at 2 mm above the dentate line, and Group B (n = 17) underwent the same procedure with anastomosis 15 mm above the dentate line. Clinical characteristics, clinical findings on the first postoperative visit, and instances of coexisting anomalies did not differ between the 2 groups. Aganglionic segments were found in the rectosigmoid colon in 18 cases (78.2%) in Group A and in 15 cases (88.2%) in Group B. Although the stool frequency was no different at 1, 3, 6, and 12 months after the operation, Group B showed significantly fewer bowel movements than Group A after 2 years (3.77 in Group A vs 2.0 in Group B; P = 0.035) and after 3 years (3.92 vs 1.29; P = 0.009) in patients who had aganglionosis of the rectosigmoid colon. The mean follow-up period was 65.87 ± 28.08 months for Group A and 35.59 ± 18.68 for Group B. The level of submucosal dissection and anastomosis in single-stage LATEP influenced the stool frequency in rectosigmoid aganglionosis. PMID:27057833

  4. The Effect of Inlet Pressure and Temperature on the Efficiency of a Single-stage Impulse Turbine Having an 11.0-inch Pitch-line Diameter Wheel

    NASA Technical Reports Server (NTRS)

    Gabriel, David S.; Carmen, Robert L.; Trautwein, Elmer E

    1945-01-01

    Efficiency tests have been conducted on a single-stage impulse engine having an 11-inch pitch-line diameter wheel with inserted buckets and a fabricated nozzle diaphragm. The tests were made to determine the effect of inlet pressure, Inlet temperature, speed, and pressure ratio on the turbine efficiency. An analysis is presented that relates the effect of inlet pressure and temperature to the Reynolds number of the flow. The agreement between the analysis and the experimental data indicates that the changes in turbine efficiency with Inlet pressure and temperature may be principally a Reynolds number effect.

  5. Single-stage experimental evaluation of tandem-airfoil rotor and stator blading for compressors. Part 5: Analysis and design of stages D and E

    NASA Technical Reports Server (NTRS)

    Brent, J. A.; Cheatham, J. G.; Clemmons, D. R.

    1972-01-01

    A conventional and a tandem bladed stage were designed for a comparative experimental evaluation in a 0.8 hub/tip ratio single-stage compressor. Based on a preliminary design study, a radially constant work input distribution was selected for the rotor designs. Velocity diagrams and blade leading and trailing edge angles selected for the conventional rotor and stator were used in the design of the tandem blading. The effects of axial velocity ratio and secondary flow on turning were included in the selection of blade leading and trailing edge angles. Design values of rotor tip velocity and stage pressure ratio were 757 ft/sec and 1.26, respectively.

  6. Single-Stage Repair of Thoracic Aortic Aneurysm through a Median Sternotomy in a Patient with Pseudocoarctation of the Aorta and Severe Aortic Valve Stenosis.

    PubMed

    Yamane, Yoshitaka; Morimoto, Hironobu; Mukai, Shogo

    2015-01-01

    Pseudocoarctation of the aorta is a rare anomaly and considered a benign condition. Pseudocoarctation of the aorta has been associated with aneurysm formation in the thoracic aorta, which may cause sudden rupture or dissection. Thus, the presence of an aneurysm in combination with pseudocoarctation of the aorta is thought to be an indication for surgery. We present a case of pseudocoarctation of the aorta associated with thoracic aortic aneurysm and severe aortic valve stenosis with a bicuspid aortic valve. In our case, single-stage repair was performed through a median sternotomy using our "pleural-window approach."

  7. Effects of sludge recirculation rate and mixing time on performance of a prototype single-stage anaerobic digester for conversion of food wastes to biogas and energy recovery.

    PubMed

    Ratanatamskul, Chavalit; Saleart, Tawinan

    2016-04-01

    Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m(3)/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production.

  8. Single stage, low noise, advanced technology fan. Volume 5: Fan acoustics. Section 2: One-third octave data tabulations and selected narrowband traces

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.

    1976-01-01

    The raw-acoustic data corrected to standard day, from acoustic tests performed on a 0.508-scale fan vehicle of a 111,300 newton thrust, full-size engine, which has application on an advanced transport aircraft, are presented. The single-stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec to achieve the desired pressure ratio in a single-stage fan with low radius ratio, and to maintain adequate stall margin. The two basic approaches taken in the acoustic design were: (1) minimization of noise at the source, and (2) suppression of the generated noise in the inlet and bypass exhaust duct. Suppression of the generated noise was accomplished in the inlet through use of the hybrid concept (wall acoustic treatment plus airflow acceleration suppression) and in the exhaust duct with extensive acoustic treatment including a splitter. The goal of the design was attainment of twenty effective perceived noise decibels. The suppression goal of FAR 36-20 was not reached, but improvements in the technology of both front and aft fan-noise suppression were realized.

  9. Determination of blade-to-coolant heat-transfer coefficients on a forced-convection, water-cooled, single-stage turbine

    NASA Technical Reports Server (NTRS)

    Freche, John C; Schum, Eugene F

    1951-01-01

    Blade-to-coolant convective heat-transfer coefficients were obtained on a forced-convection water-cooled single-stage turbine over a large laminar flow range and over a portion of the transition range between laminar and turbulent flow. The convective coefficients were correlated by the general relation for forced-convection heat transfer with laminar flow. Natural-convection heat transfer was negligible for this turbine over the Grashof number range investigated. Comparison of turbine data with stationary tube data for the laminar flow of heated liquids showed good agreement. Calculated average midspan blade temperatures using theoretical gas-to-blade coefficients and blade-to-coolant coefficients from stationary-tube data resulted in close agreement with experimental data.

  10. Area G perimeter surface-soil and single-stage water sampling: Environmental surveillance for fiscal year 94, Group ESH-19. Progress report

    SciTech Connect

    Conrad, R.; Childs, M.; Lyons, C.R.; Coriz, F.

    1996-08-01

    ESH-19 personnel collected soil and single-stage water samples around the perimeter of Area G at Los Alamos National Laboratory during FY94 to characterize possible contaminant movement out of Area G through surface-water and sediment runoff. These samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241, and cesium-137. Ten metals were also analyzed on selected soils using analytical laboratory techniques. All radiochemical data are compared with analogous samples collected during FY 93 and reported in LA-12986. Baseline concentrations for future disposal operations were established for metals and radionuclides by a sampling program in the proposed Area G Expansion Area. Considering the amount of radioactive waste that has been disposed at Area G, there is evidence of only low concentrations of radionuclides on perimeter surface soils. Consequently, little radioactivity is leaving the confines of Area G via the surface water runoff pathway.

  11. Generation of 130 W narrow-linewidth high-peak-power picosecond pulses directly from a compact Yb-doped single-stage fiber amplifier

    NASA Astrophysics Data System (ADS)

    Qi, Yaoyao; Yu, Haijuan; Zhang, Jingyuan; Wang, Lei; Zhang, Ling; Lin, Xuechun

    2015-09-01

    We report a compact, 130-W single-stage master oscillator power amplifier with a high peak power of 51.3 kW and a narrow spectral linewidth of 0.1 nm. The seed source is a single-mode, passively mode-locked solid-state laser at 1064 nm with an average power of 2 W. At a repetition rate of 73.5 MHz, the pulse duration is 30 ps. After amplification, it stretches to 34.5 ps. The experiment enables the optical-to-optical conversion efficiency to reach 75%. To the best of our knowledge, this is the first report of such a high-power, narrow spectral linewidth, high peak power picosecond-pulse fiber amplifier based on a continuous-wave, mode-locked solid-state seeding laser. No amplified spontaneous emission and stimulated Raman scattering were observed when the pump was increased.

  12. Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times.

    PubMed

    Kalderis, Dimitrios; Bethanis, Sophia; Paraskeva, Panagiota; Diamadopoulos, Evan

    2008-10-01

    The production of activated carbon from bagasse and rice husk by a single-stage chemical activation method in short retention times (30-60min) was examined in this study. The raw materials were subjected to a chemical pretreatment and were fed to the reactor in the form of a paste (75% moisture). Chemicals examined were ZnCl2, NaOH and H3PO4, for temperatures of 600, 700 and 800 degrees C. Of the three chemical reagents under evaluation only ZnCl2 produced activated carbons with high surface areas. BET surface areas for rice husk were up to 750m2/g for 1:1 ZnCl2:rice husk ratio. BET surface areas for bagasse were up to 674m2/g for 0.75:1 ZnCl2:bagasse ratio. Results were compared to regular two-stage physical activation methods.

  13. A 900mV Single-Stage Class-AB Amplifier for a ∑-Δ Modulator with the Switched-Opamp Technique

    NASA Astrophysics Data System (ADS)

    Kwon, Oh Jun; Kwack, Kae Dal

    A 900mV single-stage class-AB amplifier suitable for the Switched-Opamp technique is presented. To improve the slew-limited characteristics, a Dynamic Current Source (DCS) circuit which boosts the tail currents of the amplifier is proposed. The tail current of the proposed circuit is well defined and independent of technology parameters and supply variations. The tail current of the amplifier is 40µA with zero differential voltages, while the maximum output current is nearly 900µA. A single-loop 3rd order Σ-Δ modulator with the proposed amplifier was designed. For a 260mV 15.625kHz sinusoidal input signal, the simulated dynamic range of the modulator is 89dB.

  14. The Effect of Inlet Temperature and Pressure on the Efficiency of a Single-stage Impulse Turbine Having a 13.2-inch Pitch-line Diameter Wheel

    NASA Technical Reports Server (NTRS)

    Chanes, Ernest R.; Carman, L. Robert

    1945-01-01

    Efficiency tests have been conducted on a single-stage impulse turbine having a 13.2-inch pitch-line diameter wheel and a cast nozzle diaphram over a range of turbine speeds from 3000 to 17,000 rpm, pressure ratios from 1.5 to 5.0, inlet total temperatures from 1200 deg to 2000 deg R, and inlet total pressures from 18 to 59 inches of mercury absolute. The effect of inlet temperature and pressure on turbine efficiency for constant pressure ration and blade-to-jet speed ration is correlated against a factor derived from the equation for Reynolds number. The degree of correlation indicates that the change in turbine efficiency with inlet temperature and [ressure for constant pressure ration and blade-to-jet speed ration is principally a Reynolds number effect.

  15. Single-stage osseointegrated reconstruction and rehabilitation of lower limb amputees: the Osseointegration Group of Australia Accelerated Protocol-2 (OGAAP-2) for a prospective cohort study

    PubMed Central

    Al Muderis, Munjed; Lu, William; Tetsworth, Kevin; Bosley, Belinda; Li, Jiao Jiao

    2017-01-01

    Introduction Lower limb amputations have detrimental influences on the quality of life, function and body image of the affected patients. Following amputation, prolonged rehabilitation is required for patients to be fitted with traditional socket prostheses, and many patients experience symptomatic socket–residuum interface problems which lead to reduced prosthetic use and quality of life. Osseointegration has recently emerged as a novel approach for the reconstruction of amputated limbs, which overcomes many of the socket-related problems by directly attaching the prosthesis to the skeletal residuum. To date, the vast majority of osseointegration procedures worldwide have been performed in 2 stages, which require at least 4 months and up to 18 months for the completion of reconstruction and rehabilitation from the time of the initial surgery. The current prospective cohort study evaluates the safety and efficacy of a single-stage osseointegration procedure performed under the Osseointegration Group of Australia Accelerated Protocol-2 (OGAAP-2), which dramatically reduces the time of recovery to ∼3–6 weeks. Methods and analysis The inclusion criteria for osseointegrated reconstruction under the OGAAP-2 procedure are age over 18 years, unilateral transfemoral amputation and experiencing problems or difficulties in using socket prostheses. All patients receive osseointegrated implants which are press-fitted into the residual bone. Functional and quality-of-life outcome measures are recorded preoperatively and at defined postoperative follow-up intervals up to 2 years. Postoperative adverse events are also recorded. The preoperative and postoperative values are compared for each outcome measure, and the benefits and harms of the single-stage OGAAP-2 procedure will be compared with the results obtained using a previously employed 2-stage procedure. Ethics and dissemination This study has received ethics approval from the University of Notre Dame, Sydney

  16. [Effects of two typical substrates as the sole carbon source on biological phosphorus removal with a single-stage oxic process].

    PubMed

    Liu, Yi-Lin; Wang, Dong-Bo; Li, Xiao-Ming; Yang, Qi; Zou, Gao-Long; Jia, Bin; Zeng, Tian-Jing; Ding, Yan; Zeng, Guang-Ming

    2010-01-01

    To investigate the performances of phosphorus removal in a sequencing batch reactor (SBR) with single-stage oxic process using synthetical wastewater, glucose (R1) and acetate (R2) were fed to two SBRs as the sole carbon source, respectively. The operation run mode was determined to be: influent --> aeration (4 h) --> settling (8 h) --> effluent. The results showed that the performance of phosphorus removal in R1 was higher than that in R2 after steady-operation. Total phosphorus (TP) removed per MLVSS in R1 and R2 were 7.2-7.7 and 3.8-4.6 mg x g(-1) during aeration, respectively, but the rate of phosphorus release at the two reactors were 3.6-3.8 and 2.7-3.1 mg x g(-1) during the idle zone, respectively. The energy storage of poly-beta-hydroxyalkanoates (PHA) was constant nearly in R1 during the whole period, but glycogen was accumulated to the maximum value at 30 minutes of aeration, and then was decreased to the initial level. However in R2, PHA and glycogen were both accumulated at about 45 minutes of aeration. This phenomenon suggested that glycogen is the main energy source for metabolism during aerobic period in R1, and the main energy resource come from the decomposition of PHA and the hydrolysis of glycogen in R2. The facts showed that glycogen could replace PHAs to supply energy for phosphate uptake and polyphosphate accumulation in such a single-stage oxic process. Since glycogen accumulated in R1 was more than that in R2, the efficiency of phosphorus removal in R1 was higher than that in R2.

  17. Single-stage multilevel soft-tissue surgery in the lower limbs with spastic cerebral palsy: Experience from a rehabilitation unit

    PubMed Central

    Gupta, Anupam; Srivastava, Abhishek; Taly, Arun B; Murali, Thyloth

    2008-01-01

    Background: To assess the effect of single-stage multilevel soft-tissue surgery (Single Event Multiple Level Resections, SEMLR) on deformities and locomotion in patients with cerebral palsy (CP) with static contracture(s) in lower limbs. Patients and Methods: Study included 34 patients (M:F, 23:11) with mean age of 9.53 ± 3.92 years (4–16 years). Among them 22 had diplegia and four each had quadriplegia and right and left hemiplegia. Fourteen patients (41.2%) had their intelligence quotient (IQ) in the normal range (IQ ≥ 80), while others had mental retardation (MR) of varying severity: borderline MR (IQ = 70–79) in 12, mild MR (IQ = 50–69) in 5, and moderate MR (IQ = 35–49) in patients 3. All patients underwent surgery (total number of procedures 153, average 4.5 procedures/patient) over a period of 30 months (April 2005 to September 2007). Improvement in functional abilities and locomotion was assessed using Gross Motor Functional Classification Scale (GMFCS) scores and by physical examination. Results: Significant improvement in function was observed (P = 0.000) after surgery when comparing the preoperative and postoperative GMFCS scores. All patients were maintaining ambulation at a mean follow-up duration of 13.12 ± 6.07 months (3–24 months), with five patients using knee-ankle-foot orthoses (KAFO), 22 using ankle-foot orthoses (AFO), and six patients using knee gaiters. Sixteen patients were using walker, and two were using crutches as assistive devices. Conclusion: This study suggests that CP patients with good trunk control and static contractures at multiple joints in the lower limbs can be made ambulant with single-stage multilevel soft-tissue surgery. It has to be a team effort of the surgeon and the rehabilitation team in the postoperative period for the attainment of satisfactory goal. PMID:19753234

  18. Single-stage Reconstruction of Elbow Flexion Associated with Massive Soft-Tissue Defect Using the Latissimus Dorsi Muscle Bipolar Rotational Transfer

    PubMed Central

    Cuéllar, Vanessa G.; Ghiassi, Alidad; Sharpe, Frances

    2016-01-01

    Introduction: In the upper extremity, the latissimus dorsi muscle can be used as an ipsilateral rotational muscle flap for soft-tissue coverage or functional reconstruction of arm and elbow. Patients who have both major soft-tissue loss and functional deficits can be successfully treated with a single-stage functional latissimus dorsi rotational muscle transfer that provides simultaneous soft-tissue coverage and functional reconstruction. Methods: Our data base was queried for all patients undergoing a rotational latissimus dorsi muscle transfer for simultaneous soft-tissue coverage and functional reconstruction of elbow flexion. Four patients were identified. A chart review documented the mechanism of injury, associated injuries, soft-tissue defect size, number of surgical procedures, length of follow-up, last elbow range of motion, and flexion strength. Results: Four patients with loss of elbow flexion due to traumatic loss of the anterior compartment muscles and the overlying soft tissue underwent simultaneous soft-tissue coverage and elbow flexorplasty using the ipsilateral latissimus dorsi as a bipolar muscle rotational tissue transfer. All flaps survived and had a recovery of Medical Research Council Grade 4/5 elbow flexion strength. No additional procedures were required for elbow flexion. The surgical technique is described and supplemented with surgical technique video and patient outcome. Conclusions: This patient series augments the data provided in other series supporting the safety and efficacy of this procedure which provides both soft-tissue coverage and functional restoration of elbow flexion as a single-stage procedure in the setting of massive traumatic soft-tissue loss of the arm. PMID:27757363

  19. Validation of a single-stage fixed-rate step test for the prediction of maximal oxygen uptake in healthy adults.

    PubMed

    Hansen, Dominique; Jacobs, Nele; Thijs, Herbert; Dendale, Paul; Claes, Neree

    2016-09-01

    Healthcare professionals with limited access to ergospirometry remain in need of valid and simple submaximal exercise tests to predict maximal oxygen uptake (VO2max ). Despite previous validation studies concerning fixed-rate step tests, accurate equations for the estimation of VO2max remain to be formulated from a large sample of healthy adults between age 18-75 years (n > 100). The aim of this study was to develop a valid equation to estimate VO2max from a fixed-rate step test in a larger sample of healthy adults. A maximal ergospirometry test, with assessment of cardiopulmonary parameters and VO2max , and a 5-min fixed-rate single-stage step test were executed in 112 healthy adults (age 18-75 years). During the step test and subsequent recovery, heart rate was monitored continuously. By linear regression analysis, an equation to predict VO2max from the step test was formulated. This equation was assessed for level of agreement by displaying Bland-Altman plots and calculation of intraclass correlations with measured VO2max . Validity further was assessed by employing a Jackknife procedure. The linear regression analysis generated the following equation to predict VO2max (l min(-1) ) from the step test: 0·054(BMI)+0·612(gender)+3·359(body height in m)+0·019(fitness index)-0·012(HRmax)-0·011(age)-3·475. This equation explained 78% of the variance in measured VO2max (F = 66·15, P<0·001). The level of agreement and intraclass correlation was high (ICC = 0·94, P<0·001) between measured and predicted VO2max . From this study, a valid fixed-rate single-stage step test equation has been developed to estimate VO2max in healthy adults. This tool could be employed by healthcare professionals with limited access to ergospirometry.

  20. Optimization of the hydrogen yield from single-stage photofermentation of glucose by Rhodobacter capsulatus JP91 using response surface methodology.

    PubMed

    Ghosh, Dipankar; Sobro, Irma Flore; Hallenbeck, Patrick C

    2012-11-01

    Hydrogen production from glucose via single-stage photofermentation was examined with the photosynthetic bacterium Rhodobacter capsulatus JP91 (hup-). Response surface methodology with Box-Behnken design was used to optimize the independent experimental variables of glucose concentration, glutamate concentration and light intensity, as well as examining their interactive effects for maximization of molar hydrogen yield. Under optimal condition with a light intensity of 175W/m(2), 35mM glucose, and 4.5mM glutamate, a maximum hydrogen yield of 5.5 (±0.15)molH(2)/molglucose, and a maximum nitrogenase activity of 246 (±3.5)nmolC(2)H(4)/ml/min were obtained. Densitometric analysis of nitrogenase Fe-protein expression under different conditions showed significant variation in Fe-protein expression with a maximum at the optimized central point. Even under optimum conditions for hydrogen production, a significant fraction of the Fe-protein was found in the ADP-ribosylated state, suggesting that further improvement in yields might be possible.

  1. Single-Stage Operation of Hybrid Dark-Photo Fermentation to Enhance Biohydrogen Production through Regulation of System Redox Condition: Evaluation with Real-Field Wastewater.

    PubMed

    Chandra, Rashmi; Nikhil, G N; Mohan, S Venkata

    2015-04-28

    Harnessing hydrogen competently through wastewater treatment using a particular class of biocatalyst is indeed a challenging issue. Therefore, biohydrogen potential of real-field wastewater was evaluated by hybrid fermentative process in a single-stage process. The cumulative hydrogen production (CHP) was observed to be higher with distillery wastewater (271 mL) than with dairy wastewater (248 mL). Besides H₂ production, the hybrid process was found to be effective in wastewater treatment. The chemical oxygen demand (COD) removal efficiency was found higher in distillery wastewater (56%) than in dairy wastewater (45%). Co-culturing photo-bacterial flora assisted in removal of volatile fatty acids (VFA) wherein 63% in distillery wastewater and 68% in case of dairy wastewater. Voltammograms illustrated dominant reduction current and low cathodic Tafel slopes supported H₂ production. Overall, the augmented dark-photo fermentation system (ADPFS) showed better performance than the control dark fermentation system (DFS). This kind of holistic approach is explicitly viable for practical scale-up operation.

  2. Microbial community and population dynamics of single-stage autotrophic nitrogen removal for dilute wastewater at the benchmark oxygen rate supply.

    PubMed

    Huang, Yu-Tzu; Chen, Shiou-Shiou; Lee, Po-Heng; Bae, Jaeho

    2013-11-01

    Microbial communities and their kinetic performance in a single-stage autotrophic nitrogen-removal filter at an optimal oxygen supply were examined to determine the presence and activity of denitrifiers, anaerobic ammonia-oxidizing (anammox), ammonia-oxidizing, and nitrite-oxidizing bacteria. To this end, different molecular biology techniques such as real-time quantitative polymerase chain reaction (qPCR) and biomarkers such as 16S rRNA revealed a diverse microbial community along the filter. It was important to survey the specific species of anammox bacteria using a newly designed Candidatus Brocadiafulgida (BF) specific primer, as well as Candidatus Brocadia anammoxidans (BA) and Candidatus Kuenenia stuttgartiensis (KS) specific primers. An unexpected finding was that the predominant anammox species switched from KS in concentrated wastewater to BA in dilute wastewaters. The Eckenfelder model of the NH3-N transformation along the filter was Se=S0 exp(-0.192D/L(2.3217)). These results provide a foundational understanding of the microbial structure and reaction kinetics in such systems.

  3. Measurement of Uranium Isotopes in Particles of U3O8 by Secondary Ion Mass Spectrometry-Single-Stage Accelerator Mass Spectrometry (SIMS-SSAMS).

    PubMed

    Fahey, Albert J; Groopman, Evan E; Grabowski, Kenneth S; Fazel, Kamron C

    2016-07-19

    A commercial secondary ion mass spectrometer (SIMS) was coupled to a ± 300 kV single-stage accelerator mass spectrometer (SSAMS). Positive secondary ions generated with the SIMS were injected into the SSAMS for analysis. This combined instrument was used to measure the uranium isotopic ratios in particles of three certified reference materials (CRM) of uranium, CRM U030a, CRM U500, and CRM U850. The ability to inject positive ions into the SSAMS is unique for AMS systems and allows for simple analysis of nearly the entire periodic table because most elements will readily produce positive ions. Isotopic ratios were measured on samples of a few picograms to nanograms of total U. Destruction of UH(+) ions in the stripper tube of the SSAMS reduced hydride levels by a factor of ∼3 × 10(4) giving the UH(+)/U(+) ratio at the SSAMS detector of ∼1.4 × 10(-8). These hydride ion levels would allow the measurement of (239)Pu at the 10 ppb level in the presence of U and the equivalent of ∼10(-10 236)U concentration in natural uranium. SIMS-SSAMS analysis of solid nuclear materials, such as these, with signals nearly free of molecular interferences, could have a significant future impact on the way some measurements are made for nuclear nonproliferation.

  4. Start-up of single-stage partial nitrification-anammox process treating low-strength swage and its restoration from nitrate accumulation.

    PubMed

    Miao, Yuanyuan; Zhang, Liang; Yang, Yandong; Peng, Yongzhen; Li, Baikun; Wang, Shuying; Zhang, Qian

    2016-10-01

    A single-stage partial nitrification-anammox (PN/A) reactor treating low-strength swage was operated for 288days to investigate the recovery of nitrogen removal from nitrate accumulation. The reactor was quickly started up by inoculating anammox sludge. However, nitrite oxidizing bacteria (NOB) abundance gradually increased on day 25, leading to high effluent nitrate concentration. Two strategies were executed to control the effluent nitrate. In strategy I, dissolved oxygen (DO) concentration was kept low (0.17±0.08mg/L), but nitrate production increased from 4.71 to 38.18mg-N/L. In strategy II, intermittent aeration operation mode (aeration 7min/anoxic 21min) was adopted, which significantly lowered the nitrate concentration to 1.3mg-N/L, indicating the NOB was inhibited. The high nitrogen removal rate of 73mg-N/(L·d) was achieved. The evolution of bacterial activity and abundance verified the changes of the nitrogen removal performance and proved the intermittent aeration strategy could successfully solve the problem of nitrate build-up in the PN/A process.

  5. Determination of the separation efficiencies of a single-stage cryogenic distillation setup to remove krypton out of xenon by using a (83m)Kr tracer method.

    PubMed

    Rosendahl, S; Brown, E; Cristescu, I; Fieguth, A; Huhmann, C; Lebeda, O; Murra, M; Weinheimer, C

    2015-11-01

    The separation of krypton and xenon is of particular importance for the field of direct dark matter search with liquid xenon detectors. The intrinsic contamination of the xenon with radioactive (85)Kr makes a significant background for these kinds of low count-rate experiments and has to be removed beforehand. This can be achieved by cryogenic distillation, a technique widely used in industry, using the different vapor pressures of krypton and xenon. In this paper, we present an investigation on the separation performance of a single stage distillation system using a radioactive (83m)Kr-tracer method. The separation characteristics under different operation conditions are determined for very low concentrations of krypton in xenon at the level of (83m)Kr/Xe = 1.9 ⋅ 10(-15), demonstrating, that cryogenic distillation in this regime is working. The observed separation is in agreement with the expectation from the different volatilities of krypton and xenon. This cryogenic distillation station is the first step on the way to a multi-stage cryogenic distillation column for the next generation of direct dark matter experiment XENON1T.

  6. Single-stage experimental evaluation of low aspect ratio, highly loaded blading for compressors. Part 9: Stage F and stage G, volume 1

    NASA Technical Reports Server (NTRS)

    Cheatham, J. G.; Smith, J. D.; Wright, D. L.

    1976-01-01

    Two single-stage, 0.77 hub/tip ratio axial-flow compressors were tested to evaluate the effectiveness of low aspect ratio blading as a means of obtaining higher stage loadings. One compressor, designated Stage F, was comprised of circular arc blading with an aspect ratio of 0.9 for both the rotor and stator. This compressor was tested with uniform inlet flow, hub radial, tip radial, and 180 deg arc circumferential inlet distortion. The second compressor, designated Stage G, was comprised of multiple circular arc blading with an aspect ratio of 1.0 for both the rotor and stator. This compressor was tested with uniform inlet flow only. Design rotor tip speeds for Rotor F and Rotor G were 285 m/sec (934 ft/sec) and 327 m/sec (1,074 ft/sec) respectively. Both stages operated at high loading levels with adequate efficiency and operating range. The peak efficiencies and corresponding average stage diffusion factors for Stages F and G at design rotor speed were 86.4% and 84.1% and 0.59 and 0.55 respectively. The surge margin at peak efficiency for Stage F was 12.6% and the corresponding value for Stage G was 16.5%. Both stages experienced a loss in efficiency with increasing rotor speed; however, the multiple circular arc rotor delayed the characteristic loss in efficiency within increasing Mach number to higher Mach number.

  7. Single-Stage Operation of Hybrid Dark-Photo Fermentation to Enhance Biohydrogen Production through Regulation of System Redox Condition: Evaluation with Real-Field Wastewater

    PubMed Central

    Chandra, Rashmi; Nikhil, G. N.; Mohan, S. Venkata

    2015-01-01

    Harnessing hydrogen competently through wastewater treatment using a particular class of biocatalyst is indeed a challenging issue. Therefore, biohydrogen potential of real-field wastewater was evaluated by hybrid fermentative process in a single-stage process. The cumulative hydrogen production (CHP) was observed to be higher with distillery wastewater (271 mL) than with dairy wastewater (248 mL). Besides H2 production, the hybrid process was found to be effective in wastewater treatment. The chemical oxygen demand (COD) removal efficiency was found higher in distillery wastewater (56%) than in dairy wastewater (45%). Co-culturing photo-bacterial flora assisted in removal of volatile fatty acids (VFA) wherein 63% in distillery wastewater and 68% in case of dairy wastewater. Voltammograms illustrated dominant reduction current and low cathodic Tafel slopes supported H2 production. Overall, the augmented dark-photo fermentation system (ADPFS) showed better performance than the control dark fermentation system (DFS). This kind of holistic approach is explicitly viable for practical scale-up operation. PMID:25927577

  8. Performance prediction of refrigerant-DMF solutions in a single-stage solar-powered absorption refrigeration system at low generating temperatures

    SciTech Connect

    He, L.J.; Tang, L.M.; Chen, G.M.

    2009-11-15

    A theoretical analysis of the coefficient of performance was undertaken to examine the efficiency characteristics of R22 + DMF, R134a + DMF, R32 + DMF as working fluids, respectively, for a single-stage and intermittent absorption refrigerator which allows the use of heat pipe evacuated tubular collectors. The modeling and simulation of the performance considers both solar collector system and the absorption cooling system. The typical meteorological year file containing the weather parameters for Hangzhou is used to simulate the system. The results show that the system is in phase with the weather. In order to increase the reliability of the system, a hot water storage tank is essential. The optimum ratio of storage tank per solar collector area for Hangzhou's climate for a 1.0 kW system is 0.035-0.043L. Considering the relative low pressure and the high coefficient of performance, R134a + DMF mixture presents interesting properties for its application in solar absorption cycles at moderate condensing and absorbing temperatures when the evaporating temperatures in the range from 278 K to 288 K which are highly useful for food preservation and for air-conditioning in rural areas. (author)

  9. Anaerobic digestion of municipal solid waste composed of food waste, wastepaper, and plastic in a single-stage system: performance and microbial community structure characterization.

    PubMed

    Wan, Shungang; Sun, Lei; Douieb, Yaniv; Sun, Jian; Luo, Wensui

    2013-10-01

    The performance of municipal organic solid waste anaerobic digestion was investigated using a single-stage bioreactor, and the microbial community structures were characterized during the digestion. The results showed that the biogas and methane production rates were 592.4 and 370.1L/kg with volatile solid added at the ratio of 2:1:1 for food waste, wastepaper, and plastic based on dry weight. The methane volume concentration fluctuated between 44.3% and 75.4% at steady stage. Acetic acid, propionic acid, and butyric acid were the major volatile fatty acids produced during the digestion process. The anaerobic process was not inhibited by the accumulation of ammonia and free ammonia. The bacterial community was found to consist of at least 21 bands of bacteria and 12 bands of archaea at the steady state. All of the results indicated that the mixture of food waste, wastepaper, and plastic could be efficiently co-digested using the anaerobic digestion system.

  10. New Method to Study the Vibrational Modes of Biomolecules in the Terahertz Range Based on a Single-Stage Raman Spectrometer

    PubMed Central

    2017-01-01

    The low-frequency vibrational (LFV) modes of biomolecules reflect specific intramolecular and intermolecular thermally induced fluctuations that are driven by external perturbations, such as ligand binding, protein interaction, electron transfer, and enzymatic activity. Large efforts have been invested over the years to develop methods to access the LFV modes due to their importance in the studies of the mechanisms and biological functions of biomolecules. Here, we present a method to measure the LFV modes of biomolecules based on Raman spectroscopy that combines volume holographic filters with a single-stage spectrometer, to obtain high signal-to-noise-ratio spectra in short acquisition times. We show that this method enables LFV mode characterization of biomolecules even in a hydrated environment. The measured spectra exhibit distinct features originating from intra- and/or intermolecular collective motion and lattice modes. The observed modes are highly sensitive to the overall structure, size, long-range order, and configuration of the molecules, as well as to their environment. Thus, the LFV Raman spectrum acts as a fingerprint of the molecular structure and conformational state of a biomolecule. The comprehensive method we present here is widely applicable, thus enabling high-throughput study of LFV modes of biomolecules. PMID:28393138

  11. A Collaborative Analysis Tool for Integrating Hypersonic Aerodynamics, Thermal Protection Systems, and RBCC Engine Performance for Single Stage to Orbit Vehicles

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas Troy; Alexander, Reginald

    1999-01-01

    Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. The deficiencies in the scramjet powered concept led to a revival of interest in Rocket-Based Combined-Cycle (RBCC) propulsion systems. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. At this point the transitions to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scram4jet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance.

  12. Single-Stage Versus Multi-Stage Pull-Through for Hirschsprung’s Disease: Practice Trends and Outcomes in Infants

    PubMed Central

    Sulkowski, Jason P.; Cooper, Jennifer N.; Congeni, Anthony; Pearson, Erik G.; Nwomeh, Benedict C.; Doolin, Edward J.; Blakely, Martin L.; Minneci, Peter C.; Deans, Katherine J.

    2014-01-01

    Purpose To evaluate surgical treatments and outcomes in a multi-institutional cohort of neonates with Hirschsprung’s Disease (HD). Methods Using the Pediatric Health Information System (PHIS) from 1999–2009, neonates diagnosed with HD were identified and classified as having a single stage pull-through (SSPT) or multi-stage pull-through (MSPT). Diagnosis and classification algorithms and clinical variables and outcomes were validated by multi-institutional chart review. Groups were compared using logistic regression modeling and propensity-score matched analysis to account for baseline differences between groups. Results 1,555 neonates with HD were identified; 77.2% underwent SSPT and 22.8% underwent MSPT. Misclassification of disease or surgical treatment was <2%. Rates of SSPT increased over time (p=0.03). Compared to SSPT, patients undergoing MSPT had significantly lower birth weights and higher rates of prematurity, non-HD gastrointestinal anomalies, enterocolitis, and preoperative mechanical ventilation. Patients undergoing MSPT had significantly higher rates of readmissions (58.5% vs. 37.9%) and additional operations (38.7% vs. 26%). Results were consistent in the propensity-score matched analysis. Conclusion Most neonates with HD undergo SSPT. In patients with similar observed baseline characteristics, MSPT was associated with worse outcomes suggesting that some infants currently selected to undergo MSPT may have better outcomes with SSPT. However, there remains a subgroup of MSPT patients who were too ill to be adequately compared to SSPT patients; for this subgroup of severely ill infants with HD, MSPT may be the best option. PMID:25475806

  13. Performance of Single-Stage Turbine of Mark 25 Torpedo Power Plant with Two Nozzles and Three Rotor-Blade Designs

    NASA Technical Reports Server (NTRS)

    Schum, Harold J.; Whitney, Warren J.

    1949-01-01

    A single-stage modification of the turbine from a Mark 25 torpedo power plant was investigated to determine the performance with two nozzles and three rotor-blade designs. The performance was evaluated in terms of brake, rotor, and blade efficiencies at pressure ratios of 8, 15 (design), and 20. The blade efficiencies with the two nozzles are compared with those obtained with four other nozzles previously investigated with the same three rotor-blade designs. Blade efficiency with the cast nozzle of rectangular cross section (J) was higher than that with the circular reamed nozzle (K) at all speeds and pressure ratios with a rotor having a 0.45-inch 17 degree-inlet-angle blades. The efficiencies for both these nozzles were generally low compared with those of the four other nozzles previously investigated in combination with this rotor. At pressure ratios of 15 and 20, the blade efficiencies with nozzle K and the two rotors with 0.40-inch blades having different inlet angles were higher than with the four other nozzles, but the efficiency with nozzle J was generally low. Increasing the blade inlet angle from 17 degrees to 20 degrees had little effect on turbine performance, whereas changing the blade length from 0.40 to 0.45 inch had a marked effect. Although a slight correlation of efficiency with nozzle size was noted for the rotor with 0.45-inch 17 degree-inlet-angle blades, no such effect was discernible ,for the two rotors with 0.40-inch blades.Losses in the supersonic air stream resulting from the complex flow path in the small air passages are probably a large percentage of the total losses, and apparently the effects of changing nozzle size and shape within the limits investigated are of secondary importance.

  14. Results of single stage exchange arthroplasty with retention of well fixed cement-less femoral component in management of infected total hip arthroplasty

    PubMed Central

    Rahman, Wael A; Kazi, Hussain A; Gollish, Jeffery D

    2017-01-01

    AIM To investigate success of one stage exchange with retention of fixed acetabular cup. METHODS Fifteen patients treated by single stage acetabular component exchange with retention of well-fixed femoral component in infected total hip arthroplasty (THA) were retrospectively reviewed. Inclusion criteria were patients with painful chronic infected total hip. The patient had radiologically well fixed femoral components, absence of major soft tissue or bone defect compromising, and infecting organism was not poly or virulent micro-organism. The organisms were identified preoperatively in 14 patients (93.3%), coagulase negative Staphylococcus was the infecting organism in 8 patients (53.3%). RESULTS Mean age of the patients at surgery was 58.93 (± 10.67) years. Mean follow-up was 102.8 mo (36-217 mo, SD 56.4). Fourteen patients had no recurrence of the infection; one hip (6.7%) was revised for management of infection. Statistical analysis using Kaplan Meier curve showed 93.3% survival rate. One failure in our series; the infection recurred after 14 mo, the patient was treated successfully with surgical intervention by irrigation, and debridement and liner exchange. Two complications: The first patient had recurrent hip dislocation 12 years following the definitive procedure, which was managed by revision THA with abductor reconstruction and constrained acetabular liner; the second complication was aseptic loosening of the acetabular component 2 years following the definitive procedure. CONCLUSION Successful in management of infected THA when following criteria are met; well-fixed stem, no draining sinuses, non-immune compromised patients, and infection with sensitive organisms. PMID:28361019

  15. Quantitative targeted and retrospective data analysis of relevant pesticides, antibiotics and mycotoxins in bakery products by liquid chromatography-single-stage Orbitrap mass spectrometry.

    PubMed

    De Dominicis, Emiliano; Commissati, Italo; Gritti, Elisa; Catellani, Dante; Suman, Michele

    2015-01-01

    In addition to 'traditional' multi-residue and multi-contaminant multiple reaction monitoring (MRM) mass spectrometric techniques devoted to quantifying a list of targeted compounds, the global food industry requires non-targeted methods capable of detecting other possible potentially hazardous compounds. Ultra-high-performance liquid chromatography combined with a single-stage Orbitrap high-resolution mass spectrometer (UHPLC-HRMS Exactive™-Orbitrap Technology) was successfully exploited for the complete selective and quantitative determination of 33 target compounds within three major cross categories (pesticides, antibiotics and mycotoxins) in bakery matrices (specifically milk, wheat flour and mini-cakes). Resolution was set at 50 000 full width at half maximum (FWHM) to achieve the right compromise between an adequate scan speed and selectivity, allowing for the limitations related to the necessary generic sample preparation approach. An exact mass with tolerance of 5 ppm and minimum peak threshold of 10 000 units were fixed as the main identification conditions, including retention time and isotopic pattern as additional criteria devoted to greatly reducing the risk of false-positive findings. The full validation for all the target analytes was performed: linearity, intermediate repeatability and recovery (28 analytes within 70-120%) were positively assessed; furthermore, limits of quantification between 5 and 100 µg kg(-1) (with most of the analytes having a limit of detection below 6 µg kg(-1)) indicate good performance, which is compatible with almost all the regulatory needs. Naturally contaminated and fortified mini-cakes, prepared through combined use of industrial and pilot plant production lines, were analysed at two different concentration levels, obtaining good overall quantitative results and providing preliminary indications of the potential of full-scan HRMS cluster analysis. The effectiveness of this analytical approach was also tested in

  16. A Collaborative Analysis Tool for Integrated Hypersonic Aerodynamics, Thermal Protection Systems, and RBCC Engine Performance for Single Stage to Orbit Vehicles

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas Troy; Alexander, Reginald; Landrum, Brian

    2000-01-01

    Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. Then there is a transition to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scramjet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance. To adequately determine the performance of the engine/vehicle, the Hypersonic Flight Inlet Model (HYFIM) module was designed to interface with the RBCC

  17. Single-staged resections and 3D reconstructions of the nasion, glabella, medial orbital wall, and frontal sinus and bone: Long-term outcome and review of the literature

    PubMed Central

    Ciporen, Jeremy; Lucke-Wold, Brandon P.; Mendez, Gustavo; Chen, Anton; Banerjee, Amit; Akins, Paul T.; Balough, Ben J.

    2016-01-01

    Background: Aesthetic facial appearance following neurosurgical ablation of frontal fossa tumors is a primary concern for patients and neurosurgeons alike. Craniofacial reconstruction procedures have drastically evolved since the development of three-dimensional computed tomography imaging and computer-assisted programming. Traditionally, two-stage approaches for resection and reconstruction were used; however, these two-stage approaches have many complications including cerebrospinal fluid leaks, necrosis, and pneumocephalus. Case Description: We present two successful cases of single-stage osteoma resection and craniofacial reconstruction in a 26-year-old female and 65-year-old male. The biopolymer implants were preselected and contoured based on imaging prior to surgery. The ideal selection of appropriate flaps for reconstruction was imperative. The flaps were well vascularized and included a pedicle for easy translocation. Using a titanium mesh biopolymer implant for reconstruction in conjunction with a forehead flap proved advantageous, and the benefits of single-stage approaches were apparent. The patients recovered quickly after the surgery with complete resection of the osteoma and good aesthetic appearance. The flap adhered to the biopolymer implant, and the cosmetic appearance years after surgery remained decent. The gap between the bone and implant was less than 2 mm. The patients are highly satisfied with the symmetrical appearance of the reconstruction. Conclusions: Advances in technology are allowing neurosurgeons unprecedented opportunities to design complex yet feasible single-stage craniofacial reconstructions that improve a patient's quality of life by enhancing facial contours, aesthetics, and symmetry. PMID:28194296

  18. A Collaborative Analysis Tool for Integrated Hypersonic Aerodynamics, Thermal Protection Systems, and RBCC Engine Performance for Single Stage to Orbit Vehicles

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas Troy; Alexander, Reginald; Landrum, Brian

    2000-01-01

    Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. Then there is a transition to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scramjet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance. To adequately determine the performance of the engine/vehicle, the Hypersonic Flight Inlet Model (HYFIM) module was designed to interface with the RBCC

  19. Thermo-fluid dynamic design study of single and double-inflow radial and single-stage axial steam turbines for open-cycle thermal energy conversion net power-producing experiment facility in Hawaii

    SciTech Connect

    Schlbeiri, T. . Dept. of Mechanical Engineering)

    1990-03-01

    The results of the study of the optimum thermo-fluid dynamic design concept are presented for turbine units operating within the open-cycle ocean thermal energy conversion (OC-OTEC) systems. The concept is applied to the first OC-OTEC net power producing experiment (NPPE) facility to be installed at Hawaii's natural energy laboratory. Detailed efficiency and performance calculations were performed for the radial turbine design concept with single and double-inflow arrangements. To complete the study, the calculation results for a single-stage axial steam turbine design are also presented. In contrast to the axial flow design with a relatively low unit efficiency, higher efficiency was achieved for single-inflow turbines. Highest efficiency was calculated for a double-inflow radial design, which opens new perspectives for energy generation from OC-OTEC systems.

  20. Single-stage evaluation of highly-loaded high-Mach-number compressor stages 5. Data and performance of baseline, corner-blow wall suction and combined corner blow wall suction stator

    NASA Technical Reports Server (NTRS)

    Nikkanen, J. P.; Brooky, J. P.

    1972-01-01

    A single-stage compressor with a rotor tip speed of 1600 ft/sec and a 0.5 hub tip ratio was used to investigate the effects of several stator endwall treatment methods on stage range and performance. These endwall treatment methods consisted of stator corner-blow, annular wall suction upstream of stator leading edge, and combined corner-blow and annular wall suction. The overall stage performance with corner blow was essentially the same as the baseline performance. The performance for the annular wall suction and the combined corner-blow and wall suction showed a reduction in peak efficiency of 2.5 percentage points compared to the baseline data.

  1. Simple ps microchip Nd:YVO4 laser with 3.3-ps pulses at 0.2 to 1.4 MHz and single-stage amplification to the microjoule level

    NASA Astrophysics Data System (ADS)

    Türkyilmaz, Erdal; Lohbreier, Jan; Günther, Christian; Mehner, Eva; Kopf, Daniel; Giessen, Harald; Braun, Bernd

    2016-06-01

    Commercial picosecond sources have found widespread applications. Typical system parameters are pulse widths below 20 ps, repetition rates between 0.1 and 2 MHz, and microjoule level pulse energies. Most systems are based on short pulse mode-locked oscillators, regenerative amplifiers, and pockel cells as active beam switches. In contrast, we present a completely passive system, consisting of a passively Q-switched microchip laser, a single-stage amplifier, and a pulse compressor. The Q-switched microchip laser has a 50-μm-long Nd:YVO4 gain material optically bonded to a 4.6-mm-thick undoped YVO4 crystal. It delivers pulse widths of 40 ps and repetition rates of 0.2 to 1.4 MHz at a wavelength of 1.064 μm. The pulse energy is a few nanojoule. These 40-ps pulses are spectrally broadened in a standard single-mode fiber and then compressed in a 24-mm-long chirped Bragg grating to as low as 3.3 ps. The repetition rate can be tuned from ˜0.2 to 1.4 MHz by changing the pump power, while the pulse width and the pulse energy from the microchip laser are unchanged. The spectral broadening in the fiber is observed throughout the pulse repetition rate, supporting sub-10-ps pulses. Finally, the pulses are amplified in a single-stage Nd:YVO4 amplifier up to the microjoule level (up to 4 μJ pulse energy). As a result, the system delivers sub-10-ps pulses at a microjoule level with about 1 MHz repetition rate, and thus fulfills the requirements for ps-micromachining. It does not contain any active switching elements and can be integrated in a very compact setup.

  2. Simple ps microchip Nd:YVO4 laser with 3.3 ps pulses at 0.2 - 1.4 MHz and single-stage amplification to the microjoule level

    NASA Astrophysics Data System (ADS)

    Türkyilmaz, Erdal; Lohbreier, Jan; Günther, Christian; Mehner, Eva; Kopf, Daniel; Giessen, Harald; Braun, Bernd

    2016-03-01

    Commercial picosecond sources have found widespread applications. Typical system parameters are pulse widths below 20 ps, repetition rates between 0.1 to 2 MHz, and micro Joule level pulse energies. Most systems are based on short pulse modelocked oscillators, regenerative amplifiers, and pockel cells as active beam switches. In contrast we present a completely passive system, consisting of a passively Q-switched microchip laser, a single-stage amplifier, and a pulse compressor. The Q-switched microchip laser has a 50 μm long Nd:YVO4-gain material optically bonded to a 4.6 mm thick undoped YVO4-crystal. It delivers pulse widths of 40 ps and repetition rates of 0.2 - 1.4 MHz at a wavelength of 1.064 μm. The pulse energy is a few nJ. These 40-ps pulses are spectrally broadened in a standard single mode fibre and then compressed in a 24 mm long chirped Bragg grating to as low as 3.3 ps. The repetition rate can be tuned from app. 0.2 to 1.4 MHz by changing the pump power while the pulse width and the pulse energy from the microchip laser are unchanged. The spectral broadening in the fibre is observed throughout the pulse repetition rate, supporting sub-10- ps pulses. Finally, the pulses are amplified in a single-stage Nd:YVO4-amplifier up to the microjoule level (up to 4 μJ pulse energy). As a result the system delivers sub-10-ps pulses at a microjoule level with about 1 MHz repetition rate, and thus fulfills the requirements for ps-micromachining. It does not contain any active switching elements and can be integrated in a very compact setup.

  3. Single stage to orbit/SDIO

    NASA Technical Reports Server (NTRS)

    French, James R.

    1993-01-01

    This paper included a discussion of the United States' need for a launch system that demonstrates both high capacity and low cost. Current systems, which typically require two years' lead time to provide on-orbit service to space platforms, are too inflexible for many missions. A system is needed that is able to operate in much the same way as existing commercial aircraft. The SSTO program is focused on satisfying aircraft-like operations and logistics support requirements such as engine-out intact abort capability and seven-day, 350-man-day vehicle turnaround times.

  4. Single stage high pressure centrifugal slurry pump

    DOEpatents

    Meyer, John W.; Bonin, John H.; Daniel, Arnold D.

    1984-03-27

    Apparatus is shown for feeding a slurry to a pressurized housing. An impeller that includes radial passages is mounted in the loose fitting housing. The impeller hub is connected to a drive means and a slurry supply means which extends through the housing. Pressured gas is fed into the housing for substantially enveloping the impeller in a bubble of gas.

  5. Investigation of Single Stage Axial Fans

    NASA Technical Reports Server (NTRS)

    Ruden, P.

    1944-01-01

    The following investigations are connected with experiments on fans carried out by the author in the Gouttingen Aerodynamic Laboratory within the framework of the preliminary experiments for the new Gouttingen wind-tunnel project. A fan rotor was developed which had very high efficiency at the design point corresponding to moderate pressure and which, in addition, could operate at a proportionally high pressure, rise. To establish the determining operating factors the author carried out extensive theoretical investigation in Hannover. In this it was necessary, to depart from the usual assumption of vanishing radial velocities. The calculations were substantially lightened by the introduction of diagrams. The, first part of the.report describes the theoretical investigations; the second, the experiments carried out at Gouttingen.

  6. Models of single-stage concomitant potassium-argon exchange: an interpretation of discordant whole rock K-Ar data from hydrothermally altered igneous rocks of the South Pennine Orefield, U.K.

    NASA Astrophysics Data System (ADS)

    Mitchell, J. G.; Ineson, P. R.

    1988-04-01

    A model of single-stage concomitant potassium and argon exchange is advanced to explain the existence of rectilinear "isochrons" in potassium-argon correlation diagrams produced from suites of altered rocks. Negative isochron intercepts are shown to be a consequence of fractional argon loss which exceeds potassium loss, and it is demonstrated that no information of immediate geological significance can be obtained from the gradient of such an isochron. Bounds to the "primary formation age" and "age of exchange event" may be established using extreme values of the observed potassium content and from estimates based on the inferred petrology and chemistry of the unaltered rock and/or its alteration products. Ten Carboniferous igneous units from the South Pennine Orefield (involving-thirty-eight independent samples) are investigated by means of the model and eight of the units are consistent with a model of potassium and argon exchange occurring in earliest Mesozoic times (ca. 200 Ma). It is argued that this conclusion augments the already substantial body of evidence for an identifiable widespread igneous and hydrothermal province associated with early rifting processes in the North Atlantic.

  7. Determination of the separation efficiencies of a single-stage cryogenic distillation setup to remove krypton out of xenon by using a {sup 83m}Kr tracer method

    SciTech Connect

    Rosendahl, S. Brown, E.; Fieguth, A.; Huhmann, C.; Murra, M.; Weinheimer, C.; Cristescu, I.; Lebeda, O.

    2015-11-15

    The separation of krypton and xenon is of particular importance for the field of direct dark matter search with liquid xenon detectors. The intrinsic contamination of the xenon with radioactive {sup 85}Kr makes a significant background for these kinds of low count-rate experiments and has to be removed beforehand. This can be achieved by cryogenic distillation, a technique widely used in industry, using the different vapor pressures of krypton and xenon. In this paper, we present an investigation on the separation performance of a single stage distillation system using a radioactive {sup 83m}Kr-tracer method. The separation characteristics under different operation conditions are determined for very low concentrations of krypton in xenon at the level of {sup 83m}Kr/Xe = 1.9 ⋅ 10{sup −15}, demonstrating, that cryogenic distillation in this regime is working. The observed separation is in agreement with the expectation from the different volatilities of krypton and xenon. This cryogenic distillation station is the first step on the way to a multi-stage cryogenic distillation column for the next generation of direct dark matter experiment XENON1T.

  8. CFD modeling and experimental verification of a single-stage coaxial Stirling-type pulse tube cryocooler without either double-inlet or multi-bypass operating at 30-35 K using mixed stainless steel mesh regenerator matrices

    NASA Astrophysics Data System (ADS)

    Dang, Haizheng; Zhao, Yibo

    2016-09-01

    This paper presents the CFD modeling and experimental verifications of a single-stage inertance tube coaxial Stirling-type pulse tube cryocooler operating at 30-35 K using mixed stainless steel mesh regenerator matrices without either double-inlet or multi-bypass. A two-dimensional axis-symmetric CFD model with the thermal non-equilibrium mode is developed to simulate the internal process, and the underlying mechanism of significantly reducing the regenerator losses with mixed matrices is discussed in detail based on the given six cases. The modeling also indicates that the combination of the given different mesh segments can be optimized to achieve the highest cooling efficiency or the largest exergy ratio, and then the verification experiments are conducted in which the satisfactory agreements between simulated and tested results are observed. The experiments achieve a no-load temperature of 27.2 K and the cooling power of 0.78 W at 35 K, or 0.29 W at 30 K, with an input electric power of 220 W and a reject temperature of 300 K.

  9. Ultra-high pressure liquid chromatography-mass spectrometry for plant metabolomics: a systematic comparison of high-resolution quadrupole-time-of-flight and single stage Orbitrap mass spectrometers.

    PubMed

    Glauser, Gaetan; Veyrat, Nathalie; Rochat, Bertrand; Wolfender, Jean-Luc; Turlings, Ted C J

    2013-05-31

    The response of Arabidopsis to stress caused by mechanical wounding was chosen as a model to compare the performances of high resolution quadrupole-time-of-flight (Q-TOF) and single stage Orbitrap (Exactive Plus) mass spectrometers in untargeted metabolomics. Both instruments were coupled to ultra-high pressure liquid chromatography (UHPLC) systems set under identical conditions. The experiment was divided in two steps: the first analyses involved sixteen unwounded plants, half of which were spiked with pure standards that are not present in Arabidopsis. The second analyses compared the metabolomes of mechanically wounded plants to unwounded plants. Data from both systems were extracted using the same feature detection software and submitted to unsupervised and supervised multivariate analysis methods. Both mass spectrometers were compared in terms of number and identity of detected features, capacity to discriminate between samples, repeatability and sensitivity. Although analytical variability was lower for the UHPLC-Q-TOF, generally the results for the two detectors were quite similar, both of them proving to be highly efficient at detecting even subtle differences between plant groups. Overall, sensitivity was found to be comparable, although the Exactive Plus Orbitrap provided slightly lower detection limits for specific compounds. Finally, to evaluate the potential of the two mass spectrometers for the identification of unknown markers, mass and spectral accuracies were calculated on selected identified compounds. While both instruments showed excellent mass accuracy (<2.5ppm for all measured compounds), better spectral accuracy was recorded on the Q-TOF. Taken together, our results demonstrate that comparable performances can be obtained at acquisition frequencies compatible with UHPLC on Q-TOF and Exactive Plus MS, which may thus be equivalently used for plant metabolomics.

  10. Evaluation of the Hydraulic Capacity and Mass Transfer Efficiency of the CSSX Process with the Optimized Solvent in a Single Stage of 5.5-cm-Diameter Centrifugal Contactor

    SciTech Connect

    Law, Jack Douglas; Tillotson, Richard Dean; Todd, Terry Allen

    2002-09-01

    The Caustic-Side Solvent Extraction (CSSX) process has been selected for the separation of cesium from Savannah River Site high-level waste. The solvent composition used in the CSSX process was recently optimized so that the solvent is no longer supersaturated with respect to the calixarene crown ether extractant. Hydraulic performance and mass transfer efficiency testing of a single stage of 5.5-cm ORNL-designed centrifugal contactor has been performed for the CSSX process with the optimized solvent. Maximum throughputs of the 5.5-cm centrifugal contactor, as a function of contactor rotor speed, have been measured for the extraction, scrub, strip, and wash sections of the CSSX flowsheet at the baseline organic/aqueous flow ratios (O/A) of the process, as well as at O/A’s 20% higher and 20% lower than the baseline. Maximum throughputs are comparable to the design throughput of the contactor, as well as with throughputs obtained previously in a 5-cm centrifugal contactor with the non-optimized CSSX solvent formulation. The 20% variation in O/A had minimal effect on contactor throughput. Additionally, mass transfer efficiencies have been determined for the extraction and strip sections of the flowsheet. Efficiencies were lower than the process goal of greater than or equal to 80%, ranging from 72 to 75% for the extraction section and from 36 to 60% in the strip section. Increasing the mixing intensity and/or the solution level in the mixing zone of the centrifugal contactor (residence time) could potentially increase efficiencies. Several methods are available to accomplish this including (1) increasing the size of the opening in the bottom of the rotor, resulting in a contactor which is partially pumping instead of fully pumping, (2) decreasing the number of vanes in the contactor, (3) increasing the vane height, or (4) adding vanes on the rotor and baffles on the housing of the contactor. The low efficiency results obtained stress the importance of proper design

  11. Evaluation of the Hydraulic Performance and Mass Transfer Efficiency of the CSSX Process with the Optimized Solvent in a Single Stage of 5.5-Cm Diameter Centrifugal Contactor

    SciTech Connect

    Law, J.D.; Tillotson, R.D.; Todd, T.A.

    2002-09-19

    The Caustic-Side Solvent Extraction (CSSX) process has been selected for the separation of cesium from Savannah River Site high-level waste. The solvent composition used in the CSSX process was recently optimized so that the solvent is no longer supersaturated with respect to the calixarene crown ether extractant. Hydraulic performance and mass transfer efficiency testing of a single stage of 5.5-cm ORNL-designed centrifugal contactor has been performed for the CSSX process with the optimized solvent. Maximum throughputs of the 5.5-cm centrifugal contactor, as a function of contactor rotor speed, have been measured for the extraction, scrub, strip, and wash sections of the CSSX flowsheet at the baseline organic/aqueous flow ratios (O/A) of the process, as well as at O/A's 20% higher and 20% lower than the baseline. Maximum throughputs are comparable to the design throughput of the contactor, as well as with throughputs obtained previously in a 5-cm centrifugal contactor with the non-optimized CSSX solvent formulation. The 20% variation in O/A had minimal effect on contactor throughput. Additionally, mass transfer efficiencies have been determined for the extraction and strip sections of the flowsheet. Efficiencies were lower than the process goal of greater than or equal to 80%, ranging from 72 to 75% for the extraction section and from 36 to 60% in the strip section. Increasing the mixing intensity and/or the solution level in the mixing zone of the centrifugal contactor (residence time) could potentially increase efficiencies. Several methods are available to accomplish this including (1) increasing the size of the opening in the bottom of the rotor, resulting in a contactor which is partially pumping instead of fully pumping, (2) decreasing the number of vanes in the contactor, (3) increasing the vane height, or (4) adding vanes on the rotor and baffles on the housing of the contactor. The low efficiency results obtained stress the importance of proper design of

  12. Structural Controllability of Temporal Networks with a Single Switching Controller

    PubMed Central

    Yao, Peng; Hou, Bao-Yu; Pan, Yu-Jian; Li, Xiang

    2017-01-01

    Temporal network, whose topology evolves with time, is an important class of complex networks. Temporal trees of a temporal network describe the necessary edges sustaining the network as well as their active time points. By a switching controller which properly selects its location with time, temporal trees are used to improve the controllability of the network. Therefore, more nodes are controlled within the limited time. Several switching strategies to efficiently select the location of the controller are designed, which are verified with synthetic and empirical temporal networks to achieve better control performance. PMID:28107538

  13. Structural Controllability of Temporal Networks with a Single Switching Controller.

    PubMed

    Yao, Peng; Hou, Bao-Yu; Pan, Yu-Jian; Li, Xiang

    2017-01-01

    Temporal network, whose topology evolves with time, is an important class of complex networks. Temporal trees of a temporal network describe the necessary edges sustaining the network as well as their active time points. By a switching controller which properly selects its location with time, temporal trees are used to improve the controllability of the network. Therefore, more nodes are controlled within the limited time. Several switching strategies to efficiently select the location of the controller are designed, which are verified with synthetic and empirical temporal networks to achieve better control performance.

  14. Compact, Single-Stage MMIC InP HEMT Amplifier

    NASA Technical Reports Server (NTRS)

    Pukala, David; Samoska, Lorene; Fung, King Man; Gaier, Todd; Deal, W. R.; Mei, Gerry; Radisic, Vesna; Lai, Richard

    2008-01-01

    A monolithic micro - wave integrated-circuit (MMIC) singlestage amplifier containing an InP-based high-electron-mobility transistor (HEMT) plus coplanar-waveguide (CPW) transmission lines for impedance matching and input and output coupling, all in a highly miniaturized layout as needed for high performance at operating frequencies of hundreds of gigahertz is described.

  15. Active vibration control of a single-stage spur gearbox

    NASA Astrophysics Data System (ADS)

    Dogruer, C. U.; Pirsoltan, Abbas K.

    2017-02-01

    The dynamic transmission error between driving and driven gears of a gear mechanism with torsional mode is induced by periodic time-varying mesh stiffness. In this study, to minimize the adverse effect of this time-varying mesh stiffness, a nonlinear controller which adjusts the torque acting on the driving gear is proposed. The basic approach is to modulate the input torque such that it compensates the periodic change in mesh stiffness. It is assumed that gears are assembled with high precision and gearbox is analyzed by a finite element software to calculate the mesh stiffness curve. Thus, change in the mesh stiffness, which is inherently nonlinear, can be predicted and canceled by a feed-forward loop. Then, remaining linear dynamics is controlled by pole placement techniques. Under these premises, it is claimed that any acceleration and velocity profile of the input shaft can be tracked accurately. Thereby, dynamic transmission error is kept to a minimum possible value and a spur gearbox, which does not emit much noise and vibration, is designed.

  16. A small, single stage orifice pulse tube cryocooler demonstration

    NASA Technical Reports Server (NTRS)

    Hendricks, John B.

    1990-01-01

    This final report summarizes and presents the analytical and experimental progress in the present effort. The principal objective of this effort was the demonstration of a 0.25 Watt, 80 Kelvin orifice pulse tube refrigerator. The experimental apparatus is described. The design of a partially optimized pulse tube refrigerator is included. The refrigerator demonstrates an ultimate temperature of 77 K, has a projected cooling power of 0.18 Watts at 80 K, and has a measured cooling power of 1 Watt at 97 K, with an electrical efficiency of 250 Watts/Watt, much better than previous pulse tube refrigerators. A model of the pulse tube refrigerator that provides estimates of pressure ratio and mass flow within the pulse tube refrigerator, based on component physical characteristics is included. A model of a pulse tube operation based on generalized analysis which is adequate to support local optimization of existing designs is included. A model of regenerator performance based on an analogy to counterflow heat exchangers is included.

  17. Single switch as a driver of two-repetition-rate lasers

    NASA Astrophysics Data System (ADS)

    Biswas, D. J.; Nilaya, J. P.; Chatterjee, U. K.

    1997-02-01

    Generation of two synchronized high-voltage discharges at a 200-Hz repetition rate by rotating a suitably configured circular dielectric plate between two pairs of spark gap electrodes is reported. The delay between the discharges could be varied from less than a microsecond to more than a millisecond by locating the electrodes of the spark gaps judiciously with respect to the passing holes of the dielectric plate. The performance of the device has been tested by switching a total of 2.5 kW power on two identical dummy loads resembling a typical TE laser in terms of resistance. Operation of the switch in the triggered mode has been achieved by use of an optical sensor. The test on a real TEA CO2 laser load was limited to a 50-Hz repetition rate. Inadequate cooling of the laser gas mixture and the accumulation of discharge products led to arcing beyond this pulse repetition frequency.

  18. Single-stage separation and esterification of cation salt carboxylates using electrodeionization

    DOEpatents

    Lin, YuPo J.; Henry, Michael; Hestekin, Jamie; Snyder, Seth W.; St. Martin, Edward J.

    2006-11-28

    A method of and apparatus for continuously making an organic ester from a lower alcohol and an organic acid is disclosed. An organic acid or salt is introduced or produced in an electrode ionization (EDI) stack with a plurality of reaction chambers each formed from a porous solid ion exchange resin wafer interleaved between anion exchange membranes or an anion exchange membrane and a cation exchange membrane or an anion exchange membrane and a bipolar exchange membranes. At least some reaction chambers are esterification chambers and/or bioreactor chambers and/or chambers containing an organic acid or salt. A lower alcohol in the esterification chamber reacts with an anion to form an organic ester and water with at least some of the water splitting with the ions leaving the chamber to drive the reaction.

  19. Plant growth and elemental uptake by floating vegetation on a single stage swine wastewater lagoon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods are needed for utilizing nutrients contained within animal wastewater lagoons. One potential method for removing nutrients is to have vegetation growing on the lagoon. A study was conducted from 2005-2008 to determine the feasibility of growing vegetation on floating platforms on a single ...

  20. Conditions of Core Formation in the Early Earth: Single Stage or Heterogeneous Accretion?

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2010-01-01

    Since approx.1990 high pressure and temperature (PT) experiments on metal-silicate systems have showed that partition coefficients [D(met/sil)] for siderophile (iron-loving) elements are much different than those measured at low PT conditions [1,2]. The high PT data have been used to argue for a magma ocean during growth of the early Earth [3,4]. In the ensuing decades there have been hundreds of new experiments carried out and published on a wide range of siderophile elements (> 80 experiments published for Ni, Co, Mo, W, P, Mn, V, Cr, Ga, Cu and Pd). At the same time several different models have been advanced to explain the siderophile elements in Earth's mantle: a) shallow depth magma ocean 25-30 GPa [3,5]; b) deep magma ocean; up to 50 GPa [6,7], and c) early reduced and later oxidized magma ocean [8,9]. Some studies have drawn conclusions based on a small subset of siderophile elements, or a set of elements that provides little leverage on the big picture (like slightly siderophile elements), and no single study has attempted to quantitatively explain more than 5 elements at a time. The purpose of this abstract is to identify issues that have lead to a difference in interpretation, and to present updated predictive expressions based on new experimental data. The resulting expressions will be applied to the siderophile element depletions in Earth's upper mantle.

  1. Hydrogen production from sugar industry wastes using single-stage photofermentation.

    PubMed

    Keskin, Tugba; Hallenbeck, Patrick C

    2012-05-01

    Beet molasses and black strap are two major waste streams of the sugar industry. They both contain high amounts of sucrose, making them suitable substrates for biological hydrogen production. Photofermentation, usually used to convert organic acids to hydrogen, has the potential capacity to effectively use a variety of feed stocks, including sugars. A comparative study on photofermentative biohydrogen production from beet molasses, black strap, and sucrose was conducted. With yields of 10.5 mol H(2)/mol sucrose for beet molasses (1g/l sugar); 8 mol H(2)/mol sucrose for black strap (1g/l sugar) and 14 mol H(2)/mol sucrose for pure sucrose, a one stage photofermentation system appears promising as an alternative to two-stage systems given the potential savings in energy input and operational costs.

  2. A Comparative Analysis of Single-Stage-To-Orbit Rocket and Air-Breathing Vehicles

    DTIC Science & Technology

    2006-06-01

    Weight Ratio TBCC ............................................ Turbine-Based Combined-Cycle TPS...spacecraft and possibly allow for SSTO vehicles with sizable payloads. After substantial design and wind tunnel testing , the Hyper-X program peaked with...the successful testing of two unpiloted vehicles. Powered by NASA-developed hydrogen scramjets, the X-43A craft set the world speed record for

  3. Single Stage Silicone Border Molded Closed Mouth Impression Technique-Part II.

    PubMed

    Solomon, E G R

    2011-09-01

    Functioning of a complete denture depends to a great extent on the impression technique. Several impression techniques have been described in the literature since the turn of this century when Greene [Clinical courses in dental prothesis, 1916] brothers introduced the first scientific system of recording dental impression. Advocates of each technique have their own claim of superiority over the other. The introduction of elastomeric impression materials [Skinner and Cooper, J Am Dent Assoc 51:523-536, 1955] has made possible new techniques of recording impression for complete denture construction. These rubber like materials are of two types; one has a polysulfide base and is popularily known as polysulfide rubber (Thiokol and Mercaptan). The other variety has a silicone base known as silicone rubber or silicone elastomer. Silicone elastomers are available in four different consistencies; a thin easy flowing light bodied material,a creamy medium bodied material, a highly viscous heavy bodied material and a kneadable putty material. This paper describes an active closed mouth impression technique with one stage border molding using putty silicone material as a substitute for low fusing compound.

  4. Study of SSIN (Single Stage Interconnection Networks) Parallel Processing Interconnection Networks

    DTIC Science & Technology

    1988-10-31

    Processing Networks,----_ 𔄃 ABSTRACT (Continue on reverse if necessary and identify by bloc;umr.ber) The increase in dynamic average path length ( DAPL ...increase in dynamic average path length ( DAPL ) with network size is moderate while it is significantly less than log 2N , the number of stages needed in

  5. A Single-Stage Approach to Learning Phonological Categories: Insights from Inuktitut

    ERIC Educational Resources Information Center

    Dillon, Brian; Dunbar, Ewan; Idsardi, William

    2013-01-01

    To acquire one's native phonological system, language-specific phonological categories and relationships must be extracted from the input. The acquisition of the categories and relationships has each in its own right been the focus of intense research. However, it is remarkable that research on the acquisition of categories and the relations…

  6. Lockheed Martin Skunk Works Single Stage to Orbit/Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Lockheed Martin Skunk Works has compiled an Annual Performance Report of the X-33/RLV Program. This report consists of individual reports from all industry team members, as well as NASA team centers. This portion of the report is comprised of a status report of Lockheed Martin's contribution to the program. The following is a summary of the Lockheed Martin Centers involved and work reviewed under their portion of the agreement: (1) Lockheed Martin Skunk Works - Vehicle Development, Operations Development, X-33 and RLV Systems Engineering, Manufacturing, Ground Operations, Reliability, Maintainability/Testability, Supportability, & Special Analysis Team, and X-33 Flight Assurance; (2) Lockheed Martin Technical Operations - Launch Support Systems, Ground Support Equipment, Flight Test Operations, and RLV Operations Development Support; (3) Lockheed Martin Space Operations - TAEM and A/L Guidance and Flight Control Design, Evaluation of Vehicle Configuration, TAEM and A/L Dispersion Analysis, Modeling and Simulations, Frequency Domain Analysis, Verification and Validation Activities, and Ancillary Support; (4) Lockheed Martin Astronautics-Denver - Systems Engineering, X-33 Development; (5) Sanders - A Lockheed Martin Company - Vehicle Health Management Subsystem Progress, GSS Progress; and (6) Lockheed Martin Michoud Space Systems - X-33 Liquid Oxygen (LOX) Tank, Key Challenges, Lessons Learned, X-33/RLV Composite Technology, Reusable Cyrogenic Insulation (RCI) and Vehicle Health Monitoring, Main Propulsion Systems (MPS), Structural Testing, X-33 System Integration and Analysis, and Cyrogenic Systems Operations.

  7. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor

    SciTech Connect

    Mahesh Iyer; Shwetha Ramkumar; Liang-Shih Fan

    2006-03-31

    Hydrogen production from coal gasification can be enhanced by driving the equilibrium limited Water Gas Shift reaction forward by incessantly removing the CO{sub 2} by-product via the carbonation of calcium oxide. This project uses the high-reactivity mesoporous precipitated calcium carbonate sorbent for removing the CO{sub 2} product to enhance H{sub 2} production. Preliminary experiments demonstrate the show the superior performance of the PCC sorbent over other naturally occurring calcium sorbents. It was observed that the CO{sub 2} released during the in-situ calcination causes the deactivation of the iron oxide WGS catalyst by changing the active phase of the catalyst from magnetite (F{sub 3}O{sub 4}). Detailed understanding of the iron oxide phase diagram helped in developing a catalyst pretreatment procedure using a H{sub 2}/H{sub 2}O system. Intermediate catalyst pretreatment helps prevent its deactivation by reducing the catalyst back to its active magnetite (Fe{sub 3}O{sub 4}) form. Multicyclic runs which consist of combined WGS/carbonation reaction followed by in-situ calcination with a subsequent catalyst pretreatment procedure sustains the catalytic activity and prevents deactivation. The water gas shift reaction was studied at different temperatures, different steam to carbon monoxide ratios (S/C) 3:1, 2:1, 1:1 and different total pressures ranging from 0-300 psig. The CO conversion was found to have an optimal value with increasing pressure, S/C ratio and temperatures. The combined water gas shift and carbonation reaction was investigated at 650 C, S/C ratio of 3:1and at different pressures of 0-300 psig.

  8. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage

    SciTech Connect

    Mahesh Iyer; Shwetha Ramkumar; Liang-Shih Fan

    2006-09-30

    Enhancement in the production of high purity hydrogen from fuel gas, obtained from coal gasification, is limited by thermodynamics of the Water Gas Shift Reaction. However, this constraint can be overcome by concurrent water-gas shift (WGS) and carbonation reactions to enhance H{sub 2} production by incessantly driving the equilibrium-limited WGS reaction forward and in-situ removing the CO2 product from the gas mixture. The spent sorbent is then regenerated by calcining it to produce a pure stream of CO{sub 2} and CaO which can be reused. However while performing the cyclic carbonation and calcination it was observed that the CO{sub 2} released during the in-situ calcination causes the deactivation of the iron oxide WGS catalyst. Detailed understanding of the iron oxide phase diagram helped in developing a catalyst pretreatment procedure using a H{sub 2}/H{sub 2}O system to convert the deactivated catalyst back to its active magnetite (Fe{sub 3}O{sub 4}) form. The water gas shift reaction was studied at different temperatures, different steam to carbon monoxide ratios (S/C) 3:1, 2:1, 1:1 and different total pressures ranging from 0-300 psig. The combined water gas shift and carbonation reaction was investigated at temperatures ranging from 600-700C, S/C ratio of 3:1 to 1:1 and at different pressures of 0-300 psig and the calcium looping process was found to produce high purity hydrogen with in-situ CO{sub 2} capture.

  9. Single-stage sub-Doppler cooling of alkaline earth atoms.

    PubMed

    Xu, Xinye; Loftus, Thomas H; Dunn, Josh W; Greene, Chris H; Hall, John L; Gallagher, Alan; Ye, Jun

    2003-05-16

    We report the first experimental study of sub-Doppler cooling in alkaline earth atoms (87Sr) enabled by the presence of nuclear spin-originated magnetic degeneracy in the atomic ground state. Sub-Doppler cooling in a sigma(+)-sigma(-) configuration is achieved despite the presence of multiple, closely spaced excited states. This surprising result is confirmed by an expanded multilevel theory of the radiative cooling force. Detailed investigations of system performance have shed new insights into (sigma(+)-sigma(-)) cooling dynamics and will likely play an important role in the future development of neutral atom-based optical frequency standards.

  10. Single Stage Rocket Technology (SSRT) DC-X Test Program Environmental Assessment

    DTIC Science & Technology

    1992-06-01

    explosive required to deploy the drogue chute, cut the reefing lines, and disconnect the parachutes after landing. The parachute system will not be...8.07 ] 6.78_ 6-66.,.l 6.14 Options ColCusions I. Near ’Rampart’ along Range Road 259 Options I and 3 appear to have a great advantage over 2. Near...to the extreme environmental conditions (Ref #26). At the nearby RATSCAT site, however, the bleached lesser earless lizard (Holbrookia maculata

  11. A Procedure for Structural Weight Estimation of Single Stage to Orbit Launch Vehicles (Interim User's Manual)

    NASA Technical Reports Server (NTRS)

    Martinovic, Zoran N.; Cerro, Jeffrey A.

    2002-01-01

    This is an interim user's manual for current procedures used in the Vehicle Analysis Branch at NASA Langley Research Center, Hampton, Virginia, for launch vehicle structural subsystem weight estimation based on finite element modeling and structural analysis. The process is intended to complement traditional methods of conceptual and early preliminary structural design such as the application of empirical weight estimation or application of classical engineering design equations and criteria on one dimensional "line" models. Functions of two commercially available software codes are coupled together. Vehicle modeling and analysis are done using SDRC/I-DEAS, and structural sizing is performed with the Collier Research Corp. HyperSizer program.

  12. Experimental investigation of the performance of a single-stage auto-cascade refrigerator

    NASA Astrophysics Data System (ADS)

    Rui, Shengjun; Zhang, Hua; Zhang, Bohan; Wen, Dongsheng

    2016-01-01

    Auto-refrigerating cascade (ARC) systems possess many advantages comparing with traditional cascade refrigeration systems. This work proposed a novel ternary mixture, R600a/R23/R14, for ARC systems for 190 K applications. The performance of the ternary mixture and the influences of compositional ratio and bypass scheme were assessed in a modified domestic cooler. The results demonstrated the feasibility of the proposed R600a/R23/R14 ternary mixture as an environmental benign alternative for ARC systems. The performance varied little within a certain composition range and a mass ratio of 35/30/35 for R600a/R23/R14 mixture was recommended. It also showed that the two bypass schemes, which can regulate more effectively the refrigerant compositions, were better than the conventional hot-gas bypass approach. The variation of the evaporator temperature suggested the presence of local dryout at high heat loads (i.e., larger than the design value), which should be carefully prevented.

  13. Water Gas Shift Reaction with A Single Stage Low Temperature Membrane Reactor

    SciTech Connect

    Ciora, Richard J; Liu, Paul KT

    2013-12-31

    Palladium membrane and Palladium membrane reactor were developed under this project for hydrogen separation and purification for fuel cell applications. A full-scale membrane reactor was designed, constructed and evaluated for the reformate produced from a commercial scale methanol reformer. In addition, the Pd membrane and module developed from this project was successfully evaluated in the field for hydrogen purification for commercial fuel cell applications.

  14. Sensitive single-stage PCR using custom-synthesized internal controls.

    PubMed

    Zimmermann, K; Rieger, M; Gross, P; Turecek, P L; Schwarz, H P

    2000-04-01

    A new approach for an internally controlled PCR was developed using a custom-synthesized oligonucleotide as the internal control. Three different PCR setups demonstrated the usefulness of this approach: (i) the addition of the respective internal control to samples containing ssDNA virus Parvo B19; (ii) the co-extraction of plasma samples and the respective internal control for the detection of the ssDNA virus TTV; and (iii) the addition of the respective internal control to a crude lysate of tail pieces for the genotyping of FVIII knockout mice, demonstrating that this approach is also applicable for dsDNA.

  15. Environmental Assessment: Single Stage Rocket Technology DC-X Test Program

    DTIC Science & Technology

    1992-06-01

    SDIO) Aeoessioa For Urt.IC,LoB d 0 Jo t if Leat 1 GO Av8iiebilItY Codee I~vll ndor Statement A per telecon Maj Martha Cenkci Dist j Special SDIO/IEA...Now Mfxl1o I Ar I I I I I I NEW MEXICO STATE ENDANGERED WILDLIFE bONA ANA QUATY 1 Q0e Gil a rati aul I &t monster No Toderma suspocWD livaceous...Arlington, VA 20360 106 Wynn Drive Huntsville, AL 35807 Unclafled June 1992 8-1 I a P I EnronenuaL Aneme SSRT Post Library Charlie Garcia Building 464

  16. Aerodynamic characteristics of two single-stage-to-orbit vehicles at Mach 20.3

    NASA Technical Reports Server (NTRS)

    Bernot, P. T.

    1977-01-01

    The hypersonic stability, control, and performance characteristics of two configurations have been determined. Each configuration had a 50 deg swept delta wing, a vertical tail, and a body flap. One model represented a control configured vehicle with a reduced level of longitudinal static stability; the other model was designed for a conventional level of stability. Data were obtained over an angle of attack range of 0 deg to 50 deg and included effects of component buildup. In addition, the effects of the vertical tail on the lateral directional characteristics were obtained.

  17. Longitudinal control effectiveness and entry dynamics of a single-stage-to-orbit vehicle

    NASA Technical Reports Server (NTRS)

    Vinh, N. X.; Lin, C. F.

    1982-01-01

    The classical theory of flight dynamics for airplane longitudinal stability and control analysis was extended to the case of a hypervelocity reentry vehicle. This includes the elements inherent in supersonic and hypersonic flight such as the influence of the Mach number on aerodynamic characteristics, and the effect of the reaction control system and aerodynamic controls on the trim condition through a wide range of speed. Phugoid motion and angle of attack oscillation for typical cases of cruising flight, ballistic entry, and glide entry are investigated. In each case, closed form solutions for the variations in altitude, flight path angle, speed and angle of attack are obtained. The solutions explicitly display the influence of different regions design parameters and trajectory variables on the stability of the motion.

  18. Single stage bilateral uniportal videothoracoscopic sympathicotomy for hyperhidrosis: can it be managed as an outpatient procedure?

    PubMed Central

    Erşen, Ezel; Kılıç, Burcu; Kara, Hasan Volkan; İşcan, Mehlika; Kaynak, Kamil; Turna, Akif

    2016-01-01

    Introduction The videothoracoscopic approach is minimally invasive with benefits that include less postoperative pain and shorter hospital stay. It is also a safe procedure which can be performed on an outpatient basis. Aim To determine whether videothoracoscopic sympathicotomy can be performed safely in most patients as an outpatient procedure. Material and methods Between July 2005 and October 2015, a total of 92 patients underwent bilateral and single port thoracoscopic sympathicotomy in our department on an outpatient basis. The level of sympathicotomy was T2 in 2 (2.2%) patients, T2 to T3 in 31 (33%) patients, T2 to T4 in 46 (50%) patients and T3 to T4 in 12 (13%) patients. Demographic data, length of postoperative stay, substitution index (SI), admission rate (AR) and readmission rate (RR), complications and patient satisfaction were reviewed retrospectively. Results Two (2.2%) patients suffered from chest pain, while 4 (4.3%) patients complained about pain at the port site. Mean discharge time after surgery was 5.1 h (range: 4–6 h), mean duration of hospital stay was 0.15 days (0–3 days) postoperatively and the mean operation time was 43.6 min (15–130 min). In 8 (8.6%) patients, pneumothorax was detected on postoperative chest X-ray, while 5 (5.4%) patients required chest tube drainage. Mild or moderate compensatory sweating developed in 32 (34.7%) patients. No recurrence was observed, and the satisfaction rate was 96.7%. Substitution index and admission rate were 91.3% and 11% respectively, while RR was 0%. Conclusions Bilateral video-assisted thoracoscopic sympathicotomy can be performed safely in most patients as an outpatient procedure. PMID:27458488

  19. Weight trends for a fully reusable advanced single-stage shuttle

    NASA Technical Reports Server (NTRS)

    Macconochie, I. O.; Lemessurier, R. W.

    1983-01-01

    The rate at which subsystem weights grow with vehicle gross weight is assessed and is shown to be critical to the efficiency of large Earth to orbit transports. The overall trend, however, is a reduction in the inerts as a percentage of gross weight as the vehicle size is increased. For this reason, the larger the vehicle, the greater the payload weight delivered per pound of vehicle manufactured. Other critical issues addressed include the effects of wing loading and wing size on wing weight, the effect of entry planform loading on thermal protection system weight, the impact of power demand on cooling system and prime power weight, and tank fineness ratio on insulation weight. The effects of body shape and various internal packaging arrangements on weight and balance are also discussed. The greatest impact on overall vehicle weight is body shape and internal packaging, and could account for weight savings of up to 30 percent in body structure. Other subsystems are important, but the savings are much smaller in relation to overall vehicle weight--individually less than one percent.

  20. Nontangent, Developed Contour Bulkheads for a Wing-Body Single Stage Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Lepsch, Roger A., Jr.

    1999-01-01

    Dry weights for a SSTO vehicle which incorporates nontangent, developed contour bulkheads are estimated and compared to a baseline vehicle with 1.41 4 aspect ratio ellipsoidal bulkheads, Weights, volumes and heights of optimized bulkhead designs are computed using a preliminary design bulkhead analysis code. The dry weight of a vehicle which incorporates the optimized bulkheads is predicted using a vehicle weights and sizing code. Two optimization approaches are employed. A structural-level method, where the vehicle s three major bulkhead regions are optimized separately and then incorporated into a model for computation of the vehicle dry weight, predicts a reduction of 4365 Ib (2.2 percent) from the 200,679 Ib baseline vehicle dry weight. In the second, vehicle-level, approach, the vehicle dry weight is the objective function for the optimization. During the vehicle- level analysis, modified bulkhead designs are first analyzed, then incorporated into the weights model for computation of a dry weight. The optimizer simultaneously manipulates design variables for all three bulkheads to reduce the dry weight. The vehicle-level analysis predicts a dry weight reduction of 5129 Ib, a 2.6 percent reduction from the baseline value. These results suggest that nontangent, developed contour bulkheads may provide substantial weight savings for SSTO vehicles.

  1. Influence of temperature on the single-stage ATAD process predicted by a thermal equilibrium model.

    PubMed

    Cheng, Jiehong; Zhu, Jun; Kong, Feng; Zhang, Chunyong

    2015-06-01

    Autothermal thermophilic aerobic digestion (ATAD) is a promising biological process that will produce an effluent satisfying the Class A requirements on pathogen control and land application. The thermophilic temperature in an ATAD reactor is one of the critical factors that can affect the satisfactory operation of the ATAD process. This paper established a thermal equilibrium model to predict the effect of variables on the auto-rising temperature in an ATAD system. The reactors with volumes smaller than 10 m(3) could not achieve temperatures higher than 45 °C under ambient temperature of -5 °C. The results showed that for small reactors, the reactor volume played a key role in promoting auto-rising temperature in the winter. Thermophilic temperature achieved in small ATAD reactors did not entirely depend on the heat release from biological activities during degrading organic matters in sludges, but was related to the ambient temperature. The ratios of surface area-to-effective volume less than 2.0 had less impact on the auto-rising temperature of an ATAD reactor. The influence of ambient temperature on the auto-rising reactor temperature decreased with increasing reactor volumes. High oxygen transfer efficiency had a significant influence on the internal temperature rise in an ATAD system, indicating that improving the oxygen transfer efficiency of aeration devices was a key factor to achieve a higher removal rate of volatile solids (VS) during the ATAD process operation. Compared with aeration using cold air, hot air demonstrated a significant effect on maintaining the internal temperature (usually 4-5 °C higher).

  2. Damage tolerance of candidate thermoset composites for use on single stage to orbit vehicles

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Lance, D.; Hodge, A.

    1994-01-01

    Four fiber/resin systems were compared for resistance to damage and damage tolerance. One toughened epoxy and three toughened bismaleimide (BMI) resins were used, all with IM7 carbon fiber reinforcement. A statistical design of experiments technique was used to evaluate the effects of impact energy, specimen thickness, and impactor diameter on the damage area, as computed by C-scans, and residual compression-after-impact (CAI) strength. Results showed that two of the BMI systems sustained relatively large damage zones yet had an excellent retention of CAI strength.

  3. Single stage AC-DC converter for Galfenol-based micro-power energy harvesters

    NASA Astrophysics Data System (ADS)

    Cavaroc, Peyton; Curtis, Chandra; Naik, Suketu; Cooper, James

    2014-06-01

    Military based sensor systems are often hindered in operational deployment and/or other capabilities due to limitations in their energy storage elements. Typically operating from lithium based batteries, there is a finite amount of stored energy which the sensor can use to collect and transmit data. As a result, the sensors have reduced sensing and transmission rates. However, coupled with the latest advancements in energy harvesting, these sensors could potentially operate at standard sensing and transition rates as well as dramatically extend lifetimes. Working with the magnetostrictive material Galfenol, we demonstrate the production of enough energy to supplement and recharge a solid state battery thereby overcoming the deficiencies faced by unattended sensors. As with any vibration-based energy harvester, this solution produces an alternating current which needs to be rectified and boosted to a level conducive to recharge the storage element. This paper presents a power converter capable of efficiently converting an ultra-low AC voltage to a solid state charging voltage of 4.1VDC. While we are working with Galfenol transducers as our energy source, this converter may also be applied with any AC producing energy harvester, particularly at operating levels less than 2mW and 200mVAC.

  4. Optimization Strategies for Single-Stage, Multi-Stage and Continuous ADRs

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.

    2014-01-01

    Adiabatic Demagnetization Refrigerators (ADR) have many advantages that are prompting a resurgence in their use in spaceflight and laboratory applications. They are solid-state coolers capable of very high efficiency and very wide operating range. However, their low energy storage density translates to larger mass for a given cooling capacity than is possible with other refrigeration techniques. The interplay between refrigerant mass and other parameters such as magnetic field and heat transfer points in multi-stage ADRs gives rise to a wide parameter space for optimization. This paper first presents optimization strategies for single ADR stages, focusing primarily on obtaining the largest cooling capacity per stage mass, then discusses the optimization of multi-stage and continuous ADRs in the context of the coordinated heat transfer that must occur between stages. The goal for the latter is usually to obtain the largest cooling power per mass or volume, but there can also be many secondary objectives, such as limiting instantaneous heat rejection rates and producing intermediate temperatures for cooling of other instrument components.

  5. Minced Tissue in Compressed Collagen: A Cell-containing Biotransplant for Single-staged Reconstructive Repair.

    PubMed

    Chamorro, Clara I; Zeiai, Said; Reinfeldt Engberg, Gisela; Fossum, Magdalena

    2016-02-24

    Conventional techniques for cell expansion and transplantation of autologous cells for tissue engineering purposes can take place in specially equipped human cell culture facilities. These methods include isolation of cells in single cell suspension and several laborious and time-consuming events before transplantation back to the patient. Previous studies suggest that the body itself could be used as a bioreactor for cell expansion and regeneration of tissue in order to minimize ex vivo manipulations of tissues and cells before transplanting to the patient. The aim of this study was to demonstrate a method for tissue harvesting, isolation of continuous epithelium, mincing of the epithelium into small pieces and incorporating them into a three-layered biomaterial. The three-layered biomaterial then served as a delivery vehicle, to allow surgical handling, exchange of nutrition across the transplant, and a controlled degradation. The biomaterial consisted of two outer layers of collagen and a core of a mechanically stable and slowly degradable polymer. The minced epithelium was incorporated into one of the collagen layers before transplantation. By mincing the epithelial tissue into small pieces, the pieces could be spread and thereby the propagation of cells was stimulated. After the initial take of the transplants, cell expansion and reorganization would take place and extracellular matrix mature to allow ingrowth of capillaries and nerves and further maturation of the extracellular matrix. The technique minimizes ex vivo manipulations and allow cell harvesting, preparation of autograft, and transplantation to the patient as a simple one-stage intervention. In the future, tissue expansion could be initiated around a 3D mold inside the body itself, according to the specific needs of the patient. Additionally, the technique could be performed in an ordinary surgical setting without the need for sophisticated cell culturing facilities.

  6. Impact Characteristics of Candidate Materials for Single-Stage-to-Orbit (SSTO) Technology

    NASA Technical Reports Server (NTRS)

    Nettles, Alan

    1995-01-01

    Four fiber/resin systems were compared for resistance to damage and damage tolerance. One toughened epoxy and three toughened bismaleimide (BMI) resins were used., all with IM7 carbon fiber reinforcement. A statistical design of experiments technique was used to evaluate the effects of impact energy, specimen thickness and tup diameter on the damage area and residual compression-after-impact (CAI) strength. Results showed that two of the BMI systems sustained relatively large damage areas yet had an excellent retention of CAI strength.

  7. ENHANCED HYDROGEN PRODUCTION INTEGRATED WITH CO2 SEPARATION IN A SINGLE-STAGE REACTOR

    SciTech Connect

    Himanshu Gupta; Mahesh Iyer; Bartev Sakadjian; Liang-Shih Fan

    2005-04-01

    Hydrogen production by the water gas shift reaction (WGSR) is equilibrium limited due to thermodynamic constrains. However, this can be overcome by continuously removing the product CO{sub 2}, thereby driving the WGSR in the forward direction to enhance hydrogen production. This project aims at using a high reactivity, mesoporous calcium based sorbent (PCC-CaO) for removing CO{sub 2} using reactive separation scheme. Preliminary results have shown that PCC-CaO dominates in its performance over naturally occurring limestone towards enhanced hydrogen production. However, maintenance of high reactivity of the sorbent over several reaction-regeneration cycles warrants effective regeneration methods. We have identified sub-atmospheric calcination (vacuum) as vital regeneration technique that helps preserve the sorbent morphology. Sub-atmospheric calcination studies reveal the significance of vacuum level, diluent gas flow rate, thermal properties of diluent gas, and sorbent loading on the kinetics of calcination and the morphology of the resultant CaO sorbent. Steam, which can be easily separated from CO{sub 2}, has been envisioned as a potential diluent gas due to its better thermal properties resulting in effective heat transfer. A novel multi-fixed bed reactor was designed which isolates the catalyst bed from the sorbent bed during the calcination step. This should prevent any potential catalyst deactivation due to oxidation by CO{sub 2} during the regeneration phase.

  8. Single-stage management of a neglected radial club hand deformity in an adult

    PubMed Central

    Vaishya, Raju; Agarwal, Amit Kumar; Vijay, Vipul; Mancha, David Ghorau

    2015-01-01

    Radial club hand is an intercalary congenital deformity involving the forearm, wrist and hand. A congenital absence of radius (partial or complete) and ulnar bowing are classical radiographic abnormalities seen in this condition. This deformity is usually treated surgically in infants and young children but the management of this problem in an adult is complex and challenging. We present a neglected case of an adult with severe and rigid deformity that was successfully treated by one-stage correction involving ulnar osteotomy and wrist arthrodesis, simultaneously. PMID:25670786

  9. Compact Single-Stage Fuel Processor for PEM Fuel Cells. Final report

    SciTech Connect

    Rhine, Wendell E.; Ye, Neng

    2000-01-01

    Based on observations during the steam reforming of ethanol, the authors conclude that carbon was forming in the steam generator due to the thermal decomposition of ethanol. Since ethanol is being thermally decomposed, they were operating the steam generator at too high of a temperature. The thermal degradation of ethanol was confirmed by using a GC with a flame ionization detector. They observed trace amounts of additional hydrocarbons other than methane in the effluent which we assume maybe ethane and ethylene. We identified the operating conditions that allowed us to steam reform ethanol for an acceptable amount of time. These conditions were a steam temperature of 200 C and a wall temperature of 400 C at the center of the reactor. The calculated ratios of CO{sub 2}/CO indicate that we can lower the potential for carbon deposition from the Boudouard further by reducing the pressure.

  10. PERFACT procedure to treat supralevator fistula-in-ano: A novel single stage sphincter sparing procedure

    PubMed Central

    Garg, Pankaj

    2016-01-01

    AIM: To prospectively perform the PERFACT procedure in supralevator anal fistula/abscess. METHODS: Magnetic resonance imaging was done preoperatively in all the patients. Proximal cauterization around the internal opening, emptying regularly of fistula tracts and curettage of tracts (PERFACT) was done in all patients with supralevator fistula or abscess. All types of anal fistula and/or abscess with supralevator extension, whether intersphincteric or transsphincteric, were included in the study. The internal opening along with the adjacent mucosa was electrocauterized. The resulting wound was left open to heal by secondary intention so as to heal (close) the internal opening by granulation tissue. The supralevator tract/abscess was drained and thoroughly curetted. It was regularly cleaned and kept empty in the postoperative period. The primary outcome parameter was complete fistula healing. The secondary outcome parameters were return to work and change in incontinence scores (Vaizey objective scoring system) assessed preoperatively and at 3 mo after surgery. RESULTS: Seventeen patients were prospectively enrolled and followed for a median of 13 mo (range 5-21 mo). Mean age was 41.1 ± 13.4 years, M:F - 15:2. Fourteen (82.4%) had a recurrent fistula, 8 (47.1%) had an associated abscess, 14 (82.4%) had multiple tracts and 5 (29.4%) had horseshoe fistulae. Infralevator part of fistula was intersphincteric in 4 and transsphincteric in 13 patients. Two patients were excluded. Eleven out of fifteen (73.3%) were cured and 26.7% (4/15) had a recurrence. Two patients with recurrence were reoperated on with the same procedure and one was cured. Thus, the overall healing rate was 80% (12/15). All the patients could resume normal work within 48 h of surgery. There was no deterioration in incontinence scores (Vaizey objective scoring system). This is the largest series of supralevator fistula-in-ano (SLF) published to date. CONCLUSION: PERFACT procedure is an effective single step sphincter saving procedure to treat SLF with minimal risk of incontinence. PMID:27152140

  11. Optimization strategies for single-stage, multi-stage and continuous ADRs

    NASA Astrophysics Data System (ADS)

    Shirron, Peter

    2014-07-01

    Adiabatic Demagnetization Refrigerators (ADR) have many advantages that are prompting a resurgence in their use in spaceflight and laboratory applications. They are solid-state coolers capable of very high efficiency and very wide operating range. However, their low energy storage density translates to larger mass for a given cooling capacity than is possible with other refrigeration techniques. The interplay between refrigerant mass and other parameters such as magnetic field and heat transfer points in multi-stage ADRs gives rise to a wide parameter space for optimization. This paper first presents optimization strategies for single ADR stages, focusing primarily on obtaining the largest cooling capacity per stage mass, then discusses the optimization of multi-stage and continuous ADRs in the context of the coordinated heat transfer that must occur between stages. The goal for the latter is usually to obtain the largest cooling power per mass or volume, but there can also be many secondary objectives, such as limiting instantaneous heat rejection rates and producing intermediate temperatures for cooling of other instrument components.

  12. Low vibration laboratory with a single-stage vibration isolation for microscopy applications

    NASA Astrophysics Data System (ADS)

    Voigtländer, Bert; Coenen, Peter; Cherepanov, Vasily; Borgens, Peter; Duden, Thomas; Tautz, F. Stefan

    2017-02-01

    The construction and the vibrational performance of a low vibration laboratory for microscopy applications comprising a 100 ton floating foundation supported by passive pneumatic isolators (air springs), which rest themselves on a 200 ton solid base plate, are discussed. The optimization of the air spring system leads to a vibration level on the floating floor below that induced by an acceleration of 10 ng for most frequencies. Additional acoustic and electromagnetic isolation is accomplished by a room-in-room concept.

  13. Single-Stage, 3.4:1-Pressure-Ratio Aspirated Fan Developed and Demonstrated

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.

    2004-01-01

    Researchers are constantly pursuing technologies that will increase the performance of gas turbine engines. The aspirated compressor concept discussed here would allow the compression system to perform its task with about one-half of the compressor blades. To accomplish this, the researchers applied boundary layer control to the blades, casing, and hub. This method of boundary layer control consisted of removing small amounts of air from the main flow path at critical areas of the compressor. This bleed air could be used by other systems such as engine cooling or could be re-injected into lower pressure areas that require air for enhanced performance. This effort was initiated by the Massachusetts Institute of Technology (MIT) in response to a solicitation from the Defense Advanced Research Projects Agency (DARPA) who sought to advance research in flow control technology. The NASA Glenn Research Center partnered with MIT (principal investigator), Honeywell Aircraft Engines (cycle analysis, structural analysis, and mechanical design), and Pratt & Whitney (cycle analysis and aero-analysis) to conceptualize, design, analyze, build, and test the aspirated fan stage. The aero-design and aero-analysis of this fan stage were jointly executed by MIT and Glenn to minimize the amount of bleed flow needed and to maintain the highest efficiency possible (ref. 1). Mechanical design issues were complicated by the need to have a shrouded rotor with hollow blades, with rotor stress levels beyond the capabilities of titanium. The high stress issues were addressed by designing a shroud that was filament wound with a carbon fiber/epoxy matrix, resulting in an assembly that was strong enough to handle the high stresses. Both the rotor (preceding photographs) and stator (following photograph) were fabricated in two halves and then bolted together at the hub and tip, permitting the bleed passages to be machined into each half before assembly.

  14. Single-stage experimental evaluation of compressor blading with slots and vortex generators, part 5

    NASA Technical Reports Server (NTRS)

    Brent, J. A.

    1972-01-01

    An experimental investigation was conducted to determine the extent that slots and vortex generators can increase the efficiency and stable operating range of highly loaded compressor stages. With slots in the rotor and stator, the stage performance both with and without vortex generators was inferior to that achieved with the unslotted blading. However, with vortex generators, stator slots, and an unslotted rotor, the stable operating range increased 25% and the stage peak efficiency increased 2.1% over the values achieved with the unslotted rotor and stator without vortex generators, at design equivalent rotor speed.

  15. Optimization of a single-stage double-suction centrifugal pump

    NASA Astrophysics Data System (ADS)

    Škerlavaj, A.; Morgut, M.; Jošt, D.; Nobile, E.

    2017-01-01

    In this study, the objective of the optimization of a double-suction pump is the maximization of its hydraulic efficiency. The optimization is performed, by means of the modeFRONTIER optimization platform, in steps. At first, by means of a DOE (Design of Experiments) strategy, the design space is explored, using a parameterized CAD representation of the pump. Suitable metamodels (surrogates or Response Surfaces), which represent an economical alternative to the more expensive 3D CFD model, are built and tested. Among different metamodels, the evolutionary design, radial basis function and the stepwise regression models seem to be the most promising ones. Finally, the stepwise regression model, trained on a set of 200 designs and constructed with only five the most influential input design parameters, was chosen as a potentially applicable metamodel.

  16. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor

    SciTech Connect

    Shwetha Ramkumar; Mahesh Iyer; Danny Wong; Himanshu Gupta; Bartev Sakadjian; Liang-Lhih Fan

    2008-09-30

    High purity hydrogen is commercially produced from syngas by the Water Gas Shift Reaction (WGSR) in high and low temperature shift reactors using iron oxide and copper catalysts respectively. However, the WGSR is thermodynamically limited at high temperatures towards hydrogen production necessitating excess steam addition and catalytic operation. In the calcium looping process, the equilibrium limited WGSR is driven forward by the incessant removal of CO{sub 2} by-product through the carbonation of calcium oxide. At high pressures, this process obviates the need for a catalyst and excess steam requirement, thereby removing the costs related to the procurement and deactivation of the catalyst and steam generation. Thermodynamic analysis for the combined WGS and carbonation reaction was conducted. The combined WGS and carbonation reaction was investigated at varying pressures, temperatures and S/C ratios using a bench scale reactor system. It was found that the purity of hydrogen increases with the increase in pressure and at a pressure of 300 psig, almost 100% hydrogen is produced. It was also found that at high pressures, high purity hydrogen can be produced using stoichiometric quantities of steam. On comparing the catalytic and non catalytic modes of operation in the presence of calcium oxide, it was found that there was no difference in the purity of hydrogen produced at elevated pressures. Multicyclic reaction and regeneration experiments were also conducted and it was found that the purity of hydrogen remains almost constant after a few cycles.

  17. Frenectomy with semilunar coronally repositioned flap: A single stage approach - simple solution for complex problem.

    PubMed

    Deshmukh, Jeevanand; Khatri, Richa; Fernandes, Bennete; Kulkarni, Vinaya Kumar; Singh, Shubhra

    2015-01-01

    Gingival recession is defined as the displacement of gingival margin apical to cementoenamel junction. Aberrant frenum attachment can contribute to the progression of recession by generating tension on the marginal tissues. Treating such defects is a two stage procedure-frenectomy and recession coverage procedure. New techniques are developed to increase the predictability, reduce patient discomfort and number of surgical sites. Also, these techniques try to satisfy patients esthetic demands, which include the final colour and tissue blend of the covered area. In this case report, we present a method for coronally repositioning gingiva for root coverage over the maxillary central incisors while simultaneously performing a frenectomy, thus being clinically advantageous compared to two-stage technique.

  18. Frenectomy with semilunar coronally repositioned flap: A single stage approach - simple solution for complex problem

    PubMed Central

    Deshmukh, Jeevanand; Khatri, Richa; Fernandes, Bennete; Kulkarni, Vinaya Kumar; Singh, Shubhra

    2015-01-01

    Gingival recession is defined as the displacement of gingival margin apical to cementoenamel junction. Aberrant frenum attachment can contribute to the progression of recession by generating tension on the marginal tissues. Treating such defects is a two stage procedure-frenectomy and recession coverage procedure. New techniques are developed to increase the predictability, reduce patient discomfort and number of surgical sites. Also, these techniques try to satisfy patients esthetic demands, which include the final colour and tissue blend of the covered area. In this case report, we present a method for coronally repositioning gingiva for root coverage over the maxillary central incisors while simultaneously performing a frenectomy, thus being clinically advantageous compared to two-stage technique. PMID:26392698

  19. Synchronous development of Eimeria tenella in chicken caeca and utility of laser microdissection for purification of single stage schizont RNA.

    PubMed

    Matsubayashi, M; Hatta, T; Miyoshi, T; Anisuzzaman; Alim, M A; Yamaji, K; Shimura, K; Isobe, T; Tsuji, N

    2012-10-01

    Eimeria tenella is recognized worldwide as a significant pathogen in the poultry industry. However, a lack of methods for isolating developing schizonts has hindered the use of transcriptome analyses to discover novel and developmentally regulated genes. In the present study, we characterized the long-term successive development of E. tenella in infected chicken caeca and assessed the utility of laser microdissection (LMD) for the isolation of schizont RNA. Developmental stages, including those of the first, second, and third-generation schizonts and gametocytes, were synchronous. Using LMD, only the mature second-generation schizonts were successfully excised from the lamina propria, and non-degraded RNA was purified from the schizonts. E. tenella-specific genes were amplified by reverse transcription polymerase chain reaction (RT-PCR). These results augment our understanding of the E. tenella life cycle, and reveal LMD as a potentially useful tool for gene expression analyses of the intracellular stages of E. tenella.

  20. Experimental Studies on a Single Stage Stirling Type Pulse Tube Cryocooler Driven by Oil-Lubricated Compressor

    NASA Astrophysics Data System (ADS)

    Jia, Ren; Jianying, Hu; Ercang, Luo; Xiaotao, Wang

    2010-04-01

    Because lubricating oil for moving parts is not allowed to go into the pulse tube cryocooler, Stirling type pulse tube cryocoolers are generally driven by oil-free compressors although oil-lubricated compressors are much cheaper and facile. Recently, it was proposed that an acoustic transparent and oil blocking diaphragm could be employed to separate the compressor and the cryocooler. Thus, the cryocooler can be driven by oil-lubricated compressors. In this paper, a pulse tube cryocooler is designed to match a crankcase compressor. Although the efficiency of the crankcase compressor is lower compared with the oil-free linear compressor, the crankcase compressor can easily work at lower frequency which results in higher efficiency for the cryocooler. So the relative high performance of the whole system can be maintained. In this system, the cryocooler delivers 28.5 W of cooling at 80 K with 680 W of electrical input power and operates at 15 Hz. The corresponding Carnot efficiency is 11.52%.

  1. Two-stage vs single-stage thermophilic anaerobic digestion: comparison of energy production and biodegradation efficiencies.

    PubMed

    Schievano, Andrea; Tenca, Alberto; Scaglia, Barbara; Merlino, Giuseppe; Rizzi, Aurora; Daffonchio, Daniele; Oberti, Roberto; Adani, Fabrizio

    2012-08-07

    Two-stage anaerobic digestion (AD) for integrated biohydrogen and biomethane production from organic materials has been reported to promise higher process efficiency and energy recoveries as compared to traditional one-stage AD. This work presents a comparison between two-stage (reactors R1 and R2) and one-stage (reactor R3) AD systems, fed with identical organic substrates and loading rates, focusing the attention on chemical and microbiological aspects. Contrary to previous experiences, no significant differences in overall energy recovery were found for the two-stage and one-stage AD systems. However, an accumulation in R2 of undegraded intermediate metabolites (volatile fatty acids, ketones, amines, amino acids, and phenols) was observed by GC-MS. These compounds were thought to be both cause and effect of this partial inefficiency of the two-stage system, as confirmed also by the less diverse, and thereby less efficient, population of fermentative bacteria observed (by PCR-DGGE) in R2. The extreme environment of R1 (low pH and high metabolites concentrations) probably acted as selector of metabolic pathways, favoring H(2)-producing bacteria able to degrade such a wide variability of intermediate metabolites while limiting other strains. Therefore, if two-stage AD may potentially lead to higher energy recoveries, further efforts should be directed to ensure process efficiency and stability.

  2. Inlet Development for a Rocket Based Combined Cycle, Single Stage to Orbit Vehicle Using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Trefny, C. J.; Steffen, C. J., Jr.

    1999-01-01

    Design and analysis of the inlet for a rocket based combined cycle engine is discussed. Computational fluid dynamics was used in both the design and subsequent analysis. Reynolds averaged Navier-Stokes simulations were performed using both perfect gas and real gas assumptions. An inlet design that operates over the required Mach number range from 0 to 12 was produced. Performance data for cycle analysis was post processed using a stream thrust averaging technique. A detailed performance database for cycle analysis is presented. The effect ot vehicle forebody compression on air capture is also examined.

  3. Studies of an extensively axisymmetric rocket based combined cycle (RBCC) engine powered single-stage-to-orbit (SSTO) vehicle

    SciTech Connect

    Foster, R.W.; Escher, W.J.D.; Robinson, J.W.

    1989-01-01

    The present comparative performance study has established that rocket-based combined cycle (RBCC) propulsion systems, when incorporated by essentially axisymmetric SSTO launch vehicle configurations whose conical forebody maximizes both capture-area ratio and total capture area, are capable of furnishing payload-delivery capabilities superior to those of most multistage, all-rocket launchers. Airbreathing thrust augmentation in the rocket-ejector mode of an RBCC powerplant is noted to make a major contribution to final payload capability, by comparison to nonair-augmented rocket engine propulsion systems. 16 refs.

  4. High Purity Hydrogen Production with In-Situ Carbon Dioxide and Sulfur Capture in a Single Stage Reactor

    SciTech Connect

    Nihar Phalak; Shwetha Ramkumar; Daniel Connell; Zhenchao Sun; Fu-Chen Yu; Niranjani Deshpande; Robert Statnick; Liang-Shih Fan

    2011-07-31

    Enhancement in the production of high purity hydrogen (H{sub 2}) from fuel gas, obtained from coal gasification, is limited by thermodynamics of the water gas shift (WGS) reaction. However, this constraint can be overcome by conducting the WGS in the presence of a CO{sub 2}-acceptor. The continuous removal of CO{sub 2} from the reaction mixture helps to drive the equilibrium-limited WGS reaction forward. Since calcium oxide (CaO) exhibits high CO{sub 2} capture capacity as compared to other sorbents, it is an ideal candidate for such a technique. The Calcium Looping Process (CLP) developed at The Ohio State University (OSU) utilizes the above concept to enable high purity H{sub 2} production from synthesis gas (syngas) derived from coal gasification. The CLP integrates the WGS reaction with insitu CO{sub 2}, sulfur and halide removal at high temperatures while eliminating the need for a WGS catalyst, thus reducing the overall footprint of the hydrogen production process. The CLP comprises three reactors - the carbonator, where the thermodynamic constraint of the WGS reaction is overcome by the constant removal of CO{sub 2} product and high purity H{sub 2} is produced with contaminant removal; the calciner, where the calcium sorbent is regenerated and a sequestration-ready CO{sub 2} stream is produced; and the hydrator, where the calcined sorbent is reactivated to improve its recyclability. As a part of this project, the CLP was extensively investigated by performing experiments at lab-, bench- and subpilot-scale setups. A comprehensive techno-economic analysis was also conducted to determine the feasibility of the CLP at commercial scale. This report provides a detailed account of all the results obtained during the project period.

  5. Analysis of efficiency characteristics of a single-stage turbine with downstream stators in terms of work and speed requirements

    NASA Technical Reports Server (NTRS)

    Wintucky, William T; Stewart, Warner L

    1957-01-01

    One-dimensional mean-section flow and blade specific losses proportional to average specific kinetic energy are assumed in the analysis. Range of the work-speed parameter lambda considered includes low to moderate blade speeds with high specific work outputs, where critical turbojet, turbopump, and accessory-drive turbines are encountered. A diffusion factor of 0.5 limits the loading on the downstream stators. Turbine efficiences considered are total or aerodynamic, rating, and static. Efficiences of velocity-diagram types at impulse and that corresponding to values of maximum efficiency are presented and compared to indicate in what range of lambda downstream stators are beneficial as well as the attending improvements in efficiency.

  6. Single-stage, low-noise, advanced technology fan. Volume 4: Fan aerodynamics. Section 1: Results and analysis

    NASA Technical Reports Server (NTRS)

    Sullivan, T. J.; Silverman, I.; Little, D. R.

    1977-01-01

    Test results at design speed show fan total pressure ratio, weight flow, and adiabatic efficiency to be 2.2, 2.9, and 1.8% lower than design goal values. The hybrid acoustic inlet (which utilizes a high throat Mach number and acoustic wall treatment for noise suppression) demonstrated total pressure recoveries of 98.9% and 98.2% at takeoff and approach. Exhaust duct pressure losses differed between the hardwall duct and treated duct with splitter by about 0.6% to 2.0% in terms of fan exit average total pressure (depending on operating condition). When the measured results were used to estimate pressure losses, a cruise sfc penalty of 0.68%, due to the acoustically treated duct, was projected.

  7. Studies of an extensively axisymmetric rocket based combined cycle (RBCC) engine powered single-stage-to-orbit (SSTO) vehicle

    NASA Technical Reports Server (NTRS)

    Foster, Richard W.; Escher, William J. D.; Robinson, John W.

    1989-01-01

    The present comparative performance study has established that rocket-based combined cycle (RBCC) propulsion systems, when incorporated by essentially axisymmetric SSTO launch vehicle configurations whose conical forebody maximizes both capture-area ratio and total capture area, are capable of furnishing payload-delivery capabilities superior to those of most multistage, all-rocket launchers. Airbreathing thrust augmentation in the rocket-ejector mode of an RBCC powerplant is noted to make a major contribution to final payload capability, by comparison to nonair-augmented rocket engine propulsion systems.

  8. Single stage evaluation of highly loaded high Mach number compressor stages. 6: Data and performance of cantilevered stator

    NASA Technical Reports Server (NTRS)

    Merrow, A. S.

    1972-01-01

    A compressor stage with a rotor tip speed of 1600 ft/sec was tested to evaluate its performance with a cantilevered stator and a rotating inner shroud beneath the stator. Both the rotor blades and the stator vanes were composed of multiple circular arc airfoil sections. Comparison of data taken during this test of the cantilevered stator and previous tests with the same compressor and airfoil geometry in a shroud stator configuration showed only slight differences in stage performance with no significant effect on overall efficiency. However, the severity of the stator wake near the rotating hub was decreased at all flows including the near surge condition. Stall and wise open discharge corrected weight flows were the same as for the shrouded stator configuration.

  9. Single-stage technogy for granulated foam glass production based on the composition of tripoli and technogical microsilica

    NASA Astrophysics Data System (ADS)

    Kazmina, O.; Volkova, A.; Vereschagin, V.; Rymanova, I.

    2016-09-01

    The possibility of foam glass production by means of one-stage technology based on the natural tripoli and technogenic silica is determined. 45 % sodium hydroxide solution is used for the synthesis of foam glass. The addition of microsilica as an extra component in an amount of 10 to 50 wt. % in batch component increases the strength of the obtained material to 4 MPa and reduces foaming temperature from 870 to 830 °C. The increased mechanical strength of the material is due to the residual quartz dissolution and cristobalite crystallization. The samples obtained from batch with 30 wt. % microsilica have maximum strength.

  10. Operating characteristics of a single-stage Stirling cryocooler capable of providing 700 W cooling power at 77 K

    NASA Astrophysics Data System (ADS)

    Xu, Ya; Sun, Daming; Qiao, Xin; Yu, Yan S. W.; Zhang, Ning; Zhang, Jie; Cai, Yachao

    2017-04-01

    High cooling capacity Stirling cryocooler generally has hundreds to thousands watts of cooling power at liquid nitrogen temperature. It is promising in boil-off gas (BOG) recondensation and high temperature superconducting (HTS) applications. A high cooling capacity Stirling cryocooler driven by a crank-rod mechanism was developed and studied systematically. The pressure and frequency characteristics of the cryocooler, the heat rejection from the ambient heat exchanger, and the cooling performance are studied under different charging pressure. Energy conversion and distribution in the cryocooler are analyzed theoretically. With an electric input power of 10.9 kW and a rotating speed of 1450 r/min of the motor, a cooling power of 700 W at 77 K and a relative Carnot efficiency of 18.2% of the cryocooler have been achieved in the present study, and the corresponding pressure ratio in the compression space reaches 2.46.

  11. Blade-to-coolant heat-transfer results and operating data from a natural-convection water-cooled single-stage turbine

    NASA Technical Reports Server (NTRS)

    Diaguila, Anthony J; Freche, John C

    1951-01-01

    Blade-to-coolant heat-transfer data and operating data were obtained with a natural-convection water-cooled turbine over range of turbine speeds and inlet-gas temperatures. The convective coefficients were correlated by the general relation for natural-convection heat transfer. The turbine data were displaced from a theoretical equation for natural convection heat transfer in the turbulent region and from natural-convection data obtained with vertical cylinders and plates; possible disruption of natural convection circulation within the blade coolant passages was thus indicated. Comparison of non dimensional temperature-ratio parameters for the blade leading edge, midchord, and trailing edge indicated that the blade cooling effectiveness is greatest at the midchord and least at the trailing edge.

  12. Study of SSIN (single-stage interconnection networks) parallel-processing interconnection networks. Final report, 1 October 1987-30 September 1988

    SciTech Connect

    Agrawal, D.P.

    1988-10-31

    The increase in dynamic average path length (DAPL) with network size is moderate while it is significantly less than log(2)N, the number of stages needed in a MIN. The best performance in the case of no fault and single fault, is obtained for the modified Omega and the Zeta SSINs.

  13. A single-stage functionalization and exfoliation method for the production of graphene in water: stepwise construction of 2D-nanostructured composites with iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ihiawakrim, Dris; Ersen, Ovidiu; Melin, Frédéric; Hellwig, Petra; Janowska, Izabela; Begin, Dominique; Baaziz, Walid; Begin-Colin, Sylvie; Pham-Huu, Cuong; Baati, Rachid

    2013-09-01

    A practically simple top-down process for the exfoliation of graphene (GN) and few-layer graphene (FLG) from graphite is described. We have discovered that a biocompatible amphiphilic pyrene-based hexahistidine peptide is able to exfoliate, functionalize, and dissolve few layer graphene flakes in pure water under exceptionally mild, sustainable and virtually innocuous low intensity cavitation conditions. Large area functionalized graphene flakes with the hexahistidine oligopeptide (His6-TagGN = His6@GN) have been produced efficiently at room temperature and characterized by TEM, Raman, and UV spectroscopy. Conductivity experiments carried out on His6-TagGN samples revealed superior electric performances as compared to reduced graphene oxide (rGO) and non-functionalized graphene, demonstrating the non-invasive features of our non-covalent functionalization process. We postulated a rational exfoliation mechanism based on the intercalation of the peptide amphiphile under cavitational chemistry. We also demonstrated the ability of His6-TagGN nanoassemblies to self-assemble spontaneously with inorganic iron oxide nanoparticles generating magnetic two-dimensional (2D) His6-TagGN/Fe3O4 nanocomposites under mild and non-hydrothermal conditions. The set of original experiments described here open novel perspectives in the facile production of water dispersible high quality GN and FLG sheets that will improve and facilitate the interfacing, processing and manipulation of graphene for promising applications in catalysis, nanocomposite construction, integrated nanoelectronic devices and bionanotechnology.A practically simple top-down process for the exfoliation of graphene (GN) and few-layer graphene (FLG) from graphite is described. We have discovered that a biocompatible amphiphilic pyrene-based hexahistidine peptide is able to exfoliate, functionalize, and dissolve few layer graphene flakes in pure water under exceptionally mild, sustainable and virtually innocuous low intensity cavitation conditions. Large area functionalized graphene flakes with the hexahistidine oligopeptide (His6-TagGN = His6@GN) have been produced efficiently at room temperature and characterized by TEM, Raman, and UV spectroscopy. Conductivity experiments carried out on His6-TagGN samples revealed superior electric performances as compared to reduced graphene oxide (rGO) and non-functionalized graphene, demonstrating the non-invasive features of our non-covalent functionalization process. We postulated a rational exfoliation mechanism based on the intercalation of the peptide amphiphile under cavitational chemistry. We also demonstrated the ability of His6-TagGN nanoassemblies to self-assemble spontaneously with inorganic iron oxide nanoparticles generating magnetic two-dimensional (2D) His6-TagGN/Fe3O4 nanocomposites under mild and non-hydrothermal conditions. The set of original experiments described here open novel perspectives in the facile production of water dispersible high quality GN and FLG sheets that will improve and facilitate the interfacing, processing and manipulation of graphene for promising applications in catalysis, nanocomposite construction, integrated nanoelectronic devices and bionanotechnology. Electronic supplementary information (ESI) available: TEM images of His6@GN, RAMAN, and UV-absorption analyses of His6@GN are reported. XPS analysis of GN is included. Electrical resistance measurements, self-assembly procedures with Fe3O4 (particle size distribution), and TEM images of His6@GN/Fe3O4 nanocomposites are also given. See DOI: 10.1039/c3nr02684a

  14. Theory of multiple-stage interband photovoltaic devices and ultimate performance limit comparison of multiple-stage and single-stage interband infrared detectors

    NASA Astrophysics Data System (ADS)

    Hinkey, Robert T.; Yang, Rui Q.

    2013-09-01

    A theoretical framework for studying signal and noise in multiple-stage interband infrared photovoltaic devices is presented. The theory flows from a general picture of electrons transitioning between thermalized reservoirs. Making the assumption of bulk-like absorbers, we show how the standard semiconductor transport and recombination equations can be extended to the case of multiple-stage devices. The electronic noise arising from thermal fluctuations in the transition rates between reservoirs is derived using the Shockley-Ramo and Wiener-Khinchin theorems. This provides a unified noise treatment accounting for both the Johnson and shot noise. Using a Green's function formalism, we derive consistent analytic expressions for the quantum efficiency and thermal noise in terms of the design parameters and macroscopic material properties of the absorber. The theory is then used to quantify the potential performance improvement from the use of multiple stages. We show that multiple-stage detectors can achieve higher sensitivities for applications requiring a fast temporal response. This is shown by deriving an expression for the optimal number of stages in terms of the absorption coefficient and absorber thicknesses for a multiple-stage detector with short absorbers. The multiple-stage architecture may also be useful for improving the sensitivity of high operating temperature detectors in situations where the quantum efficiency is limited by a short diffusion length. The potential sensitivity improvement offered by a multiple-stage architecture can be judged from the product of the absorption coefficient, α, and diffusion length, Ln, of the absorber material. For detector designs where the absorber lengths in each of the stages are equal, the multiple-stage architecture offers the potential for significant detectivity improvement when αLn ≤ 0.2. We also explore the potential of multiple-stage detectors with photocurrent-matched absorbers. In this architecture, the absorbers are designed to absorb and collect an equal number of carriers in each stage. It is shown that for zero-bias operation, this design has a higher ultimate detectivity than a single-absorber device. Such improvements in detectivity are significant for material with αLn ≤ 0.5. Using the results derived for general values of αLn, we offer an outlook for multiple-stage detectors that utilize InAs/GaSb superlattice absorbers.

  15. Evaluation of a single-stage carbon oxidation-nitrification process for treating high TAN effluent from anaerobic digestion of poultry rendering wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen is an essential nutrient for plants and animals. However, an excess amount of nitrogen in waterways may lead to anoxic condition and negatively alter various aquatic lifeforms due to their toxicity. Main sources of nitrogen in the environment include the discharge from wastewater treatment ...

  16. Fate of trace metals in a rotary-kiln incinerator with a single-stage ionizing wet scrubber. Volume 1. Technical results

    SciTech Connect

    Fournier, D.J.; Waterland, L.R.

    1991-07-01

    A series of pilot-scale incineration tests was performed at EPA's Incineration Research Facility (IRF) in Jefferson, Arkansas, to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with an ionizing wet scrubber (IWS) for particulate and acid gas control. Test variables were kiln temperature, ranging from 816 to 927 C (1500 to 1700 F); afterburner temperature, ranging from 982 to 1204 C (1800 to 2200 F); and feed chlorine content, ranging from 0 to 8 percent. The test program evaluated the fate of five hazardous constituent trace metals (arsenic, barium, cadmium, chromium, and lead) and four nonhazardous constituent trace metals (bismuth, copper, magnesium, and strontium). The test results indicate that cadmium and bismuth were relatively volatile, with an average of less than 40 percent discharged with the kiln ash. Arsenic, barium, chromium, copper, lead, magnesium, and strontium were relatively nonvolatile, with an average of greater than 80 percent discharged with the kiln ash. Observed relative metal volatilities generally agreed with the volatilities predicted based on vapor pressure/temperature relationships, with the exception of arsenic which was much less volatile than predicted. The volatility of cadmium, bismuth, and lead increased as kiln temperature was increased; the discharge distributions of the remaining metals were not significantly affected by changes in kiln temperature. Apparent scrubber collection efficiencies for the metals averaged 22 to 71 percent, and were generally higher for the less volatile metals. The overall average metal collection efficiency was 43 percent.

  17. Single-Stage Endovascular Treatment Performed on Multiple Aortic Aneurysms in a Patient with Behçet’s Disease—Report of a Case

    PubMed Central

    2013-01-01

    A 50-year-old male diagnosed with Behçet’s disease was referred to our department for stent graft treatment because of thoracic, abdominal, and right common iliac artery (CIA) aneurysms. He had a superior mesenteric artery aneurysm in 2005 that was treated with resection and bypass surgery through the radial artery. He later underwent four abdominal surgical procedures for conditions such as intestinal perforation and ileus. Stent graft treatment was performed. The postoperative course was uneventful; postoperative computed tomography (CT) showed no apparent endoleak, while that performed at 3 years post-discharge showed that the aneurysms had decreased in size. PMID:24386024

  18. Investigation of a 1500 ft/sec, Transonic, High-through-Flow, Single- Stage Axial-Flow Compressor with Low Hub/Tip Ratio

    DTIC Science & Technology

    1976-10-01

    420 N MN H1C0~ .4 . o.-N L00 1010I MNO17 .~ MC)’’W.l *’r nrM M M M I I. ’~atJt.~ W 1> -0A44440.41 0 0 wO~ 0 M ,0 ,.ý.ý 10 T’C 11- -In4 tN4 =-0-.CY I 01... tN4 .c0𔃾. n cf .. NONMN4’J*.44 TofN,41~D 4 NOJ or644- 4--4 to 4. 4 4*044- ki a V4 U.MA44lLW44-0 . 4 of%.J~NN4 .9 "WýO49 N w- 0- 0411tw-U*.OS- of

  19. Design of a 1500 Ft/Sec, Transonic, High-through-Flow, Single-Stage Axial-Flow Compressor with Low Hub/Tip Ratio

    DTIC Science & Technology

    1976-10-01

    Task 13 , (Fonnerly Aerospace Research LabILF) Wr nt2 IVRIc*IT-PArrF.RSON- AFB OH 45433 1I. CONtTROLILING OFFICE NAME ANb ADDRESSUR COM4PONENTS BRAINMI...under Project 7065, Task 13 , Work Unit 27. The effort was conducted by Dr. Arthur J. Wennerstrom and Capt George R. Frost (ARL/LF, sub- sequently AFAPL...Deviation Distributions 273 13 Rotor Untwist Distribution 274 S14 Meridional Distribution of Computing Stations 275 S15a Axial Distribution of Total

  20. Single-stage experimental evaluation of tandem-airfoil rotor stator blading for compressors. Part 6: Data and performance for stage D

    NASA Technical Reports Server (NTRS)

    Clemmons, D. R.

    1973-01-01

    An axial flow compressor stage, having single-airfoil blading, was designed for zero rotor prewhirl, constant rotor work across the span, and axial discharge flow. The stage was designed to produce a pressure ratio of 1.265 at a rotor tip velocity of 757 ft/sec. The rotor had an inlet hub/tip ratio of 0.8. The design procedure accounted for the rotor inlet boundary layer and included the effects of axial velocity ratio and secondary flow on blade row performance. The objectives of this experimental program were: (1) to obtain performance with uniform and distorted inlet flow for comparison with the performance of a stage consisting of tandem-airfoil blading designed for the same vector diagrams; and (2) to evaluate the effectiveness of accounting for the inlet boundary layer, axial velocity ratio, and secondary flows in the stage design. With uniform inlet flow, the rotor achieved a maximum adiabatic efficiency of 90.1% at design equivalent rotor speed and a pressure ratio of 1.281. The stage maximum adiabatic efficiency at design equivalent rotor speed with uniform inlet flow was 86.1% at a pressure ratio of 1.266. Hub radial, tip radial, and circumferential distortion of the inlet flow caused reductions in surge pressure ratio of approximately 2, 10 and 5%, respectively, at design rotor speed.

  1. Single-stage experimental evaluation of tandem-airfoil rotor and stator blading for compressors. Part 7: Data and performance for stage E

    NASA Technical Reports Server (NTRS)

    Cheatham, J. G.

    1974-01-01

    An axial flow compressor stage, having tandem airfoil blading, was designed for zero rotor prewhirl, constant rotor work across the span, and axial discharge flow. The stage was designed to produce a pressure ratio of 1.265 at a rotor tip velocity of 757 ft/sec. The rotor has an inlet hub/tip ratio of 0.8. The design procedure accounted for the rotor inlet boundary layer and included the effects of axial velocity ratio and secondary flow on blade row performance. The objectives of this experimental program were (1) to obtain performance with uniform and distorted inlet flow for comparison with the performance of a stage consisting of single-airfoil blading designed for the same vector diagrams and (2) to evaluate the effectiveness of accounting for the inlet boundary layer, axial velocity ratio, and secondary flows in the stage design.

  2. [Causal analysis and management strategies of 30-day unplanned revision surgery following single-stage posterior vertebral column resection for severe spinal deformity].

    PubMed

    Tao, Y P; Wu, J G; Ma, H S; Shao, S L; Zhang, L L; Gao, B; Li, H X

    2017-03-01

    Objective: To investigate the causes of 30-day unplanned revision surgery following one-stage posterior vertebral column resection (PVCR) for severe spinal deformity and the methods of prevention and management. Methods: A total of 112 severe deformity patients underwent one-stage PVCR for surgical treatment in the 306(th) Hospital of People's Liberation Army from May 2010 to December 2015 were retrospectively reviewed. Six patients required reoperation within 30 days after PVCR, including 2 males and 4 females with average age of 21 years (ranging from 12 to 38 years). Four cases were congenital kyphoscoliosis, 1 was post-laminectomy kyphoscoliosis and 1 was post-tuberculous angular kyphosis. Three cases associated with preoperative neurologic deficit (Frankel C in 1 patient and D in 2 patients). The causes, management and outcomes of unplanned revision surgery within 30 days after PVCR were recorded. Results: The total incidence of unplanned revision surgery within 30 days following PVCR was 5.4% (6/112). There was 1 case due to cerebrospinal fluid leak, 5 cases with varying degrees of new neurologic deficits, the causes were as followed: dural buckling in 1 case, residual bone compression in 1 case, epidural hematoma compression in 2 cases, spinal subdural hematoma in 1 case. All the 6 cases underwent surgical exploration again, including further dural repair, decompression and hematoma clearance. After unplanned reoperation, 6 cases recovered completely. The average follow-up time after surgery was 30.8 months (ranging from 10 to 60 months). The major curve at coronal plane was improved from preoperative 87.7° to 34.2°, with a mean correction of 61.0% at final follow-up; the sagittal kyphosis curve was improved from preoperative 119.5° to 45.5°, with a mean correction of 61.9% at final follow-up. Two patients' neurological status improved from Frankel D to Frankel E, one patient's neurological status improved from Frankel C to Frankel E. Conclusions: One-stage PVCR could be an effective method for treatment of severe spinal deformity. The causes of 30-day unplanned reoperation after PVCR are as followed: cerebrospinal fluid leak, dural buckling, residual bone compression and hematoma compression. Timely surgical exploration can gain good clinical outcomes.

  3. Single-stage experimental evaluation of tandem-airfoil rotor and stator blading for compressors. Part 3: Data and performance for stage C

    NASA Technical Reports Server (NTRS)

    Brent, J. A.; Clemmons, D.

    1972-01-01

    Stage C, comprised of tandem-airfoil rotor C and tandem-airfoil stator B, was designed and tested to establish performance data for comparison with the performance of conventional single-airfoil blading. Velocity diagrams and blade leading and trailing edge metal angles selected for the conventional rotor and stator blading were used in the design of the tandem blading. The rotor had an inlet hub/tip ratio of 0.8 and a design tip velocity of 757 ft/sec. At design equivalent rotor speed, rotor C achieved a maximum adiabatic efficiency of 91.8% at a pressure ratio of 1.31. The stage maximum adiabatic efficiency was 86.5% at a pressure ratio of 1.31.

  4. Parameter Selection and Longitudinal Phase Space Simulation for a Single Stage X-Band FEL Driver at 250 MeV

    SciTech Connect

    Sun, Yipeng; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2011-08-19

    Hard x-ray Free electron lasers (FEL) are being built or proposed at many accelerator laboratories as it supports wide range of applications in many aspects. Most of the hard x-ray FEL design is similar with the SLAC Linac Coherent Light Source (LCLS), which features a two (or multiple) stage bunch compression. For the first stage of the bunch compression, usually the beam is accelerated in a lower-frequency RF section (such as S-band for LCLS), and then the longitudinal phase space is linearized by a higher-frequency RF section (harmonic RF, such as X-band for LCLS). In this paper, a compact hard x-ray FEL design is proposed, which is based on X-band RF acceleration and eliminating the need of a harmonic RF. The parameter selection and relation is discussed, and the longitudinal phase space simulation is presented. The FEL coherence condition of the electron beam in the undulators requires a large charge density, a small emittance and small energy spread. The RMS electron bunch length from the injector is in the ps scale, with a bunch charge in the range of hundreds pC to several nC, which means that the current is roughly 0.1 kA. According to the requirement from soft x-ray lasing and hard x-ray lasing, a peak current of 1 kA and 3 kA is needed respectively. Thus the bunch has to be compressed. Usually a two stage bunch compression or multipole stage bunch compression is adopted. The z-correlated energy chirp is normally established by letting the beam pass through a section of RF cavities, with a RF phase off crest. As stated above, S-band RF (3 GHz) acceleration could be applied in this section. Due to the nature of RF acceleration wave, the chirp on the bunch is not linear, but has the RF curvature on it. In order to linearize the energy chirp, a harmonic RF section with higher frequency is needed. For LCLS a short X-band RF section (12 GHz) is used which is a fourth order harmonic. The linearized bunch is then passing by a dispersive region, in which the particles with different energy have different path length. A four dipole chicane is the natural choice for the dispersive region. As the example illustrated in Figure 1, the head of the bunch has smaller energy, and gets a stronger bending kick from the dipole magnet, then has a longer path length in the dispersive region. Similarly, the tail of the bunch has larger energy and shorter path length in the dispersive region. At the exit of the dispersive region, the relative longitudinal position of the head and tail of the bunch both move to the center of the bunch, so the bunch length will be shorter.

  5. An Active Broad Area Cooling Model of a Cryogenic Propellant Tank with a Single Stage Reverse Turbo-Brayton Cycle Cryocooler

    NASA Technical Reports Server (NTRS)

    Guzik, Monica C.; Tomsik, Thomas M.

    2011-01-01

    As focus shifts towards long-duration space exploration missions, an increased interest in active thermal control of cryogenic propellants to achieve zero boil-off of cryogens has emerged. An active thermal control concept of considerable merit is the integration of a broad area cooling system for a cryogenic propellant tank with a combined cryocooler and circulator system that can be used to reduce or even eliminate liquid cryogen boil-off. One prospective cryocooler and circulator combination is the reverse turbo-Brayton cycle cryocooler. This system is unique in that it has the ability to both cool and circulate the coolant gas efficiently in the same loop as the broad area cooling lines, allowing for a single cooling gas loop, with the primary heat rejection occurring by way of a radiator and/or aftercooler. Currently few modeling tools exist that can size and characterize an integrated reverse turbo-Brayton cycle cryocooler in combination with a broad area cooling design. This paper addresses efforts to create such a tool to assist in gaining a broader understanding of these systems, and investigate their performance in potential space missions. The model uses conventional engineering and thermodynamic relationships to predict the preliminary design parameters, including input power requirements, pressure drops, flow rate, cycle performance, cooling lift, broad area cooler line sizing, and component operating temperatures and pressures given the cooling load operating temperature, heat rejection temperature, compressor inlet pressure, compressor rotational speed, and cryogenic tank geometry. In addition, the model allows for the preliminary design analysis of the broad area cooling tubing, to determine the effect of tube sizing on the reverse turbo-Brayton cycle system performance. At the time this paper was written, the model was verified to match existing theoretical documentation within a reasonable margin. While further experimental data is needed for full validation, this tool has already made significant steps towards giving a clearer understanding of the performance of a reverse turbo-Brayton cycle cryocooler integrated with broad area cooling technology for zero boil-off active thermal control.

  6. THE FATE OF TRACE METALS IN A ROTARY KILN INCINERATOR WITH A SINGLE-STAGE IONIZING WET SCRUBBER - VOLUME II: APPENDICES

    EPA Science Inventory

    A series of pilot-scale incineration tests was performed at EPA's Incineration Research Facility (IRF) in Jefferson, Arkansas, to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with an ionizing wet scrubber (IWS) for particulate and acid gas control. ...

  7. FATE OF TRACE METALS IN A ROTARY KILN INCINERATOR WITH A SINGLE-STAGE IONIZING WET SCRUBBER. VOLUME 1. TECHNICAL RESULTS.

    EPA Science Inventory

    A series of pilot-scale incineration tests was performed at EPA's Incineration Research Facility (IRF) in Jefferson, Arkansas, to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with an ionizing wet scrubber (IWS) for particulate and acid gas control. ...

  8. Single-stage synthesis and characterization of reflective and conductive silver-polyimide films prepared from silver(I) complexes with ODPA/4,4'-ODA.

    PubMed

    Thompson, D Scott; Davis, Luke M; Thompson, David W; Southward, Robin E

    2009-07-01

    Reflective and surface conductive polyimide films were prepared by the incorporation of silver(I) acetate and trifluoroacetylacetone into a dimethylacetamide solution of the poly(amic acid) formed 3,3',4,4'-oxidiphthalic dianhydride (ODPA) and 4,4'-oxidianiline (4,4'-ODA). Thermal curing of (trifluoroacetylacetonato)silver(I)-poly(amic acid) films led to cycloimidization with concomitant silver(I) reduction, which yielded a reflective and conductive silver surface at selected silver concentrations if the film was cured to a final temperature of 300 degrees C for several hours. The metallized ODPA/4,4'-ODA films retain the essential mechanical properties of an undoped film and have good thermal stability, particularly under a nitrogen atmosphere. The bulk of the composite film was not electrically conductive. The use of (hexafluoroacetylacetonato)silver(I) and silver(I) tetrafluoroborate as sources of silver(I) with ODPA/4,4'-ODA yielded modestly reflective films that never developed conductivity. The silvered films prepared with (trifluoroacetylacetonato)silver(I) can be patterned using mask-etch techniques. Comparisons are made among four similar silver-polyimide systems, with the polyimides being ODPA/4,4'-ODA, BTDA/4,4'-ODA, BPDA/4,4'-ODA, and 6FDA/4-BDAF.

  9. Unsteady Flows in a Single-Stage Transonic Axial-Flow Fan Stator Row. Ph.D. Thesis - Iowa State Univ.

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.

    1986-01-01

    Measurements of the unsteady velocity field within the stator row of a transonic axial-flow fan were acquired using a laser anemometer. Measurements were obtained on axisymmetric surfaces located at 10 and 50 percent span from the shroud, with the fan operating at maximum efficiency at design speed. The ensemble-average and variance of the measured velocities are used to identify rotor-wake-generated (deterministic) unsteadiness and turbulence, respectively. Correlations of both deterministic and turbulent velocity fluctuations provide information on the characteristics of unsteady interactions within the stator row. These correlations are derived from the Navier-Stokes equation in a manner similar to deriving the Reynolds stress terms, whereby various averaging operators are used to average the aperiodic, deterministic, and turbulent velocity fluctuations which are known to be present in multistage turbomachines. The correlations of deterministic and turbulent velocity fluctuations throughout the axial fan stator row are presented. In particular, amplification and attenuation of both types of unsteadiness are shown to occur within the stator blade passage.

  10. A single-stage functionalization and exfoliation method for the production of graphene in water: stepwise construction of 2D-nanostructured composites with iron oxide nanoparticles.

    PubMed

    Ihiawakrim, Dris; Ersen, Ovidiu; Melin, Frédéric; Hellwig, Petra; Janowska, Izabela; Begin, Dominique; Baaziz, Walid; Begin-Colin, Sylvie; Pham-Huu, Cuong; Baati, Rachid

    2013-10-07

    A practically simple top-down process for the exfoliation of graphene (GN) and few-layer graphene (FLG) from graphite is described. We have discovered that a biocompatible amphiphilic pyrene-based hexahistidine peptide is able to exfoliate, functionalize, and dissolve few layer graphene flakes in pure water under exceptionally mild, sustainable and virtually innocuous low intensity cavitation conditions. Large area functionalized graphene flakes with the hexahistidine oligopeptide (His₆-TagGN = His₆@GN) have been produced efficiently at room temperature and characterized by TEM, Raman, and UV spectroscopy. Conductivity experiments carried out on His₆-TagGN samples revealed superior electric performances as compared to reduced graphene oxide (rGO) and non-functionalized graphene, demonstrating the non-invasive features of our non-covalent functionalization process. We postulated a rational exfoliation mechanism based on the intercalation of the peptide amphiphile under cavitational chemistry. We also demonstrated the ability of His6-TagGN nanoassemblies to self-assemble spontaneously with inorganic iron oxide nanoparticles generating magnetic two-dimensional (2D) His₆-TagGN/Fe₃O₄ nanocomposites under mild and non-hydrothermal conditions. The set of original experiments described here open novel perspectives in the facile production of water dispersible high quality GN and FLG sheets that will improve and facilitate the interfacing, processing and manipulation of graphene for promising applications in catalysis, nanocomposite construction, integrated nanoelectronic devices and bionanotechnology.

  11. Single-stage experimental evaluation of tandem-airfoil rotor and stator blading for compressors. Part 2: Data and performance for stage A

    NASA Technical Reports Server (NTRS)

    Brent, J. A.

    1972-01-01

    Stage A, comprised of a conventional rotor and stator, was designed and tested to establish a performance baseline for comparison with the results of subsequent tests planned for two tandem-blade stages. The rotor had an inlet hub/tip ratio of 0.8 and a design tip velocity of 757 ft/sec. At design equivalent rotor speed, rotor A achieved a maximum adiabatic efficiency of 85.1 percent at a pressure ratio of 1.29. The stage maximum adiabatic efficiency was 78.6 percent at a pressure ratio of 1.27.

  12. Whole-Arch Single-Stage Free Flap Reconstruction and Rehabilitation of the Mandible: A Case Report and Technical Considerations on a New Technique.

    PubMed

    Yetzer, Jacob G; Ettinger, Kyle S; Arce, Kevin; Salinas, Thomas J

    2017-02-01

    The purpose of this report is to describe the techniques used in the reconstruction of a complete angle-to-angle mandibular defect in the absence of any remaining mandibular teeth. Because no remaining dental or occlusal landmarks remain in such a case, additional challenges must be considered.

  13. Static aerodynamic characteristics of a winged single-stage-to-orbit vehicle at Mach numbers from 0.3 to 4.63

    NASA Technical Reports Server (NTRS)

    Freeman, D. C., Jr.; Fournier, R. H.

    1978-01-01

    The Langley 8 foot transonic pressure tunnel and the Langley Unitary Plan wind tunnel used to determine the longitudinal and lateral-directional aerodynamic characteristics of a winged single-state-to-orbit vehicle was investigated. The model was tested over a Mach number range from 0.3 to 4.63 for an angle-of-attack range from 4 to 30 D at both 0 and 5 D sideslip.

  14. Performance of single-stage compressor designed on basis of constant total enthalpy with symmetrical velocity diagram at all radii and velocity ratio of 0.7 at rotor hub / Jack R. Burtt and Robert J. Jackson

    NASA Technical Reports Server (NTRS)

    Burtt, Jack R; Jackson, Robert J

    1951-01-01

    A typical inlet axial-flow compressor inlet stage, which was designed on the basis of constant total enthalpy with symmetrical velocity diagram at all radii, was investigated. At a tip speed of 1126 feet per second, a peak pressure ratio of 1.28 was obtained at an efficiency of 0.76. At a tip speed, the highest practical flow was 28 pounds per second per square foot frontal area with an efficiency of 0.78. Data for a rotor relative inlet Mach number range of from 0.5 to 0.875 indicates that the critical value for any stage radial element is approximately 0.80 for the stage investigated.

  15. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    DOE PAGES

    Stygar, W. A.; Awe, T. J.; Bennett, N L; ...

    2015-11-30

    Here, we have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated bymore » the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator’s water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator’s physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD

  16. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    SciTech Connect

    Stygar, W. A.; Awe, T. J.; Bennett, N L; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.; Bailey, J. E.; Rovang, D. C.

    2015-11-30

    Here, we have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator’s water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator’s physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD

  17. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Awe, T. J.; Bailey, J. E.; Bennett, N. L.; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Rovang, D. C.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.

    2015-11-01

    We have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator's water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator's physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD) simulations

  18. A Computer Application for Severely Handicapped Children.

    ERIC Educational Resources Information Center

    Huenergard, Cliff; Albertson, Greg

    A severely physically disabled (quadriplegic) third grade student with high average intellectual abilities was fitted with a computer system adapted for maximum student independence. A scanner, the face of which is an integrated circuit board, was constructed to allow accessibility to the computer by a single switch operated by the student's…

  19. Using AAC Device Features to Enhance Teenager's Quality of Life

    ERIC Educational Resources Information Center

    McAfoose, Linnea R.

    2004-01-01

    The subject of the attached case study is Sara, a 17-year-old high school honors student who communicates using a DynaVox 3100, which she accesses via single-switch visual scanning. A team of education and engineering specialists at DynaVox Systems LLC collaborated with Sara to identify and maximize her use of device features and accessories that…

  20. Landsat wildland mapping accuracy

    USGS Publications Warehouse

    Todd, William J.; Gehring, Dale G.; Haman, J. F.

    1980-01-01

    A Landsat-aided classification of ten wildland resource classes was developed for the Shivwits Plateau region of the Lake Mead National Recreation Area. Single stage cluster sampling (without replacement) was used to verify the accuracy of each class.

  1. Sub-Kelvin Coolers for Space Missions: ADR Development at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Shirron, Peter

    2012-01-01

    Topics Covered: Science drivers for low temperature cooling; and Adiabatic Demagnetization Refrigerator (ADR). architectures and cooling capabilities (1) Single-stage ADR (2) Two-stage ADR (3) Astro-H 3-stage (4) Continuous ADR: 5-stage

  2. “Partial duplication of lower lip and hemimandible” A rare case

    PubMed Central

    Nayak, Bibhuti Bhusan; Mohanty, Nilamani

    2012-01-01

    Duplication of mandible and lower lip is a very rare congenital entity. We report an extremely uncommon case of Congenital Duplication of Lower lip and Mandible in a 3 year old girl, who was treated surgically in a single stage for correction of both lip and mandible. This was a commissure preserving single staged procedure. The Surgical procedure, the problems related to this anomaly and the embryology are discussed. PMID:23450337

  3. Navy Lightweight Exoatmospheric Project. Technology Demonstration- Environmental Assessment

    DTIC Science & Technology

    1992-09-01

    km/second intercept velocity requirement (helps ensure ABM Treatty compliance) with minimal ballast. It also has the advantage of being a single -stage...concluded that implementing the proposed action would not result in significant impacts to the natural environment or to human health and safety, at any...flight test 5 target launch from CCAFS. The Aries I Launch Vehicle is a single -stage vehicle with the M56A1 Rocket Motor (which is also used as the

  4. Effect of process configuration and substrate complexity on the performance of anaerobic processes.

    PubMed

    Azbar, N; Ursillo, P; Speece, R E

    2001-03-01

    The roles of substrate complexity (molecular size of the substrate) and process configuration in anaerobic wastewater treatment were investigated to determine optimal methanogenic technology parameters. Five substrates (glucose, propionate, butyrate, ethanol, and lactate) plus a mixed waste (60% carbohydrate, 34% protein, and 6% lipids) were studied under five reactor configurations: batch-fed single-stage continuous stirred tank reactor (CSTR), continuously fed single-stage CSTR, two-phase CSTR, two-stage CSTR, and single-stage upflow anaerobic sludge blanket (UASB). The substrate feed concentration was 20,000 mg/L as COD. The solids retention time (SRT) and hydraulic retention time (HRT) in the CSTR reactors were 20 d, while HRT in the UASB was 2 d. All reactors were operated for at least 60 d (equal to 3SRT). Substrate complexity was observed to be less significant under two-phase, two-stage and UASB reactor configurations. Two-phase CSTR, two-stage CSTR, and single-stage UASB configurations yielded the lowest effluent chemical oxygen demands (130-550, 60-700, and 50-250 mg/L, respectively). The highest effluent chemical oxygen demands were detected when feeding glucose, propionate, and lactate to continuously fed single-stage CSTRs (10, 400, 9900, and 4700 mg/L COD, respectively) and to batch-fed single-stage CSTRs (11, 200, 2500, and 2700 mg/L COD, respectively). Ironically, the one stage CSTR--most commonly utilized in the field--was the worst possible reactor configuration.

  5. Analytical design of an advanced radial turbine. [automobile engines

    NASA Technical Reports Server (NTRS)

    Large, G. D.; Finger, D. G.; Linder, C. G.

    1981-01-01

    The aerodynamic and mechanical potential of a single stage ceramic radial inflow turbine was evaluated for a high temperature single stage automotive engine. The aerodynamic analysis utilizes a turbine system optimization technique to evaluate both radial and nonradial rotor blading. Selected turbine rotor configurations were evaluated mechanically with three dimensional finite element techniques. Results indicate that exceptionally high rotor tip speeds (2300 ft/sec) and performance potential are feasible with radial bladed rotors if the projected ceramic material properties are realized. Nonradial rotors reduced tip speed requirements (at constant turbine efficiency) but resulted in a lower cumulative probability of success due to higher blade and disk stresses.

  6. Single shaft automotive gas turbine engine characterization test

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.

    1979-01-01

    An automotive gas turbine incorporating a single stage centrifugal compressor and a single stage radial inflow turbine is described. Among the engine's features is the use of wide range variable geometry at the inlet guide vanes, the compressor diffuser vanes, and the turbine inlet vanes to achieve improved part load fuel economy. The engine was tested to determine its performance in both the variable geometry and equivalent fixed geometry modes. Testing was conducted without the originally designed recuperator. Test results were compared with the predicted performance of the nonrecuperative engine based on existing component rig test maps. Agreement between test results and the computer model was achieved.

  7. Booster propulsion/vehicle impact study

    NASA Technical Reports Server (NTRS)

    Weldon, Vincent; Dunn, Michael; Fink, Lawrence; Phillips, Dwight; Wetzel, Eric

    1988-01-01

    The use of hydrogen RP-1, propane, and methane as fuels for booster engines of launch vehicles is discussed. An automated procedure for integrated launch vehicle, engine sizing, and design optimization was used to define two stage and single stage concepts for minimum dry weight. The two stage vehicles were unmanned and used a flyback booster and partially reusable orbiter. The single stage designs were fully reusable, manned flyback vehicles. Comparisons of these vehicle designs, showing the effects of using different fuels, as well as sensitivity and trending data, are presented. In addition, the automated design technique utilized for the study is described.

  8. Carbonaceous species methods comparison study: University of Minnesota results. Final report

    SciTech Connect

    McMurry, P.H.; Zhang, X.

    1988-10-01

    The Carbon Methods Comparison Study conducted during August 12-20, 1986 at Citrus College, Glendora, CA in the Los Angeles basin compared analytical methodologies for analyzing the carbon content of aerosol samples, as well as compared measurements acquired with different samples. Five samplers, including a multistage microorifice uniform deposit impactor (MOUDI), a conventional quartz filter, a specially designed electrostatic precipitator (ESP), and 2 identical single stage MOUDIs were used. One of the single stage MOUDIs was used as a fine particle sampler; the second was used in experiments to investigate possible sampling articles. The results are summarized and discussed.

  9. The Influence of the Diameter Ratio on the Characteristics Diagram of the Axial Compressor

    NASA Technical Reports Server (NTRS)

    Eckert, B.; Pflueger, F.; Weinig, F.

    1948-01-01

    With the further development of axial blowers into highly loaded flow machines, the influence of the diameter ratio upon air output and efficiency gains in significance. Clarification of this matter is important for single-stage axial compressors, and is of still greater importance for multistage ones, and particularly for aircraft power plants. Tests with a single-stage axial blower gave a decrease in the attainable maximum pressure coefficient and optimum efficiency as the diameter ratio increased. The decrease must be ascribed chiefly to the guide surface of the hub and housing between the blades increasing with the diameter ratio.

  10. Endovascular repair for abdominal aortic aneurysm followed by type B dissection.

    PubMed

    Shingaki, Masami; Kato, Masaaki; Motoki, Manabu; Kubo, Yoji; Isaji, Toshihiko; Okubo, Nobukazu

    2016-10-01

    An 86-year-old man with an abdominal aortic aneurysm was diagnosed with type B aortic dissection accompanied by a patent false lumen that started at the distal arch of the thoracic aorta and terminated at the left common iliac artery. Meticulous preoperative assessment detected 3 large intimal tears in the descending aorta, abdominal aortic aneurysm, and left common iliac artery. We performed single-stage thoracic and abdominal endovascular aneurysm repair and concomitant axillary-axillary bypass. The abdominal aortic aneurysm with type B aortic dissection was successfully treated using a single-stage endovascular stent graft, without any complications due to the careful preoperative examinations.

  11. DEVELOPMENT OF COLD CLIMATE HEAT PUMP USING TWO-STAGE COMPRESSION

    SciTech Connect

    Shen, Bo; Rice, C Keith; Abdelaziz, Omar; Shrestha, Som S

    2015-01-01

    This paper uses a well-regarded, hardware based heat pump system model to investigate a two-stage economizing cycle for cold climate heat pump applications. The two-stage compression cycle has two variable-speed compressors. The high stage compressor was modelled using a compressor map, and the low stage compressor was experimentally studied using calorimeter testing. A single-stage heat pump system was modelled as the baseline. The system performance predictions are compared between the two-stage and single-stage systems. Special considerations for designing a cold climate heat pump are addressed at both the system and component levels.

  12. A conceptual design of an unmanned test vehicle using an airbreathing propulsion system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    According to Aviation Week and Space Technology (Nov. 16, 1992), without a redefined approach to the problem of achieving single stage-to-orbit flight, the X-30 program is virtually assured of cancellation. One of the significant design goals of the X-30 program is to achieve single stage to low-earth orbit using airbreathing propulsion systems. In an attempt to avoid cancellation, the NASP Program has decided to design a test vehicle to achieve these goals. This report recommends a conceptual design of an unmanned test vehicle using an airbreathing propulsion system.

  13. Diaphragm Stirling cryocooler developments

    NASA Technical Reports Server (NTRS)

    Stacy, W. D.

    1992-01-01

    This paper reports on the status of several ongoing development programs aimed at the demonstration of diaphragm Stirling cycle cryocooler performance. Key attributes of this technology focus on long reliable operating life and excellent efficiency, making it a candidate for cooling of satellite-borne long wavelength sensors for astrophysics and earth observing missions. Three programs are described, each leading to system or component test hardware: a 2 W 65 K single-stage Standard Spacecraft Cryocooler, a 300 mW 30 K two-stage cooler and a 200 mW 4-20 K single-stage cooler. Design features are described, and breadboard experimental data are presented.

  14. ``Dissection'' of a Hair Dryer

    NASA Astrophysics Data System (ADS)

    Eisenstein, Stan; Simpson, Jeff

    2008-12-01

    The electrical design of the common hair dryer is based almost entirely on relatively simple principles learned in introductory physics classes. Just as biology students dissect a frog to see the principles of anatomy in action, physics students can "dissect" a hair dryer to see how principles of electricity are used in a real system. They can discover how engineers solve problems such as how to vary between low and high heat and fan speed by simply moving the position of a single switch. Principles of alternating versus direct current, series and parallel circuits, electrical safety, voltage dividing, ac rectification, power, and measurement of resistance and continuity all come in to play.

  15. Lossless Dynamic Models of the Quasi-Z-Source Converter Family

    NASA Astrophysics Data System (ADS)

    Vinnikov, Dmitri; Husev, Oleksandr; Roasto, Indrek

    2011-01-01

    This paper is devoted to the quasi-Z-source (qZS) converter family. Recently, the qZS-converters have attracted attention because of their specific properties of voltage boost and buck functions with a single switching stage, which could be especially beneficial in renewable energy applications. As main representatives of the qZS-converter family, the traditional quasi-Z-source inverter as well as two novel extended boost quasi-Z-source inverters are discussed. Lossless dynamic models of these topologies are presented and analyzed.

  16. Medium-Speed Drivetrain Test Report: September 1, 2002 -- December 30, 2007

    SciTech Connect

    Walford, C.; Lybarger, K.; Lettenmaier, T.; Roberts, D.

    2012-09-01

    This report describes the tests conducted by researchers at the National Wind Technology Center at NREL on a 1.5-MW integrated drivetrain consisting of a single-stage, epicyclic gearbox and close-coupled medium-speed permanent-magnet generator.

  17. NASA Earth-to-Orbit Engineering Design Challenges: Thermal Protection Systems

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration (NASA), 2010

    2010-01-01

    National Aeronautics and Space Administration (NASA) Engineers at Marshall Space Flight Center, Dryden Flight Research Center, and their partners at other NASA centers and in private industry are currently developing X-33, a prototype to test technologies for the next generation of space transportation. This single-stage-to-orbit reusable launch…

  18. Launching a Projectile into Deep Space

    ERIC Educational Resources Information Center

    Maruszewski, Richard F., Jr.

    2004-01-01

    As part of the discussion about Newton's work in a history of mathematics course, one of the presentations calculated the amount of energy necessary to send a projectile into deep space. Afterwards, the students asked for a recalculation with two changes: First the launch under study consisted of a single stage, but the students desired to…

  19. Trajectory optimization and guidance for an aerospace plane

    NASA Technical Reports Server (NTRS)

    Mease, Kenneth D.; Vanburen, Mark A.

    1989-01-01

    The first step in the approach to developing guidance laws for a horizontal take-off, air breathing single-stage-to-orbit vehicle is to characterize the minimum-fuel ascent trajectories. The capability to generate constrained, minimum fuel ascent trajectories for a single-stage-to-orbit vehicle was developed. A key component of this capability is the general purpose trajectory optimization program OTIS. The pre-production version, OTIS 0.96 was installed and run on a Convex C-1. A propulsion model was developed covering the entire flight envelope of a single-stage-to-orbit vehicle. Three separate propulsion modes, corresponding to an after burning turbojet, a ramjet and a scramjet, are used in the air breathing propulsion phase. The Generic Hypersonic Aerodynamic Model Example aerodynamic model of a hypersonic air breathing single-stage-to-orbit vehicle was obtained and implemented. Preliminary results pertaining to the effects of variations in acceleration constraints, available thrust level and fuel specific impulse on the shape of the minimum-fuel ascent trajectories were obtained. The results show that, if the air breathing engines are sized for acceleration to orbital velocity, it is the acceleration constraint rather than the dynamic pressure constraint that is active during ascent.

  20. Submaximal Treadmill Exercise Test to Predict VO[subscript 2]max in Fit Adults

    ERIC Educational Resources Information Center

    Vehrs, Pat R.; George, James D.; Fellingham, Gilbert W.; Plowman, Sharon A.; Dustman-Allen, Kymberli

    2007-01-01

    This study was designed to develop a single-stage submaximal treadmill jogging (TMJ) test to predict VO[subscript 2]max in fit adults. Participants (N = 400; men = 250 and women = 150), ages 18 to 40 years, successfully completed a maximal graded exercise test (GXT) at 1 of 3 laboratories to determine VO[subscript 2]max. The TMJ test was completed…

  1. Cold-air investigation of a 3 1/2-stage fan-drive turbine with a stage loading factor of 4 designed for an integral lift engine. 1: Turbine design and performance of first stage

    NASA Technical Reports Server (NTRS)

    Whitney, W. J.; Schum, H. J.; Behning, F. P.

    1975-01-01

    The design of the 3 1/2-stage turbine is described, and the cold-air performance of the first stage, modified for axial inlet conditions, is presented. The performance of the modified single-stage turbine and of two comtemporary high-stage-loading-factor turbines is compared with that estimated with a reference prediction method.

  2. Common base amplifier with 7 - dB gain at 176 GHz in InP mesa DHBT technology

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Paidi, V.; Griffith, Z.; Dahlstrom, M.; Wei, Y.; Urteaga, M.; Rodell, M. J. W.; Fung, A.

    2004-01-01

    We report a single stage tunded amplifier that exhibits 7 dB small signal gain at 176 GHz. Common Base topology is chosen as it has the best maximum stable gain (MSG) in this frequency band when compared to common emitter and common collector topologies. The amplifiers are designed and fabricated in InP mesa double heterojunction bipolar transistor (DHBT) technology.

  3. Best practices: Product category rule creation and use

    EPA Science Inventory

    Benefits of life cycle-based claims For most products, the majority of impact occurs upstream or downstream of product use . Single-stage claims for products (e.g., recycled content; energy efficient) don’t capture the relevance of that attribute in life-cycle environmental per...

  4. Colovesical fistula: an unusual complication of prostatomegaly.

    PubMed

    Abbas, F; Memon, A

    1994-08-01

    Colovesical fistula as a sequela to long-term bladder outflow obstruction is to our knowledge a previously unreported complication. We report a case in which single stage colonic resection and anastomosis with bladder repair and transurethral resection of the prostate resolved the condition.

  5. CLOSEUP VIEW OF THE FIRST STAGE OF THE SATURN I ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOSE-UP VIEW OF THE FIRST STAGE OF THE SATURN I ROCKET, SHOWING A DETAIL VIEW OF THE ENGINE CLUSTER. THE SATURN I ROCKET WAS THE FIRST UNITED STATES ROCKET TO HAVE MULTIPLE ENGINES ON A SINGLE STAGE. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  6. Master Study Programmes Orientation and Curricula Inconsistency in Lithuanian Universities

    ERIC Educational Resources Information Center

    Lauzackas, Rimantas; Rackauskaite, Aiste; Jaskauskaite, Daiva

    2004-01-01

    When independence was restored in Lithuania, a single-stage higher education system that had existed hitherto was reorganised into a multi-stage system with Bachelor, Master and Doctoral programme studies. The analysis of Master studies, as a new and atypical phenomenon in Lithuania, highlights the discrepancies between Master programme curricula…

  7. Blade configurations and performance of the savonius rotor with application to irrigation system in Indonesia

    SciTech Connect

    Modi, V.J.; Roth, N.J.; Pittalwala, A.

    1981-08-01

    Results are described of a systematic wind tunnel study aimed at development of the wind operated irrigation system suitable for meeting needs of small farms in Indonesia. Using several models of the single stage Savonius configuration, influence of the blade gap-size and overlap on the output is assessed and their favorable combination established for a given blade geometry. 5 refs.

  8. Semivolatile and Volatile Organic Compound Emissions from Wood-Fired Hydronic Heaters

    EPA Science Inventory

    Four commercially available HH technologies were studied: a single-stage combustor with natural updraft, a three-stage downdraft combustion system, a bottom-fed pellet burner, and a two-stage heater with both a combustion and gasification chamber. The fuel consisted of three wood...

  9. Isomer-Specific Analysis of Released N-Glycans by LC-ESI MS/MS with Porous Graphitized Carbon.

    PubMed

    Kolarich, Daniel; Windwarder, Markus; Alagesan, Kathirvel; Altmann, Friedrich

    2015-01-01

    The combination of porous graphitized carbon (PGC) liquid chromatography (LC) with mass spectrometric (MS) detection probably constitutes the most elaborate single stage analysis for isomer-specific N-glycan analysis. Here, we describe sample preparation and analysis procedures for the identification of released N-glycans using PGC-LC-ESI-MS and MS/MS.

  10. NASP technology transfer

    NASA Technical Reports Server (NTRS)

    Morris, Charles

    1992-01-01

    It is the stated goal of this program, the National AeroSpace Plane (NASP) program, to develop and then demonstrate the technologies for single-stage-to-orbit flight and hypersonic cruise with airbreathing primary propulsion and horizontal takeoff and landing. This presentation is concerned with technology transfer in the context of the NASP program.

  11. Experimental Investigation on Stirling Type Thermally Coupled Three Stage Pulse Tube Cryocoolers with 'U' Type Configuration

    NASA Astrophysics Data System (ADS)

    Badgujar, A. D.; Naik, H. B.; Atrey, M. D.

    Research on Stirling type Pulse Tube Cryocooler (PTC) is focused on achieving lower temperatures by cascading the stages or by multi-staging. Multi-staging can be done either by gas coupling or by thermal coupling of the stages. In the thermal coupling option, either a two stage cooler can pre-cool a single stage PTC to reach lower temperatures or a single stage PTC can cool a two stage PTC. In the present work, both these configurations are tested experimentally keeping the same two stage PTC. In case-1, the two stage PTC is used as a pre-cooling stage while in case-2, the single stage PTC is used as a pre-cooling stage. Length of the single stage is required and to be increased to match the two stages PTC for effective thermal coupling in case-1. The lowest temperature achieved in case-1 is 50.07 K where as in case-2 the lowest temperature achieved is 19.61 K at 17 bar charge pressure and 68 Hz frequency. The pressure drop in both the PTCs is compared to analyze the difference in performance.

  12. Continuous bioconversion of starch to ethanol by calcium-alginate immobilized enzymes and yeasts

    SciTech Connect

    McGhee, J.E.; Carr, M.E.; St. Julian, G.

    1984-01-01

    Continuous bioconversion of starch to EtOH by immobilized enzymes and yeasts was studied. Commercial corn starch (10%) was 1st batch-liquefied with bacterial alpha-amylase. In continuous-flow systems, liquefied starch was then converted to glucose with Ca alginate-entrapped fungal glucoamylase, and the resulting glucose was fermented to EtOH by Ca alginate-entrapped active dry yeast. The continuous-flow saccharification-fermentation processes were performed in either 2-stage (sequential) or single-stage (simultaneous) operations. In the single-stage operation, immobilized glucoamylase produced glucose from liquefied starch continuously for 11 days. In the simultaneous saccharification technique using immobilized glucoamylase and yeast mixture in a single-stage column, EtOH production was 69% of theoretical for 5 days. In the 2-stage operation, in which immobilized glucoamylase and yeast were contained in separate columns connected in tandem, EtOH production averaged 97% of theoretical for 5 days. The overall alcoholic production efficiency was significantly greater in the 2-stage system than in the single-stage system.

  13. Class II combination therapy (distal jet and Jasper Jumpers): a case report.

    PubMed

    Bowman, S J

    2000-09-01

    Class II combination therapy is a method that combines orthodontic and orthopedic mechanics in a single stage of treatment. Molar distalization is followed by fixed functional mechanics to reduce the dependence upon patient compliance while seeking more predictable completion of Class II correction.

  14. Aerodynamic design of a free power turbine for a 75 KW gas turbine automotive engine

    NASA Technical Reports Server (NTRS)

    Kofskey, M. G.; Katsanis, T.; Schumann, L. F.

    1975-01-01

    A single stage axial-flow turbine having a tip diameter of 15.41 centimeters was designed. The design specifications are given and the aerodynamic design procedure is described. The design includes the transition duct and the turbine exit diffuser. The aerodynamic information includes typical results of a parametric study, velocity diagrams, blade surface and wall velocities, and blade profile and wall coordinates.

  15. Theoretical Formability. Volume 2. Application

    DTIC Science & Technology

    1961-08-01

    TABLE OF CONTENTS (Contd.) Section Pg MANUAL SPINNING (Contd.) Predictability Equations ......................... V-29 Composite Graphs...Pressure ............................... V-17 MANUAL SPINNING VB-1 A Single Stage Setup for Manual Spinning ............ V-25 VB-2 Geometric Variables for...Aluminum ...... . ........ .... .............. V-i4 ASD TR 61-191(II) LIST OF GRAPHS (Contd.) Graph Pg MANUAL SPINNING VB-1 Spinning Composite for Elastic

  16. The Risk of Adverse Impact in Selections Based on a Test with Known Effect Size

    ERIC Educational Resources Information Center

    De Corte, Wilfried; Lievens, Filip

    2005-01-01

    The authors derive the exact sampling distribution function of the adverse impact (AI) ratio for single-stage, top-down selections using tests with known effect sizes. Subsequently, it is shown how this distribution function can be used to determine the risk that a future selection decision on the basis of such tests will result in an outcome that…

  17. Application of Multi-Stage Orifices in Letdown System- Lessons Learned

    SciTech Connect

    Kim, Eun Kee; Kim, Chang Ho; Park, Jong Seob; Chung, Chang Kyu; Ro, Tae Sun; Park, Boo Sung

    2002-07-01

    Cavitation, vibration and severe noise in multi-stage orifice assemblies of the letdown system have been experienced during plant startup tests. Test results were reviewed and evaluated to investigate root causes for the problems. Root causes identified are design deficiencies and inadequate shop testing including improper test conditions and corrections. If conventional design criteria for single-stage orifice are applied directly to the design of multi-stage orifice assembly, unexpected problems might occur in the field. Discharge coefficients of multi-stage orifice showed to be significantly affected by Reynolds number, while empirical discharge coefficients of single-stage orifice were reported to be almost constant in turbulent regime. Some design considerations are recommended to avoid similar problems. (authors)

  18. Small, high-pressure, liquid oxygen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.

    1978-01-01

    A small, high-pressure, LOX turbopump was designed, fabricated, and tested. The pump was of a single-stage, centrifugal type; power to the pump was supplied by a single-stage, partial-admission, axial-impulse turbine. Design conditions included an operating speed of 7330 rad/sec (70,000 rpm) pump discharge pressure of 2977 N/sq cm (4318 psia), and a pump flowrate of 16.4 kg/s (36.21 lb/sec). The turbine was propelled by LOX/LH2 combustion products at 1041 K (1874 R) inlet temperature, and at a design pressure ratio of 1.424. Test data obtained with the turbopump are presented and mechanical performance is discussed.

  19. Small, high-pressure liquid oxygen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.; Sutton, R.

    1977-01-01

    A small, high-pressure, liquid oxygen turbopump was designed, fabricated, and tested. The pump was of a single-stage, centrifugal type; power to the pump was supplied by a single-stage, partial emission, axial-impulse turbine. Design conditions included an operating speed of 70,000 rpm, pump discharge pressure of 2977 N/sq cm (4318 psia), and a pump flowrate of 16.4 kg/s (36.21 lb/sec). The turbine was propelled by LO2/LH2 combustion products at 1041 K (1874 R) inlet temperature, and at a design pressure ratio of 1.424. The approaches used in the detail analysis and design of the turbopump are described, and fabrication methods are discussed. Data obtained from gas generator tests, turbine performance calibration, and turbopump testing are presented.

  20. Low-Dead-Volume Inlet for Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Naylor, Guy; Arkin, C.

    2011-01-01

    Gas introduction from near-ambient pressures to high vacuum traditionally is accomplished either by multi-stage differential pumping that allows for very rapid response, or by a capillary method that allows for a simple, single-stage introduction, but which often has a delayed response. Another means to introduce the gas sample is to use the multi-stage design with only a single stage. This is accomplished by using a very small conductance limit. The problem with this method is that a small conductance limit will amplify issues associated with dead-volume. As a result, a high-vacuum gas inlet was developed with low dead-volume, allowing the use of a very low conductance limit interface. Gas flows through the ConFlat flange at a relatively high flow rate at orders of magnitude greater than through the conductance limit. The small flow goes through a conductance limit that is a double-sided ConFlat.

  1. The AGT 101 advanced automotive gas turbine

    NASA Technical Reports Server (NTRS)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    A development program is described whose goal is the accumulation of the technology base needed by the U.S. automotive industry for the production of automotive gas turbine powertrains. Such gas turbine designs must exhibit reduced fuel consumption, a multi-fuel capability, and low exhaust emissions. The AGT101 powertrain described is a 74.6 kW, regenerated single-shaft gas turbine, operating at a maximum inlet temperature of 1644 K and coupled to a split differential gearbox and automatic overdrive transmission. The engine's single stage centrifugal compressor and single stage radial inflow turbine are mounted on a common shaft, and will operate at a maximum rotor speed of 100,000 rpm. All high temperature components, including the turbine rotor, are ceramic.

  2. Utilising biohydrogen to increase methane production, energy yields and process efficiency via two stage anaerobic digestion of grass.

    PubMed

    Massanet-Nicolau, Jaime; Dinsdale, Richard; Guwy, Alan; Shipley, Gary

    2015-01-01

    Real time measurement of gas production and composition were used to examine the benefits of two stage anaerobic digestion (AD) over a single stage AD, using pelletized grass as a feedstock. Controlled, parallel digestion experiments were performed in order to directly compare a two stage digestion system producing hydrogen and methane, with a single stage system producing just methane. The results indicated that as well as producing additional energy in the form of hydrogen, two stage digestion also resulted in significant increases to methane production, overall energy yields, and digester stability (as indicated by bicarbonate alkalinity and volatile fatty acid removal). Two stage AD resulted in an increase in energy yields from 10.36 MJ kg(-1) VS to 11.74 MJ kg(-1) VS, an increase of 13.4%. Using a two stage system also permitted a much shorter hydraulic retention time of 12 days whilst maintaining process stability.

  3. Low-Dead-Volume Inlet for Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Naylor, Guy; Arkin, C.

    2010-01-01

    Gas introduction from near-ambient pressures to high vacuum traditionally is accomplished either by multi-stage differential pumping that allows for very rapid response, or by a capillary method that allows for a simple, single-stage introduction, but which often has a delayed response. Another means to introduce the gas sample is to use the multi-stage design with only a single stage. This is accomplished by using a very small conductance limit. The problem with this method is that a small conductance limit will amplify issues associated with dead -volume. As a result, a high -vacuum gas inlet was developed with low dead -volume, allowing the use of a very low conductance limit interface. Gas flows through the ConFlat flange at a relatively high flow rate at orders of magnitude greater than through the conductance limit. The small flow goes through a conductance limit that is a double-sided ConFlat.

  4. Bio-availability of tungsten in the vicinity of an abandoned mine in the English Lake District and some potential health implications.

    PubMed

    Wilson, Bob; Pyatt, F Brian

    2006-11-01

    This research addresses the occurrence, detection and possible fate of tungsten in the vicinity of an abandoned mine in the English Lake District. Aqua regia extraction and subsequent analysis of spoil and vegetation confirmed the presence of tungsten and other heavy metals. Spoil samples examined were last worked almost 100 years ago and the concentrations of copper, zinc, tungsten and arsenic detected demonstrate the environmental persistence of these metals in an area of relatively high rainfall. The bioaccumulation of tungsten by two species of plants is indicated and partitioning within different tissues of Calluna vulgaris is demonstrated. Mechanisms relating to mobility and speciation of the metals present were explored using sequential and single stage extraction systems. Tungsten appears to be relatively immobile when subjected to sequential extraction but increased bioavailability is indicated when single stage extraction using EDTA is employed.

  5. Space shuttle OMS helium regulator design and development

    NASA Technical Reports Server (NTRS)

    Wichmann, H.; Kelly, T. L.; Lynch, R.

    1974-01-01

    Analysis, design, fabrication and design verification testing was conducted on the technological feasiblity of the helium pressurization regulator for the space shuttle orbital maneuvering system application. A prototype regulator was fabricated which was a single-stage design featuring the most reliable and lowest cost concept. A tradeoff study on regulator concepts indicated that a single-stage regulator with a lever arm between the valve and the actuator section would offer significant weight savings. Damping concepts were tested to determine the amount of damping required to restrict actuator travel during vibration. Component design parameters such as spring rates, effective area, contamination cutting, and damping were determined by test prior to regulator final assembly. The unit was subjected to performance testing at widely ranging flow rates, temperatures, inlet pressures, and random vibration levels. A test plan for propellant compatibility and extended life tests is included.

  6. Broad specification fuels technology program, phase 1

    NASA Technical Reports Server (NTRS)

    Lohmann, R. P.; Jeroszko, R. A.

    1982-01-01

    An experimental evaluation was conducted to assess the impact of the use of broadened properties fuels on combustor design concepts. Emphasis was placed on establishing the viability of design modifications to current combustor concepts and the use of advanced technology concepts to facilitate operation on Experimental Referee Broad Specification (ERBS) fuel while meeting exhaust emissions and performance specifications and maintaining acceptable durability. Three different combustor concepts, representative of progressively more aggressive technology levels, were evaluated. When operated on ERBS rather than Jet A fuel, a single stage combustor typical of that in the most recent versions of the JT9D-7 engine was found to produce excess carbon monoxide emissions at idle and elevated liner temperatures at high power levels that were projected to reduced liner life by 13 percent. The introduction of improved component technology, such as refined fuel injectors and advanced liner cooling concepts were shown to have the potential of enhancing the fuel flexibility of the single stage combustor.

  7. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077.

    PubMed

    Pancha, Imran; Chokshi, Kaumeel; Maurya, Rahulkumar; Trivedi, Khanjan; Patidar, Shailesh Kumar; Ghosh, Arup; Mishra, Sandhya

    2015-01-01

    Microalgal biomass is considered as potential feedstock for biofuel production. Enhancement of biomass, lipid and carbohydrate contents in microalgae is important for the commercialization of microalgal biofuels. In the present study, salinity stress induced physiological and biochemical changes in microalgae Scenedesmus sp. CCNM 1077 were studied. During single stage cultivation, 33.13% lipid and 35.91% carbohydrate content was found in 400 mM NaCl grown culture. During two stage cultivation, salinity stress of 400 mM for 3 days resulted in 24.77% lipid (containing 74.87% neutral lipid) along with higher biomass compared to single stage, making it an efficient strategy to enhance biofuel production potential of Scenedesmus sp. CCNM 1077. Apart from biochemical content, stress biomarkers like hydrogen peroxide, lipid peroxidation, ascorbate peroxidase, proline and mineral contents were also studied to understand the role of reactive oxygen species (ROS) mediated lipid accumulation in microalgae Scenedesmus sp. CCNM 1077.

  8. Study of a spur gear dynamic behavior in transient regime

    NASA Astrophysics Data System (ADS)

    Khabou, M. T.; Bouchaala, N.; Chaari, F.; Fakhfakh, T.; Haddar, M.

    2011-11-01

    In this paper the dynamic behavior of a single stage spur gear reducer in transient regime is studied. Dynamic response of the single stage spur gear reducer is investigated at different rotating velocities. First, gear excitation is induced by the motor torque and load variation in addition to the fluctuation of meshing stiffness due to the variation of input rotational speed. Then, the dynamic response is computed using the Newmark method. After that, a parameter study is made on spur gear powered in the first place by an electric motor and in the second place by four strokes four cylinders diesel engine. Dynamic responses come to confirm a significant influence of the transient regime on the dynamic behavior of a gear set, particularly in the case of engine acyclism condition.

  9. Sandia National Laboratories shock thermodynamics applied research (STAR) facility

    SciTech Connect

    Asay, J.R.

    1981-08-01

    The Sandia National Laboratories Shock Thermodynamics Applied Research (STAR) Facility has recently consolidated three different guns and a variety of instrumentation capabilities into a single location. The guns available at the facility consist of a single-stage light gas gun, a single-stage propellant gun and a two-stage light gas gun, which cover a velocity range from 15 m/s to 8 km/s. Instrumentation available at the facility includes optical and microwave interferometry, time-resolved holography, fast x-radiography, framing and streak photography, fast multi-wavelength pyrometry, piezoelectric and piezoresistive gauges and computer data reduction. This report discusses the guns and instrumentation available at the facility and selected recent applications.

  10. Test Plans. Lightweight Durable TPS: Tasks 1,2,4,5, and 6

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.; Tu, Tina

    1994-01-01

    The objective of this task is to develop the fluted core flexible blankets, also referred to as the Tailorable Advanced Blanket Insulation (TABI), to a technology readiness level (TRL) of 6. This task is one of the six tasks under TA 3, Lightweight Durable TPS study, of the Single Stage to Orbit (SSTO) program. The purpose of this task is to develop a durable and low maintenance flexible TPS blanket material to be implemented on the SSTO vehicle.

  11. [The global impression technic in fixed dentures].

    PubMed

    Lamy, M; Mainjot, A

    2001-01-01

    The global impression technique allows to obtain in a single stage the impression of the abutment as well as their neighboring teeth. This technique often requires the placement of one or two retraction cords in the sulcus. The impression technique herein described is the double mix method. This method is based on the use of two elastomers with different viscosities, but from the same group thus allowing a simultaneous polymerization.

  12. Investigation of a liquid-metal magnetohydrodynamic power system.

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.; Hays, L. G.; Cerini, D. J.; Bogdanoff, D. W.

    1972-01-01

    Liquid-metal magnetohydrodynamic power conversion is being investigated for nuclear-electric propulsion. A liquid-metal MHD converter has no moving mechanical parts and requires a heat source temperature of only 1300 K. Cycle efficiencies of 5% to 8% for single-stage converters and 10% for multistage converters appear attainable. The specific weight of a 240 kWe MHD power plant has been estimated as 30 kg/kWe with shielding for unmanned science missions.

  13. Matlab as a robust control design tool

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.

    1994-01-01

    This presentation introduces Matlab as a tool used in flight control research. The example used to illustrate some of the capabilities of this software is a robust controller designed for a single stage to orbit air breathing vehicles's ascent to orbit. The global requirements of the controller are to stabilize the vehicle and follow a trajectory in the presence of atmospheric disturbances and strong dynamic coupling between airframe and propulsion.

  14. Uranium Measurement Improvements at the Savannah River Technology Center

    SciTech Connect

    Shick, C. Jr.

    2002-02-13

    Uranium isotope ratio and isotope dilution methods by mass spectrometry are used to achieve sensitivity, precision and accuracy for various applications. This report presents recent progress made at SRTC in the analysis of minor isotopes of uranium. Comparison of routine measurements of NBL certified uranium (U005a) using the SRTC Three Stage Mass Spectrometer (3SMS) and the SRTC Single Stage Mass Spectrometer (SSMS). As expected, the three stage mass spectrometer yielded superior sensitivity, precision, and accuracy for this application.

  15. Rocky Mountain Arsenal North Boundary Expansion Containment System Construction Foundation Report

    DTIC Science & Technology

    1984-03-01

    of ospp tests and interfer- ence tests were performed prior to 1961 to determine aquifer and ground-water characteristics. From the test data obtained...contaminant flow problems at the north boundary. The WES program included a series of well pumping tests at the Arsenal to establish aquifer ...size distri.bution, and sh.-ar strength. Soil borings ware made by R4A and testing done by WES. Multistage and single stage aquifer pump tests ware

  16. Gears and Power Transmission Systems for Helicopters and Turboprops; Conference Proceedings: Propulsion and Energetics Panel Symposium (64th) Held at Lisbon, Portugal on 8-12 October 1984.

    DTIC Science & Technology

    1985-01-01

    double row bearings are used in planetary gear supports for their ability to withstand misalignments imposed by offset loads on the planet carrier...13 a similar study was done for a typical planetary gear set such as found in a turboprop or helicopter reduction gear stage. The study was done for...in a single stage are not common. The order of weights from lightest to heaviest (for equal gear ratios) is planetary , parallel axis, spiral bevel

  17. Improvement of DOC removal by multi-stage AOP-biological treatment.

    PubMed

    Fahmi; Nishijima, Wataru; Okada, Mitsumasa

    2003-03-01

    The single and multi-stages advanced oxidation process (AOP)-biological treatments were evaluated to apply for drinking water treatment, especially for the water containing less susceptible dissolved organic carbon (DOC) to ozone, comparing with the ozonation-biological treatment. Minaga reservoir water and the secondary effluent from a Municipal wastewater treatment plant were used as dissolved organic matter (DOM) solutions. DOC removals after 60 min AOP-biological treatment were 62% and 41% in the Minaga reservoir water and the secondary effluent, respectively, whereas those in the ozonation-biological treatment only 40% and 15% of DOC were removed, respectively. The result indicated that the single-stage AOP-biological treatment could improve DOC removal in comparison with the single-stage ozonation-biological treatment. This is because the AOP mineralized both biodegradable dissolved organic carbon (BDOC) produced in the early stage of oxidation and non-biodegradable dissolved organic carbon (NBDOC), whereas only BDOC was mineralized by further ozonation and NBDOC was not oxidized in the ozonation-biological treatment. The multi-stage treatment could not improve DOC removal in comparison with the single-stage treatment in the ozonation-biological treatment for the secondary effluent containing less susceptible DOC to ozone. However, the multi-stage AOP-biological treatment significantly reduced DOC and achieved 71% of DOC removal by 4 times repetition of 15 min oxidation, whereas DOC removal was 41% in the single-stage AOP-biological treatment for the same oxidation time. The improvement of DOC removal by the multi-stage AOP-biological treatment was due to BDOC removal as a radical scavenger by subsequent biological treatment in the early stage of oxidation and direct mineralization in the latter stage of oxidation.

  18. Effects of High Power Lasers, Number 4

    DTIC Science & Technology

    1974-10-31

    the R\\S dynamic structures of the resultant stationary plasmatron . New theoretical results are obtained relating to t-mperaturts and pressures in...the erosion of specimens, depended on their thermal processing history . Thus the high erosion of hardened specimens in comparison to the erosion...Investigations were done using two methods: 1. Optical diagnostics. A single-stage PIM-3 electron-optical converter was used for scanning plasma

  19. Denitrification-Efficiencies of Alternate Carbon Sources

    DTIC Science & Technology

    1984-07-01

    systems.1,2,3,6 Most high nitrate industrial wastewaters , such as those produced in the fertilizer, explosive and nuclear fuel processing industries do not...application in cases where at two - stage system is utilized, such that excessive TOC is removed in the second stage . 8 . ....- , NQ6t , . . k:.. . TABLE 2...nitrates (1259 mg/liter) in a single- stage continuous flow fermenter. The determination of relative efficiency was the minimum C/N ratio (grams of

  20. InP Heterojunction Bipolar Transistor Amplifiers to 255 GHz

    NASA Technical Reports Server (NTRS)

    Radisic, Vesna; Sawdai, Donald; Scott, Dennis; Deal, William; Dang, Linh; Li, Danny; Cavus, Abdullah; To, Richard; Lai, Richard

    2009-01-01

    Two single-stage InP heterojunction bipolar transistor (HBT) amplifiers operate at 184 and 255 GHz, using Northrop Grumman Corporation s InP HBT MMIC (monolithic microwave integrated circuit) technology. At the time of this reporting, these are reported to be the highest HBT amplifiers ever created. The purpose of the amplifier design is to evaluate the technology capability for high-frequency designs and verify the model for future development work.

  1. Wake Interaction Effects on the Transition Process on Turbine Blades

    DTIC Science & Technology

    1989-09-01

    Ainsworth J. E. LaGraff Dept. of Engineering Science Dept. of Mechanical and Oxford University Aerospace Engineerinm Oxfoid, England, OXI 3PJ Syracuse...D rotating single stage environment. EXPERIMENTAL SET-UP The main experimental facility used was the Oxford University Isentropic Light Piston Tunnel...Aerodynamics and Heat Transfer in a Transonic Turbine Stc 6 e," D. Phil Thesis, Oxford University , 1987. 10. Ashworth, D.A. and LaGraff, J.E

  2. Advanced Expander Test Bed Program. Preliminary Design Review Report

    DTIC Science & Technology

    1991-05-01

    stability include double pilots for impellers, inducers and turbine rotors , and two-plane balance for impellers and turbine rotors . Other design...the wings can be changed if required during the design phase to make small adjustments to rotor thrust balance . The turbine is a single-stage. full...admission, reaction turbine. The reaction of the blades is being adjusted during the design phase to balance the major axial loads on the rotor . The

  3. Recent development on statistical methods for personalized medicine discovery.

    PubMed

    Zhao, Yingqi; Zeng, Donglin

    2013-03-01

    It is well documented that patients can show significant heterogeneous responses to treatments so the best treatment strategies may require adaptation over individuals and time. Recently, a number of new statistical methods have been developed to tackle the important problem of estimating personalized treatment rules using single-stage or multiple-stage clinical data. In this paper, we provide an overview of these methods and list a number of challenges.

  4. Aerodynamic Design of Axial-Flow Compressors. VII - Blade-Element Flow in Annular Cascades

    NASA Technical Reports Server (NTRS)

    Robbins, William H.; Jackson, Robert J.; Lieblein, Seymour

    1955-01-01

    Annular blade-element data obtained primarily from single-stage compressor installations are correlated over a range of inlet Mach numbers and cascade geometry. The correlation curves are presented in such a manner that they are related directly to the low-speed two-dimensional-cascade data of part VI of this series. Thus, the data serve as both an extension and a verification of the two-dimensional-cascade data. In addition, the correlation results are applied to compressor design.

  5. Well treating process and composition

    SciTech Connect

    Holland, A.C.

    1984-09-11

    A process is disclosed for treating a subterranean zone by emplacing therein a hardenable aqueous slurry and then permitting the slurry to harden, where the slurry comprises a hydraulic cement, water, sodium bentonite, sodium metasilicate, and a hydroxyethyl cellulose. The composition and process employing same is particularly useful in the treatment of oil and gas wells where cementing of a weak formation of very long string cementing, in a single stage, is desired.

  6. Cold-air performance of a 12.766-centimeter-tip-diameter axial-flow cooled turbine. 1: Design and performance of a solid blade configuration

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.

    1975-01-01

    A solid blade version of a single-stage, axial-flow turbine was investigated to determine its performance over a range of speeds from 0 to 105 percent of equivalent design speed and over a range of total to static pressure ratios from 1.62 to 5.07. The results of this investigation will be used as a baseline for comparison with those obtained from a cooled version of this turbine.

  7. Enhancement of water-gas shift reaction efficiency: catalysts and the catalyst bed arrangement

    NASA Astrophysics Data System (ADS)

    Baronskaya, Natal'ya A.; Minyukova, Tat'yana P.; Khassin, Aleksandr A.; Yurieva, Tamara M.; Parmon, Valentin N.

    2010-12-01

    The results of studies devoted to the search for catalysts of water-gas shift (WGS) reaction that are highly active in a wide temperature interval are generalized. New compositions based on traditional and alternative, as regards the chemical composition, catalysts of high- and low-temperature WGS reaction are considered in detail. The single-stage arrangement of WGS reaction ensuring small temperature gradients in the radial direction of the catalyst bed are discussed.

  8. Adaptive Pulse Compression Repair Processing

    DTIC Science & Technology

    2005-05-01

    algorithm such that an MMSE filter could be estimated for each individual range cell to suppress range sidelobes. Range sidelobe suppression can also be...noticeable effect yet the increased sensitivity of PCR results in a general increase in range sidelobe levels. Also, the sidelobe shoulders are again...to its significantly increased sensitivity the PCR algorithm (a single stage) has some degradation that manifests in the form of increased range

  9. Lambda network having 2.sup.m-1 nodes in each of m stages with each node coupled to four other nodes for bidirectional routing of data packets between nodes

    DOEpatents

    Napolitano, Jr., Leonard M.

    1995-01-01

    The Lambda network is a single stage, packet-switched interprocessor communication network for a distributed memory, parallel processor computer. Its design arises from the desired network characteristics of minimizing mean and maximum packet transfer time, local routing, expandability, deadlock avoidance, and fault tolerance. The network is based on fixed degree nodes and has mean and maximum packet transfer distances where n is the number of processors. The routing method is detailed, as are methods for expandability, deadlock avoidance, and fault tolerance.

  10. Econometric comparisons of liquid rocket engines for dual-fuel advanced earth-to-orbit shuttles

    NASA Technical Reports Server (NTRS)

    Martin, J. A.

    1978-01-01

    Econometric analyses of advanced Earth-to-orbit vehicles indicate that there are economic benefits from development of new vehicles beyond the space shuttle as traffic increases. Vehicle studies indicate the advantage of the dual-fuel propulsion in single-stage vehicles. This paper shows the economic effect of incorporating dual-fuel propulsion in advanced vehicles. Several dual-fuel propulsion systems are compared to a baseline hydrogen and oxygen system.

  11. Artist concept computer graphic of Lockheed Martin X-33 Advance Technology Demonstrator vehicle in f

    NASA Technical Reports Server (NTRS)

    1998-01-01

    An artist's conception of the X-33 in flight, with the aerospike engine firing. The X-33 demonstrator was designed to test a wide range of new technologies (including the aerospike engine), that would be used in a future single-stage-to-orbit reusable launch vehicle called the VentureStar. Due to technical problems with the liquid hydrogen tank, however, the X-33 program was cancelled in February 2001.

  12. Anti-Matter Propulsion for Space. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The bibliography contains citations concerning techniques for the efficient production, long-term storage and effective utilization of antimatter for space propulsion. Inertial confinement fusion (ICF), magnetic mirror fusion, and liquid-propellant thermal antimatter fusion propulsion are some of the technologies discussed. Radiation shields, cryogenic confinement of plasma and single-stage-to-orbit vehicles are also cited. (Contains 50-250 citations and includes a subject term index and title list.)

  13. Microscale Thermal-Transpiration Gas Pump

    NASA Technical Reports Server (NTRS)

    Vargo, Stephen; Muntz, Phillip; Shiflett, Geoff

    2003-01-01

    A recent addition to the growing class of microelectromechanical systems (MEMS) is a single stage of a Knudsen compressor. This device was fabricated and tested to demonstrate the feasibility of Knudsen compressors as miniature vacuum pumps for future portable scientific instruments. The attributes of Knudsen compressors that make them attractive as miniature vacuum pumps are that they contain no moving parts and operate without need for lubricants or working fluids.

  14. Note: Heated flyer-plate impact system.

    PubMed

    Dolan, D H; Seagle, C T; Ao, T; Hacking, R G

    2014-07-01

    A technique for launching heated flyer plates was developed on a single-stage gas gun. This type of impact creates a well-posed mechanical state and a tunable thermal state, which is useful for calibrating dynamic temperature measurements. Proof-of-principle thermoreflectance measurements were performed using this technique. Since the target remains at room temperature until the moment of impact, heated flyers avoid differential expansion and annealing issues, allowing novel impact experiments to be performed.

  15. Plug engine systems for future launch vehicle applications

    NASA Astrophysics Data System (ADS)

    Immich, H.; Koelle, D. E.; Parsley, R. C.

    1992-08-01

    Several feasible design options are presented for plug engine systems designed for future launch vehicle applications, including a plug nozzle engine with an annular combustion chamber, a segmented modular design, and an integration of a number of conventional engines around a common plug. The advantages and disadvantages of these options are discussed for a range of potential applications, which include single-stage-to-orbit vehicles and upper stage vehicles such as the second stage of the Saenger HTOL launch vehicle concept.

  16. Minimum-fuel ascent to orbit using air-breathing propulsion

    NASA Technical Reports Server (NTRS)

    Van Buren, Mark A.; Mease, Kenneth D.

    1989-01-01

    Single-stage vehicles using air-breathing propulsion hold promise for more economical delivery of payloads to orbit. The characterization of minimum-fuel trajectories over the range of possible engine and aerodynamic performance of such vehicles provides useful feedback to engine and vehicle designers and paves the way for the development of guidance logic. The minimum-fuel trajectory problem is formulated, propulsion system and aerodynamic models are presented, a numerical solution approach is described, and some preliminary results are discussed.

  17. Air-Breathing Launch Vehicle Technology Being Developed

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    2003-01-01

    Of the technical factors that would contribute to lowering the cost of space access, reusability has high potential. The primary objective of the GTX program is to determine whether or not air-breathing propulsion can enable reusable single-stage-to-orbit (SSTO) operations. The approach is based on maturation of a reference vehicle design with focus on the integration and flight-weight construction of its air-breathing rocket-based combined-cycle (RBCC) propulsion system.

  18. Research Study to Identify Technology Requirements for Advanced Earth-Orbital Transportation Systems, Dual-Mode Propulsion

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The results of a study of dual mode propulsion concepts applied to advanced earth orbital transportation systems using reuseable single stage to orbit vehicle concepts were summarized. Both series burn and parallel burn modes of propulsion were analyzed for vertical takeoff, horizontal landing vehicles based on accelerated technology goals. A major study objective was to assess the merits of dual mode main propulsion concepts compared to single mode concepts for carrying payloads of Space Shuttle type to orbit.

  19. Reconstruction of the distal humerus and elbow joint using a pedicled scapular flap: case report.

    PubMed

    Nthumba, Peter; George, Susan; Jami, Michael; Nyoro, Partick

    2013-06-01

    Loss of elbow function resulting from major bone loss negatively affects quality of life and leaves limited options for reconstruction and restoration of function. To overcome this disabling problem, we reconstructed the distal humerus of a child in a single stage using a scapular flap based on the angular branch of the thoracodorsal artery as a pedicled flap. We also reconstructed the proximal ulna using an iliac crest bone graft with dermal graft interposition arthroplasty, which enabled the restoration of useful elbow function.

  20. Catalysts for the reduction of SO{sub 2} to elemental sulfur

    SciTech Connect

    Jin, Y.; Yu, Q.Q.; Chang, S.G.

    1995-11-01

    Catalysts have been prepared for the reduction of SO{sub 2} to elemental sulfur by synthesis gas. A catalyst allows to obtain more than 97% yield of elemental sulfur with a single-stage reactor at 540{degrees}C. A lifetime test has been successfully performed. The mass balance of sulfur and carbon has been checked. The effect of H{sub 2}S, COS, and H{sub 2}O has been studied.

  1. Configuration development study of the OSU 1 hypersonic research vehicle

    NASA Technical Reports Server (NTRS)

    Stein, Matthew D.; Frankhauser, Chris; Zee, Warner; Kosanchick, Melvin, III; Nelson, Nick; Hunt, William

    1993-01-01

    In an effort to insure the future development of hypersonic cruise aircraft, the possible vehicle configurations were examined to develop a single-stage-to-orbit hypersonic research vehicle (HRV). Based on the needs of hypersonic research and development, the mission goals and requirements are determined. A body type is chosen. Three modes of propulsion and two liquid rocket fuels are compared, followed by the optimization of the body configuration through aerodynamic, weight, and trajectory studies. A cost analysis is included.

  2. Numerical simulations of a pulsed detonation wave augmentation device

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc; Adelman, Henry; Menees, Gene P.

    1993-01-01

    We present here the concept of a hybrid engine for Single Stage To Orbit (SSTO) air-breathing hypersonic vehicle. This concept relies on the use of pulsed detonation waves, both for thrust generation and mixing/combustion augmentation. We describe the principles behind the engine concept, which we call the Pulsed Detonation Wave Augmentor (PDWA). We demonstrate the principles of operation for two possible configurations through numerical simulations. We also attempt a first approximation to engine design, and propose various applications.

  3. Static and Dynamics of a Pump Impeller with a Balancing Device Part II: Dynamic Analysis

    NASA Astrophysics Data System (ADS)

    Martsinkovsky, V. A.; Zhulyov, A.; Kundera, C.

    2014-08-01

    This paper presents the theoretical study of the system comprising an impeller and a balancing device. It deals with the dynamic analysis of the system, i.e., the axial vibrations of the impeller, and the system stability. The dynamic analysis took into account linearized hydrodynamic forces and moments generated in the longitudinal clearances of the seals of the impeller. The theoretical analysis was supplemented with a numerical example with characteristics determined for a real single-stage centrifugal pump

  4. Processing equipment for resource recovery systems. Volume 3: Field test evaluation of shredders

    NASA Astrophysics Data System (ADS)

    Savage, G. M.; Shiflett, G. R.

    1980-07-01

    A program to test and evaluate large scale shredders used for the size reduction of solid waste is reported. Tests were conducted on seven horizontal hammermills, one vertical hammermill, and one vertical ring shredder at six commercial sites. Both two stage size reduction and single stage size reduction were studied. Analytical relationships among the comminution parameters and the establishment of levels of performance for energy consumption and hammer wear associated with size reduction of solid waste are developed.

  5. Metal oxide-polymer composites

    NASA Technical Reports Server (NTRS)

    Wellinghoff, Stephen T. (Inventor)

    1994-01-01

    A method of making metal oxide clusters in a single stage by reacting a metal oxide with a substoichiometric amount of an acid in the presence of an oxide particle growth terminator and solubilizer. A method of making a ceramer is also disclosed in which the metal oxide clusters are reacted with a functionalized polymer. The resultant metal oxide clusters and ceramers are also disclosed.

  6. Metal oxide-polymer composites

    NASA Technical Reports Server (NTRS)

    Wellinghoff, Stephen T. (Inventor)

    1997-01-01

    A method of making metal oxide clusters in a single stage by reacting a metal oxide with a substoichiometric amount of an acid in the presence of an oxide particle growth terminator and solubilizer. A method of making a ceramer is also disclosed in which the metal oxide clusters are reacted with a functionalized polymer. The resultant metal oxide clusters and ceramers are also disclosed.

  7. COLLABORATIVE RESEARCH AND DEVELOPMENT (CR&D) Delivery Order 0065: Nanostructured Dynamic Modulus Materials

    DTIC Science & Technology

    2008-03-01

    martensitic phase, deforming the specimen, and heating the specimen to its fully austenitic phase. During heating, the motion of the specimen is...on cooling. austenite finish temperature (Af), n—the temperature at which the martensite to austenite transformation is completed on heating in a...DSC) curve upon heating for the martensite to austenite transformation in a single-stage transformation (Fig. 1) or the temperature of the endothermic

  8. Ceramics for the advanced automotive gas turbine engine - A look at a single shaft design

    NASA Technical Reports Server (NTRS)

    Nosek, S. M.

    1978-01-01

    A single-shaft regenerative design with a single-stage radial turbine is analyzed in terms of achievable fuel economy for the cases of both limited and unlimited turbine tip speed and regenerator inlet temperature. The 100-hp engine for a 3500-lb automobile is designed to use gasoline. Fuel economy data and operating parameters are presented for different values of turbine inlet temperatures, and turbine stress estimates and ceramic design stress estimates are discussed.

  9. Thermal performance testing of two Thales 9310 pulse-tube cryocoolers for PHyTIR

    SciTech Connect

    Paine, Christopher G.

    2014-01-29

    PHyTIR is a NASA-funded technology demonstration for a near-term earth-observing instrument in the thermal infrared spectrum, intended for use in the HyspIRI mission. PHyTIR will use two Thales 9310 single-stage pulse tube cryocoolers, one to directly cool the FPA, the other to simulate a passive radiator. We report performance measurements for the two Thales 9310 cryocoolers intended for inclusion in the PHyTIR demonstrator.

  10. Heterostructure integrated thermionic coolers

    NASA Astrophysics Data System (ADS)

    Shakouri, Ali; Bowers, John E.

    1997-09-01

    Thermionic emission in heterostructures is proposed for integrated cooling of high power electronic and optoelectronic devices. This evaporative cooling is achieved by selective emission of hot electrons over a barrier layer from the cathode to the anode. It is shown that with available high electron mobility and low thermal conductivity materials, and with optimized conduction band offsets in heterostructures, single-stage room temperature cooling of up to 20°-40° over thicknesses of the order of microns is possible.

  11. Pedicled fasciocutaneous anterolateral thigh flap for the reconstruction of a large postoncologic abdominal wall resection defect: a case report.

    PubMed

    Nthumba, Peter; Barasa, Jack; Cavadas, Pedro C; Landin, Luis

    2012-02-01

    The anterolateral thigh (ALT) flap has been used to cover defects between the proximal third of the leg and lower abdomen, and with modification, may cover epigastric defects. We used the ALT flap to cover a full-thickness defect of over half the anterior abdominal wall. We conclude that abdominal wall defects of large sizes can be successfully reconstructed using an appropriately designed ALT flap; a simple, single-stage effective reconstruction.

  12. The First Test Flight of the Delta Clipper-Experimental Advanced (DC-XA)

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The Delta Clipper-Experimental Advanced (DC-XA) is a single-stage-to-orbit, vertical takeoff / vertical landing launch vehicle concept, whose development was geared to significantly reduce launch cost and provided a test bed for NASA Reusable Launch Vehicle (RLV) technology. This photograph shows the descending vehicle landing during the first successful test flight at White Sands Missile Range, New Mexico. The program was discontinued in 2003.

  13. Advanced Transportation System Studies Technical Area 2 (TA-2) Heavy Lift Launch Vehicle Development Contract. Volume 2; Technical Results

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The sections in this report include: Single Stage to Orbit (SSTO) Design Ground-rules; Operations Issues and Lessons Learned; Vertical-Takeoff/Landing Versus Vertical-Takeoff/Horizontal-Landing; SSTO Design Results; SSTO Simulation Results; SSTO Assessment Results; SSTO Sizing Tool User's Guide; SSto Turnaround Assessment Report; Ground Operations Assessment First Year Executive Summary; Health Management System Definition Study; Major TA-2 Presentations; First Lunar Outpost Heavy Lift Launch Vehicle Design and Assessment; and the section, Russian Propulsion Technology Assessment Reports.

  14. Turbine Engine Research Center (TERC) Data System Enhancement and Test Article Evaluation. Delivery Order 0002: TERC Aeromechanical Characterization

    DTIC Science & Technology

    2005-06-01

    aspects: (1) aerodynamic performance as measured in terms of changes in peak efficiency and stall margin, and (2) aeromechanical response associated...characterize the part-speed stall flutter response of a single stage unshrouded axial- flow fan. These sensors are distributed around the circumference...and closed clearances are analyzed for the case where the fan is back-pressured into the stall flutter zone. The experimental data is analyzed using

  15. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Operating the SDUV-FEL with the echo-enabled harmonic generation scheme

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Hui; Deng, Hai-Xiao; Gu, Qiang; Li, Dong-Guo; Wang, Dong; Zhang, Meng; Zhao, Zhen-Tang

    2009-08-01

    Using the recently proposed echo-enabled harmonic generation (EEHG) free-electron laser (FEL) scheme, it is shown that operating the Shanghai deep ultraviolet FEL (SDUV-FEL) with single-stage to higher harmonics is very promising, with higher frequency up-conversion efficiency, higher harmonic selectivity and lower power requirement of the seed laser. The considerations on a proof-of-principle experiment and expected performance in SDUV-FEL are given.

  16. Precision flyer initiator

    SciTech Connect

    Frank, A

    1999-04-19

    A propulsion point design is presented for lifting geological samples from Mars. Vehicle complexity is kept low by choosing a monopropellant single stage. Little new development is needed, as miniature pump fed hydrazine has been demonstrated. Loading the propellant just prior to operation avoids structural, thermal, and safety constraints otherwise imposed by earlier mission phases. hardware mass and engineering effort are thereby diminished. The Mars liftoff mass is 7/8 hydrazine, <5% propulsion hardware, and >3% each for the payload and guidance.

  17. Research in digital adaptive flight controllers

    NASA Technical Reports Server (NTRS)

    Kaufman, H.

    1976-01-01

    A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Both explicit controllers which directly utilize parameter identification and implicit controllers which do not require identification were considered. Extensive analytical and simulation efforts resulted in the recommendation of two explicit digital adaptive flight controllers. Interface weighted least squares estimation procedures with control logic were developed using either optimal regulator theory or with control logic based upon single stage performance indices.

  18. Regenerative amplification in alexandrite of pulses from specialized oscillators

    SciTech Connect

    Bado, P.; Pessot, M.; Squier, J.; Mourou, G.A.; Harter, D.J.

    1988-06-01

    The authors describe an alexandrite regenerative amplifier used to amplify the output of various specialized oscillators. Nanosecond pulses from a narrow frequency CW-pumped dye laser, picosecond pulses from a gain-switched diode laser, and femtosecond pulses from a synchronously pumped dye laser were amplified by six-ten orders of magnitude in a single stage while conserving the temporal and spectral profiles characteristic to the oscillators.

  19. Simulated dynamic response of a servovalve controlled hydraulic actuator

    NASA Technical Reports Server (NTRS)

    Babcock, Dale A.

    1990-01-01

    A general purpose math model of a servovalve controlled hydraulic actuator system is derived. The system consists of a linear actuator with unequal piston areas, a single stage servovalve, a gas charged hydraulic accumulator, and the interconnecting piping. The state equations are integrated using the Advanced Continuous Simulation Language (ACSL) for determining the system's dynamic response characteristics. Using this generalized hydraulic actuator system model, response characteristics were determined for various servovalve commands.

  20. Cold air performance of a 12.766-centimeter-tip-diameter axial-flow cooled turbine. 2: Effect of air ejection on turbine performance

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.

    1977-01-01

    An air cooled version of a single-stage, axial-flow turbine was investigated to determine aerodynamic performance with and without air ejection from the stator and rotor blades surfaces to simulate the effect of cooling air discharge. Air ejection rate was varied from 0 to 10 percent of turbine mass flow for both the stator and the rotor. A primary-to-air ejection temperature ratio of about 1 was maintained.

  1. Selectivity of a lithium-recovery process based on LiFePO4.

    PubMed

    Trócoli, Rafael; Battistel, Alberto; Mantia, Fabio La

    2014-08-04

    The demand for lithium will increase in the near future to 713,000 tonnes per year. Although lake brines contribute to 80% of the production, existing methods for purification of lithium from this source are expensive, slow, and inefficient. A novel electrochemical process with low energy consumption and the ability to increase the purity of a brine solution to close to 98% with a single-stage galvanostatic cycle is presented.

  2. The ABCs of pump selection for mine dewatering

    SciTech Connect

    Morgan, S.E.

    2008-10-15

    Choosing the right type of pump for removing water from mine operations can provide significant benefits in overall performance and cost of operation. The article describes the types of pump most commonly used: vertical turbine pumps, electric and hydraulic submersible pumps, horizontal multistage centrifugal pumps and horizontal single-stage centrifugal pumps. It gives points to consider when selecting a suitable pump, including solids handling capacity and acid content, portability, automatic operation, easy maintenance and parts availability. 1 photo.

  3. Computer graphic of Lockheed Martin X-33 Reusable Launch Vehicle (RLV)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Another artist's conception of the X-33, this time after engine shutdown. The vehicle is shown gliding toward its landing site in the southwestern U.S. The X-33 was undertaken to demonstrate the technologies required for a full scale, single-stage-to-orbit launch vehicle. The goal was to substantially reduce the cost of putting payloads into orbit. This proved elusive, and for a variety of reasons, the X-33 was cancelled in February 2001.

  4. Computer graphic of Lockheed Martin X-33 Reusable Launch Vehicle over clouds and water

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Another artist's conception of the X-33, this time after engine shutdown. The vehicle is shown gliding toward its landing site in the southwestern U.S. The X-33 was undertaken to demonstrate the technologies required for a full scale, single-stage-to-orbit launch vehicle. The goal was to substantially reduce the cost of putting payloads into orbit. This proved elusive, and for a variety of reasons, the X-33 was cancelled in February 2001.

  5. Delta Clipper vehicle design for supportability

    NASA Astrophysics Data System (ADS)

    Smiljanic, Ray R.; Klevatt, Paul L.; Steinmeyer, Donald A.

    1993-02-01

    The paper describes the Single Stage Rocket Technology (SSRT) Delta Clipper vehicle design. As a means of reducing vehicle processing and turnaround times, the SSRT Delta Clipper design, contrary to past practices, incorporates support ability engineering features into its initial set of design requirements. The engineering process used to 'design-in' supportability into the Delta Clipper vehicle is described in detail and is illustrated using diagrams.

  6. Spacecraft separation systems mechanisms: Characteristics/performance during high altitude flight test from NASA Wallops Station, Va.

    NASA Technical Reports Server (NTRS)

    Pride, J. D.

    1973-01-01

    The applications of various separation mechanisms to meet flight mission goals within the physical and environmental constraints of a single stage rocket test vehicle are considered. Each separation concept was selected from the numerous choices available on the basis of its unique requirement and the flight test vehicle incorporated several different concepts. Attention to specific requirements and thoroughness in design and testing were essential to success since there is no specific single answer to separation problems.

  7. A Numerical Investigation of Turbine Noise Source Hierarchy and Its Acoustic Transmission Characteristics: Proof-of-Concept Progress

    NASA Technical Reports Server (NTRS)

    VanZante, Dale; Envia, Edmane

    2008-01-01

    A CFD-based simulation of single-stage turbine was done using the TURBO code to assess its viability for determining acoustic transmission through blade rows. Temporal and spectral analysis of the unsteady pressure data from the numerical simulations showed the allowable Tyler-Sofrin modes that are consistent with expectations. This indicated that high-fidelity acoustic transmission calculations are feasible with TURBO.

  8. Solution of the Average-Passage Equations for the Incompressible Flow through Multiple-Blade-Row Turbomachinery

    DTIC Science & Technology

    1994-02-01

    especially Mr. Tim A. Beach, Mr. Mark L. Celestina , and Dr. Kevin R. Kirtley-gave valuable recommendations throughout the project. Dr. Eli Turkel of...machine is briefly described in the following section. Though in significantly less detail, it is taken direcfly from Adamczyk, Mulac, and Celestina ...Adamczyk, Mulac, and Celestina [1986] devised a method for computing 5 for an inviscid single-stage machine. The method has the very attractive

  9. Policy implications in developing a land use management information systems

    NASA Technical Reports Server (NTRS)

    Landini, A. J.

    1975-01-01

    The current land use map for the city of Los Angeles was developed by the guesstimation process and provides single stage information for each level in the critical geographical hierarchy for land use planning management. Processing and incorporation of LANDSAT data in the land use information system requires special funding; however, computergraphic maps are able to provide a viable information system for city planning and management.

  10. Development of a Mobile Ice Nucleus Counter

    SciTech Connect

    Kok, Gregory; Kulkarni, Gourihar

    2014-07-10

    An ice nucleus counter has been constructed. The instrument uses built-in refrigeration systems for wall cooling. A cascade refrigeration system will allow the cold wall to operate as low as -70°C, and a single stage system can operate the warm wall at -45C. A unique optical particle counter has been constructed using polarization detection of the scattered light. This allows differentiation of the particles exiting the chamber to determine if they are ice or liquid.

  11. A two DOF simulation of meshing in spur gear sets with modelling of the effect of individual tooth mass

    NASA Astrophysics Data System (ADS)

    Komitopoulos, Nikolaos; Vakouftsis, Christos

    2014-10-01

    A Two-Degree Of Freedom analytical model of meshing in a single-stage spur gear set was developed and used for time-domain dynamic simulation. Apart from the time-varying tooth stiffness, the individual tooth mass, reduced to the meshing point, was also taken into consideration and modeled. The simulations that were performed by means of MatLab software using numerical methods highlight the effect of the individual tooth mass in the dynamic response of the gear stage.

  12. Generation of sub-50 fs pulses from a high-power Yb-doped fiber amplifier.

    PubMed

    Deng, Yujun; Chien, Ching-Yuan; Fidric, Bernard G; Kafka, James D

    2009-11-15

    We demonstrate the generation of 48 fs pulses with 18 W average power and 226 nJ of pulse energy from a Yb-doped fiber amplifier. The system uses a simple stretcher-free single-stage amplifier configuration operating in the parabolic pulse regime. The gain fiber length and pump wavelength are chosen in order to reduce the gain per unit length and generate both shorter pulses and higher pulse energy.

  13. Partially-grounded depressed beam collector for the O-MBK and beyond

    NASA Astrophysics Data System (ADS)

    Jiang, Yong; Teryaev, Vladimir E.; Shchelkunov, Sergey V.; Hirshfield, Jay L.

    2017-03-01

    To address RF source inefficiency, we present a design of an L-band multi-beam klystron with a new type of depressed collector. It comprises a grounded element, a magnetic lens, and an electrode held at negative potential. This collector allows recovery of a larger portion of energy in the spent electron beams than could a conventional depressed collector, and will increase the tube efficiency towards 80 % in a single stage.

  14. OAST Space Theme Workshop. Volume 2: Theme summary. 2: Space industrialization (no. 8). A. Theme statement. B. 26 April 1976 presentation. C. Summary statement. D. Initiative action (form 5)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Enabling technology needs and other requirements to support space industrialization include: large space structures; fabrication and joining processes; single stage to orbit and heavy lift launch vehicles; nuclear and solar space power systems; robotics, manipulators, and teleoperators; biotechnology in space; artificial gravity; the utilization of lunar materials for construction; and the extraction of oxygen and metals from lunar resources. New initiatives (FY 1978) directly supportive or partly related to space industrialization are listed.

  15. Mars ascent propulsion on a minimum scale

    SciTech Connect

    Whitehead, J.C.; Guernsey, C.S.

    1998-03-03

    A concept is presented for a single stage vehicle intended to lift a Mars sample to an orbital rendezvous. At 200 kg liftoff mass, it can potentially be delivered by a Mars Pathfinder size aeroshell. Based on launch vehicle design principles, propellants are pumped from thin-walled low pressure tanks into compact high pressure thrusters. Technical risk is reduced by using non-cryogenic propellants, and by driving piston pumps with heated helium.

  16. Organic Rankine power conversion subsystem development for the small community solar thermal power system

    NASA Technical Reports Server (NTRS)

    Barber, R. E.; Boda, F. P.

    1982-01-01

    The development and preliminary test results for an air-cooled, hermetically sealed 20 kW sub E organic Rankine cycle engine/alternator unit for use with point focussing distributed receiver solar thermal power system. A 750 F toluene is the working fluid and the system features a high speed, single-stage axial flow turbine direct-coupled to a permanent magnet alternator. Good performance was achieved with the unit in preliminary tests.

  17. Progress on 10 Kelvin cryo-cooled sapphire oscillator

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Dick, G. John; Diener, William A.

    2004-01-01

    We present recent progress on the 10 Kelvin Cryocooled Sapphire Oscillator (10K CSO). Included are incorporation of a new pulse tube cryocooler, cryocooler vibration comparisons between G-M and pulse-tube types, phase noise, and frequency stability tests. For the advantage of a single stage pulse tube cryocooler, we also present results for a 40K Compensated Sapphire Oscillator (40K CSO).

  18. Particle Beam Weapons,

    DTIC Science & Technology

    1982-03-31

    designs; compensating pulse alternating generators, single stage inertial storage generators and magnetic fluid generators. Of these, magnetic fluid generators...utilization of the rocket fuel. Supplying the fuel 6 is also easier. The United States has designed a magnetic fluid generator which supplies 10 megawatts...at Semipalatinsk in Soviet Central Asia, electricity has been generated by a piston type magnetic fluid generator which may have derived its power from

  19. Study of a solid hydrogen cooler for spacecraft instruments and sensors

    NASA Technical Reports Server (NTRS)

    Sherman, A.

    1980-01-01

    The results of tests and studies to investigate the utilization of solid hydrogen for cooling of spacecraft instruments and sensors are presented. The results are presented in two sections; the first describing the tests in which an existing single stage solid cooler was filled and tested with solid hydrogen and the second which describes the analysis and design of a catalytic converter which will be tested in the vent line of the cooler.

  20. Mars to orbit with pumped hydrazine

    SciTech Connect

    Whitehead, J C

    1999-04-27

    A propulsion point design is presented for lifting geological samples from Mars. Vehicle complexity is kept low by choosing a monopropellant single stage. Little new development is needed, as miniature pump fed hydrazine has been demonstrated. Loading the propellant just prior to operation avoids structural, thermal, and safety constraints otherwise imposed by earlier mission phases. Hardware mass and engineering effort are thereby diminished. The Mars liftoff mass is 7/8 hydrazine, <5% propulsion hardware, and >3% each for the payload and guidance.

  1. Two-stage thermophilic-mesophilic anaerobic digestion of waste activated sludge from a biological nutrient removal plant.

    PubMed

    Watts, S; Hamilton, G; Keller, J

    2006-01-01

    A two-stage thermophilic-mesophilic anaerobic digestion pilot-plant was operated solely on waste activated sludge (WAS) from a biological nutrient removal (BNR) plant. The first-stage thermophilic reactor (HRT 2 days) was operated at 47, 54 and 60 degrees C. The second-stage mesophilic digester (HRT 15 days) was held at a constant temperature of 36-37 degrees C. For comparison with a single-stage mesophilic process, the mesophilic digester was also operated separately with an HRT of 17 days and temperature of 36-37 degrees C. The results showed a truly thermophilic stage (60 degrees C) was essential to achieve good WAS degradation. The lower thermophilic temperatures examined did not offer advantages over single-stage mesophilic treatment in terms of COD and VS removal. At a thermophilic temperature of 60 degrees C, the plant achieved 35% VS reduction, representing a 46% increase compared to the single-stage mesophilic digester. This is a significant level of degradation which could make such a process viable in situations where there is no primary sludge generated. The fate of the biologically stored phosphorus in this BNR sludge was also investigated. Over 80% of the incoming phosphorus remained bound up with the solids and was not released into solution during the WAS digestion. Therefore only a small fraction of phosphorus would be recycled to the main treatment plant with the dewatering stream.

  2. Anaerobic digestion of horse dung mixed with different bedding materials in an upflow solid-state (UASS) reactor at mesophilic conditions.

    PubMed

    Böske, Janina; Wirth, Benjamin; Garlipp, Felix; Mumme, Jan; Van den Weghe, Herman

    2014-04-01

    Aim of this study was to investigate the use of upflow anaerobic solid-state (UASS) digestion for treating horse manure. Biochemical methane potential (BMP) tests conducted for varying mixtures of dung (hay and silage feed) and bedding material (wheat straw, flax, hemp, wood chips) showed that straw mixed with hay horse dung has the highest potential of [Formula: see text] . Continuous mesophilic digestion was conducted for 238 days using a single-stage UASS reactor (27 L) and a two-stage UASS system with an anaerobic filter (AF, 21 L). Increasing the organic loading rate (OLR) from 2.5 to 4.5 g vs L(-1)d(-1) enhanced the methane rate of the single-stage reactor from 0.262 to 0.391 LL(-1)d(-1) while the methane yield declined from 104.8 to 86.9 L kg vs(-1). The two-stage system showed similar yields. Thus, for solid-state digestion of horse manure a single-stage UASS reactor appears sufficient.

  3. A multi-stage image charge detector made from printed circuit boards.

    PubMed

    Barney, Brandon L; Daly, R Terik; Austin, Daniel E

    2013-11-01

    We present the first reported instance of an image-charge detector for charged particles in which detection elements are patterned onto printed circuit boards. In contrast to conventional techniques involving separately machined and positioned segments of metal tubing, this technique is much simpler to assemble, align, and connect to electrical wiring, with no loss in sensitivity. The performance of single-stage and 5-stage charge detectors is demonstrated using electrospray-charged, micrometer-size polystyrene spheres. Both velocity and charge of each particle are measured. Multiple detection stages--which require no extra effort to pattern or setup compared with a single stage--result in an ensemble averaging effect, improving the detection limit over what can be achieved with a single-stage detector. A comparison is made between the printed circuit board detector and a conventional tubular charge detector and found to be statistically equivalent. These results demonstrate and illustrate that devices for detection, analysis, and/or manipulation of charged particles and ions can be made using printed circuit boards rather than using separately fabricated metal electrodes.

  4. Parametric analysis of performance and design characteristics for advanced earth-to-orbit shuttles

    NASA Technical Reports Server (NTRS)

    Willis, E. A., Jr.; Strack, W. C.; Padrutt, J. A.

    1972-01-01

    Performance, trajectory, and design characteristics are presented for (1) a single-stage shuttle with a single advanced rocket engine, (2) a single-stage shuttle with an initial parallel chemical engine and advanced engine burn followed by an advanced engine sustainer burn, (3) a single-stage shuttle with an initial chemical engine burn followed by an advanced engine burn, and (4) a two-stage shuttle with a chemical propulsion booster stage and an advanced propulsion upper stage. The ascent trajectory profile includes a brief initial vertical rise; zero-lift flight through the sensible atmosphere; variational steering into an 83-kilometer by 185-kilometer intermediate orbit; and a fixed, 460-meter per second allowance for subsequent maneuvers. Results are given in terms of burnout mass fractions (including structure and payload), trajectory profiles, propellant loadings, and burn times. These results are generated with a trajectory analysis that includes a parametric variation of the specific impulse from 800 to 3000 seconds and the specific engine weight from 0 to 1.0.

  5. Performance assessment and transient optimization of multi-stage solid desiccant air conditioning systems with building PV/T integration

    NASA Astrophysics Data System (ADS)

    Gadalla, Mohamed; Saghafifar, Mohammad

    2016-09-01

    One of the popular solar air conditioning technologies is desiccant air conditioning. Nonetheless, single stage desiccant air conditioning systems' coefficient of performance (COP) are relatively low. Therefore, multi-stage solid desiccant air conditioning systems are recommended. In this paper, an integrated double-stage desiccant air conditioning systems and PV/T collector is suggested for hot and humid climates such as the UAE. The results for the PV/T implementation in the double-stage desiccant cooling system are assessed against the PV/T results for a single-stage desiccant air conditioning system. In order to provide a valid comparative evaluation between the single and double stage desiccant air conditioning systems, an identical PV/T module, in terms of dimensions, is incorporated into these systems. The overall required auxiliary air heating is abated by 46.0% from 386.8 MWh to 209.0 MWh by replacing the single stage desiccant air conditioning system with the proposed double stage configuration during June to October. Moreover, the overall averaged solar share during the investigated months for the single and double stage systems are 36.5% and 43.3%.

  6. Single-state electronic ballast with dimming feature and unity power factor

    SciTech Connect

    Wu, T.F.; Yu, T.H.; Chiang, M.C.

    1998-05-01

    Analysis, design, and practical consideration of a single-stage electronic ballast with dimming feature and unity power factor are presented in this paper. The proposed single-stage ballast is the combination of a boost converter and a half-bridge series-resonant parallel-loaded inverter. The boost semistage working in the discontinuous conduction mode functions as a power factor corrector and the inverter semistage operated above resonance are employed to ballast the lamp. Replacing the lamp with the plasma model, analysis of the ballast is fulfilled. The dimming feature is carried out by pulse-width modulation (PWM) and variable-frequency controls simultaneously. The proposed single-stage ballast is suitable for applications with moderate power level and low-line voltage while requiring a high-output voltage. It can save a controller, an active switch and its driver, reduce size, and possibly increase system reliability while requiring two additional diodes over a conventional two-stage system. A prototype was implemented to verify the theoretical discussion. The hardware measurements have shown that the desired performance can be achieved feasibly.

  7. A New Random Walk for Replica Detection in WSNs

    PubMed Central

    Aalsalem, Mohammed Y.; Saad, N. M.; Hossain, Md. Shohrab; Atiquzzaman, Mohammed; Khan, Muhammad Khurram

    2016-01-01

    Wireless Sensor Networks (WSNs) are vulnerable to Node Replication attacks or Clone attacks. Among all the existing clone detection protocols in WSNs, RAWL shows the most promising results by employing Simple Random Walk (SRW). More recently, RAND outperforms RAWL by incorporating Network Division with SRW. Both RAND and RAWL have used SRW for random selection of witness nodes which is problematic because of frequently revisiting the previously passed nodes that leads to longer delays, high expenditures of energy with lower probability that witness nodes intersect. To circumvent this problem, we propose to employ a new kind of constrained random walk, namely Single Stage Memory Random Walk and present a distributed technique called SSRWND (Single Stage Memory Random Walk with Network Division). In SSRWND, single stage memory random walk is combined with network division aiming to decrease the communication and memory costs while keeping the detection probability higher. Through intensive simulations it is verified that SSRWND guarantees higher witness node security with moderate communication and memory overheads. SSRWND is expedient for security oriented application fields of WSNs like military and medical. PMID:27409082

  8. Energy performance of an integrated bio-and-thermal hybrid system for lignocellulosic biomass waste treatment.

    PubMed

    Kan, Xiang; Yao, Zhiyi; Zhang, Jingxin; Tong, Yen Wah; Yang, Wenming; Dai, Yanjun; Wang, Chi-Hwa

    2017-03-01

    Lignocellulosic biomass waste, a heterogeneous complex of biodegradables and non-biodegradables, accounts for large proportion of municipal solid waste. Due to limitation of single-stage treatment, a two-stage hybrid AD-gasification system was proposed in this work, in which AD acted as pre-treatment to convert biodegradables into biogas followed by gasification converting solid residue into syngas. Energy performance of single and two-stage systems treating 3 typical lignocellulosic wastes was studied using both experimental and numerical methods. In comparison with conventional single-stage gasification treatment, this hybrid system could significantly improve the quality of produced gas for all selected biomass wastes and show its potential in enhancing total gas energy production by a maximum value of 27% for brewer's spent grain treatment at an organic loading rate (OLR) of 3gVS/L/day. The maximum overall efficiency of the hybrid system for horticultural waste treatment was 75.2% at OLR of 11.3gVS/L/day, 5.5% higher than conventional single-stage system.

  9. Mathematical modeling of a continuous alcoholic fermentation process in a two-stage tower reactor cascade with flocculating yeast recycle.

    PubMed

    de Oliveira, Samuel Conceição; de Castro, Heizir Ferreira; Visconti, Alexandre Eliseu Stourdze; Giudici, Reinaldo

    2015-03-01

    Experiments of continuous alcoholic fermentation of sugarcane juice with flocculating yeast recycle were conducted in a system of two 0.22-L tower bioreactors in series, operated at a range of dilution rates (D 1 = D 2 = 0.27-0.95 h(-1)), constant recycle ratio (α = F R /F = 4.0) and a sugar concentration in the feed stream (S 0) around 150 g/L. The data obtained in these experimental conditions were used to adjust the parameters of a mathematical model previously developed for the single-stage process. This model considers each of the tower bioreactors as a perfectly mixed continuous reactor and the kinetics of cell growth and product formation takes into account the limitation by substrate and the inhibition by ethanol and biomass, as well as the substrate consumption for cellular maintenance. The model predictions agreed satisfactorily with the measurements taken in both stages of the cascade. The major differences with respect to the kinetic parameters previously estimated for a single-stage system were observed for the maximum specific growth rate, for the inhibition constants of cell growth and for the specific rate of substrate consumption for cell maintenance. Mathematical models were validated and used to simulate alternative operating conditions as well as to analyze the performance of the two-stage process against that of the single-stage process.

  10. Solution found to chronic trim damage

    SciTech Connect

    Smirl, P.A.; Edwards, T.W.

    1997-09-01

    For some time, 2-inch single-stage gas-pressure letdown valve trim at a large Mideast oil and gas production facility suffered severe erosion damage, and experienced noise/vibration problems both within the valves themselves and the downstream piping. It was determined that the trim erosion which caused the problem was due to high oxide corrosion products from the upstream piping passing at high velocity (1,020 ft/sec) through the single-stage, drilled-hole-cage valve trim. This was also the source of the noise/vibration problems. Since it takes into account fluid density, it has been established that velocity head (V2/2) is a better criterion than just pure fluid velocity in judging design adequacy in pressure-reducing valves. It is very useful in eliminating the destructive effects of high fluid velocity and noise/vibration problems. In this case, the actual velocity head equaled 360 psi. For these reasons, it was decided to replace these single-stage pressure-reduction valves with multi-stage pressure-reduction valves capable of limiting this high velocity. These valves are described.

  11. Research on a novel two-stage direct current hybrid circuit breaker.

    PubMed

    Wu, Yifei; Wu, Yi; Rong, Mingzhe; Yang, Fei; Niu, Chunping; Li, Mei; Hu, Yang

    2014-08-01

    The DC hybrid circuit breaker based on high-speed switch (HSS) and parallel connected capacitor has been widely applied in the fault current breaking of DC system. However, when the current is commutated from HSS to the capacitor according to single-stage operation, the capacitor has to absorb a large amount of energy stored in the system inductance within very short time. Meanwhile, a high over-voltage rate of rise is especially prone to be produced between the contacts of HSS, which will lead to a failed breaking. As a result, a novel DC hybrid circuit breaker based on the two-stage operation is proposed and analyzed in this paper. By controlling the thyristors in the commutation branches, the fault current is fast commutated into the capacitor, which can not only realize the arcless open of HSS, but also decrease the over-voltage rate of rise significantly in comparison to the traditional single-stage operation. The simulation model of fault current breaking under different conditions in 10 kV medium voltage DC system is constructed. The simulated over-voltages of single-stage and two-stage operations in the case of fault current breaking are compared and analyzed. Finally, the fault current breaking test in the two-stage operation is investigated experimentally, which validates the feasibility and effectiveness of the simulation model well.

  12. Switch failure diagnosis based on inductor current observation for boost converters

    NASA Astrophysics Data System (ADS)

    Jamshidpour, E.; Poure, P.; Saadate, S.

    2016-09-01

    Face to the growing number of applications using DC-DC power converters, the improvement of their reliability is subject to an increasing number of studies. Especially in safety critical applications, designing fault-tolerant converters is becoming mandatory. In this paper, a switch fault-tolerant DC-DC converter is studied. First, some of the fastest Fault Detection Algorithms (FDAs) are recalled. Then, a fast switch FDA is proposed which can detect both types of failures; open circuit fault as well as short circuit fault can be detected in less than one switching period. Second, a fault-tolerant converter which can be reconfigured under those types of fault is introduced. Hardware-In-the-Loop (HIL) results and experimental validations are given to verify the validity of the proposed switch fault-tolerant approach in the case of a single switch DC-DC boost converter with one redundant switch.

  13. The development of the Port-a-Bidet: a portable bidet for people with minimal hand function.

    PubMed

    Burkitt, J; Martin, G; Kay, G H; Torrens, G E; Chapman, C; Sandbach, D

    1996-09-01

    Our Institute has investigated the expressed needs of many severely disabled people. One requirement was for a portable bidet that would fit on a standard toilet, so that they could still have some of the advantages of their automatic washing/drying/flushing toilet when away from their own house. Potential users were consulted, from the specification stage through to final production model testing, to ensure that the desired device was produced. The Port-a-Bidet is a lightweight device, with its own water container, spray unit, pump and power supply. It allows a user with very weak arms to wash themselves with warm water, and a hands-free drying method is explained in the instruction booklet. The whole unit is transported in a discreet carrying bag, and can easily be set up by an unskilled person. The Port-a-Bidet can be controlled by commercially available single switch activators, so that any user can operate it.

  14. The dynamics and optimal control of spinning spacecraft and movable telescoping appendages, part A. [two axis control with single offset boom

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Sellappan, R.

    1977-01-01

    The problem of optimal control with a minimum time criterion as applied to a single boom system for achieving two axis control is discussed. The special case where the initial conditions are such that the system can be driven to the equilibrium state with only a single switching maneuver in the bang-bang optimal sequence is analyzed. The system responses are presented. Application of the linear regulator problem for the optimal control of the telescoping system is extended to consider the effects of measurement and plant noises. The noise uncertainties are included with an application of the estimator - Kalman filter problem. Different schemes for measuring the components of the angular velocity are considered. Analytical results are obtained for special cases, and numerical results are presented for the general case.

  15. Direct observation of type 1 fimbrial switching.

    PubMed

    Adiciptaningrum, Aileen M; Blomfield, Ian C; Tans, Sander J

    2009-05-01

    The defining feature of bacterial phase variation is a stochastic 'all-or-nothing' switching in gene expression. However, direct observations of these rare switching events have so far been lacking, obscuring possible correlations between switching events themselves, and between switching and other cellular events, such as division and DNA replication. We monitored the phase variation of type 1 fimbriae in individual Escherichia coli in real time and simultaneously tracked the chromosome replication process. We observed distinctive patterns of fim (fimbriae) expression in multiple genealogically related lineages. These patterns could be explained by a model that combines a single switching event with chromosomal fim replication, as well as the epigenetic inheritance of expressed fim protein and RNA, and their dilution by growth. Analysis of the moment of switching at sub-cell-cycle resolution revealed a correlation between fim switching and cell age, which challenges the traditional idea of phase variation as a random Poissonian phenomenon.

  16. Circularly split-ring-resonator-based frequency-reconfigurable antenna

    NASA Astrophysics Data System (ADS)

    Rahman, M. A.; Faruque, M. R. I.; Islam, M. T.

    2017-01-01

    In this paper, an antenna with frequency configurability in light of a circularly split-ring resonator (CSRR) is introduced. The proposed reconfigurable monopole antenna consists of a microstrip-fed hook-shaped structure and a CSRR having single reconfigurable split only. A new band of radiation unlike the band radiated from monopole only is observed due to magnetic coupling between the CSRR and the monopole antenna. The resonance frequency of the CSRR can be arbitrarily chosen by varying the dimension and relative position of its gap with the monopole, which leads the antenna to become reconfigurable one. By using a single switch with perfect electric conductor at the gap of CSRR cell, the effect of CSRR can be deactivated and, hence, it is possible to suppress the corresponding resonance, resulting in a frequency-reconfigurable antenna. Commercially available Computer Simulation Technology microwave studio based on finite integration technique was adopted throughout the study.

  17. Note: Synchronous energy extraction through four output ports of microwave compressor

    SciTech Connect

    Avgustinovich, V. A.; Artemenko, S. N.; Novikov, S. A.; Yushkov, Yu. G.

    2013-06-15

    The energy stored in a resonant cavity was extracted through four output ports and added in phase in a common line. Operation of a single switch provided synchronism and the power portions transmitted through the ports were combined in a waveguide turnstile junction. Estimation shows that the compressor peak power can reach a value eight times as much as the switched wave power, provided the output pulsewidth is shortened by the same factor with reference to the cavity double transit time. The performance of the X-band compressor prototype was investigated. Signals radiated through each of four output ports had identical envelope shapes and equal peak power values. The reflected wave did not accompany the power combining. The pulses of 1.2 MW peak power and 1.6 ns pulse width were obtained when the compressor was driven by the 50 kW pulse power magnetron generator.

  18. Detection and characterization of multi-filament evolution during resistive switching

    SciTech Connect

    Mickel, Patrick R.; Lohn, Andrew J.; Marinella, Matthew J.

    2014-08-05

    We present resistive switching data in TaOx memristors displaying signatures of multi-filament switching modes, and develop a geometrically defined equivalent circuit to separate the individual resistances and powers dissipated in each filament. Using these resolved values, we compare the individual switching curves of each filament and demonstrate that the switching data of each filament collapse onto a single switching curve determined by the analytical steady-state resistive switching solution for filamentary switching. Analyzing our results in terms of this solution, we determine the switching temperature, heat flow, conductivity, and time evolving areas of each filament during resistive switching. Finally, we discuss operational modes which may limit the formation of additional conducting filaments, potentially leading to increased device endurance.

  19. Steady State Analysis Of The Variable Speed Switched Reluctance Motor Drive

    NASA Astrophysics Data System (ADS)

    Materu, P.; Krishnan, R.; Farzanehfard, H.

    1987-10-01

    The switched reluctance motor (SRM) drive has recently received attention mainly because of its simple motor construction and unidirectional converter requirement. The principle of operation of the motor drive demands that the motor and converter be treated as one unit. Little has been done to develop a complete analysis of this motor-converter combination 1'2. This paper presents an approach to the steady state analysis of the SRM drive including the effects of stator winding resistance, input filter dynamics and snubber circuits which are often neglected. The analysis yields phase current waveforms providing guidelines to the optimal design of the converter and motor. A novel single-switch-per phase converter developed by one of the authors is used. The approach can be used for any other motor-converter combination.

  20. A new co-axial breathing system. A combination of the benefits of Mapleson A, D and E systems.

    PubMed

    Burchett, K R; Bennett, J A

    1985-02-01

    A new, simple, versatile co-axial breathing system combining the features of Mapleson A, D and E type systems is described. The change from an A system to a D/E system is effected by a single switch and without reversal of the gas flow. Fresh gas flows in the order of 70 ml/kg/min are required for both spontaneous ventilation in the Mapleson A mode and controlled ventilation in the Mapleson D mode. The co-axial configuration offers the advantages of a single, lightweight breathing system with easy scavenging of anaesthetic gases, while the ability to switch between the A and D or E configurations offers the economic advantages of low fresh gas flows and the need for a single anaesthetic breathing system for all situations.

  1. Detection and characterization of multi-filament evolution during resistive switching

    DOE PAGES

    Mickel, Patrick R.; Lohn, Andrew J.; Marinella, Matthew J.

    2014-08-05

    We present resistive switching data in TaOx memristors displaying signatures of multi-filament switching modes, and develop a geometrically defined equivalent circuit to separate the individual resistances and powers dissipated in each filament. Using these resolved values, we compare the individual switching curves of each filament and demonstrate that the switching data of each filament collapse onto a single switching curve determined by the analytical steady-state resistive switching solution for filamentary switching. Analyzing our results in terms of this solution, we determine the switching temperature, heat flow, conductivity, and time evolving areas of each filament during resistive switching. Finally, we discussmore » operational modes which may limit the formation of additional conducting filaments, potentially leading to increased device endurance.« less

  2. Do users of risperidone who switch brands because of generic reference pricing fare better or worse than non-switchers? A New Zealand natural experiment.

    PubMed

    Lessing, Charon; Ashton, Toni; Davis, Peter

    2015-11-01

    This study evaluated patient health outcomes and any impact on healthcare costs consequent to the implementation of generic reference-pricing of risperidone in New Zealand using national datasets. Reference pricing risperidone reduced the price of the originator brand by 50 % as well as overall expenditure on risperidone tablets. Half of all patients made a single switch to generic risperidone, with the remainder making multiple switches between brands. 1.5 % made a switch-back to the originator brand. No difference was found in use of healthcare services between switchers and non-switchers of the originator brand or versus the comparator group. This refutes the available literature on brand-to-generic and generic-to-generic switching.

  3. Sequential power-up circuit

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A sequential power-up circuit for starting several electrical load elements in series to avoid excessive current surge, comprising a voltage ramp generator and a set of voltage comparators, each comparator having a different reference voltage and interfacing with a switch that is capable of turning on one of the load elements. As the voltage rises, it passes the reference voltages one at a time and causes the switch corresponding to that voltage to turn on its load element. The ramp is turned on and off by a single switch or by a logic-level electrical signal. The ramp rate for turning on the load element is relatively slow and the rate for turning the elements off is relatively fast. Optionally, the duration of each interval of time between the turning on of the load elements is programmable.

  4. Research and development of a versatile portable speech prosthesis

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Versatile Portable Speech Prosthesis (VPSP), a synthetic speech output communication aid for non-speaking people is described. It was intended initially for severely physically limited people with cerebral palsy who are in electric wheelchairs. Hence, it was designed to be placed on a wheelchair and powered from a wheelchair battery. It can easily be separated from the wheelchair. The VPSP is versatile because it is designed to accept any means of single switch, multiple switch, or keyboard control which physically limited people have the ability to use. It is portable because it is mounted on and can go with the electric wheelchair. It is a speech prosthesis, obviously, because it speaks with a synthetic voice for people unable to speak with their own voices. Both hardware and software are described.

  5. Effects of Compression, Staging, and Braid Angle on Braided Rope Seal Performance

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Adams, Michael L.

    1997-01-01

    Future turbine engines and industrial systems will be operating at increased temperatures to achieve more demanding efficiency and performance goals. In the highest temperature sections of the engine new material systems such as ceramics and intermetallics are being considered to withstand the harsh thermal environment. Components constructed of these low expansion-rate materials experience thermal strains and a resulting reduction of life when rigidly attached to high expansion-rate, superalloy support structures. Seals are being designed to both seal and to serve as compliant mounts allowing for relative thermal growths between high temperature but brittle primary structures and the surrounding support structures. Previous seal research yielded several braided rope seal designs which demonstrated the ability to both seal and serve as a compliant mount. The hybrid seal was constructed of an all-ceramic (alumina-silica) core overbraided with a superalloy wire sheath (cobalt based superalloy). The all ceramic seal was constructed of an all-ceramic (alumina-silica) core overbraided with multiple ceramic (alumina-silica) sheath layers. Program goals for braided rope seals are to improve flow resistance and/or seal resilience. To that end, the current report studies the test results of: baseline and modified hybrid seals; two stage hybrid and two stage all-ceramic seal configurations; and single stage hybrid and single stage all-ceramic seal configurations for a range of seal crush conditions. Hybrid seal modifications include increasing the sheath braid angle and core coverage. For the same percent seal cross-sectional crush, results show that increasing the hybrid seal braid angle increased seal stiffness and seal unit load, resulting in flows approximately one third of the baseline hybrid seal flows. For both hybrid and all-ceramic seals, two stage seal configurations significantly outperformed single stage configurations. Two stage seal flows were at least 30% less

  6. Versatility of nasolabial flaps in oral cavity reconstructions

    PubMed Central

    Cebrián-Carretero, José L.; Morán-Soto, María J.; Burgueño-García, Miguel

    2014-01-01

    Objectives: Describe the techniques involved and the results obtained witn nasolabial flaps in small and medium-sized defects of the oral cavity. The procedure is an easy resconstructive option with a high success rate and with very good aesthetic and functional outcomes. Study Design: A retrospective analysis of 16 nasolabial flap reconstructions in 15 oncological patients with oral cavity defects undergoing single-stage surgical interventions. We evaluate the tumor type, its location, size, the resective and reconstructive techniques involved, as well as any complications. Results: Out of 15 patients, 9 were male and 6 female, with ages ranging from 60-85 years. The primary tumor was located in the mandibular or maxillary gingiva in 7 patients, the lateral margin of the tongue in 5, the floor of the mouth in 3 and the mandibular symphysis in a single patient. The tumors were of a small to medium size. All patients underwent intraoral resections. In most cases, a cervical dissection was performed. All flaps were completed as single-stage surgical interventions, with 14 unilateral and 2 bilateral procedures. Five patients had received radiotherapy treatment for previous tumors. During the follow up period, which ranged from 4 months to 8 years, only one patient required their flap to be thinned, there were two incidents of surgical wound dehiscence, two hematomas and one orocutaneous fistula, none of which affected the survival of the flap. Conclusions: The nasolabial flap proves highly versatile in oral cavity reconstructions, coupled with a minimal morbidity of the donor region and good aesthetic and functional results. Its high vascularity allows for cervical dissections to be carried out or even for radiotherapy to be administered prior to it. It is straightforward, safe, and carrying it out as a single-stage intervention makes it the ideal surgical option for small to medium intraoral defects in edentulous patients with other comorbidities. Key words

  7. Anaerobic-aerobic treatment of purified terephthalic acid (PTA) effluent; a techno-economic alternative to two-stage aerobic process.

    PubMed

    Pophali, G R; Khan, R; Dhodapkar, R S; Nandy, T; Devotta, S

    2007-12-01

    This paper addresses the treatment of purified terephthalic acid (PTA) effluent using anaerobic and aerobic processes. Laboratory studies were carried out on flow proportionate composite wastewater generated from the manufacturing of PTA. An activated sludge process (ASP-two stage and single stage) and an upflow anaerobic fixed film fixed bed reactor (AFFFBR) were used, individually and in combination. The performance of a full-scale ETP under existing operating conditions was also studied. Full scale ETP studies revealed that the treatment of PTA effluent using a two-stage ASP alone does not meet treated effluent quality within the prescribed Indian Standards. The biomass produced in the two stage ASP was very viscous and fluffy and the sludge volume index (SVI) was very high (200-450 ml/g). However, pretreatment of PTA effluent using an upflow AFFFBR ensured substantial reduction in BOD (63%) and COD (62%) with recovery of biogas at 1.8-1.96 l/l effluent treated at a volumetric loading rate (VLR) 4-5 kg COD/m(3) d. The methane content in the biogas varied between 55% and 60%. The pretreated effluent from the upflow AFFFBR was then treated through a single stage ASP. The biomass produced in the ASP after anaerobic treatment had very good settlability (SVI: 75-90 ml/g) as compared to the two stage ASP and the treated effluent quality with respect to BOD, COD and SS was within the prescribed Indian Standards. The alternative treatment process comprising an upflow AFFFBR and a single stage ASP ensured net power saving of 257 kW and in addition generated 442 kW of power through the AFFFBR.

  8. Posterior-Only Circumferential Decompression and Reconstruction in the Surgical Management of Lumbar Vertebral Osteomyelitis

    PubMed Central

    Skovrlj, Branko; Guzman, Javier Z.; Caridi, John; Cho, Samuel K.

    2015-01-01

    Study Design Case report. Objective The purpose of this report is to discuss the surgical management of lumbar vertebral osteomyelitis with a spinal epidural abscess (SEA) and present a single-stage, posterior-only circumferential decompression and reconstruction with instrumentation using an expandable titanium cage and without segmental nerve root sacrifice as an option in the treatment of this disease process. Methods We report a 42-year-old man who presented with 3 days of low back pain and chills who rapidly decompensated with severe sepsis following admission. Magnetic resonance imaging of his lumbosacral spine revealed intramuscular abscesses of the left paraspinal musculature and iliopsoas with SEA and L4 vertebral body involvement. The patient failed maximal medical treatment, which necessitated surgical treatment as a last resort for infectious source control. He underwent a previously undescribed procedure in the setting of SEA: a single-stage, posterior-only approach for circumferential decompression and reconstruction of the L4 vertebral body with posterior segmental instrumented fixation. Results After the surgery, the patient's condition gradually improved; however, he suffered a wound dehiscence necessitating a surgical exploration and deep wound debridement. Six months after the surgery, the patient underwent a revision surgery for adjacent-level pseudarthrosis. At 1-year follow-up, the patient was pain-free and off narcotic pain medication and had returned to full activity. Conclusion This patient is the first reported case of lumbar osteomyelitis with SEA treated surgically with a single-stage, posterior-only circumferential decompression and reconstruction with posterior instrumentation. Although this approach is more technically challenging, it presents another viable option for the treatment of lumbar vertebral osteomyelitis that may reduce the morbidity associated with an anterior approach. PMID:26835214

  9. Posterior-Only Circumferential Decompression and Reconstruction in the Surgical Management of Lumbar Vertebral Osteomyelitis.

    PubMed

    Skovrlj, Branko; Guzman, Javier Z; Caridi, John; Cho, Samuel K

    2016-02-01

    Study Design Case report. Objective The purpose of this report is to discuss the surgical management of lumbar vertebral osteomyelitis with a spinal epidural abscess (SEA) and present a single-stage, posterior-only circumferential decompression and reconstruction with instrumentation using an expandable titanium cage and without segmental nerve root sacrifice as an option in the treatment of this disease process. Methods We report a 42-year-old man who presented with 3 days of low back pain and chills who rapidly decompensated with severe sepsis following admission. Magnetic resonance imaging of his lumbosacral spine revealed intramuscular abscesses of the left paraspinal musculature and iliopsoas with SEA and L4 vertebral body involvement. The patient failed maximal medical treatment, which necessitated surgical treatment as a last resort for infectious source control. He underwent a previously undescribed procedure in the setting of SEA: a single-stage, posterior-only approach for circumferential decompression and reconstruction of the L4 vertebral body with posterior segmental instrumented fixation. Results After the surgery, the patient's condition gradually improved; however, he suffered a wound dehiscence necessitating a surgical exploration and deep wound debridement. Six months after the surgery, the patient underwent a revision surgery for adjacent-level pseudarthrosis. At 1-year follow-up, the patient was pain-free and off narcotic pain medication and had returned to full activity. Conclusion This patient is the first reported case of lumbar osteomyelitis with SEA treated surgically with a single-stage, posterior-only circumferential decompression and reconstruction with posterior instrumentation. Although this approach is more technically challenging, it presents another viable option for the treatment of lumbar vertebral osteomyelitis that may reduce the morbidity associated with an anterior approach.

  10. Aggregation of carbon dioxide sequestration storage assessment units

    USGS Publications Warehouse

    Blondes, Madalyn S.; Schuenemeyer, John H.; Olea, Ricardo A.; Drew, Lawrence J.

    2013-01-01

    The U.S. Geological Survey is currently conducting a national assessment of carbon dioxide (CO2) storage resources, mandated by the Energy Independence and Security Act of 2007. Pre-emission capture and storage of CO2 in subsurface saline formations is one potential method to reduce greenhouse gas emissions and the negative impact of global climate change. Like many large-scale resource assessments, the area under investigation is split into smaller, more manageable storage assessment units (SAUs), which must be aggregated with correctly propagated uncertainty to the basin, regional, and national scales. The aggregation methodology requires two types of data: marginal probability distributions of storage resource for each SAU, and a correlation matrix obtained by expert elicitation describing interdependencies between pairs of SAUs. Dependencies arise because geologic analogs, assessment methods, and assessors often overlap. The correlation matrix is used to induce rank correlation, using a Cholesky decomposition, among the empirical marginal distributions representing individually assessed SAUs. This manuscript presents a probabilistic aggregation method tailored to the correlations and dependencies inherent to a CO2 storage assessment. Aggregation results must be presented at the basin, regional, and national scales. A single stage approach, in which one large correlation matrix is defined and subsets are used for different scales, is compared to a multiple stage approach, in which new correlation matrices are created to aggregate intermediate results. Although the single-stage approach requires determination of significantly more correlation coefficients, it captures geologic dependencies among similar units in different basins and it is less sensitive to fluctuations in low correlation coefficients than the multiple stage approach. Thus, subsets of one single-stage correlation matrix are used to aggregate to basin, regional, and national scales.

  11. Design of Gear Drives With High Gear Ratio

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Fuentes, Alfonso; Vecchiato, Daniele; Gonzalez-Perez, Ignacio

    2005-01-01

    A three part paper to describe the results of several gear drive types with a high gear ratio is presented. A single stage planetary gear train with double helical gears is described with methods to reduce transmission errors and improve load distribution by regulating backlash during assembly. A new arrangement for face gear is also described. This new mechanism can perform rotations between axes that are collinear and intersected. Finally the design and simulation of an isostatic planetary gear train is presented. Conditions that can lead to noise and vibration of the planetary gear drive are described.

  12. Performance of a small centrifugal pump in He I and He II

    NASA Technical Reports Server (NTRS)

    Ludtke, P. R.; Daney, D. E.; Steward, W. G.

    1988-01-01

    The performance characteristics of a small centrifugal pump in He I and He II are determined over the temperature range of 1.6 to 4.2 K. The single-stage pump is powered by a close-coupled cryogenic induction motor. In the absence of cavitation, pump performance (head and capacity) was found to be identical for He I and He II. Developed heads up to 16 m and capacities of up to 900 liters/hr are obtained at 7000 rpm. A three-blade screw inducer was shown to require much less suction head than a six-blade propeller inducer.

  13. Design and construction of a cascading pressure reactor prototype for solar-thermochemical hydrogen production

    NASA Astrophysics Data System (ADS)

    Ermanoski, Ivan; Grobbel, Johannes; Singh, Abhishek; Lapp, Justin; Brendelberger, Stefan; Roeb, Martin; Sattler, Christian; Whaley, Josh; McDaniel, Anthony; Siegel, Nathan P.

    2016-05-01

    Recent work regarding the efficiency maximization for solar thermochemical fuel production in two step cycles has led to the design of a new type of reactor—the cascading pressure reactor—in which the thermal reduction step of the cycle is completed in multiple stages, at successively lower pressures. This approach enables lower thermal reduction pressures than in single-staged reactors, and decreases required pump work, leading to increased solar to fuel efficiencies. Here we report on the design and construction of a prototype cascading pressure reactor and testing of some of the key components. We especially focus on the technical challenges particular to the design, and their solutions.

  14. Demonstration of a Sub-Millimeter Wave Integrated Circuit (S-MMIC) using InP HEMT with a 35-nm Gate

    NASA Technical Reports Server (NTRS)

    Deal, W. R.; Din, S.; Padilla, J.; Radisic, V.; Mei, G.; Yoshida, W.; Liu, P. S.; Uyeda, J.; Barsky, M.; Gaier, T.; Fung, A.; Samoska, Lorene A.; Lai, R.

    2006-01-01

    In this paper, we present two single stage MMIC amplifiers with the first demonstrating a measured S21 gain of 3-dB at 280-GHz and the second demonstrating 2.5-dB gain at 300- GHz, which is the threshold of the sub-millimeter wave regime. The high-frequency operation is enabled by a high-speed InP HEMT with a 35-nm gate. This is the first demonstrated S21 gain at sub-millimeter wave frequencies in a MMIC.

  15. Energy efficient engine high-pressure turbine detailed design report

    NASA Technical Reports Server (NTRS)

    Thulin, R. D.; Howe, D. C.; Singer, I. D.

    1982-01-01

    The energy efficient engine high-pressure turbine is a single stage system based on technology advancements in the areas of aerodynamics, structures and materials to achieve high performance, low operating economics and durability commensurate with commercial service requirements. Low loss performance features combined with a low through-flow velocity approach results in a predicted efficiency of 88.8 for a flight propulsion system. Turbine airfoil durability goals are achieved through the use of advanced high-strength and high-temperature capability single crystal materials and effective cooling management. Overall, this design reflects a considerable extension in turbine technology that is applicable to future, energy efficient gas-turbine engines.

  16. Scaled Centrifugal Compressor Program.

    DTIC Science & Technology

    1986-10-31

    8217 7.3 Balance Results 110 7.4 Test Rig Instrumentation Calibrations 124 SECTION VIII " 8.0 10-LB/SEC ROTATING COMPONENT ANALYSIS 132 8.1 Rotor Burst...Lb/Sec Impeller Balance Plane Locations 118 - 79 NASA Drive Turbine Rotor Balance Results 120 80 NASA 2-Lb/Sec Rotating Group 121 81 NASA 2-Lb/Sec...top) side and a single- stage drive turbine overhung on the aft (bottom) side of the bearings. A thrust balance system is used to maintain a constant 4

  17. High-loading, 1800 ft/sec tip speed transonic compressor fan stage. 1: Aerodynamic and mechanical design

    NASA Technical Reports Server (NTRS)

    Morris, A. L.; Halle, J. E.; Kennedy, E. E.

    1972-01-01

    A single stage fan with a tip speed of 1800 ft/sec (548.6m/sec) and hub/tip ratio of 0.5 was designed to produce a pressure ratio of 2.285:1 with an adiabatic efficiency of 84.0%. The design flow per inlet annulus area is 38.7 lbm/sq ft-sec (188.9KG/sqm-sec). Rotor blades have modified multiple-circular-arc and precompression airfoil sections. The stator vanes have multiple-circular-arc airfoil sections.

  18. Urethral Duplication with Two Hypospadic Meati—An Unusual Variant

    PubMed Central

    Davidson, Joseph Rutherford; Wright, Naomi Jane; Garriboli, Massimo

    2016-01-01

    Duplication of the urethra is a rare congenital anomaly, with approximately 300 cases reported in the literature. We report a unique case of this condition in a male infant. This case differs from the classical Effman type II-A2 duplication because of the presence of two hypospadic urethral meati, as opposed to a ventral or dorsal accessory meatus with a normally positioned distal urethra. The patient underwent a single-stage repair consisting of a proximal urethra-urethral anastomosis and distal urethral tubularization at 21 months of age with excellent results in terms of both function and cosmesis. PMID:28018807

  19. An Outlook for the Twenty First Century as to Launch Operations, Facilities, and Systems

    NASA Technical Reports Server (NTRS)

    Loftus, Joseph P., Jr.

    1991-01-01

    A discussion of launch systems for the 21st century is presented. The following launch systems are mentioned: the European Ariane family; the Japanese H-1 and H-2; the U.S.'s Titan, Delta, Atlas, and Space Shuttle; the Chinese Long March 4; and the USSR's Mir, Proton, and Zenit. Systems currently under investigation, including the Assured Crew Return Vehicle, Personnel Launch Systems, and Single Stage to Orbit (SSTO), are discussed. Automated operations, low Earth orbit, and reliability are addressed. Standards that were acceptable for ballistic missiles will not be acceptable for future launch vehicles. The achievement of significantly higher levels of reliability is seen as the challenge.

  20. Two-Chicane Compressed Harmonic Generation of Soft X-Rays

    SciTech Connect

    Ratner, Daniel; Huang, Z.; Chao, A.; /SLAC

    2010-07-30

    We propose a simple single-stage scheme to produce fully coherent 3nm radiation. Seeding an electron bunch prior to compression simultaneously shortens the laser wavelength and duration, and increases the modulation amplitude. The final X-ray wavelength is tunable by controlling the compression factor with the RF phase. We propose a two chicane scheme that allows for nearly arbitrary modulation amplitudes, extending the method to photocathode beams. We also show that transportation of fine compressed modulation structure is feasible due to a canceling effect of the second chicane.

  1. Study of blade aspect ratio on a compressor front stage aerodynamic and mechanical design report

    NASA Technical Reports Server (NTRS)

    Burger, G. D.; Lee, D.; Snow, D. W.

    1979-01-01

    A single stage compressor was designed with the intent of demonstrating that, for a tip speed and hub-tip ratio typical of an advanced core compressor front stage, the use of low aspect ratio can permit high levels of blade loading to be achieved at an acceptable level of efficiency. The design pressure ratio is 1.8 at an adiabatic efficiency of 88.5 percent. Both rotor and stator have multiple-circular-arc airfoil sections. Variable IGV and stator vanes permit low speed matching adjustments. The design incorporates an inlet duct representative of an engine transition duct between fan and high pressure compressor.

  2. Application of high-temperature superconducting wires to magnetostrictive transducers for underwater sonar

    SciTech Connect

    Voccio, J.P.; Joshi, C.H.; Lindberg, J.F.

    1994-07-01

    Recently discovered cryogenic magnetostrictive materials show maximum strains greater than any room temperature materials. These cryogenic magnetostrictors can be combined with high-temperature superconducting (HTS) coils to create a sonar transducer with high efficiency and high acoustic power density. A prototype low-frequency (< 1,000 Hz) magnetostrictive transducer is described. This transducer uses a terbium-dysprosium (TbDy) magnetostrictor rod with HTS coils cooled to 50--80 K using a single-stage cryocooler. The device is designed for operation at water depths of 100 m and is believed to be the first fully integrated prototype demonstration of HTS.

  3. New designs in the reconstruction of coke-sorting systems

    SciTech Connect

    A.S. Larin; V.V. Demenko; V.L. Voitanik

    2009-07-15

    In recent Giprokoks designs for the reconstruction of coke-sorting systems, high-productivity vibrational-inertial screens have been employed. This permits single-stage screening and reduction in capital and especially operating expenditures, without loss of coke quality. In two-stage screening, >80 mm coke (for foundry needs) is additionally separated, with significant improvement in quality of the metallurgical coke (25-80 mm). New designs for the reconstruction of coke-sorting systems employ mechanical treatment of the coke outside the furnace, which offers new scope for stabilization of coke quality and permits considerable improvement in mechanical strength and granulometric composition of the coke by mechanical crushing.

  4. Evaluation of a high performance fixed-ratio traction drive

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Anderson, N. E.; Rohn, D. A.

    1980-01-01

    The results of a test program to evaluate a compact, high performance, fixed ratio traction drive are presented. This transmission, the Nasvytis Multiroller Traction Drive, is a fixed ratio, single stage planetary with two rows of stepped planet rollers. Two versions of the drive were parametrically tested back-to-back at speeds to 73,000 rpm and power levels to 180 kW (240 hp). Parametric tests were also conducted with the Nasvytis drive retrofitted to an automotive gas turbine engine. The drives exhibited good performance, with a nominal peak efficiency of 94 to 96 percent and a maximum speed loss due to creep of approximately 3.5 percent.

  5. Cooled-turbine aerodynamic performance prediction from reduced primary to coolant total-temperature-ratio results

    NASA Technical Reports Server (NTRS)

    Goldman, L. J.

    1976-01-01

    The prediction of the cooled aerodynamic performance, for both stators and turbines, at actual primary to coolant inlet total temperature ratios from the results obtained at a reduced total temperature ratio is described. Theoretical and available experimental results were compared for convection film and transpiration cooled stator vanes and for a film cooled, single stage core turbine. For these tests the total temperature ratio varied from near 1.0 to about 2.7. The agreement between the theoretical and the experimental results was, in general, reasonable.

  6. Lambda network having 2{sup m{minus}1} nodes in each of m stages with each node coupled to four other nodes for bidirectional routing of data packets between nodes

    DOEpatents

    Napolitano, L.M. Jr.

    1995-11-28

    The Lambda network is a single stage, packet-switched interprocessor communication network for a distributed memory, parallel processor computer. Its design arises from the desired network characteristics of minimizing mean and maximum packet transfer time, local routing, expandability, deadlock avoidance, and fault tolerance. The network is based on fixed degree nodes and has mean and maximum packet transfer distances where n is the number of processors. The routing method is detailed, as are methods for expandability, deadlock avoidance, and fault tolerance. 14 figs.

  7. Thermal calculation for a furnace with three-tiered near-wall burners

    NASA Astrophysics Data System (ADS)

    Vafin, D. B.; Sadykov, A. V.

    2016-03-01

    The paper considers using a differential method for thermal calculation of a furnace with finding the thermal and aerodynamic parameters within the radiation chamber of a tube furnace. The furnace is equipped with acoustictype burners allocated in three tiers on the lateral walls. The method implies joint numerical solution of 2D radiation transfer equations using the S 2-approximation of the discrete ordinate method, of energy equations, flow equations, k-ɛ turbulence model, and single-stage modeling of gas fuel combustion. Typical results of simulation are presented.

  8. OAST Space Theme Workshop. Volume 3: Working group summary. 9: Aerothermodynamics (M-3). A: Statement. B: Technology needs (form 1). C. Priority assessment (form 2). D. Additional assessments

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Twelve aerothermodynamic space technology needs were identified to reduce the design uncertainties in aerodynamic heating and forces experienced by heavy lift launch vehicles, orbit transfer vehicles, and advanced single stage to orbit vehicles for the space transportation system, and for probes, planetary surface landers, and sample return vehicles for solar system exploration vehicles. Research and technology needs identified include: (1) increasing the fluid dynamics capability by at least two orders of magnitude by developing an advanced computer processor for the solution of fluid dynamic problems with improved software; (2) predicting multi-engine base flow fields for launch vehicles; and (3) developing methods to conserve energy in aerothermodynamic ground test facilities.

  9. PubMed Central

    BOTTERO, S.; PERADOTTO, F.; TUCCI, F.

    2015-01-01

    SUMMARY Neonatal subglottic stenosis still remains a substantial challenge for paediatric ENT surgeons. Herein, we present a case of a single stage laryngotracheal reconstruction for a glottic-subglottic stenosis in an 18-week-old, 7.2 kg infant with DiGeorge syndrome. Our surgical approach was compared with those reported in the literature. Paediatric airway surgery should be tailored to individual patients according to age, weight, comorbidities and family collaboration, with the ultimate objective to minimise the invasiveness of the procedure. PMID:26015653

  10. STARS A Two Stage High Gain Harmonic Generation FEL Demonstrator

    SciTech Connect

    M. Abo-Bakr; W. Anders; J. Bahrdt; P. Budz; K.B. Buerkmann-Gehrlein; O. Dressler; H.A. Duerr; V. Duerr; W. Eberhardt; S. Eisebitt; J. Feikes; R. Follath; A. Gaupp; R. Goergen; K. Goldammer; S.C. Hessler; K. Holldack; E. Jaeschke; Thorsten Kamps; S. Klauke; J. Knobloch; O. Kugeler; B.C. Kuske; P. Kuske; A. Meseck; R. Mitzner; R. Mueller; M. Neeb; A. Neumann; K. Ott; D. Pfluckhahn; T. Quast; M. Scheer; Th. Schroeter; M. Schuster; F. Senf; G. Wuestefeld; D. Kramer; Frank Marhauser

    2007-08-01

    BESSY is proposing a demonstration facility, called STARS, for a two-stage high-gain harmonic generation free electron laser (HGHG FEL). STARS is planned for lasing in the wavelength range 40 to 70 nm, requiring a beam energy of 325 MeV. The facility consists of a normal conducting gun, three superconducting TESLA-type acceleration modules modified for CW operation, a single stage bunch compressor and finally a two-stage HGHG cascaded FEL. This paper describes the faciliy layout and the rationale behind the operation parameters.

  11. Preliminary Sizing of Vertical Take-off Rocket-based Combined-cycle Powered Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.; McCurdy, David R.

    2001-01-01

    The task of single-stage-to-orbit has been an elusive goal due to propulsion performance, materials limitations, and complex system integration. Glenn Research Center has begun to assemble a suite of relationships that tie Rocket-Based Combined-Cycle (RBCC) performance and advanced material data into a database for the purpose of preliminary sizing of RBCC-powered launch vehicles. To accomplish this, a near optimum aerodynamic and structural shape was established as a baseline. The program synthesizes a vehicle to meet the mission requirements, tabulates the results, and plots the derived shape. A discussion of the program architecture and an example application is discussed herein.

  12. An actively switched pulsed induction accelerator

    SciTech Connect

    Ingram, M.W.; Andrews, J.A.; Bresie, D.A. . Center for Electromechanics)

    1991-01-01

    A coaxial accelerator which will launch a 45 mm diameter, 225 g-mass to 2,000 m/s is described. The launcher is a true induction device, as no current feed to the armature is provided. The armature is a multiturn design, which forces a uniform current density and prevents excessive heating at the rear of the armature. This paper discusses the launcher and armature designs, power supply, and control. Predicted performance of a five-stage launcher currently being built is presented. Experimental results from single-stage tests are presented and compared to simulated results. Solid (monolithic) and multiturn (wound) armature tests are also described.

  13. Reconstructing weight-bearing surfaces: digital pad transposition.

    PubMed

    Neat, Benjamin C; Smeak, Daniel D

    2007-01-01

    The paw pads of dogs and cats are specialized skin structures that provide cushioned, durable, weight-bearing surfaces. Otherwise normal limbs may be rendered useless when pad tissue is lost because of trauma or tumor resection. This article reviews previously described reconstructive techniques involving the movement of pad tissue into weight-bearing defects. In addition, a case series of single-stage digital pad transfer to replace all or part of metacarpal or metatarsal defects is reported. This technique was predictably successful with minimal complications in conjunction with complete tumor resection, although results in two cases of severe paw trauma were less favorable.

  14. Process for removing an organic compound from water

    DOEpatents

    Baker, Richard W.; Kaschemekat, Jurgen; Wijmans, Johannes G.; Kamaruddin, Henky D.

    1993-12-28

    A process for removing organic compounds from water is disclosed. The process involves gas stripping followed by membrane separation treatment of the stripping gas. The stripping step can be carried out using one or multiple gas strippers and using air or any other gas as stripping gas. The membrane separation step can be carried out using a single-stage membrane unit or a multistage unit. Apparatus for carrying out the process is also disclosed. The process is particularly suited for treatment of contaminated groundwater or industrial wastewater.

  15. On the Behaviour of Porcine Adipose and Skeletal Muscle Tissues under Shock Compression

    DTIC Science & Technology

    2012-09-01

    Figure 4.1: Air performance curves for the 50 mm single-stage gas gun this method, velocities could be measured to ±5 m/s. Air and helium performance...relationships. As such, the density of the two tissue types adopted in this work was measured using a Micromeritics AccuPyc 1330 Gas Pycnometer. This...five cycles. A schematic of the AccuPyc 1330 Gas Pycnometer is presented in Figure 5.13. The measured densities for the commercially-available and

  16. Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 4: Transportation analysis

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1979-01-01

    Volume 4 of a seven volume Satellite Power Systems (SPS) is presented. This volume is divided into the following sections: (1) transportation systems elements; (2) transportation systems requirements; (3) heavy lift launch vehicles (HLLV); (4) LEO-GEO transportation; (5) on-orbit mobility systems; (6) personnel transfer systems; and (7) cost and programmatics. Three appendixes are also provided and they include: horizontal takeoff (single stage to orbit technical summary); HLLV reference vehicle trajectory and trade study data; and electric orbital transfer vehicle sizing.

  17. A new gun facility dedicated to performing shock physics and terminal ballistics experiments

    NASA Astrophysics Data System (ADS)

    Zakraysek, Alan J.; Sutherland, Gerrit T.; Sandusky, Harold D.; Strange, David

    2000-04-01

    A new building has been constructed to house various powder and single-stage and two-stage gas guns at the Naval Surface Warfare Center, Indian Head Division. Guns previously located at the Naval Research Laboratory and the former White Oak Site of the Naval Surface Warfare Center have been relocated here. Most of the guns are mounted on moveable pedestals to allow them to be shot into various chambers. The facility includes a concrete blast chamber, a target chamber/catch tank for flyer plate experiments, and a target chamber outfitted for terminal ballistics measurements. This paper will discuss the capabilities of this new facility.

  18. Liquid Oxygen Propellant Densification Unit Ground Tested With a Large-Scale Flight-Weight Tank for the X-33 Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.

    2002-01-01

    Propellant densification has been identified as a critical technology in the development of single-stage-to-orbit reusable launch vehicles. Technology to create supercooled high-density liquid oxygen (LO2) and liquid hydrogen (LH2) is a key means to lowering launch vehicle costs. The densification of cryogenic propellants through subcooling allows 8 to 10 percent more propellant mass to be stored in a given unit volume, thereby improving the launch vehicle's overall performance. This allows for higher propellant mass fractions than would be possible with conventional normal boiling point cryogenic propellants, considering the normal boiling point of LO2 and LH2.

  19. The QED engine spectrum - Fusion-electric propulsion for air-breathing to interstellar flight

    NASA Technical Reports Server (NTRS)

    Bussard, Robert W.; Jameson, Lorin W.

    1993-01-01

    A new inertial-electrostatic-fusion direct electric power source can be used to drive a relativistic e-beam to heat propellant. The resulting system is shown to yield specific impulse and thrust/mass ratio 2-3 orders of magnitude larger than from other advanced propulsion concepts. This QED system can be applied to aerospace vehicles from air-breathing to near-interstellar flight. Examples are given for Earth/Mars flight missions, that show transit times of 40 d with 20 percent payload in single-stage vehicles.

  20. Experimental turbine VT-400

    NASA Astrophysics Data System (ADS)

    Zitek, Pavel; Milčák, Petr; Noga, Tomáš

    2016-03-01

    The experimental air turbine VT400 is located in hall laboratories of the Department of Power System Engineering. It is a single-stage air turbine located in the suction of the compressor. It is able to solve various problems concerning the construction solution of turbine stages. The content of the article will deal mainly with the description of measurements on this turbine. The up-to-now research on this test rig will be briefly mentioned, too, as well as the description of the ongoing reconstruction.