1996-11-01
Orbit ( SSTO ) Reusable Launch Vehicles (RLVs) are currently under cooperative development by NASA, the Air Force, and the aerospace industry in the pursuit...exploit these rapid transit technologies to advance ’Global Reach for America.’ The SSTO RLV is a single stage rocket that will be completely reusable...investigated to assess the projected capabilities and costs of the SSTO system. This paper reviews the proposed capabilities of the SSTO system, discusses
2010-09-01
Institute PAO Protection Against Oxidation RBCC Rocket Based Combined Cycle RSL Reusable Space Launchers SSTO Single Stage to Orbit TOW Take-Off Weight...Orbit) or Single Stage To Orbit ( SSTO ) vehicles, or other kind of hypersonic vehicles. For example, in the scope of the French PREPHA program, the...study of a generic SSTO vehicle led to conclusion that the best type of airbreathing engine could be the dual-mode ramjet (subsonic then supersonic
Propulsion requirements for reusable single-stage-to-orbit rocket vehicles
NASA Astrophysics Data System (ADS)
Stanley, Douglas O.; Engelund, Walter C.; Lepsch, Roger
1994-05-01
The conceptual design of a single-stage-to-orbit (SSTO) vehicle using a wide variety of evolutionary technologies has recently been completed as a part of NASA's Advanced Manned Launch System (AMLS) study. The employment of new propulsion system technologies is critical to the design of a reasonably sized, operationally efficient SSTO vehicle. This paper presents the propulsion system requirements identified for this near-term AMLS SSTO vehicle. Sensitivities of the vehicle to changes in specific impulse and sea-level thrust-to-weight ratio are examined. The results of a variety of vehicle/propulsion system trades performed on the near-term AMLS SSTO vehicle are also presented.
Analysis of Suborbital Launch Trajectories for Satellite Delivery
1991-12-01
4 3. Specialty areas related to trajectory ition ............... 6 I 4. Comparison of a two stage launch vehicle versus a SSTO ...the point where a Single-Stage-To- Orbit ( SSTO ) vehicle may be practical. The flight characteristics of a hypersonic SSTO vehicle would allow a...a two stage launch vehicle versus a SSTO vehicle to de-3 termine the ideal staging velocity (14:4-5). 3 Several studies have been presented that
Single-stage-to-orbit versus two-stage-two-orbit: A cost perspective
NASA Astrophysics Data System (ADS)
Hamaker, Joseph W.
1996-03-01
This paper considers the possible life-cycle costs of single-stage-to-orbit (SSTO) and two-stage-to-orbit (TSTO) reusable launch vehicles (RLV's). The analysis parametrically addresses the issue such that the preferred economic choice comes down to the relative complexity of the TSTO compared to the SSTO. The analysis defines the boundary complexity conditions at which the two configurations have equal life-cycle costs, and finally, makes a case for the economic preference of SSTO over TSTO.
Single-stage-to-orbit performance enhancement from take-off thrust augmentation
NASA Astrophysics Data System (ADS)
Galati, Terence; Elkins, Travis
1997-01-01
Thrust augmentation offers the Single Stage to Orbit (SSTO) space launch vehicle improved payload capability while reducing vehicle weight and cost. Optimization of vehicle configuration and flight profile are studied. Using a 612,000 kg Gross Lift Off Weight (GLOW) SSTO with three Castor® strap-on motors, payloads in excess of 18,000 kg to Low Earth Orbit (LEO) are achievable. Emphasis is placed on finding vehicle optimums in the 9,000 kg payload range to capture over 80% of commercial payloads. Strap-on boosters allow a small SSTO vehicle to fly with a mass fraction of only 0.88 and LOX/H2 engines operating at 445 sec vacuum specific impulse. Payload sensitivity due to variations of mass fraction, Isp and pitch rate are quantified.
Design options for advanced manned launch systems
NASA Astrophysics Data System (ADS)
Freeman, Delma C.; Talay, Theodore A.; Stanley, Douglas O.; Lepsch, Roger A.; Wilhite, Alan W.
1995-03-01
Various concepts for advanced manned launch systems are examined for delivery missions to space station and polar orbit. Included are single-and two-stage winged systems with rocket and/or air-breathing propulsion systems. For near-term technologies, two-stage reusable rocket systems are favored over single-stage rocket or two-stage air-breathing/rocket systems. Advanced technologies enable viable single-stage-to-orbit (SSTO) concepts. Although two-stage rocket systems continue to be lighter in dry weight than SSTO vehicles, advantages in simpler operations may make SSTO vehicles more cost-effective over the life cycle. Generally, rocket systems maintain a dry-weight advantage over air-breathing systems at the advanced technology levels, but to a lesser degree than when near-term technologies are used. More detailed understanding of vehicle systems and associated ground and flight operations requirements and procedures is essential in determining quantitative discrimination between these latter concepts.
Life Cycle Cost Assessments for Military Transatmospheric Vehicles,
1997-01-01
earth orbit (GEO) that fall within the Titan-IV heavy launch vehicle (HLV) class are outside the practical design limits for a marketable RLV SSTO ...information is from the RAND-hosted TAV Workshop. Three SSTO concepts for X-33 were proposed during Phase I, all with either different takeoff or landing...1996 indicated some observed general differences in vehicles depending on the launch and landing modes:4 • Single stage to orbit ( SSTO ) TAVs for
Rocket-powered single-stage-to-orbit vehicles for safe economical access to low earth orbit
NASA Astrophysics Data System (ADS)
Andrews, D. G.; Davis, E. E.; Bangsund, E. L.
1991-10-01
Rocket-powered SSTO vehicles were investigated during the SSTO technology demonstration contracts. Vehicle configurations were defined to include various technology concepts such as advanced rocket or air breathing engines, takeoff assist options, and advanced high temperature structural materials. Results of these investigations are summarized and performance and turnaround data are presented.
Engine/vehicle integration for vertical takeoff and landing single stage to orbit vehicles
NASA Astrophysics Data System (ADS)
Weegar, R. K.
1992-08-01
SSTO vehicles design which is currently being developed under the Single Stage Rocket Technology program of the Strategic Defense Initiative Organization is discussed. Particular attention is given to engine optimization and integration of ascent, orbital, and landing propulsion requirements into a single system.
Technical and Economical Feasibility of SSTO and TSTO Launch Vehicles
NASA Astrophysics Data System (ADS)
Lerch, Jens
This paper discusses whether it is more cost effective to launch to low earth orbit in one or two stages, assuming current or near future technologies. First the paper provides an overview of the current state of the launch market and the hurdles to introducing new launch vehicles capable of significantly lowering the cost of access to space and discusses possible routes to solve those problems. It is assumed that reducing the complexity of launchers by reducing the number of stages and engines, and introducing reusability will result in lower launch costs. A number of operational and historic launch vehicle stages capable of near single stage to orbit (SSTO) performance are presented and the necessary steps to modify them into an expendable SSTO launcher and an optimized two stage to orbit (TSTO) launcher are shown, through parametric analysis. Then a ballistic reentry and recovery system is added to show that reusable SSTO and TSTO vehicles are also within the current state of the art. The development and recurring costs of the SSTO and the TSTO systems are estimated and compared. This analysis shows whether it is more economical to develop and operate expendable or reusable SSTO or TSTO systems under different assumption for launch rate and initial investment.
On the economics of staging for reusable launch vehicles
NASA Astrophysics Data System (ADS)
Griffin, Michael D.; Claybaugh, William R.
1996-03-01
There has been much recent discussion concerning possible replacement systems for the current U.S. fleet of launch vehicles, including both the shuttle and expendable vehicles. Attention has been focused upon the feasibility and potential benefits of reusable single-stage-to-orbit (SSTO) launch systems for future access to low Earth orbit (LEO). In this paper we assume the technical feasibility of such vehicles, as well as the benefits to be derived from system reusability. We then consider the benefits of launch vehicle staging from the perspective of economic advantage rather than performance necessity. Conditions are derived under which two-stage-to-orbit (TSTO) launch systems, utilizing SSTO-class vehicle technology, offer a relative economic advantage for access to LEO.
Methodology for Variable Fidelity Multistage Optimization under Uncertainty
2011-03-31
problem selected for the application of the new optimization methodology is a Single Stage To Orbit ( SSTO ) expendable launch vehicle (ELV). Three...the primary exercise of the variable fidelity optimization portion of the code. SSTO vehicles have been discussed almost exclusively in the context...of reusable launch vehicles (RLV). There is very little discussion in recent literature of SSTO designs which are expendable. In the light of the
NASA Technical Reports Server (NTRS)
1995-01-01
The sections in this report include: Single Stage to Orbit (SSTO) Design Ground-rules; Operations Issues and Lessons Learned; Vertical-Takeoff/Landing Versus Vertical-Takeoff/Horizontal-Landing; SSTO Design Results; SSTO Simulation Results; SSTO Assessment Results; SSTO Sizing Tool User's Guide; SSto Turnaround Assessment Report; Ground Operations Assessment First Year Executive Summary; Health Management System Definition Study; Major TA-2 Presentations; First Lunar Outpost Heavy Lift Launch Vehicle Design and Assessment; and the section, Russian Propulsion Technology Assessment Reports.
A Concept of Two-Stage-To-Orbit Reusable Launch Vehicle
NASA Astrophysics Data System (ADS)
Yang, Yong; Wang, Xiaojun; Tang, Yihua
2002-01-01
Reusable Launch Vehicle (RLV) has a capability of delivering a wide rang of payload to earth orbit with greater reliability, lower cost, more flexibility and operability than any of today's launch vehicles. It is the goal of future space transportation systems. Past experience on single stage to orbit (SSTO) RLVs, such as NASA's NASP project, which aims at developing an rocket-based combined-cycle (RBCC) airplane and X-33, which aims at developing a rocket RLV, indicates that SSTO RLV can not be realized in the next few years based on the state-of-the-art technologies. This paper presents a concept of all rocket two-stage-to-orbit (TSTO) reusable launch vehicle. The TSTO RLV comprises an orbiter and a booster stage. The orbiter is mounted on the top of the booster stage. The TSTO RLV takes off vertically. At the altitude about 50km the booster stage is separated from the orbiter, returns and lands by parachutes and airbags, or lands horizontally by means of its own propulsion system. The orbiter continues its ascent flight and delivers the payload into LEO orbit. After completing orbit mission, the orbiter will reenter into the atmosphere, automatically fly to the ground base and finally horizontally land on the runway. TSTO RLV has less technology difficulties and risk than SSTO, and maybe the practical approach to the RLV in the near future.
High Altitude Launch for a Practical SSTO
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Denis, Vincent; Lyons, Valerie (Technical Monitor)
2003-01-01
Existing engineering materials allow the construction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. High-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2% of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated into increased payload capability to orbit, ranging from 5 to 20% increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2% of gross lift-off weight, this corresponds to 31% increase in payload (for 5-km launch altitude) to 122% additional payload (for 25-km launch altitude).
High Altitude Launch for a Practical SSTO
NASA Astrophysics Data System (ADS)
Landis, Geoffrey A.; Denis, Vincent
2003-01-01
Existing engineering materials allow the constuction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. High-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2% of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated into increased payload capability to orbit, ranging from 5 to 20% increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2% of gross lift-off weight, this corresponds to 31% increase in payload (for 5-km launch altitude) to 122% additional payload (for 25-km launch altitude).
Hypersonic airbreathing vehicle visions and enhancing technologies
NASA Astrophysics Data System (ADS)
Hunt, James L.; Lockwood, Mary Kae; Petley, Dennis H.; Pegg, Robert J.
1997-01-01
This paper addresses the visions for hypersonic airbreathing vehicles and the advanced technologies that forge and enhance the designs. The matrix includes space access vehicles (single-stage-to-orbit (SSTO), two-stage-to-orbit (2STO) and three-stage-to-orbit (3STO)) and endoatmospheric vehicles (airplanes—missiles are omitted). The characteristics, the performance potential, the technologies and the synergies will be discussed. A common design constraint is that all vehicles (space access and endoatmospheric) have enclosed payload bays.
Hypersonic airbreathing vehicle visions and enhancing technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, J.L.; Lockwood, M.K.; Petley, D.H.
1997-01-01
This paper addresses the visions for hypersonic airbreathing vehicles and the advanced technologies that forge and enhance the designs. The matrix includes space access vehicles (single-stage-to-orbit (SSTO), two-stage-to-orbit (2STO) and three-stage-to-orbit (3STO)) and endoatmospheric vehicles (airplanes{emdash}missiles are omitted). The characteristics, the performance potential, the technologies and the synergies will be discussed. A common design constraint is that all vehicles (space access and endoatmospheric) have enclosed payload bays. {copyright} {ital 1997 American Institute of Physics.}
High Altitude Launch for a Practical SSTO
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Denis, Vincent
2003-01-01
Existing engineering materials allow the construction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. high-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2% of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated in to increased payload capability to orbit, ranging from 5 to 20% increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2% of gross lift-off weight, this corresponds to 31 % increase in payload (for 5-km launch altitude) to 122% additional payload (for 25-km launch altitude).
High Altitude Launch for a Practical SSTO
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Denis, Vincent
2003-01-01
Existing engineering materials allow the construction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. High-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2 percent of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated into increased payload capability to orbit, ranging from 5 to 20 percent increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2 percent of gross lift-off weight, this corresponds to 31 percent increase in payload (for 5-kilometer launch altitude) to 122 percent additional payload (for 25-kilometer launch altitude).
Economics of small fully reusable launch systems (SSTO vs. TSTO)
NASA Astrophysics Data System (ADS)
Koelle, Dietrich E.
1997-01-01
The paper presents a design and cost comparison of an SSTO vehicle concept with two TSTO vehicle options. It is shown that the ballistic SSTO concept feasibility is NOT a subject of technology but of proper vehicle SIZING. This also allows to design for sufficient performance margin. The cost analysis has been performed with the TRANSCOST- Model, also using the "Standardized Cost per Flight" definition for the CpF comparison. The results show that a present-technology SSTO for LEO missions is about 30 % less expensive than any TSTO vehicle, based on Life-Cycle-Cost analysis, in addition to the inherent operational/ reliability advantages of a single-stage vehicle. In case of a commercial development and operation it is estimated that an SSTO vehicle with 400 Mg propellant mass can be flown for some 9 Million per mission (94/95) with 14 Mg payload to LEO, 7 Mg to the Space Station Orbit, or 2 Mg to a 200/800 km polar orbit. This means specific transportation cost of 650 /kg (300 $/lb), resp.3.2 MYr/Mg, to LEO which is 6 -10% of present expendable launch vehicles.
Review of X-33 Hypersonic Aerodynamic and Aerothermodynamic Development
2000-09-01
proposed development of a fully reusable, rocket pow- ered, single-stage-to-orbit ( SSTO ) vehicle capa- ble of delivering 25,000 lbs (including crew...space at greatly reduced cost. The “Access-to-Space” study identified critical technologies that required development before a SSTO reusable launch
Single-stage-to-orbit: Meeting the challenge
NASA Astrophysics Data System (ADS)
Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, Robert Eugene
1995-10-01
There has been and continues to be significant discussion about the viability of fully reusable, single-stage-to-orbit (SSTO) concepts for delivery of payloads to orbit. Often, these discussions have focused in detail on performance and technology requirements relating to the technical feasibility of the concept, with only broad generalizations on how the SSTO will achieve its economic goals of greatly reduced vehicle ground and flight operations costs. With the current industry and NASA Reusable Launch Vehicle Technology Program efforts underway to mature and demonstrate technologies leading to a viable commercial launch system that also satisfies national needs, achieving acceptable recurring costs becomes a significant challenge. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33, and X-34 flight systems and associated technology programs. The paper also examines lessons learned from the recently completed DC-X reusable rocket demonstrator program. It examines how these technologies and flight systems address the technical and operability challenges of SSTO whose solutions are necessary to reduce costs. The paper also discusses the management and operational approaches that address the challenge of a new cost-effective, reusable launch vehicle system.
Single-stage-to-orbit — Meeting the challenge
NASA Astrophysics Data System (ADS)
Freeman, Delma C.; Talay, Theodore A.; Austin, Robert Eugene
1996-02-01
There has been and continues to be significant discussion about the viability of fully reusable, single-stage-to-orbit (SSTO) concepts for delivery of payloads to orbit. Often, these discussions have focused in detail on performance and technology requirements relating to the technical feasibility of the concept, with only broad generalizations on how the SSTO will achieve its economic goals of greatly reduced vehicle ground and flight operations costs. With the current industry and NASA Reusable Launch Vehicle Technology Program efforts underway to mature and demonstrate technologies leading to a viable commercial launch system that also satisfies national needs, achieving acceptable recurring costs becomes a significant challenge. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33, X-34 flight systems and associated technology programs. The paper also examines lessons learned from the recently completed DC-X reusable rocket demonstrator program. It examines how these technologies and flight systems address the technical and operability challenges of SSTO whose solutions are necessary to reduce costs. The paper also discusses the management and operational approaches that address the challenge of a new cost-effective, reusable launch vehicle system.
NASA Technical Reports Server (NTRS)
Foster, Richard W.
1992-01-01
Extensively axisymmetric and non-axisymmetric Single Stage To Orbit (SSTO) vehicles are considered. The information is presented in viewgraph form and the following topics are presented: payload comparisons; payload as a percent of dry weight - a system hardware cost indicator; life cycle cost estimations; operations and support costs estimation; selected engine type; and rocket engine specific impulse calculation.
NASA Astrophysics Data System (ADS)
Osborne, Robert D.
1999-06-01
In recent years, a lot of time and energy has been spent exploring possible mission scenarios for a human mission to Mars. NASA along with the privately funded Mars Society and a number of universities have come up with many options that could place people on the surface of Mars in a relatively short period of time at a relatively low cost. However, a common theme among all or at least most of these missions is that they require heavy lift vehicles such as the Russian Energia or the NASA proposed Magnum 100MT class vehicle to transport large payloads from the surface of Earth into a staging orbit about Earth. However, there is no current budget or any signs for a future budget to review the Russian Energia, the US made Saturn V, or to design and build a new heavy lift vehicle. However, there is a lot of interest and many companies looking into the possibility of "space planes". These vehicles will have the capability to place a payload into orbit without throwing any parts of the vehicle away. The concept of a space plane is basically that the plane is transported to a given altitude either by it's own power or on the back of another air worthy vehicle before the rocket engines are ignited. From this altitude, a Single Step to Orbit (SsTO) vehicle with a significant payload is possible. This report looks at the possibility of removing the requirement of a heavy lift vehicle by using the Stanford designed Single Step to Orbit.(SsTO) Launch Vehicle. The SsTO would eliminate the need for heavy lift vehicles and actually reduce the cost of the mission because of the very low costs involved with each SSTO launch. Although this scenario may add a small amount of risk assembling transfer vehicles in Earth orbit, it should add no additional risk to the crew.
NASA Astrophysics Data System (ADS)
Penn, Jay P.
1996-03-01
It is generally believed by those skilled in launch system design that Single-Stage-To-Orbit (SSTO) designs are more technically challenging, more performance sensitive, and yield larger lift-off weights than do Two-Stage-To-Orbit designs (TSTO's) offering similar payload delivery capability. Without additional insight into the other considerations which drive the development, recurring costs, operability, and reliability of a launch fleet, an analyst may easily conclude that the higher performing, less sensitive TSTO designs, thus yield a better solution to achieving low cost payload delivery. This limited insight could justify an argument to eliminate the X-33 SSTO technology/demonstration development effort, and thus proceed directly to less risky TSTO designs. Insight into real world design considerations of launch vehicles makes the choice of SSTO vs TSTO much less clear. The presentation addresses a more comprehensive evaluation of the general class of SSTO and TSTO concepts. These include pure SSTO's, augmented SSTO's, Siamese Twin, and Pure TSTO designs. The assessment considers vehicle performance and scaling relationships which characterize real vehicle designs. The assessment also addresses technology requirements, operations and supportability, cost implications, and sensitivities. Results of the assessment indicate that the trade space between various SSTO and TSTO design approaches is complex and not yet fully understood. The results of the X-33 technology demonstrators, as well as additional parametric analysis is required to better define the relative performance and costs of the various design approaches. The results also indicate that with modern technologies and today's better understanding of vehicle design considerations, the perception that SSTO's are dramatically heavier and more sensitive than TSTO designs is more of a myth, than reality.
Technology requirements for advanced earth-orbital transportation systems, dual-mode propulsion
NASA Technical Reports Server (NTRS)
Haefeli, R. C.; Littler, E. G.; Hurley, J. B.; Winter, M. G.
1977-01-01
The application of dual-mode propulsion concepts to fully reusable single-stage-to-orbit (SSTO) vehicles is discussed. Dual-mode propulsion uses main rocket engines that consume hydrocarbon fuels as well as liquid hydrogen fuel. Liquid oxygen is used as the oxidizer. These engine concepts were integrated into transportation vehicle designs capable of vertical takeoff, delivering a payload to earth orbit, and return to earth with a horizontal landing. Benefits of these vehicles were assessed and compared with vehicles using single-mode propulsion (liquid hydrogen and oxygen engines). Technology requirements for such advanced transportation systems were identified. Figures of merit, including life-cycle cost savings and research costs, were derived for dual-mode technology programs, and were used for assessments of potential benefits of proposed technology activities. Dual-mode propulsion concepts display potential for significant cost and performance benefits when applied to SSTO vehicles.
NASA study backs SSTO, urges shuttle phaseout
NASA Astrophysics Data System (ADS)
Asker, James R.
1994-03-01
A brief discusion of a Congressionally ordered NASA study on how to meet future US Government space launch needs is presented. Three options were examined: (1) improvement ofthe Space Shuttle; (2) development of expendable launch vehicles (ELVs); and (3) development of a single-stage-to-orbit (SSTO), manned vehicle that is reusable with advanced technology. After examining the three options, it was determined that the most economical approach to space access through the year 2030 would be to develop the SSTO vehicle and phase out Space Shuttle operations within 15 years and ELVs within 20 years. Other aspects of the study's findings are briefly covered.
NASA Astrophysics Data System (ADS)
Borowski, Stanley K.
1996-03-01
The feasibility of conducting human missions to the Moon is examined assuming the use of three ``high leverage'' technologies: (1) a single-stage-to-orbit (SSTO) launch vehicle, (2) ``in-situ'' resource utilization (ISRU)—specifically ``lunar-derived'' liquid oxygen (LUNOX), and (3) LOX-augmented nuclear thermal rocket (LANTR) propulsion. Lunar transportation system elements consisting of a LANTR-powered lunar transfer vehicle (LTV) and a chemical propulsion lunar landing/Earth return vehicle (LERV) are configured to fit within the ``compact'' dimensions of the SSTO cargo bay (diameter: 4.6 m/length: 9.0 m) while satisfying an initial mass in low Earth orbit (IMLEO) limit of ˜60 t (3 SSTO launches). Using ˜8 t of LUNOX to ``reoxidize'' the LERV for a ``direct return'' flight to Earth reduces its size and mass allowing delivery to LEO on a single 20 t SSTO launch. Similarly, the LANTR engine's ability to operate at any oxygen/hydrogen mixture ratio from 0 to 7 with high specific impulse (˜940 to 515 s) is exploited to reduce hydrogen tank volume, thereby improving packaging of the LANTR LTV's ``propulsion'' and ``propellant modules''. Expendable and reusable, piloted and cargo missions and vehicle designs are presented along with estimates of LUNOX production required to support the different mission modes.
NASA Astrophysics Data System (ADS)
Pelaccio, Dennis G.
1996-03-01
A novel, reusable, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit (VTOL/SSTO) launch system concept, named HYP-SSTO, is presented in this paper. This launch vehicle system concept uses a highly coupled, main high performance liquid oxygen/liquid hydrogen (LOX/LH2) propulsion system, that is used only for launch, with a hybrid auxiliary propulsion system which is used during final orbit insertion, major orbit maneuvering, and landing propulsive burn phases of flight. By using a hybrid propulsion system for major orbit maneuver burns and landing, this launch system concept has many advantages over conventional VTOL/SSTO concepts that use LOX/LH2 propulsion system(s) burns for all phases of flight. Because hybrid propulsion systems are relatively simple and inert by their nature, this concept has the potential to support short turnaround times between launches, be economical to develop, and be competitive in terms of overall system life-cycle cost. This paper provides a technical description of the novel, reusable HYP-SSTO launch system concept. Launch capability performance, as well as major design and operational system attributes, are identified and discussed.
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.
1995-01-01
The feasibility of conducting human missions to the Moon is examined assuming the use of three 'high leverage' technologies: (1) a single-stage-to-orbit (SSTO) launch vehicle, (2) 'in-situ' resource utilization (ISRU)--specifically 'lunar-derived' liquid oxygen (LUNOX), and (3) LOX-augmented nuclear thermal rocket (LANTR) propulsion. Lunar transportation system elements consisting of a LANTR-powered lunar transfer vehicle (LTV) and a chemical propulsion lunar landing/Earth return vehicle (LERV) are configured to fit within the 'compact' dimensions of the SSTO cargo bay (diameter: 4.6 m/length: 9.0 m) while satisfying an initial mass in low Earth orbit (IMLEO) limit of approximately 60 t (3 SSTO launches). Using approximately 8 t of LUNOX to 'reoxidize' the LERV for a 'direct return' flight to Earth reduces its size and mass allowing delivery to LEO on a single 20 t SSTO launch. Similarly, the LANTR engine's ability to operate at any oxygen/ hydrogen mixture ratio from 0 to 7 with high specific impulse (approximately 940 to 515 s) is exploited to reduce hydrogen tank volume, thereby improving packaging of the LANTR LTV's 'propulsion' and 'propellant modules'. Expendable and reusable, piloted and cargo missions and vehicle designs are presented along with estimates of LUNOX production required to support the different mission modes. Concluding remarks address the issue of lunar transportation system costs from the launch vehicle perspective.
NASA Astrophysics Data System (ADS)
Borowski, Stanley K.
1995-10-01
The feasibility of conducting human missions to the Moon is examined assuming the use of three 'high leverage' technologies: (1) a single-stage-to-orbit (SSTO) launch vehicle, (2) 'in-situ' resource utilization (ISRU)--specifically 'lunar-derived' liquid oxygen (LUNOX), and (3) LOX-augmented nuclear thermal rocket (LANTR) propulsion. Lunar transportation system elements consisting of a LANTR-powered lunar transfer vehicle (LTV) and a chemical propulsion lunar landing/Earth return vehicle (LERV) are configured to fit within the 'compact' dimensions of the SSTO cargo bay (diameter: 4.6 m/length: 9.0 m) while satisfying an initial mass in low Earth orbit (IMLEO) limit of approximately 60 t (3 SSTO launches). Using approximately 8 t of LUNOX to 'reoxidize' the LERV for a 'direct return' flight to Earth reduces its size and mass allowing delivery to LEO on a single 20 t SSTO launch. Similarly, the LANTR engine's ability to operate at any oxygen/ hydrogen mixture ratio from 0 to 7 with high specific impulse (approximately 940 to 515 s) is exploited to reduce hydrogen tank volume, thereby improving packaging of the LANTR LTV's 'propulsion' and 'propellant modules'. Expendable and reusable, piloted and cargo missions and vehicle designs are presented along with estimates of LUNOX production required to support the different mission modes. Concluding remarks address the issue of lunar transportation system costs from the launch vehicle perspective.
NASA Technical Reports Server (NTRS)
Stanley, Douglas O.; Unal, Resit; Joyner, C. R.
1992-01-01
The application of advanced technologies to future launch vehicle designs would allow the introduction of a rocket-powered, single-stage-to-orbit (SSTO) launch system early in the next century. For a selected SSTO concept, a dual mixture ratio, staged combustion cycle engine that employs a number of innovative technologies was selected as the baseline propulsion system. A series of parametric trade studies are presented to optimize both a dual mixture ratio engine and a single mixture ratio engine of similar design and technology level. The effect of varying lift-off thrust-to-weight ratio, engine mode transition Mach number, mixture ratios, area ratios, and chamber pressure values on overall vehicle weight is examined. The sensitivity of the advanced SSTO vehicle to variations in each of these parameters is presented, taking into account the interaction of each of the parameters with each other. This parametric optimization and sensitivity study employs a Taguchi design method. The Taguchi method is an efficient approach for determining near-optimum design parameters using orthogonal matrices from design of experiments (DOE) theory. Using orthogonal matrices significantly reduces the number of experimental configurations to be studied. The effectiveness and limitations of the Taguchi method for propulsion/vehicle optimization studies as compared to traditional single-variable parametric trade studies is also discussed.
RL-10 Based Combined Cycle For A Small Reusable Single-Stage-To-Orbit Launcher
NASA Technical Reports Server (NTRS)
Balepin, Vladimir; Price, John; Filipenco, Victor
1999-01-01
This paper discusses a new application of the combined propulsion known as the KLIN(TM) cycle, consisting of a thermally integrated deeply cooled turbojet (DCTJ) and liquid rocket engine (LRE). If based on the RL10 rocket engine family, the KLIN (TM) cycle makes a small single-stage-to-orbit (SSTO) reusable launcher feasible and economically very attractive. Considered in this paper are the concept and parameters of a small SSTO reusable launch vehicle (RLV) powered by the KLIN (TM) cycle (sSSTO(TM)) launcher. Also discussed are the benefits of the small launcher, the reusability, and the combined cycle application. This paper shows the significant reduction of the gross take off weight (GTOW) and dry weight of the KLIN(TM) cycle-powered launcher compared to an all-rocket launcher.
Strutjet-powered reusable launch vehicles
NASA Technical Reports Server (NTRS)
Siebenhaar, A.; Bulman, M. J.; Sasso, S. E.; Schnackel, J. A.
1994-01-01
Martin Marietta and Aerojet are co-investigating the feasibility and viability of reusable launch vehicle designs. We are assessing two vehicle concepts, each delivering 8000 lb to a geosynchronous transfer orbit (GTO). Both accomplish this task as a two-state system. The major difference between the two concepts is staging. The first concept, the two-stage-to-orbit (TSTO) system, stages at about 16 kft/sec, allowing immediate return of the first stage to the launch site using its airbreathing propulsion system for a powered cruise flight. The second concept, the single-stage-to-orit (SSTO) system, accomplishes stage separation in a stable low earth orbit (LEO).
NASA Astrophysics Data System (ADS)
Berry, W.; Grallert, H.
1996-02-01
The paper presents a synthesis of the performance and technical feasibility assessment of 7 reusable launcher types, comprising 13 different vehicles, studied by European Industry for ESA in the ESA Winged Launcher Study in the period January 1988 to May 1994. The vehicles comprised single-stage-to-orbit (SSTO) and two-stage-to-orbit (TSTO) vehicles, propelled by either air-breathing/rocket propulsion or entirely by rocket propulsion. The results showed that an SSTO vehicle of the HOTOL-type, propelled by subsonic combustion air-breathing/rocket engines could barely deliver the specified payload mass and was aerodynamically unstable; that a TSTO vehicle of the Saenger type, employing subsonic combustion airbreathing propulsion in its first stage and rocket propulsion in its second stage, could readily deliver the specified payload mass and was found to be technically feasible and versatile; that an SSTO vehicle of the NASP type, propelled by supersonic combustion airbreathing/rocket propulsion was able to deliver a reduced payload mass, was very complex and required very advanced technologies; that an air-launched rocket propelled vehicle of the Interim HOTOL type, although technically feasible, could deliver only a reduced payload mass, being constrained by the lifting capability of the carrier airplane; that three different, entirely rocket-propelled vehicles could deliver the specified payload mass, were technically feasible but required relatively advanced technologies.
NASA Technical Reports Server (NTRS)
Freeman, D. C., Jr.; Powell, R. W.
1979-01-01
Aft center-of-gravity locations dictated by the large number of rocket engines required has been a continuing problem of single-stage-to-orbit vehicles. Recent work at Langley has demonstrated that these aft center-of-gravity problems become more pronounced for the proposed heavy-lift mission, creating some unique design problems for both the SSTO and staged vehicle systems. During the course of this study, an effort was made to bring together automated vehicle design, wind-tunnel tests, and flight control analyses to assess the impact of longitudinal and lateral-directional instability, and control philosophy on entry vehicle design technology.
Assessment of the Feasibility of Innovative Reusable Launchers
NASA Astrophysics Data System (ADS)
Chiesa, S.; Corpino, S.; Viola, N.
The demand for getting access to space, in particular to Low Earth Orbit, is increasing and fully reusable launch vehicles (RLVs) are likely to play a key role in the development of future space activities. Up until now this kind of space systems has not been successfully carried out: in fact today only the Space Shuttle, which belongs to the old generation of launchers, is operative and furthermore it is not a fully reusable system. In the nineties many studies regarding advanced transatmospheric planes were started, but no one was accomplished because of the technological problems encountered and the high financial resources required with the corresponding industrial risk. One of the most promising project was the Lockheed Venture Star, which seemed to have serious chances to be carried out. Anyway, if this ever happens, it will take quite a long time thus the operative life of Space Shuttle will have to be extended for the International Space Station support. The purpose of the present work is to assess the feasibility of different kinds of advanced reusable launch vehicles to gain access to space and to meet the requirements of today space flight needs, which are mainly safety and affordability. Single stage to orbit (SSTO), two stage to orbit (TSTO) and the so called "one and a half" stage to orbit vehicles are here taken into account to highlight their advantages and disadvantages. The "one and a half" stage to orbit vehicle takes off and climbs to meet a tanker aircraft to be aerially refuelled and then, after disconnecting from the tanker, it flies to reach the orbit. In this case, apart from the space vehicle, also the tanker aircraft needs a dedicated study to examine the problems related to the refuelling at high subsonic speeds and at a height near the tropopause. Only winged vehicles which take off and land horizontally are considered but different architectural layouts and propulsive configurations are hypothesised. Unlike the Venture Star, which takes off like the Space Shuttle, this kind of reusable launch vehicles, called spaceplanes, should all be able to be maintained and operated from airports, thus making the launch and recovery phases easier and more affordable. Apart from being an innovative attempt to get access to space, spaceplanes look likely to revolutionize long distance plane travel, with travel times between any two cities connecting USA, Europe, Japan and Australia being only a few hours. SSTO winged vehicles may be at the margins of feasibility as a reusable SSTO design attempts to take two major steps at once: step one being a fully reusable vehicle and step two being a single-stage reusable vehicle. It is well known that the accomplishment of the SSTO vehicle requires a dramatic effort from the technological point of view even though the integration design appears to be quite easy. If compared to the SSTO, the TSTO reusable vehicle is less technically demanding as, for example, state-of-the-art engines can be used but the integration design is surely more complex. An optimum solution may be represented by the "one and a half" stage to orbit vehicle. In fact getting the "one and a half" reusable vehicle into orbit doesn't look impossible but it surely does look challenging. In this paper the study of the feasibility and the technological assessment of new space systems concepts are accomplished by: The work we are involved in is still under way but the first results we have had are encouraging.
Trim drag reduction concepts for horizontal takeoff single-stage-to-Orbit vehicles
NASA Technical Reports Server (NTRS)
Shaughnessy, John D.; Gregory, Irene M.
1991-01-01
The results of a study to investigate concepts for minimizing trim drag of horizontal takeoff single-stage-to-orbit (SSTO) vehicles are presented. A generic hypersonic airbreathing conical configuration was used as the subject aircraft. The investigation indicates that extreme forward migration of the aerodynamic center as the vehicle accelerates to orbital velocities causes severe aerodynamic instability and trim moments that must be counteracted. Adequate stability can be provided by active control of elevons and rudder, but use of elevons to produce trim moments results in excessive trim drag and fuel consumption. To alleviate this problem, two solution concepts are examined. Active control of the center of gravity (COG) location to track the aerodynamic center decreases trim moment requirements, reduces elevon deflections, and leads to significant fuel savings. Active control of the direction of the thrust vector produces required trim moments, reduces elevon deflections, and also results in significant fuel savings. It is concluded that the combination of active flight control to provide stabilization, (COG) position control to minimize trim moment requirements, and thrust vectoring to generate required trim moments has the potential to significantly reduce fuel consumption during ascent to orbit of horizontal takeoff SSTO vehicles.
Linear aerospike engine. [for reusable single-stage-to-orbit vehicle
NASA Technical Reports Server (NTRS)
Kirby, F. M.; Martinez, A.
1977-01-01
A description is presented of a dual-fuel modular split-combustor linear aerospike engine concept. The considered engine represents an approach to an integrated engine for a reusable single-stage-to-orbit (SSTO) vehicle. The engine burns two fuels (hydrogen and a hydrocarbon) with oxygen in separate combustors. Combustion gases expand on a linear aerospike nozzle. An engine preliminary design is discussed. Attention is given to the evaluation process for selecting the optimum number of modules or divisions of the engine, aspects of cooling and power cycle balance, and details of engine operation.
NASA Technical Reports Server (NTRS)
Alexander, Reginald; Stanley, Thomas Troy
2001-01-01
Presented is a design tool and process that connects several disciplines which are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to all other systems, as is the case with SSTO vehicles with air breathing propulsion, which is currently being studied by the National Aeronautics and Space Administration (NASA). In particular, the thermal protection system (TPS) is linked directly to almost every major system. The propulsion system pushes the vehicle to velocities on the order of 15 times the speed of sound in the atmosphere before pulling up to go to orbit which results in high temperatures on the external surfaces of the vehicle. Thermal protection systems to maintain the structural integrity of the vehicle must be able to mitigate the heat transfer to the structure and be lightweight. Herein lies the interdependency, in that as the vehicle's speed increases, the TPS requirements are increased. And as TPS masses increase the effect on the propulsion system and all other systems is compounded. To adequately calculate the TPS mass of this type of vehicle several engineering disciplines and analytical tools must be used preferably in an environment that data is easily transferred and multiple iterations are easily facilitated.
The Sensitivity of Precooled Air-Breathing Engine Performance to Heat Exchanger Design Parameters
NASA Astrophysics Data System (ADS)
Webber, H.; Bond, A.; Hempsell, M.
The issues relevant to propulsion design for Single Stage To Orbit (SSTO) vehicles are considered. In particular two air- breathing engine concepts involving precooling are compared; SABRE (Synergetic Air-Breathing and Rocket Engine) as designed for the Skylon SSTO launch vehicle, and a LACE (Liquid Air Cycle Engine) considered in the 1960's by the Americans for an early generation spaceplane. It is shown that through entropy minimisation the SABRE has made substantial gains in performance over the traditional LACE precooled engine concept, and has shown itself as the basis of a viable means of realising a SSTO vehicle. Further, it is demonstrated that the precooler is a major source of thermodynamic irreversibility within the engine cycle and that further reduction in entropy can be realised by increasing the heat transfer coefficient on the air side of the precooler. If this were to be achieved, it would improve the payload mass delivered to orbit by the Skylon launch vehicle by between 5 and 10%.
NASA Technical Reports Server (NTRS)
Foster, Richard W.; Escher, William J. D.; Robinson, John W.
1989-01-01
The present comparative performance study has established that rocket-based combined cycle (RBCC) propulsion systems, when incorporated by essentially axisymmetric SSTO launch vehicle configurations whose conical forebody maximizes both capture-area ratio and total capture area, are capable of furnishing payload-delivery capabilities superior to those of most multistage, all-rocket launchers. Airbreathing thrust augmentation in the rocket-ejector mode of an RBCC powerplant is noted to make a major contribution to final payload capability, by comparison to nonair-augmented rocket engine propulsion systems.
NASA Astrophysics Data System (ADS)
1994-07-01
The goal of this conceptual design was to devise a reusable, commercially viable, single-stage-to-orbit vehicle. The vehicle has the ability to deliver a 9100 kg (20,000 lb) payload to a low earth orbit of 433 km to 933 km (250 n.mi. - 450 n.mi.). The SSTO vehicle is 51 meters in length and has a gross takeoff mass of 680,400 kg (1,500,000 lb). The vehicle incorporates three RD-701 engines for the main propulsion system and two RL-10 engines for the orbital maneuvering system. The vehicle is designed for a three day stay on orbit with two crew members.
NASA Technical Reports Server (NTRS)
1994-01-01
The goal of this conceptual design was to devise a reusable, commercially viable, single-stage-to-orbit vehicle. The vehicle has the ability to deliver a 9100 kg (20,000 lb) payload to a low earth orbit of 433 km to 933 km (250 n.mi. - 450 n.mi.). The SSTO vehicle is 51 meters in length and has a gross takeoff mass of 680,400 kg (1,500,000 lb). The vehicle incorporates three RD-701 engines for the main propulsion system and two RL-10 engines for the orbital maneuvering system. The vehicle is designed for a three day stay on orbit with two crew members.
NASA Technical Reports Server (NTRS)
Stanley, Thomas Troy; Alexander, Reginald
1999-01-01
Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. The deficiencies in the scramjet powered concept led to a revival of interest in Rocket-Based Combined-Cycle (RBCC) propulsion systems. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. At this point the transitions to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scram4jet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance.
SSTO rockets. A practical possibility
NASA Technical Reports Server (NTRS)
Bekey, Ivan
1994-01-01
Most experts agree that single-stage-to-orbit (SSTO) rockets would become feasible if more advanced technologies were available to reduce the vehicle dry weight, increase propulsion system performance, or both. However, these technologies are usually judged to be very ambitious and very far off. This notion persists despite major advances in technology and vehicle design in the past decade. There appears to be four major misperceptions about SSTOs, regarding their mass fraction, their presumed inadequate performance margin, their supposedly small payloads, and their extreme sensitivity to unanticipated vehicle weight growth. These misperceptions can be dispelled for SSTO rockets using advanced technologies that could be matured and demonstrated in the near term. These include a graphite-composite primary structure, graphite-composite and Al-Li propellant tanks with integral reusable thermal protection, long-life tripropellant or LOX-hydrogen engines, and several technologies related to operational effectiveness, including vehicle health monitoring, autonomous avionics/flight control, and operable launch and ground handling systems.
SSTO rockets. A practical possibility
NASA Astrophysics Data System (ADS)
Bekey, Ivan
1994-07-01
Most experts agree that single-stage-to-orbit (SSTO) rockets would become feasible if more advanced technologies were available to reduce the vehicle dry weight, increase propulsion system performance, or both. However, these technologies are usually judged to be very ambitious and very far off. This notion persists despite major advances in technology and vehicle design in the past decade. There appears to be four major misperceptions about SSTOs, regarding their mass fraction, their presumed inadequate performance margin, their supposedly small payloads, and their extreme sensitivity to unanticipated vehicle weight growth. These misperceptions can be dispelled for SSTO rockets using advanced technologies that could be matured and demonstrated in the near term. These include a graphite-composite primary structure, graphite-composite and Al-Li propellant tanks with integral reusable thermal protection, long-life tripropellant or LOX-hydrogen engines, and several technologies related to operational effectiveness, including vehicle health monitoring, autonomous avionics/flight control, and operable launch and ground handling systems.
Advanced Low-Cost O2/H2 Engines for the SSTO Application
NASA Technical Reports Server (NTRS)
Goracke, B. David; Levack, Daniel J. H.; Nixon, Robert F.
1994-01-01
The recent NASA Access to Space study examined future Earth to orbit (ETO) transportation needs and fleets out to 2030. The baseline in the option 3 assessment was a single stage to orbit (SSTO) vehicle. A study was conducted to assess the use of new advanced low cost O2/H2 engines for this SSTO application. The study defined baseline configurations and ground rules and defined six engine cycles to explore engine performance. The cycles included an open cycle, and a series of closed cycles with varying abilities to extract energy from the propellants to power he turbomachinery. The cycles thus varied in the maximum chamber pressure they could reach and in their weights at any given chamber pressure. The weight of each cycle was calculated for two technology levels versus chamber pressure up to the power limit of the cycle. The performance in the SSTO mission was then modeled using the resulting engine weights and specific impulse performance using the Access to Space option 3 vehicle. The results showed that new O2/H2 engines are viable and competitive candidates for the SSTO application using chamber pressures of 4,000 psi.
NASA Astrophysics Data System (ADS)
Foster, Richard W.
1989-07-01
The application of rocket-based combined cycle (RBCC) engines to booster-stage propulsion, in combination with all-rocket second stages in orbital-ascent missions, has been studied since the mid-1960s; attention is presently given to the case of the 'ejector scramjet' RBCC configuration's application to SSTO vehicles. While total mass delivered to initial orbit is optimized at Mach 20, payload delivery capability to initial orbit optimizes at Mach 17, primarily due to the reduction of hydrogen fuel tankage structure, insulation, and thermal protection system weights.
Test Plans. Lightweight Durable TPS: Tasks 1,2,4,5, and 6
NASA Technical Reports Server (NTRS)
Greenberg, H. S.; Tu, Tina
1994-01-01
The objective of this task is to develop the fluted core flexible blankets, also referred to as the Tailorable Advanced Blanket Insulation (TABI), to a technology readiness level (TRL) of 6. This task is one of the six tasks under TA 3, Lightweight Durable TPS study, of the Single Stage to Orbit (SSTO) program. The purpose of this task is to develop a durable and low maintenance flexible TPS blanket material to be implemented on the SSTO vehicle.
Preliminary Assessment of Using Gelled and Hybrid Propellant Propulsion for VTOL/SSTO Launch Systems
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan; OLeary, Robert; Pelaccio, Dennis G.
1998-01-01
A novel, reusable, Vertical-Takeoff-and-Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit (VTOL/SSTO) launch system concept, named AUGMENT-SSTO, is presented in this paper to help quantify the advantages of employing gelled and hybrid propellant propulsion system options for such applications. The launch vehicle system concept considered uses a highly coupled, main high performance liquid oxygen/liquid hydrogen (LO2/LH2) propulsion system, that is used only for launch, while a gelled or hybrid propellant propulsion system auxiliary propulsion system is used during final orbit insertion, major orbit maneuvering, and landing propulsive burn phases of flight. Using a gelled or hybrid propellant propulsion system for major orbit maneuver burns and landing has many advantages over conventional VTOL/SSTO concepts that use LO2/LH2 propulsion system(s) burns for all phases of flight. The applicability of three gelled propellant systems, O2/H2/Al, O2/RP-1/Al, and NTO/MMH/Al, and a state-of-the-art (SOA) hybrid propulsion system are examined in this study. Additionally, this paper addresses the applicability of a high performance gelled O2/H2 propulsion system to perform the primary, as well as the auxiliary propulsion system functions of the vehicle.
HASA: Hypersonic Aerospace Sizing Analysis for the Preliminary Design of Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Harloff, Gary J.; Berkowitz, Brian M.
1988-01-01
A review of the hypersonic literature indicated that a general weight and sizing analysis was not available for hypersonic orbital, transport, and fighter vehicles. The objective here is to develop such a method for the preliminary design of aerospace vehicles. This report describes the developed methodology and provides examples to illustrate the model, entitled the Hypersonic Aerospace Sizing Analysis (HASA). It can be used to predict the size and weight of hypersonic single-stage and two-stage-to-orbit vehicles and transports, and is also relevant for supersonic transports. HASA is a sizing analysis that determines vehicle length and volume, consistent with body, fuel, structural, and payload weights. The vehicle component weights are obtained from statistical equations for the body, wing, tail, thermal protection system, landing gear, thrust structure, engine, fuel tank, hydraulic system, avionics, electral system, equipment payload, and propellant. Sample size and weight predictions are given for the Space Shuttle orbiter and other proposed vehicles, including four hypersonic transports, a Mach 6 fighter, a supersonic transport (SST), a single-stage-to-orbit (SSTO) vehicle, a two-stage Space Shuttle with a booster and an orbiter, and two methane-fueled vehicles.
Development of CFD model for augmented core tripropellant rocket engine
NASA Astrophysics Data System (ADS)
Jones, Kenneth M.
1994-10-01
The Space Shuttle era has made major advances in technology and vehicle design to the point that the concept of a single-stage-to-orbit (SSTO) vehicle appears more feasible. NASA presently is conducting studies into the feasibility of certain advanced concept rocket engines that could be utilized in a SSTO vehicle. One such concept is a tripropellant system which burns kerosene and hydrogen initially and at altitude switches to hydrogen. This system will attain a larger mass fraction because LOX-kerosene engines have a greater average propellant density and greater thrust-to-weight ratio. This report describes the investigation to model the tripropellant augmented core engine. The physical aspects of the engine, the CFD code employed, and results of the numerical model for a single modular thruster are discussed.
Turbine Based Combined/Combination Cycle/RTA Project Overview
NASA Technical Reports Server (NTRS)
Bartolotta, Paul A.; Quigley, Brian F.
2000-01-01
This viewgraph presentation gives an overview of the Revolutionary Turbine Accelerator (RTA) program. Details are given on the Single Stage To Orbit (SSTO) and Two Stage To Orbit (TSTO) aircraft, and the technological challenges associated with the RTA, SSTO, and TSTO.
NASA Technical Reports Server (NTRS)
Roche, Joseph M.
2002-01-01
Single-stage-to-orbit (SSTO) propulsion remains an elusive goal for launch vehicles. The physics of the problem is leading developers to a search for higher propulsion performance than is available with all-rocket power. Rocket-based combined cycle (RBCC) technology provides additional propulsion performance that may enable SSTO flight. Structural efficiency is also a major driving force in enabling SSTO flight. Increases in performance with RBCC propulsion are offset with the added size of the propulsion system. Geometrical considerations must be exploited to minimize the weight. Integration of the propulsion system with the vehicle must be carefully planned such that aeroperformance is not degraded and the air-breathing performance is enhanced. Consequently, the vehicle's structural architecture becomes one with the propulsion system architecture. Geometrical considerations applied to the integrated vehicle lead to low drag and high structural and volumetric efficiency. Sizing of the SSTO launch vehicle (GTX) is itself an elusive task. The weight of the vehicle depends strongly on the propellant required to meet the mission requirements. Changes in propellant requirements result in changes in the size of the vehicle, which in turn, affect the weight of the vehicle and change the propellant requirements. An iterative approach is necessary to size the vehicle to meet the flight requirements. GTX Sizer was developed to do exactly this. The governing geometry was built into a spreadsheet model along with scaling relationships. The scaling laws attempt to maintain structural integrity as the vehicle size is changed. Key aerodynamic relationships are maintained as the vehicle size is changed. The closed weight and center of gravity are displayed graphically on a plot of the synthesized vehicle. In addition, comprehensive tabular data of the subsystem weights and centers of gravity are generated. The model has been verified for accuracy with finite element analysis. The final trajectory was rerun using OTIS (Boeing Corporation's trajectory optimization software package), and the sizing output was incorporated into a solid model of the vehicle using PRO/Engineer computer-aided design software (Parametric Technology Corporation, Waltham, MA).
NASA Technical Reports Server (NTRS)
Farhangi, Shahram; Trent, Donnie (Editor)
1992-01-01
A study was directed towards assessing viability and effectiveness of an air augmented ejector/rocket. Successful thrust augmentation could potentially reduce a multi-stage vehicle to a single stage-to-orbit vehicle (SSTO) and, thereby, eliminate the associated ground support facility infrastructure and ground processing required by the eliminated stage. The results of this preliminary study indicate that an air augmented ejector/rocket propulsion system is viable. However, uncertainties resulting from simplified approach and assumptions must be resolved by further investigations.
Aerodynamic Interaction between Delta Wing and Hemisphere-Cylinder in Supersonic Flow
NASA Astrophysics Data System (ADS)
Nishino, Atsuhiro; Ishikawa, Takahumi; Nakamura, Yoshiaki
As future space vehicles, Reusable Launch Vehicle (RLV) needs to be developed, where there are two kinds of RLV: Single Stage To Orbit (SSTO) and Two Stage To Orbit (TSTO). In the latter case, the shock/shock interaction and shock/boundary layer interaction play a key role. In the present study, we focus on the supersonic flow field with aerodynamic interaction between a delta wing and a hemisphere-cylinder, which imitate a TSTO, where the clearance, h, between the delta wing and hemisphere-cylinder is a key parameter. As a result, complicated flow patterns were made clear, including separation bubbles.
Advanced technology and future earth-orbit transportation systems
NASA Technical Reports Server (NTRS)
Henry, B. Z.; Eldred, C. H.
1977-01-01
The paper is concerned with the identification and evaluation of technology developments which offer potential for high return on investment when applied to advanced transportation systems. These procedures are applied in a study of winged single-stage-to-orbit (SSTO) vehicles, which are considered feasible by the 1990s. Advanced technology is considered a key element in achieving improved economics, and near term investment in selected technology areas is recommended.
Merits of full flow vs. conventional staged combustion cycles for reusable launch vehicle propulsion
NASA Astrophysics Data System (ADS)
Peery, Steven D.; Parsley, Randy C.
1996-03-01
This paper provides a comparison between full-flow and conventional staged combustion thermodynamic O2/H2 rocket engine cycles for Reusable Launch Vehicle, RLV, single-stage-to-orbit applications. The impact of the cycle thermodynamics, component configuration, and component operating parameters on engine performance and weight for the two approaches is presented. Both cycles were modeled with equivalent technology turbomachinery and chamber/nozzle RLV life requirements. The first order impact of cycle selection, pump exit pressure, and turbine temperature on the empty weight of an SSTO Reusable Launch Vehicle is presented.
Hypervelocity Launching and Frozen Fuels as a Major Contribution to Spaceflight
NASA Astrophysics Data System (ADS)
Cocks, F. H.; Harman, C. M.; Klenk, P. A.; Simmons, W. N.
Acting as a virtual first stage, a hypervelocity launch together with the use of frozen hydrogen/frozen oxygen propellant, offers a Single-Stage-To-Orbit (SSTO) system that promises an enormous increase in SSTO mass-ratio. Ram acceleration provides hypervelocity (2 km/sec) to the orbital vehicle with a gas gun supplying the initial velocity required for ram operation. The vehicle itself acts as the center body of a ramjet inside a launch tube, filled with gaseous fuel and oxidizer, acting as an engine cowling. The high acceleration needed to achieve hypervelocity precludes a crew, and it would require greatly increased liquid fuel tank structural mass if a liquid propellant is used for post-launch vehicle propulsion. Solid propellants do not require as much fuel- chamber strengthening to withstand a hypervelocity launch as do liquid propellants, but traditional solid fuels have lower exhaust velocities than liquid hydrogen/liquid oxygen. The shock-stability of frozen hydrogen/frozen oxygen propellant has been experimentally demonstrated. A hypervelocity launch system using frozen hydrogen/frozen oxygen propellant would be a revolutionary new development in spaceflight.
Real-Time Trajectory Assessment and Abort Management for the X-33 Vehicle
NASA Technical Reports Server (NTRS)
Moise, M. C.; McCarter, J. W.; Mulqueen, J.
2000-01-01
The X-33 is a flying testbed to evaluate technologies and designs for a reusable Single Stage To Orbit (SSTO) production vehicle. Although it is sub-orbital, it is trans-atmospheric. This paper will discuss the abort capabilities, both commanded and autonomous, available to the X-33. The cornerstone of the abort capabilities is the Performance Monitor (PM) and it's supporting software. PM is an on-board 3-DOF simulation, which evaluates the vehicle ability to execute the current trajectory. The Abort Manager evaluates the results from PM, and, when indicated, computes and implements an abort trajectory.
NASA Astrophysics Data System (ADS)
Lovell, T. Alan; Schmidt, D. K.
1994-03-01
The class of hypersonic vehicle configurations with single stage-to-orbit (SSTO) capability reflect highly integrated airframe and propulsion systems. These designs are also known to exhibit a large degree of interaction between the airframe and engine dynamics. Consequently, even simplified hypersonic models are characterized by tightly coupled nonlinear equations of motion. In addition, hypersonic SSTO vehicles present a major system design challenge; the vehicle's overall mission performance is a function of its subsystem efficiencies including structural, aerodynamic, propulsive, and operational. Further, all subsystem efficiencies are interrelated, hence, independent optimization of the subsystems is not likely to lead to an optimum design. Thus, it is desired to know the effect of various subsystem efficiencies on overall mission performance. For the purposes of this analysis, mission performance will be measured in terms of the payload weight inserted into orbit. In this report, a trajectory optimization problem is formulated for a generic hypersonic lifting body for a specified orbit-injection mission. A solution method is outlined, and results are detailed for the generic vehicle, referred to as the baseline model. After evaluating the performance of the baseline model, a sensitivity study is presented to determine the effect of various subsystem efficiencies on mission performance. This consists of performing a parametric analysis of the basic design parameters, generating a matrix of configurations, and determining the mission performance of each configuration. Also, the performance loss due to constraining the total head load experienced by the vehicle is evaluated. The key results from this analysis include the formulation of the sizing problem for this vehicle class using trajectory optimization, characteristics of the optimal trajectories, and the subsystem design sensitivities.
NASA Technical Reports Server (NTRS)
Lovell, T. Alan; Schmidt, D. K.
1994-01-01
The class of hypersonic vehicle configurations with single stage-to-orbit (SSTO) capability reflect highly integrated airframe and propulsion systems. These designs are also known to exhibit a large degree of interaction between the airframe and engine dynamics. Consequently, even simplified hypersonic models are characterized by tightly coupled nonlinear equations of motion. In addition, hypersonic SSTO vehicles present a major system design challenge; the vehicle's overall mission performance is a function of its subsystem efficiencies including structural, aerodynamic, propulsive, and operational. Further, all subsystem efficiencies are interrelated, hence, independent optimization of the subsystems is not likely to lead to an optimum design. Thus, it is desired to know the effect of various subsystem efficiencies on overall mission performance. For the purposes of this analysis, mission performance will be measured in terms of the payload weight inserted into orbit. In this report, a trajectory optimization problem is formulated for a generic hypersonic lifting body for a specified orbit-injection mission. A solution method is outlined, and results are detailed for the generic vehicle, referred to as the baseline model. After evaluating the performance of the baseline model, a sensitivity study is presented to determine the effect of various subsystem efficiencies on mission performance. This consists of performing a parametric analysis of the basic design parameters, generating a matrix of configurations, and determining the mission performance of each configuration. Also, the performance loss due to constraining the total head load experienced by the vehicle is evaluated. The key results from this analysis include the formulation of the sizing problem for this vehicle class using trajectory optimization, characteristics of the optimal trajectories, and the subsystem design sensitivities.
Laser-boosted lightcraft technology demonstrator
NASA Technical Reports Server (NTRS)
Richard, J. C.; Morales, C.; Smith, W. L.; Myrabo, L. N.
1990-01-01
The detailed description and performance analysis of a 1.4 meter diameter Lightcraft Technology Demonstator (LTD) is presented. The launch system employs a 100 MW-class ground-based laser to transmit power directly to an advanced combined-cycle engine that propels the 120 kg LTD to orbit - with a mass ratio of two. The single-stage-to-orbit (SSTO) LTD machine then becomes an autonomous sensor satellite that can deliver precise, high quality information typical of today's large orbital platforms. The dominant motivation behind this study is to provide an example of how laser propulsion and its low launch costs can induce a comparable order-of-magnitude reduction in sensor satellite packaging costs. The issue is simply one of production technology for future, survivable SSTO aerospace vehicles that intimately share both laser propulsion engine and satellite functional hardware.
Hypersonic vehicle control law development using H infinity and mu-synthesis
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.
1992-01-01
Applicability and effectiveness of robust control techniques to a single-stage-to-orbit (SSTO) airbreathing hypersonic vehicle on an ascent accelerating path and their effectiveness are explored in this paper. An SSTO control system design problem, requiring high accuracy tracking of velocity and altitude commands while limiting angle of attack oscillations, minimizing control power usage and stabilizing the vehicle all in the presence of atmospheric turbulence and uncertainty in the system, was formulated to compare results of the control designs using H infinity and mu-synthesis procedures. The math model, an integrated flight/propulsion dynamic model of a conical accelerator class vehicle, was linearized as the vehicle accelerated through Mach 8. Controller analysis was conducted using the singular value technique and the mu-analysis approach. Analysis results were obtained in both the frequency and the time domains. The results clearly demonstrate the inherent advantages of the structured singular value framework for this class of problems. Since payload performance margins are so critical for the SSTO mission, it is crucial that adequate stability margins be provided without sacrificing any payload mass.
Feasibility Study of SSTO Base Heating Simulation in Pulsed-Type Facilities
NASA Technical Reports Server (NTRS)
Park, Chung Sik; Sharma, Surendra; Edwards, Thomas A. (Technical Monitor)
1995-01-01
A laboratory simulation of the base heating environment of the proposed reusable Single-Stage-To-Orbit vehicle during its ascent flight was proposed. The rocket engine produces CO2 and H2, which are the main combustible components of the exhaust effluent. The burning of these species, known as afterburning, enhances the base region gas temperature as well as the base heating. To determine the heat flux on the SSTO vehicle, current simulation focuses on the thermochemistry of the afterburning, thermophysical properties of the base region gas, and ensuing radiation from the gas. By extrapolating from the Saturn flight data, the Damkohler number for the afterburning of SSTO vehicle is estimated to be of the order of 10. The limitations on the material strengths limit the laboratory simulation of the flight Damkohler number as well as other flow parameters. A plan is presented in impulse facilities using miniature rocket engines which generate the simulated rocket plume by electric ally-heating a H2/CO2 mixture.
Design feasibility via ascent optimality for next-generation spacecraft
NASA Astrophysics Data System (ADS)
Miele, A.; Mancuso, S.
This paper deals with the optimization of the ascent trajectories for single-stage-sub-orbit (SSSO), single-stage-to-orbit (SSTO), and two-stage-to-orbit (TSTO) rocket-powered spacecraft. The maximum payload weight problem is studied for different values of the engine specific impulse and spacecraft structural factor. The main conclusions are that: feasibility of SSSO spacecraft is guaranteed for all the parameter combinations considered; feasibility of SSTO spacecraft depends strongly on the parameter combination chosen; not only feasibility of TSTO spacecraft is guaranteed for all the parameter combinations considered, but the TSTO payload is several times the SSTO payload. Improvements in engine specific impulse and spacecraft structural factor are desirable and crucial for SSTO feasibility; indeed, aerodynamic improvements do not yield significant improvements in payload. For SSSO, SSTO, and TSTO spacecraft, simple engineering approximations are developed connecting the maximum payload weight to the engine specific impulse and spacecraft structural factor. With reference to the specific impulse/structural factor domain, these engineering approximations lead to the construction of zero-payload lines separating the feasibility region (positive payload) from the unfeasibility region (negative payload).
NASA Technical Reports Server (NTRS)
Trefney, Charles J.
1999-01-01
This paper presents the "Three Pillars of Success" for the Trailblazer Program. The topics include: 1) The "Rocket Equation" for SSTO (Single Stage To Orbit); 2) The Rocket I* Barrier; 3) Rocket-Based Combined-Cycle Engine; 4) Potential for Reusability; 5) Factors Mitigating RBCC Performance; 6) The "Trailblazer" Program; 7) Trailblazer Performance Goals; 8) Trailblazer Reference Vehicle; and 9) Trailblazer Program Architecture.
Air-Breathing Launch Vehicle Technology Being Developed
NASA Technical Reports Server (NTRS)
Trefny, Charles J.
2003-01-01
Of the technical factors that would contribute to lowering the cost of space access, reusability has high potential. The primary objective of the GTX program is to determine whether or not air-breathing propulsion can enable reusable single-stage-to-orbit (SSTO) operations. The approach is based on maturation of a reference vehicle design with focus on the integration and flight-weight construction of its air-breathing rocket-based combined-cycle (RBCC) propulsion system.
Affordable Flight Demonstration of the GTX Air-Breathing SSTO Vehicle Concept
NASA Technical Reports Server (NTRS)
Krivanek, Thomas M.; Roche, Joseph M.; Riehl, John P.; Kosareo, Daniel N.
2002-01-01
The rocket based combined cycle (RBCC) powered single-stage-to-orbit (SSTO) reusable launch vehicle has the potential to significantly reduce the total cost per pound for orbital payload missions. To validate overall system performance, a flight demonstration must be performed. This paper presents an overview of the first phase of a flight demonstration program for the GTX SSTO vehicle concept. Phase 1 will validate the propulsion performance of the vehicle configuration over the supersonic and hypersonic airbreathing portions of the trajectory. The focus and goal of Phase 1 is to demonstrate the integration and performance of the propulsion system flowpath with the vehicle aerodynamics over the air-breathing trajectory. This demonstrator vehicle will have dual mode ramjet/scramjets, which include the inlet, combustor, and nozzle with geometrically scaled aerodynamic surface outer mold lines (OML) defining the forebody, boundary layer diverter, wings, and tail. The primary objective of this study is to demonstrate propulsion system performance and operability including the ram to scram transition, as well as to validate vehicle aerodynamics and propulsion airframe integration. To minimize overall risk and development cost the effort will incorporate proven materials, use existing turbomachinery in the propellant delivery systems, launch from an existing unmanned remote launch facility, and use basic vehicle recovery techniques to minimize control and landing requirements. A second phase would demonstrate propulsion performance across all critical portions of a space launch trajectory (lift off through transition to all-rocket) integrated with flight-like vehicle systems.
Affordable Flight Demonstration of the GTX Air-Breathing SSTO Vehicle Concept
NASA Technical Reports Server (NTRS)
Krivanek, Thomas M.; Roche, Joseph M.; Riehl, John P.; Kosareo, Daniel N.
2003-01-01
The rocket based combined cycle (RBCC) powered single-stage-to-orbit (SSTO) reusable launch vehicle has the potential to significantly reduce the total cost per pound for orbital payload missions. To validate overall system performance, a flight demonstration must be performed. This paper presents an overview of the first phase of a flight demonstration program for the GTX SSTO vehicle concept. Phase 1 will validate the propulsion performance of the vehicle configuration over the supersonic and hypersonic air- breathing portions of the trajectory. The focus and goal of Phase 1 is to demonstrate the integration and performance of the propulsion system flowpath with the vehicle aerodynamics over the air-breathing trajectory. This demonstrator vehicle will have dual mode ramjetkcramjets, which include the inlet, combustor, and nozzle with geometrically scaled aerodynamic surface outer mold lines (OML) defining the forebody, boundary layer diverter, wings, and tail. The primary objective of this study is to demon- strate propulsion system performance and operability including the ram to scram transition, as well as to validate vehicle aerodynamics and propulsion airframe integration. To minimize overall risk and develop ment cost the effort will incorporate proven materials, use existing turbomachinery in the propellant delivery systems, launch from an existing unmanned remote launch facility, and use basic vehicle recovery techniques to minimize control and landing requirements. A second phase would demonstrate propulsion performance across all critical portions of a space launch trajectory (lift off through transition to all-rocket) integrated with flight-like vehicle systems.
Reusable launch vehicle: Technology development and test program
NASA Technical Reports Server (NTRS)
1995-01-01
The National Aeronautics and Space Administration (NASA) requested that the National Research Council (NRC) assess the Reusable Launch Vehicle (RLV) technology development and test programs in the most critical component technologies. At a time when discretionary government spending is under close scrutiny, the RLV program is designed to reduce the cost of access to space through a combination of robust vehicles and a streamlined infrastructure. Routine access to space has obvious benefits for space science, national security, commercial technologies, and the further exploration of space. Because of technological challenges, knowledgeable people disagree about the feasibility of a single-stage-to-orbit (SSTO) vehicle. The purpose of the RLV program proposed by NASA and industry contractors is to investigate the status of existing technology and to identify and advance key technology areas required for development and validation of an SSTO vehicle. This report does not address the feasibility of an SSTO vehicle, nor does it revisit the roles and responsibilities assigned to NASA by the National Transportation Policy. Instead, the report sets forth the NRC committee's findings and recommendations regarding the RLV technology development and test program in the critical areas of propulsion, a reusable cryogenic tank system (RCTS), primary vehicle structure, and a thermal protection system (TPS).
The reusable launch vehicle technology program
NASA Astrophysics Data System (ADS)
Cook, S.
Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).
The reusable launch vehicle technology program
NASA Technical Reports Server (NTRS)
Cook, S.
1995-01-01
Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).
Combining MHD Airbreathing and Fusion Rocket Propulsion for Earth-to-Orbit Flight
NASA Astrophysics Data System (ADS)
Froning, H. D.; Miley, G. H.; Luo, Nie; Yang, Yang; Momota, H.; Burton, E.
2005-02-01
Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight. Similarly additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion. Thus this unusual combined cycle engine shows great promise for performance gains beyond contemporary combined-cycle airbreathing engines.
The European Space Agency's FESTIP initiative
NASA Astrophysics Data System (ADS)
Burleson, Daphne
1998-01-01
In an effort to reduce the cost of access and open up new markets, the European Space Agency has begun a program called Future European Space Transportation Investigations Programme or FESTIP, in which reusable launcher concepts are being studied and developed. The ideal reusable launcher would be comparable to a normal aircraft in that it would be capable of taking off from many possible locations on Earth, enter the desired orbital plane, then accelerate to orbital velocity, release its payload, de-orbit, disperse its kinetic energy and land at the take-off base to be prepared for its next flight following a quick turnaround time. This ideal vehicle would be called the `single-stage-to-orbit reusable rocket launcher' or SSTO-RRL. All space launchers currently in use are staged to orbit and expendable, except the US Space Shuttle, and there is no SSTO-RRL in operation as yet. This paper will discuss the design options being studied by the European Space Agency (ESA) as well as their practical use in serving the space-launch market (FESTIP Workshop 1).
Air liquefaction and enrichment system propulsion in reusable launch vehicles
NASA Astrophysics Data System (ADS)
Bond, W. H.; Yi, A. C.
1994-07-01
A concept is shown for a fully reusable, Earth-to-orbit launch vehicle with horizontal takeoff and landing, employing an air-turborocket for low speed and a rocket for high-speed acceleration, both using liquid hydrogen for fuel. The turborocket employs a modified liquid air cycle to supply the oxidizer. The rocket uses 90% pure liquid oxygen as its oxidizer that is collected from the atmosphere, separated, and stored during operation of the turborocket from about Mach 2 to 5 or 6. The takeoff weight and the thrust required at takeoff are markedly reduced by collecting the rocket oxidizer in-flight. This article shows an approach and the corresponding technology needs for using air liquefaction and enrichment system propulsion in a single-stage-to-orbit (SSTO) vehicle. Reducing the trajectory altitude at the end of collection reduces the wing area and increases payload. The use of state-of-the-art materials, such as graphite polyimide, in a direct substitution for aluminum or aluminum-lithium alloy, is critical to meet the structure weight objective for SSTO. Configurations that utilize 'waverider' aerodynamics show great promise to reduce the vehicle weight.
Hypersonic airbreathing vehicle conceptual design (focus on aero-space plane)
NASA Technical Reports Server (NTRS)
Hunt, James L.; Martin, John G.
1989-01-01
The airbreathing single stage to orbit (SSTO) vehicle design environment is variable-rich, intricately networked and sensitivity intensive. As such, it represents a tremondous technology challenge. Creating a viable design will require sophisticated configuration/synthesis and the synergistic integration of advanced technologies across the discipline spectrum. In design exercises, reductions in the fuel weight-fraction requirements projected for an orbital vehicle concept can result from improvements in aerodynamics/controls, propulsion efficiencies and trajectory optimization; also, gains in the fuel weight-fraction achievable for such a concept can result from improvements in structural design, heat management techniques, and material properties. As these technology advances take place, closure on a viable vehicle design will be realizable.
NASA Technical Reports Server (NTRS)
Cockrell, Charles E., Jr.; Auslender, Aaron H.; Guy, R. Wayne; McClinton, Charles R.; Welch, Sharon S.
2002-01-01
Third-generation reusable launch vehicle (RLV) systems are envisioned that utilize airbreathing and combined-cycle propulsion to take advantage of potential performance benefits over conventional rocket propulsion and address goals of reducing the cost and enhancing the safety of systems to reach earth orbit. The dual-mode scramjet (DMSJ) forms the core of combined-cycle or combination-cycle propulsion systems for single-stage-to-orbit (SSTO) vehicles and provides most of the orbital ascent energy. These concepts are also relevant to two-stage-to-orbit (TSTO) systems with an airbreathing first or second stage. Foundation technology investments in scramjet propulsion are driven by the goal to develop efficient Mach 3-15 concepts with sufficient performance and operability to meet operational system goals. A brief historical review of NASA scramjet development is presented along with a summary of current technology efforts and a proposed roadmap. The technology addresses hydrogen-fueled combustor development, hypervelocity scramjets, multi-speed flowpath performance and operability, propulsion-airframe integration, and analysis and diagnostic tools.
Trajectory optimization for A S.S.T.O. using in-flight LOX collection
NASA Astrophysics Data System (ADS)
Saint-Mard, M.; Hendrick, P.
A key point for a space mission (launch of a satellite, earth observation,…) is the optimization of the vehicle trajectory in order to burn the smallest quantity of propelant and then maximize the payload. This is true for evay space vehicle, but especially it is a crucial point for a Single-Stage-To-Orbit (SSTO) where the choice of a bad trajectory can result in an unrealizable vehicle due to the large airbreathing part of the flight In this study, we discuss the trajectory optimization for a Vertical Take-Off and Horizontal Landing (VTOHL) SSTO using supersonic in-flight atmospheric oxygen collection during a cruise phase (constant speed & constant altitude). This collected oxygen is stored in the LOX tanks and reused in the final rocket phase. This SSTO bas a Blended Body aerodynamic configuration as the one chosen by Lockheed Martin for its new space launcher (VentureStar and X-33). This SSTO uses rocket engines from take-off to Mach 1.7 and also for the exoatmospheric flight phase (that means for an altitude higher than 30km and a Mach number evolution from 6.8 to about 20). Between these two rocket phases, the SSTO is propelled by a subsonic ramjet. To perform this study, we use 2 computer programs (running on a home Computer): the first one allows to estimate the SSTO performances (TOGW, dry weight, hydrogen and oxygen consumptions) for a fixed payload mass and the second one permits the evaluation of the payload mass for a fixed TOGW.
Lockheed Martin approach to a Reusable Launch Vehicle (RLV)
NASA Astrophysics Data System (ADS)
Elvin, John D.
1996-03-01
This paper discusses Lockheed Martin's perspective on the development of a cost effective Reusable Launch Vehicle (RLV). Critical to a successful Single Stage To Orbit (SSTO) program are; an economic development plan sensitive to fiscal constraints; a vehicle concept satisfying present and future US launch needs; and an operations concept commensurate with a market driven program. Participation in the economic plan by government, industry, and the commercial sector is a key element of integrating our development plan and funding profile. The RLV baseline concept design, development evolution and several critical trade studies illustrate the superior performance achieved by our innovative approach to the problem of SSTO. Findings from initial aerodynamic and aerothermodynamic wind tunnel tests and trajectory analyses on this concept confirm the superior characteristics of the lifting body shape combined with the Linear Aerospike rocket engine. This Aero Ballistic Rocket (ABR) concept captures the essence of The Skunk Works approach to SSTO RLV technology integration and system engineering. These programmatic and concept development topics chronicle the key elements to implementing an innovative market driven next generation RLV.
Collaborative Analysis Tool for Thermal Protection Systems for Single Stage to Orbit Launch Vehicles
NASA Technical Reports Server (NTRS)
Alexander, Reginald Andrew; Stanley, Thomas Troy
1999-01-01
Presented is a design tool and process that connects several disciplines which are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system and in the case of SSTO vehicles with air breathing propulsion, which is currently being studied by the National Aeronautics and Space Administration (NASA); the thermal protection system (TPS) is linked directly to almost every major system. The propulsion system pushes the vehicle to velocities on the order of 15 times the speed of sound in the atmosphere before pulling up to go to orbit which results high temperatures on the external surfaces of the vehicle. Thermal protection systems to maintain the structural integrity of the vehicle must be able to mitigate the heat transfer to the structure and be lightweight. Herein lies the interdependency, in that as the vehicle's speed increases, the TPS requirements are increased. And as TPS masses increase the effect on the propulsion system and all other systems is compounded. To adequately determine insulation masses for a vehicle such as the one described above, the aeroheating loads must be calculated and the TPS thicknesses must be calculated for the entire vehicle. To accomplish this an ascent or reentry trajectory is obtained using the computer code Program to Optimize Simulated Trajectories (POST). The trajectory is then used to calculate the convective heat rates on several locations on the vehicles using the Miniature Version of the JA70 Aerodynamic Heating Computer Program (MINIVER). Once the heat rates are defined for each body point on the vehicle, then insulation thickness that are required to maintain the vehicle within structural limits are calculated using Systems Improved Numerical Differencing Analyzer (SINDA) models. If the TPS masses are too heavy for the performance of the vehicle the process may be repeated altering the trajectory or some other input to reduce the TPS mass.
Design development of graphite primary structures enables SSTO success
NASA Astrophysics Data System (ADS)
Biagiotti, V. A.; Yahiro, J. S.; Suh, Daniel E.; Hodges, Eric R.; Prior, Donald J.
1997-01-01
This paper describes the development of a graphite composite wing and a graphite composite intertank primary structure for application toward Single-Stage to Orbit space vehicles such as those under development in NASA's X-33/Reusable Launch Vehicle (RLV) Program. The trade study and designs are based on a Rockwell vertical take-off and horizontal landing (VTHL) wing-body RLV vehicle. Northrop Grumman's approach using a building block development technique is described. Composite Graphite/Bismaleimide (Gr/BMI) material characterization test results are presented. Unique intertank and wing composite subcomponent test article designs are described and test results to date are presented. Wing and intertank Full Scale Section Test Article (FSTA) objectives and designs are outlined. Trade studies, supporting building block testing, and FSTA demonstrations combine to develop graphite primary structure composite technology that enables developing X-33/RLV design programs to meet critical SSTO structural weight and operations performance criteria.
Some Problems of Rocket-Space Vehicles' Characteristics co- ordination
NASA Astrophysics Data System (ADS)
Sergienko, Alexander A.
2002-01-01
of the XX century suffered a reverse. The designers of the United States' firms and enterprises of aviation and rocket-space industry (Boeing, Rocketdyne, Lockheed Martin, McDonnell Douglas, Rockwell, etc.) and NASA (Marshall Space Flight Center, Johnson Space Center, Langley Research Center and Lewis Research Center and others) could not correctly co-ordinate the characteristics of a propulsion system and a space vehicle for elaboration of the "Single-Stage-To-Orbit" reusable vehicle (SSTO) as an integral whole system, which is would able to inject a payload into an orbit and to return back on the Earth. jet nozzle design as well as the choice of propulsion system characteristics, ensuring the high ballistic efficiency, are considered in the present report. The efficiency criterions for the engine and launch system parameters optimization are discussed. The new methods of the nozzle block optimal parameters' choice for the satisfaction of the object task of flight are suggested. The family of SSTO with a payload mass from 5 to 20 ton and initial weight under 800 ton is considered.
Laser-boosted lightcraft technology demonstrator
NASA Technical Reports Server (NTRS)
Antonison, M.; Myrabo, Leik; Chen, S.; Decusatis, C.; Kusche, K.; Minucci, M.; Moder, J.; Morales, C.; Nelson, C.; Richard, J.
1989-01-01
The ultimate goal for this NASA/USRA-sponsored 'Apollo Lightcraft Project' is to develop a revolutionary manned launch vehicle technology that can potentially reduce payload transport costs by a factor of 1000 below the space shuttle orbiter. The Rensellaer design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. This year's effort, the detailed description and performance analysis of an unmanned 1.4-m Lightcraft Technology Demonstrator (LTD) drone, is presented. The novel launch system employs a 100-MW-class ground-based laser to transmit power directly to an advanced combined-cycle engine that propels the 120-kg LTD to orbit, with a mass ratio of two. The single-stage-to-orbit (SSTO) LTD machine then becomes an autonomous sensor satellite that can deliver precise, high-quality information typical of today's large orbital platforms. The dominant motivation behind this study is to provide an example of how laser propulsion and its low launch costs can induce a comparable order-of-magnitude reduction in sensor satellite packaging costs. The issue is simply one of production technology for future, survivable SSTO aerospace vehicles that intimately share both laser propulsion engine and satellite functional hardware. A mass production cost goal of 10(exp 3)/kg for the LTD vehicle is probably realizable.
Hypersonic Materials and Structures
NASA Technical Reports Server (NTRS)
Glass, David E.
2016-01-01
Thermal protection systems (TPS) and hot structures are required for a range of hypersonic vehicles ranging from ballistic reentry to hypersonic cruise vehicles, both within Earth's atmosphere and non-Earth atmospheres. The focus of this presentation is on air breathing hypersonic vehicles in the Earth's atmosphere. This includes single-stage to orbit (SSTO), two-stage to orbit (TSTO) accelerators, access to space vehicles, and hypersonic cruise vehicles. This paper will start out with a brief discussion of aerodynamic heating and thermal management techniques to address the high heating, followed by an overview of TPS for rocket-launched and air-breathing vehicles. The argument is presented that as we move from rocket-based vehicles to air-breathing vehicles, we need to move away from the insulated airplane approach used on the Space Shuttle Orbiter to a wide range of TPS and hot structure approaches. The primary portion of the paper will discuss issues and design options for CMC TPS and hot structure components, including leading edges, acreage TPS, and control surfaces. The current state-of-the-art will be briefly discussed for some of the components.
Concept for a high performance MHD airbreathing-IEC fusion rocket
NASA Astrophysics Data System (ADS)
Froning, H. D.; Miley, G. H.; Nadler, J.; Shaban, Y.; Momota, H.; Burton, E.
2001-02-01
Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight, and additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion. .
Energy management and vehicle synthesis
NASA Astrophysics Data System (ADS)
Czysz, P.; Murthy, S. N. B.
The major drivers in the development of launch vehicles for the twenty-first century are reduction in cost of vehicles and operations, continuous reusability, mission abort capability with vehicle recovery, and readiness. One approach to the design of such vehicles is to emphasize energy management and propulsion as being the principal means of improvements given the available industrial capability and the required freedom in selecting configuration concept geometries. A methodology has been developed for the rational synthesis of vehicles based on the setting up and utilization of available data and projections, and a reference vehicle. The application of the methodology is illustrated for a single stage to orbit (SSTO) with various limits for the use of airbreathing propulsion.
Energy management and vehicle synthesis
NASA Technical Reports Server (NTRS)
Czysz, P.; Murthy, S. N. B.
1995-01-01
The major drivers in the development of launch vehicles for the twenty-first century are reduction in cost of vehicles and operations, continuous reusability, mission abort capability with vehicle recovery, and readiness. One approach to the design of such vehicles is to emphasize energy management and propulsion as being the principal means of improvements given the available industrial capability and the required freedom in selecting configuration concept geometries. A methodology has been developed for the rational synthesis of vehicles based on the setting up and utilization of available data and projections, and a reference vehicle. The application of the methodology is illustrated for a single stage to orbit (SSTO) with various limits for the use of airbreathing propulsion.
Future launcher demonstrator. Challenge and pathfinder
NASA Astrophysics Data System (ADS)
Kleinau, W.; Guerra, L.; Parkinson, R. C.; Lieberherr, J. F.
1996-02-01
For future and advanced launch vehicles emphasis is focused on single-stage-to-orbit (SSTO) concepts and on completely reusable versions with the goal to reduce the recurrent launch cost, to improve the mission success probability and also safety for the space transportation of economically attractive payloads into Low Earth Orbit. Both issues, the SSTO launcher and the low cost reusability are extremely challenging and cannot be proven by studies and on-ground tests alone. In-flight demonstration tests are required to verify the assumptions and the new technologies, and to justify the new launcher-and operations-concepts. Because a number of SSTO launch vehicles are currently under discussion in terms of configurations and concepts such as winged vehicles for vertical or horizontal launch and landing (from ground or a flying platform), or wingless vehicles for vertical take-off and landing, and also in terms of propulsion (pure rockets or a combination of air breathing and rocket engines), an experimental demonstrator vehicle appears necessary in order to serve as a pathfinder in this area of multiple challenges. A suborbital Reusable Rocket Launcher Demonstrator (RRLD) has been studied recently by a European industrial team for ESA. This is a multipurpose, evolutionary demonstrator, conceived around a modular approach of incremental improvements of subsystems and materials, to achieve a better propellant mass fraction i.e. a better performance, and specifically for the accomplishment of an incremental flight test programme. While the RRLD basic test programme will acquire knowledge about hypersonic flight, re-entry and landing of a cryogenic rocket propelled launcher — and the low cost reusability (short turnaround on ground) in the utilization programme beyond basic testing, the RRLD will serve as a test bed for generic testing of technologies required for the realization of an SSTO launcher. This paper will present the results of the European RRLD study which proposes a winged suborbital rocket launcher operations & technology demonstrator for vertical take-off and horizontal landing — using primarily conventional technology and materials as a first step towards the challenging goal of a reusable SSTO ETO launch vehicle.
Rocket-Induced Magnetohydrodynamic Ejector: A Single-Stage-to-Orbit Advanced Propulsion Concept
NASA Technical Reports Server (NTRS)
Cole, John; Campbell, Jonathan; Robertson, Anthony
1995-01-01
During the atmospheric boost phase of a rocket trajectory, magnetohydrodynamic (MHD) principles can be utilized to augment the thrust by several hundred percent without the input of additional energy. The concept is an MHD implementation of a thermodynamic ejector. Some ejector history is described and some test data showing the impressive thrust augmentation capabilities of thermodynamic ejectors are provided. A momentum and energy balance is used to derive the equations to predict the MHD ejector performance. Results of these equations are compared with the test data and then applied to a specific performance example. The rocket-induced MHD ejector (RIME) engine is described and a status of the technology and availability of the engine components is provided. A top level vehicle sizing analysis is performed by scaling existing MHD designs to the required flight vehicle levels. The vehicle can achieve orbit using conservative technology. Modest improvements are suggested using recently developed technologies, such as superconducting magnets, which can improve predicted performance well beyond those expected for current single-stage-to-orbit (SSTO) designs.
Feasibility Study of Laboratory Simulation of Single-Stage-to-Orbit Vehicle Base Heating
NASA Technical Reports Server (NTRS)
Park, Chung Sik; Sharma, Surendra; Edwards, Thomas A. (Technical Monitor)
1995-01-01
The feasibility of simulating in a laboratory the heating environment of the base region of the proposed reusable single-stage-to-orbit vehicle during its ascent is examined. The propellant is assumed to consist of hydrocarbon (RP1), liquid hydrogen (LH2), and liquid oxygen (LO2), which produces CO and H2 as the main combustible components of the exhaust effluent. Since afterburning in the recirculating region can dictate the temperature of the base flowfield and ensuing heating phenomena, laboratory simulation focuses on the thermochemistry of the afterburning. By extrapolating the Saturn V flight data, the Damkohler number, in the base region with afterburning for SSTO vehicle, is estimated to be between 30 and 140. It is shown that a flow with a Damkohler number of 1.8 to 25 can be produced in an impulse ground test facility. Even with such a reduced Damkohler number, the experiment can adequately reproduce the main features of the flight environment.
Future earth orbit transportation systems/technology implications
NASA Technical Reports Server (NTRS)
Henry, B. Z.; Decker, J. P.
1976-01-01
Assuming Space Shuttle technology to be state-of-the-art, projected technological advances to improve the capabilities of single-stage-to-orbit (SSTO) derivatives are examined. An increase of about 30% in payload performance can be expected from upgrading the present Shuttle system through weight and drag reductions and improvements in the propellants and engines. The ODINEX (Optimal Design Integration Executive Computer Program) program has been used to explore design options. An advanced technology SSTO baseline system derived from ODINEX analysis has a conventional wing-body configuration using LOX/LH engines, three with two-position nozzles with expansion ratios of 40 and 200 and four with fixed nozzles with an expansion ratio of 40. Two assisted-takeoff approaches are under consideration in addition to a concept in which the orbital vehicle takes off empty using airbreathing propulsion and carries out a rendezvous with two large cryogenic tankers carrying propellant at an altitude of 6100 m. Further approaches under examination for propulsion, aerothermodynamic design, and design integration are described.
Design development of graphite primary structures enables SSTO success
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biagiotti, V.A.; Yahiro, J.S.; Suh, D.E.
1997-01-01
This paper describes the development of a graphite composite wing and a graphite composite intertank primary structure for application toward Single-Stage to Orbit space vehicles such as those under development in NASA{close_quote}s X-33/Reusable Launch Vehicle (RLV) Program. The trade study and designs are based on a Rockwell vertical take-off and horizontal landing (VTHL) wing-body RLV vehicle. Northrop Grumman{close_quote}s approach using a building block development technique is described. Composite Graphite/Bismaleimide (Gr/BMI) material characterization test results are presented. Unique intertank and wing composite subcomponent test article designs are described and test results to date are presented. Wing and intertank Full Scale Sectionmore » Test Article (FSTA) objectives and designs are outlined. Trade studies, supporting building block testing, and FSTA demonstrations combine to develop graphite primary structure composite technology that enables developing X-33/RLV design programs to meet critical SSTO structural weight and operations performance criteria. {copyright} {ital 1997 American Institute of Physics.}« less
The potential value of employing a RLV-based ``pop-up'' trajectory approach for space access
NASA Astrophysics Data System (ADS)
Nielsen, Edward; O'Leary, Robert
1997-01-01
This paper presents the potential benefits of employing useful upper stages with planned reusable launch vehicle systems to increase payload performance to various earth orbits. It highlights these benefits through performance analysis on a generic vehicle/upper-stage combination (basing all estimates on realistic technology availability). A nominal 34,019 kg [75,000 lbm] dry mass RLV capable of orbiting 454 kg into a polar orbit by itself (SSTO) would be capable of orbiting 9500-10,000 kg into a polar orbit using a nominal upper stage released from a suborbital trajectory. The paper also emphasizes the technical and operational issues associated with actually executing a ``pop-up'' trajectory launch and deployment.
Carbon-carbon primary structure for SSTO vehicles
NASA Astrophysics Data System (ADS)
Croop, Harold C.; Lowndes, Holland B.
1997-01-01
A hot structures development program is nearing completion to validate use of carbon-carbon composite structure for primary load carrying members in a single-stage-to-orbit, or SSTO, vehicle. A four phase program was pursued which involved design development and fabrication of a full-scale wing torque box demonstration component. The design development included vehicle and component selection, design criteria and approach, design data development, demonstration component design and analysis, test fixture design and analysis, demonstration component test planning, and high temperature test instrumentation development. The fabrication effort encompassed fabrication of structural elements for mechanical property verification as well as fabrication of the demonstration component itself and associated test fixturing. The demonstration component features 3D woven graphite preforms, integral spars, oxidation inhibited matrix, chemical vapor deposited (CVD) SiC oxidation protection coating, and ceramic matrix composite fasteners. The demonstration component has been delivered to the United States Air Force (USAF) for testing in the Wright Laboratory Structural Test Facility, WPAFB, OH. Multiple thermal-mechanical load cycles will be applied simulating two atmospheric cruise missions and one orbital mission. This paper discusses the overall approach to validation testing of the wing box component and presents some preliminary analytical test predictions.
SRM-Assisted Trajectory for the GTX Reference Vehicle
NASA Technical Reports Server (NTRS)
Riehl, John; Trefny, Charles; Kosareo, Daniel (Technical Monitor)
2002-01-01
A goal of the GTX effort has been to demonstrate the feasibility of a single stage-to-orbit (SSTO) vehicle that delivers a small payload to low earth orbit. The small payload class was chosen in order to minimize the risk and cost of development of this revolutionary system. A preliminary design study by the GTX team has resulted in the current configuration that offers considerable promise for meeting the stated goal. The size and gross lift-off weight resulting from scaling the current design to closure however may be considered impractical for the small payload. In lieu of evolving the project' reference vehicle to a large-payload class, this paper offers the alternative of using solid-rocket motors in order to close the vehicle at a practical scale. This approach offers a near-term, quasi-reusable system that easily evolves to reusable SSTO following subsequent development and optimization. This paper presents an overview of the impact of the addition of SRM's to the GTX reference vehicle#s performance and trajectory. The overall methods of vehicle modeling and trajectory optimization will also be presented. A key element in the trajectory optimization is the use of the program OTIS 3.10 that provides rapid convergence and a great deal of flexibility to the user. This paper will also present the methods used to implement GTX requirements into OTIS modeling.
Single Stage to Orbit: Politics, Space Technology, and the Quest for Reusable Rocketry
NASA Technical Reports Server (NTRS)
Butrica, Andrew J.
2003-01-01
While the glories and tragedies of the space shuttle make headlines and move the nation, the story of the shuttle forms an inseparable part of a lesser-known but no less important drama-the search for a re-useable single-stage-to-orbit rocket. Here an award-winning student of space science, Andrew J. Butrica, examines the long and tangled history of this ambitious concept, from it first glimmerings in the 1920s, when technicians dismissed it as unfeasible, to its highly expensive heyday in the midst of the Cold War, when conservative-backed government programs struggled to produce an operational flight vehicle. Butrica finds a blending of far-sighted engineering and heavy-handed politics. To the first and oldest idea-that of the reusable rocket-powered single-stage- to-orbit vehicle-planners who belonged to what President Eisenhower referred to as the military-industrial complex added experimental (" X "), "aircraft-like" capabilities and, eventually, a "faster, cheaper, smaller" managerial approach. Single Stage to Orbit traces the interplay of technology, corporate interest, and politics, a combination that well served the conservative space agenda and ultimately triumphed-not in the realization of inexpensive, reliable space transport-but in a vision of space militarization and commercialization that would appear settled United States policy in the early twenty-first century. "The 'holy grail' of the spaceship movement has been the development of a vehicle that could accomplish single stage to orbit (SSTO) flight. This study describes the evolution of this concept from the 192'0s to the present, revealing a conservative space agenda that has not yet been the subject of historical analysis. As such, it makes an important contribution to space history literature."-Roger D. Launius, The Smithsonian Institution.
System Sensitivity Analysis Applied to the Conceptual Design of a Dual-Fuel Rocket SSTO
NASA Technical Reports Server (NTRS)
Olds, John R.
1994-01-01
This paper reports the results of initial efforts to apply the System Sensitivity Analysis (SSA) optimization method to the conceptual design of a single-stage-to-orbit (SSTO) launch vehicle. SSA is an efficient, calculus-based MDO technique for generating sensitivity derivatives in a highly multidisciplinary design environment. The method has been successfully applied to conceptual aircraft design and has been proven to have advantages over traditional direct optimization methods. The method is applied to the optimization of an advanced, piloted SSTO design similar to vehicles currently being analyzed by NASA as possible replacements for the Space Shuttle. Powered by a derivative of the Russian RD-701 rocket engine, the vehicle employs a combination of hydrocarbon, hydrogen, and oxygen propellants. Three primary disciplines are included in the design - propulsion, performance, and weights & sizing. A complete, converged vehicle analysis depends on the use of three standalone conceptual analysis computer codes. Efforts to minimize vehicle dry (empty) weight are reported in this paper. The problem consists of six system-level design variables and one system-level constraint. Using SSA in a 'manual' fashion to generate gradient information, six system-level iterations were performed from each of two different starting points. The results showed a good pattern of convergence for both starting points. A discussion of the advantages and disadvantages of the method, possible areas of improvement, and future work is included.
Macroeconomic Benefits of Low-Cost Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Shaw, Eric J.; Greenberg, Joel
1998-01-01
The National Aeronautics and Space Administration (NASA) initiated its Reusable Launch Vehicle (RLV) Technology Program to provide information on the technical and commercial feasibility of single-stage to orbit (SSTO), fully-reusable launchers. Because RLVs would not depend on expendable hardware to achieve orbit, they could take better advantage of economies of scale than expendable launch vehicles (ELVs) that discard costly hardware on ascent. The X-33 experimental vehicle, a sub-orbital, 60%-scale prototype of Lockheed Martin's VentureStar SSTO RLV concept, is being built by Skunk Works for a 1999 first flight. If RLVs achieve prices to low-earth orbit of less than $1000 US per pound, they could hold promise for eliciting an elastic response from the launch services market. As opposed to the capture of existing market, this elastic market would represent new space-based industry businesses. These new opportunities would be created from the next tier of business concepts, such as space manufacturing and satellite servicing, that cannot earn a profit at today's launch prices but could when enabled by lower launch costs. New business creation contributes benefits to the US Government (USG) and the US economy through increases in tax revenues and employment. Assumptions about the costs and revenues of these new ventures, based on existing space-based and aeronautics sector businesses, can be used to estimate the macroeconomic benefits provided by new businesses. This paper examines these benefits and the flight prices and rates that may be required to enable these new space industries.
NASA Technical Reports Server (NTRS)
McCurry, J.
1995-01-01
The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 1, provides a summary description of the technical activities that were performed over the entire contract duration, covering three distinct launch vehicle definition activities: heavy-lift (300,000 pounds injected mass to low Earth orbit) launch vehicles for the First Lunar Outpost (FLO), medium-lift (50,000-80,000 pounds injected mass to low Earth orbit) launch vehicles, and single-stage-to-orbit (SSTO) launch vehicles (25,000 pounds injected mass to a Space Station orbit).
2004-04-15
Pictured is a component of the Rocket Based Combined Cycle (RBCC) engine. This engine was designed to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsion systems and ultimately a Single Stage to Orbit (SSTO) air breathing propulsion system.
SRM-Assisted Trajectory for the GTX Reference Vehicle
NASA Technical Reports Server (NTRS)
Riehl, John; Trefny, Charles; Kosareo, Daniel
2002-01-01
A goal of the GTX effort has been to demonstrate the feasibility of a single stage- to- orbit (SSTO) vehicle that delivers a small payload to low earth orbit. The small payload class was chosen in order to minimize the risk and cost of development of this revolutionary system. A preliminary design study by the GTX team has resulted in the current configuration that offers considerable promise for meeting the stated goal. The size and gross lift-off weight resulting from scaling the current design to closure however may be considered impractical for the small payload. In lieu of evolving the project's reference vehicle to a large-payload class, this paper offers the alternative of using solid-rocket motors in order to close the vehicle at a practical scale. This approach offers a near-term, quasi-reusable system that easily evolves to reusable SSTO following subsequent development and optimization. This paper presents an overview of the impact of the addition of SRM's to the GTX reference vehicle's performance and trajectory. The overall methods of vehicle modeling and trajectory optimization will also be presented. A key element in the trajectory optimization is the use of the program OTIS 3.10 that provides rapid convergence and a great deal of flexibility to the user. This paper will also present the methods used to implement GTX requirements into OTIS modeling.
Rocket Based Combined Cycle (RBCC) engine inlet
NASA Technical Reports Server (NTRS)
2004-01-01
Pictured is a component of the Rocket Based Combined Cycle (RBCC) engine. This engine was designed to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsion systems and ultimately a Single Stage to Orbit (SSTO) air breathing propulsion system.
NASA Astrophysics Data System (ADS)
Escher, William J. D.
1998-01-01
Deriving from the initial planning activity of early 1965, which led to NASA's Advanced Space Transportation Program (ASTP), an early-available airbreathing/rocket combined propulsion system powered ``ultralight payload'' launcher was defined at the conceptual design level. This system, named the ``W Vehicle,'' was targeted to be a ``second generation'' successor to the original Bantam Lifter class, all-rocket powered systems presently being pursued by NASA and a selected set of its contractors. While this all-rocket vehicle is predicated on a fully expendable approach, the W-Vehicle system was to be a fully reusable 2-stage vehicle. The general (original) goal of the Bantam class of launchers was to orbit a 100 kg payload for a recurring per-launch cost of less than one million dollars. Reusability, as the case for larger vehicles focusing on single stage to orbit (SSTO) configurations, is considered the principal key to affordability. In the general context of a range of space transports, covering the payload range of 0.1 to 10 metric ton payloads, the W Vehicle concept-predicated mainly on ground- and flight-test proven hardware-is described in this paper, along with a nominal development schedule and budgetary estimate (recurring costs were not estimated).
NASA Technical Reports Server (NTRS)
Glass, David E.
2008-01-01
Thermal protection systems (TPS) and hot structures are required for a range of hypersonic vehicles ranging from ballistic reentry to hypersonic cruise vehicles, both within Earth's atmosphere and non-Earth atmospheres. The focus of this paper is on air breathing hypersonic vehicles in the Earth's atmosphere. This includes single-stage to orbit (SSTO), two-stage to orbit (TSTO) accelerators, access to space vehicles, and hypersonic cruise vehicles. This paper will start out with a brief discussion of aerodynamic heating and thermal management techniques to address the high heating, followed by an overview of TPS for rocket-launched and air-breathing vehicles. The argument is presented that as we move from rocket-based vehicles to air-breathing vehicles, we need to move away from the insulated airplane approach used on the Space Shuttle Orbiter to a wide range of TPS and hot structure approaches. The primary portion of the paper will discuss issues and design options for CMC TPS and hot structure components, including leading edges, acreage TPS, and control surfaces. The current state-of-the-art will be briefly discussed for some of the components. The two primary technical challenges impacting the use of CMC TPS and hot structures for hypersonic vehicles are environmental durability and fabrication, and will be discussed briefly.
NASA Astrophysics Data System (ADS)
Tomita, Nobuyuki; Nebylov, Alexander V.; Sokolov, Victor V.; Ohkami, Yoshiaki
It might be said that it is common understanding that rocket-powered single stage to orbit (SSTO) aerospace planes will become feasible with near-term technology as described in [1] (Koelle, D. E. Survey and comparison of winged launch vehicle options, ISTS 94-g-11 V 1994) and [2] (Bekey, I. Why SSTO rocket launch vehicles are now feasible and practical, IAF-94-V.1.524 1994). Among two methods of launching aerospace planes into orbit, vertical take-off (VT) and horizontal take-off (HT), it seems that VT takes the lead from HT [1, 2]. The decision for the X-33 program by NASA, also, seems to favor VT. In retrospect, almost all of the launch vehicles in the past have been VT, mainly because VT solved the problem of exit from atmosphere to space. However, broadening the range of requirements for space transportation systems from military to commercial and unmanned to manned seems to favor the need for HT. In this paper, the authors are going to prove that aerospace plane/ekranoplane system, which is a reusable launch vehicle system based on the HT concept, with ekranoplane as a take-off and possibly, landing assist, could be competitive with the VT concept from both technological and economical view points. Ekranoplane is a wing-in-ground-effect craft (WIG), which moves at a speed of approximately 0.5 M, carrying heavy loads above the sea surface. Combination of high initial velocity and high performance tri-propellant engine for aerospace plane makes it possible to configure an aerospace plane which is competitive with VT. Other specific features of HT in comparison with VT are discussed.
Hypersonic vehicle simulation model: Winged-cone configuration
NASA Technical Reports Server (NTRS)
Shaughnessy, John D.; Pinckney, S. Zane; Mcminn, John D.; Cruz, Christopher I.; Kelley, Marie-Louise
1990-01-01
Aerodynamic, propulsion, and mass models for a generic, horizontal-takeoff, single-stage-to-orbit (SSTO) configuration are presented which are suitable for use in point mass as well as batch and real-time six degree-of-freedom simulations. The simulations can be used to investigate ascent performance issues and to allow research, refinement, and evaluation of integrated guidance/flight/propulsion/thermal control systems, design concepts, and methodologies for SSTO missions. Aerodynamic force and moment coefficients are given as functions of angle of attack, Mach number, and control surface deflections. The model data were estimated by using a subsonic/supersonic panel code and a hypersonic local surface inclination code. Thrust coefficient and engine specific impulse were estimated using a two-dimensional forebody, inlet, nozzle code and a one-dimensional combustor code and are given as functions of Mach number, dynamic pressure, and fuel equivalence ratio. Rigid-body mass moments of inertia and center of gravity location are functions of vehicle weight which is in turn a function of fuel flow.
A Comparison of Propulsion Concepts for SSTO Reusable Launchers
NASA Astrophysics Data System (ADS)
Varvill, R.; Bond, A.
This paper discusses the relevant selection criteria for a single stage to orbit (SSTO) propulsion system and then reviews the characteristics of the typical engine types proposed for this role against these criteria. The engine types considered include Hydrogen/Oxygen (H2/O2) rockets, Scramjets, Turbojets, Turborockets and Liquid Air Cycle Engines. In the authors opinion none of the above engines are able to meet all the necessary criteria for an SSTO propulsion system simultaneously. However by selecting appropriate features from each it is possible to synthesise a new class of engines which are specifically optimised for the SSTO role. The resulting engines employ precooling of the airstream and a high internal pressure ratio to enable a relatively conventional high pressure rocket combustion chamber to be utilised in both airbreathing and rocket modes. This results in a significant mass saving with installation advantages which by careful design of the cycle thermodynamics enables the full potential of airbreathing to be realised. The SABRE engine which powers the SKYLON launch vehicle is an example of one of these so called `Precooled hybrid airbreathing rocket engines' and the concep- tual reasoning which leads to its main design parameters are described in the paper.
A Two-Stage-to-Orbit Spaceplane Concept With Growth Potential
NASA Technical Reports Server (NTRS)
Mehta, Unmeel B.; Bowles, Jeffrey V.
2001-01-01
A two-stage-to-orbit (TSTO) spaceplane concept developed in 1993 is revisited, and new information is provided to assist in the development of the next-generation space transportation vehicles. The design philosophy, TSTO spaceplane concept, and the design method are briefly described. A trade study between cold and hot structures leads to the choice of cold structures with external thermal protection systems. The optimal Mach number for staging the second stage of the TSTO spaceplane (with air-breathing propulsion on the first stage) is 10, based on life-cycle cost analysis. The performance and specification of a prototype/experimental (P/X) TSTO spaceplane with a turbo/ram/scramjet propulsion system and built-in growth potential are presented and discussed. The internal rate of return on investment is the highest for the proposed TSTO spaceplane, vis-A-vis a single-stage-to-orbit (SSTO) rocket vehicle and a TSTO spaceplane without built-in growth. Additional growth potentials for the proposed spaceplane are suggested. This spaceplane can substantially decrease access-to-space cost and risk, and increase safety and reliability in the near term It can be a serious candidate for the next-generation space transportation system.
Exploring Mars: The Ares Payload Service (APS)
NASA Astrophysics Data System (ADS)
Bowen, Justin; Lusignan, Bruce
1999-08-01
In last year's Mars Society convention we introduced the results of five years of studies of space launch capability for the second millennium. We concluded that Single Stage to Orbit (SSTO) vehicles such as the Delta Clipper X33, and X34 cannot make it to orbit from the Earth's surface. Whether taking off vertically or horizontally or landing vertically or horizontally, the rocket equations, the performance of available fuels, and the realities of the weight and strength of materials leave no margin for payload. The promised savings from SSTO systems are illusory. However, a configuration that is able to deliver useful payload to orbit is the Single step to Orbit, SsTO, a rocket plane that is released fully fueled, from 35,000 to 40,000 feet altitude. Three approaches have been proposed. The Hot'l and Molnya Corporation designs carry the fueled rocket plane to altitude on the back of a carrier aircraft. In this design the carrier aircraft is Russia's Antonov 225 the world's largest cargo plane. The rocket plane is a modified version of the Buran, Russia's own space shuttle. Another configuration is Kelly Aviation's concept in which the fully fueled rocket plane is towed to altitude by the cargo plane and then released. A third approach is based on the early "X" planes, which were dropped from the belly of the carrier plane. While the rocket equations indicate that these three concepts can deliver useful payloads, the Stanford review found significant advantages to the approach of Pioneer Rocket, in which the rocket plane flies up to the carrier plane with conventional jet engines, docks, and then loads on the oxidizer for the flight to orbit. This architecture has more reasonable abort modes in case of system failure in either aircraft and can deliver a larger final payload to orbit for a given sized carrier. The Stanford recommendation is that the carrier aircraft be the Antonov 225. A design based on this was presented in a report last year. Refinements to the design notably an improved re-entry cooling system and fueling stability analysis were done this year. More technical detail and a proposed international consortium to develop the SSTO is presented in another session of this year's Mars convention. We believe that there will be no human exploration of Mars based on the Shuttle or Expendable launch vehicles, and no resources available except for a cooperative international program. However, just as the world is learning to cooperate in peacekeeping, we hold out the hope that similar cooperation will develop for Mars exploration. With that in mind, this year we asked the question- "How will the human mission get to Mars if it has to use the SsTO for transportation?"
Exploring Mars: the Ares Payload Service (APS)
NASA Technical Reports Server (NTRS)
Bowen, Justin; Lusignan, Bruce
1999-01-01
In last year's Mars Society convention we introduced the results of five years of studies of space launch capability for the second millennium. We concluded that Single Stage to Orbit (SSTO) vehicles such as the Delta Clipper X33, and X34 cannot make it to orbit from the Earth's surface. Whether taking off vertically or horizontally or landing vertically or horizontally, the rocket equations, the performance of available fuels, and the realities of the weight and strength of materials leave no margin for payload. The promised savings from SSTO systems are illusory. However, a configuration that is able to deliver useful payload to orbit is the Single step to Orbit, SsTO, a rocket plane that is released fully fueled, from 35,000 to 40,000 feet altitude. Three approaches have been proposed. The Hot'l and Molnya Corporation designs carry the fueled rocket plane to altitude on the back of a carrier aircraft. In this design the carrier aircraft is Russia's Antonov 225 the world's largest cargo plane. The rocket plane is a modified version of the Buran, Russia's own space shuttle. Another configuration is Kelly Aviation's concept in which the fully fueled rocket plane is towed to altitude by the cargo plane and then released. A third approach is based on the early "X" planes, which were dropped from the belly of the carrier plane. While the rocket equations indicate that these three concepts can deliver useful payloads, the Stanford review found significant advantages to the approach of Pioneer Rocket, in which the rocket plane flies up to the carrier plane with conventional jet engines, docks, and then loads on the oxidizer for the flight to orbit. This architecture has more reasonable abort modes in case of system failure in either aircraft and can deliver a larger final payload to orbit for a given sized carrier. The Stanford recommendation is that the carrier aircraft be the Antonov 225. A design based on this was presented in a report last year. Refinements to the design notably an improved re-entry cooling system and fueling stability analysis were done this year. More technical detail and a proposed international consortium to develop the SSTO is presented in another session of this year's Mars convention. We believe that there will be no human exploration of Mars based on the Shuttle or Expendable launch vehicles, and no resources available except for a cooperative international program. However, just as the world is learning to cooperate in peacekeeping, we hold out the hope that similar cooperation will develop for Mars exploration. With that in mind, this year we asked the question- "How will the human mission get to Mars if it has to use the SsTO for transportation?"
NASA Technical Reports Server (NTRS)
Olds, John Robert; Walberg, Gerald D.
1993-01-01
Multidisciplinary design optimization (MDO) is an emerging discipline within aerospace engineering. Its goal is to bring structure and efficiency to the complex design process associated with advanced aerospace launch vehicles. Aerospace vehicles generally require input from a variety of traditional aerospace disciplines - aerodynamics, structures, performance, etc. As such, traditional optimization methods cannot always be applied. Several multidisciplinary techniques and methods were proposed as potentially applicable to this class of design problem. Among the candidate options are calculus-based (or gradient-based) optimization schemes and parametric schemes based on design of experiments theory. A brief overview of several applicable multidisciplinary design optimization methods is included. Methods from the calculus-based class and the parametric class are reviewed, but the research application reported focuses on methods from the parametric class. A vehicle of current interest was chosen as a test application for this research. The rocket-based combined-cycle (RBCC) single-stage-to-orbit (SSTO) launch vehicle combines elements of rocket and airbreathing propulsion in an attempt to produce an attractive option for launching medium sized payloads into low earth orbit. The RBCC SSTO presents a particularly difficult problem for traditional one-variable-at-a-time optimization methods because of the lack of an adequate experience base and the highly coupled nature of the design variables. MDO, however, with it's structured approach to design, is well suited to this problem. The result of the application of Taguchi methods, central composite designs, and response surface methods to the design optimization of the RBCC SSTO are presented. Attention is given to the aspect of Taguchi methods that attempts to locate a 'robust' design - that is, a design that is least sensitive to uncontrollable influences on the design. Near-optimum minimum dry weight solutions are determined for the vehicle. A summary and evaluation of the various parametric MDO methods employed in the research are included. Recommendations for additional research are provided.
A Design for an Orbital Assembly Facility for Complex Missions
NASA Astrophysics Data System (ADS)
Feast, S.; Bond, A.
A design is presented for an Operations Base Station (OBS) in low earth orbit that will function as an integral part of a space transportation system, enabling assembly and maintenance of a Cis-Lunar transportation infrastructure and integration of vehicles for other high energy space missions to be carried out. Construction of the OBS assumes the use of the SKYLON Single-Stage-to-Orbit (SSTO) spaceplane, which imposes design and assembly constraints due to its payload mass limits and payload bay dimensions. It is assumed that the space transport infrastructure and high mission energy vehicles would also make use of SKYLON to deploy standard transport equipment and stages bound by these same constraints. The OBS is therefore a highly modular arrangement, incorporating some of these other vehicle system elements in its layout design. Architecturally, the facilities of the OBS are centred around the Assembly Dock which is in the form of a large cylindrical spaceframe structure with two large doors on either end incorporating a skin of aluminised Mylar to enclose the dock. Longitudinal rails provide internal tether attachments to anchor vehicles and components while manipulators are used for the handling and assembling of vehicle structures. The exterior of the OBS houses the habitation modules for workforce and vehicle crews along with propellant farms and other operational facilities.
Hypersonic vehicle control law development using H(infinity) and micron-synthesis
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Mcminn, John D.; Shaughnessy, John D.; Chowdhry, Rajiv S.
1993-01-01
Hypersonic vehicle control law development using H(infinity) and mu-synthesis is discussed. Airbreathing SSTO vehicles has a mutli-faceted mission that includes orbital operations, as well as re-entry and descent culminating in horizontal landing. However, the most challenging part of the operations is the ascent to orbit. The airbreathing propulsion requires lengthy atmospheric flight that may last as long as 30 minutes and take the vehicle half way around the globe. The vehicles's ascent is characterized by tight payload to orbit margins which translate into minimum fuel orbit as the performance criteria. Issues discussed include: SSTO airbreathing vehicle issues; control system performance requirements; robust control law framework; H(infinity) controller frequency analysis; and mu controller frequency analysis.
Considerations on vehicle design criteria for space tourism
NASA Astrophysics Data System (ADS)
Isozaki, Kohki; Taniuchi, Akira; Yonemoto, Koichi; Kikukawa, Hiroshige; Maruyama, Tomoko
1995-10-01
The transportation research committee of JRS (Japanese Rocket Society) has begun conceptual design of vertical takeoff and landing fully reusable SSTO (Single Stage to Orbit) rocket type vehicle as a standard vehicle model for space tourism. The design criteria of the vehicle have paid most attention to the requirements of service to meet space tour amusement. The standard vehicle, which has 22m body length and weighs about 550 tons at takeoff, can provide attractive tours of 24 hours maximum for 50 passengers into the low earth orbit with a variety of space flight pleasures such as experience of weightlessness and earth sightseeing. Within the reach of our near future rocket technology, the design utilizes MMC, CF/Epy and Ti/Mw advanced materials. The twelve LOX/LH2 engines consist of two nozzle types, which can be throttled and gimbaled during the whole mission time, perform vertical launch and tail-first reentry to final landing associated with aerodynamic control of body flaps within tolerable acceleration acting on passengers.
Requirements report for SSTO vertical take-off and horizontal landing vehicle
NASA Technical Reports Server (NTRS)
Greenberg, H. S.
1994-01-01
This document describes the detailed design requirements and design criteria to support Structures/TPS Technology development for SSTO winged vehicle configurations that use vertical take-off and horizontal landing and delivers 25,000 lb payloads to a 220 nm circular orbit at an inclination of 51.6 degrees or 40,000 lb payloads to a 150 nm circular orbit at a 28.5 degree inclination.
Airbreathing engine selection criteria for SSTO propulsion system
NASA Astrophysics Data System (ADS)
Ohkami, Yoshiaki; Maita, Masataka
1995-02-01
This paper presents airbreathing engine selection criteria to be applied to the propulsion system of a Single Stage To Orbit (SSTO). To establish the criteria, a relation among three major parameters, i.e., delta-V capability, weight penalty, and effective specific impulse of the engine subsystem, is derived as compared to these parameters of the LH2/LOX rocket engine. The effective specific impulse is a function of the engine I(sub sp) and vehicle thrust-to-drag ratio which is approximated by a function of the vehicle velocity. The weight penalty includes the engine dry weight, cooling subsystem weight. The delta-V capability is defined by the velocity region starting from the minimum operating velocity up to the maximum velocity. The vehicle feasibility is investigated in terms of the structural and propellant weights, which requires an iteration process adjusting the system parameters. The system parameters are computed by iteration based on the Newton-Raphson method. It has been concluded that performance in the higher velocity region is extremely important so that the airbreathing engines are required to operate beyond the velocity equivalent to the rocket engine exhaust velocity (approximately 4500 m/s).
NASA Technical Reports Server (NTRS)
1997-01-01
In response to Clause 17 of the Cooperative Agreement NCC8-115, Lockheed Martin Skunk Works has compiled an Annual Performance Report of the X-33/RLV Program. This report consists of individual reports from all industry team members, as well as NASA team centers. Contract award was announced on July 2, 1996 and the first milestone was hand delivered to NASA MSFC on July 17, 1996. The first year has been one of growth and progress as all team members staffed up and embarked on the technical adventure of the 20th century... the ultimate goal . . a Single Stage to Orbit (SSTO) Reuseable Launch Vehicle (RLV).
Implementation of a Single-Stage-To-Orbit (SSTO) model for stability and control analysis
NASA Astrophysics Data System (ADS)
Ingalls, Stephen A.
1995-07-01
Three NASA centers: Marshall Space Flight Center (MSFC), Langley Research Center (LaRC), and Johnson Space Center (JSC) are currently involved in studying a family of single-stage- and two-stage-to-orbit (SSTO/TSTO) vehicles to serve as the next generation space transportation system (STS). A rocketed winged-body is the current focus. The configuration (WB001) is a vertically-launched, horizontally-landing system with circular cross-section. Preliminary aerodynamic data was generated by LaRC and is a combination of wind-tunnel data, empirical methods, and Aerodynamic Preliminary Analysis System-(APAS) generated values. JSC's efforts involve descent trajectory design, stability analysis, and flight control system synthesis. Analysis of WB001's static stability indicates instability in 'tuck' (C(sub mu) less than 0: Mach = 0.30, alpha greater than 3.25 deg; Mach = 0.60, alpha greater than 8.04), an unstable dihedral effects (C(sub l(beta)) greater than 0: Mach = 30,alpha less than 12 deg.; Mach = 0.60, alpha less than 10.00 deg.), and, most significantly, an unstable weathercock stability derivative, C(sub n(beta)), at all angles of attack and subsonic Mach numbers. Longitudinal trim solutions for Mach = 0.30 and 0.60 indicate flight path angle possibilities ranging from around 12 (M = 0.30) to slightly over 20 degrees at Mach = 0.60. Trim angles of attack increase from 6.24 at Mach 0.60 and 10,000 feet to 17.7 deg. at Mach 0.30, sea-level. Lateral trim was attempted for a design cross-wind of 25.0 knots. The current vehicle aerodynamic and geometric characteristics will only yield a lateral trim solution at impractical tip-fin deflections (approximately equal to 43 deg.) and bank angles (21 deg.). A study of the lateral control surfaces, tip-fin controllers for WB001, indicate increased surface area would help address these instabilities, particularly the deficiency in C(sub n(beta)), but obviously at the expense of increased vehicle weight. Growth factors of approximately 7 were determined using a design C(sub n(beta)) of 0.100/radian (approximate subsonic values for the orbiter).
Implementation of a Single-Stage-To-Orbit (SSTO) model for stability and control analysis
NASA Technical Reports Server (NTRS)
Ingalls, Stephen A.
1995-01-01
Three NASA centers: Marshall Space Flight Center (MSFC), Langley Research Center (LaRC), and Johnson Space Center (JSC) are currently involved in studying a family of single-stage- and two-stage-to-orbit (SSTO/TSTO) vehicles to serve as the next generation space transportation system (STS). A rocketed winged-body is the current focus. The configuration (WB001) is a vertically-launched, horizontally-landing system with circular cross-section. Preliminary aerodynamic data was generated by LaRC and is a combination of wind-tunnel data, empirical methods, and Aerodynamic Preliminary Analysis System-(APAS) generated values. JSC's efforts involve descent trajectory design, stability analysis, and flight control system synthesis. Analysis of WB001's static stability indicates instability in 'tuck' (C(sub mu) less than 0: Mach = 0.30, alpha greater than 3.25 deg; Mach = 0.60, alpha greater than 8.04), an unstable dihedral effects (C(sub l(beta)) greater than 0: Mach = 30,alpha less than 12 deg.; Mach = 0.60, alpha less than 10.00 deg.), and, most significantly, an unstable weathercock stability derivative, C(sub n(beta)), at all angles of attack and subsonic Mach numbers. Longitudinal trim solutions for Mach = 0.30 and 0.60 indicate flight path angle possibilities ranging from around 12 (M = 0.30) to slightly over 20 degrees at Mach = 0.60. Trim angles of attack increase from 6.24 at Mach 0.60 and 10,000 feet to 17.7 deg. at Mach 0.30, sea-level. Lateral trim was attempted for a design cross-wind of 25.0 knots. The current vehicle aerodynamic and geometric characteristics will only yield a lateral trim solution at impractical tip-fin deflections (approximately equal to 43 deg.) and bank angles (21 deg.). A study of the lateral control surfaces, tip-fin controllers for WB001, indicate increased surface area would help address these instabilities, particularly the deficiency in C(sub n(beta)), but obviously at the expense of increased vehicle weight. Growth factors of approximately 7 were determined using a design C(sub n(beta)) of 0.100/radian (approximate subsonic values for the orbiter).
Ascent performance feasibility for next-generation spacecraft
NASA Astrophysics Data System (ADS)
Mancuso, Salvatore Massimo
This thesis deals with the optimization of the ascent trajectories for single-stage suborbital (SSSO), single-stage-to-orbit (SSTO), and two-stage-to-orbit (TSTO) rocket-powered spacecraft. The maximum payload weight problem has been solved using the sequential gradient-restoration algorithm. For the TSTO case, some modifications to the original version of the algorithm have been necessary in order to deal with discontinuities due to staging and the fact that the functional being minimized depends on interface conditions. The optimization problem is studied for different values of the initial thrust-to-weight ratio in the range 1.3 to 1.6, engine specific impulse in the range 400 to 500 sec, and spacecraft structural factor in the range 0.08 to 0.12. For the TSTO configuration, two subproblems are studied: uniform structural factor between stages and nonuniform structural factor between stages. Due to the regular behavior of the results obtained, engineering approximations have been developed which connect the maximum payload weight to the engine specific impulse and spacecraft structural factor; in turn, this leads to useful design considerations. Also, performance sensitivity to the scale of the aerodynamic drag is studied, and it is shown that its effect on payload weight is relatively small, even for drag changes approaching ± 50%. The main conclusions are that: the design of a SSSO configuration appears to be feasible; the design of a SSTO configuration might be comfortably feasible, marginally feasible, or unfeasible, depending on the parameter values assumed; the design of a TSTO configuration is not only feasible, but its payload appears to be considerably larger than that of a SSTO configuration. Improvements in engine specific impulse and spacecraft structural factor are desirable and crucial for SSTO feasibility; indeed, it appears that aerodynamic improvements do not yield significant improvements in payload weight.
High variable mixture ratio oxygen/hydrogen engine
NASA Technical Reports Server (NTRS)
Erickson, C. M.; Tu, W. H.; Weiss, A. H.
1988-01-01
The ability of an O2/H2 engine to operate over a range of high-propellant mixture ratios was previously shown to be advantageous in single stage to orbit (SSTO) vehicles. The results are presented for the analysis of high-performance engine power cycles operating over propellant mixture ratio ranges of 12 to 6 and 9 to 6. A requirement to throttle up to 60 percent of nominal thrust was superimposed as a typical throttle range to limit vehicle acceleration as propellant is expended. The object of the analysis was to determine areas of concern relative to component and engine operability or potential hazards resulting from the operating requirements and ranges of conditions that derive from the overall engine requirements. The SSTO mission necessitates a high-performance, lightweight engine. Therefore, staged combustion power cycles employing either dual fuel-rich preburners or dual mixed (fuel-rich and oxygen-rich) preburners were examined. Engine mass flow and power balances were made and major component operating ranges were defined. Component size and arrangement were determined through engine layouts for one of the configurations evaluated. Each component is being examined to determine if there are areas of concern with respect to component efficiency, operability, reliability, or hazard. The effects of reducing the maximum chamber pressure were investigated for one of the cycles.
VentureStar(trademark) Reaping the Benefits of the X-33 Program
NASA Technical Reports Server (NTRS)
Sumrall, J.; Lane, C.
1998-01-01
Major X-33 flight hardware has been delivered, and assembly of the vehicle is well underway in anticipation of its flight test program commencing in the summer of 1999. Attention has now turned to the operational VentureStar(trademark), the first single-stage-to-orbit (SSTO) reusable launch vehicle. Activities are grouped under two broad categories: (1) vehicle development and (2) market/business planning, each of which is discussed. The mission concept is presented for direct payload delivery to the International Space Station and to low Earth orbit, as well as payload delivery with an upper stage to Geosynchronous Transfer Orbit (GTO) and other high energy orbits. System requirements include flight segment and ground segment. Vehicle system sizing and design status is provided including the application of X-33 traceability and lessons learned. Technology applications to the VentureStar(trademark) are described including the structure, propellant tanks, thermal protection system, aerodynamics, subsystems, payload bay and propulsion. Developing a market driven low cost launch services system for the 21 st Century requires traditional and non-traditional ways of being able to forecast the evolution of the potential market. The challenge is balancing both the technical and financial assumptions of the market. This involves the need to provide a capability to meet market segments that in some cases are very speculative, while at the same time providing the financial community with a credible revenue stream.
X-33/RLV System Health Management/ Vehicle Health Management
NASA Technical Reports Server (NTRS)
Garbos, Raymond J.; Mouyos, William
1998-01-01
To reduce operations cost, the RLV must include the following elements: highly reliable, robust subsystems designed for simple repair access with a simplified servicing infrastructure and incorporating expedited decision making about faults and anomalies. A key component for the Single Stage to Orbit (SSTO) RLV System used to meet these objectives is System Health Management (SHM). SHM deals with the vehicle component- Vehicle Health Management (VHM), the ground processing associated with the fleet (GVHM) and the Ground Infrastructure Health Management (GIHM). The objective is to provide an automated collection and paperless health decision, maintenance and logistics system. Many critical technologies are necessary to make the SHM (and more specifically VHM) practical, reliable and cost effective. Sanders is leading the design, development and integration of the SHM system for RLV and X-33 SHM (a sub-scale, sub-orbit Advanced Technology Demonstrator). This paper will present the X-33 SHM design which forms the baseline for RLV SHM. This paper will also discuss other applications of these technologies.
Requirements report for SSTO vertical take-off/horizontal landing vehicle
NASA Technical Reports Server (NTRS)
Greenberg, H. S.
1994-01-01
This document describes the detailed design requirements and design criteria to support Structures/TPS Technology development for SSTO winged vehicle configurations that use vertical take-off and horizontal landing and deliver 25,000 lb payloads to a 220 nm circular orbit at an inclination of 51.6 degrees or 40,000 lb payloads to a 150 nm circular orbit at a 28.5 degree of inclination. This document will be updated on a timely basis as informatIon becomes available throughout the project.
Requirements report for SSTO vertical take-off/horizontal landing vehicle
NASA Astrophysics Data System (ADS)
Greenberg, H. S.
1994-07-01
This document describes the detailed design requirements and design criteria to support Structures/TPS Technology development for SSTO winged vehicle configurations that use vertical take-off and horizontal landing and deliver 25,000 lb payloads to a 220 nm circular orbit at an inclination of 51.6 degrees or 40,000 lb payloads to a 150 nm circular orbit at a 28.5 degree of inclination. This document will be updated on a timely basis as informatIon becomes available throughout the project.
Dual throat engine design for a SSTO launch vehicle
NASA Technical Reports Server (NTRS)
Obrien, C. J.; Salmon, J. W.
1980-01-01
A propulsion system analysis of a dual fuel, dual throat engine for launch vehicle application was conducted. Basic dual throat engine characterization data are presented to allow vehicle optimization studies to be conducted. A preliminary baseline engine system was defined. Dual throat engine performance, envelope, and weight parametric data were generated over the parametric range of thrust from 890 to 8896 KN (200K to 2M lb-force), chamber pressure from 6.89 million to 34.5 million N/sq m (1000 to 5000 psia) thrust ratio from 1.2 to 5, and a range of mixture ratios for the two tripropellant combinations: LO2/RP-1 + LH2 and LO2/LCH4 + LH2. The results of the study indicate that the dual fuel dual throat engine is a viable single stage to orbit candidate.
Reusable space systems (Eugen Saenger Lecture, 1987)
NASA Technical Reports Server (NTRS)
Fletcher, J. C.
1988-01-01
The history and current status of reusable launch vehicle (RLV) development are surveyed, with emphases on the contributions of Eugen Saenger and ongoing NASA projects. Topics addressed include the capabilities and achievements of the Space Shuttle, the need to maintain a fleet with both ELVs and RLVs to meet different mission requirements, the X-30 testbed aircraft for the National Aerospace Plane program, current design concepts for Shuttle II (a 1000-ton fully reusable two-stage rocket-powered spacecraft capable of carrying 11,000 kg to Space Station orbit), proposals for dual-fuel-propulsion SSTO RLVs, and the Space Station Orbital Maneuvering Vehicle and Orbital Transfer Vehicle. The importance of RLVs and of international cooperation in establishing the LEO infrastructure needed for planetary exploration missions is stressed.
A CMC database for use in the next generation launch vehicles (rockets)
NASA Astrophysics Data System (ADS)
Mahanta, Kamala
1994-10-01
Ceramic matrix composites (CMC's) are being envisioned as the state-of-the-art material capable of handling the tough structural and thermal demands of advanced high temperature structures for programs such as the SSTO (Single Stage to Orbit), HSCT (High Speed Civil Transport), etc. as well as for evolution of the industrial heating systems. Particulate, whisker and continuous fiber ceramic matrix (CFCC) composites have been designed to provide fracture toughness to the advanced ceramic materials which have a high degree of wear resistance, hardness, stiffness, and heat and corrosion resistance but are notorious for their brittleness and sensitivity to microscopic flaws such as cracks, voids and impurity.
A CMC database for use in the next generation launch vehicles (rockets)
NASA Technical Reports Server (NTRS)
Mahanta, Kamala
1994-01-01
Ceramic matrix composites (CMC's) are being envisioned as the state-of-the-art material capable of handling the tough structural and thermal demands of advanced high temperature structures for programs such as the SSTO (Single Stage to Orbit), HSCT (High Speed Civil Transport), etc. as well as for evolution of the industrial heating systems. Particulate, whisker and continuous fiber ceramic matrix (CFCC) composites have been designed to provide fracture toughness to the advanced ceramic materials which have a high degree of wear resistance, hardness, stiffness, and heat and corrosion resistance but are notorious for their brittleness and sensitivity to microscopic flaws such as cracks, voids and impurity.
2004-04-15
Pictured is an artist's concept of the Rocket Based Combined Cycle (RBCC) launch. The RBCC's overall objective is to provide a technology test bed to investigate critical technologies associated with opperational usage of these engines. The program will focus on near term technologies that can be leveraged to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsions systems and ultimately a Single Stage To Orbit (SSTO) air breathing propulsion system.
Linear aerospike engine study. [for reusable launch vehicles
NASA Technical Reports Server (NTRS)
Diem, H. G.; Kirby, F. M.
1977-01-01
Parametric data on split-combustor linear engine propulsion systems are presented for use in mixed-mode single-stage-to-orbit (SSTO) vehicle studies. Preliminary design data for two selected engine systems are included. The split combustor was investigated for mixed-mode operations with oxygen/hydrogen propellants used in the inner combustor in Mode 2, and in conjunction with either oxygen/RP-1, oxygen/RJ-5, O2/CH4, or O2/H2 propellants in the outer combustor for Mode 1. Both gas generator and staged combustion power cycles were analyzed for providing power to the turbopumps of the inner and outer combustors. Numerous cooling circuits and cooling fluids (propellants) were analyzed and hydrogen was selected as the preferred coolant for both combustors and the linear aerospike nozzle. The maximum operating chamber pressure was determined to be limited by the availability of hydrogen coolant pressure drop in the coolant circuit.
Investigation of very high energy rockets for future SSTO vehicles
NASA Astrophysics Data System (ADS)
Froning, H. D., Jr.
1989-04-01
Several new propulsion possibilities are being explored in the U.S.A. which might significantly increase the amount of payload that can be propelled into orbit for a given launch vehicle weight. As such, they might enable significant reduction in the future cost of transportation between earth and space. One possibility is the combustion of matter that is in an excited atomic or molecular state. Another possibility is the annihilation of matter by means of anti-matter (by matter with identical mass and opposite electrical charge). And if an appreciable fraction of the energies released by either of these processes could be converted into the useful kinetic energy of a rocket's exhaust, a 2-6-fold increase in its specific impulse might be achieved. This paper shows that a 2-6-fold increase in rocket specific impulse might enable a 4-12-fold reduction in aerospace vehicle weight. It also shows that the specific impulse potential of excited matter or anti-matter fuels might enable transport of heavy payloads into earth orbit by means of single-stage-to-orbit vehicles that would be no heavier than current commercial airline jets.
Rocket Based Combined Cycle (RBCC) Engine
NASA Technical Reports Server (NTRS)
2004-01-01
Pictured is an artist's concept of the Rocket Based Combined Cycle (RBCC) launch. The RBCC's overall objective is to provide a technology test bed to investigate critical technologies associated with opperational usage of these engines. The program will focus on near term technologies that can be leveraged to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsions systems and ultimately a Single Stage To Orbit (SSTO) air breathing propulsion system.
Airframe integration trade studies for a reusable launch vehicle
NASA Astrophysics Data System (ADS)
Dorsey, John T.; Wu, Chauncey; Rivers, Kevin; Martin, Carl; Smith, Russell
1999-01-01
Future launch vehicles must be lightweight, fully reusable and easily maintained if low-cost access to space is to be achieved. The goal of achieving an economically viable Single-Stage-to-Orbit (SSTO) Reusable Launch Vehicle (RLV) is not easily achieved and success will depend to a large extent on having an integrated and optimized total system. A series of trade studies were performed to meet three objectives. First, to provide structural weights and parametric weight equations as inputs to configuration-level trade studies. Second, to identify, assess and quantify major weight drivers for the RLV airframe. Third, using information on major weight drivers, and considering the RLV as an integrated thermal structure (composed of thrust structures, tanks, thermal protection system, insulation and control surfaces), identify and assess new and innovative approaches or concepts that have the potential for either reducing airframe weight, improving operability, and/or reducing cost.
Airframe Integration Trade Studies for a Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Wu, Chauncey; Rivers, Kevin; Martin, Carl; Smith, Russell
1999-01-01
Future launch vehicles must be lightweight, fully reusable and easily maintained if low-cost access to space is to be achieved. The goal of achieving an economically viable Single-Stage-to-Orbit (SSTO) Reusable Launch Vehicle (RLV) is not easily achieved and success will depend to a large extent on having an integrated and optimized total system. A series of trade studies were performed to meet three objectives. First, to provide structural weights and parametric weight equations as inputs to configuration-level trade studies. Second, to identify, assess and quantify major weight drivers for the RLV airframe. Third, using information on major weight drivers, and considering the RLV as an integrated thermal structure (composed of thrust structures, tanks, thermal protection system, insulation and control surfaces), identify and assess new and innovative approaches or concepts that have the potential for either reducing airframe weight, improving operability, and/or reducing cost.
Long life reaction control system design
NASA Astrophysics Data System (ADS)
Fanciullo, Thomas J.; Judd, Craig
1993-02-01
Future single stage to orbit systems will utilize oxygen/hydrogen propellants in their main propulsion means due to the propellant's high energy content and environmental acceptability. Operational effectiveness studies and life cycle cost studies have indicated that minimizing the number of different commodities on a given vehicle not only reduces cost, but reduces the ground span times in both the pre- and postflight operations. Therefore, oxygen and hydrogen should be used for the reaction controls systems, eliminating the need to deal with toxic or corrosive fluids. When the hydrogen scramjet powered NASP design development began in 1985, new system design studies considered overall integration of subsystems; in the context of that approach, O2/H2 reaction controls system were more than competitive with storable propellant systems and had the additional benefits of lower life cycle cost, rapid turnaround times, and O2 and H2 commodities for use throughout the vehicle. Similar benefits were derived in rocket-powered SSTO vehicles.
Research Technology (ASTP) Rocket Based Combined Cycle (RBCC) Engine
NASA Technical Reports Server (NTRS)
2004-01-01
Pictured is an artist's concept of the Rocket Based Combined Cycle (RBCC) launch. The RBCC's overall objective is to provide a technology test bed to investigate critical technologies associated with opperational usage of these engines. The program will focus on near term technologies that can be leveraged to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsions systems and ultimately a Single Stage To Orbit (SSTO) air breathing propulsion system.
NASA Technical Reports Server (NTRS)
Caluori, V. A.; Conrad, R. T.; Jenkins, J. C.
1980-01-01
Technological requirements and forecasts of rocket engine parameters and launch vehicles for future Earth to geosynchronous orbit transportation systems are presented. The parametric performance, weight, and envelope data for the LOX/CH4, fuel cooled, staged combustion cycle and the hydrogen cooled, expander bleed cycle engine concepts are discussed. The costing methodology and ground rules used to develop the engine study are summarized. The weight estimating methodology for winged launched vehicles is described and summary data, used to evaluate and compare weight data for dedicated and integrated O2/H2 subsystems for the SSTO, HLLV and POTV are presented. Detail weights, comparisons, and weight scaling equations are provided.
Thermo-mechanical evaluation of carbon-carbon primary structure for SSTO vehicles
NASA Astrophysics Data System (ADS)
Croop, Harold C.; Lowndes, Holland B.; Hahn, Steven E.; Barthel, Chris A.
1998-01-01
An advanced development program to demonstrate carbon-carbon composite structure for use as primary load carrying structure has entered the experimental validation phase. The component being evaluated is a wing torque box section for a single-stage-to-orbit (SSTO) vehicle. The validation or demonstration component features an advanced carbon-carbon design incorporating 3D woven graphite preforms, integral spars, oxidation inhibited matrix, chemical vapor deposited (CVD) oxidation protection coating, and ceramic matrix composite fasteners. The validation component represents the culmination of a four phase design and fabrication development effort. Extensive developmental testing was performed to verify material properties and integrity of basic design features before committing to fabrication of the full scale box. The wing box component is now being set up for testing in the Air Force Research Laboratory Structural Test Facility at Wright-Patterson Air Force Base, Ohio. One of the important developmental tests performed in support of the design and planned testing of the full scale box was the fabrication and test of a skin/spar trial subcomponent. The trial subcomponent incorporated critical features of the full scale wing box design. This paper discusses the results of the trial subcomponent test which served as a pathfinder for the upcoming full scale box test.
Thermo-mechanical cyclic testing of carbon-carbon primary structure for an SSTO vehicle
NASA Astrophysics Data System (ADS)
Croop, Harold C.; Leger, Kenneth B.; Lowndes, Holland B.; Hahn, Steven E.; Barthel, Chris A.
1999-01-01
An advanced carbon-carbon structural component is being experimentally evaluated for use as primary load carrying structure for future single-stage-to-orbit (SSTO) vehicles. The component is a wing torque box section featuring an advanced, three-spar design. This design features 3D-woven, angle-interlock skins, 3D integrally woven spar webs and caps, oxidation inhibited matrix, chemical vapor deposited (CVD) oxidation protection coating, and ceramic matrix composite fasteners. The box spar caps are nested into the skins which, when processed together through the carbon-carbon processing cycle, resulted in monolithic box halves. The box half sections were then joined at the spar web intersections using ceramic matrix composite fasteners. This method of fabrication eliminated fasteners through both the upper and lower skins. Development of the carbon-carbon wing box structure was accomplished in a four phase design and fabrication effort, conducted by Boeing, Information, Space and Defense Systems, Seattle, WA, under contract to the Air Force Research Laboratory (AFRL). The box is now set up for testing and will soon begin cyclic loads testing in the AFRL Structural Test Facility at Wright-Patterson Air Force Base (WPAFB), OH. This paper discusses the latest test setup accomplishments and the results of the pre-cyclic loads testing performed to date.
Hypersonic vehicle model and control law development using H(infinity) and micron synthesis
NASA Astrophysics Data System (ADS)
Gregory, Irene M.; Chowdhry, Rajiv S.; McMinn, John D.; Shaughnessy, John D.
1994-10-01
The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.
Hypersonic vehicle model and control law development using H(infinity) and micron synthesis
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.
1994-01-01
The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.
Test Plan. GCPS Task 4, subtask 4.2 thrust structure development
NASA Astrophysics Data System (ADS)
Greenberg, H. S.
1994-09-01
The Single Stage To Orbit (SSTO) vehicle is designed to lift off from a vertical position, go into orbit, return to earth for a horizontal landing, and be reusable for the next mission. (NASA baseline only) In order to meet its performance goals, the SSTO relies on light weight structure and the use of 8 tri-propellant engines. These engines are mounted to the thrust structure. This test plan addresses selection of the material for this structure, and the integrity of the design through testing of elements and a full-scale subcomponent. This test plan supports the development of the design for an advanced composite thrust structure for a Single Stage to Orbit manned, heavy launch vehicle. The thrust structure is designed to transmit very high thrust loads from the engines to the rest of the vehicle (see Figure 1 ). The thrust structure will also be used for primary attachment of the twin vertical tails and possibly act as the aft attach point for the wing. The combination of high loading, high vibration, long service life and high acoustic environments will need to be evaluated by tests. To minimize design risk, a building block approach will be used. We will first screen materials to determine which materials show the most promise for this application. Factors in this screening will be the suitability of these materials for chosen design concepts, particularly concerning specific strength, environmental compatibility and applicability to fabrication processes. Next we will characterize two material systems that will be used in the design; the characterization will allow us to generate preliminary design data that will be used for the analysis. Element testing will be performed to evaluate critical structural locations under load. Final testing on the full scale test article will be performed to verify the design and to demonstrate predictability of the analysis. Additionally, risks associated with fabricating full scale thrust structures will be reduced through testing activities. One of the major concerns that stems from full scale fabrication is the realities of size and the associated complexities of handling, manufacturing, and assembly. The need exists to fabricate, assemble and test_representative joint specimens to achieve_confidence in the design and manufacturing technologies being proposed.
Test Plan. GCPS Task 4, subtask 4.2 thrust structure development
NASA Technical Reports Server (NTRS)
Greenberg, H. S.
1994-01-01
The Single Stage To Orbit (SSTO) vehicle is designed to lift off from a vertical position, go into orbit, return to earth for a horizontal landing, and be reusable for the next mission. (NASA baseline only) In order to meet its performance goals, the SSTO relies on light weight structure and the use of 8 tri-propellant engines. These engines are mounted to the thrust structure. This test plan addresses selection of the material for this structure, and the integrity of the design through testing of elements and a full-scale subcomponent. This test plan supports the development of the design for an advanced composite thrust structure for a Single Stage to Orbit manned, heavy launch vehicle. The thrust structure is designed to transmit very high thrust loads from the engines to the rest of the vehicle (see Figure 1 ). The thrust structure will also be used for primary attachment of the twin vertical tails and possibly act as the aft attach point for the wing. The combination of high loading, high vibration, long service life and high acoustic environments will need to be evaluated by tests. To minimize design risk, a building block approach will be used. We will first screen materials to determine which materials show the most promise for this application. Factors in this screening will be the suitability of these materials for chosen design concepts, particularly concerning specific strength, environmental compatibility and applicability to fabrication processes. Next we will characterize two material systems that will be used in the design; the characterization will allow us to generate preliminary design data that will be used for the analysis. Element testing will be performed to evaluate critical structural locations under load. Final testing on the full scale test article will be performed to verify the design and to demonstrate predictability of the analysis. Additionally, risks associated with fabricating full scale thrust structures will be reduced through testing activities. One of the major concerns that stems from full scale fabrication is the realities of size and the associated complexities of handling, manufacturing, and assembly. The need exists to fabricate, assemble and test_representative joint specimens to achieve_confidence in the design and manufacturing technologies being proposed.
STS 2000: Structural design of the airbreathing launcher
NASA Astrophysics Data System (ADS)
Boyeldieu, E.
This paper presents a description of the structural design and the choice of materials of the different parts of the Space Transportation System 2000 (STS 2000). This launcher is one of the different concepts studied by AEROSPATIALE to evaluate its feasibility and its performance. The STS 2000 Single-Stage-To-Orbit (SSTO) is a reusable single stage launcher using airbreathing propulsion till Mach 6. This SSTO takes off horizontally using an undercarriage It takes off with a speed of 150 m/s and with an incidence angle of 12 deg. The STS 2000 flights from Mach 0.4 to Mach 3.6 using four turbo-rockets engines, from Mach 3.6 to Mach 6 using four ramjets-rockets engines and from Mach 6 to Mach 25 using four rockets engines. During its reentry, it glides from orbit to earth and it horizontally lands at the same base (KOUROU in French Guiana). The initial take-off mass is 338 metric tons. The ascent phase specification are: a maximum axial acceleration of 4 g's and a maximum dynamic pressure of 70 kPa.
X-33 Hypersonic Aerodynamic Characteristics
NASA Technical Reports Server (NTRS)
Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.
1999-01-01
Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will design, build, and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604BOO02G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate the aerodynamic flight database for the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. Al these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.
X-33 Hypersonic Aerodynamic Characteristics
NASA Technical Reports Server (NTRS)
Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.
1999-01-01
Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database i n the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.
NASA Technical Reports Server (NTRS)
Soffen, Gerald A. (Editor)
1987-01-01
The present conference on U.S. space transportation systems development discusses opportunities for aerospace students in prospective military, civil, industrial, and scientific programs, current strategic conceptualization and program planning for future U.S. space transportation, the DOD space transportation plan, NASA space transportation plans, medium launch vehicle and commercial space launch services, the capabilities and availability of foreign launch vehicles, and the role of commercial space launch systems. Also discussed are available upper stage systems, future space transportation needs for space science and applications, the trajectory analysis of a low lift/drag-aeroassisted orbit transfer vehicle, possible replacements for the Space Shuttle, LEO to GEO with combined electric/beamed-microwave power from earth, the National Aerospace Plane, laser propulsion to earth orbit, and a performance analysis for a laser-powered SSTO vehicle.
NASA Technical Reports Server (NTRS)
Alexander, Reginald A.; Stanley, Thomas Troy
1999-01-01
Presented is a design tool and process that connects several disciplines which are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system and in the case of SSTO vehicles with air breathing propulsion, which is currently being studied by the National Aeronautics and Space Administration (NASA); the thermal protection system (TPS) is linked directly to almost every major system. The propulsion system pushes the vehicle to velocities on the order of 15 times the speed of sound in the atmosphere before pulling up to go to orbit which results high temperatures on the external surfaces of the vehicle. Thermal protection systems to maintain the structural integrity of the vehicle must be able to mitigate the heat transfer to the structure and be lightweight. Herein lies the interdependency, in that as the vehicle's speed increases, the TPS requirements are increased. And as TPS masses increase the effect on the propulsion system and all other systems is compounded. To adequately determine insulation masses for a vehicle such as the one described above, the aeroheating loads must be calculated and the TPS thicknesses must be calculated for the entire vehicle. To accomplish this an ascent or reentry trajectory is obtained using the computer code Program to Optimize Simulated Trajectories (POST). The trajectory is then used to calculate the convective heat rates on several locations on the vehicles using the Miniature Version of the JA70 Aerodynamic Heating Computer Program (MINIVER). Once the heat rates are defined for each body point on the vehicle, then insulation thicknesses that are required to maintain the vehicle within structural limits are calculated using Systems Improved Numerical Differencing Analyzer (SINDA) models. If the TPS masses are too heavy for the performance of the vehicle the process may be repeated altering the trajectory or some other input to reduce the TPS mass. The problem described is an example of the need for collaborative design and analysis. Analysis tools are being developed to facilitate these collaborative efforts. RECIPE is a cross-platform application capable of hosting a number of engineers and designers across the Internet for distributed and collaborative engineering environments. Such integrated system design environments allow for collaborative team design analysis for performing individual or reduced team studies. The analysis tools mentioned earlier are commonly run on different platforms and are usually run by different people. To facilitate the larger number of potential runs that may need to be made, RECIPE connects the computer codes that calculate the trajectory data, heat rate data, and TPS masses so that the output from each tool is easily transferred to the model input files that need it. This methodology is being applied to solve launch vehicle thermal design problems to shorten the design cycle, and enable the project team to evaluate design options. Results will be presented indicating the effectiveness of this as a collaborative design tool.
Critical engine system design characteristics for SSTO vehicles
NASA Astrophysics Data System (ADS)
Fanciullo, Thomas J.; Judd, D. C.; Obrien, C. J.
1992-02-01
Engine system design characteristics are summarized for typical vertical take-off and landing (VTOL) and vertical take-off and horizontal landing (VTHL) Strategic Defense Initiative Organization (SDIO) single stage to orbit (SSTO) vehicles utilizing plug nozzle configurations. Power cycle selection trades involved the unique modular platelet engine (MPE) with the use of (1) LO2 and LH2 at fixed and variable mixture ratios, (2) LO2 and propane or RP-1, and (3) dual fuels (LO2 with LH2 and C3H8). The number of thrust cells and modules were optimized. Dual chamber bell and a cluster of conventional bell nozzle configurations were examined for comparison with the plug configuration. Thrust modulation (throttling) was selected for thrust vector control. Installed thrust ratings were established to provide an additional 20 percent overthrust capability for engine out operation. Turbopumps were designed to operate at subcritical speeds to facilitate a wide range of throttling and long life. A unique dual spool arrangement with hydrostatic bearings was selected for the LH2 turbopump. Controls and health monitoring with expert systems for diagnostics are critical subsystems to ensure minimum maintenance and supportability for a less than seven day turnaround. The use of an idle mode start, in conjunction with automated health condition monitoring, allows the rocket propulsion system to operate reliably in the manner of present day aircraft propulsion.
Performance of a RBCC Engine in Rocket-Operation
NASA Astrophysics Data System (ADS)
Tomioka, Sadatake; Kubo, Takahiro; Noboru Sakuranaka; Tani, Koichiro
Combination of a scramjet (supersonic combustion ramjet) flow-pass with embedded rocket engines (the combined system termed as Rocket-based Combined Cycle engine) are expected to be the most effective propulsion system for space launch vehicles. Either SSTO (Single Stage To Orbit) system or TSTO (Two Stage To Orbit) system with separation at high altitude needs final stage acceleration in space, so that the RBCC (Rocket Based Combined Cycle) engine should be operated as rocket engines. Performance of the scramjet combustor as the extension to the rocket nozzle, was experimentally evaluated by injecting inert gas at various pressure through the embedded rocket chamber while the whole sub-scaled model was placed in a low pressure chamber connected to an air-driven ejector system. The results showed that the thrust coefficient was about 1.2, the low value being found to mainly due to the friction force on the scramjet combustor wall, while blocking the scramjet flow pass’s opening to increase nozzle extension thrust surface, was found to have little effects on the thrust performance. The combustor was shortened to reduce the friction loss, however, degree of reduction was limited as friction decreased rapidly with distance from the onset of the scramjet combustor.
NASA Astrophysics Data System (ADS)
Varvill, R.; Bond, A.
SKYLON is a single stage to orbit (SSTO) winged spaceplane designed to give routine low cost access to space. At a gross takeoff weight of 275 tonnes of which 220 tonnes is propellant the vehicle is capable of placing 12 tonnes into an equatorial low Earth orbit. The vehicle configuration consists of a slender fuselage containing the propellant tankage and payload bay with delta wings located midway along the fuselage carrying the SABRE engines in axisymmetric nacelles on the wingtips. The vehicle takes off and lands horizontally on it's own undercarriage. The fuselage is constructed as a multilayer structure consisting of aeroshell, insulation, structure and tankage. SKYLON employs extant or near term materials technology in order to minimise development cost and risk. The SABRE engines have a dual mode capability. In rocket mode the engine operates as a closed cycle liquid oxygen/liquid hydrogen high specific impulse rocket engine. In airbreathing mode (from takeoff to Mach 5) the liquid oxygen flow is replaced by atmospheric air, increasing the installed specific impulse 3-6 fold. The airflow is drawn into the engine via a 2 shock axisymmetric intake and cooled to cryogenic temperatures prior to compression. The hydrogen fuel flow acts as a heat sink for the closed cycle helium loop before entering the main combustion chamber.
Parametric Weight Comparison of Current and Proposed Thermal Protection System (TPS) Concepts
NASA Technical Reports Server (NTRS)
Myers, David E.; Martin, Carl J.; Blosser, Max L.
1999-01-01
A parametric weight assessment of advanced metallic panel, ceramic blanket, and ceramic tile thermal protection systems (TPS) was conducted using an implicit, one-dimensional (1 -D) thermal finite element sizing code. This sizing code contained models to ac- count for coatings, fasteners, adhesives, and strain isolation pads. Atmospheric entry heating profiles for two vehicles, the Access to Space (ATS) rocket-powered single-stage-to-orbit (SSTO) vehicle and a proposed Reusable Launch Vehicle (RLV), were used to ensure that the trends were not unique to a particular trajectory. Eight TPS concepts were compared for a range of applied heat loads and substructural heat capacities to identify general trends. This study found the blanket TPS concepts have the lightest weights over the majority of their applicable ranges, and current technology ceramic tiles and metallic TPS concepts have similar weights. A proposed, state-of-the-art metallic system which uses a higher temperature alloy and efficient multilayer insulation was predicted to be significantly lighter than the ceramic tile systems and approaches blanket TPS weights for higher integrated heat loads.
Feasibility and Performance of the Microwave Thermal Rocket Launcher
NASA Astrophysics Data System (ADS)
Parkin, Kevin L. G.; Culick, Fred E. C.
2004-03-01
Beamed-energy launch concepts employing a microwave thermal thruster are feasible in principle, and microwave sources of sufficient power to launch tons into LEO already exist. Microwave thermal thrusters operate on an analogous principle to nuclear thermal thrusters, which have experimentally demonstrated specific impulses exceeding 850 seconds. Assuming such performance, simple application of the rocket equation suggests that payload fractions of 10% are possible for a single stage to orbit (SSTO) microwave thermal rocket. We present an SSTO concept employing a scaled X-33 aeroshell. The flat aeroshell underside is covered by a thin-layer microwave absorbent heat-exchanger that forms part of the thruster. During ascent, the heat-exchanger faces the microwave beam. A simple ascent trajectory analysis incorporating X-33 aerodynamic data predicts a 10% payload fraction for a 1 ton craft of this type. In contrast, the Saturn V had 3 non-reusable stages and achieved a payload fraction of 4%.
NASA Technical Reports Server (NTRS)
Stanley, Thomas Troy; Alexander, Reginald; Landrum, Brian
2000-01-01
Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. Then there is a transition to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scramjet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance. To adequately determine the performance of the engine/vehicle, the Hypersonic Flight Inlet Model (HYFIM) module was designed to interface with the RBCC engine model. HYFIM performs the aerodynamic analysis of forebodies and inlet characteristics of RBCC powered SSTO launch vehicles. HYFIM is applicable to the analysis of the ramjet/scramjet engine operations modes (Mach 3-12), and provides estimates of parameters such as air capture area, shock-on-lip Mach number, design Mach number, compression ratio, etc., based on a basic geometry routine for modeling axisymmetric cones, 2-D wedge geometries. HYFIM also estimates the variation of shock layer properties normal to the forebody surface. The thermal protection system (TPS) is directly linked to determination of the vehicle moldline and the shaping of the trajectory. Thermal protection systems to maintain the structural integrity of the vehicle must be able to mitigate the heat transfer to the structure and be lightweight. Herein lies the interdependency, in that as the vehicle's speed increases, the TPS requirements are increased. And as TPS masses increase the effect on the propulsion system and all other systems is compounded. The need to analyze vehicle forebody and engine inlet is critical to be able to design the RBCC vehicle. To adequately determine insulation masses for an RBCC vehicle, the hypersonic aerodynamic environment and aeroheating loads must be calculated and the TPS thicknesses must be calculated for the entire vehicle. To accomplish this an ascent or reentry trajectory is obtained using the computer code Program to Optimize Simulated Trajectories (POST). The trajectory is then used to calculate the convective heat rates on several locations on the vehicles using the Miniature Version of the JA70 Aerodynamic Heating Computer Program (MINIVER). Once the heat rates are defined for each body point on the vehicle, then insulation thicknesses that are required to maintain the vehicle within structural limits are calculated using Systems Improved Numerical Differencing Analyzer (SINDA) models. If the TPS masses are too heavy for the performance of the vehicle the process may be repeated altering the trajectory or some other input to reduce the TPS mass. E-PSURBCC is an "engine performance" model and requires the specification of inlet air static temperature and pressure as well as Mach number (which it pulls from the HYFIM and POST trajectory files), and calculates the corresponding stagnation properties. The engine air flow path geometry includes inlet, a constant area section where the rocket is positioned, a subsonic diffuser, a constant area afterburner, and either a converging nozzle or a converging-diverging nozzle. The current capabilities of E-PSURBCC ejector and ramjet mode treatment indicated that various complex flow phenomena including multiple choking and internal shocks can occur for combinations of geometry/flow conditions. For a given input deck defining geometry/flow conditions, the program first goes through a series of checks to establish whether the input parameters are sound in terms of a solution path. If the vehicle/engine performance fails mission goals, the engineer is able to collaboratively alter the vehicle moldline to change aerodynamics, or trajectory, or some other input to achieve orbit. The problem described is an example of the need for collaborative design and analysis. RECIPE is a cross-platform application capable of hosting a number of engineers and designers across the Internet for distributed and collaborative engineering environments. Such integrated system design environments allow for collaborative team design analysis for performing individual or reduced team studies. To facilitate the larger number of potential runs that may need to be made, RECIPE connects the computer codes that calculate the trajectory data, aerodynamic data based on vehicle geometry, heat rate data, TPS masses, and vehicle and engine performance, so that the output from each tool is easily transferred to the model input files that need it.
Analysis of a New Rocket-Based Combined-Cycle Engine Concept at Low Speed
NASA Technical Reports Server (NTRS)
Yungster, S.; Trefny, C. J.
1999-01-01
An analysis of the Independent Ramjet Stream (IRS) cycle is presented. The IRS cycle is a variation of the conventional ejector-Ramjet, and is used at low speed in a rocket-based combined-cycle (RBCC) propulsion system. In this new cycle, complete mixing between the rocket and ramjet streams is not required, and a single rocket chamber can be used without a long mixing duct. Furthermore, this concept allows flexibility in controlling the thermal choke process. The resulting propulsion system is intended to be simpler, more robust, and lighter than an ejector-ramjet. The performance characteristics of the IRS cycle are analyzed for a new single-stage-to-orbit (SSTO) launch vehicle concept, known as "Trailblazer." The study is based on a quasi-one-dimensional model of the rocket and air streams at speeds ranging from lift-off to Mach 3. The numerical formulation is described in detail. A performance comparison between the IRS and ejector-ramjet cycles is also presented.
Computational study of performance characteristics for truncated conical aerospike nozzles
NASA Astrophysics Data System (ADS)
Nair, Prasanth P.; Suryan, Abhilash; Kim, Heuy Dong
2017-12-01
Aerospike nozzles are advanced rocket nozzles that can maintain its aerodynamic efficiency over a wide range of altitudes. It belongs to class of altitude compensating nozzles. A vehicle with an aerospike nozzle uses less fuel at low altitudes due to its altitude adaptability, where most missions have the greatest need for thrust. Aerospike nozzles are better suited to Single Stage to Orbit (SSTO) missions compared to conventional nozzles. In the current study, the flow through 20% and 40% aerospike nozzle is analyzed in detail using computational fluid dynamics technique. Steady state analysis with implicit formulation is carried out. Reynolds averaged Navier-Stokes equations are solved with the Spalart-Allmaras turbulence model. The results are compared with experimental results from previous work. The transition from open wake to closed wake happens in lower Nozzle Pressure Ratio for 20% as compared to 40% aerospike nozzle.
Just the Right Amount of Reinforcement
NASA Technical Reports Server (NTRS)
Walton, Greg
1998-01-01
Lockheed Martin Skunk Works, is taking the next step towards economical low-Earth-orbit (LEO) operations with NASA's X-33 technology demonstrator, that uses composite tanks for liquid hydrogen (LH sub2) fuel storage and structural support, The X-33 is a 53% scale model of the VentureStar single-stage-to-orbit (SSTO) reusable launch vehicle(RLV) projected to orbit payloads at a rate, of $1,000 per pound beginning in 2004 In order to make VentureStar completely reusable and economical engineers are using composite materials throughout the spacecrafts structure. The first test of the design comes in 1999 on the X-33 technology demonstrator. Two of the primary structures that engineers will be evaluating are the carbon fiber/epoxy LH2 fuel tanks. The 29-ft long by 18-ft wide tanks, which fill two-thirds of the X-33's interior, serve a dual purpose carrying fuel and providing structural support to the walls of the spacecraft. Fiber placement makes it possible to build the fuel tanks, large, light and strong enough to satisfy X33's requirements. Lockheed Martin choose the fabrication technology to produce the eight sections of each tank because of fiber placement's ability to handle complex surfaces, speed and repeatability.
Single Stage To Orbit Minimum Requirements Through Numerical Simulation
NASA Astrophysics Data System (ADS)
Teixeira, E.
It is widely known that producing a single stage to orbit spacecraft is no easy task. It is also understood that it will be the first steady step towards spacecraft that operate in much the same way as today's airliners. This, in turn is believed to decrease the economical cost of reaching space through more efficient use of a single vehicle and higher launch rates. Space is then open to the common man, either through tourism or as a transportation medium. This paper is yet another study on the physical requirements of a SSTO spacecraft. It will begin with simple assumptions and gradually build up accuracy until reaching the use of a numerical simulation tool, so as to provide the necessary insight into it. The curvature of the Earth, its gravitational field, the exhaust pressure loss and atmospheric drag are a few of the considerations that the simulation takes into account. No attention was give to the actual details of the spacecraft such as propulsion type(s), winged or lifting body (aerodynamics), active or passive cooling (thermodynamics), stability and control. All these subsystems are considered to be included into the construction mass. The drag model is a simple textbook approximation and the propulsion force is given by a hypothetical propellant and engine so as to produce the assumed range of specific impulse. Even the construction mass is supposed to be futuristic so as to reach the lowest specified values. Not only vertical take-off will be simulated but also horizontal launching from altitude (from a towing aircraft, for example). The result of the paper shows the relationship between the construction mass and the specific impulse of a given spacecraft if it is to reach low earth orbit. This paper thus aims at bringing some light to the controversial discussion of how to make these vehicles a reality. The simulation program (Matlab) is available to students.
X-33/RLV System Health Management/Vehicle Health Management
NASA Technical Reports Server (NTRS)
Mouyos, William; Wangu, Srimal
1998-01-01
To reduce operations costs, Reusable Launch Vehicles (RLVS) must include highly reliable robust subsystems which are designed for simple repair access with a simplified servicing infrastructure, and which incorporate expedited decision-making about faults and anomalies. A key component for the Single Stage To Orbit (SSTO) RLV system used to meet these objectives is System Health Management (SHM). SHM incorporates Vehicle Health Management (VHM), ground processing associated with the vehicle fleet (GVHM), and Ground Infrastructure Health Management (GIHM). The primary objective of SHM is to provide an automated and paperless health decision, maintenance, and logistics system. Sanders, a Lockheed Martin Company, is leading the design, development, and integration of the SHM system for RLV and for X-33 (a sub-scale, sub-orbit Advanced Technology Demonstrator). Many critical technologies are necessary to make SHM (and more specifically VHM) practical, reliable, and cost effective. This paper will present the X-33 SHM design which forms the baseline for the RLV SHM, and it will discuss applications of advanced technologies to future RLVs. In addition, this paper will describe a Virtual Design Environment (VDE) which is being developed for RLV. This VDE will allow for system design engineering, as well as program management teams, to accurately and efficiently evaluate system designs, analyze the behavior of current systems, and predict the feasibility of making smooth and cost-efficient transitions from older technologies to newer ones. The RLV SHM design methodology will reduce program costs, decrease total program life-cycle time, and ultimately increase mission success.
X-33 Base Region Thermal Protection System Design Study
NASA Technical Reports Server (NTRS)
Lycans, Randal W.
1998-01-01
The X-33 is an advanced technology demonstrator for validating critical technologies and systems required for an operational Single-Stage-to-Orbit (SSTO) Reusuable Launch Vehicle (RLV). Currently under development by a unique contractor/government team led by Lockheed- Martin Skunk Works (LMSW), and managed by Marshall Space Flight Center (MSFC), the X-33 will be the prototype of the first new launch system developed by the United States since the advent of the space shuttle. This paper documents a design trade study of the X-33 base region thermal protection system (TPS). Two candidate designs were evaluated for thermal performance and weight. The first candidate was a fully reusable metallic TPS using Inconel honeycomb panels insulated with high temperature fibrous insulation, while the second was an ablator/insulator sprayed on the metallic skin of the vehicle. The TPS configurations and insulation thickness requirements were determined for the predicted main engine plume heating environments and base region entry aerothermal environments. In addition to thermal analysis of the design concepts, sensitivity studies were performed to investigate the effect of variations in key parameters of the base TPS analysis.
Two-stage earth-to-orbit vehicles with dual-fuel propulsion in the Orbiter
NASA Technical Reports Server (NTRS)
Martin, J. A.
1982-01-01
Earth-to-orbit vehicle studies of future replacements for the Space Shuttle are needed to guide technology development. Previous studies that have examined single-stage vehicles have shown advantages for dual-fuel propulsion. Previous two-stage system studies have assumed all-hydrogen fuel for the Orbiters. The present study examined dual-fuel Orbiters and found that the system dry mass could be reduced with this concept. The possibility of staging the booster at a staging velocity low enough to allow coast-back to the launch site is shown to be beneficial, particularly in combination with a dual-fuel Orbiter. An engine evaluation indicated the same ranking of engines as did a previous single-stage study. Propane and RP-1 fuels result in lower vehicle dry mass than methane, and staged-combustion engines are preferred over gas-generator engines. The sensitivity to the engine selection is less for two-stage systems than for single-stage systems.
Performance Tests of a Liquid Hydrogen Propellant Densification Ground System for the X33/RLV
NASA Technical Reports Server (NTRS)
Tomsik, Thomas M.
1997-01-01
A concept for improving the performance of propulsion systems in expendable and single-stage-to-orbit (SSTO) launch vehicles much like the X33/RLV has been identified. The approach is to utilize densified cryogenic liquid hydrogen (LH2) and liquid oxygen (LOX) propellants to fuel the propulsion stage. The primary benefit for using this relatively high specific impulse densified propellant mixture is the subsequent reduction of the launch vehicle gross lift-off weight. Production of densified propellants however requires specialized equipment to actively subcool both the liquid oxygen and liquid hydrogen to temperatures below their normal boiling point. A propellant densification unit based on an external thermodynamic vent principle which operates at subatmospheric pressure and supercold temperatures provides a means for the LH2 and LOX densification process to occur. To demonstrate the production concept for the densification of the liquid hydrogen propellant, a system comprised of a multistage gaseous hydrogen compressor, LH2 recirculation pumps and a cryogenic LH2 heat exchanger was designed, built and tested at the NASA Lewis Research Center (LeRC). This paper presents the design configuration of the LH2 propellant densification production hardware, analytical details and results of performance testing conducted with the hydrogen densifier Ground Support Equipment (GSE).
Impact Characteristics of Candidate Materials for Single-Stage-to-Orbit (SSTO) Technology
NASA Technical Reports Server (NTRS)
Nettles, Alan
1995-01-01
Four fiber/resin systems were compared for resistance to damage and damage tolerance. One toughened epoxy and three toughened bismaleimide (BMI) resins were used., all with IM7 carbon fiber reinforcement. A statistical design of experiments technique was used to evaluate the effects of impact energy, specimen thickness and tup diameter on the damage area and residual compression-after-impact (CAI) strength. Results showed that two of the BMI systems sustained relatively large damage areas yet had an excellent retention of CAI strength.
NASA Technical Reports Server (NTRS)
Bond, W. H.; Yi, A. C.
1993-01-01
A concept is shown for a fully reusable, earth to orbit launch vehicle with horizontal takeoff and landing, employing an air-turborocket for low speed and a rocket for high speed acceleration, both using LH2 fuel. The turborocket employs a modified liquid air cycle to supply the oxidizer. The rocket uses 90 percent pure LOX that is collected from the atmosphere, separated, and stored during operation of the turborocket from about Mach 2 to Mach 5 or 6. The takeoff weight and the thrust required at takeoff are markedly reduced by collecting the rocket oxidizer in-flight. The paper shows an approach and the corresponding technology needs for using ALES propulsion in a SSTO vehicle. Reducing the trajectory altitude at the end of collection reduces the wing area and increases payload. The use of state-of-the-art materials, such as graphite polyimide, is critical to meet the structure weight objective for SSTO. Configurations that utilize 'waverider' aerodynamics show great promise to reduce the vehicle weight.
Performance Evaluation of the NASA GTX RBCC Flowpath
NASA Technical Reports Server (NTRS)
Thomas, Scott R.; Palac, Donald T.; Trefny, Charles J.; Roche, Joseph M.
2001-01-01
The NASA Glenn Research Center serves as NASAs lead center for aeropropulsion. Several programs are underway to explore revolutionary airbreathing propulsion systems in response to the challenge of reducing the cost of space transportation. Concepts being investigated include rocket-based combined cycle (RBCC), pulse detonation wave, and turbine-based combined cycle (TBCC) engines. The GTX concept is a vertical launched, horizontal landing, single stage to orbit (SSTO) vehicle utilizing RBCC engines. The propulsion pod has a nearly half-axisymmetric flowpath that incorporates a rocket and ram-scramjet. The engine system operates from lift-off up to above Mach 10, at which point the airbreathing engine flowpath is closed off, and the rocket alone powers the vehicle to orbit. The paper presents an overview of the research efforts supporting the development of this RBCC propulsion system. The experimental efforts of this program consist of a series of test rigs. Each rig is focused on development and optimization of the flowpath over a specific operating mode of the engine. These rigs collectively establish propulsion system performance over all modes of operation, therefore, covering the entire speed range. Computational Fluid Mechanics (CFD) analysis is an important element of the GTX propulsion system development and validation. These efforts guide experiments and flowpath design, provide insight into experimental data, and extend results to conditions and scales not achievable in ground test facilities. Some examples of important CFD results are presented.
Advanced aeroservoelastic stabilization techniques for hypersonic flight vehicles
NASA Technical Reports Server (NTRS)
Chan, Samuel Y.; Cheng, Peter Y.; Myers, Thomas T.; Klyde, David H.; Magdaleno, Raymond E.; Mcruer, Duane T.
1992-01-01
Advanced high performance vehicles, including Single-Stage-To-Orbit (SSTO) hypersonic flight vehicles, that are statically unstable, require higher bandwidth flight control systems to compensate for the instability resulting in interactions between the flight control system, the engine/propulsion dynamics, and the low frequency structural modes. Military specifications, such as MIL-F-9490D and MIL-F-87242, tend to limit treatment of structural modes to conventional gain stabilization techniques. The conventional gain stabilization techniques, however, introduce low frequency effective time delays which can be troublesome from a flying qualities standpoint. These time delays can be alleviated by appropriate blending of gain and phase stabilization techniques (referred to as Hybrid Phase Stabilization or HPS) for the low frequency structural modes. The potential of using HPS for compensating structural mode interaction was previously explored. It was shown that effective time delay was significantly reduced with the use of HPS; however, the HPS design was seen to have greater residual response than a conventional gain stablized design. Additional work performed to advance and refine the HPS design procedure, to further develop residual response metrics as a basis for alternative structural stability specifications, and to develop strategies for validating HPS design and specification concepts in manned simulation is presented. Stabilization design sensitivity to structural uncertainties and aircraft-centered requirements are also assessed.
VentureStar by Lockheed Martin in Orbit - Computer Graphic
NASA Technical Reports Server (NTRS)
1996-01-01
This is an artist's conception of the NASA/Lockheed Martin Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV) in orbit high above the Earth. NASA's Dryden Flight Research Center, Edwards, California, expected to play a key role in the development and flight testing of the X-33, which was a technology demonstrator vehicle for a possible RLV. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that would improve U.S. economic competitiveness. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company hopes to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to provide the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to dramatically increase reliability and lower costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to create new opportunities for space access and significantly improve U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program had hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to have been an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen tank, and the resulting cost increase and time delay, the X-33 program was cancelled in February 2001.
Data driven propulsion system weight prediction model
NASA Astrophysics Data System (ADS)
Gerth, Richard J.
1994-10-01
The objective of the research was to develop a method to predict the weight of paper engines, i.e., engines that are in the early stages of development. The impetus for the project was the Single Stage To Orbit (SSTO) project, where engineers need to evaluate alternative engine designs. Since the SSTO is a performance driven project the performance models for alternative designs were well understood. The next tradeoff is weight. Since it is known that engine weight varies with thrust levels, a model is required that would allow discrimination between engines that produce the same thrust. Above all, the model had to be rooted in data with assumptions that could be justified based on the data. The general approach was to collect data on as many existing engines as possible and build a statistical model of the engines weight as a function of various component performance parameters. This was considered a reasonable level to begin the project because the data would be readily available, and it would be at the level of most paper engines, prior to detailed component design.
Optimal trajectories for an aerospace plane. Part 2: Data, tables, and graphs
NASA Technical Reports Server (NTRS)
Miele, Angelo; Lee, W. Y.; Wu, G. D.
1990-01-01
Data, tables, and graphs relative to the optimal trajectories for an aerospace plane are presented. A single-stage-to-orbit (SSTO) configuration is considered, and the transition from low supersonic speeds to orbital speeds is studied for a single aerodynamic model (GHAME) and three engine models. Four optimization problems are solved using the sequential gradient-restoration algorithm for optimal control problems: (1) minimization of the weight of fuel consumed; (2) minimization of the peak dynamic pressure; (3) minimization of the peak heating rate; and (4) minimization of the peak tangential acceleration. The above optimization studies are carried out for different combinations of constraints, specifically: initial path inclination that is either free or given; dynamic pressure that is either free or bounded; and tangential acceleration that is either free or bounded.
Composite engines for application to a single-stage-to-orbit vehicle
NASA Technical Reports Server (NTRS)
Bendot, J. G.; Brown, P. N.; Piercy, T. G.
1975-01-01
Seven composite engines were designed for application to a reusable single-stage-to-orbit vehicle. The engine designs were variations of the supercharged ejector ramjet engine. The resulting performance, weight, and drawings of each engine form a data base for establishing a potential of this class of composite engine to various missions, including the single-stage-to-orbit application. The impact of advanced technology in the design of the critical fan turbine was established.
NASA Astrophysics Data System (ADS)
Rose, Michael Benjamin
A novel trajectory and attitude control and navigation analysis tool for powered ascent is developed. The tool is capable of rapid trade-space analysis and is designed to ultimately reduce turnaround time for launch vehicle design, mission planning, and redesign work. It is streamlined to quickly determine trajectory and attitude control dispersions, propellant dispersions, orbit insertion dispersions, and navigation errors and their sensitivities to sensor errors, actuator execution uncertainties, and random disturbances. The tool is developed by applying both Monte Carlo and linear covariance analysis techniques to a closed-loop, launch vehicle guidance, navigation, and control (GN&C) system. The nonlinear dynamics and flight GN&C software models of a closed-loop, six-degree-of-freedom (6-DOF), Monte Carlo simulation are formulated and developed. The nominal reference trajectory (NRT) for the proposed lunar ascent trajectory is defined and generated. The Monte Carlo truth models and GN&C algorithms are linearized about the NRT, the linear covariance equations are formulated, and the linear covariance simulation is developed. The performance of the launch vehicle GN&C system is evaluated using both Monte Carlo and linear covariance techniques and their trajectory and attitude control dispersion, propellant dispersion, orbit insertion dispersion, and navigation error results are validated and compared. Statistical results from linear covariance analysis are generally within 10% of Monte Carlo results, and in most cases the differences are less than 5%. This is an excellent result given the many complex nonlinearities that are embedded in the ascent GN&C problem. Moreover, the real value of this tool lies in its speed, where the linear covariance simulation is 1036.62 times faster than the Monte Carlo simulation. Although the application and results presented are for a lunar, single-stage-to-orbit (SSTO), ascent vehicle, the tools, techniques, and mathematical formulations that are discussed are applicable to ascent on Earth or other planets as well as other rocket-powered systems such as sounding rockets and ballistic missiles.
Evaluation of innovative rocket engines for single-stage earth-to-orbit vehicles
NASA Astrophysics Data System (ADS)
Manski, Detlef; Martin, James A.
1988-07-01
Computer models of rocket engines and single-stage-to-orbit vehicles that were developed by the authors at DFVLR and NASA have been combined. The resulting code consists of engine mass, performance, trajectory and vehicle sizing models. The engine mass model includes equations for each subsystem and describes their dependences on various propulsion parameters. The engine performance model consists of multidimensional sets of theoretical propulsion properties and a complete thermodynamic analysis of the engine cycle. The vehicle analyses include an optimized trajectory analysis, mass estimation, and vehicle sizing. A vertical-takeoff, horizontal-landing, single-stage, winged, manned, fully reusable vehicle with a payload capability of 13.6 Mg (30,000 lb) to low earth orbit was selected. Hydrogen, methane, propane, and dual-fuel engines were studied with staged-combustion, gas-generator, dual bell, and the dual-expander cycles. Mixture ratio, chamber pressure, nozzle exit pressure liftoff acceleration, and dual fuel propulsive parameters were optimized.
Evaluation of innovative rocket engines for single-stage earth-to-orbit vehicles
NASA Technical Reports Server (NTRS)
Manski, Detlef; Martin, James A.
1988-01-01
Computer models of rocket engines and single-stage-to-orbit vehicles that were developed by the authors at DFVLR and NASA have been combined. The resulting code consists of engine mass, performance, trajectory and vehicle sizing models. The engine mass model includes equations for each subsystem and describes their dependences on various propulsion parameters. The engine performance model consists of multidimensional sets of theoretical propulsion properties and a complete thermodynamic analysis of the engine cycle. The vehicle analyses include an optimized trajectory analysis, mass estimation, and vehicle sizing. A vertical-takeoff, horizontal-landing, single-stage, winged, manned, fully reusable vehicle with a payload capability of 13.6 Mg (30,000 lb) to low earth orbit was selected. Hydrogen, methane, propane, and dual-fuel engines were studied with staged-combustion, gas-generator, dual bell, and the dual-expander cycles. Mixture ratio, chamber pressure, nozzle exit pressure liftoff acceleration, and dual fuel propulsive parameters were optimized.
Computer graphic of Lockheed Martin Venturestar Reusable Launch Vehicle (RLV) releasing a satellite
NASA Technical Reports Server (NTRS)
1997-01-01
This is an artist's conception of the NASA/Lockheed Martin Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV) releasing a satellite into orbit around the earth. NASA's Dryden Flight Research Center, Edwards, California, was to play a key role in the development and flight testing of the X-33, which is a technology demonstrator vehicle for the RLV. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that were to improve U.S. economic competitiveness. NASA Headquarter's Office of Space Access and Technology oversaw the RLV program, which was being managed by the RLV Office at NASA's Marshall Space Flight Center, located in Huntsville, Alabama. Responsibilities of other NASA Centers included: Johnson Space Center, Houston, Texas, guidance navigation and control technology, manned space systems, and health technology; Ames Research Center, Mountain View, CA., thermal protection system testing; Langley Research Center, Langley, Virginia, wind tunnel testing and aerodynamic analysis; and Kennedy Space Center, Florida, RLV operations and health management. Lockheed Martin's industry partners in the X-33 program are: Astronautics, Inc., Denver, Colorado, and Huntsville, Alabama; Engineering & Science Services, Houston, Texas; Manned Space Systems, New Orleans, LA; Sanders, Nashua, NH; and Space Operations, Titusville, Florida. Other industry partners are: Rocketdyne, Canoga Park, California; Allied Signal Aerospace, Teterboro, NJ; Rohr, Inc., Chula Vista, California; and Sverdrup Inc., St. Louis, Missouri.
Optimal trajectories for an aerospace plane. Part 1: Formulation, results, and analysis
NASA Technical Reports Server (NTRS)
Miele, Angelo; Lee, W. Y.; Wu, G. D.
1990-01-01
The optimization of the trajectories of an aerospace plane is discussed. This is a hypervelocity vehicle capable of achieving orbital speed, while taking off horizontally. The vehicle is propelled by four types of engines: turbojet engines for flight at subsonic speeds/low supersonic speeds; ramjet engines for flight at moderate supersonic speeds/low hypersonic speeds; scramjet engines for flight at hypersonic speeds; and rocket engines for flight at near-orbital speeds. A single-stage-to-orbit (SSTO) configuration is considered, and the transition from low supersonic speeds to orbital speeds is studied under the following assumptions: the turbojet portion of the trajectory has been completed; the aerospace plane is controlled via the angle of attack and the power setting; the aerodynamic model is the generic hypersonic aerodynamics model example (GHAME). Concerning the engine model, three options are considered: (EM1), a ramjet/scramjet combination in which the scramjet specific impulse tends to a nearly-constant value at large Mach numbers; (EM2), a ramjet/scramjet combination in which the scramjet specific impulse decreases monotonically at large Mach numbers; and (EM3), a ramjet/scramjet/rocket combination in which, owing to stagnation temperature limitations, the scramjet operates only at M approx. less than 15; at higher Mach numbers, the scramjet is shut off and the aerospace plane is driven only by the rocket engines. Under the above assumptions, four optimization problems are solved using the sequential gradient-restoration algorithm for optimal control problems: (P1) minimization of the weight of fuel consumed; (P2) minimization of the peak dynamic pressure; (P3) minimization of the peak heating rate; and (P4) minimization of the peak tangential acceleration.
VentureStar by Lockheed Martin Releasing Satellite - Computer Graphic
NASA Technical Reports Server (NTRS)
1996-01-01
This is an artist's conception of the NASA/Lockheed Martin Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV) releasing a satellite into orbit around the Earth. NASA's Dryden Flight Research Center, Edwards, California, expected to play a key role in the development and flight testing of the X-33, which was a technology demonstrator vehicle for a possible RLV. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that would improve U.S. economic competitiveness. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company had hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to have provided the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to have dramatically increased reliability and lowered the costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to have created new opportunities for space access and significantly improved U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to have been an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen fuel tank, and the resulting increase in cost and schedule delay, the X-33 program was cancelled in February 2001.
THRUST AUGMENTED NOZZLE (TAN) the New Paradigm for Booster Rockets
2006-07-12
station. The engine has to throttle to 34 percent (3X or 1020 psia) to keep from exceeding the acceleration limits. Figure 6. Baseline SSTO ...vehicle powered by seven up-sized SSME class engines. Figure 7. Baseline SSTO vehicle trajectory. With a payload fraction of 1 percent, it does not...want to invest in such a risky endeavor. American Institute of Aeronautics and Astronautics 6 B. TAN-Powered SSTO Vehicle For the Dual Fuel TAN
NASA Technical Reports Server (NTRS)
Lyon, Jeffery A.
1995-01-01
Optimal control theory is employed to determine the performance of abort to orbit (ATO) and return to launch site (RTLS) maneuvers for a single-stage to orbit vehicle. The vehicle configuration examined is a seven engine, winged-body vehicle, that lifts-off vertically and lands horizontally. The abort maneuvers occur as the vehicle ascends to orbit and are initiated when the vehicle suffers an engine failure. The optimal control problems are numerically solved in discretized form via a nonlinear programming (NLP) algorithm. A description highlighting the attributes of this NLP method is provided. ATO maneuver results show that the vehicle is capable of ascending to orbit with a single engine failure at lift-off. Two engine out ATO maneuvers are not possible from the launch pad, but are possible after launch when the thrust to weight ratio becomes sufficiently large. Results show that single engine out RTLS maneuvers can be made for up to 180 seconds after lift-off and that there are scenarios for which RTLS maneuvers should be performed instead of ATP maneuvers.
Trajectory optimization and guidance for an aerospace plane
NASA Technical Reports Server (NTRS)
Mease, Kenneth D.; Vanburen, Mark A.
1989-01-01
The first step in the approach to developing guidance laws for a horizontal take-off, air breathing single-stage-to-orbit vehicle is to characterize the minimum-fuel ascent trajectories. The capability to generate constrained, minimum fuel ascent trajectories for a single-stage-to-orbit vehicle was developed. A key component of this capability is the general purpose trajectory optimization program OTIS. The pre-production version, OTIS 0.96 was installed and run on a Convex C-1. A propulsion model was developed covering the entire flight envelope of a single-stage-to-orbit vehicle. Three separate propulsion modes, corresponding to an after burning turbojet, a ramjet and a scramjet, are used in the air breathing propulsion phase. The Generic Hypersonic Aerodynamic Model Example aerodynamic model of a hypersonic air breathing single-stage-to-orbit vehicle was obtained and implemented. Preliminary results pertaining to the effects of variations in acceleration constraints, available thrust level and fuel specific impulse on the shape of the minimum-fuel ascent trajectories were obtained. The results show that, if the air breathing engines are sized for acceleration to orbital velocity, it is the acceleration constraint rather than the dynamic pressure constraint that is active during ascent.
S.S.T.O. performance assessment with in-flight lox collection
NASA Astrophysics Data System (ADS)
Vandenkerckhove, J.; Czysz, P.
1995-10-01
Much attention has recently been given, up to harware development to in-flight oxygen collection as a means to improve considerably the performance of both TSTO & SSTO vehicles. A first assessment suggests that it permits simultaneously to improve much both gross take-off weight (by more than 30%) & dry weight (by more than 15%) of an SSTO and to lower significantly the Mach number of transition scramjet → rocket, from 15 down below 10, thereby reducing dramatically the programmatic development risks. After having compared in-flight lox collection with other SSTO concepts, this paper provides a tentative assessment of the performance of SSTO vehicles taking advantage of it, in particular their sensitivity to changes in system characteristics such as transition Mach number, vehicle slenderness (i.e. Küchemann's parameter τ) or planform loading at take-off and in collection characteristics, in particular collection ratio & specific collection plant weight.
Cryotank Skin/Stringer Bondline Analysis
NASA Technical Reports Server (NTRS)
Nguyen, Bao
1999-01-01
The need for light weight structure for advanced launch systems have presented great challenges and led to the usage of composites materials in a variety of structural assemblies where joining of two or more components is imperative. Although joints can be mechanically bolted, adhesive bonding has always been a very desirable method for joining the composite components, particularly for the cryotank systems, to achieve maximum structural efficiency. This paper presents the analytical approach resulted from the conceptual development of the DC-Y composite cryotank, conducted under the NASA/Boeing NRA 8-12 Partnership, to support the continued progress of SSTO (Single-Stage-To-Orbit) concepts. One of the critical areas of design was identified as the bonded interface between the skin (tank wall) and stringer. The approach to analyze this critical area will be illustrated through the steps which were used to evaluate the structural integrity of the bondline. Detailed finite element models were developed and numerous coupon test data were also gathered as part of the approach. Future plan is to incorporate this approach as a building block in analyzing bondline for the cryotank systems of RLVs (Reusable Launch Vehicles).
The Control System for the X-33 Linear Aerospike Engine
NASA Technical Reports Server (NTRS)
Jackson, Jerry E.; Espenschied, Erich; Klop, Jeffrey
1998-01-01
The linear aerospike engine is being developed for single-stage -to-orbit (SSTO) applications. The primary advantages of a linear aerospike engine over a conventional bell nozzle engine include altitude compensation, which provides enhanced performance, and lower vehicle weight resulting from the integration of the engine into the vehicle structure. A feature of this integration is the ability to provide thrust vector control (TVC) by differential throttling of the engine combustion elements, rather than the more conventional approach of gimballing the entire engine. An analysis of the X-33 flight trajectories has shown that it is necessary to provide +/- 15% roll, pitch and yaw TVC authority with an optional capability of +/- 30% pitch at select times during the mission. The TVC performance requirements for X-33 engine became a major driver in the design of the engine control system. The thrust level of the X-33 engine as well as the amount of TVC are managed by a control system which consists of electronic, instrumentation, propellant valves, electro-mechanical actuators, spark igniters, and harnesses. The engine control system is responsible for the thrust control, mixture ratio control, thrust vector control, engine health monitoring, and communication to the vehicle during all operational modes of the engine (checkout, pre-start, start, main-stage, shutdown and post shutdown). The methodology for thrust vector control, the health monitoring approach which includes failure detection, isolation, and response, and the basic control system design are the topic of this paper. As an additional point of interest a brief description of the X-33 engine system will be included in this paper.
NASA Technical Reports Server (NTRS)
Caluori, V. A.; Conrad, R. T.; Jenkins, J. C.
1980-01-01
Technologies including accelerated technology that are critical to performance and/or provide cost advantages for future space transportation systems are identified. Mission models are scoped and include priority missions, and cargo missions. Summary data, providing primary design concepts and features, are given for the SSTO, HLLV, POTV, and LCOTV vehicles. Significant system costs and total system costs in terms of life cycle costs in both discounted and undiscounted dollars are summarized for each of the vehicles.
X-33 by Lockheed Martin above Earth - Computer Graphic
NASA Technical Reports Server (NTRS)
1996-01-01
This artist's rendering depicts the NASA/Lockheed Martin X-33 technology demonstrator for a Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV) in orbit over the Earth. NASA's Dryden Flight Research Center, Edwards, California., expected to play a key role in the development and flight testing of the X-33. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that was to have improved U.S. economic competitiveness. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company had hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to have provided the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to have dramatically increased reliability and lowered the costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to have created new opportunities for space access and significantly improved U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to have been an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen fuel tank, and the resulting time delay and cost increase, the X-33 was cancelled in February 2001.
System studies on space plane powered by scram/LACE propulsion system
NASA Astrophysics Data System (ADS)
Maita, Masataka; Miyajima, Hiroshi; Mori, Takashige
1992-12-01
Japan's NAL has undertaken concept-development studies for hypersonic technologies-integrating SSTO spaceplane configurations. Attention is presently given to the scramjet/liquefied air cycle engine (LACE). While the scramjet powers the vehicle begining at Mach 5, the LACE is used above Mach 12 on the basis of excess hydrogen fuel consumption; the Mach 20 orbital speed is thereby gained.
Overview of the Beta II Two-Stage-To-Orbit vehicle design
NASA Technical Reports Server (NTRS)
Plencner, Robert M.
1991-01-01
A study of a near-term, low risk two-stage-to-orbit (TSTO) vehicle was undertaken. The goal of the study was to assess a fully reusable TSTO vehicle with horizontal takeoff and landing capability that could deliver 10,000 pounds to a 120 nm polar orbit. The configuration analysis was based on the Beta vehicle design. A cooperative study was performed to redesign and refine the Beta concept to meet the mission requirements. The vehicle resulting from this study was named Beta II. It has an all-airbreathing first stage and a staging Mach number of 6.5. The second stage is a conventional wing-body configuration with a single SSME.
NASA Technical Reports Server (NTRS)
Martin, J. A.
1977-01-01
Composite propulsion was analyzed for single-stage-to-orbit vehicles designed for horizontal take-off. Trajectory, geometric, and mass analyses were performed to establish the orbital payload capability of six engines. The results indicated that none of the engines performed adequately to deliver payloads to orbit as analyzed. The single-stage turbine and oxidizer-rich gas generator resulted in a low engine specific impulse, and the performance increment of the ejector subsystem was less than that of a separate rocket system with a high combustion pressure. There was a benefit from incorporating a fan into the engine, and removal of the fan from the airstream during the ramjet mode increased the orbital payload capability.
Thermographic testing used on the X-33 space launch vehicle program by BFGoodrich Aerospace
NASA Astrophysics Data System (ADS)
Burleigh, Douglas D.
1999-03-01
The X-33 program is a team effort sponsored by NASA under Cooperative Agreement NCC8-115, and led by the Lockheed Martin Corporation. Team member BFGoodrich Aerospace Aerostructures Group (formerly Rohr) is responsible for design, manufacture, and integration of the Thermal Protection System (TPS) of the X-33 launch vehicle. The X-33 is a half-scale, experimental prototype of a vehicle called RLV (Reusable Launch Vehicle) or VentureStarTM, an SSTO (single stage to orbit) vehicle, which is a proposed successor to the aging Space Shuttle. Thermographic testing has been employed by BFGoodrich Aerospace Aerostructures Group for a wide variety of uses in the testing of components of the X-33. Thermographic NDT (TNDT) has been used for inspecting large graphite- epoxy/aluminum honeycomb sandwich panels used on the Leeward Aeroshell structure of the X-33. And TNDT is being evaluated for use in inspecting carbon-carbon composite parts such as the nosecap and wing leading edge components. Pulsed Infrared Testing (PIRT), a special form of TNDT, is used for the routine inspection of sandwich panels made of brazed inconel honeycomb and facesheets. In the developmental and qualification testing of sub-elements of the X-33, thermography has been used to monitor (1) Arc Jet tests at NASA Ames Research Center in Mountain view, CA and NASA Johnson Space Center in Houston, TX, (2) High Temperature (wind) Tunnel Tests (HTT) at Nasa Langley Research Center in Langley, VA, and (3) Hot Gas Tests at NASA Marshall Space Flight Center in Huntsville, AL.
VentureStar by Lockheed Martin Docked with Space Station - Computer Graphic
NASA Technical Reports Server (NTRS)
1996-01-01
This is an artist's conception of the proposed NASA/Lockheed Martin Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV) docking with the International Space Station. NASA's Dryden Flight Research Center, Edwards, California, expected to play a key role in the development and flight testing of the X-33, which was a technology demonstrator vehicle for the proposed RLV. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that would have improved U.S. economic competitiveness. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company had hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to have provided the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to have dramatically increased reliability and lowered the cost of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to have created new opportunities for space access and significantly improved U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also was to have lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to be seven days, but the program had hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to be an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program is managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to problems with the liquide hydrogen fuel tank, and the resulting cost increase and time delay, the X-33 program was cancelled in February 2001.
Quantification and propagation of disciplinary uncertainty via Bayesian statistics
NASA Astrophysics Data System (ADS)
Mantis, George Constantine
2002-08-01
Several needs exist in the military, commercial, and civil sectors for new hypersonic systems. These needs remain unfulfilled, due in part to the uncertainty encountered in designing these systems. This uncertainty takes a number of forms, including disciplinary uncertainty, that which is inherent in the analytical tools utilized during the design process. Yet, few efforts to date empower the designer with the means to account for this uncertainty within the disciplinary analyses. In the current state-of-the-art in design, the effects of this unquantifiable uncertainty significantly increase the risks associated with new design efforts. Typically, the risk proves too great to allow a given design to proceed beyond the conceptual stage. To that end, the research encompasses the formulation and validation of a new design method, a systematic process for probabilistically assessing the impact of disciplinary uncertainty. The method implements Bayesian Statistics theory to quantify this source of uncertainty, and propagate its effects to the vehicle system level. Comparison of analytical and physical data for existing systems, modeled a priori in the given analysis tools, leads to quantification of uncertainty in those tools' calculation of discipline-level metrics. Then, after exploration of the new vehicle's design space, the quantified uncertainty is propagated probabilistically through the design space. This ultimately results in the assessment of the impact of disciplinary uncertainty on the confidence in the design solution: the final shape and variability of the probability functions defining the vehicle's system-level metrics. Although motivated by the hypersonic regime, the proposed treatment of uncertainty applies to any class of aerospace vehicle, just as the problem itself affects the design process of any vehicle. A number of computer programs comprise the environment constructed for the implementation of this work. Application to a single-stage-to-orbit (SSTO) reusable launch vehicle concept, developed by the NASA Langley Research Center under the Space Launch Initiative, provides the validation case for this work, with the focus placed on economics, aerothermodynamics, propulsion, and structures metrics. (Abstract shortened by UMI.)
Automating Structural Analysis of Spacecraft Vehicles
NASA Technical Reports Server (NTRS)
Hrinda, Glenn A.
2004-01-01
A major effort within NASA's vehicle analysis discipline has been to automate structural analysis and sizing optimization during conceptual design studies of advanced spacecraft. Traditional spacecraft structural sizing has involved detailed finite element analysis (FEA) requiring large degree-of-freedom (DOF) finite element models (FEM). Creation and analysis of these models can be time consuming and limit model size during conceptual designs. The goal is to find an optimal design that meets the mission requirements but produces the lightest structure. A structural sizing tool called HyperSizer has been successfully used in the conceptual design phase of a reusable launch vehicle and planetary exploration spacecraft. The program couples with FEA to enable system level performance assessments and weight predictions including design optimization of material selections and sizing of spacecraft members. The software's analysis capabilities are based on established aerospace structural methods for strength, stability and stiffness that produce adequately sized members and reliable structural weight estimates. The software also helps to identify potential structural deficiencies early in the conceptual design so changes can be made without wasted time. HyperSizer's automated analysis and sizing optimization increases productivity and brings standardization to a systems study. These benefits will be illustrated in examining two different types of conceptual spacecraft designed using the software. A hypersonic air breathing, single stage to orbit (SSTO), reusable launch vehicle (RLV) will be highlighted as well as an aeroshell for a planetary exploration vehicle used for aerocapture at Mars. By showing the two different types of vehicles, the software's flexibility will be demonstrated with an emphasis on reducing aeroshell structural weight. Member sizes, concepts and material selections will be discussed as well as analysis methods used in optimizing the structure. Analysis based on the HyperSizer structural sizing software will be discussed. Design trades required to optimize structural weight will be presented.
X-33 Proposal by Lockheed Martin - Computer Graphic
NASA Technical Reports Server (NTRS)
1996-01-01
This artist's rendering depicts the Lockheed Martin X-33 for a technology demonstrator of a Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV), as submitted in the aerospace company's original proposal. NASA selected Lockheed Martin's design on 2 July 1996. NASA's Dryden Flight research Center, Edwards, California, was to have had a key role in the development and flight testing of the X-33. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that was to have improved U.S. economic competitiveness. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company had hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to have provided the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to have dramatically increased reliability and lowered the costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to have created new opportunities for space access and significantly improve U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to have been an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the liquide hydrogen fuel tank, and the resulting time delay and cost increase, the X-33 program was cancelled in February 2001.
X-33 Contractor Design Proposals
NASA Technical Reports Server (NTRS)
1996-01-01
This artist's rendering depicts the three designs submitted for the X-33 proposal for a technology demonstrator of a Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV). NASA considered design submissions from Rockwell, Lockheed Martin, and McDonnell Douglas. NASA selected Lockheed Martin's design on 2 July 1996. NASA's Dryden Flight Research Center, Edwards, California, expected to play a key role in the development and flight testing of the X-33. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space and to promote the creation and delivery of new space services and other activities that was to improve U.S. economic competitiveness. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to have provided the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to have dramatically increased reliability and lowered the costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to have create new opportunities for space access and significantly improved U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was to have normally been seven days, but the program hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to have been an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen fuel tank, and the resulting schedule delay and cost increase, the X-33 program was cancelled in February 2001.
X-33 Proposal by Rockwell - Computer Graphic
NASA Technical Reports Server (NTRS)
1996-01-01
This artist's rendering depicts the Rockwell International X-33 proposal for technology demonstrator of a Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV). NASA considered design submissions from Rockwell, Lockheed Martin, and McDonnell Douglas. NASA selected Lockheed Martin's design on 2 July 1996. NASA's Dryden Flight research Center, Edwards, California, was to have had a key role in the development and flight testing of the X-33. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that was to have improved U.S. economic competitiveness. The X-33 design selected for development was a wedged-shaped subscale technology demonstrator prototype of a Reusable Launch Vehicle (RLV) by Lockheed Martin. Through demonstration flight and ground research, NASA's X-33 program was to have provided the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to have dramatically increased reliability and lowered the costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to have created new opportunities for space access and significantly improve U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The Lockheed Martin X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to have been an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen tank, and the resulting cost increase and time delay, the X-33 program was cancelled in February 2001.
X-33, Demonstrating Revolutionary Operations for VentureStar(TM)
NASA Technical Reports Server (NTRS)
Austin, Robert E.; Ishmael, Stephen D.; Lacefield, Cleon
2000-01-01
The X-33, reusable space plane technology demonstrator is on course to begin the flights of the X-33 by the end of 2002 that will serve as a basis for industry and government decisions that could lead to VentureStar(Trademark). Lockheed Martin has placed the VentureStar LLC in it's Space Company and is now competing in an industry wide effort that will permit NASA to select a Second Generation RLV source by 2005. This move provides the focus for firm business planning needed to enable the decision by the time X-33 flies in mid 2002 and possibly with upgraded technologies a year or so later. The operations concept for the X-33 is an integration of launch vehicle and aircraft operations approaches. VentureStar is a Single Stage To Orbit (SSTO) and will therefore enable a new approach to Space Launch Operations that is more "aircraft like" and can produce substantially lower operating costs over current systems. NASA's initiatives over the past several years in Reusable Launch Vehicles (RLV) have had as a primary objective to demonstrate technologies that will result in significant reduction in costs of space access. Further, the end objective is to commercialize the development and operations of the next generation RLV. Hence, the X-33 and its operations demonstration is a major contributor to that next generation system.
NASA Astrophysics Data System (ADS)
Knecht, Sean D.; Thomas, Robert E.; Mead, Franklin B.; Miley, George H.; Froning, David
2006-01-01
The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean ``aneutronic'' dense plasma focus (DPF) fusion power and propulsion technology, with advanced ``lifting body''-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q = 3.0 and thruster efficiency, ɛprop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and ɛprop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knecht, Sean D.; Mead, Franklin B.; Thomas, Robert E.
2006-01-20
The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean 'aneutronic' dense plasma focus (DPF) fusion power and propulsion technology, with advanced 'lifting body'-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q =more » 3.0 and thruster efficiency, {eta}prop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and {eta}prop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons.« less
Analytical Study on Flight Performance of a RP Laser Launcher
NASA Astrophysics Data System (ADS)
Katsurayama, H.; Ushio, M.; Komurasaki, K.; Arakawa, Y.
2005-04-01
An air-breathing RP Laser Launcher has been proposed as the alternative to conventional chemical launch systems. This paper analytically examines the feasibility of SSTO system powered by RP lasers. The trajectory from the ground to the geosynchronous orbit is computed and the launch cost including laser-base development is estimated. The engine performance is evaluated by CFD computations and a cycle analysis. The results show that the beam power of 2.3MW per unit initial vehicle mass is optimum to reach a geo-synchronous transfer orbit, and 3,000 launches are necessary to redeem the cost for laser transmitter.
Booster propulsion/vehicle impact study
NASA Technical Reports Server (NTRS)
Weldon, Vincent; Dunn, Michael; Fink, Lawrence; Phillips, Dwight; Wetzel, Eric
1988-01-01
The use of hydrogen RP-1, propane, and methane as fuels for booster engines of launch vehicles is discussed. An automated procedure for integrated launch vehicle, engine sizing, and design optimization was used to define two stage and single stage concepts for minimum dry weight. The two stage vehicles were unmanned and used a flyback booster and partially reusable orbiter. The single stage designs were fully reusable, manned flyback vehicles. Comparisons of these vehicle designs, showing the effects of using different fuels, as well as sensitivity and trending data, are presented. In addition, the automated design technique utilized for the study is described.
NASA Astrophysics Data System (ADS)
1995-03-01
This volume is the third of a 3 volume set that addresses the structural trade study plan that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The most suitable Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Tank System (GCPS) composite materials for intertank, wing and thrust structures are identified. Vehicle resizing charts, selection criteria and back-up charts, parametric costing approach and the finite element method analysis are discussed.
NASA Technical Reports Server (NTRS)
1995-01-01
This volume is the third of a 3 volume set that addresses the structural trade study plan that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The most suitable Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Tank System (GCPS) composite materials for intertank, wing and thrust structures are identified. Vehicle resizing charts, selection criteria and back-up charts, parametric costing approach and the finite element method analysis are discussed.
The Strutjet Rocket Based Combined Cycle Engine
NASA Technical Reports Server (NTRS)
Siebenhaar, A.; Bulman, M. J.; Bonnar, D. K.
1998-01-01
The multi stage chemical rocket has been established over many years as the propulsion System for space transportation vehicles, while, at the same time, there is increasing concern about its continued affordability and rather involved reusability. Two broad approaches to addressing this overall launch cost problem consist in one, the further development of the rocket motor, and two, the use of airbreathing propulsion to the maximum extent possible as a complement to the limited use of a conventional rocket. In both cases, a single-stage-to-orbit (SSTO) vehicle is considered a desirable goal. However, neither the "all-rocket" nor the "all-airbreathing" approach seems realizable and workable in practice without appreciable advances in materials and manufacturing. An affordable system must be reusable with minimal refurbishing on-ground, and large mean time between overhauls, and thus with high margins in design. It has been suggested that one may use different engine cycles, some rocket and others airbreathing, in a combination over a flight trajectory, but this approach does not lead to a converged solution with thrust-to-mass, specific impulse, and other performance and operational characteristics that can be obtained in the different engines. The reason is this type of engine is simply a combination of different engines with no commonality of gas flowpath or components, and therefore tends to have the deficiencies of each of the combined engines. A further development in this approach is a truly combined cycle that incorporates a series of cycles for different modes of propulsion along a flight path with multiple use of a set of components and an essentially single gas flowpath through the engine. This integrated approach is based on realizing the benefits of both a rocket engine and airbreathing engine in various combinations by a systematic functional integration of components in an engine class usually referred to as a rocket-based combined cycle (RBCC) engine. RBCC engines exhibit a high potential for lowering the operating cost of launching payloads into orbit. Two sources of cost reductions can be identified. First, RBCC powered vehicles require only 20% takeoff thrust compared to conventional rockets, thereby lowering the thrust requirements and the replacement cost of the engines. Second, due to the higher structural and thermal margins achievable with RBCC engines coupled with a higher degree of subsystem redundance lower maintenance and operating cost are obtainable.
Conceptual design of two-stage-to-orbit hybrid launch vehicle
NASA Technical Reports Server (NTRS)
1991-01-01
The object of this design class was to design an earth-to orbit vehicle to replace the present NASA space shuttle. The major motivations for designing a new vehicle were to reduce the cost of putting payloads into orbit and to design a vehicle that could better service the space station with a faster turn-around time. Another factor considered in the design was that near-term technology was to be used. Materials, engines and other important technologies were to be realized in the next 10 to 15 years. The first concept put forth by NASA to meet these objectives was the National Aerospace Plane (NASP). The NASP is a single-stage earth-to-orbit air-breathing vehicle. This concept ran into problems with the air-breathing engine providing enough thrust in the upper atmosphere, among other things. The solution of this design class is a two-stage-to-orbit vehicle. The first stage is air-breathing and the second stage is rocket-powered, similar to the space shuttle. The second stage is mounted on the top of the first stage in a piggy-back style. The vehicle takes off horizontally using only air-breathing engines, flies to Mach six at 100,000 feet, and launches the second stage towards its orbital path. The first stage, or booster, will weigh approximately 800,000 pounds and the second stage, or orbiter will weigh approximately 300,000 pounds. The major advantage of this design is the full recoverability of the first stage compared with the present solid rocket booster that are only partially recoverable and used only a few times. This reduces the cost as well as providing a more reliable and more readily available design for servicing the space station. The booster can fly an orbiter up, turn around, land, refuel, and be ready to launch another orbiter in a matter of hours.
Artist concept of X-33 and Reusable Launch Vehicle (RLV)
NASA Technical Reports Server (NTRS)
1997-01-01
This artist's rendering depicts the NASA/Lockheed Martin X-33 technology demonstrator alongside the Venturestar, a Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV). The X-33, a half-scale prototype for the Venturestar, is scheduled to be flight tested in 1999. NASA's Dryden Flight Research Center, Edwards, California, plays a key role in the development and flight testing of the X-33. The RLV technology program is a cooperative agreement between NASA and industry. The goal of the RLV technology program is to enable signifigant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that will improve U.S. economic competitiveness. NASA Headquarter's Office of Space Access and Technology is overseeing the RLV program, which is being managed by the RLV Office at NASA's Marshall Space Flight Center, located in Huntsville, Alabama. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company had hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to provide the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to dramatically increase reliability and lower costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to create new opportunities for space access and significantly improve U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program had hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to have been an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen tank, and the resulting cost increase and time delay, the X-33 program was cancelled in February 2001.
A conceptual design of an unmanned test vehicle using an airbreathing propulsion system
NASA Technical Reports Server (NTRS)
1992-01-01
According to Aviation Week and Space Technology (Nov. 16, 1992), without a redefined approach to the problem of achieving single stage-to-orbit flight, the X-30 program is virtually assured of cancellation. One of the significant design goals of the X-30 program is to achieve single stage to low-earth orbit using airbreathing propulsion systems. In an attempt to avoid cancellation, the NASP Program has decided to design a test vehicle to achieve these goals. This report recommends a conceptual design of an unmanned test vehicle using an airbreathing propulsion system.
Earth-to-orbit reusable launch vehicles: A comparative assessment
NASA Technical Reports Server (NTRS)
Chase, R. L.
1978-01-01
A representative set of space systems, functions, and missions for NASA and DoD from which launch vehicle requirements and characteristics was established as well as a set of air-breathing launch vehicles based on graduated technology capabilities corresponding to increasingly higher staging Mach numbers. The utility of the air-breathing launch vehicle candidates based on lift-off weight, performance, technology needs, and risk was assessed and costs were compared to alternative concepts. The results indicate that a fully reusable launch vehicle, whether two stage or one stage, could potentially reduce the cost per flight 60-80% compared to that for a partially reusable vehicle but would require advances in thermal protection system technology. A two-stage-to-orbit, parallel-lift vehicle with an air-breathing booster would cost approximately the same as a single-stage-to-orbit vehicle, but the former would have greater flexibility and a significantly reduced developmental risk. A twin-booster, subsonic-staged, parallel-lift vehicle represents the lowest system cost and developmental risk. However, if a large supersonic turbojet engine in the 350,000-N thrust class were available, supersonic staging would be preferred, and the investment in development would be returned in reduced program cost.
The design and evolution of the beta two-stage-to-orbit horizontal takeoff and landing launch system
NASA Technical Reports Server (NTRS)
Burkardt, Leo A.; Norris, Rick B.
1992-01-01
The Beta launch system was originally conceived in 1986 as a horizontal takeoff and landing, fully reusable, two-stage-to-orbit, manned launch vehicle to replace the Shuttle. It was to be capable of delivering a 50,000 lb. payload to low polar orbit. The booster propulsion system consisted of JP fueled turbojets and LH fueled ramjets mounted in pods in an over/under arrangement, and a single LOX/LH fueled SSME rocket. The second stage orbiter, which staged at Mach 8, was powered by an SSME rocket. A major goal was to develop a vehicle design consistent with near term technology. The vehicle design was completed with a GLOW of approximately 2,000,000 lbs. All design goals were met. Since then, interest has shifted to the 10,000 lbs. to low polar orbit payload class. The original Beta was down-sized to meet this payload class. The GLOW of the down-sized vehicle was approximately 1,000,000 lbs. The booster was converted to exclusively air-breathing operation. Because the booster depends on conventional air-breathing propulsion only, the staging Mach number was reduced to 5.5. The orbiter remains an SSME rocket-powered stage.
Thermal Management Design for the X-33 Lifting Body
NASA Technical Reports Server (NTRS)
Bouslog, S.; Mammano, J.; Strauss, B.
1998-01-01
The X-33 Advantage Technology Demonstrator offers a rare and exciting opportunity in Thermal Protection System development. The experimental program incorporates the latest design innovation in re-useable, low life cycle cost, and highly dependable Thermal Protection materials and constructions into both ground based and flight test vehicle validations. The unique attributes of the X-33 demonstrator for design application validation for the full scale Reusable Launch Vehicle, (RLV), are represented by both the configuration of the stand-off aeroshell, and the extreme exposures of sub-orbital hypersonic re-entry simulation. There are several challenges of producing a sub-orbital prototype demonstrator of Single Stage to Orbit/Reusable Launch Vehicle (SSTO/RLV) operations. An aggressive schedule with budgetary constraints precludes the opportunity for an extensive verification and qualification program of vehicle flight hardware. However, taking advantage of off the shelf components with proven technologies reduces some of the requirements for additional testing. The effects of scale on thermal heating rates must also be taken into account during trajectory design and analysis. Described in this document are the unique Thermal Protection System (TPS) design opportunities that are available with the lifting body configuration of the X-33. The two principal objectives for the TPS are to shield the primary airframe structure from excessive thermal loads and to provide an aerodynamic mold line surface. With the relatively benign aeroheating capability of the lifting body, an integrated stand-off aeroshell design with minimal weight and reduced procurement and operational costs is allowed. This paper summarizes the design objectives of the X-33 TPS, the flight test requirements driven configuration, and design benefits. Comparisons are made of the X-33 flight profiles and Space Shuttle Orbiter, and lifting body Reusable Launch Vehicle aerothermal environments. The X-33 TPS is based on a design to cost configuration concept. Only RLV critical technologies are verified to conform to cost and schedule restrictions. The one-off prototype vehicle configuration has evolved to minimize the tooling costs by reducing the number of unique components. Low cost approaches such as a composite/blanket leeward aeroshell and the use of Shuttle technology are implemented where applicable. The success of the X-33 will overcome the ballistic re-entry TPS mindset. The X-33 TPS is tailored to an aircraft type mission while maintaining sufficient operational margins. The flight test program for the X-33 will demonstrate that TPS for the RLV is not simply a surface insulation but rather an integrated aeroshell system.
The Cost-Optimal Size of Future Reusable Launch Vehicles
NASA Astrophysics Data System (ADS)
Koelle, D. E.
2000-07-01
The paper answers the question, what is the optimum vehicle size — in terms of LEO payload capability — for a future reusable launch vehicle ? It is shown that there exists an optimum vehicle size that results in minimum specific transportation cost. The optimum vehicle size depends on the total annual cargo mass (LEO equivalent) enviseaged, which defines at the same time the optimum number of launches per year (LpA). Based on the TRANSCOST-Model algorithms a wide range of vehicle sizes — from 20 to 100 Mg payload in LEO, as well as launch rates — from 2 to 100 per year — have been investigated. It is shown in a design chart how much the vehicle size as well as the launch rate are influencing the specific transportation cost (in MYr/Mg and USS/kg). The comparison with actual ELVs (Expendable Launch Vehicles) and Semi-Reusable Vehicles (a combination of a reusable first stage with an expendable second stage) shows that there exists only one economic solution for an essential reduction of space transportation cost: the Fully Reusable Vehicle Concept, with rocket propulsion and vertical take-off. The Single-stage Configuration (SSTO) has the best economic potential; its feasibility is not only a matter of technology level but also of the vehicle size as such. Increasing the vehicle size (launch mass) reduces the technology requirements because the law of scale provides a better mass fraction and payload fraction — practically at no cost. The optimum vehicle design (after specification of the payload capability) requires a trade-off between lightweight (and more expensive) technology vs. more conventional (and cheaper) technology. It is shown that the the use of more conventional technology and accepting a somewhat larger vehicle is the more cost-effective and less risky approach.
A turbojet-boosted two-stage-to-orbit space transportation system design study
NASA Technical Reports Server (NTRS)
Hepler, A. K.; Zeck, H.; Walker, W.; Scharf, W.
1979-01-01
The concept to use twin turbo-powered boosters for acceleration to supersonic staging speed followed by an all rocket powered orbiter stage was proposed. A follow-on design study was then made of the concept with the performance objective of placing a 29,483 Kg payload into a .2.6 X 195.3 km orbit. The study was performed in terms of analysis and trade studies, conceptual design, utility and economic analysis, and technology assessment. Design features of the final configuration included: strakes and area rule for improved take off and low transonic drag, variable area inlets, exits and turbine, and low profile fixed landing gear for turbojet booster stage. The payload required an estimated GLOW of 1,270,000 kg for injection in orbit. Each twin booster required afterburning turbojet engines each with a static sea level thrust rating of 444,800 N. Life cycle costs for this concept were comparable to a SSTO/SLED concept except for increased development cost due to the turbojet engine propulsion system.
Evaluation of Proposed Rocket Engines for Earth-to-Orbit Vehicles
NASA Technical Reports Server (NTRS)
Martin, James A.; Kramer, Richard D.
1990-01-01
The objective is to evaluate recently analyzed rocket engines for advanced Earth-to-orbit vehicles. The engines evaluated are full-flow staged combustion engines and split expander engines, both at mixture ratios at 6 and above with oxygen and hydrogen propellants. The vehicles considered are single-stage and two-stage fully reusable vehicles and the Space Shuttle with liquid rocket boosters. The results indicate that the split expander engine at a mixture ratio of about 7 is competitive with the full-flow staged combustion engine for all three vehicle concepts. A key factor in this result is the capability to increase the chamber pressure for the split expander as the mixture ratio is increased from 6 to 7.
Trade study plan for Reusable Hydrogen Composite Tank System (RHCTS)
NASA Astrophysics Data System (ADS)
Greenberg, H. S.
1994-07-01
This TA 1 document describes the trade study plan (with support from TA 2) that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 degree inclination. The analysis uses information derived in the TA 2 study as identified within the study plan. In view of this, for convenience, the TA 2 study plan is included as an appendix to this document.
Trade study plan for Reusable Hydrogen Composite Tank System (RHCTS)
NASA Technical Reports Server (NTRS)
Greenberg, H. S.
1994-01-01
This TA 1 document describes the trade study plan (with support from TA 2) that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 degree inclination. The analysis uses information derived in the TA 2 study as identified within the study plan. In view of this, for convenience, the TA 2 study plan is included as an appendix to this document.
NASA Technical Reports Server (NTRS)
1995-01-01
The purpose of the Advanced Transportation System Studies (ATSS) Technical Area 2 (TA-2) Heavy Lift Launch Vehicle Development contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is Volume 2 of the final report for the contract. It provides documentation of selected technical results from various TA-2 analysis activities, including a detailed narrative description of the SSTO concept assessment results, a user's guide for the associated SSTO sizing tools, an SSTO turnaround assessment report, an executive summary of the ground operations assessments performed during the first year of the contract, a configuration-independent vehicle health management system requirements report, a copy of all major TA-2 contract presentations, a copy of the FLO launch vehicle final report, and references to Pratt & Whitney's TA-2 sponsored final reports regarding the identification of Russian main propulsion technologies.
X-33 Proposal by McDonnell Douglas - Computer Graphic
NASA Technical Reports Server (NTRS)
1996-01-01
This artist's rendering depicts the McDonnell Douglas X-33 proposal for a technology demonstrator of a Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV). McDonnell Douglas submitted a vertical landing configuration design which used liquid oxygen/hydrogen bell engines. NASA considered design submissions from Rockwell, Lockheed Martin, and McDonnell Douglas. NASA selected Lockheed Martin's design on 2 July 1996. NASA's Dryden Flight research Center, Edwards, California, expected to play a key role in the development and flight testing of the X-33. The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that was to have improved U.S. economic competitiveness. The X-33 was a wedged-shaped subscale technology demonstrator prototype of a potential future Reusable Launch Vehicle (RLV) that Lockheed Martin had dubbed VentureStar. The company had hoped to develop VentureStar early this century. Through demonstration flight and ground research, NASA's X-33 program was to have provided the information needed for industry representatives such as Lockheed Martin to decide whether to proceed with the development of a full-scale, commercial RLV program. A full-scale, single-stage-to-orbit RLV was to have dramatically increased reliability and lowered the costs of putting a pound of payload into space, from the current figure of $10,000 to $1,000. Reducing the cost associated with transporting payloads in Low Earth Orbit (LEO) by using a commercial RLV was to have created new opportunities for space access and significantly improved U.S. economic competitiveness in the world-wide launch marketplace. NASA expected to be a customer, not the operator, of the commercial RLV. The X-33 design was based on a lifting body shape with two revolutionary 'linear aerospike' rocket engines and a rugged metallic thermal protection system. The vehicle also had lightweight components and fuel tanks built to conform to the vehicle's outer shape. Time between X-33 flights was normally to have been seven days, but the program hoped to demonstrate a two-day turnaround between flights during the flight-test phase of the program. The X-33 was to have been an unpiloted vehicle that took off vertically like a rocket and landed horizontally like an airplane. It was to have reached altitudes of up to 50 miles and high hypersonic speeds. The X-33 program was managed by the Marshall Space Flight Center and was to have been launched at a special launch site on Edwards Air Force Base. Due to technical problems with the liquid hydrogen fuel tanks, and the resulting cost increase and time delay, the X-33 program was cancelled in February 2001.
Orbit on demand - Will cost determine best design?
NASA Technical Reports Server (NTRS)
Macconochie, J. O.; Mackley, E. A.; Morris, S. J.; Phillips, W. P.; Breiner, C. A.; Scotti, S. J.
1985-01-01
Eleven design concepts for vertical (V) and horizontal (H) take-off launch-on-demand manned orbital vehicles are discussed. Attention is given to up to three stages, Mach numbers (sub-, 2, or 3), expendable boosters, drop tanks (DT), and storable (S) or cryogenic fuels. All the concepts feature lifting bodies with circular cross-section and most have a 7 ft diam, 15 ft long payload bay as well as a crew compartment. Expendable elements impose higher costs and in some cases reduce all-azimuth launch capabilities. Single-stage vehicles simplify the logistics whether in H or V configuration. A two-stage H vehicle offers launch offset for the desired orbital plane before firing the rocket engines after take-off and subsonic acceleration. A two-stage fully reusable V form has the second lowest weight of the vehicles studied and an all-azimuth launch capability. Better definition of the prospective mission requirements is needed before choosing among the alternatives.
Econometric comparisons of liquid rocket engines for dual-fuel advanced earth-to-orbit shuttles
NASA Technical Reports Server (NTRS)
Martin, J. A.
1978-01-01
Econometric analyses of advanced Earth-to-orbit vehicles indicate that there are economic benefits from development of new vehicles beyond the space shuttle as traffic increases. Vehicle studies indicate the advantage of the dual-fuel propulsion in single-stage vehicles. This paper shows the economic effect of incorporating dual-fuel propulsion in advanced vehicles. Several dual-fuel propulsion systems are compared to a baseline hydrogen and oxygen system.
The design of two-stage-to-orbit vehicles
NASA Technical Reports Server (NTRS)
1991-01-01
Two separate student design groups developed conceptual designs for a two-stage-to-orbit vehicle, with each design group consisting of a carrier team and an orbiter team. A two-stage-to-orbit system is considered in the event that single-stage-to-orbit is deemed not feasible in the foreseeable future; the two-stage system would also be used as a complement to an already existing heavy lift vehicle. The design specifications given are to lift a 10,000-lb payload 27 ft long by 10 ft diameter, to low Earth orbit (300 n.m.) using an air breathing carrier configuration that will take off horizontally within 15,000 ft. The staging Mach number and altitude were to be determined by the design groups. One group designed a delta wing/body carrier with the orbiter nested within the fuselage of the carrier, and the other group produced a blended cranked-delta wing/body carrier with the orbiter in the more conventional piggyback configuration. Each carrier used liquid hydrogen-fueled turbofanramjet engines, with data provided by General Electric Aircraft Engine Group. While one orbiter used a full-scale Space Shuttle Main Engine (SSME), the other orbiter employed a half-scale SSME coupled with scramjet engines, with data again provided by General Electric. The two groups conceptual designs, along with the technical trade-offs, difficulties, and details that surfaced during the design process are presented.
Optimal dual-fuel propulsion for minimum inert weight or minimum fuel cost
NASA Technical Reports Server (NTRS)
Martin, J. A.
1973-01-01
An analytical investigation of single-stage vehicles with multiple propulsion phases has been conducted with the phasing optimized to minimize a general cost function. Some results are presented for linearized sizing relationships which indicate that single-stage-to-orbit, dual-fuel rocket vehicles can have lower inert weight than similar single-fuel rocket vehicles and that the advantage of dual-fuel vehicles can be increased if a dual-fuel engine is developed. The results also indicate that the optimum split can vary considerably with the choice of cost function to be minimized.
ORION: A Supersynchronous Transfer Orbit mission
NASA Astrophysics Data System (ADS)
Walters, I. M.; Baker, J. F.; Shurmer, I. M.
1995-05-01
ORION F1 was launched on 29th November 1994 on an Atlas IIA launch vehicle. It was designed, built and delivered in-orbit by Matra Marconi Space Systems Plc and was handed over to ORION Satellite Corporation on 20th January 1995 at its on-station longitude of 37.5 deg W. The mission differed significantly from that of any other geostationary communications satellite in that the Transfer Orbit apogee altitude of 123,507 km was over three times geosynchronous (GEO) altitude and one third of the way to the moon. The SuperSynchronous Transfer Orbit (SSTO) mission is significantly different from the standard Geostationary Transfer Orbit (GTO)mission in a number of ways. This paper discusses the essential features of the mission design through its evolution since 1987 and the details of the highly successful mission itself including a detailed account of the attitude determination achieved using the Galileo Earth and Sun Sensor (ESS).
ORION: A Supersynchronous Transfer Orbit mission
NASA Technical Reports Server (NTRS)
Walters, I. M.; Baker, J. F.; Shurmer, I. M.
1995-01-01
ORION F1 was launched on 29th November 1994 on an Atlas IIA launch vehicle. It was designed, built and delivered in-orbit by Matra Marconi Space Systems Plc and was handed over to ORION Satellite Corporation on 20th January 1995 at its on-station longitude of 37.5 deg W. The mission differed significantly from that of any other geostationary communications satellite in that the Transfer Orbit apogee altitude of 123,507 km was over three times geosynchronous (GEO) altitude and one third of the way to the moon. The SuperSynchronous Transfer Orbit (SSTO) mission is significantly different from the standard Geostationary Transfer Orbit (GTO)mission in a number of ways. This paper discusses the essential features of the mission design through its evolution since 1987 and the details of the highly successful mission itself including a detailed account of the attitude determination achieved using the Galileo Earth and Sun Sensor (ESS).
X-33 Experimental Aeroheating at Mach 6 Using Phosphor Thermography
NASA Technical Reports Server (NTRS)
Horvath, Thomas J.; Berry, Scott A.; Hollis, Brian R.; Liechty, Derek S.; Hamilton, H. Harris, II; Merski, N. Ronald
1999-01-01
The goal of the NASA Reusable Launch Vehicle (RLV) technology program is to mature and demonstrate essential, cost effective technologies for next generation launch systems. The X-33 flight vehicle presently being developed by Lockheed Martin is an experimental Single Stage to Orbit (SSTO) demonstrator that seeks to validate critical technologies and insure applicability to a full scale RLV. As with the design of any hypersonic vehicle, the aeroheating environment is an important issue and one of the key technologies being demonstrated on X-33 is an advanced metallic Thermal Protection System (TPS). As part of the development of this TPS system, the X-33 aeroheating environment is being defined through conceptual analysis, ground based testing, and computational fluid dynamics. This report provides an overview of the hypersonic aeroheating wind tunnel program conducted at the NASA Langley Research Center in support of the ground based testing activities. Global surface heat transfer images, surface streamline patterns, and shock shapes were measured on 0.013 scale (10-in.) ceramic models of the proposed X-33 configuration in Mach 6 air. The test parametrics include angles of attack from -5 to 40 degs, unit Reynolds numbers from 1x106 to 8x106/ft, and body flap deflections of 0, 10, and 20 deg. Experimental and computational results indicate the presence of shock/shock interactions that produced localized heating on the deflected flaps and boundary layer transition on the canted fins. Comparisons of the experimental data to laminar and turbulent predictions were performed. Laminar windward heating data from the wind tunnel was extrapolated to flight surface temperatures and generally compared to within 50 deg F of flight prediction along the centerline. When coupled with the phosphor technique, this rapid extrapolation method would serve as an invaluable TPS design tool.
Advanced Launch Vehicle Upper Stages Using Liquid Propulsion and Metallized Propellants
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan A.
1990-01-01
Metallized propellants are liquid propellants with a metal additive suspended in a gelled fuel or oxidizer. Typically, aluminum (Al) particles are the metal additive. These propellants provide increase in the density and/or the specific impulse of the propulsion system. Using metallized propellant for volume-and mass-constrained upper stages can deliver modest increases in performance for low earth orbit to geosynchronous earth orbit (LEO-GEO) and other earth orbital transfer missions. Metallized propellants, however, can enable very fast planetary missions with a single-stage upper stage system. Trade studies comparing metallized propellant stage performance with non-metallized upper stages and the Inertial Upper Stage (IUS) are presented. These upper stages are both one- and two-stage vehicles that provide the added energy to send payloads to altitudes and onto trajectories that are unattainable with only the launch vehicle. The stage designs are controlled by the volume and the mass constraints of the Space Transportation System (STS) and Space Transportation System-Cargo (STS-C) launch vehicles. The influences of the density and specific impulse increases enabled by metallized propellants are examined for a variety of different stage and propellant combinations.
Multidisciplinary design of a rocket-based combined cycle SSTO launch vehicle using Taguchi methods
NASA Technical Reports Server (NTRS)
Olds, John R.; Walberg, Gerald D.
1993-01-01
Results are presented from the optimization process of a winged-cone configuration SSTO launch vehicle that employs a rocket-based ejector/ramjet/scramjet/rocket operational mode variable-cycle engine. The Taguchi multidisciplinary parametric-design method was used to evaluate the effects of simultaneously changing a total of eight design variables, rather than changing them one at a time as in conventional tradeoff studies. A combination of design variables was in this way identified which yields very attractive vehicle dry and gross weights.
Antares: A low cost modular launch vehicle for the future
NASA Technical Reports Server (NTRS)
1991-01-01
The single-stage-to-orbit launch vehicle Antares is a revolutionary concept based on identical modular units, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg (22,000 lb) into low Earth orbit (LEO). When coupled with a standard Centaur upper stage, it is capable of placing 4000 kg (8800 lb) into geosynchronous Earth orbit (GE0). The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles can be attached depending on the payload and mission requirements. With a seven-vehicle configuration, the Antares' modular concept provides a heavy lift capability of approximately 70,000 kg (154,000 lb) to LEO. This expandability allows for a wide range of payload options, such as large Earth satellites, Space Station Freedom material, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.
Antares: A low cost modular launch vehicle for the future
NASA Astrophysics Data System (ADS)
The single-stage-to-orbit launch vehicle Antares is a revolutionary concept based on identical modular units, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg (22,000 lb) into low Earth orbit (LEO). When coupled with a standard Centaur upper stage, it is capable of placing 4000 kg (8800 lb) into geosynchronous Earth orbit (GE0). The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles can be attached depending on the payload and mission requirements. With a seven-vehicle configuration, the Antares' modular concept provides a heavy lift capability of approximately 70,000 kg (154,000 lb) to LEO. This expandability allows for a wide range of payload options, such as large Earth satellites, Space Station Freedom material, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.
A Rocket Powered Single-Stage-to-Orbit Launch Vehicle With U.S. and Soviet Engineers
NASA Technical Reports Server (NTRS)
MacConochie, Ian O.; Stnaley, Douglas O.
1991-01-01
A single-stage-to-orbit launch vehicle is used to assess the applicability of Soviet Energia high-pressure-hydrocarbon engine to advanced U.S. manned space transportation systems. Two of the Soviet engines are used with three Space Shuttle Main Engines. When applied to a baseline vehicle that utilized advanced hydrocarbon engines, the higher weight of the Soviet engines resulted in a 20 percent loss of payload capability and necessitated a change in the crew compartment size and location from mid-body to forebody in order to balance the vehicle. Various combinations of Soviet and Shuttle engines were evaluated for comparison purposes, including an all hydrogen system using all Space Shuttle Main Engines. Operational aspects of the baseline vehicle are also discussed. A new mass properties program entitles Weights and Moments of Inertia (WAMI) is used in the study.
A rapid method for optimization of the rocket propulsion system for single-stage-to-orbit vehicles
NASA Technical Reports Server (NTRS)
Eldred, C. H.; Gordon, S. V.
1976-01-01
A rapid analytical method for the optimization of rocket propulsion systems is presented for a vertical take-off, horizontal landing, single-stage-to-orbit launch vehicle. This method utilizes trade-offs between propulsion characteristics affecting flight performance and engine system mass. The performance results from a point-mass trajectory optimization program are combined with a linearized sizing program to establish vehicle sizing trends caused by propulsion system variations. The linearized sizing technique was developed for the class of vehicle systems studied herein. The specific examples treated are the optimization of nozzle expansion ratio and lift-off thrust-to-weight ratio to achieve either minimum gross mass or minimum dry mass. Assumed propulsion system characteristics are high chamber pressure, liquid oxygen and liquid hydrogen propellants, conventional bell nozzles, and the same fixed nozzle expansion ratio for all engines on a vehicle.
Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 4: Transportation analysis
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1979-01-01
Volume 4 of a seven volume Satellite Power Systems (SPS) is presented. This volume is divided into the following sections: (1) transportation systems elements; (2) transportation systems requirements; (3) heavy lift launch vehicles (HLLV); (4) LEO-GEO transportation; (5) on-orbit mobility systems; (6) personnel transfer systems; and (7) cost and programmatics. Three appendixes are also provided and they include: horizontal takeoff (single stage to orbit technical summary); HLLV reference vehicle trajectory and trade study data; and electric orbital transfer vehicle sizing.
Project Antares: A low cost modular launch vehicle for the future
NASA Astrophysics Data System (ADS)
Aarnio, Steve; Anderson, Hobie; Arzaz, El Mehdi; Bailey, Michelle; Beeghly, Jeff; Cartwright, Curt; Chau, William; Dawdy, Andrew; Detert, Bruce; Ervin, Miles
1991-06-01
The single stage to orbit launch vehicle Antares is based upon the revolutionary concept of modularity, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth's orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg into low Earth orbit (LEO). When coupled with a Centaur upper stage it is capable of placing 3500 kg into geostationary orbit. The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Antares' projected launch costs are $1340 per kg to LEO which offers a tremendous savings over launch vehicles available today. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles, up to seven, can be attached depending on the payload and mission requirements. With a seven vehicle configuration Antares's modular concept provides a heavy lift capability of approximately 70,000 kg to LEO. This expandability allows for a wider range of payload options such as large Earth satellites, Space Station Freedom support, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.
Project Antares: A low cost modular launch vehicle for the future
NASA Technical Reports Server (NTRS)
Aarnio, Steve; Anderson, Hobie; Arzaz, El Mehdi; Bailey, Michelle; Beeghly, Jeff; Cartwright, Curt; Chau, William; Dawdy, Andrew; Detert, Bruce; Ervin, Miles
1991-01-01
The single stage to orbit launch vehicle Antares is based upon the revolutionary concept of modularity, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth's orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg into low Earth orbit (LEO). When coupled with a Centaur upper stage it is capable of placing 3500 kg into geostationary orbit. The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Antares' projected launch costs are $1340 per kg to LEO which offers a tremendous savings over launch vehicles available today. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles, up to seven, can be attached depending on the payload and mission requirements. With a seven vehicle configuration Antares's modular concept provides a heavy lift capability of approximately 70,000 kg to LEO. This expandability allows for a wider range of payload options such as large Earth satellites, Space Station Freedom support, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.
2010-06-01
Corporation has conducted several comparative studies for SSTO and TSTO system options using Rockets and Airbreather cycles, for both Horizontal...compared as they have less impact on size due to generic uncertainties and tend to be more robust compared to SSTO options. As called for by and in
Rocket nozzle expansion ratio analysis for dual-fuel earth-to-orbit vehicles
NASA Technical Reports Server (NTRS)
Martin, James A.
1989-01-01
Results are reported from a recent study of the effects of Space Shuttle Main Engine expansion ratio modifications, in the cases of both single-stage and two-stage systems. Two-position nozzles were employed; after varying the lower expansion ratio while the higher was held constant at 120, the lower expansion ratio was held constant at 40 or 60 while the higher expansion ratio was varied. The expansion ratios for minimum vehicle dry mass are different for single-stage and two-stage systems. For two-stage systems, a single expansion ratio of 77.5 provides a lower dry mass than any two-position nozzle.
Heating Rate Distributions at Mach 10 on a Circular Body Earth-to-Orbit Transport Vehicle
NASA Technical Reports Server (NTRS)
Wells, William L.; MacConochie, Ian O.; Helms, Vernon T., III; Raney, David
1985-01-01
Among the concepts being considered for future Earth-to-orbit transport vehicles are fully reusable single-stage systems which take off vertically and land horizontally. Because these vehicles carry their own propellant internally, they are much larger than the present Space Shuttle Orbiter. One such single-stage vehicle under study is the circular body configuration which has the advantages of simple structural design and large volume-to-weight ratio. As part of an overall evaluation of this configuration, a series of heat transfer and surface flow tests were conducted. The phase-change paint and oil-flow tests were performed in the Langley 31-Inch Mach-10 Tunnel at angles of attack from 20 through 40 degrees in 5-degree increments. Heat-transfer coefficient data are presented for all angles of attack and detailed oil-flow photographs are shown for windward and leeward surfaces at 25 and 40 degrees angle of attack. In many ways, heating was similar to that previously determined for the Shuttle Orbiter so that, in a cursory sense, existing thermal protection systems would appear to be adequate for the proposed circular-body configurations.
Numerical and Engine Cycle Analyses of a Pulse Laser Ramjet Vehicle
NASA Astrophysics Data System (ADS)
Katsurayama, Hiroshi; Komurasaki, Kimiya; Momozawa, Ai; Arakawa, Yoshihiro
A preliminary feasibility study of a laser ramjet SSTO has been conducted using engine cycle analysis. Although a large amount of laser energy is lost due to chemically frozen flow at high altitudes, the laser ramjet SSTO was found to be feasible with 100 MW laser power for 100 kg vehicle mass and 1 m2 vehicle cross-section area. Obtained momentum coupling coefficient, Cm, was validated by means of CFD. As a result, the engine cycle analysis was under-estimating Cm. This would be because of the strong unsteady energy input in the actual heating process and the spatially localized pressure on the afterbody.
Application of dual-fuel propulsion to a single stage AMLS vehicle
NASA Technical Reports Server (NTRS)
Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit
1993-01-01
As part of NASA's Advanced Manned Launch System (AMLS) study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate engine concept combining Russian RD-170 kerosene-fueled engines with SSME-derivative engines; the kerosene and hydrogen-fueled Russian RD-701 engine concept; and a dual-fuel, dual-expander engine concept. Analysis to determine vehicle weight and size characteristics was performed using conceptual level design techniques. A response surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicle concepts with respect to several important propulsion system and vehicle design parameters in order to achieve minimum empty weight. Comparisons were then made with a hydrogen-fueled reference, single-stage vehicle. The tools and methods employed in the analysis process are also summarized.
Conceptual design of a two-stage-to-orbit vehicle
NASA Technical Reports Server (NTRS)
1991-01-01
A conceptual design study of a two-stage-to-orbit vehicle is presented. Three configurations were initially investigated with one configuration selected for further development. The major objective was to place a 20,000-lb payload into a low Earth orbit using a two-stage vehicle. The first stage used air-breathing engines and employed a horizontal takeoff, while the second stage used rocket engines to achieve a 250-n.m. orbit. A two-stage-to-orbit vehicle seems a viable option for the next-generation space shuttle.
NASA Technical Reports Server (NTRS)
Nix, Michael B.; Escher, William J. d.
1999-01-01
In discussing a new NASA initiative in advanced space transportation systems and technologies, the Director of the NASA Marshall Space Flight Center, Arthur G. Stephenson, noted that, "It would use new propulsion technology, air-breathing engine so you don't have to carry liquid oxygen, at least while your flying through the atmosphere. We are calling it Spaceliner 100 because it would be 100 times cheaper, costing $ 100 dollars a pound to orbit." While airbreathing propulsion is directly named, rocket propulsion is also implied by, "... while you are flying through the atmosphere." In-space final acceleration to orbital speed mandates rocket capabilities. Thus, in this informed view, Spaceliner 100 will be predicated on combined airbreathing/rocket propulsion, the technical subject of this paper. Interestingly, NASA's recently concluded Highly Reusable Space Transportation (HRST) study focused on the same affordability goal as that of the Spaceliner 100 initiative and reflected the decisive contribution of combined propulsion as a way of expanding operability and increasing the design robustness of future space transports, toward "aircraft like" capabilities. The HRST study built on the Access to Space Study and the Reusable Launch Vehicle (RLV) development activities to identify and characterize space transportation concepts, infrastructure and technologies that have the greatest potential for reducing delivery cost by another order of magnitude, from $1,000 to $100-$200 per pound for 20,000 lb. - 40.000 lb. payloads to low earth orbit (LEO). The HRST study investigated a number of near-term, far-term, and very far-term launch vehicle concepts including all-rocket single-stage-to-orbit (SSTO) concepts, two-stage-to-orbit (TSTO) concepts, concepts with launch assist, rocket-based combined cycle (RBCC) concepts, advanced expendable vehicles, and more far term ground-based laser powered launchers. The HRST study consisted of preliminary concept studies, assessments and analysis tool development for advanced space transportation systems, followed by end-to-end system concept definitions and trade analyses, specific system concept definition and analysis, specific key technology and topic analysis, system, operational and economics model development, analysis, and integrated assessments. The HRST Integration Task Force (HITF) was formed to synthesize study results in several specific topic areas and support the development of conclusions from the study: Systems Concepts Definitions, Technology Assessment, Operations Assessment, and Cost Assessment. This paper summarizes the work of the Operations Assessment Team: the six approaches used, the analytical tools and methodologies developed and employed, the issues and concerns, and the results of the assessment. The approaches were deliberately varied in measures of merit and procedure to compensate for the uncertainty inherent in operations data in this early phase of concept exploration. In general, rocket based combined cycle (RBCC) concepts appear to have significantly greater potential than all-rocket concepts for reducing operations costs.
NASA Technical Reports Server (NTRS)
Hepler, A. K.; Zeck, H.; Walker, W. H.; Shafer, D. E.
1978-01-01
The applicability of the control configured design approach (CCV) to advanced earth orbital transportation systems was studied. The baseline system investigated was fully reusable vertical take-off/horizontal landing single-stage-to-orbit vehicle and had mission requirements similar to the space shuttle orbiter. Technical analyses were made to determine aerodynamic, flight control and subsystem design characteristics. Figures of merit were assessed on vehicle dry weight and orbital payload. The results indicated that the major parameters for CCV designs are hypersonic trim, aft center of gravity, and control surface heating. Optimized CCV designs can be controllable and provide substantial payload gains over conventional non-CCV design vertical take-off vehicles.
Illustration of Ares I and Ares V Launch Vehicles
NASA Technical Reports Server (NTRS)
2006-01-01
Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the vehicle depicted on the left is the Ares I. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to its primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the second stage of the Apollo vehicle will power the Ares V second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. The vehicle illustrated on the right is the Ares V, a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Both vehicles are subject to configuration changes before they are actually launched. This illustration reflects the latest configuration as of September 2006.
NASA Technical Reports Server (NTRS)
Caluori, V. A.
1980-01-01
Technologies either critical to performance of offering cost advantages compared to the investment required to bring them to usable confidence levels are identified. A total transportation system is used as an evaluation yardstick. Vehicles included in the system are a single stage to orbit launch vehicle used in a priority cargo role, a matching orbit transfer vehicle, a heavy lift launch vehicle with a low Earth orbit delivery capability of 226, 575 kg, and a matching solar electric cargo orbit transfer vehicle. The system and its reference technology level are consistent with an initial operational capability in 1990. The 15 year mission scenario is based on early space industrialization leading to the deployment of large systems such as power satellites. Life cycle cost benefits in discounted and undiscounted dollars for each vehicle, technology advancement, and the integrated transportation system are calculated. A preliminary functional analysis was made of the operational support requirements for ground based and space based chemical propulsion orbit transfer vehicles.
Space Launch System Mission Flexibility Assessment
NASA Technical Reports Server (NTRS)
Monk, Timothy; Holladay, Jon; Sanders, Terry; Hampton, Bryan
2012-01-01
The Space Launch System (SLS) is envisioned as a heavy lift vehicle that will provide the foundation for future beyond low Earth orbit (LEO) missions. While multiple assessments have been performed to determine the optimal configuration for the SLS, this effort was undertaken to evaluate the flexibility of various concepts for the range of missions that may be required of this system. These mission scenarios include single launch crew and/or cargo delivery to LEO, single launch cargo delivery missions to LEO in support of multi-launch mission campaigns, and single launch beyond LEO missions. Specifically, we assessed options for the single launch beyond LEO mission scenario using a variety of in-space stages and vehicle staging criteria. This was performed to determine the most flexible (and perhaps optimal) method of designing this particular type of mission. A specific mission opportunity to the Jovian system was further assessed to determine potential solutions that may meet currently envisioned mission objectives. This application sought to significantly reduce mission cost by allowing for a direct, faster transfer from Earth to Jupiter and to determine the order-of-magnitude mass margin that would be made available from utilization of the SLS. In general, smaller, existing stages provided comparable performance to larger, new stage developments when the mission scenario allowed for optimal LEO dropoff orbits (e.g. highly elliptical staging orbits). Initial results using this method with early SLS configurations and existing Upper Stages showed the potential of capturing Lunar flyby missions as well as providing significant mass delivery to a Jupiter transfer orbit.
High/variable mixture ratio O2/H2 engine
NASA Technical Reports Server (NTRS)
Adams, A.; Parsley, R. C.
1988-01-01
Vehicle/engine analysis studies have identified the High/Dual Mixture Ratio O2/H2 Engine cycle as a leading candidate for an advanced Single Stage to Orbit (SSTO) propulsion system. This cycle is designed to allow operation at a higher than normal O/F ratio of 12 during liftoff and then transition to a more optimum O/F ratio of 6 at altitude. While operation at high mixture ratios lowers specific impulse, the resultant high propellant bulk density and high power density combine to minimize the influence of atmospheric drag and low altitude gravitational forces. Transition to a lower mixture ratio at altitude then provides improved specific impulse relative to a single mixture ratio engine that must select a mixture ratio that is balanced for both low and high altitude operation. This combination of increased altitude specific impulse and high propellant bulk density more than offsets the compromised low altitude performance and results in an overall mission benefit. Two areas of technical concern relative to the execution of this dual mixture ratio cycle concept are addressed. First, actions required to transition from high to low mixture ratio are examined, including an assessment of the main chamber environment as the main chamber mixture ratio passes through stoichiometric. Secondly, two approaches to meet a requirement for high turbine power at high mixture ratio condition are examined. One approach uses high turbine temperature to produce the power and requires cooled turbines. The other approach incorporates an oxidizer-rich preburner to increase turbine work capability via increased turbine mass flow.
NASA Technical Reports Server (NTRS)
Hepler, A. K.; Zeck, H.; Walker, W. H.; Polack, A.
1982-01-01
Control requirements of Controlled Configured Design Approach vehicles with far-aft center of gravity locations are studied. The baseline system investigated is a fully reusable vertical takeoff/horizontal landing single stage-to-orbit vehicle with mission requirements similar to that of the space shuttle vehicle. Evaluations were made to determine dynamic stability boundaries, time responses, trim control, operational center-of-gravity limits, and flight control subsystem design requirements. Study tasks included a baseline vehicle analysis, an aft center of gravity study, a payload size study, and a technology assessment.
Advanced Space Transportation Program (ASTP)
2006-09-09
Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the vehicle depicted on the left is the Ares I. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to its primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to "park" payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the second stage of the Apollo vehicle will power the Ares V second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. The vehicle illustrated on the right is the Ares V, a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Both vehicles are subject to configuration changes before they are actually launched. This illustration reflects the latest configuration as of September 2006.
Space Vehicle Flight Mechanics (La Mecanique du Vol des Vehicules Spatiaux)
1990-06-01
uncertainties to a reasonably or a single-stage-to-orbit vehicle manageable level". Some of the (without supersonic combustion) chiof anxieties were as...their landing on the moon or to manning space stations orbiting Earth, there exists an enormous infrastructure of scientists, engineers, managers and...politicians who together allow these ventures to come to fruition. This paper addresses the evolution of space flight, the technical and management
Matlab as a robust control design tool
NASA Technical Reports Server (NTRS)
Gregory, Irene M.
1994-01-01
This presentation introduces Matlab as a tool used in flight control research. The example used to illustrate some of the capabilities of this software is a robust controller designed for a single stage to orbit air breathing vehicles's ascent to orbit. The global requirements of the controller are to stabilize the vehicle and follow a trajectory in the presence of atmospheric disturbances and strong dynamic coupling between airframe and propulsion.
2008-03-15
A CONCEPT IMAGE SHOWS THE ARES I CREW LAUNCH VEHICLE DURING ASCENT. ARES I IS AN IN-LINE, TWO-STAGE ROCKET CONFIGURATION TOPED BY THE ORION CREW EXPLORATION VEHICLE AND LAUNCH ABORT SYSTEM. THE ARES I FIRST STAGE IS A SINGLE, FIVE-SEGMENT REUSABLE SOLID ROCKET BOOSTER, DERIVED FROM THE SPACE SHUTTLE. ITS UPPER STAGE IS POWERED BY A J-2X ENGINE. ARES I WILL CARRY THE ORION WITH ITS CRW OF UP TO SIX ASTRONAUTS TO EARTH ORBIT.
Rocketdyne - J-2 Saturn V 2nd and 3rd Stage Engine. Chapter 2, Appendix D
NASA Technical Reports Server (NTRS)
Coffman, Paul
2009-01-01
The J-2 engine was unique in many respects. Technology was not nearly as well-developed in oxygen/hydrogen engines at the start of the J-2 project. As a result, it experienced a number of "teething" problems. It was used in two stages on the Saturn V vehicle in the Apollo Program, as well as on the later Skylab and Apollo/Soyuz programs. In the Apollo Program, it was used on the S-II stage, which was the second stage of the Saturn V vehicle. There were five J-2 engines at the back end of the S-II Stage. In the S-IV-B stage, it was a single engine, but that single engine had to restart. The Apollo mission called for the entire vehicle to reach orbital velocity in low Earth orbit after the first firing of the Saturn-IV-B stage and, subsequently, to fire a second time to go on to the moon. The engine had to be man-rated (worthy of transporting humans). It had to have a high thrust rate and performance associated with oxygen/hydrogen engines, although there were some compromises there. It had to gimbal for thrust vector control. It was an open-cycle gas generator engine delivering up to 230,000 pounds of thrust.
Rho-Isp Revisited and Basic Stage Mass Estimating for Launch Vehicle Conceptual Sizing Studies
NASA Technical Reports Server (NTRS)
Kibbey, Timothy P.
2015-01-01
The ideal rocket equation is manipulated to demonstrate the essential link between propellant density and specific impulse as the two primary stage performance drivers for a launch vehicle. This is illustrated by examining volume-limited stages such as first stages and boosters. This proves to be a good approximation for first-order or Phase A vehicle design studies for solid rocket motors and for liquid stages, except when comparing to hydrogen-fueled stages. A next-order mass model is developed that is able to model the mass differences between hydrogen-fueled and other stages. Propellants considered range in density from liquid methane to inhibited red fuming nitric acid. Calculated comparisons are shown for solid rocket boosters, liquid first stages, liquid upper stages, and a balloon-deployed single-stage-to-orbit concept. The derived relationships are ripe for inclusion in a multi-stage design space exploration and optimization algorithm, as well as for single-parameter comparisons such as those shown herein.
NASA Astrophysics Data System (ADS)
1995-03-01
This volume is the first of a three volume set that discusses the structural arrangement trade study plan that will identify the most suitable configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Primary Structures most suitable for intertank, wing and thrust structures are identified. This executive summary presents the trade study process, the selection process, requirements used, analysis performed and data generated. Conclusions and recommendations are also presented.
NASA Technical Reports Server (NTRS)
1995-01-01
This volume is the first of a three volume set that discusses the structural arrangement trade study plan that will identify the most suitable configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Primary Structures most suitable for intertank, wing and thrust structures are identified. This executive summary presents the trade study process, the selection process, requirements used, analysis performed and data generated. Conclusions and recommendations are also presented.
Characterization of Subsystems for a WB-003 Single Stage Shuttle
NASA Technical Reports Server (NTRS)
MacConochie, Ian O.; Lepsch, Roger A., Jr. (Technical Monitor)
2002-01-01
Subsystems for an all oxygen-hydrogen-single-stage shuttle are characterized for a vehicle designated WB-003. Features of the vehicle include all-electric actuation, fiber optics for information circuitry, fuel cells for power generation, and extensive use of composites for structure. The vehicle is sized for the delivery of a 25,000 lb. payload to a space station orbit without crew. When crew are being delivered, they are carried in a module in the payload bay with escape and manual override capabilities. The underlying reason for undertaking this task is to provide a framework for the study of the operations costs of the newer shuttles.
Ballistic mode Mercury orbiter missions.
NASA Technical Reports Server (NTRS)
Hollenbeck, G. R.
1973-01-01
The MVM'73 Mercury flyby mission will initiate exploration of this unique planet. No firm plans for follow-on investigations have materialized due to the difficult performance requirements of the next logical step, an orbiter mission. Previous investigations of ballistic mode flight opportunities have indicated requirements for a Saturn V class launch vehicle. Consequently, most recent effort has been oriented to use of solar electric propulsion. More comprehensive study of the ballistic flight mode utilizing Venus gravity-assist has resulted in identification of timely high-performance mission opportunities compatible with programmed launch vehicles and conventional spacecraft propulsion technologies. A likely candidate for an initial orbiter mission is a 1980 opportunity which offers net orbiter spacecraft mass of about 435 kg with the Titan IIIE/Centaur launch vehicle and single stage solid propulsion for orbit insertion.
NASA Astrophysics Data System (ADS)
Cormier, Len
1992-07-01
The Space Van is a proposed commercial launch vehicle that is designed to carry 1150 kg to a space-station orbit for a price of $1,900,000 per flight in 1992 dollars. This price includes return on preoperational investment. Recurring costs are expected to be about $840,000 per flight. The Space Van is a fully reusable, assisted-single-stage-to orbit system. The most innovative new feature of the Space Van system is the assist-stage concept. The assist stage uses only airbreathing engines for vertical takeoff and vertical landing in the horizontal attitude and for launching the rocket-powered orbiter stage at mach 0.8 and an altitude of about 12 km. The primary version of the orbiter is designed for cargo-only without a crew. However, a passenger version of the Space Van should be able to carry a crew of two plus six passengers to a space-station orbit. Since the Space Van is nearly single-stage, performance to polar orbit drops off significantly. The cargo version should be capable of carrying 350 kg to a 400-km polar orbit. In the passenger version, the Space Van should be able to carry two crew members - or one crew member plus a passenger.
Dual-Fuel Propulsion in Single-Stage Advanced Manned Launch System Vehicle
NASA Technical Reports Server (NTRS)
Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit
1995-01-01
As part of the United States Advanced Manned Launch System study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate-engine concept combining Russian RD-170 kerosene-fueled engines with space shuttle main engine-derivative engines: the kerosene- and hydrogen-fueled Russian RD-701 engine; and a dual-fuel, dual-expander engine. Analysis to determine vehicle weight and size characteristics was performed using conceptual-level design techniques. A response-surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicles with respect to several important propulsion-system and vehicle design parameters, in order to achieve minimum empty weight. The tools and methods employed in the analysis process are also summarized. In comparison with a reference hydrogen- fueled single-stage vehicle, results showed that the dual-fuel vehicles were from 10 to 30% lower in empty weight for the same payload capability, with the dual-expander engine types showing the greatest potential.
1967-01-01
After the S-II (second) stage dropped away, the S-IVB (third) stage ignited and burned for about two minutes to place itself and the Apollo spacecraft into the desired Earth orbit. At the proper time during this Earth parking orbit, the S-IVB stage was re-ignited to speed the Apollo spacecraft to escape velocity, injecting it and the astronauts into a moon trajectory. Developed and manufactured by the Douglas Aircraft Company in Huntington, California, the S-IVB stage measures about 21.5 feet in diameter, about 58 feet in length and is powered by a single 200,000-pound-thrust J-2 engine with a re-start capability. The S-IVB stage was also used on the second stage of the Saturn IB launch vehicle. The fully-assembled S-IVB (third) stage for the AS-503 (Apollo 8 mission) launch vehicle is pictured in the Douglas' vertical checkout building.
Comparison of Two Multidisciplinary Optimization Strategies for Launch-Vehicle Design
NASA Technical Reports Server (NTRS)
Braun, R. D.; Powell, R. W.; Lepsch, R. A.; Stanley, D. O.; Kroo, I. M.
1995-01-01
The investigation focuses on development of a rapid multidisciplinary analysis and optimization capability for launch-vehicle design. Two multidisciplinary optimization strategies in which the analyses are integrated in different manners are implemented and evaluated for solution of a single-stage-to-orbit launch-vehicle design problem. Weights and sizing, propulsion, and trajectory issues are directly addressed in each optimization process. Additionally, the need to maintain a consistent vehicle model across the disciplines is discussed. Both solution strategies were shown to obtain similar solutions from two different starting points. These solutions suggests that a dual-fuel, single-stage-to-orbit vehicle with a dry weight of approximately 1.927 x 10(exp 5)lb, gross liftoff weight of 2.165 x 10(exp 6)lb, and length of 181 ft is attainable. A comparison of the two approaches demonstrates that treatment or disciplinary coupling has a direct effect on optimization convergence and the required computational effort. In comparison with the first solution strategy, which is of the general form typically used within the launch vehicle design community at present, the second optimization approach is shown to he 3-4 times more computationally efficient.
1966-05-21
The Delta Clipper-Experimental Advanced (DC-XA) is a single-stage-to-orbit, vertical takeoff / vertical landing launch vehicle concept, whose development was geared to significantly reduce launch cost and provided a test bed for NASA Reusable Launch Vehicle (RLV) technology. This photograph shows the descending vehicle landing during the first successful test flight at White Sands Missile Range, New Mexico. The program was discontinued in 2003.
Overview of Conceptual Design of Early VentureStar(TM) Configurations
NASA Technical Reports Server (NTRS)
Lockwood, M. K.
2000-01-01
One of NASA's goals is to enable commercial access to space at a cost of $1000/lb (an order of magnitude less than today's cost) by approximately 2010. Based on results from the 1994 Congressionally mandated, NASA led, Access-to-Space Study, an all rocket-powered single-stage-to-orbit reusable launch vehicle was, selected as the best option for meeting the goal. To address the technology development issues and the follow-on development of an operational vehicle, NASA initiated the X-33 program. The focus of this paper is on the contributions made by the NASA Langley Research Center (LaRC), from 1997-1998, to the conceptual design of the Lockheed Martin Skunk Work's (LMSW) operational reusable single-stage-to-orbit VentureStar(sup TM) vehicle. The LaRC effort has been in direct support of LMSW and NASA Marshall Space Flight Center (MSFC). The primary objectives have been to reduce vehicle dry weight and improve flyability of the VentureStar(sup TM) concepts. This paper will briefly describe the analysis methods used and will present several of the concepts analyzed and design trades completed.
NASA Astrophysics Data System (ADS)
Donaldson, P.
1986-11-01
After defining the general operational principles of the 'HOTOL' horizontal takeoff and landing single-stage-to-orbit launch vehicle, a development status assessment is presented for the airframe structure, aerodynamic configuration, guidance and avionics, operational and market economics, and launch preparation/mission abort provisions that are currently envisaged by the HOTOL manufacturers. Attention is given to the competitiveness of HOTOL vis a vis the ESA Ariane V/Hermes and NASA 'Heavylift Shuttle' launch vehicles, which are expected to become operational in a similar time-frame.
Illustration of Ares I Launch Vehicle With Call Outs
NASA Technical Reports Server (NTRS)
2006-01-01
Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. This is an illustration of the Ares I with call outs. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to the primary mission of carrying crews of four to six astronauts to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station, or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the Apollo second stage will power the Ares I second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. Ares I is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of January 2007.
Trade study plan for Graphite Composite Primary Structure (GCPS)
NASA Technical Reports Server (NTRS)
Greenberg, H. S.
1994-01-01
This TA 2 document (with support from TA 1) describes the trade study plan that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 degree inclination For this most suitable configuration the structural attachment of the wing, and the most suitable GCPS composite materials for intertank, wing, tail and thrust structure are identified. This trade study analysis uses extensive information derived in the TA 1 trade study plan and is identified within the study plan. In view of this, for convenience, the TA 1 study plan is included as an appendix to this document.
Technology Requirements for Affordable Single-Stage Rocket Launch Vehicles
NASA Technical Reports Server (NTRS)
Stanley, Douglas O.; Piland, William M.
2004-01-01
A number of manned Earth-to-orbit (ETO) vehicle options for replacing or complementing the current Space Transportation System are being examined under the Advanced Manned Launch System (AMLS) study. The introduction of a reusable single-stage vehicle (SSV) into the U.S. launch vehicle fleet early in the next century could greatly reduce ETO launch costs. As a part of the AMLS study, the conceptual design of an SSV using a wide variety of enhancing technologies has recently been completed and is described in this paper. This paper also identifies the major enabling and enhancing technologies for a reusable rocket-powered SSV and provides examples of the mission payoff potential of a variety of important technologies. This paper also discusses the impact of technology advancements on vehicle margins, complexity, and risk, all of which influence the total system cost.
NASA Technical Reports Server (NTRS)
1977-01-01
Both LEO transportation (earth to low earth orbit) and GEO transportation (low earth orbit to geosynchronous orbit) segments were addressed. LEO options include both a 2 stage winged space freighter vehicle and a 2 stage ballistic recoverable vehicle. Both incorporate LO(2)/RP-1/LH(2) engines on the booster and standard SSME's on the upper stage. The orbit transfer vehicle options included chemical for geosynchronous satellite assembly and self powered electric propulsion for low earth orbit satellite assembly. An exhaust products analysis was conducted for the earth to LEO vehicle since atmospheric pollution could be a concern.
A Multidisciplinary Performance Analysis of a Lifting-Body Single-Stage-to-Orbit Vehicle
NASA Technical Reports Server (NTRS)
Tartabini, Paul V.; Lepsch, Roger A.; Korte, J. J.; Wurster, Kathryn E.
2000-01-01
Lockheed Martin Skunk Works (LMSW) is currently developing a single-stage-to-orbit reusable launch vehicle called VentureStar(TM) A team at NASA Langley Research Center participated with LMSW in the screening and evaluation of a number of early VentureStar(TM) configurations. The performance analyses that supported these initial studies were conducted to assess the effect of a lifting body shape, linear aerospike engine and metallic thermal protection system (TPS) on the weight and performance of the vehicle. These performance studies were performed in a multidisciplinary fashion that indirectly linked the trajectory optimization with weight estimation and aerothermal analysis tools. This approach was necessary to develop optimized ascent and entry trajectories that met all vehicle design constraints. Significant improvements in ascent performance were achieved when the vehicle flew a lifting trajectory and varied the engine mixture ratio during flight. Also, a considerable reduction in empty weight was possible by adjusting the total oxidizer-to-fuel and liftoff thrust-to-weight ratios. However, the optimal ascent flight profile had to be altered to ensure that the vehicle could be trimmed in pitch using only the flow diverting capability of the aerospike engine. Likewise, the optimal entry trajectory had to be tailored to meet TPS heating rate and transition constraints while satisfying a crossrange requirement.
Symposium on Space Industrialization, Huntsville, Ala., May 26, 27, 1976, Proceedings
NASA Technical Reports Server (NTRS)
1976-01-01
Space habitats are considered, with attention given the evolution of space station systems, space station habitability, space settlement planning methodology, and orbital assembly. Various aspects of the Space Transportation System are discussed, including Shuttle booster/propulsion growth concept, advanced earth orbital transportation systems technology, single-stage-to-orbit vehicles and aeromaneuvering orbit transfer vehicles. Materials processing in space is examined, with emphasis on biological materials, metallurgical materials, the uses of space ultrahigh vacuum, and extraterrestrial mining and industrial processing. Solar space power is investigated, with attention given the potential of satellite solar power stations, thermal engine power satellites and microwave power transmission to earth. Individual items are announced in this issue.
The benefits of in-flight LOX collection for airbreathing space boosters
NASA Astrophysics Data System (ADS)
Maurice, Lourdes Q.; Leingang, John L.; Carreiro, Louis R.
1992-12-01
In-flight LOX collection using a propulsion fluid system known as ACES (Air Collection and Enrichment System) yields large reductions in launch weights of airbreathing space boosters. The role of the ACES system is to acquire and store liquid oxygen en route to orbit for rocket use beyond the airbreathing envelope. Earth-to-orbit capability is achieved without carrying liquid oxygen from take-off or relying on scramjets. The superiority of ACES type space boosters over their LOX-carrying counterparts has been thoroughly documented in the past. This paper extends that work by presenting a direct comparison between single-stage and two-stage ACES and scramjet powered vehicles carrying similar payloads. ACES vehicles are shown to be weight competitive with scramjet powered vehicles, and require airbreathing function only up to Mach 5 to 8.
Main Chamber and Preburner Injector Technology
NASA Technical Reports Server (NTRS)
Santoro, Robert J.; Merkle, Charles L.
1999-01-01
This document reports the experimental and analytical research carried out at the Penn State Propulsion Engineering Research Center in support of NASA's plan to develop advanced technologies for future single stage to orbit (SSTO) propulsion systems. The focus of the work is on understanding specific technical issues related to bi-propellant and tri-propellant thrusters. The experiments concentrate on both cold flow demonstrations and hot-fire uni-element tests to demonstrate concepts that can be incorporated into hardware design and development. The analysis is CFD-based and is intended to support the design and interpretation of the experiments and to extrapolate findings to full-scale designs. The research is divided into five main categories that impact various SSTO development scenarios. The first category focuses on RP-1/gaseous hydrogen (GH2)/gaseous oxygen (GO2) tri-propellant combustion with specific emphasis on understanding the benefits of hydrogen addition to RP-1/oxygen combustion and in developing innovative injector technology. The second category investigates liquid oxygen (LOX)/GH2 combustion at main chamber near stoichiometric conditions to improve understanding of existing LOX/GH2 rocket systems. The third and fourth categories investigate the technical issues related with oxidizer-rich and fuel-rich propulsive concepts, issues that are necessary for developing the full-flow engine cycle. Here, injector technology issues for both LOX/GH2 and LOX/RP-1 propellants are examined. The last category, also related to the full-flow engine cycle, examines injector technology needs for GO2/GH2 propellant combustion at near-stoichiometric conditions for main chamber application.
NASA Technical Reports Server (NTRS)
1976-01-01
Twelve aerothermodynamic space technology needs were identified to reduce the design uncertainties in aerodynamic heating and forces experienced by heavy lift launch vehicles, orbit transfer vehicles, and advanced single stage to orbit vehicles for the space transportation system, and for probes, planetary surface landers, and sample return vehicles for solar system exploration vehicles. Research and technology needs identified include: (1) increasing the fluid dynamics capability by at least two orders of magnitude by developing an advanced computer processor for the solution of fluid dynamic problems with improved software; (2) predicting multi-engine base flow fields for launch vehicles; and (3) developing methods to conserve energy in aerothermodynamic ground test facilities.
NASA Technical Reports Server (NTRS)
Burkardt, Leo A.
1992-01-01
A recent study has confirmed the feasibility of a near term, fully reusable, horizontal takeoff and landing two-stage-to-orbit (TSTO) launch vehicle concept. The vehicle stages at Mach 6.5. The first stage is powered by a turboramjet propulsion system with the turbojets being fueled by JP and the ramjet by LH2. The second stage is powered by a space shuttle main engine (SSME) rocket engine. For about the same gross weight as growth versions of the 747, the vehicle can place 10,000 lbm. in low polar orbit or 16,000 lbm. to Space Station Freedom.
Options for flight testing rocket-based combined-cycle (RBCC) engines
NASA Technical Reports Server (NTRS)
Olds, John
1996-01-01
While NASA's current next-generation launch vehicle research has largely focused on advanced all-rocket single-stage-to-orbit vehicles (i.e. the X-33 and it's RLV operational follow-on), some attention is being given to advanced propulsion concepts suitable for 'next-generation-and-a-half' vehicles. Rocket-based combined-cycle (RBCC) engines combining rocket and airbreathing elements are one candidate concept. Preliminary RBCC engine development was undertaken by the United States in the 1960's. However, additional ground and flight research is required to bring the engine to technological maturity. This paper presents two options for flight testing early versions of the RBCC ejector scramjet engine. The first option mounts a single RBCC engine module to the X-34 air-launched technology testbed for test flights up to about Mach 6.4. The second option links RBCC engine testing to the simultaneous development of a small-payload (220 lb.) two-stage-to-orbit operational vehicle in the Bantam payload class. This launcher/testbed concept has been dubbed the W vehicle. The W vehicle can also serve as an early ejector ramjet RBCC launcher (albeit at a lower payload). To complement current RBCC ground testing efforts, both flight test engines will use earth-storable propellants for their RBCC rocket primaries and hydrocarbon fuel for their airbreathing modes. Performance and vehicle sizing results are presented for both options.
Damage accumulation in closed cross-section, laminated, composite structures
NASA Technical Reports Server (NTRS)
Bucinell, Ronald B.
1996-01-01
The need for safe, lightweight, less expensive, and more reliable launch vehicle components is being driven by the competitiveness of the commercial launch market. The United States has lost 2/3 of the commercial lunch market to Europe. As low cost Russian and Chinese vehicles become available, the US market share could be reduced even further. This international climate is driving the Single Stage To Orbit (SSTO) program at NASA. The goal of the SSTO program is to radically reduce the cost of safe, routine transportation to and from space with a totally reusable launch vehicle designed for low-cost aircraft-like operations. Achieving this goal will require more efficient uses of materials. Composite materials can provide this program with the material and structural efficiencies needed to stay competitive in the international launch market place. In satellite systems the high specific properties, design flexibility, improved corrosion and wear resistance, increased fatigue life, and low coefficient of thermal expansion that are characteristic of composite materials can all be used to improve the overall satellite performance. Some of the satellites that may be able to take advantage of these performance characteristics are the Tethered Satellite Systems (TOSCIFER, AIRSEDS, TSS2, SEDS1, and SEDS2), AXAF, GRO, and the next generation Hubble Space Telescope. These materials can also be utilized in projects at the NASAIMSFC Space Optics Technology and System Center of Excellence. The successful implementation of composite materials requires accurate performance characterization. Materials characterization data for composite materials is typically generated using flat coupons of finite width. At the free edge of these coupons the stress state is exacerbated by the presence of stiffness and geometric discontinuities. The exacerbated stress state has been shown to dominate the damage accumulation in these materials and to have a profound affect on the material constants. Space structures typically have closed cross-sections, absent of free edges. As a result, composite material characterization data generated using finite width flat specimens does not accurately reflect the performance of the composite materials used in a closed cross-section structural configuration. Several investigators have recognized the need to develop characterization techniques for composite materials in closed cross-sectioned structures. In these investigations test methods were developed and cylindrical specimens were evaluated. The behavior of the cylindrical specimens were observed to depart from behavior typical of flat coupons. However, no attempts were made to identify and monitor the progression of damage in these cylindrical specimens during loading. The identification and monitoring of damage is fundamental to the characterization of composite materials in closed cross-section configurations. In the study reported here, a closed cross-sectioned test method was developed to monitor damage progression in 2 in. diameter cylindrical specimens and 1.5 in. finite width flat coupons subjected to quasi-static, tensile loading conditions. Damage in these specimen configurations was monitored using pulse echo ultrasonic, acoustic emission, and X-ray techniques.
Launch vehicles of the future - Earth to near-earth space
NASA Astrophysics Data System (ADS)
Keyworth, G. A., II
Attention is given to criteria for launch vehicles of the future, namely, cost, flexibility of payload size, and routine access to space. The National Aerospace Plane (NASP), an airplane designed to achieve hypersonic speeds using a sophisticated air-breathing engine, is argued to meet these criteria. Little additional oxygen is needed to enter low-earth orbit, and it will return to an airport runway under powered flight. Cost estimates for a NASP-derived vehicle are two to five million dollars for a payload of 20,000 to 30,000 pounds to orbit. For the Shuttle, a comparable payload is nominally about 150 million dollars. NASP estimates for the new single-stage-to-orbit designs are substantially lower than existing launch costs. The NASP also offers fast turnaround and minimal logistics. Access to virtually all near-earth orbits will be provided as well.
Robotic planetary science missions enabled with small NTR engine/stage technologies
NASA Astrophysics Data System (ADS)
Borowski, Stanley K.
1995-10-01
The high specific impulse (Isp) and engine thrust-to-weight ratio of liquid hydrogen (LH2)-cooled nuclear thermal rocket (NTR) engines makes them ideal for upper stage applications to difficult robotic planetary science missions. A small 15 thousand pound force (klbf) NTR engine using a uranium-zirconium-niobium 'ternary carbide' fuel (Isp approximately 960 seconds at approximately 3025K) developed in the Commonwealth of Independent States (CIS) is examined and its use on an expendable injection stage is shown to provide major increases in payload delivered to the outer planets (Saturn, Uranus, Neptune and Pluto). Using a single 'Titan IV-class' launch vehicle, with a lift capability to low Earth orbit (LEO) of approximately 20 metric tons (t), an expendable NTR upper stage can inject two Pluto 'Fast Flyby' spacecraft (PFF/SC) plus support equipment-combined mass of approximately 508 kg--on high energy, '6.5-9.2 year' direct trajectory missions to Pluto. A conventional chemical propulsion mission would use a liquid oxygen (LOX)/LH2 'Centaur' upper stage and two solid rocket 'kick motors' to inject a single PFF/SC on the same Titan IV launch vehicle. For follow on Pluto missions, the NTR injection stage would utilize a Jupiter 'gravity assist' (JGA) maneuver to launch a LOX/liquid methane (CH4) capture stage (Isp approximately 375 seconds) and a Pluto 'orbiter' spacecraft weighing between approximately 167-312 kg. With chemical propulsion, a Pluto orbiter mission is not a viable option because c inadequate delivered mass. Using a 'standardized' NTR injection stage and the same single Titan IV launch scenario, 'direct flight' (no gravity assist) orbiter missions to Saturn, Uranus and Neptune are also enabled with transit times of 2.3, 6.6, and 12.6 years, respectively. Injected mass includes a storable, nitrogen tetroxide/monomethyl hydrazine (N2O4/MMH) capture stage (Isp approximately 330 seconds) and orbiter payloads 340 to 820% larger than that achievable using a LOX/LH2-fueled injection stage. The paper discusses NTR technology and mission characteristics, shows NTR stage and payload accommodations within the 26.2 m long Titan IV payload fairing, and discusses NTR stage performance as a function of assumed cryogenic tank technology.
Robotic Planetary Science Missions Enabled with Small NTR Engine/Stage Technologies
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.
1995-01-01
The high specific impulse (Isp) and engine thrust-to-weight ratio of liquid hydrogen (LH2)-cooled nuclear thermal rocket (NTR) engines makes them ideal for upper stage applications to difficult robotic planetary science missions. A small 15 thousand pound force (klbf) NTR engine using a uranium-zirconium-niobium 'ternary carbide' fuel (Isp approximately 960 seconds at approximately 3025K) developed in the Commonwealth of Independent States (CIS) is examined and its use on an expendable injection stage is shown to provide major increases in payload delivered to the outer planets (Saturn, Uranus, Neptune and Pluto). Using a single 'Titan IV-class' launch vehicle, with a lift capability to low Earth orbit (LEO) of approximately 20 metric tons (t), an expendable NTR upper stage can inject two Pluto 'Fast Flyby' spacecraft (PFF/SC) plus support equipment-combined mass of approximately 508 kg--on high energy, '6.5-9.2 year' direct trajectory missions to Pluto. A conventional chemical propulsion mission would use a liquid oxygen (LOX)/LH2 'Centaur' upper stage and two solid rocket 'kick motors' to inject a single PFF/SC on the same Titan IV launch vehicle. For follow on Pluto missions, the NTR injection stage would utilize a Jupiter 'gravity assist' (JGA) maneuver to launch a LOX/liquid methane (CH4) capture stage (Isp approximately 375 seconds) and a Pluto 'orbiter' spacecraft weighing between approximately 167-312 kg. With chemical propulsion, a Pluto orbiter mission is not a viable option because c inadequate delivered mass. Using a 'standardized' NTR injection stage and the same single Titan IV launch scenario, 'direct flight' (no gravity assist) orbiter missions to Saturn, Uranus and Neptune are also enabled with transit times of 2.3, 6.6, and 12.6 years, respectively. Injected mass includes a storable, nitrogen tetroxide/monomethyl hydrazine (N2O4/MMH) capture stage (Isp approximately 330 seconds) and orbiter payloads 340 to 820% larger than that achievable using a LOX/LH2-fueled injection stage. The paper discusses NTR technology and mission characteristics, shows NTR stage and payload accommodations within the 26.2 m long Titan IV payload fairing, and discusses NTR stage performance as a function of assumed cryogenic tank technology.
The Disposal of Spacecraft and Launch Vehicle Stages in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2007-01-01
Spacecraft and launch vehicle stages abandoned in Earth orbit have historically been a primary source of debris from accidental explosions. In the future, such satellites will become the principal cause of orbital debris via inadvertent collisions. To curtail both the near-term and far-term risks posed by derelict spacecraft and launch vehicle stages to operational space systems, numerous national and international orbital debris mitigation guidelines specifically recommend actions which could prevent or limit such future debris generation. Although considerable progress has been made in implementing these recommendations, some changes to existing vehicle designs can be difficult. Moreover, the nature of some missions also can present technological and budgetary challenges to be compliant with widely accepted orbital debris mitigation measures.
System technology analysis of aeroassisted orbital transfer vehicles - Moderate lift/drag
NASA Technical Reports Server (NTRS)
Florence, D. E.; Fischer, G.
1983-01-01
The utilization of procedures involving aerodynamic braking and/or aerodynamic maneuvering on return from higher altitude orbits to low-earth orbit makes it possible to realize significant performance benefits. The present study is concerned with a number of mission scenarios for Aeroassisted Orbital Transfer Vehicles (AOTV) and the impact of potential technology advances in the performance enhancement of the class of AOTV's having a hypersonic lift to drag ratio (L/D) of 0.75 to 1.5. It is found that the synergistic combination of a hypersonic L/D of 1.2, an advanced cryopropelled engine, and an LH2 drop tank (1-1/2 stage) leads to a single 65,000 pound shuttle, two-man geosynchronous mission with 2100 pounds of useful paylod. Additional payload enhancement is possible with AOTV dry weight reductions due to technology advances in the areas of vehicle structures and thermal protection systems and other subsystems.
NASA Technical Reports Server (NTRS)
Longuski, James M.; Mcronald, Angus D.
1988-01-01
In previous work the problem of injecting the Galileo and Ulysses spacecraft from low earth orbit into their respective interplanetary trajectories has been discussed for the single stage (Centaur) vehicle. The central issue, in the event of spherically distributed injection errors, is what happens to the vehicle? The difficulties addressed in this paper involve the multi-stage problem since both Galileo and Ulysses will be utilizing the two-stage IUS system. Ulysses will also include a third stage: the PAM-S. The solution is expressed in terms of probabilities for total percentage of escape, orbit decay and reentry trajectories. Analytic solutions are found for Hill's Equations of Relative Motion (more recently called Clohessy-Wiltshire Equations) for multi-stage injections. These solutions are interpreted geometrically on the injection sphere. The analytic-geometric models compare well with numerical solutions, provide insight into the behavior of trajectories mapped on the injection sphere and simplify the numerical two-dimensional search for trajectory families.
NASA Technical Reports Server (NTRS)
Prabhu, Ramadas K.
1996-01-01
This paper presents the results of a computational flow analysis of the McDonnell Douglas single-stage-to-orbit vehicle concept designated as the 24U. This study was made to determine the aerodynamic characteristics of the vehicle with and without body flaps over an angle of attack range of 20-40 deg. Computations were made at a flight Mach number of 20 at 200,000 ft. altitude with equilibrium air, and a Mach number of 6 with CF4 gas. The software package FELISA (Finite Element Langley imperial College Sawansea Ames) was used for all the computations. The FELISA software consists of unstructured surface and volume grid generators, and inviscid flow solvers with (1) perfect gas option for subsonic, transonic, and low supersonic speeds, and (2) perfect gas, equilibrium air, and CF4 options for hypersonic speeds. The hypersonic flow solvers with equilibrium air and CF4 options were used in the present studies. Results are compared with other computational results and hypersonic CF4 tunnel test data.
2009-07-16
0.25 0.26 -0.85 1 SSR SSE R SSTO SSTO = = − 2 2 ˆ( ) : Regression sum of square, ˆwhere : mean value, : value from the fitted line ˆ...Error sum of square : Total sum of square i i i i SSR Y Y Y Y SSE Y Y SSTO SSE SSR = − = − = + ∑ ∑ Statistical analysis: Coefficient of correlation
Mars exploration, Venus swingby and conjunction class mission modes, time period 2000 to 2045
NASA Technical Reports Server (NTRS)
Young, A. C.; Mulqueen, J. A.; Skinner, J. E.
1984-01-01
Trajectory and mission requirement data are presented for Earth-Mars opposition class and conjunction class round trip stopover mission opportunities available during the time period year 2000 to year 2045. The opposition class mission employs the gravitational field of Venus to accelerate the space vehicle on either the outbound or inbound leg. The gravitational field of Venus was used to reduce the propulsion requirement associated with the opposition class mission. Representative space vehicle systems are sized to compare the initial mass required in low Earth orbit of one mission opportunity with another mission opportunity. The interplanetary space vehicle is made up of the spacecraft and the space vehicle acceleration system. The space vehicle acceleration system consists of three propulsion stages. The first propulsion stage performs the Earth escape maneuver; the second stage brakes the spacecraft and Earth braking stage into the Mars elliptical orbit and effects the escape maneuver from the Mars elliptical orbit. The third propulsion stage brakes the mission module into an elliptical orbit at Earth return. The interplanetary space vehicle was assumed to be assembled in and depart from the space station circular orbit.
Performance Validation Approach for the GTX Air-Breathing Launch Vehicle
NASA Technical Reports Server (NTRS)
Trefny, Charles J.; Roche, Joseph M.
2002-01-01
The primary objective of the GTX effort is to determine whether or not air-breathing propulsion can enable a launch vehicle to achieve orbit in a single stage. Structural weight, vehicle aerodynamics, and propulsion performance must be accurately known over the entire flight trajectory in order to make a credible assessment. Structural, aerodynamic, and propulsion parameters are strongly interdependent, which necessitates a system approach to design, evaluation, and optimization of a single-stage-to-orbit concept. The GTX reference vehicle serves this purpose, by allowing design, development, and validation of components and subsystems in a system context. The reference vehicle configuration (including propulsion) was carefully chosen so as to provide high potential for structural and volumetric efficiency, and to allow the high specific impulse of air-breathing propulsion cycles to be exploited. Minor evolution of the configuration has occurred as analytical and experimental results have become available. With this development process comes increasing validation of the weight and performance levels used in system performance determination. This paper presents an overview of the GTX reference vehicle and the approach to its performance validation. Subscale test rigs and numerical studies used to develop and validate component performance levels and unit structural weights are outlined. The sensitivity of the equivalent, effective specific impulse to key propulsion component efficiencies is presented. The role of flight demonstration in development and validation is discussed.
Integrated Technology Assessment Center (ITAC) Update
NASA Technical Reports Server (NTRS)
Taylor, J. L.; Neely, M. A.; Curran, F. M.; Christensen, E. R.; Escher, D.; Lovell, N.; Morris, Charles (Technical Monitor)
2002-01-01
The Integrated Technology Assessment Center (ITAC) has developed a flexible systems analysis framework to identify long-term technology needs, quantify payoffs for technology investments, and assess the progress of ASTP-sponsored technology programs in the hypersonics area. For this, ITAC has assembled an experienced team representing a broad sector of the aerospace community and developed a systematic assessment process complete with supporting tools. Concepts for transportation systems are selected based on relevance to the ASTP and integrated concept models (ICM) of these concepts are developed. Key technologies of interest are identified and projections are made of their characteristics with respect to their impacts on key aspects of the specific concepts of interest. Both the models and technology projections are then fed into the ITAC's probabilistic systems analysis framework in ModelCenter. This framework permits rapid sensitivity analysis, single point design assessment, and a full probabilistic assessment of each concept with respect to both embedded and enhancing technologies. Probabilistic outputs are weighed against metrics of interest to ASTP using a multivariate decision making process to provide inputs for technology prioritization within the ASTP. ITAC program is currently finishing the assessment of a two-stage-to-orbit (TSTO), rocket-based combined cycle (RBCC) concept and a TSTO turbine-based combined cycle (TBCC) concept developed by the team with inputs from NASA. A baseline all rocket TSTO concept is also being developed for comparison. Boeing has recently submitted a performance model for their Flexible Aerospace System Solution for Tomorrow (FASST) concept and the ISAT program will provide inputs for a single-stage-to-orbit (SSTO) TBCC based concept in the near-term. Both of these latter concepts will be analyzed within the ITAC framework over the summer. This paper provides a status update of the ITAC program.
1967-01-01
This is a view of the Saturn V S-IVB (third) stage for the AS-209 (Apollo-Soyuz test project backup vehicle) on a transporter in the right foreground, and the S-IVB stage for AS-504 (Apollo 9 mission) being installed in the Beta Test Stand 1 at the SACTO facility in California. After the S-II (second) stage dropped away, the S-IVB (third) stage ignited and burned for about two minutes to place itself and the Apollo spacecraft into the desired Earth orbit. At the proper time during this Earth parking orbit, the S-IVB stage was re-ignited to speed the Apollo spacecraft to escape velocity and inject it and the astronauts into a moon trajectory. Developed and manufactured by the Douglas Aircraft Company in California, the S-IVB stage measures about 21.5 feet in diameter, about 58 feet in length, and is powered by a single 200,000-pound-thrust J-2 engine with a re-start capability. The S-IVB stage was also used on the second stage of the Saturn IB launch vehicle.
Advanced Space Transportation Program (ASTP)
1995-01-23
Pictured here is a DC-XA Reusable Launch Vehicle (RLV) prototype concept with an RLV logo. The Delta Clipper-Experimental (DC-X) was originally developed by McDornell Douglas for the Department of Defense (DOD). The DC-XA is a single-stage-to-orbit, vertical takeoff/vertical landing, launch vehicle concept, whose development is geared to significantly reduce launch costs and will provide a test bed for NASA Reusable Launch Vehicle (RLV) technology as the Delta Clipper-Experimental Advanced (DC-XA).
CFD applications in hypersonic flight
NASA Technical Reports Server (NTRS)
Edwards, T. A.
1992-01-01
Design studies are underway for a variety of hypersonic flight vehicles. The National Aero-Space Plane will provide a reusable, single-stage-to-orbit capability for routine access to low earth orbit. Flight-capable satellites will dip into the atmosphere to maneuver to new orbits, while planetary probes will decelerate at their destination by atmospheric aerobraking. To supplement limited experimental capabilities in the hypersonic regime, CFD is being used to analyze the flow about these configurations. The governing equations include fluid dynamic as well as chemical species equations, which are solved with robust upwind differencing schemes. Examples of CFD applications to hypersonic vehicles suggest an important role this technology will play in the development of future aerospace systems. The computational resources needed to obtain solutions are large, but various strategies are being exploited to reduce the time required for complete vehicle simulations.
Design Description of the X-33 Avionics Architecture
NASA Technical Reports Server (NTRS)
Reichenfeld, Curtis J.; Jones, Paul G.
1999-01-01
In this paper, we provide a design description of the X-33 avionics architecture. The X-33 is an autonomous Single Stage to Orbit (SSTO) launch vehicle currently being developed by Lockheed Martin for NASA as a technology demonstrator for the VentureStar Reusable Launch Vehicle (RLV). The X-33 avionics provides autonomous control of die vehicle throughout takeoff, ascent, descent, approach, landing, rollout, and vehicle safing. During flight the avionics provides communication to the range through uplinked commands and downlinked telemetry. During pre-launch and post-safing activities, the avionics provides interfaces to ground support consoles that perform vehicle flight preparations and maintenance. The X-33 Avionics is a hybrid of centralized and distributed processing elements connected by three dual redundant Mil-Std 1553 data buses. These data buses are controlled by a central processing suite located in the avionics bay and composed of triplex redundant Vehicle Mission Computers (VMCs). The VMCs integrate mission management, guidance, navigation, flight control, subsystem control and redundancy management functions. The vehicle sensors, effectors and subsystems are interfaced directly to the centralized VMCs as remote terminals or through dual redundant Data Interface Units (DIUs). The DIUs are located forward and aft of the avionics bay and provide signal conditioning, health monitoring, low level subsystem control and data interface functions. Each VMC is connected to all three redundant 1553 data buses for monitoring and provides a complete identical data set to the processing algorithms. This enables bus faults to be detected and reconfigured through a voted bus control configuration. Data is also shared between VMCs though a cross channel data link that is implemented in hardware and controlled by AlliedSignal's Fault Tolerant Executive (FTE). The FTE synchronizes processors within the VMC and synchronizes redundant VMCs to each other. The FTE provides an output-voting plane to detect, isolate and contain faults due to internal hardware or software faults and reconfigures the VMCs to accommodate these faults. Critical data in the 1553 messages are scheduled and synchronized to specific processing frames in order to minimize data latency. In order to achieve an open architecture, military and commercial off-the-shelf equipment is incorporated using common processors, standard VME backplanes and chassis, the VxWorks operating system, and MartixX for automatic code generation. The use of off-the-shelf tools and equipment helps reduce development time and enables software reuse. The open architecture allows for technology insertion, while the distributed modular elements allow for expansion to increased redundancy levels to meet the higher reliability goals of future RLVs.
Space transportation propulsion application - A development challenge
NASA Astrophysics Data System (ADS)
Beichel, Rudi; O'Brien, Charles J.; Taylor, James P.
1989-10-01
This paper presents an approach to achieving a cost-effective vertical takeoff, horizontal landing earth-to-orbit vehicle. The key propulsion system problems are addressed. The approach leads to a near-term rocket-powered single-stage-to-orbit system. A flying test-bed vehicle development program is described which allows the orderly development of vital advanced propulsion system and vehicle structural technology within a reasonable cost. The experimental (X-n) vehicle approach also allows the development of operational procedures that result in airline-type costs to space, and permits concepts, such as heavy-lift flight configurations, to be tested in a stepwise manner. Thrust modulation, instead of gimballed engines, allows a significant weight reduction in the propulsion system. Air-breathing airturborocket engines are used for loiter and landing to ensure safe return to earth.
A Horizontal Take-off and Landing satellite launcher or aerospace plane (HOTOL)
NASA Astrophysics Data System (ADS)
Conchie, P. J.
1985-09-01
An assessment is made of the technology readiness and typical mission profile of a Horizontal Takeoof and Landing (HOTOL) single-stage satellite launch vehicle for 1990s deployment. HOTOL would employ H2-fueled air-breathing propulsion for the first stage of its ascent to low earth orbit through the lower portions of the atmosphere; it would then switch to H2-fueled rocket engines using liquid oxygen from internal tanks for exoatmospheric flight and orbit insertion. Mission cost comparisons are made with alternative launch vehicle design options. HOTOL is approximately the same size as the Concorde SST, and will weigh so much less than the current Space Shuttle as to significantly reduce reentry speeds and temperatures, obviating ceramic insulation systems for the primary structure.
Configuration development study of the OSU 1 hypersonic research vehicle
NASA Technical Reports Server (NTRS)
Stein, Matthew D.; Frankhauser, Chris; Zee, Warner; Kosanchick, Melvin, III; Nelson, Nick; Hunt, William
1993-01-01
In an effort to insure the future development of hypersonic cruise aircraft, the possible vehicle configurations were examined to develop a single-stage-to-orbit hypersonic research vehicle (HRV). Based on the needs of hypersonic research and development, the mission goals and requirements are determined. A body type is chosen. Three modes of propulsion and two liquid rocket fuels are compared, followed by the optimization of the body configuration through aerodynamic, weight, and trajectory studies. A cost analysis is included.
Selection process for trade study: Reusable Hydrogen Composite Tank System (RHCTS)
NASA Astrophysics Data System (ADS)
Greenberg, H. S.
1994-09-01
This document describes the selection process that will be used to identify the most suitable structural configuration option for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 degree inclination. The most suitable RHCTS is within this configuration and will be the prototype design for subsequent design and analysis and the basis for the design and fabrication of a scale test article to be subjected to life cycle testing. The selection process for this TA 1 trade study is the same as that for the TA 2 trade study. As the trade study progresses additional insight may result in modifications to the selection criteria within in this process. Such modifications will result in an update of this document as appropriate.
NASA Astrophysics Data System (ADS)
Black, Stephen T.; Eshleman, Wally
1997-01-01
This paper describes the VentureStar™ SSTO RLV and X-33 operations concepts. Applications of advanced technologies, automated ground support systems, advanced aircraft and launch vehicle lessons learned have been integrated to develop a streamlined vehicle and mission processing concept necessary to meet the goals of a commercial SSTO RLV. These concepts will be validated by the X-33 flight test program where financial and technical risk mitigation are required. The X-33 flight test program totally demonstrates the vehicle performance, technology, and efficient ground operations at the lowest possible cost. The Skunk Work's test program approach and test site proximity to the production plant are keys. The X-33 integrated flight and ground test program incrementally expands the knowledge base of the overall system allowing minimum risk progression to the next flight test program milestone. Subsequent X-33 turnaround processing flows will be performed with an aircraft operations philosophy. The differences will be based on research and development, component reliability and flight test requirements.
Illustration of Ares I During Launch
NASA Technical Reports Server (NTRS)
2006-01-01
The NASA developed Ares rockets, named for the Greek god associated with Mars, will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the Ares I is illustrated during lift off. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. With a primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. Ares I uses a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine, derived from the J-2 engine used on the second stage of the Apollo vehicle, will power the Ares I second stage. Ares I can lift more than 55,000 pounds to low Earth orbit. The Ares I is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of September 2006.
STS-26 Discovery, Orbiter Vehicle (OV) 103, IUS / TDRS-C deployment
1988-09-29
During STS-26, inertial upper stage (IUS) with tracking and data relay satellite C (TDRS-C) located in the payload bay (PLB) of Discovery, Orbiter Vehicle (OV) 103, is positioned into its proper deployment attitude (an angle of 50 degrees) by the airborne support equipment (ASE). In the foreground, the ASE forward cradle is visible. The IUS is mounted in the ASE aft frame tilt actuator (AFTA) table. TDRS-C components in stowed configuration include solar array panels, TDRS single access #1 and #2, TDRS SGL, and S-Band omni antenna. In the background are the orbital maneuvering system (OMS) pods, the Earth's cloud-covered surface, and the Earth's limb.
NASA Technical Reports Server (NTRS)
Woodcock, Gordon
1997-01-01
This study is an extension of a previous effort by the Principal Investigator to develop baseline data to support comparative analysis of Highly Reusable Space Transportation (HRST) concepts. The analyses presented herin develop baseline data bases for two two-stage-to-orbit (TSTO) concepts: (1) Assisted horizontal take-off all rocket (assisted HTOHL); and (2) Assisted vertical take-off rocket based combined cycle (RBCC). The study objectives were to: (1) Provide configuration definitions and illustrations for assisted HTOHL and assisted RBCC; (2) Develop a rationalization approach and compare these concepts with the HRST reference; and (3) Analyze TSTO configurations which try to maintain SSTO benefits while reducing inert weight sensitivity.
NASA Technical Reports Server (NTRS)
Smith, Garrett; Philips, Alan
2003-01-01
Three dominant Two Stage To Orbit (TSTO) class architectures were studied: Series Burn (SB), Parallel Bum with crossfeed (PBw/cf), and Parallel Burn, no-crossfeed (PBncf). The study goal was to determine what factors uniquely affect PBncf architectures, how each of these factors interact, and to determine from a performance perspective whether a PBncf vehicle could be competitive with a PBw/cf or a SB vehicle using equivalent technology and assumptions. In all cases, performance was evaluated on a relative basis for a fixed payload and mission by comparing gross and dry vehicle masses of a closed vehicle. Propellant combinations studied were LOX: LH2 propelled booster and orbiter (HH) and LOX: Kerosene booster with LOX: LH2 orbiter (KH). The study observations were: 1) A PBncf orbiter should be throttled as deeply as possible after launch until the staging point. 2) A PBncf TSTO architecture is feasible for systems that stage at mach 7. 2a) HH architectures can achieve a mass growth relative to PBw/cf of <20%. 2b) KH architectures can achieve a mass growth relative to Series Burn of <20%. 3) Center of gravity (CG) control will be a major issue for a PBncf vehicle, due to the low orbiter specific thrust to weight ratio and to the position of the orbiter required to align the nozzle heights at liftoff. 4) Thrust to weight ratios of 1.3 at liftoff and between 1.0 and 0.9 when staging at mach 7 appear to be close to ideal for PBncf vehicles. 5) Performance for HH vehicles was better when staged at mach 7 instead of mach 5. The study suggests possible methods to maximize performance of PBncf vehicle architectures in order to meet mission design requirements.
Near-Optimal Operation of Dual-Fuel Launch Vehicles
NASA Technical Reports Server (NTRS)
Ardema, M. D.; Chou, H. C.; Bowles, J. V.
1996-01-01
A near-optimal guidance law for the ascent trajectory from earth surface to earth orbit of a fully reusable single-stage-to-orbit pure rocket launch vehicle is derived. Of interest are both the optimal operation of the propulsion system and the optimal flight path. A methodology is developed to investigate the optimal throttle switching of dual-fuel engines. The method is based on selecting propulsion system modes and parameters that maximize a certain performance function. This function is derived from consideration of the energy-state model of the aircraft equations of motion. Because the density of liquid hydrogen is relatively low, the sensitivity of perturbations in volume need to be taken into consideration as well as weight sensitivity. The cost functional is a weighted sum of fuel mass and volume; the weighting factor is chosen to minimize vehicle empty weight for a given payload mass and volume in orbit.
A Comparative Analysis of Single-Stage-To-Orbit Rocket and Air-Breathing Vehicles
2006-06-01
passion to explore. I am indebted to my friends and co-workers who, through their humor and shenanigans , have made this educational experience both...the Nixon administration canceling the program, NASA enlisted financial support from the Air Force in exchange for USAF use of the Shuttle
Orbital Debris Environment Assessment and Mitigation for Launch Vehicles
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2007-01-01
This viewgraph presentation reviews the debris that is in orbit, and reduction of the orbital debris. Specifically, attention is paid to the reduction of orbital debris from launch vehicle stages after the launch.
NASA Technical Reports Server (NTRS)
Chamitoff, Gregory Errol
1992-01-01
Intelligent optimization methods are applied to the problem of real-time flight control for a class of airbreathing hypersonic vehicles (AHSV). The extreme flight conditions that will be encountered by single-stage-to-orbit vehicles, such as the National Aerospace Plane, present a tremendous challenge to the entire spectrum of aerospace technologies. Flight control for these vehicles is particularly difficult due to the combination of nonlinear dynamics, complex constraints, and parametric uncertainty. An approach that utilizes all available a priori and in-flight information to perform robust, real time, short-term trajectory planning is presented.
ARES I Upper Stage Subsystems Design and Development
NASA Technical Reports Server (NTRS)
Frate, David T.; Senick, Paul F.; Tolbert, Carol M.
2011-01-01
From 2005 through early 2011, NASA conducted concept definition, design, and development of the Ares I launch vehicle. The Ares I was conceived to serve as a crew launch vehicle for beyond-low-Earth-orbit human space exploration missions as part of the Constellation Program Architecture. The vehicle was configured with a single shuttle-derived solid rocket booster first stage and a new liquid oxygen/liquid hydrogen upper stage, propelled by a single, newly developed J-2X engine. The Orion Crew Exploration Vehicle was to be mated to the forward end of the Ares I upper stage through an interface with fairings and a payload adapter. The vehicle design passed a Preliminary Design Review in August 2008, and was nearing the Critical Design Review when efforts were concluded as a result of the Constellation Program s cancellation. At NASA Glenn Research Center, four subsystems were developed for the Ares I upper stage. These were thrust vector control (TVC) for the J-2X, electrical power system (EPS), purge and hazardous gas (P&HG), and development flight instrumentation (DFI). The teams working each of these subsystems achieved 80 percent or greater design completion and extensive development testing. These efforts were extremely successful representing state-of-the-art technology and hardware advances necessary to achieve Ares I reliability, safety, availability, and performance requirements. This paper documents the designs, development test activity, and results.
One Idea for a Next Generation Shuttle
NASA Technical Reports Server (NTRS)
MacConochie, Ian O.; Cerro, Jeffrey A.
2004-01-01
In this configuration, the current Shuttle External Tank serves as core structure for a fully reusable second stage. This stage is equipped with wings, vertical fin, landing gear, and thermal protection. The stage is geometrically identical to (but smaller than) a single stage that has been tested hyper-sonically, super-sonically, and sub-sonically in the NASA Langley Research Center wind tunnels. The three LOX/LH engines that currently serve as main propulsion for the Shuttle Orbiter, serve as main propulsion on the new stage. The new stage is unmanned but is equipped with the avionics needed for automatic maneuvering on orbit and for landing on a runway. Three rails are installed along the top surface of the vehicle for attachment of various payloads. Pay- loads might include third stages with satellites attached, personnel pods, propellants, or other items.
NASA Technical Reports Server (NTRS)
Stump, William R.; Babb, Gus R.; Davis, Hubert P.
1986-01-01
The requirements, issues, and design options are reviewed for manned Mars landers. Issues such as high 1/d versus low 1/d shape, parking orbit, and use of a small Mars orbit transfer vehicle to move the lander from orbit to orbit are addressed. Plots of lander mass as a function of Isp, destination orbit, and cargo up and down, plots of initial stack mass in low Earth orbit as a function of lander mass and parking orbit, detailed weight statements, and delta V tables for a variety of options are included. Lander options include a range from minimum landers up to a single stage reusable design. Mission options include conjunction and Venus flyby trajectories using all-cryogenic, hybrid, NERVA, and Mars orbit aerobraking propulsion concepts.
NASA Technical Reports Server (NTRS)
1991-01-01
A preliminary design of a two-stage to orbit vehicle was conducted with the requirements to carry a 10,000 pound payload into a 300 mile low-earth orbit using an airbreathing first stage, and to take off and land unassisted on a 15,000 foot runway. The goal of the design analysis was to produce the most efficient vehicle in size and weight which could accomplish the mission requirements. Initial parametric analysis indicated that the weight of the orbiter and the transonic performance of the system were the two parameters that had the largest impact on the design. The resulting system uses a turbofan ramjet powered first stage to propel a scramjet and rocket powered orbiter to the stage point of Mach 6 to 6.5 at an altitude of 90,000 ft.
NASA Technical Reports Server (NTRS)
Smith, Garrett; Phillips, Alan
2002-01-01
There are currently three dominant TSTO class architectures. These are Series Burn (SB), Parallel Burn with crossfeed (PBw/cf), and Parallel Burn without crossfeed (PBncf). The goal of this study was to determine what factors uniquely affect PBncf architectures, how each of these factors interact, and to determine from a performance perspective whether a PBncf vehicle could be competitive with a PBw/cf or SB vehicle using equivalent technology and assumptions. In all cases, performance was evaluated on a relative basis for a fixed payload and mission by comparing gross and dry vehicle masses of a closed vehicle. Propellant combinations studied were LOX: LH2 propelled orbiter and booster (HH) and LOX: Kerosene booster with LOX: LH2 orbiter (KH). The study conclusions were: 1) a PBncf orbiter should be throttled as deeply as possible after launch until the staging point. 2) a detailed structural model is essential to accurate architecture analysis and evaluation. 3) a PBncf TSTO architecture is feasible for systems that stage at mach 7. 3a) HH architectures can achieve a mass growth relative to PBw/cf of < 20%. 3b) KH architectures can achieve a mass growth relative to Series Burn of < 20%. 4) center of gravity (CG) control will be a major issue for a PBncf vehicle, due to the low orbiter specific thrust to weight ratio and to the position of the orbiter required to align the nozzle heights at liftoff. 5 ) thrust to weight ratios of 1.3 at liftoff and between 1.0 and 0.9 when staging at mach 7 appear to be close to ideal for PBncf vehicles. 6) performance for all vehicles studied is better when staged at mach 7 instead of mach 5. The study showed that a Series Burn architecture has the lowest gross mass for HH cases, and has the lowest dry mass for KH cases. The potential disadvantages of SB are the required use of an air-start for the orbiter engines and potential CG control issues. A Parallel Burn with crossfeed architecture solves both these problems, but the mechanics of a large bipropellant crossfeed system pose significant technical difficulties. Parallel Burn without crossfeed vehicles start both booster and orbiter engines on the ground and thus avoid both the risk of orbiter air-start and the complexity of a crossfeed system. The drawback is that the orbiter must use 20% to 35% of its propellant before reaching the staging point. This induces a weight penalty in the orbiter in order to carry additional propellant, which causes a further weight penalty in the booster to achieve the same staging point. One way to reduce the orbiter propellant consumption during the first stage is to throttle down the orbiter engines as much as possible. Another possibility is to use smaller or fewer engines. Throttling the orbiter engines soon after liftoff minimizes CG control problems due to a low orbiter liftoff thrust, but may result in an unnecessarily high orbiter thrust after staging. Reducing the number or size of engines size may cause CG control problems and drift at launch. The study suggested possible methods to maximize performance of PBncf vehicle architectures in order to meet mission design requirements.
Study of Required Thrust Profile Determination of a Three Stages Small Launch Vehicle
NASA Astrophysics Data System (ADS)
Fariz, A.; Sasongko, R. A.; Poetro, R. E.
2018-04-01
The effect of solid rocket motor specifications, i.e. specific impulse and mass flow rate, and coast time on the thrust profile of three stages small launch vehicle is studied. Solid rocket motor specifications are collected from various small launch vehicle that had ever been in operation phase, and also from previous study. Comparison of orbital parameters shows that the radius of apocenter targeted can be approached using one combination of solid rocket motor specifications and appropriate coast time. However, the launch vehicle designed is failed to achieve the targeted orbit nor injecting the satellite to any orbit.
1968-01-01
This image depicts the Saturn V S-IVB (third) stage for the Apollo 10 mission being removed from the Beta Test Stand 1 after its acceptance test at the Douglas Aircraft Company's Sacramento Test Operations (SACTO) facility. After the S-II (second) stage dropped away, the S-IVB (third) stage was ignited and burned for about two minutes to place itself and the Apollo spacecraft into the desired Earth orbit. At the proper time during this Earth parking orbit, the S-IVB stage was re-ignited to speed the Apollo spacecraft to escape velocity injecting it and the astronauts into a moon trajectory. Developed and manufactured by the Douglas Aircraft Company in California, the S-IVB stage measures about 21.5 feet in diameter, about 58 feet in length, and powered by a single 200,000-pound-thrust J-2 engine with a re-start capability. The S-IVB stage was also used on the second stage of the Saturn IB launch vehicle.
The PIX-2 experiment: An overview
NASA Astrophysics Data System (ADS)
Purvis, C. K.
1985-03-01
The second Plasma Interactions Experiment (PIX-2) was launched in January 1983 as a piggyback on the second stage of the Delta launch vehicle that carried IRAS into orbit. Placed in a 870 km circular polar orbit, it returned 18 hrs of data on the plasma current collection and arcing behavior of solar arrays biased to +/-1000 V in steps. The four 500 sq cm solar array segments were biased singly and in combinations. In addition to the array segments PIX-2 carried a Sun sensor, a Langmuir probe to measure electron currents, and a hot-wire filament electron emitter to control vehicle potential during positive array bias sequences. The PIX-2 experiment is reviewed from program and operational perspectives.
Concept considerations for a small orbital transfer vehicle
NASA Technical Reports Server (NTRS)
Green, M.; Sibila, A. I.
1979-01-01
This paper summarizes a study of small orbital transfer vehicles to place payloads in orbits with altitudes above those of the standard Shuttle operations. The overall objective of the study is to examine the role of the small orbital transfer vehicle (SOTV) in Shuttle operations and to identify typical propulsion concepts for accomplishing the mission. Consideration is given to existing and planned systems and upper stages, along with new propulsion stages. The new propulsion concept development examines tandem and clustered solids, controlled solids, monopropellant and bipropellant liquids, and staged solid/liquid combinations. The paper presents considerations of the mission requirements, tradeoffs of the various configurations, and candidate selections. For the selected candidate concepts the performance, support equipment, operational considerations and program costs were determined. The results show that a new modular liquid stage system is cost effective in handling the majority of the payloads considered. The remainder of the payloads can be accomodated by existing systems.
Launch Vehicle Systems Analysis
NASA Technical Reports Server (NTRS)
Olds, John R.
1999-01-01
This report summaries the key accomplishments of Georgia Tech's Space Systems Design Laboratory (SSDL) under NASA Grant NAG8-1302 from NASA - Marshall Space Flight Center. The report consists of this summary white paper, copies of technical papers written under this grant, and several viewgraph-style presentations. During the course of this grant four main tasks were completed: (1)Simulated Combined-Cycle Rocket Engine Analysis Module (SCCREAM), a computer analysis tool for predicting the performance of various RBCC engine configurations; (2) Hyperion, a single stage to orbit vehicle capable of delivering 25,000 pound payloads to the International Space Station Orbit; (3) Bantam-X Support - a small payload mission; (4) International Trajectory Support for interplanetary human Mars missions.
Earth-to-Orbit Laser Launch Simulation for a Lightcraft Technology Demonstrator
NASA Astrophysics Data System (ADS)
Richard, J. C.; Morales, C.; Smith, W. L.; Myrabo, L. N.
2006-05-01
Optimized laser launch trajectories have been developed for a 1.4 m diameter, 120 kg (empty mass) Lightcraft Technology Demonstrator (LTD). The lightcraft's combined-cycle airbreathing/rocket engine is designed for single-stage-to-orbit flights with a mass ratio of 2 propelled by a 100 MW class ground-based laser built on a 3 km mountain peak. Once in orbit, the vehicle becomes an autonomous micro-satellite. Two types of trajectories were simulated with the SORT (Simulation and Optimization of Rocket Trajectories) software package: a) direct GBL boost to orbit, and b) GBL boost aided by laser relay satellite. Several new subroutines were constructed for SORT to input engine performance (as a function of Mach number and altitude), vehicle aerodynamics, guidance algorithms, and mass history. A new guidance/steering option required the lightcraft to always point at the GBL or laser relay satellite. SORT iterates on trajectory parameters to optimize vehicle performance, achieve a desired criteria, or constrain the solution to avoid some specific limit. The predicted laser-boost performance for the LTD is undoubtedly revolutionary, and SORT simulations have helped to define this new frontier.
SLI Artist's Concept-Stage Separation
NASA Technical Reports Server (NTRS)
2002-01-01
NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle during separation of stages. For SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first-generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado; a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.
Fitting aerodynamics and propulsion into the puzzle
NASA Technical Reports Server (NTRS)
Johnston, Patrick J.; Whitehead, Allen H., Jr.; Chapman, Gary T.
1987-01-01
The development of an airbreathing single-stage-to-orbit vehicle, in particular the problems of aerodynamics and propulsion integration, is examined. The boundary layer transition on constant pressure surfaces at hypersonic velocities, and the effects of noise on the transition are investigated. The importance of viscosity, real-gas effects, and drag at hypersonic speeds is discussed. A propulsion system with sufficient propulsive lift to enhance the performance of the vehicle is being developed. The difficulties of engine-airframe integration are analyzed.
Habitat and logistic support requirements for the initiation of a space manufacturing enterprise
NASA Technical Reports Server (NTRS)
Vajk, J. P.; Engel, J. H.; Shettler, J. A.
1979-01-01
A detailed scenario for the initiation of a space manufacturing enterprise using lunar materials to construct solar power satellites (SPS) was developed, with particular attention to habitat design and logistic support requirements. If SPS's can be constructed exclusively from lunar materials, the entire enterprise can be initiated in a 7 year period of launch activity (beginning as early as 1985) using the Space Shuttle and a low-cost, Shuttle-derived heavy lift vehicle. If additional chemical feedstocks must be imported from earth in significant quantities, it may be necessary to bring the next-generation launch vehicle (single-stage-to-orbit) into operation by 1991. The scenario presented features use of the mass-driver reaction engine for orbit-to-orbit transfer of cargos and makes extensive use of the expendable Shuttle external propellant tanks.
New developments in the field of launchers
NASA Astrophysics Data System (ADS)
Koelle, H. H.; Arend, H.
The current status of launch-system technology is discussed in a global survey. Topics addressed include the factors influencing launcher cost effectiveness; the capabilities of state-of-the-art Soviet, U.S., European, Chinese, and Japanese systems; possible improvements to the current launchers; alternative technologies (the ESA Hermes shuttle, SSTO vehicles, etc.); and future trends in the commercial launch market. Particular attention is given to the Neptun two-stage reusable ballistic launcher proposed by Apel et al. (1985). It is suggested that it may be possible to lower specific transport costs to about $500/kg, or even to $100/kg if the lifetime cargo capacity of reusable launchers can be extended to the order of 2 Tg. Extensive diagrams, drawings, and tables of numerical data are provided.
Neptune Orbiters Utilizing Solar and Radioisotope Electric Propulsion
NASA Technical Reports Server (NTRS)
Fiehler, Douglas I.; Oleson, Steven R.
2004-01-01
In certain cases, Radioisotope Electric Propulsion (REP), used in conjunction with other propulsion systems, could be used to reduce the trip times for outer planetary orbiter spacecraft. It also has the potential to improve the maneuverability and power capabilities of the spacecraft when the target body is reached as compared with non-electric propulsion spacecraft. Current missions under study baseline aerocapture systems to capture into a science orbit after a Solar Electric Propulsion (SEP) stage is jettisoned. Other options under study would use all REP transfers with small payloads. Compared to the SEP stage/Aerocapture scenario, adding REP to the science spacecraft as well as a chemical capture system can replace the aerocapture system but with a trip time penalty. Eliminating both the SEP stage and the aerocapture system and utilizing a slightly larger launch vehicle, Star 48 upper stage, and a combined REP/Chemical capture system, the trip time can nearly be matched while providing over a kilowatt of science power reused from the REP maneuver. A Neptune Orbiter mission is examined utilizing single propulsion systems and combinations of SEP, REP, and chemical systems to compare concepts.
End-To-End Simulation of Launch Vehicle Trajectories Including Stage Separation Dynamics
NASA Technical Reports Server (NTRS)
Albertson, Cindy W.; Tartabini, Paul V.; Pamadi, Bandu N.
2012-01-01
The development of methodologies, techniques, and tools for analysis and simulation of stage separation dynamics is critically needed for successful design and operation of multistage reusable launch vehicles. As a part of this activity, the Constraint Force Equation (CFE) methodology was developed and implemented in the Program to Optimize Simulated Trajectories II (POST2). The objective of this paper is to demonstrate the capability of POST2/CFE to simulate a complete end-to-end mission. The vehicle configuration selected was the Two-Stage-To-Orbit (TSTO) Langley Glide Back Booster (LGBB) bimese configuration, an in-house concept consisting of a reusable booster and an orbiter having identical outer mold lines. The proximity and isolated aerodynamic databases used for the simulation were assembled using wind-tunnel test data for this vehicle. POST2/CFE simulation results are presented for the entire mission, from lift-off, through stage separation, orbiter ascent to orbit, and booster glide back to the launch site. Additionally, POST2/CFE stage separation simulation results are compared with results from industry standard commercial software used for solving dynamics problems involving multiple bodies connected by joints.
Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters
NASA Technical Reports Server (NTRS)
Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith
2016-01-01
NASA is providing preliminary design and requirements for the Space Launch System Exploration Upper Stage (EUS). The EUS will provide upper stage capability for vehicle ascent as well as on-orbit control capability. Requirements include performance of on-orbit burn to provide Orion vehicle with escape velocity. On-orbit attitude control is accommodated by a on-off Reaction Control System (RCS). Paper provides overview of approaches for design and stability of an attitude control system using a RCS.
Fast Track Lunar NTR Systems Assessment for NASA's First Lunar Outpost and Its Evolvability to Mars
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Alexander, Stephen W.
1995-01-01
Integrated systems and missions studies are presented for an evolutionary lunar-to-Mars space transportation system (STS) based on nuclear thermal rocket (NTR) technology. A 'standardized' set of engine and stage components are identified and used in a 'building block' fashion to configure a variety of piloted and cargo, lunar and Mars vehicles. The reference NTR characteristics include a thrust of 50 thousand pounds force (klbf), specific impulse (I(sub sp)) of 900 seconds, and an engine thrust-to-weight ratio of 4. 3. For the National Aeronautics and Space Administrations (NASA) First Lunar Outpost (FLO) mission, and expendable NTR stage powered by two such engines can deliver approximately 96 metric tonnes (t) to trans-lunar injection (TLI) conditions for an initial mass in low Earth orbit (IMLEO) of approximately 198 t compared to 250 t for a cryogenic chemical system. The stage liquid hydrogen (LH2) tank has a diameter, length, and capacity of 10 m, 14.5 m and 66 t, respectively. By extending the stage length and LH2 capacity to approximately 20 m and 96 t, a single launch Mars cargo vehicle could deliver to an elliptical Mars parking orbit a 63 t Mars excursion vehicle (MEV) with a 45 t surface payload. Three 50 klbf engines and the two standardized LH2 tanks developed for the lunar and Mars cargo vehicles are used to configure the vehicles supporting piloted Mars missions as early as 2010. The 'modular' NTR vehicle approach forms the basis for an efficient STS able to handle the needs of a wide spectrum of lunar and Mars missions.
Conceptual design of a two stage to orbit spacecraft
NASA Technical Reports Server (NTRS)
Armiger, Scott C.; Kwarta, Jennifer S.; Horsley, Kevin B.; Snow, Glenn A.; Koe, Eric C.; Single, Thomas G.
1993-01-01
This project, undertaken through the Advanced Space Design Program, developed a 'Conceptual Design of a Two Stage To Orbit Spacecraft (TSTO).' The design developed utilizes a combination of air breathing and rocket propulsion systems and is fully reusable, with horizontal takeoff and landing capability. The orbiter is carried in an aerodynamically designed bay in the aft section of the booster vehicle to the staging altitude. This TSTO Spacecraft design meets the requirements of replacing the aging Space Shuttle system with a more easily maintained vehicle with more flexible mission capability.
Japan's launch vehicle program update
NASA Astrophysics Data System (ADS)
Tadakawa, Tsuguo
1987-06-01
NASDA is actively engaged in the development of H-I and H-II launch vehicle performance capabilities in anticipation of future mission requirements. The H-I has both two-stage and three-stage versions for medium-altitude and geosynchronous orbits, respectively; the restart capability of the second stage affords considerable mission planning flexibility. The H-II vehicle is a two-stage liquid rocket primary propulsion design employing two solid rocket boosters for secondary power; it is capable of launching two-ton satellites into geosynchronous orbit, and reduces manufacture and launch costs by extensively employing off-the-shelf technology.
Booster propulsion/vehicle impact study, 2
NASA Technical Reports Server (NTRS)
Johnson, P.; Satterthwaite, S.; Carson, C.; Schnackel, J.
1988-01-01
This is the final report in a study examining the impact of launch vehicles for various boost propulsion design options. These options included: differing boost phase engines using different combinations of fuels and coolants to include RP-1, methane, propane (subcooled and normal boiling point), and hydrogen; variable and high mixture ratio hydrogen engines; translating nozzles on boost phase engines; and cross feeding propellants from the booster to second stage. Vehicles examined included a fully reusable two stage cargo vehicle and a single stage to orbit vehicle. The use of subcooled propane as a fuel generated vehicles with the lowest total vehicle dry mass. Engines with hydrogen cooling generated only slight mass reductions from the reference, all-hydrogen vehicle. Cross feeding propellants generated the most significant mass reductions from the reference two stage vehicle. The use of high mixture ratio or variable mixture ratio hydrogen engines in the boost phase of flight resulted in vehicles with total dry mass 20 percent greater than the reference hydrogen vehicle. Translating nozzles for boost phase engines generated a heavier vehicle. Also examined were the design impacts on the vehicle and ground support subsystems when subcooled propane is used as a fuel. The most significant cost difference between facilities to handle normal boiling point versus subcooled propane is 5 million dollars. Vehicle cost differences were negligible. A significant technical challenge exists for properly conditioning the vehicle propellant on the ground and in flight when subcooled propane is used as fuel.
Ares I Stage Separation System Design Certification Testing
NASA Technical Reports Server (NTRS)
Mayers, Stephen L.; Beard, Bernard B.; Smith, R. Kenneth; Patterson, Alan
2009-01-01
NASA is committed to the development of a new crew launch vehicle, the Ares I, that can support human missions to low Earth orbit (LEO) and the moon with unprecedented safety and reliability. NASA's Constellation program comprises the Ares I and Ares V launch vehicles, the Orion crew vehicle, and the Altair lunar lander. Based on historical precedent, stage separation is one of the most significant technical and systems engineering challenges that must be addressed in order to achieve this commitment. This paper surveys historical separation system tests that have been completed in order to ensure staging of other launch vehicles. Key separation system design trades evaluated for Ares I include single vs. dual separation plane options, retro-rockets vs. pneumatic gas actuators, small solid motor quantity/placement/timing, and continuous vs. clamshell interstage configuration options. Both subscale and full-scale tests are required to address the prediction of complex dynamic loading scenarios present during staging events. Test objectives such as separation system functionality, and pyroshock and debris field measurements for the full-scale tests are described. Discussion about the test article, support infrastructure and instrumentation are provided.
Transportation node space station conceptual design
NASA Technical Reports Server (NTRS)
1988-01-01
A number of recent studies have addressed the problem of a transportation node space station. How things would change or what addition facilities would be needed to support a major lunar or Mars initiative is a much often asked question. The support of a lunar base, requiring stacks on the order of 200 metric tons each to land 25 m tons on the lunar surface with reusable vehicles is addressed. The problem of maintaining and reusing large single stage Orbit Transfer Vehicles (OTVs) and single stage lander/launchers in space are examined. The required people and equipment needed, to maintain these vehicles are only vaguely known at present. The people and equipment needed depend on how well the OTV and lander/launcher can be designed for easy reuse. Since the OTV and lander/launcher are only conceptually defined at present, the real maintenance and refurbishment requirements are unobtainable. An estimate of what is needed, based on previous studies and obvious requirements was therefore made. An attempt was made to err on the conservative side.
Lunar lander conceptual design
NASA Technical Reports Server (NTRS)
Stecklein, J. M.; Petro, A. J.; Stump, W. R.; Adorjan, A. S.; Chambers, T. V.; Donofrio, M.; Hirasaki, J. K.; Morris, O. G.; Nudd, G.; Rawlings, R. P.
1992-01-01
This paper is a first look at the problems of building a lunar lander to support a small lunar surface base. A series of trade studies was performed to define the lander. The initial trades concerned choosing number of stages, payload mass, parking orbit altitude, and propellant type. Other important trades and issues included plane change capability, propellant loading and maintenance location, and reusability considerations. Given a rough baseline, the systems were then reviewed. A conceptual design was then produced. The process was carried through only one iteration. Many more iterations are needed. A transportation system using reusable, aerobraked orbital transfer vehicles (OTV's) is assumed. These OTV's are assumed to be based and maintained at a low Earth orbit (LEO) space station, optimized for transportation functions. Single- and two-stage OTV stacks are considered. The OTV's make the translunar injection (TLI), lunar orbit insertion (LOI), and trans-Earth injection (TEI) burns, as well as midcourse and perigee raise maneuvers.
SLS Block 1-B and Exploration Upper Stage Navigation System Design
NASA Technical Reports Server (NTRS)
Oliver, T. Emerson; Park, Thomas B.; Smith, Austin; Anzalone, Evan; Bernard, Bill; Strickland, Dennis; Geohagan, Kevin; Green, Melissa; Leggett, Jarred
2018-01-01
The SLS Block 1B vehicle is planned to extend NASA's heavy lift capability beyond the initial SLS Block 1 vehicle. The most noticeable change for this vehicle from SLS Block 1 is the swapping of the upper stage from the Interim Cryogenic Propulsion stage (ICPS), a modified Delta IV upper stage, to the more capable Exploration Upper Stage (EUS). As the vehicle evolves to provide greater lift capability and execute more demanding missions so must the SLS Integrated Navigation System to support those missions. The SLS Block 1 vehicle carries two independent navigation systems. The responsibility of the two systems is delineated between ascent and upper stage flight. The Block 1 navigation system is responsible for the phase of flight between the launch pad and insertion into Low-Earth Orbit (LEO). The upper stage system assumes the mission from LEO to payload separation. For the Block 1B vehicle, the two functions are combined into a single system intended to navigate from ground to payload insertion. Both are responsible for self-disposal once payload delivery is achieved. The evolution of the navigation hardware and algorithms from an inertial-only navigation system for Block 1 ascent flight to a tightly coupled GPS-aided inertial navigation system for Block 1-B is described. The Block 1 GN&C system has been designed to meet a LEO insertion target with a specified accuracy. The Block 1-B vehicle navigation system is designed to support the Block 1 LEO target accuracy as well as trans-lunar or trans-planetary injection accuracy. This is measured in terms of payload impact and stage disposal requirements. Additionally, the Block 1-B vehicle is designed to support human exploration and thus is designed to minimize the probability of Loss of Crew (LOC) through high-quality inertial instruments and Fault Detection, Isolation, and Recovery (FDIR) logic. The preliminary Block 1B integrated navigation system design is presented along with the challenges associated with meeting the design objectives. This paper also addresses the design considerations associated with the use of Block 1 and Commercial Off-the-Shelf (COTS) avionics for Block 1-B/EUS as part of an integrated vehicle suite for orbital operations.
The design of two stage to orbit vehicles
NASA Astrophysics Data System (ADS)
Gregorek, G. M.; Ramsay, T. N.
1991-09-01
Two designs are presented for a two-stage-to-orbit vehicle to complement an existing heavy lift vehicle. The payload is 10,000 lbs and 27 ft long by 10 ft in diameter for design purposes and must be carried to a low earth orbit by an air-breathing carrier configuration that can take off horizontally within 15,000 ft. Two designs are presented: a delta wing/body carrier in which the fuselage contains the orbiter; and a cranked-delta wing/body carrier in which the orbiter is carried piggy back. The engines for both carriers are turbofanramjets powered with liquid hydrogen, and the orbiters employ either a Space Shuttle Main Engine or a half-scale version with additional scramjet engines. The orbiter based on a full-scale Space Shuttle Main Engine is found to have a significantly higher takeoff weight which results in a higher total takeoff weight.
The Delta launch vehicle Model 2914 series
NASA Technical Reports Server (NTRS)
Gunn, C. R.
1973-01-01
Description of a new, medium-class Delta launch-vehicle configuration, the three-stage Model 2914. The first stage of this vehicle is composed of a liquid-propellant core which is thrust-augmented with up to nine strap-on solid-propellant motors. The second stage, recently uprated with a strap-down inertial guidance system, is now being modified to adapt the liquid-propellant descent engine from the Apollo Lunar Excursion Module. The third stage is a spin-stabilized solid-propellant motor. The Model 2914 is capable of injecting 2040 kg into low earth orbit, 705 kg into geosynchronous transfer orbit, or 455 kg into an escape trajectory.
NASA Technical Reports Server (NTRS)
Tomsik, Thomas M.
2002-01-01
Propellant densification has been identified as a critical technology in the development of single-stage-to-orbit reusable launch vehicles. Technology to create supercooled high-density liquid oxygen (LO2) and liquid hydrogen (LH2) is a key means to lowering launch vehicle costs. The densification of cryogenic propellants through subcooling allows 8 to 10 percent more propellant mass to be stored in a given unit volume, thereby improving the launch vehicle's overall performance. This allows for higher propellant mass fractions than would be possible with conventional normal boiling point cryogenic propellants, considering the normal boiling point of LO2 and LH2.
CFD analysis of hypersonic, chemically reacting flow fields
NASA Technical Reports Server (NTRS)
Edwards, T. A.
1993-01-01
Design studies are underway for a variety of hypersonic flight vehicles. The National Aero-Space Plane will provide a reusable, single-stage-to-orbit capability for routine access to low earth orbit. Flight-capable satellites will dip into the atmosphere to maneuver to new orbits, while planetary probes will decelerate at their destination by atmospheric aerobraking. To supplement limited experimental capabilities in the hypersonic regime, computational fluid dynamics (CFD) is being used to analyze the flow about these configurations. The governing equations include fluid dynamic as well as chemical species equations, which are being solved with new, robust numerical algorithms. Examples of CFD applications to hypersonic vehicles suggest an important role this technology will play in the development of future aerospace systems. The computational resources needed to obtain solutions are large, but solution adaptive grids, convergence acceleration, and parallel processing may make run times manageable.
NASA Technical Reports Server (NTRS)
Helms, V. T., III; Bradley, P. F.
1984-01-01
Results are presented for oil flow and phase change paint heat transfer tests conducted on a 0.006 scale model of a proposed single stage to orbit control configured vehicle. The data were taken at angles of attack up to 40 deg at a free stream Mach number of 10 for Reynolds numbers based on model length of 0.5 x 10 to the 6th power, 1.0 x 10 to the 6th power and 2.0 x 10 to the 6th power. The magnitude and distribution of heating are characterized in terms of angle of attack and Reynolds number aided by an analysis of the flow data which are used to suggest the presence of various three dimensional flow structures that produce the observed heating patterns. Of particular interest are streak heating patterns that result in high localized heat transfer rates on the wing windward surface at low to moderate angles of attack. These streaks are caused by the bow-shock/wing-shock interaction and formation of the wing-shock. Embedded vorticity was found to be associated with these interactions.
Future X Pathfinder: Quick, Low Cost Flight Testing for Tomorrow's Launch Vehicles
NASA Technical Reports Server (NTRS)
London, John, III; Sumrall, Phil
1999-01-01
The DC-X and DC-XA Single Stage Technology flight program demonstrated the value of low cost rapid prototyping and flight testing of launch vehicle technology testbeds. NASA is continuing this important legacy through a program referred to as Future-X Pathfinder. This program is designed to field flight vehicle projects that cost around $100M each, with a new vehicle flying about every two years. Each vehicle project will develop and extensively flight test a launch vehicle technology testbed that will advance the state of the art in technologies directly relevant to future space transportation systems. There are currently two experimental, or "X" vehicle projects in the Pathfinder program, with additional projects expected to follow in the near future. The first Pathfinder project is X-34. X-34 is a suborbital rocket plane capable of flights to Mach 8 and 75 kilometers altitude. There are a number of reusable launch vehicle technologies embedded in the X-34 vehicle design, such as composite structures and propellant tanks, and advanced reusable thermal protection systems. In addition, X-34 is designed to carry experiments applicable to both the launch vehicle and hypersonic aeronautics community. X-34 is scheduled to fly later this year. The second Pathfinder project is the X-37. X-37 is an orbital space plane that is carried into orbit either by the Space Shuttle or by an expendable launch vehicle. X-37 provides NASA access to the orbital and orbital reentry flight regimes with an experimental testbed vehicle. The vehicle will expose embedded and carry-on advanced space transportation technologies to the extreme environments of orbit and reentry. Early atmospheric approach and landing tests of an unpowered version of the X-37 will begin next year, with orbital flights beginning in late 2001. Future-X Pathfinder is charting a course for the future with its growing fleet of low-cost X- vehicles. X-34 and X-37 are leading the assault on high launch costs and enabling the flight testing of technologies that will lead to affordable access to space.
NASA Technical Reports Server (NTRS)
Martinovic, Zoran N.; Cerro, Jeffrey A.
2002-01-01
This is an interim user's manual for current procedures used in the Vehicle Analysis Branch at NASA Langley Research Center, Hampton, Virginia, for launch vehicle structural subsystem weight estimation based on finite element modeling and structural analysis. The process is intended to complement traditional methods of conceptual and early preliminary structural design such as the application of empirical weight estimation or application of classical engineering design equations and criteria on one dimensional "line" models. Functions of two commercially available software codes are coupled together. Vehicle modeling and analysis are done using SDRC/I-DEAS, and structural sizing is performed with the Collier Research Corp. HyperSizer program.
Preliminary Sizing of Vertical Take-off Rocket-based Combined-cycle Powered Launch Vehicles
NASA Technical Reports Server (NTRS)
Roche, Joseph M.; McCurdy, David R.
2001-01-01
The task of single-stage-to-orbit has been an elusive goal due to propulsion performance, materials limitations, and complex system integration. Glenn Research Center has begun to assemble a suite of relationships that tie Rocket-Based Combined-Cycle (RBCC) performance and advanced material data into a database for the purpose of preliminary sizing of RBCC-powered launch vehicles. To accomplish this, a near optimum aerodynamic and structural shape was established as a baseline. The program synthesizes a vehicle to meet the mission requirements, tabulates the results, and plots the derived shape. A discussion of the program architecture and an example application is discussed herein.
X-33 Injector Ignition Single Cell Test
NASA Technical Reports Server (NTRS)
1997-01-01
The X-33 injector ignition single cell was tested at the Marshall Space Flight Center test stand 116. The X-33 was a sub-scale technology demonstrator prototype of a Reusable Launch Vehicle (RLV) manufactured and named by Lockheed Martin as the Venture Star. The goal of the program was to demonstrate the technologies needed for a full size, single-stage-to-orbit RLV, thus enabling private industry to build and operate the RLV in the first decade of the 21st century. The X-33 program was cancelled in 2001.
Thrust augmentation options for the Beta 2 two-stage-to-orbit vehicle
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
1993-01-01
NASA LeRC is continuing to study propulsion concepts for a horizontal takeoff and landing, fully reusable, two-stage-to-orbit vehicle. This will be capable of launching and returning a 10,000 pound payload to a 100 nautical mile polar orbit using low-risk technology. The vehicle, Beta 2, is a derivative of the USAF/Boeing Beta vehicle which was designed to deliver a 50,000 pound payload to a similar orbit. Beta 2 stages at Mach 6.5 and about 100,000 ft altitude. The propulsion system for the booster is an over/under turbine bypass engine/ramjet configuration. In this paper, several options for thrust augmentation were studied in order to improve the performance of this engine where there was a critical need. Options studies were turbine engine overspeed in the transonic region, water injection at a various turbine engine locations also during the transonic region, and water injection at the turbine engine face during high speed operation. The methodology, constraints, propulsion performance, and mission study results are presented.
NASA Technical Reports Server (NTRS)
1987-01-01
The detailed design of a small beam-powered trans-atmospheric vehicle, 'The Apollo Lightcraft,' was selected as the project for the design course. The vehicle has a lift-off gross weight of about six (6) metric tons and the capability to transport 500 kg of payload (five people plus spacesuits) to low Earth orbit. Beam power was limited to 10 gigawatts. The principal goal of this project is to reduce the low-Earth-orbit payload delivery cost by at least three orders of magnitude below the space shuttle orbiter--in the post 2020 era. The completely reusable, single-stage-to-orbit, shuttle craft will take off and land vertically, and have a reentry heat shield integrated with its lower surface--much like the Apollo command module. At the appropriate points along the launch trajectory, the combined cycle propulsion system will transition through three or four air breathing modes, and finally a pure rocket mode for orbital insertion. As with any revolutionary flight vehicle, engine development must proceed first. Hence, the objective for the spring semester propulsion course was to design and perform a detailed theoretical analysis on an advanced combined-cycle engine suitable for the Apollo Light craft. The analysis indicated that three air breathing cycles will be adequate for the mission, and that the ram jet cycle is unnecessary.
A High-Heritage Blunt-Body Entry, Descent, and Landing Concept for Human Mars Exploration
NASA Technical Reports Server (NTRS)
Price, Humphrey; Manning, Robert; Sklyanskiy, Evgeniy; Braun, Robert
2016-01-01
Human-scale landers require the delivery of much heavier payloads to the surface of Mars than is possible with entry, descent, and landing (EDL) approaches used to date. A conceptual design was developed for a 10 m diameter crewed Mars lander with an entry mass of approx.75 t that could deliver approx.28 t of useful landed mass (ULM) to a zero Mars areoid, or lower, elevation. The EDL design centers upon use of a high ballistic coefficient blunt-body entry vehicle and throttled supersonic retro-propulsion (SRP). The design concept includes a 26 t Mars Ascent Vehicle (MAV) that could support a crew of 2 for approx.24 days, a crew of 3 for approx.16 days, or a crew of 4 for approx.12 days. The MAV concept is for a fully-fueled single-stage vehicle that utilizes a single pump-fed 250 kN engine using Mono-Methyl Hydrazine (MMH) and Mixed Oxides of Nitrogen (MON-25) propellants that would deliver the crew to a low Mars orbit (LMO) at the end of the surface mission. The MAV concept could potentially provide abort-to-orbit capability during much of the EDL profile in response to fault conditions and could accommodate return to orbit for cases where the MAV had no access to other Mars surface infrastructure. The design concept for the descent stage utilizes six 250 kN MMH/MON-25 engines that would have very high commonality with the MAV engine. Analysis indicates that the MAV would require approx.20 t of propellant (including residuals) and the descent stage would require approx.21 t of propellant. The addition of a 12 m diameter supersonic inflatable aerodynamic decelerator (SIAD), based on a proven flight design, was studied as an optional method to improve the ULM fraction, reducing the required descent propellant by approx.4 t.
A High-Heritage Blunt-Body Entry, Descent, and Landing Concept for Human Mars Exploration
NASA Technical Reports Server (NTRS)
Price, Humphrey; Manning, Robert; Sklyanskiy, Evgeniy; Braun, Robert
2016-01-01
Human-scale landers require the delivery of much heavier payloads to the surface of Mars than is possible with entry, descent, and landing (EDL) approaches used to date. A conceptual design was developed for a 10 m diameter crewed Mars lander with an entry mass of approx. 75 t that could deliver approx. 28 t of useful landed mass (ULM) to a zero Mars areoid, or lower, elevation. The EDL design centers upon use of a high ballistic coefficient blunt-body entry vehicle and throttled supersonic retro-propulsion (SRP). The design concept includes a 26 t Mars Ascent Vehicle (MAV) that could support a crew of 2 for approx. 24 days, a crew of 3 for approx.16 days, or a crew of 4 for approx.12 days. The MAV concept is for a fully-fueled single-stage vehicle that utilizes a single pump-fed 250 kN engine using Mono-Methyl Hydrazine (MMH) and Mixed Oxides of Nitrogen (MON-25) propellants that would deliver the crew to a low Mars orbit (LMO) at the end of the surface mission. The MAV concept could potentially provide abort-to-orbit capability during much of the EDL profile in response to fault conditions and could accommodate return to orbit for cases where the MAV had no access to other Mars surface infrastructure. The design concept for the descent stage utilizes six 250 kN MMH/MON-25 engines that would have very high commonality with the MAV engine. Analysis indicates that the MAV would require approx. 20 t of propellant (including residuals) and the descent stage would require approx. 21 t of propellant. The addition of a 12 m diameter supersonic inflatable aerodynamic decelerator (SIAD), based on a proven flight design, was studied as an optional method to improve the ULM fraction, reducing the required descent propellant by approx.4 t.
Investigation of Advanced Propellants to Enable Single Stage to Orbit Launch Vehicles
2006-10-30
reduced as a consequence. Stanley et al. also investigated the effecting of varying the engine O:F ratio. A higher O:F than the point of departure...release; distribution unlimited APPROVED FOR FINAL DRAFT SUBMISSION For the Department of Mechanical Engineering : We, the undersigned, certify...is ready to be reviewed. Jason Mossman Project Author Walter Loscutoff (Chair) Department of Mechanical Engineering
Laser-energized MHD generator for hypersonic electric air-turborockets
NASA Technical Reports Server (NTRS)
Myrabo, L. N.; Rosa, R. J.; Moder, J. P.; Blandino, J. S.; Frazier, S. R.
1987-01-01
The analysis and design of an open cycle Faraday MHD generator suitable for use in an electric air-turborocket cycle, the MHD-fanjet, is presented. The working fluid for the generators is unseeded high temperature hydrogen, generated by a standing, laser-supported combustion wave. This study also examines the performance of an advanced combined-cycle engine, powered by beamed energy, proposed for use in future SSTO aerospacecraft. This innovative engine incorporates the MHD-fanjet for the acceleration role within the hypersonic flight regime, from about Mach 11 to above Mach 25. Performance results indicate that specific impulses could fall in the range of 10,000 to 16,000 seconds. This would enable propellant mass fractions as low as 6 percent to 9 percent for such advanced shuttlecraft flying SSTO missions to low earth orbit.
Advanced Space Transportation Program (ASTP)
2002-10-01
NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle during separation of stages. For SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first-generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado; a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.
Aerodynamic characteristics of the upper stages of a launch vehicle in low-density regime
NASA Astrophysics Data System (ADS)
Oh, Bum Seok; Lee, Joon Ho
2016-11-01
Aerodynamic characteristics of the orbital block (remaining configuration after separation of nose fairing and 1st and 2nd stages of the launch vehicle) and the upper 2-3stage (configuration after separation of 1st stage) of the 3 stages launch vehicle (KSLV-II, Korea Space Launch Vehicle) at high altitude of low-density regime are analyzed by SMILE code which is based on DSMC (Direct Simulation Monte-Carlo) method. To validating of the SMILE code, coefficients of axial force and normal forces of Apollo capsule are also calculated and the results agree very well with the data predicted by others. For the additional validations and applications of the DSMC code, aerodynamic calculation results of simple shapes of plate and wedge in low-density regime are also introduced. Generally, aerodynamic characteristics in low-density regime differ from those of continuum regime. To understand those kinds of differences, aerodynamic coefficients of the upper stages (including upper 2-3 stage and the orbital block) of the launch vehicle in low-density regime are analyzed as a function of Mach numbers and altitudes. The predicted axial force coefficients of the upper stages of the launch vehicle are very high compared to those in continuum regime. In case of the orbital block which flies at very high altitude (higher than 250km), all aerodynamic coefficients are more dependent on velocity variations than altitude variations. In case of the upper 2-3 stage which flies at high altitude (80km-150km), while the axial force coefficients and the locations of center of pressure are less changed with the variations of Knudsen numbers (altitudes), the normal force coefficients and pitching moment coefficients are more affected by variations of Knudsen numbers (altitude).
Feasibility study on the ultra-small launch vehicle
NASA Astrophysics Data System (ADS)
Hayashi, T.; Matsuo, H.; Yamamoto, H.; Orii, T.; Kimura, A.
1986-10-01
An idea for a very small satellite launcher and a very small satellite is presented. The launcher is a three staged solid rocket based on a Japanese single stage sounding rocket S-520. Its payload capability is estimated to be 17 kg into 200 x 1000 km elliptical orbit. The spin-stabilized satellite with sun-pointing capability, though small, has almost all functions necessary for usual satellites. In its design, universality is stressed to meet various kinds of mission interface requirements; it can afford 5 kg to mission instruments.
The K-1 Active Dispenser for Orbit Transfer
NASA Astrophysics Data System (ADS)
Lai, G.; Cochran, D.; Curtis, R.
2002-01-01
Kistler Aerospace Corporation is building the K-1, the world's first fully reusable launch vehicle. The two-stage K- 1 is designed primarily to service the market for low-earth orbit (LEO) missions, due to Kistler's need to recover both stages. For customers requiring payload delivery to high-energy orbits, Kistler can outfit the payload with a K- 1 Active Dispenser (an expendable third stage). The K-1 second stage will deploy the Active Dispenser mated with its payload into a 200 km circular LEO parking orbit. From this orbit, the Active Dispenser would use its own propulsion to place its payload into the final desired drop-off orbit or earth-escape trajectory. This approach allows Kistler to combine the low-cost launch services offered by the reusable two-stage K-1 with the versatility of a restartable, expendable upper stage. Enhanced with an Active Dispenser, the K-1 will be capable of delivering 1,500 kg to a geosynchronous transfer orbit or up to approximately 1,000 kg into a Mars rendezvous trajectory. The list price of a K-1 Active Dispenser launch is 25 million (plus the price of mission unique integration services) significantly less than the price of any launch vehicle service in the world with comparable capability.
Solar power satellite system definition study. Part 3: Preferred concept system definition
NASA Technical Reports Server (NTRS)
1978-01-01
A concise but complete system description for the preferred concept of the Solar Power Satellite System is presented. Significant selection decisions included the following: (1) single crystal silicon solar cells; (2) glass encapsulated solar cell blankets; (3) concentration ratio 1; (4) graphite composite materials for primary structure; (5) electric propulsion for attitude control; (6) klystron RF amplifier tubes for the transmitter; (7) one kilometer diameter transmitter with a design trans mission link output power of 5,000 megawatts; (8) construction in low earth orbit with self-powered transfer of satellite modules to geosynchronous orbit; and (9) two-stage winged fully reusable rocket vehicle for transportation to low earth orbit.
NASA Astrophysics Data System (ADS)
Bell, Stephen C.; Ginsburg, Marc A.; Rao, Prabhakara P.
An important part of space launch vehicle mission planning for a planetary mission is the integrated analysis of guidance and performance dispersions for both booster and upper stage vehicles. For the Mars Observer mission, an integrated trajectory analysis was used to maximize the scientific payload and to minimize injection errors by optimizing the energy management of both vehicles. This was accomplished by designing the Titan III booster vehicle to inject into a hyperbolic departure plane, and the Transfer Orbit Stage (TOS) to correct any booster dispersions. An integrated Monte Carlo analysis of the performance and guidance dispersions of both vehicles provided sensitivities, an evaluation of their guidance schemes and an injection error covariance matrix. The polynomial guidance schemes used for the Titan III variable flight azimuth computations and the TOS solid rocket motor ignition time and burn direction derivations accounted for a wide variation of launch times, performance dispersions, and target conditions. The Mars Observer spacecraft was launched on 25 September 1992 on the Titan III/TOS vehicle. The post flight analysis indicated that a near perfect park orbit injection was achieved, followed by a trans-Mars injection with less than 2sigma errors.
Minimum fuel trajectory for the aerospace-plane
NASA Technical Reports Server (NTRS)
Breakwell, John V.; Golan, Oded; Sauvageot, Anne
1990-01-01
An overall trajectory for a single-stage-to-orbit vehicle with an initial weight of 234 tons is calculated, and four different propulsion models including turbojet, ramjet, scramjet, and rocket are considered. First, the atmospheric flight in the thicker atmosphere is discussed with emphasis on trajectory optimization, optimization problem, aerodynamic problem, propulsion model, and initial conditions. The performance of turbojet and ramjet-scramjet engines is analyzed; and then the flight to orbit is assessed from the optimization point of view. It is shown that roll modulation saves little during the trajectory, and the combined application of airbreathing propulsion and aerodynamic lift is suggested.
Surface Catalysis and Characterization of Proposed Candidate TPS for Access-to-Space Vehicles
NASA Technical Reports Server (NTRS)
Stewart, David A.
1997-01-01
Surface properties have been obtained on several classes of thermal protection systems (TPS) using data from both side-arm-reactor and arc-jet facilities. Thermochemical stability, optical properties, and coefficients for atom recombination were determined for candidate TPS proposed for single-stage-to-orbit vehicles. The systems included rigid fibrous insulations, blankets, reinforced carbon carbon, and metals. Test techniques, theories used to define arc-jet and side-arm-reactor flow, and material surface properties are described. Total hemispherical emittance and atom recombination coefficients for each candidate TPS are summarized in the form of polynomial and Arrhenius expressions.
Tether Transportation System Study
NASA Technical Reports Server (NTRS)
Bangham, M. E.; Lorenzini, E.; Vestal, L.
1998-01-01
The projected traffic to geostationary earth orbit (GEO) is expected to increase over the next few decades. At the same time, the cost of delivering payloads from the Earth's surface to low earth orbit (LEO) is projected to decrease, thanks in part to the Reusable Launch Vehicle (RLV). A comparable reduction in the cost of delivering payloads from LEO to GEO is sought. The use of in-space tethers, eliminating the requirement for traditional chemical upper stages and thereby reducing the launch mass, has been identified as such an alternative. Spinning tethers are excellent kinetic energy storage devices for providing the large delta vee's required for LEO to GEO transfer. A single-stage system for transferring payloads from LEO to GEO was proposed some years ago. The study results presented here contain the first detailed analyses of this proposal, its extension to a two-stage system, and the likely implementation of the operational system.
Design of an unmanned, reusable vehicle to de-orbit debris in Earth orbit
NASA Technical Reports Server (NTRS)
Aziz, Shahed; Cunningham, Timothy W.; Moore-Mccassey, Michelle
1990-01-01
The space debris problem is becoming more important because as orbital missions increase, the amount of debris increases. It was the design team's objective to present alternative designs and a problem solution for a deorbiting vehicle that will alleviate the problem by reducing the amount of large debris in earth orbit. The design team was asked to design a reusable, unmanned vehicle to de-orbit debris in earth orbit. The design team will also construct a model to demonstrate the system configuration and key operating features. The alternative designs for the unmanned, reusable vehicle were developed in three stages: selection of project requirements and success criteria, formulation of a specification list, and the creation of alternatives that would satisfy the standards set forth by the design team and their sponsor. The design team selected a Chain and Bar Shot method for deorbiting debris in earth orbit. The De-orbiting Vehicle (DOV) uses the NASA Orbital Maneuvering Vehicle (OMV) as the propulsion and command modules with the deorbiting module attached to the front.
Hotol and Saenger are good political trump cards
NASA Astrophysics Data System (ADS)
Ruppe, Harry O.
Political and technological aspects of proposals for ESA reusable and/or SSTO launch vehicles (LVs) are examined in a critical review. The lack of reliable performance and cost estimates for such unconventional LV designs as Hotol, Saenger II, LART, ADV, and EARL is pointed out, and it is argued that progress toward the ESA goal of greater European space autonomy could be seriously endangered by abandoning or underfunding the current Ariane/Hermes LV program. The cost and reliability of expendable and reusable LV systems are discussed; two-stage and hybrid air-breathing engine concepts are compared; and the need for fundamental in-depth planning studies based on presently available technology or realistic projections is stressed. Long-term funding of such research at about 5 percent of present Ariane/Hermes levels is recommended.
NASA Technical Reports Server (NTRS)
DeBonis, J. R.; Trefny, C. J.; Steffen, C. J., Jr.
1999-01-01
Design and analysis of the inlet for a rocket based combined cycle engine is discussed. Computational fluid dynamics was used in both the design and subsequent analysis. Reynolds averaged Navier-Stokes simulations were performed using both perfect gas and real gas assumptions. An inlet design that operates over the required Mach number range from 0 to 12 was produced. Performance data for cycle analysis was post processed using a stream thrust averaging technique. A detailed performance database for cycle analysis is presented. The effect ot vehicle forebody compression on air capture is also examined.
NASA Technical Reports Server (NTRS)
Calise, A. J.; Flandro, G. A.; Corban, J. E.
1990-01-01
General problems associated with on-board trajectory optimization, propulsion system cycle selection, and with the synthesis of guidance laws were addressed for an ascent to low-earth-orbit of an air-breathing single-stage-to-orbit vehicle. The NASA Generic Hypersonic Aerodynamic Model Example and the Langley Accelerator aerodynamic sets were acquired and implemented. Work related to the development of purely analytic aerodynamic models was also performed at a low level. A generic model of a multi-mode propulsion system was developed that includes turbojet, ramjet, scramjet, and rocket engine cycles. Provisions were made in the dynamic model for a component of thrust normal to the flight path. Computational results, which characterize the nonlinear sensitivity of scramjet performance to changes in vehicle angle of attack, were obtained and incorporated into the engine model. Additional trajectory constraints were introduced: maximum dynamic pressure; maximum aerodynamic heating rate per unit area; angle of attack and lift limits; and limits on acceleration both along and normal to the flight path. The remainder of the effort focused on required modifications to a previously derived algorithm when the model complexity cited above was added. In particular, analytic switching conditions were derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another for two cases: the case in which engine cycle operations can overlap, and the case in which engine cycle operations are mutually exclusive. The resulting guidance algorithm was implemented in software and exercised extensively. It was found that the approximations associated with the assumed time scale separation employed in this work are reasonable except over the Mach range from roughly 5 to 8. This phenomenon is due to the very large thrust capability of scramjets in this Mach regime when sized to meet the requirement for ascent to orbit. By accounting for flight path angle and flight path angle rate in construction of the flight path over this Mach range, the resulting algorithm provides the means for rapid near-optimal trajectory generation and propulsion cycle selection over the entire Mach range from take-off to orbit.
NASA Technical Reports Server (NTRS)
1988-01-01
The overall goal for this NASA/USRA-sponsored 'Apollo Lightcraft Project' is to develop a revolutionary launch vehicle technology that can reduce payload transport costs by a factor of 1000 below the Space Shuttle Orbiter. The RPI design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. This second year focused on systems integration and analysis of the 'Apollo Lightcraft'. This beam-powered, single-stage-to-orbit vehicle is envisioned as the globe-trotting family shuttlecraft of the 21st century. Detailed investigations of the Apollo Lightcraft Project during the second year of study helped evolve the propulsion system design, while focusing on the following areas: (1) man/machine interface; (2) flight control systems; (3) power beaming system architecture; (4) reentry aerodynamics; (5) shroud structural dynamics; and (6) optimal trajectory analysis.
NASA Technical Reports Server (NTRS)
1972-01-01
Safety requirements and guidelines are listed for the sortie module, upper stage vehicle, and space station for the earth orbit operations of the space shuttle program. The requirements and guidelines are for vehicle design, safety devices, warning devices, operational procedures, and residual hazards.
Near-Optimal Re-Entry Trajectories for Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Chou, H.-C.; Ardema, M. D.; Bowles, J. V.
1997-01-01
A near-optimal guidance law for the descent trajectory for earth orbit re-entry of a fully reusable single-stage-to-orbit pure rocket launch vehicle is derived. A methodology is developed to investigate using both bank angle and altitude as control variables and selecting parameters that maximize various performance functions. The method is based on the energy-state model of the aircraft equations of motion. The major task of this paper is to obtain optimal re-entry trajectories under a variety of performance goals: minimum time, minimum surface temperature, minimum heating, and maximum heading change; four classes of trajectories were investigated: no banking, optimal left turn banking, optimal right turn banking, and optimal bank chattering. The cost function is in general a weighted sum of all performance goals. In particular, the trade-off between minimizing heat load into the vehicle and maximizing cross range distance is investigated. The results show that the optimization methodology can be used to derive a wide variety of near-optimal trajectories.
NASA Technical Reports Server (NTRS)
Naftel, J. Christopher; Powell, Richard W.
1993-01-01
One of the promising launch concepts that could replace the current space shuttle launch system is a two-stage, winged, vertical-takeoff, fully reusable launch vehicle. During the boost phase of ascent, the booster provides propellant for the orbiter engines through a cross-feed system. When the vehicle reaches a Mach number of 3, the booster propellants are depleted and the booster is staged and glides unpowered to a horizontal landing at a launch site runway. Two major design issues for this class of vehicle are the staging maneuver and the booster glideback. For the staging maneuver analysis, a technique was developed that provides for a successful separation of the booster from the orbiter over a wide range of staging angles of attack. A longitudinal flight control system was developed for control of the booster during the staging maneuver. For the booster glide back analysis, a guidance algorithm was developed that successfully guides the booster from the completion of the staging maneuver to a launch site runway while encountering many off-nominal atmospheric, aerodynamic, and staging conditions.
NASA Technical Reports Server (NTRS)
Hattis, Philip D.; Malchow, Harvey L.
1991-01-01
A tool which generates optimal trajectory/control histories in an integrated manner is generically adapted to the treatment of single-stage-to-orbit air-breathing hypersonic vehicles. The methodology is implemented as a two point boundary value problem solution technique. Its use permits an assessment of an entire near-minimum-fuel trajectory and desired control strategy from takeoff to orbit while satisfying physically derived inequality constraints and while achieving efficient propulsive mode phasing. A simpler analysis strategy that partitions the trajectory into several boundary condition matched segments is also included to construct preliminary trajectory and control history representations with less computational burden than is required for the overall flight profile assessment. A demonstration was accomplished using a tabulated example (winged-cone accelerator) vehicle model that is combined with a newly developed multidimensional cubic spline data smoothing routine. A constrained near-fuel-optimal trajectory, imposing a dynamic pressure limit of 1000 psf, was developed from horizontal takeoff to 20,000 ft/sec relative air speed while aiming for a polar orbit. Previously unspecified propulsive discontinuities were located. Flight regimes demanding rapid attitude changes were identified, dictating control effector and closed-loop controller authority was ascertained after evaluating effector use for vehicle trim. Also, inadequacies in vehicle model representations and specific subsystem models with insufficient fidelity were determined based on unusual control characteristics and/or excessive sensitivity to uncertainty.
Polar Satellite Launch Vehicle (PSLV) development programme in India
NASA Astrophysics Data System (ADS)
Janardhana, E.
The design of the Indian Polar Satellite Launch Vehicle (PSLV), for the launching (by 1990) of 1-1.5-tonne payloads into 900-km sun-synchronous orbit, is discussed, and the mission development program is described. The first stage is a solid propellant motor augmented by six solid strap-ons, and the second stage of liquid storable propellant has a high thrust gimballed engine. A high performance solid motor incorporates a flex nozzle for control as the third stage, and the fourth stage is a liquid propulsion system using N204 and MMH propellant with two regeneratively cooled engines. The vehicle equipment bay, housing the inertial guidance and control system, and the TTC system are located around the fourth stage for guidance and tracking with the associated ground segment until spacecraft ejection into orbit.
1967-01-01
This is a cutaway illustration of the Saturn V launch vehicle with callouts of the major components. The Saturn V is the largest and most powerful launch vehicle developed in the United States. It was a three stage rocket, 363 feet in height, used for sending American astronauts to the moon and for placing the Skylab in Earth orbit. The Saturn V was designed to perform Earth orbital missions through the use of the first two stages, while all three stages were used for lunar expeditions. The S-IC stage (first stage) was powered by five F- engines, which burned kerosene and liquid oxygen to produce more than 7,500,000 pounds of thrust. The S-II (second) stage was powered by five J-2 engines, that burned liquid hydrogen and liquid oxygen and produced 1,150,000 pounds thrust. The S-IVB (third) stage used one J-2 engine, producing 230,000 pounds of thrust, with a re-start capability. The Marshall Space Flight Center and its contractors designed, developed, and assembled the Saturn V launch vehicle stages.
2004-09-03
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers maneuver the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft and mated upper stage toward the second stage at right in preparation or launch aboard the Orbital Sciences Pegasus XL launch vehicle. Pegasus will launch DART into a circular polar orbit of approximately 475 miles. Built for NASA by Orbital Sciences Corporation, DART was designed as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-03
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers maneuver the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft and mated upper stage toward the second stage behind them in preparation or launch aboard the Orbital Sciences Pegasus XL launch vehicle. Pegasus will launch DART into a circular polar orbit of approximately 475 miles. Built for NASA by Orbital Sciences Corporation, DART was designed as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At Vandenberg Air Force Base in California, workers maneuver the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft and mated upper stage toward the second stage at right in preparation or launch aboard the Orbital Sciences Pegasus XL launch vehicle. Pegasus will launch DART into a circular polar orbit of approximately 475 miles. Built for NASA by Orbital Sciences Corporation, DART was designed as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASAs Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
TROPIX: A solar electric propulsion flight experiment
NASA Technical Reports Server (NTRS)
Hickman, J. Mark; Hillard, G. Barry; Oleson, Steven R.
1993-01-01
The Transfer Orbit Plasma Interaction Experiment (TROPIX) is a proposed scientific experiment and flight demonstration of a solar electric propulsion vehicle. Its mission goals are to significantly increase our knowledge of Earth's magnetosphere and its associated plasma environment and to demonstrate an operational solar electric upper stage (SEUS) for small launch vehicles. The scientific investigations and flight demonstration technology experiments are uniquely interrelated because of the spacecraft's interaction with the surrounding environment. The data obtained will complement previous studies of the Earth's magnetosphere and space plasma environment by supplying the knowledge necessary to attain the strategic objectives of the NASA Office of Space Science. This first operational use of a primary ion propulsion vehicle, designed to withstand the harsh environments from low Earth orbit to geosynchronous Earth orbit, may lead to the development of a new class of electric propulsion upper stages or space-based transfer vehicles and may improve future spacecraft design and safety.
Reusable aerospace system with horizontal take-off
NASA Astrophysics Data System (ADS)
Lozino-Lozinskii, G. E.; Shkadov, L. M.; Plokhikh, V. P.
1990-10-01
An aerospace system (ASS) concept aiming at cost reductions for launching facilities, reduction of ground preparations for start and launch phases, flexibility of use, international inspection of space systems, and emergency rescue operations is presented. The concept suggests the utilization of an AN-225 subsonic carrier aircraft capable of carrying up to 250 ton of the external load, external fuel tank, and orbital spacecraft. It includes a horizontal take-off, full reusable or single-use system, orbital aircraft with hypersonic characteristics, the use of an air-breathing jet engine on the first stage of launch, and the utilization of advanced structural materials. Among possible applications for ASS are satellite launches into low supporting orbits, suborbital cargo and passenger flights, scientific and economic missions, and the technical servicing of orbital vehicles and stations.
Launch Condition Deviations of Reusable Launch Vehicle Simulations in Exo-Atmospheric Zoom Climbs
NASA Technical Reports Server (NTRS)
Urschel, Peter H.; Cox, Timothy H.
2003-01-01
The Defense Advanced Research Projects Agency has proposed a two-stage system to deliver a small payload to orbit. The proposal calls for an airplane to perform an exo-atmospheric zoom climb maneuver, from which a second-stage rocket is launched carrying the payload into orbit. The NASA Dryden Flight Research Center has conducted an in-house generic simulation study to determine how accurately a human-piloted airplane can deliver a second-stage rocket to a desired exo-atmospheric launch condition. A high-performance, fighter-type, fixed-base, real-time, pilot-in-the-loop airplane simulation has been modified to perform exo-atmospheric zoom climb maneuvers. Four research pilots tracked a reference trajectory in the presence of winds, initial offsets, and degraded engine thrust to a second-stage launch condition. These launch conditions have been compared to the reference launch condition to characterize the expected deviation. At each launch condition, a speed change was applied to the second-stage rocket to insert the payload onto a transfer orbit to the desired operational orbit. The most sensitive of the test cases was the degraded thrust case, yielding second-stage launch energies that were too low to achieve the radius of the desired operational orbit. The handling qualities of the airplane, as a first-stage vehicle, have also been investigated.
PEG Enhancement for EM1 and EM2+ Missions
NASA Technical Reports Server (NTRS)
Von der Porten, Paul; Ahmad, Naeem; Hawkins, Matt
2018-01-01
NASA is currently building the Space Launch System (SLS) Block-1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. The next evolution of SLS, the Block-1B Exploration Mission 2 (EM-2), is currently being designed. The Block-1 and Block-1B vehicles will use the Powered Explicit Guidance (PEG) algorithm. Due to the relatively low thrust-to-weight ratio of the Exploration Upper Stage (EUS), certain enhancements to the Block-1 PEG algorithm are needed to perform Block-1B missions. In order to accommodate mission design for EM-2 and beyond, PEG has been significantly improved since its use on the Space Shuttle program. The current version of PEG has the ability to switch to different targets during Core Stage (CS) or EUS flight, and can automatically reconfigure for a single Engine Out (EO) scenario, loss of communication with the Launch Abort System (LAS), and Inertial Navigation System (INS) failure. The Thrust Factor (TF) algorithm uses measured state information in addition to a priori parameters, providing PEG with an improved estimate of propulsion information. This provides robustness against unknown or undetected engine failures. A loft parameter input allows LAS jettison while maximizing payload mass. The current PEG algorithm is now able to handle various classes of missions with burn arcs much longer than were seen in the shuttle program. These missions include targeting a circular LEO orbit with a low-thrust, long-burn-duration upper stage, targeting a highly eccentric Trans-Lunar Injection (TLI) orbit, targeting a disposal orbit using the low-thrust Reaction Control System (RCS), and targeting a hyperbolic orbit. This paper will describe the design and implementation of the TF algorithm, the strategy to handle EO in various flight regimes, algorithms to cover off-nominal conditions, and other enhancements to the Block-1 PEG algorithm. This paper illustrates challenges posed by the Block-1B vehicle, and results show that the improved PEG algorithm is capable for use on the SLS Block 1-B vehicle as part of the Guidance, Navigation, and Control System.
Rocket stage - Trans-orbit booster Fregat
NASA Astrophysics Data System (ADS)
Asyushkin, V. A.; Papkov, O. V.
1993-10-01
This paper discusses a proposal for increasing the payload-carrying capability of a launch vehicle by using the Fregat booster stage (as the fourth stage for the R-7A launcher and as the fifth stage for the Proton launch vehicle). Particular attention is given to the tasks which the Fregat booster stage is designed to fulfill, the systems which are part of the Fregat, and the launch vehicles which will use Fregat as the upper stage. The main performance parameters of the Fregat stage are presented, as well as diagrams illustrating the performance of the Fregat booster stage.
Flyby of large-size space debris objects and their transition to the disposal orbits in LEO
NASA Astrophysics Data System (ADS)
Baranov, Andrey A.; Grishko, Dmitriy A.; Razoumny, Yury N.; Jun, Li
2017-06-01
The article focuses on the flyby issue involving large-size space debris (LSSD) objects in low Earth orbits. The data on overall sizes of the known upper-stages and last stages of launch-vehicles make it possible to emphasize five compact groups of such objects from the Satellite catalogue in 600-2000 km altitude interval. The flyby maneuvers are executed by a single space vehicle (SV) that transfers the current captured LSSD object to the specially selected circular or elliptical disposal orbit (DO) and after a period of time returns to capture a new one. The flight is always realized when a value of the Right Ascension of the Ascending Node (RAAN) is approximately the same for the current DO and for an orbit of the following LSSD object. Distinctive features of changes in mutual distribution of orbital planes of LSSD within a group are shown on the RAAN deviations' evolution portrait. In case of the first three groups (inclinations 71°, 74° and 81°), the lines describing the relative orientation of orbital planes are quasi-parallel. Such configuration allows easy identification of the flyby order within a group, and calculation of the mission duration and the required total ΔV. In case of the 4th and the 5th groups the RAAN deviations' evolution portrait represents a conjunction of lines chaotically intersecting. The article studies changes in mission duration and in the required ΔV depending on the catalogue number of the first object in the flyby order. The article also contains a comparative efficiency analysis of the two world-wide known schemes applicable to LSSD objects' de-orbiting; the analysis is carried out for all 5 distinguished LSSD groups.
Injection of a microsatellite in circular orbits using a three-stage launch vehicle
NASA Astrophysics Data System (ADS)
Marchi, L. O.; Murcia, J. O.; Prado, A. F. B. A.; Solórzano, C. R. H.
2017-10-01
The injection of a satellite into orbit is usually done by a multi-stage launch vehicle. Nowadays, the space market demonstrates a strong tendency towards the use of smaller satellites, because the miniaturization of the systems improve the cost/benefit of a mission. A study to evaluate the capacity of the Brazilian Microsatellite Launch Vehicle (VLM) to inject payloads into Low Earth Orbits is presented in this paper. All launches are selected to be made to the east side of the Alcântara Launch Center (CLA). The dynamical model to calculate the trajectory consists of the three degrees of freedom (3DOF) associated with the translational movement of the rocket. Several simulations are performed according to a set of restrictions imposed to the flight. The altitude reached in the separation of the second stage, the altitude and velocity of injection, the flight path angle at the moment of the activation of the third stage and the duration of the ballistic flight are presented as a function of the payload carried.
National Aerospace Plane Engine Seals: High Temperature Seal Performance Evaluation
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.
1991-01-01
The key to the successful development of the single stage to orbit National Aerospace Plane (NASP) is the successful development of combined cycle ramjet/scramjet engines that can propel the vehicle to 17,000 mph to reach low Earth orbit. To achieve engine performance over this speed range, movable engine panels are used to tailor engine flow that require low leakage, high temperature seals around their perimeter. NASA-Lewis is developing a family of new high temperature seals to form effective barriers against leakage of extremely hot (greater than 2000 F), high pressure (up to 100 psi) flow path gases containing hydrogen and oxygen. Preventing backside leakage of these explosive gas mixtures is paramount in preventing the potential loss of the engine or the entire vehicle. Seal technology development accomplishments are described in the three main areas of concept development, test, and evaluation and analytical development.
NASA Technical Reports Server (NTRS)
Trimmer, L. L.; Love, D. A.; Decker, J. P.; Blackwell, K. L.; Strike, W. T.; Rampy, J. M.
1972-01-01
Aerodynamic data obtained from a space shuttle abort stage separation wind tunnel test are presented. The .00556 scale models of the orbiter and booster configuration were tested in close proximity using dual balances during the time period of April 21 to April 27 1971. Data were obtained for both booster and orbiter over an angle of attack range from -10 to 10 deg for zero degree sideslip angle. The models were tested at several relative incidence angles and separation distances and power conditions. Plug nozzles utilizing air were used to simulate booster and orbiter plumes at various altitudes along a nominal ascent trajectory. Powered conditions were 100, 50, 25 and 0 percent of full power for the orbiter and 100, 50 and 0 percent of full power for the booster. Pitch control effectiveness data were obtained for both booster and orbiter with power on and off. In addition, launch vehicle data with and without booster power were obtained utilizing a single balance in the booster model. Data were also obtained with the booster canard off in close proximity and for the launch configuration.
The Mars Climate Orbiter is moved for mating with the third stage of the launch vehicle
NASA Technical Reports Server (NTRS)
1998-01-01
In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), the Mars Climate Orbiter (right) is lifted to move it for mating to the third stage of the Boeing Delta II launch vehicle waiting at left. The third stage is a solid-propellant Thiokol Star 48B booster, the same final stage used in the 1996 launch of Mars Global Surveyor. Targeted for launch on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.
Transport and Use of a Centaur Second Stage in Space
NASA Technical Reports Server (NTRS)
Strong, James M.; Morgowicz, Bernard; Drucker, Eric; Tompkins, Paul D.; Kennedy, Brian; Barber, Robert D,; Luzod, Louie T.; Kennedy, Brian Michael; Luzod, Louie T.
2010-01-01
As nations continue to explore space, the desire to reduce costs will continue to grow. As a method of cost reduction, transporting and/or use of launch system components as integral components of missions may become more commonplace in the future. There have been numerous scenarios written for using launch vehicle components (primarily space shuttle used external tanks) as part of flight missions or future habitats. Future studies for possible uses of launch vehicle upper stages might include asteroid diverter using gravity orbital perturbation, orbiting station component, raw material at an outpost, and kinetic impactor. The LCROSS (Lunar CRater Observation and Sensing Satellite) mission was conceived as a low-cost means of determining whether water exists at the polar regions of the moon. Manifested as a secondary payload with the LRO (Lunar Reconnaissance Orbiter) spacecraft aboard an Atlas V launch vehicle, LCROSS guided its spent Centaur Earth Departure Upper Stage (EDUS) into the lunar crater Cabeu's, as a kinetic impactor. This paper describes some of the challenges that the LCROSS project encountered in planning, designing, launching with and carrying the Centaur upper stage to the moon.
The Mars Climate Orbiter is moved for mating with the third stage of the launch vehicle
NASA Technical Reports Server (NTRS)
1998-01-01
In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), the Mars Climate Orbiter (top) is lowered toward the third stage of the Boeing Delta II launch vehicle below it, to which it will be attached. The third stage is a solid-propellant Thiokol Star 48B booster, the same final stage used in the 1996 launch of Mars Global Surveyor. Targeted for launch on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.
1992-09-25
Titan III vehicle launched the Mars Observer spacecraft and the Transfer Orbit Stage (TOS) from the Cape Canaveral Air Force Station on September 25, 1992. Managed by the Marshall Space Flight Center (MSFC), TOS will fire to send the Observer on an 11-month interplanetary journey to the Mars. The Observer failed to reach the Mars orbit in August 1993.
SSME Key Operations Demonstration
NASA Technical Reports Server (NTRS)
Anderson, Brian; Bradley, Michael; Ives, Janet
1997-01-01
A Space Shuttle Main Engine (SSME) test program was conducted between August 1995 and May 1996 using the Technology Test Bed (TTB) Engine. SSTO vehicle studies have indicated that increases in the propulsion system operating range can save significant weight and cost at the vehicle level. This test program demonstrated the ability of the SSME to accommodate a wide variation in safe operating ranges and therefore its applicability to the SSTO mission. A total of eight tests were completed with four at Marshall Space Flight Center's Advanced Engine Test Facility and four at the Stennis Space Center (SSC) A-2 attitude test stand. Key demonstration objectives were: 1) Mainstage operation at 5.4 to 6.9 mixture ratio; 2) Nominal engine start with significantly reduced engine inlet pressures of 50 psia LOX and 38 psia fuel; and 3) Low power level operation at 17%, 22%, 27%, 40%, 45%, and 50% of Rated Power Level. Use of the highly instrumented TTB engine for this test series has afforded the opportunity to study in great detail engine system operation not possible with a standard SSME and has significantly contributed to a greater understanding of the capabilities of the SSME and liquid rocket engines in general.
Development Status of the J-2X
NASA Technical Reports Server (NTRS)
Kynard, Mike; Vilja, John
2008-01-01
In June 2006, the NASA Marshall Space Flight Center (MSFC) and Pratt & Whitney Rocketdyne began development of an engine for use on the Ares I crew launch vehicle and the Ares V cargo launch vehicle. The development program will be completed in December 2012 at the end of a Design Certification Review and after certification testing of two flight configuration engines. A team of over 600 people within NASA and Pratt & Whitney Rocketdyne are currently working to prepare for the fall 2008 Critical Design Review (CDR), along with supporting an extensive risk mitigation test program. The J-2X will power the Ares I upper stage and the Ares V earth departure stage (EDS). The initial use will be in the Ares I, used to launch the Orion crew exploration vehicle. In this application, it will power the upper stage after being sent aloft on a Space Shuttle-derived. 5-segment solid rocket booster first stage. In this mission. the engine will ignite at altitude and provide the necessary acceleration force to allow the Orion to achieve orbital velocity. The Ares I upper stage, along with the J-2X. will then be expended. On the Ares V. first stage propulsion is provided by five RS-68B engines and two 5-segment boosters similar to the Ares I configuration. In the Ares V mission. the J-2X is first started to power the EDS and its payload. the Altair lunar lander. into earth orbit, then shut-down and get prepared for its next start. The EDS/Altair will remain in a parking orbit, awaiting rendezvous and docking with Orion. Once the two spacecraft are mated, the J-2X will be restarted to achieve earth departure velocity. After powering the Orion and Altair, the EDS will be expended. By using the J-2X Engine in both applications, a significant infrastructure cost savings is realized. Only one engine development is required, and the sustaining engineering and flight support infrastructures can be combined. There is also flexibility for changing, the production and flight manifest because a single production line can support both missions with minimal differences between each engine configuration kit.
Reusable launch vehicle development research
NASA Technical Reports Server (NTRS)
1995-01-01
NASA has generated a program approach for a SSTO reusable launch vehicle technology (RLV) development which includes a follow-on to the Ballistic Missile Defense Organization's (BMDO) successful DC-X program, the DC-XA (Advanced). Also, a separate sub-scale flight demonstrator, designated the X-33, will be built and flight tested along with numerous ground based technologies programs. For this to be a successful effort, a balance between technical, schedule, and budgetary risks must be attained. The adoption of BMDO's 'fast track' management practices will be a key element in the eventual success of NASA's effort.
NASA Technical Reports Server (NTRS)
1987-01-01
The Advanced Space Design project for 1986-87 was the design of a two stage launch vehicle, representing a second generation space transportation system (STS) which will be needed to support the space station. The first stage is an unmanned winged booster which is fully reusable with a fly back capability. It has jet engines so that it can fly back to the landing site. This adds safety as well as the flexibility to choose alternate landing sites. There are two different second stages. One of the second stages is a manned advanced space shuttle called Space Shuttle II. Space Shuttle II has a payload capability of delivering 40,000 pounds to the space station in low Earth orbit (LEO), and returning 40,000 pounds to Earth. Servicing the space station makes the ability to return a heavy payload to Earth as important as being able to launch a heavy payload. The other second stage is an unmanned heavy lift cargo vehicle with ability to deliver 150,000 pounds of payload to LEO. This vehicle will not return to Earth; however, the engines and electronics can be removed and returned to Earth in the Space Shuttle II. The rest of the vehicle can then be used on orbit for storage or raw materials, supplies, and space manufactured items awaiting transport back to Earth.
Orbital transportation in the 1980's and beyond
NASA Technical Reports Server (NTRS)
Davis, H. P.
1975-01-01
Orbital transportation beyond the low earth orbit operating regime of the Space Shuttle will be required for the 1980's and beyond. The characteristics and first order requirements of the mission arenas are discussed in context with a broad spectrum of future space transportation systems. Several concepts are highlighted and identify the distinctly different requirements imposed by manned vehicles versus unmanned vehicles. Considerable analytic and design activities are necessary prior to selection of orbital transportation systems to be developed after the Interim Upper Stage (IUS).
Commercial US transfer vehicle overview
NASA Astrophysics Data System (ADS)
Winchell, J. W.; Huss, R. L.
1986-10-01
A survey is presented of the design and operational status and intended or existing missions for apogee kick motors for launch from the Orbiter bay. Attention is also given to the associated hardware for interfacing and propelling the payloads from the bay. The PAM-D, -DII, and -A upper stage motors are described, with their payload boost capabilities of 1500-4300 lb to GEO. Features of the solid-fueled Transfer Orbit Stage, based on the IUS, and the liquid bipropellant-fueled Apogee and Maneuvering Stage, which can lift from 3000-5600 lb to GEO, respectively, are also delineated. The discussion also covers the liquid-fueled Leasat apogee motor, the solid-fueled GEO injection motor of the Shuttle Compatible Orbit Transfer Subsystem (4100-5900 lb), and the IUS (5000 lb) and Centaur (10,000 lb) systems. Government-industry cooperation to encourage the continued development of the industrial base to continue and expand production and use of upper stage vehicles is noted.
The Mars Climate Orbiter is moved for mating with the third stage of the launch vehicle
NASA Technical Reports Server (NTRS)
1998-01-01
In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), the third stage of the Boeing Delta II launch vehicle (left) waits for mating with the Mars Climate Orbiter (right). The third stage is a solid-propellant Thiokol Star 48B booster, the same final stage used in the 1996 launch of Mars Global Surveyor. Targeted for launch on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.
The Mars Climate Orbiter is moved for mating with the third stage of the launch vehicle
NASA Technical Reports Server (NTRS)
1998-01-01
In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF- 2), workers check on the fitting between the Mars Climate Orbiter (above) and the third stage of the Boeing Delta II launch vehicle (below). The third stage is a solid-propellant Thiokol Star 48B booster, the same final stage used in the 1996 launch of Mars Global Surveyor. Targeted for launch on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface.
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Starnes, James H., Jr.; Shuart, Mark J.
2003-01-01
Aerospace vehicles are designed to be durable and damage tolerant. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. However, both durability and damage tolerance design methodologies must address the deleterious effects of changes in material properties and the initiation and growth of microstructural damage that may occur during the service lifetime of the vehicle. Durability and damage tolerance design and certification requirements are addressed for commercial transport aircraft and NASA manned spacecraft systems. The state-of-the-art in advanced design and analysis methods is illustrated by discussing the results of several recently completed NASA technology development programs. These programs include the NASA Advanced Subsonic Technology Program demonstrating technologies for large transport aircraft and the X-33 hypersonic test vehicle demonstrating technologies for a single-stage-to-orbit space launch vehicle.
A Collection of Technical Papers
NASA Technical Reports Server (NTRS)
1995-01-01
Papers presented at the 6th Space Logistics Symposium covered such areas as: The International Space Station; The Hubble Space Telescope; Launch site computer simulation; Integrated logistics support; The Baikonur Cosmodrome; Probabalistic tools for high confidence repair; A simple space station rescue vehicle; Integrated Traffic Model for the International Space Station; Packaging the maintenance shop; Leading edge software support; Storage information management system; Consolidated maintenance inventory logistics planning; Operation concepts for a single stage to orbit vehicle; Mission architecture for human lunar exploration; Logistics of a lunar based solar power satellite scenario; Just in time in space; NASA acquisitions/logistics; Effective transition management; Shuttle logistics; and Revitalized space operations through total quality control management.
Application of GPS to Enable Launch Vehicle Upper Stage Heliocentric Disposal
NASA Technical Reports Server (NTRS)
Anzalone, Evan J.; Oliver, T. Emerson
2017-01-01
To properly dispose of the upper stage of the Space Launch System, the vehicle must perform a burn in Earth orbit to perform a close flyby of the Lunar surface to gain adequate energy to enter into heliocentric space. This architecture was selected to meet NASA requirements to limit orbital debris in the Earth-Moon system. The choice of a flyby for heliocentric disposal was driven by mission and vehicle constraints. This paper describes the SLS mission for Exploration Mission -1, a high level overview of the Block 1 vehicle, and the various disposal options considered. The research focuses on this analysis in terms of the mission design and navigation problem, focusing on the vehicle-level requirements that enable a successful mission. An inertial-only system is shown to be insufficient for heliocentric flyby due to large inertial integration errors from launch through disposal maneuver while on a trans-lunar trajectory. The various options for aiding the navigation system are presented and details are provided on the use of GPS to bound the state errors in orbit to improve the capability for stage disposal. The state estimation algorithm used is described as well as its capability in determination of the vehicle state at the start of the planned maneuver. This data, both dispersions on state and on errors, is then used to develop orbital targets to use for meeting the required Lunar flyby for entering onto a heliocentric trajectory. The effect of guidance and navigation errors on this capability is described as well as the identified constraints for achieving the disposal requirements. Additionally, discussion is provided on continued analysis and identification of system considerations that can drive the ability to integrate onto a vehicle intended for deep space.
NASA Technical Reports Server (NTRS)
Bergeron, R. P.
1980-01-01
Orbital transfer vehicle propulsion options for SPS include both chemical (COTV) and electrical (EOTV) options. The proposed EOTV construction method is similar to that of the SPS and, by the addition of a transmitting antenna, may serve as a demonstration or precursor satellite option. The results of the studies led to the selection of a single stage COTV for crew and priority cargo transfer. An EOTV concept is favored for cargo transfer because of the more favorable orbital burden factor over chemical systems. The gallium arsenide solar array is favored over the silicon array because of its self annealing characteristics of radiation damage encountered during multiple transitions through the Van Allen radiation belt. Transportation system operations are depicted. A heavy lift launch vehicle (HLLV) delivers cargo and propellants to LEO, which are transferred to a dedicated EOTV by means of an intraorbit transfer vehicle (IOTV) for subsequent transfer to GEO. The space shuttle is used for crew transfer from Earth to LEO. At the LEO base, the crew module is removed from the shuttle cargo bay and mated to a COTV for transfer to GEO. Upon arrival at GEO, the SPS construction cargo is transferred from the EOTV to the SPS construction base by IOTV. Crew consumables and resupply propellants are transported to GEO by the EOTV. Transportation requirements are dominated by the vast quantity of materials to be transported to LEO and GEO.
Low Earth Orbit Raider (LER) winged air launch vehicle concept
NASA Technical Reports Server (NTRS)
Feaux, Karl; Jordan, William; Killough, Graham; Miller, Robert; Plunk, Vonn
1989-01-01
The need to launch small payloads into low earth orbit has increased dramatically during the past several years. The Low Earth orbit Raider (LER) is an answer to this need. The LER is an air-launched, winged vehicle designed to carry a 1500 pound payload into a 250 nautical mile orbit. The LER is launched from the back of a 747-100B at 35,000 feet and a Mach number of 0.8. Three staged solid propellant motors offer safe ground and flight handling, reliable operation, and decreased fabrication cost. The wing provides lift for 747 separation and during the first stage burn. Also, aerodynamic controls are provided to simplify first stage maneuvers. The air-launch concept offers many advantages to the consumer compared to conventional methods. Launching at 35,000 feet lowers atmospheric drag and other loads on the vehicle considerably. Since the 747 is a mobile launch pad, flexibility in orbit selection and launch time is unparalleled. Even polar orbits are accessible with a decreased payload. Most importantly, the LER launch service can come to the customer, satellites and experiments need not be transported to ground based launch facilities. The LER is designed to offer increased consumer freedom at a lower cost over existing launch systems. Simplistic design emphasizing reliability at low cost allows for the light payloads of the LER.
KSC Vertical Launch Site Evaluation
NASA Technical Reports Server (NTRS)
Phillips, Lynne V.
2007-01-01
RS&H was tasked to evaluate the potential available launch sites for a combined two user launch pad. The Launch sites were to be contained entirely within current Kennedy Space Center property lines. The user launch vehicles to be used for evaluation are in the one million pounds of first stage thrust range. Additionally a second evaluation criterion was added early on in the study. A single user launch site was to be evaluated for a two million pound first stage thrust vehicle. Both scenarios were to be included in the report. To provide fidelity to the study criteria, a specific launch vehicle in the one million pound thrust range was chosen as a guide post or straw-man launch vehicle. The RpK K-1 vehicle is a current Commercial Orbital Transportation System (COTS), contract awardee along with the SpaceX Falcon 9 vehicle. SpaceX, at the time of writing, is planning to launch COTS and possibly other payloads from Cx-40 on Cape Canaveral Air Force Station property. RpK has yet to declare a specific launch site as their east coast US launch location. As such it was deemed appropriate that RpK's vehicle requirements be used as conceptual criteria. For the purposes of this study those criteria were marginally generalized to make them less specifiC.
Synergistic Development, Test, and Qualification Approaches for the Ares I and V Launch Vehicles
NASA Technical Reports Server (NTRS)
Cockrell, Charles E.; Taylor, James L.; Patterson, Alan; Stephens, Samuel E.; Tuma, Margaret; Bartolotta, Paul; Huetter, Uwe; Kaderback, Don; Goggin, David
2009-01-01
The U.S. National Aeronautics and Space Administration (NASA) initiated plans to develop the Ares I and Ares V launch vehicles in 2005 to meet the mission objectives for future human exploration of space. Ares I is designed to provide the capability to deliver the Orion crew exploration vehicle (CEV) to low-Earth orbit (LEO), either for docking to the International Space Station (ISS) or docking with an Earth departure stage (EDS) and lunar lander for transit to the Moon. Ares V provides the heavy-lift capability to deliver the EDS and lunar lander to orbit. An integrated test plan was developed for Ares I that includes un-crewed flight validation testing and ground testing to qualify structural components and propulsion systems prior to operational deployment. The overall test program also includes a single development test flight conducted prior to the Ares I critical design review (CDR). Since the Ares V concept was formulated to maximize hardware commonality between the Ares V and Ares I launch vehicles, initial test planning for Ares V has considered the extensibility of test approaches and facilities from Ares I. The Ares V test plan was part of a successful mission concept review (MCR) in 2008.
2008-02-15
SHOWN IS A CONCEPT IMAGE OF THE ARES V EARTH DEPARTURE STAGE AND LUNAR SURFACE ACCESS MODULE DOCKED WITH THE ORION CREW EXPLORATION VEHICLE IN EARTH ORBIT. THE DEPARTURE STAGE, POWERED BY A J-2X ENGINE, IS NEEDED TO ESCAPE EARTH'S GRAVITY AND SEND THE CREW VEHICLE AND LUNAR MODULE ON THEIR JOURNEY TO THE MOON.
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.; Toniolo, Matthew D.; Tartabini, Paul V.; Roithmayr, Carlos M.; Albertson, Cindy W.; Karlgaard, Christopher D.
2016-01-01
The objective of this report is to develop and implement a physics based method for analysis and simulation of multi-body dynamics including launch vehicle stage separation. The constraint force equation (CFE) methodology discussed in this report provides such a framework for modeling constraint forces and moments acting at joints when the vehicles are still connected. Several stand-alone test cases involving various types of joints were developed to validate the CFE methodology. The results were compared with ADAMS(Registered Trademark) and Autolev, two different industry standard benchmark codes for multi-body dynamic analysis and simulations. However, these two codes are not designed for aerospace flight trajectory simulations. After this validation exercise, the CFE algorithm was implemented in Program to Optimize Simulated Trajectories II (POST2) to provide a capability to simulate end-to-end trajectories of launch vehicles including stage separation. The POST2/CFE methodology was applied to the STS-1 Space Shuttle solid rocket booster (SRB) separation and Hyper-X Research Vehicle (HXRV) separation from the Pegasus booster as a further test and validation for its application to launch vehicle stage separation problems. Finally, to demonstrate end-to-end simulation capability, POST2/CFE was applied to the ascent, orbit insertion, and booster return of a reusable two-stage-to-orbit (TSTO) vehicle concept. With these validation exercises, POST2/CFE software can be used for performing conceptual level end-to-end simulations, including launch vehicle stage separation, for problems similar to those discussed in this report.
Expendable solid rocket motor upper stages for the Space Shuttle
NASA Technical Reports Server (NTRS)
Davis, H. P.; Jones, C. M.
1974-01-01
A family of expendable solid rocket motor upper stages has been conceptually defined to provide the payloads for the Space Shuttle with performance capability beyond the low earth operational range of the Shuttle Orbiter. In this concept-feasibility assessment, three new solid rocket motors of fixed impulse are defined for use with payloads requiring levels of higher energy. The conceptual design of these motors is constrained to limit thrusting loads into the payloads and to conserve payload bay length. These motors are combined in various vehicle configurations with stage components derived from other programs for the performance of a broad range of upper-stage missions from spin-stabilized, single-stage transfers to three-axis stabilized, multistage insertions. Estimated payload delivery performance and combined payload mission loading configurations are provided for the upper-stage configurations.
NASA Technical Reports Server (NTRS)
Myrabo, Leik N.; Blandino, John S.; Borkowski, Chris A.; Cross, David P.; Frazier, Scott R.; Hill, Stephen C.; Mitty, Todd J.; Moder, Jeffrey P.; Morales, Ciro; Nyberg, Gregory A.
1987-01-01
The detailed design of a beam-powered transatmospheric vehicle, the Apollo Lightcraft, was selected as the project for the design course. The principal goal is to reduce the LEO payload delivery cost by at least three orders of magnitude below the Space Shuttle Orbiter in the post 2020 era. The completely reusable, single-stage-to-orbit shuttlecraft will take off and land vertically, and have a reentry heat shield integrated with its lower surface. At appropriate points along the launch trajectory, the combined cycle propulsion system will transition through three or four airbreathing modes, and finally use a pure rocket mode for orbital insertion. The objective for the Spring semester propulsion source was to design and perform a detailed theoretical analysis on an advanced combined-cycle engine suitable for the Apollo Lightcraft. The preliminary theoretical analysis of this combined-cycle engine is now completed, and the acceleration performance along representative orbital trajectories was simulated. The total round trip cost is $3430 or $686 per person. This represents a payload delivery cost of $3.11/lb, which is a factor of 1000 below the STS. The Apollo Lightcraft concept is now ready for a more detailed investigation during the Fall semester Transatmosphere Vehicle Design course.
NASA Technical Reports Server (NTRS)
Zimmerman, A. V.; Thompson, R. L.; Lubick, R. J.
1973-01-01
A feasibility study is summarized of extraterrestrial (space) disposal of radioactive waste. The initial work on the evaluation and comparison of possible space destinations and launch vehicles is reported. Only current or planned space transportation systems were considered. The currently planned space shuttle was found to be more cost effective than current expendable launch vehicles, by about a factor of two. The space shuttle will require a third stage to perform the disposal missions. Depending on the particular mission this could be either a reusable space tug or an expendable stage such as a Centaur. Of the destinations considered, high earth orbits (between geostationary and lunar orbit altitudes), solar orbits (such as a 0.90 AU circular solar orbit) or a direct injection to solar system escape appear to be the best candidates. Both earth orbits and solar orbits have uncertainties regarding orbit stability and waste package integrity for times on the order of a million years.
NASA Technical Reports Server (NTRS)
Stewart, David A.
1996-01-01
The catalytic efficiency (atom recombination coefficients) for advanced ceramic thermal protection systems was calculated using arc-jet data. Coefficients for both oxygen and nitrogen atom recombination on the surfaces of these systems were obtained to temperatures of 1650 K. Optical and chemical stability of the candidate systems to the high energy hypersonic flow was also demonstrated during these tests.
Vibrational Properties of Zr(Hf)B2-SiC UHTC Composites by Micro-Raman Spectroscopy
NASA Astrophysics Data System (ADS)
Donohue, M.; Carpenter, C.; Orlovskaya, N.
Development and characterization of novel materials that are lightweight, possess high mechanical properties, can withstand high temperatures, and provide superior thermal properties are crucial to meet the future demands of Air Force, Army, Navy, Missile Defense Agency (MDA), and other military and space agencies. Materials for such applications (hypersonic air-breathing vehicles, including Single-To-Orbit vehicles and Two-Stage-To-Orbit aerospace planes, fully reusable space transport vehicles, hypersonic cruise missiles) experience severe aero-thermal loads with nose-cone and nozzle temperatures in excess of 2,000°F and 4,000°F, respectively. High G acceleration is also a problem. Even the most advanced materials, such as Ti, Inconel X, carbon-carbon, and silicon carbide based composites cannot withstand the excessive heat generated, especially during re-entry, and they cannot meet the guidelines for future high performance aircrafts, kinetic energy interceptors and reusable space planes. Thus, the demand for low-cost, light weight high temperature materials for thermal protection systems (TPS) is expected to be on the significant rise in the near future.
NASA Technical Reports Server (NTRS)
Knip, G., Jr.; Eisenberg, J. D.
1972-01-01
Two- and three-stage (second stage expendable) shuttle vehicles, both having a hydrogen-fueled, turboramjet-powered first stage, are compared with a two-stage, VTOHL, all-rocket shuttle in terms of payload fraction, inert weight, development cost, operating cost, and total cost. All of the vehicles place 22,680 kilograms of payload into a 500-kilometer orbit. The upper stage(s) uses hydrogen-oxygen rockets. The effect on payload fraction and vehicle inert weight of methane and methane-FLOX as a fuel-propellant combination for the three-stage vehicle is indicated. Compared with a rocket first stage for a two-stage shuttle, an airbreathing first stage results in a higher payload fraction and a lower operating cost, but a higher total cost. The effect on cost of program size and first-stage flyback is indicated. The addition of an expendable rocket second stage (three-stage vehicle) improves the payload fraction but is unattractive economically.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2010-01-01
Response surface methodology was used to estimate the longitudinal stage separation aerodynamic characteristics of a generic, bimese, winged multi-stage launch vehicle configuration at supersonic speeds in the NASA LaRC Unitary Plan Wind Tunnel. The Mach 3 staging was dominated by shock wave interactions between the orbiter and booster vehicles throughout the relative spatial locations of interest. The inference space was partitioned into several contiguous regions within which the separation aerodynamics were presumed to be well-behaved and estimable using central composite designs capable of fitting full second-order response functions. The underlying aerodynamic response surfaces of the booster vehicle in belly-to-belly proximity to the orbiter vehicle were estimated using piecewise-continuous lower-order polynomial functions. The quality of fit and prediction capabilities of the empirical models were assessed in detail, and the issue of subspace boundary discontinuities was addressed. Augmenting the central composite designs to full third-order using computer-generated D-optimality criteria was evaluated. The usefulness of central composite designs, the subspace sizing, and the practicality of fitting lower-order response functions over a partitioned inference space dominated by highly nonlinear and possibly discontinuous shock-induced aerodynamics are discussed.
1961-05-01
This artist's concept illustrates the Module Nova concept - Solid C-3 Basis. From 1960 to 1962, the Marshall Space Flight Center considered the Nova launch vehicle as a means to achieve a marned lunar landing with a direct flight to the Moon. Various configurations of the vehicle were examined. The latest configuration was a five-stage vehicle using eight F-1 engines in the first stage. Although the program was canceled after NASA planners selected the lunar/orbital rendezvous mode, the proposed F-1 engine would eventually be used in the Apollo Program to propel the first stage of the Saturn V launch vehicle.
1961-11-01
This artist's concept illustrates the Module Nova concept - Solid C-3 Basis. From 1960 to 1962, the Marshall Space Flight Center considered the Nova launch vehicle as a means to achieve a marned lunar landing with a direct flight to the Moon. Various configurations of the vehicle were examined. The latest configuration was a five-stage vehicle using eight F-1 engines in the first stage. Although the program was canceled after NASA planners selected the lunar/orbital rendezvous mode, the proposed F-1 engine would eventually be used in the Apollo Program to propel the first stage of the Saturn V launch vehicle.
X-33 Integrated Test Facility Extended Range Simulation
NASA Technical Reports Server (NTRS)
Sharma, Ashley
1998-01-01
In support of the X-33 single-stage-to-orbit program, NASA Dryden Flight Research Center was selected to provide continuous range communications of the X-33 vehicle from launch at Edwards Air Force Base, California, through landing at Malmstrom Air Force Base Montana, or at Michael Army Air Field, Utah. An extensive real-time range simulation capability is being developed to ensure successful communications with the autonomous X-33 vehicle. This paper provides an overview of various levels of simulation, integration, and test being developed to support the X-33 extended range subsystems. These subsystems include the flight termination system, L-band command uplink subsystem, and S-band telemetry downlink subsystem.
NASA Technical Reports Server (NTRS)
Laue, Jay H.
1998-01-01
The X-33 flight visualization effort has resulted in the integration of high-resolution terrain data with vehicle position and attitude data for planned flights of the X-33 vehicle from its launch site at Edwards AFB, California, to landings at Michael Army Air Field, Utah, and Maelstrom AFB, Montana. Video and Web Site representations of these flight visualizations were produced. In addition, a totally new module was developed to control viewpoints in real-time using a joystick input. Efforts have been initiated, and are presently being continued, for real-time flight coverage visualizations using the data streams from the X-33 vehicle flights. The flight visualizations that have resulted thus far give convincing support to the expectation that the flights of the X-33 will be exciting and significant space flight milestones... flights of this nation's one-half scale predecessor to its first single-stage-to-orbit, fully-reusable launch vehicle system.
2008-10-17
CAPE CANAVERAL, Fla. - The Ares IX upper stage segments’ ballast assemblies are offloaded from one of five trucks which delivered them to the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett
Pressurization System Modeling for a Generic Bimese Two- Stage-to-Orbit Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
Mazurkivich, Pete; Chandler, Frank; Nguyen, Han
2005-01-01
A pressurization system model was developed for a generic bimese Two-Stage-to-orbit Reusable Launch Vehicle using a cross-feed system and operating with densified propellants. The model was based on the pressurization system model for a crossfeed subscale water test article and was validated with test data obtained from the test article. The model consists of the liquid oxygen and liquid hydrogen pressurization models, each made up of two submodels, Booster and Orbiter tank pressurization models. The tanks are controlled within a 0.2-psi band and pressurized on the ground with ambient helium and autogenously in flight with gaseous oxygen and gaseous hydrogen. A 15-psi pressure difference is maintained between the Booster and Orbiter tanks to ensure crossfeed check valve closure before Booster separation. The analysis uses an ascent trajectory generated for a generic bimese vehicle and a tank configuration based on the Space Shuttle External Tank. It determines the flow rates required to pressurize the tanks on the ground and in flight, and demonstrates the model's capability to analyze the pressurization system performance of a full-scale bimese vehicle with densified propellants.
2008-10-17
CAPE CANAVERAL, Fla. - Workers lift the Ares IX upper stage segments’ ballast assemblies off a truck in high bay 4 of the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett
2008-10-17
CAPE CANAVERAL, Fla. - Workers position Ares IX upper stage segments’ ballast assemblies along the floor of high bay 4 in the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett
2008-10-17
CAPE CANAVERAL, Fla. - One of five trucks transporting the Ares IX upper stage segments’ ballast assemblies arrives at the Vehicle Assembly Building at NASA’s Kennedy Space, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett
2008-10-17
CAPE CANAVERAL, Fla. - Workers lower an Ares IX upper stage segments’ ballast assembly onto the floor of high bay 4 in the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett
2008-10-17
CAPE CANAVERAL, Fla. - The Ares IX upper stage segments’ ballast assemblies have arrived at NASA’s Kennedy Space Center and are positioned along the floor of high bay 4 in the Vehicle Assembly Building, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett
2008-10-17
CAPE CANAVERAL, Fla. - Ares IX upper stage segments’ ballast assemblies are positioned along the floor of high bay 4 in the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett
2008-10-17
CAPE CANAVERAL, Fla. - The Ares IX upper stage segments’ ballast assemblies have arrived at NASA’s Kennedy Space Center and are positioned along the floor of high bay 4 in the Vehicle Assembly Building, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel. Their total weight is approximately 160,000 pounds. The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket. Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit. Photo credit: NASA/Kim Shiflett
Orbit/launch vehicle tradeoff studies. Earth Observatory Satellite system definition study (EOS)
NASA Technical Reports Server (NTRS)
1974-01-01
An evaluation of the Earth Observatory Satellite (EOS) design, performance, and cost factors which affect the choices of an orbit and a launch vehicle is presented. Primary emphasis is given to low altitude (300 to 900 nautical miles) land resources management applications for which payload design factors are defined. The subjects considered are: (1) a mission model, (2) orbit analysis and characterization, (3) characteristics and capabilities of candidate conventional launch vehicles, and space shuttle support. Recommendations are submitted for the EOS-A mission, the Single Multispectral Scanner payload, the Single Multispectral Scanner plus Thematic Mapper payload, the Dual Multispectral Scanner payload, and the Dual Multispectral Scanner plus Thematic Mapper payload.
Status, Plans, and Initial Results for ARES 1 Crew Launch Vehicle Aerodynamics
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Haynes, Davy A.; Taylor, Terry L.; Hall, Robert M.; Pamadi, Bandu N.; Seaford, C. Mark
2006-01-01
Following the completion of NASA's Exploration Systems Architecture Study in August 2004 for the NASA Exploration Systems Mission Directorate (ESMD), the Exploration Launch Office at the NASA Marshall Space Flight Center was assigned project management responsibilities for the design and development of the first vehicle in the architecture, the Ares I Crew Launch Vehicle (CLV), which will be used to launch astronauts to low earth orbit and rendezvous with either the International Space Station or the ESMD s earth departure stage for lunar or other future missions beyond low Earth orbit. The primary elements of the Ares I CLV project are the first stage, the upper stage, the upper stage engine, and vehicle integration. Within vehicle integration is an effort in integrated design and analysis which is comprised of a number of technical disciplines needed to support vehicle design and development. One of the important disciplines throughout the life of the project is aerodynamics. This paper will present the status, plans, and initial results of Ares I CLV aerodynamics as the project was preparing for the Ares I CLV Systems Requirements Review. Following a discussion of the specific interactions with other technical panels and a status of the current activities, the plans for aerodynamic support of the Ares I CLV until the initial crewed flights will be presented.
NASA Technical Reports Server (NTRS)
Buckmann, P. S.; Hayden, W. R.; Lorenc, S. A.; Sabiers, R. L.; Shimp, N. R.
1990-01-01
The design, fabrication, and initial testing of a rocket engine turbopump (TPA) for the delivery of high pressure liquid oxygen using hot oxygen for the turbine drive fluid are described. This TPA is basic to the dual expander engine which uses both oxygen and hydrogen as working fluids. Separate tasks addressed the key issue of materials for this TPA. All materials selections emphasized compatibility with hot oxygen. The OX TPA design uses a two-stage centrifugal pump driven by a single-stage axial turbine on a common shaft. The design includes ports for three shaft displacement/speed sensors, various temperature measurements, and accelerometers.
1960-01-01
This chart is an illustration of J-2 Engine characteristics. A cluster of five J-2 engines powered the Saturn V S-II (second) stage with each engine providing a thrust of 200,000 pounds. A single J-2 engine powered the S-IVB stage, the Saturn IB second stage, and the Saturn V third stage. The engine was uprated to provide 230,000 pounds of thrust for the fourth Apollo Saturn V flight and subsequent missions. Burning liquid hydrogen as fuel and using liquid oxygen as the oxidizer, the cluster of five J-2 engines for the S-II stage burned over one ton of propellant per second, during about 6 1/2 minutes of operation, to take the vehicle to an altitude of about 108 miles and a speed of near orbital velocity, about 17,400 miles per hour.
Design of multi-mission chemical propulsion modules for planetary orbiters. Volume 1: Summary report
NASA Technical Reports Server (NTRS)
1975-01-01
Results are presented of a conceptual design and feasibility study of chemical propulsion stages that can serve as modular propulsion units, with little or no modification, on a variety of planetary orbit missions, including orbiters of Mercury, Saturn, and Uranus. Planetary spacecraft of existing design or currently under development, viz., spacecraft of the Pioneer and Mariner families, are assumed as payload vehicles. Thus, operating requirements of spin-stabilized and 3-axis stabilized spacecraft have to be met by the respective propulsion module designs. As launch vehicle for these missions the Shuttle orbiter and interplanetary injection stage, or Tug, plus solid-propellant kick motor was assumed. Accommodation constraints and interfaces involving the payloads and the launch vehicle are considered in the propulsion module design. The applicability and performance advantages were evaluated of the space-storable high-energy bipropellants. The incentive for using this advanced propulsion technology on planetary missions is the much greater performance potential when orbit insertion velocities in excess of 4 km/sec are required, as in the Mercury orbiter. Design analyses and performance tradeoffs regarding earth-storable versus space-storable propulsion systems are included. Cost and development schedules of multi-mission versus custom-designed propulsion modules are examined.
A real-time guidance algorithm for aerospace plane optimal ascent to low earth orbit
NASA Technical Reports Server (NTRS)
Calise, A. J.; Flandro, G. A.; Corban, J. E.
1989-01-01
Problems of onboard trajectory optimization and synthesis of suitable guidance laws for ascent to low Earth orbit of an air-breathing, single-stage-to-orbit vehicle are addressed. A multimode propulsion system is assumed which incorporates turbojet, ramjet, Scramjet, and rocket engines. An algorithm for generating fuel-optimal climb profiles is presented. This algorithm results from the application of the minimum principle to a low-order dynamic model that includes angle-of-attack effects and the normal component of thrust. Maximum dynamic pressure and maximum aerodynamic heating rate constraints are considered. Switching conditions are derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another. A nonlinear transformation technique is employed to derived a feedback controller for tracking the computed trajectory. Numerical results illustrate the nature of the resulting fuel-optimal climb paths.
Status, Plans and Initial Results for Ares I Crew Launch Vehicle Aerodynamics
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Hall, Robert M.; Haynes, Davy A.; Pamadi, Bandu N.; Taylor, Terry L.; Seaford, C. Mark
2008-01-01
Following the completion of NASA s Exploration Systems Architecture Study in August 2004 for the NASA Exploration Systems Mission Directorate (ESMD), the Ares Projects Office at the NASA Marshall Space Flight Center was assigned project management responsibilities for the design and development of the first vehicle in the architecture, the Ares I Crew Launch Vehicle (CLV), which will be used to launch astronauts to low earth orbit and rendezvous with either the International Space Station or the ESMD s earth departure stage for lunar or other future missions beyond low Earth orbit. The primary elements of the Ares I CLV project are the first stage, the upper stage, the upper stage engine, and vehicle integration. Within vehicle integration is an effort in integrated design and analysis which is comprised of a number of technical disciplines needed to support vehicle design and development. One of the important disciplines throughout the life of the project is aerodynamics. This paper will present the status, plans, and initial results of Ares I CLV aerodynamics as the project was preparing for the Ares I CLV Systems Requirements Review. Following a discussion of the specific interactions with other technical panels and a status of the current activities, the plans for aerodynamic support of the Ares I CLV until the initial crewed flights will be presented. Keywords: Ares I Crew Launch Vehicle, aerodynamics, wind tunnel testing, computational fluid dynamics
Worldwide Space Launch Vehicles and Their Mainstage Liquid Rocket Propulsion
NASA Technical Reports Server (NTRS)
Rahman, Shamim A.
2010-01-01
Space launch vehicle begins with a basic propulsion stage, and serves as a missile or small launch vehicle; many are traceable to the 1945 German A-4. Increasing stage size, and increasingly energetic propulsion allows for heavier payloads and greater. Earth to Orbit lift capability. Liquid rocket propulsion began with use of storable (UDMH/N2O4) and evolved to high performing cryogenics (LOX/RP, and LOX/LH). Growth versions of SLV's rely on strap-on propulsive stages of either solid propellants or liquid propellants.
Advanced small launch vehicle study
NASA Technical Reports Server (NTRS)
Reins, G. E.; Alvis, J. F.
1972-01-01
A conceptual design study was conducted to determine the most economical (lowest cost/launch) approach for the development of an advanced small launch vehicle (ASLV) for use over the next decade. The ASLV design objective was to place a 340 kg (750 lb) payload into a 556 km (300 n.mi.) circular orbit when launched due east from Wallops Island, Virginia. The investigation encompassed improvements to the current Scout launch vehicle; use of existing military and NASA launch vehicle stages; and new, optionally staged vehicles. Staging analyses included use of liquid, solid, and hybrid propellants. Improvements in guidance, controls, interstages, telemetry, and payload shroud were also considered. It was concluded that the most economical approach is to progressively improve the Scout launch vehicle in three phased steps which are discussed.
An overview of aeroelasticity studies for the National Aero-Space Plane
NASA Technical Reports Server (NTRS)
Ricketts, Rodney H.; Noll, Thomas E.; Whitlow, Woodrow, Jr.; Huttsell, Lawrence J.
1993-01-01
The National Aero-Space Plane (NASP), or X-30, is a single-stage-to-orbit vehicle that is designed to takeoff and land on conventional runways. Research in aeroelasticity was conducted by the NASA and the Wright Laboratory to support the design of a flight vehicle by the national contractor team. This research includes the development of new computational codes for predicting unsteady aerodynamic pressures. In addition, studies were conducted to determine the aerodynamic heating effects on vehicle aeroelasticity and to determine the effects of fuselage flexibility on the stability of the control systems. It also includes the testing of scale models to better understand the aeroelastic behavior of the X-30 and to obtain data for code validation and correlation. This paper presents an overview of the aeroelastic research which has been conducted to support the airframe design.
2006-07-14
A model of the new Aries I crew launch vehicle, for which NASA is designing, testing and evaluating hardware and related systems, is seen here on display at the Marshall Space Fight Center (MSFC), in Huntsville, Alabama. The Ares I crew launch vehicle is the rocket that will carry a new generation of space explorers into orbit. Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA’s Constellation Program. These transportation systems will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is led by the Exploration Launch Projects Office at NASA’s MFSC. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module and a launch abort system. The launch vehicle’s first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program’s reusable solid rocket motor that burns a specially formulated and shaped solid propellant called polybutadiene acrylonitrile (PBAN). The second or upper stage will be propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. In addition to its primary mission of carrying crews of four to six astronauts to Earth orbit, the launch vehicle’s 25-ton payload capacity might be used for delivering cargo to space, bringing resources and supplies to the International Space Station or dropping payloads off in orbit for retrieval and transport to exploration teams on the moon. Crew transportation to the space station is planned to begin no later than 2014. The first lunar excursion is scheduled for the 2020 timeframe.
Conceptual Design, Feasibility and Payoff Analysis of a Third Stage for EELV
2014-06-01
the overall vehicle architecture, identifying locations for modification or stage shape. Trade studies of various propellant types (LOX/ LH2 , LOX/RP...or stage shape. Trade studies of various propellant types (LOX/ LH2 , LOX/RP, LOX/methane, hydrazine monopropellant) were included in the analysis...Geostationary transfer orbit Isp = Specific impulse LEO = Low Earth Orbit LOX = Liquid oxygen LH2 = Liquid hydrogen POST = Program to
Autonomous safety and reliability features of the K-1 avionics system
NASA Astrophysics Data System (ADS)
Mueller, George E.; Kohrs, Dick; Bailey, Richard; Lai, Gary
2004-03-01
Kistler Aerospace Corporation is developing the K-1, a fully reusable, two-stage-to-orbit launch vehicle. Both stages return to the launch site using parachutes and airbags. Initial flight operations will occur from Woomera, Australia. K-1 guidance is performed autonomously. Each stage of the K-1 employs a triplex, fault tolerant avionics architecture, including three fault tolerant computers and three radiation hardened Embedded GPS/INS units with a hardware voter. The K-1 has an Integrated Vehicle Health Management (IVHM) system on each stage residing in the three vehicle computers based on similar systems in commercial aircraft. During first-stage ascent, the IVHM system performs an Instantaneous Impact Prediction (IIP) calculation 25 times per second, initiating an abort in the event the vehicle is outside a predetermined safety corridor for at least 3 consecutive calculations. In this event, commands are issued to terminate thrust, separate the stages, dump all propellant in the first-stage, and initiate a normal landing sequence. The second-stage flight computer calculates its ability to reach orbit along its state vector, initiating an abort sequence similar to the first stage if it cannot. On a nominal mission, following separation, the second-stage also performs calculations to assure its impact point is within a safety corridor. The K-1's guidance and control design is being tested through simulation with hardware-in-the-loop at Draper Laboratory. Kistler's verification strategy assures reliable and safe operation of the K-1.
NASA Technical Reports Server (NTRS)
Gluzek, F.; Mokadam, R. G.; To, I. H.; Stanitz, J. D.; Wollschlager, J.
1979-01-01
A rotating, positive displacement vane pump with an integral boost stage was designed to pump saturated liquid oxygen and liquid hydrogen for auxiliary propulsion system of orbit transfer vehicle. This unit is designed to ingest 10% vapor by volume, contamination free liquid oxygen and liquid hydrogen. The final pump configuration and the predicted performance are included.
Two Enhancements of the Logarithmic Least-Squares Method for Analyzing Subjective Comparisons
1989-03-25
error term. 1 For this model, the total sum of squares ( SSTO ), defined as n 2 SSTO = E (yi y) i=1 can be partitioned into error and regression sums...of the regression line around the mean value. Mathematically, for the model given by equation A.4, SSTO = SSE + SSR (A.6) A-4 where SSTO is the total...sum of squares (i.e., the variance of the yi’s), SSE is error sum of squares, and SSR is the regression sum of squares. SSTO , SSE, and SSR are given
Single-Frequency GPS Relative Navigation in a High Ionosphere Orbital Environment
NASA Technical Reports Server (NTRS)
Conrad, Patrick R.; Naasz, Bo J.
2007-01-01
The Global Positioning System (GPS) provides a convenient source for space vehicle relative navigation measurements, especially for low Earth orbit formation flying and autonomous rendezvous mission concepts. For single-frequency GPS receivers, ionospheric path delay can be a significant error source if not properly mitigated. In particular, ionospheric effects are known to cause significant radial position error bias and add dramatically to relative state estimation error if the onboard navigation software does not force the use of measurements from common or shared GPS space vehicles. Results from GPS navigation simulations are presented for a pair of space vehicles flying in formation and using GPS pseudorange measurements to perform absolute and relative orbit determination. With careful measurement selection techniques relative state estimation accuracy to less than 20 cm with standard GPS pseudorange processing and less than 10 cm with single-differenced pseudorange processing is shown.
International Space Station (ISS) Accommodation of a Single US Assured Crew Return Vehicle (ACRV)
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D.; Garn, Michelle A.; Troutman, Patrick A.; Wang, Yuan; Kumar, Renjith; Heck, Michael L.
1997-01-01
The following report was generated to give the International Space Station (ISS) Program some additional insight into the operations and issues associated with accommodating a single U.S. developed Assured Crew Return Vehicle (ACRV). During the generation of this report, changes in both the ISS and ACRV programs were factored into the analysis with the realization that most of the work performed will eventually need to be repeated once the two programs become more integrated. No significant issues associated with the ISS accommodating the ACRV were uncovered. Kinematic analysis of ACRV installation showed that there are viable methods of using Shuttle and Station robotic manipulators. Separation analysis demonstrated that the ACRV departure path clears the Station structure for all likely contingency scenarios. The payload bay packaging analysis identified trades that can be made between payload bay location, Shuttle Remote Manipulator System (SRMS) reach and eventual designs of de-orbit stages and docking adapters.
Tanker Argus: Re-supply for a LEO Cryogenic Propellant Depot
NASA Astrophysics Data System (ADS)
St. Germain, B.; Olds, J.; Kokan, T.; Marcus, L.; Miller, J.
The Argus reusable launch vehicle (RLV) concept is a single-stage-to-orbit conical, winged bodied vehicle powered by two liquid hydrogen/liquid oxygen supercharged ejector ramjets. The 3rd generation Argus launch vehicle utilizes advanced vehicle technologies along with a Maglev launch assist track. A tanker version of the Argus RLV is envisioned to provide an economical means of providing liquid fuel and oxidizer to an orbiting low-Earth orbit (LEO) propellant depot. This depot could then provide propellant to various spacecraft, including reusable orbital transfer vehicles used to ferry space solar power satellites to geo-stationary orbit. Two different tanker Argus configurations were analyzed. The first simply places additional propellant tanks inside the payload bay of an existing Argus reusable launch vehicle. The second concept is a modified Argus RLV in which the payload bay is removed and the vehicle propellant tanks are stretched to hold extra propellant. An iterative conceptual design process was used to design both Argus vehicles. This process involves various disciplines including aerodynamics, trajectory analysis, weights &structures, propulsion, operations, safety, and cost/economics. The payload bay version of tanker Argus, which has a gross mass of 256.3MT, is designed to deliver a 9.07MT payload to LEO. This payload includes propellant and the tank structure required to secure this propellant in the payload bay. The modified, pure tanker version of Argus has a gross mass of 218.6MT and is sized to deliver a full 9.07MT of propellant to LEO. The economic analysis performed for this study involved the calculation of many factors including the design/development and recurring costs of each vehicle. These results were used along with other economic assumptions to determine the "per kilogram" cost of delivering propellant to orbit. The results show that for a given flight rate the "per kilogram" cost is cheaper for the pure tanker version of Argus. However, the main goal of this study was to determine at which flight rate would it be financially beneficial to spend more development money to modify an existing, sunk cost, payload bay version of Argus in order to create a more efficient pure tanker version. For flight rates greater than approximately 320 flights/year, there is only a small financial motivation to develop a pure tanker version. At this flight rate both versions of Argus are able to deliver propellant to LEO at an approximate cost of 375/kg.
Power Systems Evaluated for Solar Electric Propulsion Vehicles
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Gefert, Leon P.
2000-01-01
Solar electric propulsion (SEP) mission architectures are applicable to a wide range NASA missions including the robotic exploration of the outer planets in the next decade and the human exploration of Mars within the next 2 decades. SEP enables architectures that are very mass efficient with reasonable power levels (1-MW class) aerobrake and cryogenic upper-stage transportation technologies are utilized. In this architecture, the efficient SEP stage transfers the payload from low Earth orbit (LEO) High Energy Elliptical Parking Orbit (HEEPO) within a period of 6 to 12 months. highthrust, cryogenic upper stage and payload then separate from the SEP vehicle for injection to the planetary target, allowing for fast heliocentric trip times. This mission architecture offers a potential reduction in mass to LEO in comparison to alternative all-chemical nuclear propulsion schemes. Mass reductions may allow launch vehicle downsizing enable missions that would have been grounded because of cost constraints. The preceding figure illustrates a conceptual SEP stage design for a human Mars mission. Researchers at the NASA Glenn Research Center at Lewis Field designed conceptual SEP vehicle, conceived the mission architecture to use this vehicle, and analyzed the vehicle s performance. This SEP stage has a dry mass of 35 metric tons (MT), 40 MT of xenon propellant, and a photovoltaic array that spans 110 m, providing power to a cluster of eight 100-kW Hall thrusters. The stage can transfer an 80-MT payload and upper stage to the desired HEEPO. Preliminary packaging studies show this space-station-class SEP vehicle meets the proposed "Magnum" launch vehicle and volume requirements with considerable margin. An SEP vehicle for outer planetary missions, such as the Europa Mapper Mission, would be dramatically smaller than human Mars mission SEP stage. In this mission architecture, the SEP power system with the payload to provide spacecraft power throughout the mission. Several photovoltaic array design concepts were considered for the SEP vehicle power system for the human mission to Mars. These include a space station derivative, a SCARLET (Solar Concentrator Arrays with Refractive Linear Element Technology) derivative, and a hybrid inflatable-deployable thin polymer membrane array with thin-film solar cells (as shown in the concept illustration). This concept is based on a design developed for the Next Generation Space Telescope Sun shield. The array is divided into 16 independent electrical sections with 500-V, negative-grounded solar cell strings. The power system employs a channelized, 500-Vdc power management and distribution (PMAD) architecture with lithium ion batteries for energy storage for vehicle and payload secondary loads (the high-power Hall thrusters do not operate in eclipse periods). The 500-V PMAD voltage permits "direct-drive" thruster operation, greatly reducing the power processing unit size, complexity, and power loss. Similar power system architecture, designs, and technology are assumed for the Europa Mapper Mission SEP vehicle. The primary exceptions are that the photovoltaic array is assumed to consist of two rectangular wings and that the power system rating is 15 kW in Earth orbit and 200 W at Europa. To size the SEP vehicle power system, a dedicated Fortran code was developed to predict detailed power system performance, mass, and thermal control requirements. This code also modeled all the relevant Earth orbit environments; that is, the particulate radiation, plasma, meteoroids and debris, ultraviolet radiation, contamination, and thermal conditions. Analysis results for the Human Mars Mission SEP vehicle show a power system mass of 9-MT and photovoltaic array area of 5800-square meters for the thin-membrane design concept with CuInS2 thin-film cells. Power processing unit input power for a thin-membrane array design with three-junction, amorphous SiGe solar cells is shown in the graph. Power falls off rapidly inhe first weeks of the mission because of light-induced (Staebler-Wronksi) solar cell losses. During the next 200 days, power decreases steadily as the SEP stage spirals through the proton belts and sustains the bulk of the mission radiation damage. Once the vehicle apogee is above approximately four Earth radii, little additional degradation is incurred. From 400 to 800 days, a 1100-km "parking" orbit is maintained to await the next payload transfer opportunity. This orbit is below the main proton belt, and thus, little radiation dose is accumulated during this time period. During the second LEO-to-HEEPO transfer, power degrades somewhat further, but power requirements are still met. In comparison, the Europa Mapper SEP vehicle power system had a mass of 150 kg and a thin membrane array area of 100 square meters.
Ascent performance issues of a vertical-takeoff rocket launch vehicle
NASA Astrophysics Data System (ADS)
Powell, Richard W.; Naftel, J. C.; Cruz, Christopher I.
1991-04-01
Advanced manned launch systems studies under way at the NASA Langley Research Center are part of a broader effort that is examining options for the next manned space transportation system to be developed by the United States. One promising concept that uses near-term technologies is a fully reusable, two-stage vertical-takeoff rocket vehicle. This vehicle features parallel thrusting of the booster and orbiter with the booster cross-feeding the propellant to the orbiter until staging. In addition, after staging, the booster glides back unpowered to the launch site. This study concentrated on two issues that could affect the ascent performance of this vehicle. The first is the large gimbal angle range required for pitch trim until staging because of the propellant cross-feed. Results from this analysis show that if control is provided by gimballing of the rocket engines, they must gimbal greater than 20 deg, which is excessive when compared with current vehicles. However, this analysis also showed that this limit could be reduced to 10 deg if gimballing were augmented by throttling the booster engines. The second issue is the potential influence of off-nominal atmospheric conditions (density and winds) on the ascent performance. This study showed that a robust guidance algorithm could be developed that would insure accurate insertion, without prelaunch atmospheric knowledge.
Near-Term Laser Launch Capability: The Heat Exchanger Thruster
NASA Astrophysics Data System (ADS)
Kare, Jordin T.
2003-05-01
The heat exchanger (HX) thruster concept uses a lightweight (up to 1 MW/kg) flat-plate heat exchanger to couple laser energy into flowing hydrogen. Hot gas is exhausted via a conventional nozzle to generate thrust. The HX thruster has several advantages over ablative thrusters, including high efficiency, design flexibility, and operation with any type of laser. Operating the heat exchanger at a modest exhaust temperature, nominally 1000 C, allows it to be fabricated cheaply, while providing sufficient specific impulse (~600 seconds) for a single-stage vehicle to reach orbit with a useful payload; a nominal vehicle design is described. The HX thruster is also comparatively easy to develop and test, and offers an extremely promising route to near-term demonstration of laser launch.
Simulation of Acoustic Noise Generated by an Airbreathing, Beam-Powered Launch Vehicle
NASA Astrophysics Data System (ADS)
Kennedy, W. C.; Van Laak, P.; Scarton, H. A.; Myrabo, L. N.
2005-04-01
A simple acoustic model is developed for predicting the noise signature vs. power level for advanced laser-propelled lightcraft — capable of single-stage flights into low Earth orbit. This model predicts the noise levels generated by a pulsed detonation engine (PDE) during the initial lift-off and acceleration phase, for two representative `tractor-beam' lightcraft designs: a 1-place `Mercury' vehicle (2.5-m diameter, 900-kg); and a larger 5-place `Apollo' vehicle (5-m diameter, 5555-kg) — both the subject of an earlier study. The use of digital techniques to simulate the expected PDE noise signature is discussed, and three examples of fly-by noise signatures are presented. The reduction, or complete elimination of perceptible noise from such engines, can be accomplished by shifting the pulse frequency into the supra-audible or sub-audible range.
Understanding the Lunar System Architecture Design Space
NASA Technical Reports Server (NTRS)
Arney, Dale C.; Wilhite, Alan W.; Reeves, David M.
2013-01-01
Based on the flexible path strategy and the desire of the international community, the lunar surface remains a destination for future human exploration. This paper explores options within the lunar system architecture design space, identifying performance requirements placed on the propulsive system that performs Earth departure within that architecture based on existing and/or near-term capabilities. The lander crew module and ascent stage propellant mass fraction are primary drivers for feasibility in multiple lander configurations. As the aggregation location moves further out of the lunar gravity well, the lunar lander is required to perform larger burns, increasing the sensitivity to these two factors. Adding an orbit transfer stage to a two-stage lunar lander and using a large storable stage for braking with a one-stage lunar lander enable higher aggregation locations than Low Lunar Orbit. Finally, while using larger vehicles enables a larger feasible design space, there are still feasible scenarios that use three launches of smaller vehicles.
Electric Propulsion Upper-Stage for Launch Vehicle Capability Enhancement
NASA Technical Reports Server (NTRS)
Kemp, Gregory E.; Dankanich, John W.; Woodcock, Gordon R.; Wingo, Dennis R.
2007-01-01
The NASA In-Space Propulsion Technology Project Office initiated a preliminary study to evaluate the performance benefits of a solar electric propulsion (SEP) upper-stage with existing and near-term small launch vehicles. The analysis included circular and elliptical Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO) transfers, and LEO to Low Lunar Orbit (LLO) applications. SEP subsystem options included state-of-the-art and near-term solar arrays and electric thrusters. In-depth evaluations of the Aerojet BPT-4000 Hall thruster and NEXT gridded ion engine were conducted to compare performance, cost and revenue potential. Preliminary results indicate that Hall thruster technology is favored for low-cost, low power SEP stages, while gridded-ion engines are favored for higher power SEP systems unfettered by transfer time constraints. A low-cost point design is presented that details one possible stage configuration and outlines system limitations, in particular fairing volume constraints. The results demonstrate mission enhancements to large and medium class launch vehicles, and mission enabling performance when SEP system upper stages are mounted to low-cost launchers such as the Minotaur and Falcon 1. Study results indicate the potential use of SEP upper stages to double GEO payload mass capability and to possibly enable launch on demand capability for GEO assets. Transition from government to commercial applications, with associated cost/benefit analysis, has also been assessed. The sensitivity of system performance to specific impulse, array power, thruster size, and component costs are also discussed.
Mach 6.5 air induction system design for the Beta 2 two-stage-to-orbit booster vehicle
NASA Technical Reports Server (NTRS)
Midea, Anthony C.
1991-01-01
A preliminary, two-dimensional, mixed compression air induction system is designed for the Beta II Two Stage to Orbit booster vehicle to minimize installation losses and efficiently deliver the required airflow. Design concepts, such as an external isentropic compression ramp and a bypass system were developed and evaluated for performance benefits. The design was optimized by maximizing installed propulsion/vehicle system performance. The resulting system design operating characteristics and performance are presented. The air induction system design has significantly lower transonic drag than similar designs and only requires about 1/3 of the bleed extraction. In addition, the design efficiently provides the integrated system required airflow, while maintaining adequate levels of total pressure recovery. The excellent performance of this highly integrated air induction system is essential for the successful completion of the Beta II booster vehicle mission.
Low thrust vehicle concept study
NASA Technical Reports Server (NTRS)
1980-01-01
Low thrust chemical (hydrogen-oxygen) propulsion systems configured specifically for low acceleration orbit transfer of large space systems were defined. Results indicate that it is cost effective and least risk to combine the OTV and stowed spacecraft in a single 65 K Shuttle. The study shows that the engine for an optimized low thrust stage (1) does not require very low thrust; (2) 1-3 K thrust range appears optimum; (3) thrust transient is not a concern; (4) throttling probably not worthwhile; and (5) multiple thrusters complicate OTV/LSS design and aggravate LSS loads. Regarding the optimum vehicle for low acceleration missions, the single shuttle launch (LSS and expendable OTV) is most cost effective and least risky. Multiple shuttles increase diameter 20%. The space based radar structure short OTV (which maximizes space available for packaged LSS) favors use of torus tank. Propellant tank pressures/vapor residuals are little affected by engine thrust level or number of burns.
14 CFR 431.35 - Acceptable reusable launch vehicle mission risk.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Acceptable reusable launch vehicle mission risk. 431.35 Section 431.35 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... launch flight through orbital insertion of an RLV or vehicle stage or flight to outer space, whichever is...
14 CFR 431.35 - Acceptable reusable launch vehicle mission risk.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Acceptable reusable launch vehicle mission risk. 431.35 Section 431.35 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... launch flight through orbital insertion of an RLV or vehicle stage or flight to outer space, whichever is...
14 CFR 431.35 - Acceptable reusable launch vehicle mission risk.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Acceptable reusable launch vehicle mission risk. 431.35 Section 431.35 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... launch flight through orbital insertion of an RLV or vehicle stage or flight to outer space, whichever is...
14 CFR 431.35 - Acceptable reusable launch vehicle mission risk.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Acceptable reusable launch vehicle mission risk. 431.35 Section 431.35 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... launch flight through orbital insertion of an RLV or vehicle stage or flight to outer space, whichever is...
14 CFR 431.35 - Acceptable reusable launch vehicle mission risk.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Acceptable reusable launch vehicle mission risk. 431.35 Section 431.35 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... launch flight through orbital insertion of an RLV or vehicle stage or flight to outer space, whichever is...
Thermostructural applications of heat pipes
NASA Technical Reports Server (NTRS)
Peeples, M. E.; Reeder, J. C.; Sontag, K. E.
1979-01-01
The feasibility of integrating heat pipes in high temperature structure to reduce local hot spot temperature was evaluated for a variety of hypersonic aerospace vehicles. From an initial list of twenty-two potential applications, the single stage to orbit wing leading edge showed the greatest promise and was selected for preliminary design of an integrated heat pipe thermostructural system. The design consisted of a Hastelloy X assembly with sodium heat pipe passages aligned normal to the wing leading edge. A d-shaped heat pipe cross section was determined to be optimum from the standpoint of structural weight.
1965-01-01
In this photograph, the Pegasus, meteoroid detection satellite is installed in its specially modified Apollo service module atop the S-IV stage (second stage) of a Saturn I vehicle for the SA-9 mission at Cape Kennedy. Personnel in the service structure moved the boilerplate Apollo command module into place to cap the vehicle. The command and service modules, visible here, were jettisoned into orbit to free the Pegasus for wing deployment. The satellite was used to obtain data on frequency and penetration of the potentially hazardous micrometeoroids in low Earth orbits and to relay the information back to Earth. The SA-9 was launched on February 16, 1965.
Orbiting Depot and Reusable Lander for Lunar Transportation
NASA Technical Reports Server (NTRS)
Petro, Andrew
2009-01-01
A document describes a conceptual transportation system that would support exploratory visits by humans to locations dispersed across the surface of the Moon and provide transport of humans and cargo to sustain one or more permanent Lunar outpost. The system architecture reflects requirements to (1) minimize the amount of vehicle hardware that must be expended while maintaining high performance margins and (2) take advantage of emerging capabilities to produce propellants on the Moon while also enabling efficient operation using propellants transported from Earth. The system would include reusable single- stage lander spacecraft and a depot in a low orbit around the Moon. Each lander would have descent, landing, and ascent capabilities. A crew-taxi version of the lander would carry a pressurized crew module; a cargo version could carry a variety of cargo containers. The depot would serve as a facility for storage and for refueling with propellants delivered from Earth or propellants produced on the Moon. The depot could receive propellants and cargo sent from Earth on a variety of spacecraft. The depot could provide power and orbit maintenance for crew vehicles from Earth and could serve as a safe haven for lunar crews pending transport back to Earth.
Damage tolerance of candidate thermoset composites for use on single stage to orbit vehicles
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Lance, D.; Hodge, A.
1994-01-01
Four fiber/resin systems were compared for resistance to damage and damage tolerance. One toughened epoxy and three toughened bismaleimide (BMI) resins were used, all with IM7 carbon fiber reinforcement. A statistical design of experiments technique was used to evaluate the effects of impact energy, specimen thickness, and impactor diameter on the damage area, as computed by C-scans, and residual compression-after-impact (CAI) strength. Results showed that two of the BMI systems sustained relatively large damage zones yet had an excellent retention of CAI strength.
NASA Technical Reports Server (NTRS)
1976-01-01
Enabling technology needs and other requirements to support space industrialization include: large space structures; fabrication and joining processes; single stage to orbit and heavy lift launch vehicles; nuclear and solar space power systems; robotics, manipulators, and teleoperators; biotechnology in space; artificial gravity; the utilization of lunar materials for construction; and the extraction of oxygen and metals from lunar resources. New initiatives (FY 1978) directly supportive or partly related to space industrialization are listed.
The enhancement of the Transtage for the commercial Titan launch vehicle
NASA Astrophysics Data System (ADS)
Gunter, D.; Gizinski, S.
1987-06-01
The configuration of the Transtage upper stage and its application to the Titan III launch vehicle are examined. The Transtage consists of a control and a propulsion module, and is about 10 feet in diameter and 14.75 feet in length. The elements of the control and propulsion modules and their functions are described. The Transtage/Titan III combination allows for the insertion of a payload into geostationary transfer orbit and eliminates the requirement for a perigee kick motor system. It is observed that the addition of the Transtage upper stage to the Titan III launch vehicle provides a geosynchronous transfer orbit capability of 9500 lbs, flexible mission tailoring, and reliability exceeding 96 percent. Diagrams of the Titan III and the Transtage and its components are provided.
Mission Design for NASA's Inner Heliospheric Sentinels and ESA's Solar Orbiter Missions
NASA Technical Reports Server (NTRS)
Downing, John; Folta, David; Marr, Greg; Rodriquez-Canabal, Jose; Conde, Rich; Guo, Yanping; Kelley, Jeff; Kirby, Karen
2007-01-01
This paper will document the mission design and mission analysis performed for NASA's Inner Heliospheric Sentinels (IHS) and ESA's Solar Orbiter (SolO) missions, which were conceived to be launched on separate expendable launch vehicles. This paper will also document recent efforts to analyze the possibility of launching the Inner Heliospheric Sentinels and Solar Orbiter missions using a single expendable launch vehicle, nominally an Atlas V 551.
Conceptual study of space plane powered by hypersonic airbreathing propulsion system
NASA Astrophysics Data System (ADS)
Maita, Masataka; Ohkami, Yoshiaki; Yamanaka, Tatsuo; Mori, Takashige
1990-10-01
The paper describes the investigations of aerospace plane concept, conducted by the National Aerospace Laboratory (NAL) of Japan, with particular attention given to a concept which integrates a scram/liquid air cycle engine (LACE) hypersonic propulsion system fueling with slush hydrogen. The key requirements in achieving the space plane using scram/LACE propulsion system are described along with the mission requirements and the vehicle characteristics. Typical outputs of SSTO analysis are presented.
NASA Technical Reports Server (NTRS)
Kofal, Allen E.
1987-01-01
The mission and system requirements for the concept definition and system analysis of the Orbital Transfer Vehicle (OTV) are established. The requirements set forth constitute the single authority for the selection, evaluation, and optimization of the technical performance and design of the OTV. This requirements document forms the basis for the Ground and Space Based OTV concept definition analyses and establishes the physical, functional, performance and design relationships to STS, Space Station, Orbital Maneuvering Vehicle (OMV), and payloads.
Advanced Space Transportation Program (ASTP)
2002-10-01
NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education, and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle. For the SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second- generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.
NASA Technical Reports Server (NTRS)
2002-01-01
NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education, and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle. For the SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second- generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.
NASA Technical Reports Server (NTRS)
2002-01-01
NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle during launch. For SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.
Rockot Launch Vehicle Commercial Operations for Grace and Iridium Program
NASA Astrophysics Data System (ADS)
Viertel, Y.; Kinnersley, M.; Schumacher, I.
2002-01-01
The GRACE mission and the IRIDIUM mission on ROCKOT launch vehicle are presented. Two identical GRACE satellites to measure in tandem the gravitational field of the earth with previously unattainable accuracy - it's called the Gravity Research and Climate Experiment, or and is a joint project of the U.S. space agency, NASA and the German Centre for Aeronautics and Space Flight, DLR. In order to send the GRACE twins into a 500x500 km , 89deg. orbit, the Rockot launch vehicle was selected. A dual launch of two Iridium satellites was scheduled for June 2002 using the ROCKOT launch vehicle from Plesetsk Cosmodrome in Northern Russia. This launch will inject two replacement satellites into a low earth orbit (LEO) to support the maintenance of the Iridium constellation. In September 2001, Eurockot successfully carried out a "Pathfinder Campaign" to simulate the entire Iridium mission cycle at Plesetsk. The campaign comprised the transport of simulators and related equipment to the Russian port-of-entry and launch site and also included the integration and encapsulation of the simulators with the actual Rockot launch vehicle at Eurockot's dedicated launch facilities at Plesetsk Cosmodrome. The pathfinder campaign lasted four weeks and was carried out by a joint team that also included Khrunichev, Russian Space Forces and Eurockot personnel on the contractors' side. The pathfinder mission confirmed the capability of Eurockot Launch Services to perform the Iridium launch on cost and on schedule at Plesetsk following Eurockot's major investment in international standard preparation, integration and launch facilities including customer facilities and a new hotel. In 2003, Eurockot will also launch the Japanese SERVI'S-1 satellite for USEF. The ROCKOT launch vehicle is a 3 stage liquid fuel rocket whose first 2 stages have been adapted from the Russian SS-19. A third stage, called "Breeze", can be repeatedly ignited and is extraordinarily capable of manoeuvre. Rockot can place payloads of up to 1900 kilograms in near- earth orbit. The rocket is 29 meters long with a diameter of 2.5 meters. The launch weight is about 107 tons. Satellite launches with Rockot are a service offered and carried out by Eurockot Launch Service GmbH. It is a European Russian joint venture which is 51% controlled by Astrium and 49 % by Khrunichev, Russia's leading launch vehicle firm. The Rockot vehicles can be launched from Plesetsk in northern Russia and Baikonur in Kazakhstan. EUROCKOT provides a wide choice of flight-proven adapters and multi-satellite platforms to the customer to allow such payloads to be accommodated. These range from the Russian Single Pyro Point Attachment System (SPPA)
Development of the X-33 Aerodynamic Uncertainty Model
NASA Technical Reports Server (NTRS)
Cobleigh, Brent R.
1998-01-01
An aerodynamic uncertainty model for the X-33 single-stage-to-orbit demonstrator aircraft has been developed at NASA Dryden Flight Research Center. The model is based on comparisons of historical flight test estimates to preflight wind-tunnel and analysis code predictions of vehicle aerodynamics documented during six lifting-body aircraft and the Space Shuttle Orbiter flight programs. The lifting-body and Orbiter data were used to define an appropriate uncertainty magnitude in the subsonic and supersonic flight regions, and the Orbiter data were used to extend the database to hypersonic Mach numbers. The uncertainty data consist of increments or percentage variations in the important aerodynamic coefficients and derivatives as a function of Mach number along a nominal trajectory. The uncertainty models will be used to perform linear analysis of the X-33 flight control system and Monte Carlo mission simulation studies. Because the X-33 aerodynamic uncertainty model was developed exclusively using historical data rather than X-33 specific characteristics, the model may be useful for other lifting-body studies.
Adaptive guidance for an aero-assisted boost vehicle
NASA Astrophysics Data System (ADS)
Pamadi, Bandu N.; Taylor, Lawrence W., Jr.; Price, Douglas B.
An adaptive guidance system incorporating dynamic pressure constraint is studied for a single stage to low earth orbit (LEO) aero-assist booster with thrust gimbal angle as the control variable. To derive an adaptive guidance law, cubic spline functions are used to represent the ascent profile. The booster flight to LEO is divided into initial and terminal phases. In the initial phase, the ascent profile is continuously updated to maximize the performance of the boost vehicle enroute. A linear feedback control is used in the terminal phase to guide the aero-assisted booster onto the desired LEO. The computer simulation of the vehicle dynamics considers a rotating spherical earth, inverse square (Newtonian) gravity field and an exponential model for the earth's atmospheric density. This adaptive guidance algorithm is capable of handling large deviations in both atmospheric conditions and modeling uncertainties, while ensuring maximum booster performance.
Enabling Exploration Missions Now: Applications of On-orbit Staging
NASA Technical Reports Server (NTRS)
Folta, David C.; Vaughn, Frank; Westmeyer, Paul; Rawitscher, Gary; Bordi, Francesco
2005-01-01
Future NASA Exploration goals are difficult to meet using current launch vehicle implementations and techniques. We introduce a concept of On-Orbit Staging (OOS) using multiple launches into a Low Earth orbit (LEO) staging area to increase payload mass and reduce overall cost for exploration initiative missions. This concept is a forward-looking implementation of ideas put forth by Oberth and Von Braun to address the total mission design. Applying staging throughout the mission and utilizing technological advances in propulsion efficiency and architecture enable us to show that exploration goals can be met in the next decade. As part of this architecture, we assume the readiness of automated rendezvous, docking, and assembly technology.
NASA Technical Reports Server (NTRS)
Thomas, H. Dan
2008-01-01
NASA s Ares-I launch vehicle will be built to deliver the Orion spacecraft to Low-Earth orbit, servicing the International Space Station with crew-transfer and helping humans begin longer voyages in conjunction with the larger Ares-V. While there are no planned missions for Ares-I beyond these, the vehicle itself offers an additional capability for robotic exploration. Here we present an analysis of the capability of the Ares-I rocket for robotic missions to a variety of destinations, including lunar and planetary exploration, should such missions become viable in the future. Preliminary payload capabilities using both single and dual launch architectures are presented. Masses delivered to the lunar surface are computed along with throw capabilities to various Earth departure energies (i.e. C3s). The use of commercially available solid rocket motors as additional payload stages were analyzed and will also be discussed.
NASA Astrophysics Data System (ADS)
Trushlyakov, V.; Shatrov, Ya.
2017-09-01
In this paper, the analysis of technical requirements (TR) for the development of modern space launch vehicles (LV) with main liquid rocket engines (LRE) is fulfilled in relation to the anthropogenic impact decreasing. Factual technical characteristics on the example of a promising type of rocket ;Soyuz-2.1.v.; are analyzed. Meeting the TR in relation to anthropogenic impact decrease based on the conventional design approach and the content of the onboard system does not prove to be efficient and leads to depreciation of the initial technical characteristics obtained at the first design stage if these requirements are not included. In this concern, it is shown that the implementation of additional active onboard de-orbiting system (AODS) of worked-off stages (WS) into the onboard LV stages systems allows to meet the TR related to the LV environmental characteristics, including fire-explosion safety. In some cases, the orbital payload mass increases.
Aerodynamic configuration design using response surface methodology analysis
NASA Technical Reports Server (NTRS)
Engelund, Walter C.; Stanley, Douglas O.; Lepsch, Roger A.; Mcmillin, Mark M.; Unal, Resit
1993-01-01
An investigation has been conducted to determine a set of optimal design parameters for a single-stage-to-orbit reentry vehicle. Several configuration geometry parameters which had a large impact on the entry vehicle flying characteristics were selected as design variables: the fuselage fineness ratio, the nose to body length ratio, the nose camber value, the wing planform area scale factor, and the wing location. The optimal geometry parameter values were chosen using a response surface methodology (RSM) technique which allowed for a minimum dry weight configuration design that met a set of aerodynamic performance constraints on the landing speed, and on the subsonic, supersonic, and hypersonic trim and stability levels. The RSM technique utilized, specifically the central composite design method, is presented, along with the general vehicle conceptual design process. Results are presented for an optimized configuration along with several design trade cases.
Space Shuttle guidance for multiple main engine failures during first stage
NASA Technical Reports Server (NTRS)
Sponaugle, Steven J.; Fernandes, Stanley T.
1987-01-01
This paper presents contingency abort guidance schemes recently developed for multiple Space Shuttle main engine failures during the first two minutes of flight (first stage). The ascent and entry guidance schemes greatly improve the possibility of the crew and/or the Orbiter surviving a first stage contingency abort. Both guidance schemes were required to meet certain structural and controllability constraints. In addition, the systems were designed with the flexibility to allow for seasonal variations in the atmosphere and wind. The ascent scheme guides the vehicle to a desirable, lofted state at solid rocket booster burnout while reducing the structural loads on the vehicle. After Orbiter separation from the solid rockets and the external tank, the entry scheme guides the Orbiter through one of two possible entries. If the proper altitude/range/velocity conditions have been met, a return-to-launch-site 'Split-S' maneuver may be attempted. Otherwise, a down-range abort to an equilibrium glide and subsequent crew bailout is performed.
End-of-Mission Passivation: Successes and Challenges
NASA Technical Reports Server (NTRS)
Johnson, Nicholas; Matney, Mark
2012-01-01
The passivation of spacecraft and launch vehicle orbital stages at end-of-mission has been a principal space debris mitigation measure world-wide since the 1980 s. Space vehicle passivation includes the removal of stored energies, especially those associated with propulsion and electrical power systems. Prior to 2007 the breakup of non-functioning, non-passivated space vehicles was the major source of hazardous debris in Earth orbit. The United Nations and the Inter-Agency Space Debris Coordination Committee have both included passivation in their formal space debris mitigation guidelines. This often simple countermeasure has been adopted by many spacefaring countries and organizations and has undoubtedly prevented numerous major satellite breakups. For some existing space vehicle designs, passivation requires changes in hardware, software, and/or operational procedures. Questions about the permissible degree of passivation for both current and future space vehicles have arisen and are addressed herein. An important element to be considered is the potentially long period in which the space vehicle will remain in orbit, i.e., up to 25 years after mission termination in LEO and for centuries in orbits above LEO. Finally, the issue of passivation of space vehicles which have failed prematurely is addressed.
Ares V: Game Changer for National Security Launch
NASA Technical Reports Server (NTRS)
Sumrall, Phil; Morris, Bruce
2009-01-01
NASA is designing the Ares V cargo launch vehicle to vastly expand exploration of the Moon begun in the Apollo program and enable the exploration of Mars and beyond. As the largest launcher in history, Ares V also represents a national asset offering unprecedented opportunities for new science, national security, and commercial missions of unmatched size and scope. The Ares V is the heavy-lift component of NASA's dual-launch architecture that will replace the current space shuttle fleet, complete the International Space Station, and establish a permanent human presence on the Moon as a stepping-stone to destinations beyond. During extensive independent and internal architecture and vehicle trade studies as part of the Exploration Systems Architecture Study (ESAS), NASA selected the Ares I crew launch vehicle and the Ares V to support future exploration. The smaller Ares I will launch the Orion crew exploration vehicle with four to six astronauts into orbit. The Ares V is designed to carry the Altair lunar lander into orbit, rendezvous with Orion, and send the mated spacecraft toward lunar orbit. The Ares V will be the largest and most powerful launch vehicle in history, providing unprecedented payload mass and volume to establish a permanent lunar outpost and explore significantly more of the lunar surface than was done during the Apollo missions. The Ares V consists of a Core Stage, two Reusable Solid Rocket Boosters (RSRBs), Earth Departure Stage (EDS), and a payload shroud. For lunar missions, the shroud would cover the Lunar Surface Access Module (LSAM). The Ares V Core Stage is 33 feet in diameter and 212 feet in length, making it the largest rocket stage ever built. It is the same diameter as the Saturn V first stage, the S-IC. However, its length is about the same as the combined length of the Saturn V first and second stages. The Core Stage uses a cluster of five Pratt & Whitney Rocketdyne RS-68B rocket engines, each supplying about 700,000 pounds of thrust. Its propellants are liquid hydrogen and liquid oxygen. The two solid rocket boosters provide about 3.5 million pounds of thrust at liftoff. These 5.5-segment boosters are derived from the 4-segment boosters now used on the Space Shuttle, and are similar to those used in the Ares I first stage. The EDS is powered by one J-2X engine. The J-2X, which has roughly 294,000 pounds of thrust, also powers the Ares I Upper Stage. It is derived from the J-2 that powered the Saturn V second and third stages. The EDS performs two functions. Its initial suborbital burns will place the lunar lander into a stable Earth orbit. After the Orion crew vehicle, launched separately on an Ares I, docks with the lander/EDS stack, EDS will ignite a second time to put the combined 65-metric ton vehicle into a lunar transfer orbit. When it stands on the launch pad at Kennedy Space Center late in the next decade, the Ares V stack will be approximately 381 feet tall and have a gross liftoff mass of 8.1 million pounds. The current point-of-departure design exceeds Saturn V s mass capability by approximately 40 percent. Using the current payload shroud design, Ares V can carry 315,000 pounds to 29-degree low Earth orbit (LEO) or 77,000 pounds to a geosynchronous orbit. Another unique aspect of the Ares V is the 33-foot-diameter payload shroud, which encloses approximately 30,400 cubic feet of usable volume. A larger hypothetical shroud for encapsulating larger payloads has been studied. While Ares V makes possible larger payload masses and volumes, it may alternately make possible more cost-effective mission design if the relevant payload communities are willing to consider an alternative to the existing approach that has driven them to employ complexity to solve current launch vehicle mass and volume constraints. By using Ares V s mass and volume capabilities as margin, payload designers stand to reduce development risk and cost. Significant progress has been made on the Ares V to support a plaed fiscal 2011 authority-to-proceed (ATP) milestone. The Ares V team is actively reaching out to external organizations during this early concept phase to ensure that the Ares V vehicle can be leveraged for national security, science, and commercial development needs. This presentation will discuss Ares V vehicle configuration, the path to the current concept, accomplishments to date, and potential payload utilization opportunities.
SLI Artist's Concept-Vehicle Enroute to Space Station
NASA Technical Reports Server (NTRS)
2002-01-01
NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education, and Defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle enroute to the International Space Station. For the SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second-generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.
Active Debris Removal Using Modified Launch Vehicle Upper Stages
NASA Astrophysics Data System (ADS)
Nasseri, S. Ali; Emanuelli, Matteo; Raval, Siddharth; Turconi, Andrea
2013-09-01
During the past few years, several research programs have assessed the current state and future evolution of space debris in the Low Earth Orbit region. These studies indicate that space debris density could reach a critical level such that there will be a continuous increase in the number of debris objects, primarily driven by debris-debris collision activity known as the Kessler effect. These studies also highlight the urgency for active debris removal.An Active Debris Removal System (ADRS) is capable of approaching the debris object through a close-range rendezvous, stabilizing its attitude, establishing physical contact, and finally de-orbiting the debris object. The de-orbiting phase could be powered by propulsion systems such as chemical rockets or electrodynamic tether (EDT) systems.The aim of this project is to model and evaluate a debris removal mission in which an adapted rocket upper stage, equipped with an electrodynamic tether (EDT) system, is employed for de-orbiting a debris object. This ADRS package is installed initially as part of a launch vehicle on a normal satellite deployment mission, and a far-approach manoeuvre will be required to align the ADRS' orbit with that of the target debris. We begin by selecting a suitable target debris and launch vehicle, and then proceed with modelling the entire debris removal mission from launch to de-orbiting of the target debris object using Analytical Graphic Inc.'s Systems Tool Kit (STK).
NASA Technical Reports Server (NTRS)
1987-01-01
This report describes the preliminary design specifications for an Advanced Space Transportation System consisting of a fully reusable flyback booster, an intermediate-orbit cargo vehicle, and a shuttle-type orbiter with an enlarged cargo bay. It provides a comprehensive overview of mission profile, aerodynamics, structural design, and cost analyses. These areas are related to the overall feasibility and usefullness of the proposed system.
NASA Technical Reports Server (NTRS)
Borowski, S.; Clark, J.; Sefcik, R.; Corban, R.; Alexander, S.
1995-01-01
The results of integrated systems and mission studies are presented which quantify the benefits and rationale for developing a common, modular lunar/Mars space transportation system (STS) based on nuclear thermal rocket (NTR) technology. At present NASA's Exploration Program Office (ExPO) is considering chemical propulsion for an 'early return to the Moon' and NTR propulsion for the more demanding Mars missions to follow. The time and cost to develop these multiple systems are expected to be significant. The Nuclear Propulsion Office (NPO) has examined a variety of lunar and Mars missions and heavy lift launch vehicle (HLLV) options in an effort to determine a 'standardized' set of engine and stage components capable of satisfying a wide range of Space Exploration Initiative (SEI) missions. By using these components in a 'building block' fashion, a variety of single and multi-engine lunar and Mars vehicles can be configured. For NASA's 'First Lunar Outpost' (FLO) mission, an expendable NTR stage powered by two 50 klbf engines can deliver approximately 96 metric tons (t) to translunar injection (TLI) conditions for an initial mass in low earth orbit (IMLEO) of approximately 198 t compared to 250 t for a cryogenic chemical TLI stage. The NTR stage liquid hydrogen (LH2) tank has a 10 m diameter, 14.5 m length, and 66 t LH2 capacity. The NTR utilizes a UC-ZrC-graphite 'composite' fuel with a specific impulse (Isp) capability of approximately 900 s and an engine thrust-to-weight ratio of approximately 4.3. By extending the size and LH2 capacity of the lunar NTR stage to approximately 20 m and 96 t, respectively, a single launch Mars cargo vehicle capable of delivering approximately 50 t of surface payload is possible. Three 50 klbf NTR engines and the two standardized LH2 tank sizes developed for lunar and Mars cargo vehicle applications would be used to configure the Mars piloted vehicle for a mission as early as 2010. The paper describes the features of the 'common' NTR-based moon/Mars STS, examines performance sensitivities resulting from different 'mission mode' assumptions, and quantifies potential schedule and cost benefits resulting from this modular moon/Mars NTR vehicle approach.
Hypersonic propulsion: Status and challenge
NASA Technical Reports Server (NTRS)
Guy, R. Wayne
1990-01-01
Scientists in the U.S. are again focusing on the challenge of hypersonic flight with the proposed National Aerospace Plane (NASP). This renewed interest has led to an expansion of research related to high speed airbreathing propulsion, in particular, the supersonic combustion ramjet, or scramjet. The history is briefly traced of scramjet research in the U.S., with emphasis on NASA sponsored efforts, from the Hypersonic Research Engine (HRE) to the current status of today's airframe integrated scramjets. The challenges of scramjet technology development from takeover to orbital speeds are outlined. Existing scramjet test facilities such as NASA Langley's Scramjet Test Complex as well as new high Mach number pulse facilities are discussed. The important partnership role of experimental methods and computational fluid dynamics is emphasized for the successful design of single stage to orbit vehicles.
Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters
NASA Technical Reports Server (NTRS)
Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith
2016-01-01
Basic principles for the design and stability of a spacecraft on-orbit attitude control system employing on-off Reaction Control System (RCS) thrusters are presented. Both vehicle dynamics and the control system actuators are inherently nonlinear, hence traditional linear control system design approaches are not directly applicable. This paper has two main aspects: It summarizes key RCS design principles from earlier NASA vehicles, notably the Space Shuttle and Space Station programs, and introduces advances in the linear modelling and analyses of a phase plane control system derived in the initial development of the NASA's next upper stage vehicle, the Exploration Upper Stage (EUS). Topics include thruster hardware specifications, phase plane design and stability, jet selection approaches, filter design metrics, and RCS rotational maneuver logic.
NASA Technical Reports Server (NTRS)
Seiler, James; Brasfield, Fred; Cannon, Scott
2008-01-01
Ares is an integral part of NASA s Constellation architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Ares replaces the Space Shuttle in the post 2010 time frame. Ares I is an in-line, two-stage rocket topped by the Orion Crew Exploration Vehicle, its service module, and a launch abort system. The Ares I first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor. The Ares second or upper stage is propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This paper describes the advanced systems engineering and planning tools being utilized for the design, test, and qualification of the Ares I first stage element. Included are descriptions of the current first stage design, the milestone schedule requirements, and the marriage of systems engineering, detailed planning efforts, and roadmapping employed to achieve these goals.
NASA Technical Reports Server (NTRS)
Mazurkivich, Pete; Chandler, Frank; Grayson, Gary
2005-01-01
To meet the requirements for the 2nd Generation Reusable Launch Vehicle (RLV), a unique propulsion feed system concept was identified using crossfeed between the booster and orbiter stages that could reduce the Two-Stage-to-Orbit (TSTO) vehicle weight and development cost by approximately 25%. A Main Propulsion System (MPS) crossfeed water demonstration test program was configured to address all the activities required to reduce the risks for the MPS crossfeed system. A transient, one-dimensional system simulation was developed for the subscale crossfeed water flow tests. To ensure accurate representation of the crossfeed valve's dynamics in the system model, a high-fidelity, three-dimensional, computational fluid-dynamics (CFD) model was employed. The results from the CFD model were used to specify the valve's flow characteristics in the system simulation. This yielded a crossfeed system model that was anchored to the specific valve hardware and achieved good agreement with the measured test data. These results allowed the transient models to be correlated and validated and used for full scale mission predictions. The full scale model simulations indicate crossfeed is ' viable with the system pressure disturbances at the crossfeed transition being less than experienced by the propulsion system during engine start and shutdown transients.
Low Cost Space Demonstration for a Single-Person Spacecraft
NASA Technical Reports Server (NTRS)
Griffin, Brand N.; Dischinger, Charles
2011-01-01
This paper introduces a concept for a single-person spacecraft and presents plans for flying a low-cost, robotic demonstration mission. Called FlexCraft, the vehicle integrates propulsion and robotics into a small spacecraft that enables rapid, shirt-sleeve access to space. It can be flown by astronauts or tele-operated and is equipped with interchangeable manipulators used for maintaining the International Space Station (ISS), exploring asteroids, and servicing telescopes or satellites. Most FlexCraft systems are verified using ground facilities; however, a test in the weightless environment is needed to assess propulsion and manipulator performance. For this, a simplified, unmanned, version of FlexCraft is flown on a low-cost launch vehicle to a 350 km circular orbit. After separation from the upper stage, the vehicle returns to a target box mounted on the stage testing the propulsion and control capability. The box is equipped with manipulator test items that are representative of tasks performed on ISS, asteroid missions, or for satellites servicing. Nominal and off-nominal operations are conducted over 3 days then the vehicle re-enters the atmosphere without becoming a debris hazard. From concept to management to operations, the FlexCraft demonstration is designed to be low cost project that is launched within three years. This is possible using a simplified test configuration that eliminates nine systems unique to the operational version and by designing-to-availability. For example, the propulsion system is the same as the Manned Maneuvering Unit because it capable, simple, human-rated and all components or equivalent parts are available. A description of the launch vehicle options, mission operations, configuration, and demonstrator subsystems is presented.
The Role of the Strutjet Engine in New Global and Space Markets
NASA Technical Reports Server (NTRS)
Siebenhaar, A.; Bonar, D.; Sarmont, E.
1998-01-01
The Strutjet, discussed in previous IAF papers, was originally introduced as an enabling propulsion concept for single stage to orbit applications. Recent design considerations indicate that this systems also provides benefits supportive of other commercial non-space applications. This paper describes the technical progress of the Strutjet since 1997 together with a rationale why Rocket Based Combined Cycle Engines in general, and the Strutjet in particular, lend themselves uniquely to systems having the ability to expand current space and open new global "rapid delivery" markets. During this decade, Strutjet technology has been evaluated in over 1000 tests. Its design maturity has been continuously improved and desired features, like simple variable geometry and low drag flowpath resulting in high performance, are verified. In addition, data is now available which allows the designer, who is challenged to maximize system operability and economic feasibility, to choose between hydrogen or hydrocarbon fuels for these application. The ability exists now to apply this propulsion system to various vehicles with a multitude of missions. In this paper, the previously presented earth-to-orbit hydrogen powered vehicle is up3ated and another vehicle, specifically designed for rapid point-to-point delivery, is introduced and discussed. High payoff propulsion technologies required for these vehicles are identified and laid out in a roadmap spanning over the next decade.
Contingency Operations of Americas Next Moon Rocket, Ares V
NASA Technical Reports Server (NTRS)
Jaap, John; Richardson, Lea
2010-01-01
America has begun the development of a new space vehicle system which will enable humans to return to the moon and reach even farther destinations. The system is called Constellation: it has 2 earth-launch vehicles, Ares I and Ares V; a crew module, Orion; and a lander, Altair with descent and ascent stages. Ares V will launch an Earth Departure Stage (EDS) and Altair into low earth orbit. Ares I will launch the Orion crew module into low earth orbit where it will rendezvous and dock with the Altair and EDS "stack". After rendezvous, the stack will contain four complete rocket systems, each capable of independent operations. Of course this multiplicity of vehicles provides a multiplicity of opportunities for off-nominal behavior and multiple mitigation options for each. Contingency operations are complicated by the issues of crew safety and the possibility of debris from the very large components impacting the ground. This paper examines contingency operations of the EDS in low earth orbit, during the boost to translunar orbit, and after the translunar boost. Contingency operations under these conditions have not been a consideration since the Apollo era and analysis of the possible contingencies and mitigations will take some time to evolve. Since the vehicle has not been designed, much less built, it is not possible to evaluate contingencies from a root-cause basis or from a probability basis; rather they are discussed at an effects level (such as the reaction control system is consuming propellant at a high rate). Mitigations for the contingencies are based on the severity of the off-nominal condition, the time of occurrence, recovery options, options for alternate missions, crew safety, evaluation of the condition (forensics) and future prevention. Some proposed mitigations reflect innovation in thinking and make use of the multiplicity of on-orbit resources including the crew; example: Orion could do a "fly around" to allow the crew to determine the condition and cause of a partially separated payload shroud. Other mitigations are really alternate missions; example, an engine out on during ascent resulted in insufficient propellant for the lunar mission, but the on-orbit vehicle stack is otherwise perfect and can pursue an alternate mission, such as a high ballistic trajectory to test the high-speed atmospheric reentry of Orion. Evaluation and presentation of contingency operations at this early stage of the development of the Ares V rocket will improve the design of the vehicle and lay the groundwork for the exhaustive contingency planning which must be done after the vehicle is built as preparations for operations.
Longitudinal control effectiveness and entry dynamics of a single-stage-to-orbit vehicle
NASA Technical Reports Server (NTRS)
Vinh, N. X.; Lin, C. F.
1982-01-01
The classical theory of flight dynamics for airplane longitudinal stability and control analysis was extended to the case of a hypervelocity reentry vehicle. This includes the elements inherent in supersonic and hypersonic flight such as the influence of the Mach number on aerodynamic characteristics, and the effect of the reaction control system and aerodynamic controls on the trim condition through a wide range of speed. Phugoid motion and angle of attack oscillation for typical cases of cruising flight, ballistic entry, and glide entry are investigated. In each case, closed form solutions for the variations in altitude, flight path angle, speed and angle of attack are obtained. The solutions explicitly display the influence of different regions design parameters and trajectory variables on the stability of the motion.
Loft: An Automated Mesh Generator for Stiffened Shell Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.
2011-01-01
Loft is an automated mesh generation code that is designed for aerospace vehicle structures. From user input, Loft generates meshes for wings, noses, tanks, fuselage sections, thrust structures, and so on. As a mesh is generated, each element is assigned properties to mark the part of the vehicle with which it is associated. This property assignment is an extremely powerful feature that enables detailed analysis tasks, such as load application and structural sizing. This report is presented in two parts. The first part is an overview of the code and its applications. The modeling approach that was used to create the finite element meshes is described. Several applications of the code are demonstrated, including a Next Generation Launch Technology (NGLT) wing-sizing study, a lunar lander stage study, a launch vehicle shroud shape study, and a two-stage-to-orbit (TSTO) orbiter. Part two of the report is the program user manual. The manual includes in-depth tutorials and a complete command reference.
2004-09-03
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft (foreground) is ready to be mated to second and third stages in preparation for the launch aboard the Orbital Sciences Pegasus XL launch vehicle. Pegasus will launch DART into a circular polar orbit of approximately 475 miles. Built for NASA by Orbital Sciences Corporation, DART was designed as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
Mars Molniya Orbit Atmospheric Resource Mining. [FY 16 NIAC Phase I Project
NASA Technical Reports Server (NTRS)
Mueller, Robert P.; Sforzo, Brandon; Braun, Robert D.; Sibille, Laurent
2017-01-01
This NASA Innovative Advanced Concepts (NIAC) Phase I study examined the revolutionary concept of performing resource collection and utilization during Mars orbital operations in order to enable the landing of large payloads. An exploration architecture was developed, out of which several mission alternatives were developed. Concepts of operations were then developed for each mission alternative, followed by concepts for spacecraft systems, which were traded to assess their feasibility. A novel architecture using Mars Molniya Orbit Atmospheric Resource Mining is feasible to enable an Earth-independent and pioneering, permanent human presence on Mars by providing a reusable, single-stage-to-orbit transportation system. This will allow cargo and crew to be routinely delivered to and from Mars without transporting propellants from Earth.In Phase I, our study explored how electrical energy could be harnessed from the kinetic energy of the incoming spacecraft and then be used to produce the oxygen necessary for landing. This concept of operations is revolutionary in that its focus is on using in situ resources in complementary and varied forms: the upper atmosphere of Mars is used for aerocapture, which is followed by aerobraking, the kinetic energy of the spacecraft is transformed into usable electrical energy during aerobraking, and the atmospheric composition is the source of oxidizer for a landing under supersonic retropropulsion. This NASA Innovative Advanced Concepts (NIAC) Phase I study explores a novel mission architecture to establish routine, Earth-independent transfer of large mass payloads between Earth and the Mars surface and back to Mars orbit. The first stage of routine mission operations involves an atmospheric resource mining aerobraking campaign following aerocapture into a highly elliptical Mars orbit. During each pass through the atmosphere, the vehicle ingests the atmospheric oxidizer and stores it onboard, using solid oxide electrolysis to convert the primarily CO2 atmosphere into usable O2 for propellant. Power is made available through the use of magnetohydrodynamic energy generation, which converts the motion of the plasma in the shock later into usable electrical energy. Upon termination of the aerobraking sequence, the descent vehicle detaches from the orbit stack, deorbits, and executes the entry, descent, and landing sequence. Hypersonic deceleration is achieved via a deployable heat shield to lower the vehicle ballistic coefficient, and supersonic and subsonic deceleration are achieved via retropropulsion. Mars surface operations involve resource mining of the Martian regolith to produce CH4 and O2 propellant to be used for the subsequent MDAV ascent back to high Mars orbit (HMO) providing an apoapsis raise maneuver to initialize the aerobraking sequence, in addition to providing fuel from the Mars surface for EDL propulsive descent. The Resource Collector Vehicle (RCV), which is used for the orbital mining operations, is raised back to HMO via onboard deployable augmented solar electric propulsion. Concepts of operations were developed for each mission alternative, to evaluate between them and assess feasibility.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers prepare to mate the second and third stages of the Orbital Sciences Pegasus XL launch vehicle that will launch the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA's Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers begin closing the gap between the second and third stages of the Orbital Sciences Pegasus XL launch vehicle that will launch the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA's Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, a worker prepares the second and third stages of the Orbital Sciences Pegasus XL launch vehicle for mating. The Pegasus XL will launch the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers begin mating the second and third stages of the Orbital Sciences Pegasus XL launch vehicle that will launch the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA's Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2000-03-29
The second stage of an Atlas II/Centaur rocket arrives on pad 36-A, Cape Canaveral Air Force Station, for mating with the first stage. Atlas II is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing
2000-03-29
The second stage of an Atlas II/Centaur rocket arrives on pad 36-A, Cape Canaveral Air Force Station, for mating with the first stage. Atlas II is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing
Optimal Terminal Descent Guidance Logic to Achieve a Soft Lunar Touchdown
NASA Technical Reports Server (NTRS)
Lee, Allan Y.
2011-01-01
Altair Lunar Lander is the linchpin in the Constellation Program for human return to the Moon. In the 2010design reference mission, Altair is to be delivered to low Earth orbit by the Ares V heavy lift launch vehicle, and after subsequent docking with Orion in LEO, the Altair/Orion stack is delivered through trans-lunar injection (TLI). The Altair/Orion stack separates from the Ares V Earth departure stage shortly after TLI and continues the flight to the Moon as a single stack. Fig. 1 depicts one version of the Altair lunar lander.
SCORPIUS, A New Generation of Responsive, Low Cost Expendable Launch Vehicles
NASA Astrophysics Data System (ADS)
Conger, R. E.; Chakroborty, S. P.; Wertz, J. R.
2002-01-01
The Scorpius vehicle family extends from one and two stage sub-orbital vehicles for target and science applications to small, medium and heavy lift orbital vehicles. These new liquid fueled vehicles have LEO and GTO capabilities. Microcosm and the Scorpius Space Launch Company (SSLC) are well into the development of this all-new generation of expendable launch vehicles to support commercial and government missions. This paper presents the projected performance of the family of vehicles, status of the development program and projected launch service prices. The paper will discuss the new low cost ablative engines and low cost pressure-fed LOX/Jet-A propulsion systems. Schedules, payload volumes, dispensers, attach fittings, and planned dual manifest capabilities will be presented. The unique configuration of the wide base first stage allows fairings that may extend beyond the current 4-meters. The Scorpius family is designed to facilitate encapsulated payloads and launch-on-demand. The implications of these new operational procedures will be addressed, including the techniques that will be used to drive down the cost of access to space while improving reliability. The Scorpius family of low cost vehicles addresses the full range of payloads from 700 lbs. in the Sprite Mini-Lift to over 50,000 lbs. to LEO in the Heavy-Lift, and over 18,000 lbs. to GTO. Two sub-orbital vehicles have been developed and successfully launched, with the latest vehicle (SR-XM) launched in March of 2001 from White Sands Missile Range. Development of the family of vehicles commenced in 1993 under contracts with the Air Force Research Laboratory Space Vehicle Directorate after a number of years of independent studies and system engineering. The Sprite Mini-Lift Small Expendable Launch Vehicle (SELV) that utilizes the SR-XM technologies is planned for an initial launch in mid 2005 with larger, scaled-up vehicles to follow.
NASA Technical Reports Server (NTRS)
Byrd, Thomas D.; Kynard, Michael .
2007-01-01
NASA's Vision for Exploration requires a safe, reliable, affordable upper stage engine to power the Ares I Crew Launch Vehicle (CLV) and the Ares V Cargo Launch Vehicle. The J-2X engine is being developed for that purpose, epitomizing NASA's philosophy of employing legacy knowledge, heritage hardware, and commonality to carry the next generation of explorers into low-Earth orbit and out into the solar system This presentation gives top-level details on accomplishments to date and discusses forward work necessary to bring the J-2X engine to the launch pad.
Feasibility and tradeoff study of an aeromaneuvering orbit-to-orbit shuttle (AMOOS)
NASA Technical Reports Server (NTRS)
White, J.
1974-01-01
This study establishes that configurations satisfying the aeromaneuvering orbit-to-orbit shuttle (AMOOS) requirements can be designed with performance capabilities in excess of the purely propulsive space tug. In view of this improved potential of the AMOOS vehicle over the propulsive space tug concept it is recommended that the AMOOS studies be advanced to a stage comparable to those performed for the space tug. This advancement is needed in particular in areas that are either peculiar to AMOOS or not addressed in sufficient detail in these studies to date. These areas include the thermodynamics problems, navigation and guidance, operations and economics analyses, subsystems and interfaces. The aeromaneuvering orbit-to-orbit shuttle (AMOOS) is evaluated as a candidate reusable third stage to the two-stage earth-to-orbit shuttle (EOS). AMOOS has the potential for increased payload capability over the purely propulsive space tug by trading a savings in consumables for an increase in structural and thermal protection system (TPS) mass.
Advanced Space Transportation Program (ASTP)
2002-10-01
NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education, and Defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle enroute to the International Space Station. For the SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second-generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.