Ping Kong; Patricia A. Richardson; Chuanxue Hong; Thomas L. Kubisiak
2006-01-01
At the first Sudden Oak Death Science Symposium, we reported on the use of a single strand conformation polymorphism (SSCP) analysis for rapid identification of Phytophthora ramorum in culture. We have since assessed and improved the fingerprinting technique for detecting this pathogen directly from plant tissues. The improved SSCP protocol uses a...
Schwaiger, K; Wimmer, M; Huber-Schlenstedt, R; Fehlings, K; Hölzel, C S; Bauer, J
2012-01-01
A large proportion of mastitis milk samples yield negative or nonspecific results (i.e., no mastitis pathogen can be identified) in bacterial culturing. Therefore, the culture-independent PCR-single strand conformation polymorphism method was applied to the investigation of bovine mastitis milk samples. In addition to the known mastitis pathogens, the method was suitable for the detection of fastidious bacteria such as Mycoplasma spp., which are often missed by conventional culturing methods. The detection of Helcococcus ovis in 4 samples might indicate an involvement of this species in pathogenesis of bovine mastitis. In conclusion, PCR-single-strand conformation polymorphism is a promising tool for gaining new insights into the bacteriological etiology of mastitis. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ocular findings associated with a Cys39Arg mutation in the Norrie disease gene.
Joos, K M; Kimura, A E; Vandenburgh, K; Bartley, J A; Stone, E M
1994-12-01
To diagnose the carriers and noncarriers in a family affected with Norrie disease based on molecular analysis. Family members from three generations, including one affected patient, two obligate carriers, one carrier identified with linkage analysis, one noncarrier identified with linkage analysis, and one female family member with indeterminate carrier status, were examined clinically and electrophysiologically. Linkage analysis had previously failed to determine the carrier status of one female family member in the third generation. Blood samples were screened for mutations in the Norrie disease gene with single-strand conformation polymorphism analysis. The mutation was characterized by dideoxy-termination sequencing. Ophthalmoscopy and electroretinographic examination failed to detect the carrier state. The affected individuals and carriers in this family were found to have a transition from thymidine to cytosine in the first nucleotide of codon 39 of the Norrie disease gene, causing a cysteine-to-arginine mutation. Single-strand conformation polymorphism analysis identified a patient of indeterminate status (by linkage) to be a noncarrier of Norrie disease. Ophthalmoscopy and electroretinography could not identify carriers of this Norrie disease mutation. Single-strand conformation polymorphism analysis was more sensitive and specific than linkage analysis in identifying carriers in this family.
Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism.
Zheng, Xuelian; Yang, Shixin; Zhang, Dengwei; Zhong, Zhaohui; Tang, Xu; Deng, Kejun; Zhou, Jianping; Qi, Yiping; Zhang, Yong
2016-07-01
A method based on DNA single-strand conformation polymorphism is demonstrated for effective genotyping of CRISPR/Cas9-induced mutants in rice. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) has been widely adopted for genome editing in many organisms. A large proportion of mutations generated by CRISPR/Cas9 are very small insertions and deletions (indels), presumably because Cas9 generates blunt-ended double-strand breaks which are subsequently repaired without extensive end-processing. CRISPR/Cas9 is highly effective for targeted mutagenesis in the important crop, rice. For example, homozygous mutant seedlings are commonly recovered from CRISPR/Cas9-treated calli. However, many current mutation detection methods are not very suitable for screening homozygous mutants that typically carry small indels. In this study, we tested a mutation detection method based on single-strand conformational polymorphism (SSCP). We found it can effectively detect small indels in pilot experiments. By applying the SSCP method for CRISRP-Cas9-mediated targeted mutagenesis in rice, we successfully identified multiple mutants of OsROC5 and OsDEP1. In conclusion, the SSCP analysis will be a useful genotyping method for rapid identification of CRISPR/Cas9-induced mutants, including the most desirable homozygous mutants. The method also has high potential for similar applications in other plant species.
DEVELOPMENT OF CODOMINANT MARKERS FOR IDENTIFYING SPECIES HYBRIDS
Herein we describe a simple method for developing species-diagnostic markers that would permit the rapid identification of hybrid individuals. Our method relies on amplified length polymorphism (AFLP) and single strand conformation polymorphism (SSCP) technologies, both of which...
Zhang, Li; Tang, Jun-Ling; Liang, Shang-Zheng
2008-06-01
Muscle segment homeobox gene (MSX)1 has been proposed as a gene in which mutations may contribute to nonsyndromic cleft lip with or without cleft palate (NSCL/P). To study MSX1 polymorphisms in NSCL/ P by means of polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP), and investigate the association of MSX1 exons 1 polymorphisms with NSCL/P. DNA were extracted from blood samples from NSCL/P and unrelated normal subjects. Genome DNA from peripheral leukocyte with these blood samples were extracted, which was used as template to amplify desired gene fragment of MSX1 exons 1 by means of polymerase chain reaction (PCR). The PCR products were examined by single-strand conformation polymorphism (SSCP). The MSX1 exons 1 polymorphisms were examined by sequencing if mutations were found. MSX1 genes of exon 1 mutation was not been found in the NSCL/P and unrelated normal subjects by SSCP. No correlation between MSX1 exon 1 and NSCL/P was found. MSX1 exon 1 may not be a key gene (susceptibility gene) in NSCL/P.
Pirulli, D; Giordano, M; Lessi, M; Spanò, A; Puzzer, D; Zezlina, S; Boniotto, M; Crovella, S; Florian, F; Marangella, M; Momigliano-Richiardi, P; Savoldi, S; Amoroso, A
2001-06-01
Primary hyperoxaluria type 1 is an autosomal recessive disorder of glyoxylate metabolism, caused by a deficiency of alanine:glyoxylate aminotransferase, which is encoded by a single copy gene (AGXT. The aim of this research was to standardize denaturing high-performance liquid chromatography, a new, sensitive, relatively inexpensive, and automated technique, for the detection of AGXT mutation. Denaturing high-performance liquid chromatography was used to analyze in blind the AGXT gene in 20 unrelated Italian patients with primary hyperoxaluria type I previously studied by other standard methods (single-strand conformation polymorphism analysis and direct sequencing) and 50 controls. Denaturing high-performance liquid chromatography allowed us to identify 13 mutations and the polymorphism at position 154 in exon I of the AGXT gene. Hence the method is more sensitive and less time consuming than single-strand conformation polymorphism analysis for the detection of AGXT mutations, thus representing a useful and reliable tool for detecting the mutations responsible for primary hyperoxaluria type 1. The new technology could also be helpful in the search for healthy carriers of AGXT mutations amongst family members and their partners, and for screening of AGXT polymorphisms in patients with nephrolithiasis and healthy populations.
Methods for detection of ataxia telangiectasia mutations
Gatti, Richard A.
2005-10-04
The present invention is directed to a method of screening large, complex, polyexonic eukaryotic genes such as the ATM gene for mutations and polymorphisms by an improved version of single strand conformation polymorphism (SSCP) electrophoresis that allows electrophoresis of two or three amplified segments in a single lane. The present invention also is directed to new mutations and polymorphisms in the ATM gene that are useful in performing more accurate screening of human DNA samples for mutations and in distinguishing mutations from polymorphisms, thereby improving the efficiency of automated screening methods.
Modified SSCP method using sequential electrophoresis of multiple nucleic acid segments
Gatti, Richard A.
2002-10-01
The present invention is directed to a method of screening large, complex, polyexonic eukaryotic genes such as the ATM gene for mutations and polymorphisms by an improved version of single strand conformation polymorphism (SSCP) electrophoresis that allows electrophoresis of two or three amplified segments in a single lane. The present invention also is directed to new mutations and polymorphisms in the ATM gene that are useful in performing more accurate screening of human DNA samples for mutations and in distinguishing mutations from polymorphisms, thereby improving the efficiency of automated screening methods.
Polymorphism at codon 36 of the p53 gene.
Felix, C A; Brown, D L; Mitsudomi, T; Ikagaki, N; Wong, A; Wasserman, R; Womer, R B; Biegel, J A
1994-01-01
A polymorphism at codon 36 in exon 4 of the p53 gene was identified by single strand conformation polymorphism (SSCP) analysis and direct sequencing of genomic DNA PCR products. The polymorphic allele, present in the heterozygous state in genomic DNAs of four of 100 individuals (4%), changes the codon 36 CCG to CCA, eliminates a FinI restriction site and creates a BccI site. Including this polymorphism there are four known polymorphisms in the p53 coding sequence.
Development of an ELA-DRA gene typing method based on pyrosequencing technology.
Díaz, S; Echeverría, M G; It, V; Posik, D M; Rogberg-Muñoz, A; Pena, N L; Peral-García, P; Vega-Pla, J L; Giovambattista, G
2008-11-01
The polymorphism of equine lymphocyte antigen (ELA) class II DRA gene had been detected by polymerase chain reaction-single-strand conformational polymorphism (PCR-SSCP) and reference strand-mediated conformation analysis. These methodologies allowed to identify 11 ELA-DRA exon 2 sequences, three of which are widely distributed among domestic horse breeds. Herein, we describe the development of a pyrosequencing-based method applicable to ELA-DRA typing, by screening samples from eight different horse breeds previously typed by PCR-SSCP. This sequence-based method would be useful in high-throughput genotyping of major histocompatibility complex genes in horses and other animal species, making this system interesting as a rapid screening method for animal genotyping of immune-related genes.
[Research progress of molecular genetic analysis in Schistosoma variation].
Zheng, Su-Yue; Li, Fei
2014-02-01
The development of molecular biology techniques makes important contributions to the researches of heritable variation of Schistosoma. In recent years, the molecular genetic analysis in the Schistosoma variation researches mainly includes the restriction fragment length polymorphism (RFLP), random amplified polymorphism technology (RAPD), microsatellite anchored PCR (SSR-PCR), and polymerase reaction single-strand conformation polymorphism (PCR-SSCP). This article reviews the research progress of molecular genetic analysis in Schistosoma variation in recent years.
Rosner, A; Maslenin, L; Spiegel, S
1998-09-01
A method based on differences in electrophoretic mobility of RNA transcripts made from polymerase chain reaction (PCR) products was used for differentiation among virus isolates. A T7 RNA polymerase promoter was attached to amplified prunus necrotic ringspot virus (PNRSV) sequences by PCR. The PCR products then served as a template for transcription. Single-stranded transcripts originated from different PNRSV isolates varied in electrophoretic mobility in polyacrylamide gels, presumably because of transcript conformation polymorphism (TCP). This procedure was applied for the differentiation of PNRSV isolates.
Alasaad, Samer; Soriguer, Ramón C; Abu-Madi, Marawan; El Behairy, Ahmed; Baños, Pablo Díez; Píriz, Ana; Fickel, Joerns; Zhu, Xing-Quan
2011-06-01
The present study aimed to establish a fluorescence-based polymerase chain reaction-linked single-strand conformation polymorphism (F-PCR-SSCP) assay for the identification of Fasciola spp. Based on the sequences of the second internal transcribed spacer (ITS-2) of the nuclear ribosomal DNA, we designed a set of genus-specific primers for the amplification of Fasciola ITS-2, with an estimated size of 140 bp. These primers were labelled by fluorescence dyes, and the PCR products were analyzed by capillary electrophoresis under non-denaturing conditions (F-PCR-SSCP). Capillary electrophoresis analysis of the fluorescence-labelled DNA fragments displayed three different peak profiles that allowed the accurate identification of Fasciola species: one single peak specific for either Fasciola hepatica or Fasciola gigantica and a doublet peak corresponding to the "intermediate" Fasciola. Validation of our novel method was performed using Fasciola specimens from different host animals from China, Spain, Nigeria, and Egypt. This F-PCR-SSCP assay provides a rapid, simple, and robust tool for the identification and differentiation between Fasciola spp.
Phytophthora species in forest streams in Oregon and Alaska
Paul Reeser; Everett M. Hansen; Wendy Sutton; Philippe Remigi; Gerard Adams
2010-01-01
Eighteen Phytophthora species and one species of Halophytophthora were identified in 113 forest streams in Alaska, western Oregon, and southwestern Oregon that were sampled by baiting or filtration of stream water with isolation on selective media. Species were identified by morphology and DNA characterization using single strand conformational polymorphism, COX spacer...
Expression and mutational analysis of Cip/Kip family in early glottic cancer.
Kim, D-K; Lee, J H; Lee, O J; Park, C H
2015-02-01
Genetic alteration of cyclin-dependent kinase inhibitors has been associated with carcinogenesis mechanisms in various organs. This study aimed to evaluate the expression and mutational analysis of Cip/Kip family cyclin-dependent kinase inhibitors (p21CIP1/WAF1, p27KIP1 and p57KIP2) in early glottic cancer. Expressions of Cip/Kip family and p53 were determined by quantitative reverse transcription polymerase chain reaction and densitometry. For the analysis of p21 inactivation, sequence alteration was assessed using single-strand conformational polymorphism polymerase chain reaction. Additionally, the inactivation mechanism of p27 and p57 were investigated using DNA methylation analysis. Reduced expression of p27 and p57 were detected in all samples, whereas the expression of p21 was incompletely down-regulated in 6 of 11 samples. Additionally, single-strand conformational polymorphism polymerase chain reaction analysis showed the p53 mutation at exon 6. Methylation of p27 and p57 was detected by DNA methylation assay. Our results suggest that the Cip/Kip family may have a role as a molecular mechanism of carcinogenesis in early glottic cancer.
Wei, Guang-hui; Zhao, Bo; Wang, Zhen-jun
2008-09-01
To compare the sensibility and specificity between single-stranded conformation polymorphism (SSCP) and denaturing high-performance liquid chromatography (DHPLC) in screening hMSH2 and hMLH1 gene mutations for the diagnosis of hereditary non-polyposis colorectal cancer (HNPCC). Seven Chinese HNPCC kindreds were collected. PCR-SSCP and DHPLC were used to screen the coding regions of hMSH2 and hMLH1 genes and the abnormal profiles were sequenced by a 377 DNA sequencer. Seven gene sequence variations of hMSH2 or hMLH1 were found. Among them, 4 variations were not found by SSCP, but by DHPLC. The sensibility of SSCP and DHPLC were 51.6% and 100% respectively, and the specificity were 66.6% and 93.3% respectively. DHPLC has better sensibility and specificity in screening hMSH2 and hMLH1 gene mutation as compared to SSCP. DHPLC is an ideal method in the diagnosis of HNPCC.
E. Hansen; C. Hesse; P. Reeser; W. Sutton; L. Winton
2006-01-01
Phytophthora species are abundant in streams, widespread in soils and occasionally found in diseased plants in the tanoak forests of southwestern Oregon. It is time-consuming and expensive to identify hundreds of isolates to species using morphology or internal transribed spacer (ITS) sequencing. We modified a published Phytophthora...
Huang, X Y; Yang, Q L; Yuan, J H; Gun, S B
2015-09-08
In this study, 290 Chinese native Yantai black pig piglets were investigated to identify gene polymorphisms, for haplotype reconstruction, and to determine the association between piglet diarrhea and swine leukocyte antigen (SLA) class II DQA exons 2, 3, and 4 by polymerase chain reaction-single stranded conformational polymorphism and cloning sequencing. The results showed that the 5, 8, and 7 genotypes were identified from SLA-DQA exon 2, 3, and 4, respectively, based on the single-stranded conformational polymorphism banding patterns and found a novel allele D in exon 2 and 2 novel mutational sites of allele C (c.4828T>C) and allele F (c.4617T>C) in exon 3. Polymorphism information content testing showed that exon 2 was moderately polymorphic and that exons-3 and -4 loci were highly polymorphic. The piglet diarrhea scores for genotypes AB (1.40 ± 0.14) and AC (1.54 ± 0.17) in exon 2, AA (1.22 ± 0.32), BC (1.72 ± 0.13), DD (1.67 ± 0.35), and CF (1.22 ± 0.45) in exon 3, and AD (2.35 ± 0.25) in exon 4 were significantly higher than those for the other genotypes (P ≤ 0.05) in DQA exons. There were 14 reconstructed haplotypes in the 3 exons from 290 individuals and Hap12 may be the diarrhea-resistant gene. Haplotype distribution was extremely uneven, and the SLA-DQA gene showed genetic linkage. In this study, we identified molecular genetic markers and provided a theoretical foundation for future pig anti-disease resistance breeding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morimoto, Yuji; Murayama, Nobuhiro; Kuwano, Akira
1995-12-18
The polymorphic allele of the monoamine oxidase B (MAO-B) gene detected by polymerase chain reaction (PCR) and single-stranded conformation polymorphism (SSCP) was associated with Parkinson`s disease (PD) in Caucasians. We characterized this polymorphic allele, allele 1, of the MAO-B gene using direct sequencing of PCR products. A single DNA substitution (G-A), resulting gain of Mae III restriction site was detected in intron 13 of the MAO-B gene. The allele associated with PD in Caucasians was twice as frequent as in healthy Japanese, but the association of the allele of the MAO-B gene was not observed in Japanese patients with PD.more » 7 refs., 2 figs., 1 tab.« less
Yao, J.; Aggrey, S. E.; Zadworny, D.; Hayes, J. F.; Kuhnlein, U.
1996-01-01
Sequence variations in the bovine growth hormone (GH) gene were investigated by single strand conformation polymorphism (SSCP) analysis of seven amplified fragments covering almost the entire gene (2.7 kb). SSCPs were detected in four of these fragments and a total of six polymorphisms were found in a sample of 128 Holstein bulls. Two polymorphisms, a T->C transition in the third intron (designated GH4.1) and an A->C transversion in the fifth exon (designated GH6.2), were shown to be associated with milk production traits. GH4.1(c)/GH4.1(c) bulls had higher milk yield than GH4.1(c)/GH4.1(t) (P <= 0.005) and GH4.1(t)/GH4.1(t) (P <= 0.0022) bulls. GH4.1(c)/GH4.1(c) bulls had higher kg fat (P <= 0.0076) and protein (P <= 0.0018) than GH4.1(c)/GH4.1(t) bulls. Similar effects on milk production traits with the GH6.2 polymorphism were observed with the GH6.2(a) allele being the favorable allele. The average effects of the gene substitution for GH4.1 and GH6.2 are similar, with +/-300 kg for milk yield, +/-8 kg for fat content and +/-7 kg for protein content per lactation. The positive association of GH4.1(c) and GH6.2(a) with milk production traits may be useful for improving milk performance in dairy cattle. PMID:8978066
Ahmed, Saami; Kaushik, Mahima; Chaudhary, Swati; Kukreti, Shrikant
2018-05-01
Sequence recognition and conformational polymorphism enable DNA to emerge out as a substantial tool in fabricating the devices within nano-dimensions. These DNA associated nano devices work on the principle of conformational switches, which can be facilitated by many factors like sequence of DNA/RNA strand, change in pH or temperature, enzyme or ligand interactions etc. Thus, controlling these DNA conformational changes to acquire the desired function is significant for evolving DNA hybridization biosensor, used in genetic screening and molecular diagnosis. For exploring this conformational switching ability of cytosine-rich DNA oligonucleotides as a function of pH for their potential usage as biosensors, this study has been designed. A C-rich stretch of DNA sequence (5'-TCCCCCAATTAATTCCCCCA-3'; SG20c) has been investigated using UV-Thermal denaturation, poly-acrylamide gel electrophoresis and CD spectroscopy. The SG20c sequence is shown to adopt various topologies of i-motif structure at low pH. This pH dependent transition of SG20c from unstructured single strand to unimolecular and bimolecular i-motif structures can further be exploited for its utilization as switching on/off pH-based biosensors. Copyright © 2018. Published by Elsevier B.V.
Souza, M T; Carvalho-Zilse, G A
2014-07-25
In countries containing a mega diversity of wildlife, such as Brazil, identifying and characterizing biological diversity is a continuous process for the scientific community, even in face of technological and scientific advances. This activity demands initiatives for the taxonomic identification of highly diverse groups, such as stingless bees, including molecular analysis strategies. This type of bee is distributed in all of the Brazilian states, with the highest species diversity being found in the State of Amazônia. However, the estimated number of species diverges among taxonomists. These bees are considered the main pollinators in the Amazon rainforest, in which they obtain food and shelter; however, their persistence is constantly threatened by deforestation pressure. Hence, it is important to classify the number and abundance of bee specie, to measure their decline and implement meaningful, priority conservation strategies. This study aims to maximize the implementation of more direct, economic and successful techniques for the taxonomic identification of stingless bees. Specifically, the genes 16S rRNA and COI from mitochondrial DNA were used as molecular markers to differentiate 9 species of Amazonian stingless bees based on DNA polymorphism, using the polymerase chain reaction-single-strand conformation polymorphism technique. We registered different, exclusive SSCP haplotypes for both genes in all species analyzed. These results demonstrate that SSCP is a simple and cost-effective technique that is applicable to the molecular identification of stingless bee species.
Polymorphism in and localization of the gene LCP2 (SLP-76) to chromosome 5q33.1-qter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunden, S.L.F.; Carr, L.L.; Clements, J.L.
This report describes the localization of the human LCP2 gene to human chromosome 5q33.1-qter using single-stranded conformation polymorphisms analysis. This gene encodes an SH2 domain containing leukocyte protein of 76 kDa (SLP-76), which plays a functional role in T-cell activation. It remains to be determined whether mutations in this gene or translocations at this chromosome location are the genetic basis for various diseases, including lymphoblastic leukemia. 12 refs., 1 fig.
2009-01-01
Background Expressed sequence tags (ESTs) are an important source of gene-based markers such as those based on insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). Several gel based methods have been reported for the detection of sequence variants, however they have not been widely exploited in common bean, an important legume crop of the developing world. The objectives of this project were to develop and map EST based markers using analysis of single strand conformation polymorphisms (SSCPs), to create a transcript map for common bean and to compare synteny of the common bean map with sequenced chromosomes of other legumes. Results A set of 418 EST based amplicons were evaluated for parental polymorphisms using the SSCP technique and 26% of these presented a clear conformational or size polymorphism between Andean and Mesoamerican genotypes. The amplicon based markers were then used for genetic mapping with segregation analysis performed in the DOR364 × G19833 recombinant inbred line (RIL) population. A total of 118 new marker loci were placed into an integrated molecular map for common bean consisting of 288 markers. Of these, 218 were used for synteny analysis and 186 presented homology with segments of the soybean genome with an e-value lower than 7 × 10-12. The synteny analysis with soybean showed a mosaic pattern of syntenic blocks with most segments of any one common bean linkage group associated with two soybean chromosomes. The analysis with Medicago truncatula and Lotus japonicus presented fewer syntenic regions consistent with the more distant phylogenetic relationship between the galegoid and phaseoloid legumes. Conclusion The SSCP technique is a useful and inexpensive alternative to other SNP or Indel detection techniques for saturating the common bean genetic map with functional markers that may be useful in marker assisted selection. In addition, the genetic markers based on ESTs allowed the construction of a transcript map and given their high conservation between species allowed synteny comparisons to be made to sequenced genomes. This synteny analysis may support positional cloning of target genes in common bean through the use of genomic information from these other legumes. PMID:20030833
Zhu, X Q; Gasser, R B
1998-06-01
In this study, we assessed single-strand conformation polymorphism (SSCP)-based approaches for their capacity to fingerprint sequence variation in ribosomal DNA (rDNA) of ascaridoid nematodes of veterinary and/or human health significance. The second internal transcribed spacer region (ITS-2) of rDNA was utilised as the target region because it is known to provide species-specific markers for this group of parasites. ITS-2 was amplified by PCR from genomic DNA derived from individual parasites and subjected to analysis. Direct SSCP analysis of amplicons from seven taxa (Toxocara vitulorum, Toxocara cati, Toxocara canis, Toxascaris leonina, Baylisascaris procyonis, Ascaris suum and Parascaris equorum) showed that the single-strand (ss) ITS-2 patterns produced allowed their unequivocal identification to species. While no variation in SSCP patterns was detected in the ITS-2 within four species for which multiple samples were available, the method allowed the direct display of four distinct sequence types of ITS-2 among individual worms of T. cati. Comparison of SSCP/sequencing with the methods of dideoxy fingerprinting (ddF) and restriction endonuclease fingerprinting (REF) revealed that also ddF allowed the definition of the four sequence types, whereas REF displayed three of four. The findings indicate the usefulness of the SSCP-based approaches for the identification of ascaridoid nematodes to species, the direct display of sequence variation in rDNA and the detection of population variation. The ability to fingerprint microheterogeneity in ITS-2 rDNA using such approaches also has implications for studying fundamental aspects relating to mutational change in rDNA.
Marez, D; Legrand, M; Sabbagh, N; Lo Guidice, J M; Spire, C; Lafitte, J J; Meyer, U A; Broly, F
1997-06-01
The polymorphic cytochrome P450 CYP2D6 is involved in the metabolism of various drugs of wide therapeutic use and is a presumed susceptibility factor for certain environmentally-induced diseases. Our aim was to define the mutations and alleles of the CYP2D6 gene and to evaluate their frequencies in the European population. Using polymerase chain reaction-single strand conformation polymorphism analysis, 672 unrelated subjects were screened for mutations in the 9 exons of the gene and their exon-intron boundaries. A total of 48 point mutations were identified, of which 29 were novel. Mutations 1749 G-->C, 2938 C-->T and 4268 G-->C represented 52.6%, 34.3% and 52.9% of the mutations in the total population, respectively. Of the eight detrimental mutations detected, the 1934 G-->A, the 1795 Tdel and the 2637 Adel accounted for 65.8%, 6.2% and 4.8% respectively, within the poor metabolizer subgroup. Fifty-three different alleles were characterized from the mutation pattern and by allele-specific sequencing. They are derived from three major alleles, namely the wild-type CYP2D6*1A, the functional CYP2D6*2 and the null CYP2D6*4A. Five allelic variants (CYP2D6*1A, *2, *2B, *4A and *5) account for about 87% of all alleles, while the remaining alleles occur with a frequency of 0.1%-2.7%. These data provide a solid basis for future epidemiological, clinical as well as interethnic studies of the CYP2D6 polymorphism and highlight that the described single strand conformation polymorphism method can be successfully used in designing such studies.
Tashakori, Mahnaz; Mahnaz, Tashakori; Kuhls, Katrin; Katrin, Kuhls; Al-Jawabreh, Amer; Amer, Al-Jawabreh; Mauricio, Isabel L; Isabel, Mauricio; Schönian, Gabriele; Gabriele, Schönian; Farajnia, Safar; Safar, Farajnia; Alimohammadian, Mohammad Hossein; Hossein, Alimohammadian Mohammad
2006-04-01
Protozoan parasites of Leishmania major are the causative agents of cutaneous leishmaniasis in different parts of Iran. We applied PCR-based methods to analyze L. major parasites isolated from patients with active lesions from different geographic areas in Iran in order to understand DNA polymorphisms within L. major species. Twenty-four isolates were identified as L. major by RFLP analysis of the ribosomal internal transcribed spacer 1 (ITS1) amplicons. These isolates were further studied by single-strand conformation polymorphism (SSCP) analysis and sequencing of ITS1 and ITS2. Data obtained from SSCP analysis of the ITS1 and ITS2 loci revealed three and four different patterns among all studied samples, respectively. Sequencing of ITS1 and ITS2 confirmed the results of SSCP analysis and showed the potential of the PCR-SSCP method for assessing genetic heterogeneity within L. major. Different patterns in ITS1 were due to substitution of one nucleotide, whereas in ITS2 the changes were defined by variation in the number of repeats in two polymorphic microsatellites. In total five genotypic groups LmA, LmB, LmC, LmD and LmE were identified among L. major isolates. The most frequent genotype, LmA, was detected in isolates collected from different endemic areas of cutaneous leishmaniasis in Iran. Genotypes LmC, LmD and LmE were found only in the new focus of CL in Damghan (Semnan province) and LmB was identified exclusively among isolates of Kashan focus (Isfahan province). The distribution of genetic polymorphisms suggests the existence of distinct endemic regions of L. major in Iran.
Han, R-L; Lan, X-Y; Zhang, L-Z; Ren, G; Jing, Y-J; Li, M-J; Zhang, B; Zhao, M; Guo, Y-K; Kang, X-T; Chen, H
2010-01-01
Visfatin is a peptide that is predominantly expressed in visceral adipose tissue and is hypothesized to be related to obesity and insulin resistance. In this study, a novel silent single-nucleotide polymorphism (SNP) was found in exon 7 of the chicken visfatin gene (also known as PBEF1) by single-stranded conformation polymorphism (SSCP) and DNA sequencing. In total, 836 chickens forming an F2 resource population of Gushi chicken crossed with Anka broiler were genotyped by XbaI forced RFLP, and the associations of this polymorphism with chicken growth, carcass characteristics, and meat quality were analyzed. Significant associations were found between the polymorphism and 4-week body weight (BW4), 6-week body weight (BW6), 4-week body slanting length (BSL4), fat bandwidth (FBW), breast muscle water loss rate (BWLR) and breast muscle fiber density (BFD) (P < 0.05), as well as 4-week breastbone length (BBL4) (P < 0.01). These observations suggested that the polymorphism in exon7 of the visfatin gene had significant effects on the early growth traits of chicken.
Associations of polymorphisms in the Pit-1 gene with growth and carcass traits in Angus beef cattle.
Zhao, Q; Davis, M E; Hines, H C
2004-08-01
The Pit-1 gene was studied as a candidate for genetic markers of growth and carcass traits. Angus beef cattle that were divergently selected for high- or low-blood serum IGF-I concentration were used in this study. The single-strand conformation polymorphism method was used to identify polymorphism in the Pit-1 gene including regions from intron 2 to exon 6. Two polymorphisms, Pit1I3H (HinfI) and Pit1I3NL (NlaIII), were detected in intron 3 of the Pit-1 gene. One polymorphism, Pit1I4N (BstNI), was found in intron 4, and a single nucleotide polymorphism, Pit1I5, was found in intron 5. The previously reported polymorphism in exon 6, Pit1E6H (HinfI), was also studied in 416 Angus beef cattle. Associations of the polymorphisms with growth traits, carcass traits, and IGF-I concentration were analyzed using a general linear model procedure. No significant associations were observed between these polymorphisms and growth and carcass traits.
Duthoit, Frédérique; Godon, Jean-Jacques; Montel, Marie-Christine
2003-01-01
Microbial dynamics during processing and ripening of traditional cheeses such as registered designation of origin Salers cheese, an artisanal cheese produced in France, play an important role in the elaboration of sensory qualities. The aim of the present study was to obtain a picture of the dynamics of the microbial ecosystem of RDO Salers cheese by using culture-independent methods. This included DNA extraction, PCR, and single-strand conformation polymorphism (SSCP) analysis. Bacterial and high-GC% gram-positive bacterial primers were used to amplify V2 or V3 regions of the 16S rRNA gene. SSCP patterns revealed changes during the manufacturing of the cheese. Patterns of the ecosystems of cheeses that were provided by three farmers were also quite different. Cloning and sequencing of the 16S rRNA gene revealed sequences related to lactic acid bacteria (Lactococcus lactis, Streptococcus thermophilus, Enterococcus faecium, Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, Lactobacillus plantarum, and Lactobacillus pentosus), which were predominant during manufacturing and ripening. Bacteria belonging to the high-GC% gram-positive group (essentially corynebacteria) were found by using specific primers. The present molecular approach can effectively describe the ecosystem of artisanal dairy products. PMID:12839752
Ala397Asp mutation of myosin VIIA gene segregating in a Spanish family with type-Ib Usher syndrome.
Espinós, C; Millán, J M; Sánchez, F; Beneyto, M; Nájera, C
1998-06-01
In the current study, 12 Spanish families affected by type-I Usher syndrome, that was previously linked to chromosome 11q, were screened for the presence of mutations in the N-terminal coding portion of the motor domain of the myosin VIIA gene by single-strand conformation polymorphism analysis of the first 14 exons. A mutation (Ala397Asp) segregating with the disease was identified, and several polymorphisms were also detected. It is presumed that the other USHIB mutations in these families could be located in the unscreened regions of the gene.
Molecular and immunohistochemical analysis of P53 in phaeochromocytoma.
Dahia, P. L.; Aguiar, R. C.; Tsanaclis, A. M.; Bendit, I.; Bydlowski, S. P.; Abelin, N. M.; Toledo, S. P.
1995-01-01
We searched for mutations of the p53 gene in 25 phaeochromocytomas using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis of the entire conserved region of the gene, encompassing exons 4-8; expression of the p53 protein was assessed by immunohistochemistry. No mutations were found, while a polymorphism in codon 72 was observed. Immunohistochemistry revealed nuclear p53 overexpression in one tumour sample. We conclude that mutations of the 'hotspot' region of the p53 gene do not seem to play a role in the pathogenesis of phaeochromocytoma. Images Figure 1 Figure 2 Figure 3 PMID:7577469
DU, Zhi-Heng; Liu, Zong-Yue; Bai, Xiu-Juan
2010-06-01
Using single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing, single nucleotide polymorphisms (SNPs) of growth hormone receptor (GHR) gene were detected in an arctic fox population. Correlation analysis between GHR polymorphisms and growth traits were carried out using the appropriate model. Four SNPs, G3A in the 5'UTR, C99T in the first exon, T59C and G65A in the fifth exon were identified on the arctic fox GHR gene. The G3A and C99T polymorphisms of GHR were associated with female fox body weight (Pamp;0.05) and the T59C and G65A polymorphisms of GHR were associated with male fox body weight (Pamp;0.05) and the skin length of the female fox (Pamp;0.01). Therefore, marker assistant selection on body weight and skin length of arctic foxes using these SNPs can be applied to get big and high quality arctic foxes.
Presence of the p.L456V polymorphism in Cuban patients clinically diagnosed with Wilson's disease.
Clark-Feoktistova, Y; Ruenes-Domech, C; García-Bacallao, E F; Roblejo-Balbuena, H; Feoktistova, L; Clark-Feoktistova, I; Jay-Herrera, O; Collazo-Mesa, T
2018-06-10
Wilson's disease is characterized by the accumulation of copper in different organs, mainly affecting the liver, brain, and cornea, and is caused by mutations in the ATP7B gene. More than 120 polymorphisms in the ATP7B gene have been reported in the medical literature. The aim of the present study was to identify the conformational changes in the exon 3 region of the ATP7B gene and detect the p.L456V polymorphism in Cuban patients clinically diagnosed with Wilson's disease. A descriptive study was conducted at the Centro Nacional de Genética Médica and the Instituto Nacional de Gastroenterología within the time frame of 2007-2012 and included 105 patients with a clinical diagnosis of Wilson's disease. DNA extraction was performed through the salting-out method and the fragment of interest was amplified using the polymerase chain reaction technique. The conformational shift changes in the exon 3 region and the presence of the p.L456V polymorphism were identified through the Single-Strand Conformation Polymorphism analysis. The so-called b and c conformational shift changes, corresponding to the p.L456V polymorphism in the heterozygous and homozygous states, respectively, were identified. The allelic frequency of the p.L456V polymorphism in the 105 Cuban patients that had a clinical diagnosis of Wilson's disease was 41% and liver-related symptoms were the most frequent in the patients with that polymorphism. The p.L456V polymorphism was identified in 64 Cuban patients clinically diagnosed with Wilson's disease, making future molecular study through indirect methods possible. Copyright © 2018 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.
Molecular evolution of the leptin exon 3 in some species of the family Canidae.
Chmurzynska, Agata; Zajac, Magdalena; Switonski, Marek
2003-01-01
The structure of the leptin gene seems to be well conserved. The polymorphism of this gene in four species belonging to the Canidae family (the dog (Canis familiaris)--16 different breeds, the Chinese racoon dog (Nyctereutes procyonoides procyonoides), the red fox (Vulpes vulpes) and the arctic fox (Alopex lagopus)) were studied with the use of single strand conformation polymorphism (SSCP), restriction fragment length polymorphism (RFLP) and DNA sequencing techniques. For exon 2, all species presented the same SSCP pattern, while in exon 3 some differences were found. DNA sequencing of exon 3 revealed the presence of six nucleotide substitutions, differentiating the studied species. Three of them cause amino acid substitutions as well. For all dog breeds studied, SSCP patterns were identical.
NASA Astrophysics Data System (ADS)
He, Feng; Wen, Haishen; Yu, Dahui; Li, Jifang; Shi, Bao; Chen, Caifang; Zhang, Jiaren; Jin, Guoxiong; Chen, Xiaoyan; Shi, Dan; Yang, Yanping
2010-12-01
Follicle stimulating hormone β (FSHβ) of Japanese flounder ( Paralichthys olivaceus) plays a key role in the regulation of gonadal development. This study aimed to investigate molecular genetic characteristics of the FSHβ gene and elucidate the effects of single nucleotide polymorphisms (SNPs) of FSHβ on reproductive traits in Japanese flounder. We used polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) and sequencing of the FSHβ gene in 60 individuals. We identified only an SNP (T/C) in the coding region of exon3 of FSHβ. The SNP (T/C) did not lead to amino acid changes at the position 340 bp of FSHβ gene. Statistical analysis showed that the SNP was significantly associated with testosterone (T) level and gonadosomatic index (GSI) ( P < 0.05). Individuals with genotype TC of the SNP had significantly higher serum T levels and GSI ( P < 0.05) than that of genotype CC. Therefore, FSHβ gene could be a useful molecular marker in selection for prominent reproductive trait in Japanese Flounder.
Kinetically governed polymorphism of d(G₄T₄G₃) quadruplexes in K+ solutions.
Prislan, Iztok; Lah, Jurij; Milanic, Matija; Vesnaver, Gorazd
2011-03-01
It has been generally recognized that understanding the molecular basis of some important cellular processes is hampered by the lack of knowledge of forces that drive spontaneous formation/disruption of G-quadruplex structures in guanine-rich DNA sequences. According to numerous biophysical and structural studies G-quadruplexes may occur in the presence of K(+) and Na(+) ions as polymorphic structures formed in kinetically governed processes. The reported kinetic models suggested to describe this polymorphism should be considered inappropriate since, as a rule, they include bimolecular single-step associations characterized by negative activation energies. In contrast, our approach in studying polymorphic behavior of G-quadruplexes is based on model mechanisms that involve only elementary folding/unfolding transitions and structural conversion steps that are characterized by positive activation energies. Here, we are investigating a complex polymorphism of d(G(4)T(4)G(3)) quadruplexes in K(+) solutions. On the basis of DSC, circular dichroism and UV spectroscopy and polyacrylamide gel electrophoresis experiments we propose a kinetic model that successfully describes the observed thermally induced conformational transitions of d(G(4)T(4)G(3)) quadruplexes in terms of single-step reactions that involve besides single strands also one tetramolecular and three bimolecular quadruplex structures.
Molecular evolution of the leptin exon 3 in some species of the family Canidae
Chmurzynska, Agata; Zajac, Magdalena; Switonski, Marek
2003-01-01
The structure of the leptin gene seems to be well conserved. The polymorphism of this gene in four species belonging to the Canidae family (the dog (Canis familiaris) – 16 different breeds, the Chinese racoon dog (Nyctereutes procyonoides procyonoides), the red fox (Vulpes vulpes) and the arctic fox (Alopex lagopus)) were studied with the use of single strand conformation polymorphism (SSCP), restriction fragment length polymorphism (RFLP) and DNA sequencing techniques. For exon 2, all species presented the same SSCP pattern, while in exon 3 some differences were found. DNA sequencing of exon 3 revealed the presence of six nucleotide substitutions, differentiating the studied species. Three of them cause amino acid substitutions as well. For all dog breeds studied, SSCP patterns were identical. PMID:12939206
Sarkar, F H; Kupsky, W J; Li, Y W; Sreepathi, P
1994-03-01
Mutations in the p53 gene have been recognized in brain tumors, and clonal expansion of p53 mutant cells has been shown to be associated with glioma progression. However, studies on the p53 gene have been limited by the need for frozen tissues. We have developed a method utilizing polymerase chain reaction (PCR) for the direct analysis of p53 mutation by single-strand conformation polymorphism (SSCP) and by direct DNA sequencing of the p53 gene using a single 10-microns paraffin-embedded tissue section. We applied this method to screen for p53 gene mutations in exons 5-8 in human gliomas utilizing paraffin-embedded tissues. Twenty paraffin blocks containing tumor were selected from surgical specimens from 17 different adult patients. Tumors included six anaplastic astrocytomas (AAs), nine glioblastomas (GBs), and two mixed malignant gliomas (MMGs). The tissue section on the stained glass slide was used to guide microdissection of an unstained adjacent tissue section to ensure > 90% of the tumor cell population for p53 mutational analysis. Simultaneously, microdissection of the tissue was also carried out to obtain normal tissue from adjacent areas as a control. Mutations in the p53 gene were identified in 3 of 17 (18%) patients by PCR-SSCP analysis and subsequently confirmed by PCR-based DNA sequencing. Mutations in exon 5 resulting in amino acid substitution were found in one thalamic AA (codon 158, CGC > CTT: Arg > Leu) and one cerebral hemispheric GB (codon 151, CCG > CTG: Pro > Leu).(ABSTRACT TRUNCATED AT 250 WORDS)
Polymorphism analysis of the prion gene in BSE-affected and unaffected cattle.
Neibergs, H L; Ryan, A M; Womack, J E; Spooner, R L; Williams, J L
1994-10-01
Polymerase chain reaction (PCR) primers designed to amplify the octapeptide repeat region of the bovine prion gene were used to test the association of genotypes with bovine spongiform encephalitis (BSE) in 56 BSE-affected and 177 unaffected animals. Three alleles (A,B,C) were detected as single-strand conformation polymorphisms (SSCPs) and two alleles (1,2--representing six or five copies of the octapeptide repeat respectively) were detected as amplified double-strand fragment length polymorphisms (AMFLPs). Observed genotypes of SSCPs and AMFLPs were analysed by chi-square. The SSCP genotypes of nuclear family members of animals with BSE and BSE-affected animals were different (P < 0.001, P < 0.01) from unrelated animals of the same breed without BSE. No genotypic differences were found between the BSE-affected animals and their relatives (P > 0.469). No AMFLP genotypic differences were detected between BSE-affected animals, their relatives, unrelated animals of the same breed or animals of different breeds (P > 0.05). These data suggest that BSE-affected animals and their relatives are more likely to have the AA SSCP genotype than unrelated animals of the same breed or animals of different breeds.
Gene analysis of steroid 5 alpha-reductase 1 in hyperandrogenic women.
Eminović, Izet; Komel, Radovan; Prezelj, Janez; Karamehić, Jasenko; Gavrankapetanović, Faris; Heljić, Becir
2005-08-01
To examine the gene encoding for 5alpha-reductase type 1 in hyperandrogenic women, and assess the association of its eventual mutations or polymorphisms with the development of the hyperandrogenic female pattern. Sixteen hyperandrogenic women were included in the study. Single-stranded conformation polymorphism analysis (SSCP) and DNA sequencing were performed after polymerase chain reaction amplification of each of the 5 exons of the SRD5A1 gene in both hyperandrogenic and control group (16 participants). Sequence analysis identified the existence of many polymorphisms; in codon 24 of exon 1, GGC (Gly) into GAC (Asp); in codon 30 of exon 1, CGG (Arg) into CGC (Arg); in exon 3 codon 169, ACA to ACG (both encoding for threonine); in exon 5, AGA to AGG (both encoding for arginine, codon 260); and T/C polymorphism in intron 2. Polymorphisms were found in both groups. Polymorphisms of SRD5A1 gene were the same in both hyperandrogenic and healthy women, indicating no significant associations of genetic polymorphisms/variations of SRD5A1 gene with clinical manifestations of hyperandrogenic disorders in women.
Zhan, Xiaoli; Gao, Jianbin; Huangfu, Yifan; Fu, Changzhen; Zan, Linsen
2013-12-01
The objective of this research were to detect bovine Dickkopf 2 (DKK2) gene polymorphism and analyze their associations with body measurement traits (BMT) and meat quality traits (MQT) of animals. Blood samples were taken from a total of 541 Qinchuan cattle aged from 18 to 24 months. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) was employed to find out DKK2 single-polymorphism nucleotide (SNPs) and to explore their possible association with BMT and MQT. Sequence analysis of DKK2 gene revealed 2 SNPs (C29 T and A169C) in 5' untranslated region (5'UTR) of exon 1.C29T and A164T SNPs are both synonymous mutation, which showed 2 genotypes namely (CC, CT) and (AA and AC), respectively. Association analysis of polymorphism with body measurement and meat quality traits at the two locus showed that there were significant effects on CT, BL, RL, PBW, BFT, LMA, and IFC. These results suggest that the DKK2 gene might have potential effects on BMT and MQT in Qinchuan cattle population and could be used for marker-assisted selection.
NASA Astrophysics Data System (ADS)
Liu, Siwei; Li, Qi; Yu, Hong; Kong, Lingfeng
2017-02-01
Glycogen is important not only for the energy supplementary of oysters, but also for human consumption. High glycogen content can improve the stress survival of oyster. A key enzyme in glycogenesis is glycogen synthase that is encoded by glycogen synthase gene GYS. In this study, the relationship between single nucleotide polymorphisms (SNPs) in coding regions of Crassostrea gigas GYS (Cg-GYS) and individual glycogen content was investigated with 321 individuals from five full-sib families. Single-strand conformation polymorphism (SSCP) procedure was combined with sequencing to confirm individual SNP genotypes of Cg-GYS. Least-square analysis of variance was performed to assess the relationship of variation in glycogen content of C. gigas with single SNP genotype and SNP haplotype. As a consequence, six SNPs were found in coding regions to be significantly associated with glycogen content ( P < 0.01), from which we constructed four main haplotypes due to linkage disequilibrium. Furthermore, the most effective haplotype H2 (GAGGAT) had extremely significant relationship with high glycogen content ( P < 0.0001). These findings revealed the potential influence of Cg-GYS polymorphism on the glycogen content and provided molecular biological information for the selective breeding of good quality traits of C. gigas.
Stretching and Controlled Motion of Single-Stranded DNA in Locally-Heated Solid-State Nanopores
Belkin, Maxim; Maffeo, Christopher; Wells, David B.
2013-01-01
Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformations that a DNA strand can adopt in a nanopore. Through continuum, coarse-grained and atomistic modeling, we demonstrate that local heating of the nanopore volume can be used to alter the electrophoretic mobility and conformation of single-stranded DNA. In the nanopore systems considered, the temperature near the nanopore is modulated via a nanometer-size heater element that can be radiatively switched on and off. The local enhancement of temperature produces considerable stretching of the DNA fragment confined within the nanopore. Such stretching is reversible, so that the conformation of DNA can be toggled between compact (local heating is off) and extended (local heating is on) states. The effective thermophoretic force acting on single-stranded DNA in the vicinity of the nanopore is found to be sufficiently large (4–8 pN) to affect such changes in the DNA conformation. The local heating of the nanopore volume is observed to promote single-file translocation of DNA strands at transmembrane biases as low as 10 mV, which opens new avenues for using solid-state nanopores for detection and sequencing of DNA. PMID:23876013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiort, O.; Huang, Q.; Sinnecker, G.H.G.
Recent studies indicate that mutations in the androgen receptor gene are associated with androgen insensitivity syndromes, a heterogeneous group of related disorders involving defective sexual differentiation in karyotypic males. In this report, the authors address the possibility of rapid mutational analysis of the androgen receptor gene for initial diagnosis, genetic counseling, and molecular subclassification of affected patients and their families. DNA from peripheral blood leukocytes of six patients from five families with various degrees of androgen insensitivity was studied. Exons 2 to 8 of the androgen receptor gene were analyzed using a combination of single strand conformation polymorphism analysis andmore » direct DNA sequencing. Female family members were also studied to identify heterozygote carriers. Point mutations in the AR gene were identified in all six patients, and all mutations caused amino acid substitutions. One patient with incomplete androgen insensitivity was a mosaic for the mutation. Four of the five mothers, as well as a young sister of one patient, were carriers of the mutation present in the affected child. The data show that new mutations may occur in the androgen receptor gene leading to sporadic androgen insensitivity syndrome. Molecular genetic characterization of the variant allele can serve as a primary tool for diagnosis and subsequent therapy, and can provide a basis for distinguishing heterozygous carriers in familial androgen resistance. The identification of carriers is of substantial clinical importance for genetic counseling. 29 refs., 2 figs., 1 tab.« less
p53 in pure epithelioid PEComa: an immunohistochemistry study and gene mutation analysis.
Bing, Zhanyong; Yao, Yuan; Pasha, Theresa; Tomaszewski, John E; Zhang, Paul J
2012-04-01
Pure epithelioid PEComa (PEP; so-called epithelioid angiomyolipoma) is rare and is more often associated with aggressive behaviors. The pathogenesis of PEP has been poorly understood. The authors studied p53 expression and gene mutation in PEPs by immunohistochemistry, single-strand conformation polymorphism, and direct sequencing in paraffin material from 8 PEPs. A group of classic angiomyolipomas (AMLs) were also analyzed for comparison. Five PEPs were from kidneys and 1 each from the heart, the liver, and the uterus. PEPs showed much stronger p53 nuclear staining (Allred score 6.4 ± 2.5) than the classic AML (2.3 ± 2.9) (P < .01). There was no p53 single-strand conformation polymorphism identified in either the PEPs or the 8 classic AMLs. p53 mutation analyses by direct sequencing of exons 5 to 9 showed 4 mutations in 3 of 8 PEPs but none in any of the 8 classic AMLs. The mutations included 2 missense mutations in a hepatic PEComa and 2 silent mutations in 2 renal PEPs. Both the missense mutations in the hepatic PEComa involved the exon 5, one involving codon 165, with change from CAG to CAC (coding amino acid changed from glutamine to histidine), and the other involving codon 182, with change from TGC to TAC (coding amino acid changed from cysteine to tyrosine). The finding of stronger p53 expression and mutations in epithelioid angiomyolipomas might have contributed to their less predictable behavior. However, the abnormal p53 expression cannot be entirely explained by p53 mutations in the exons examined in the PEPs.
Parvari, R; Hershkovitz, E; Carmi, R; Moses, S
1996-09-01
Glycogen storage disease type 1a (GSD 1a), a severe metabolic disorder, is caused by the absence of glucose-6-phosphatase (G6Pase) activity. Diagnosis is currently established by demonstrating the lack of G6Pase activity in the patient's liver specimen. Enzymatic diagnosis cannot be performed in chorionic villi or amniocytes as G6Pase is active only in the liver, kidney, and intestinal mucosa. Recent cloning of the G6Pase gene and subsequent identification of the mutations causing GSD 1a have led to the possibility of performing DNA-based diagnosis in chorionic villus samples (CVS) or amniocytes. Here we report the first DNA-based prenatal diagnosis in two families in whom GSD 1a patients were diagnosed. In one Jewish family with a previously identified R83C mutation, single-stranded conformation polymorphism (SSCP) analysis of the DNA extracted from CVS showed a homozygous R83C mutant pattern. As a result, the pregnancy was terminated and the diagnosis was confirmed on DNA analysis of the aborted fetus. In another family of Arabic extraction in which a V166G mutation has been identified in one of the siblings, SSCP analysis performed on DNA extracted from CVS presented the pattern of a normal control. The pregnancy was carried to term and a healthy baby was born. Thus, once mutations causing the disease are identified, prenatal diagnosis of GSD 1a is possible. SSCP analysis of DNA prepared from CVS is reliable, simple and fast, making it a suitable method for prenatal diagnosis.
Mismatch cleavage by single-strand specific nucleases
Till, Bradley J.; Burtner, Chris; Comai, Luca; Henikoff, Steven
2004-01-01
We have investigated the ability of single-strand specific (sss) nucleases from different sources to cleave single base pair mismatches in heteroduplex DNA templates used for mutation and single-nucleotide polymorphism analysis. The TILLING (Targeting Induced Local Lesions IN Genomes) mismatch cleavage protocol was used with the LI-COR gel detection system to assay cleavage of amplified heteroduplexes derived from a variety of induced mutations and naturally occurring polymorphisms. We found that purified nucleases derived from celery (CEL I), mung bean sprouts and Aspergillus (S1) were able to specifically cleave nearly all single base pair mismatches tested. Optimal nicking of heteroduplexes for mismatch detection was achieved using higher pH, temperature and divalent cation conditions than are routinely used for digestion of single-stranded DNA. Surprisingly, crude plant extracts performed as well as the highly purified preparations for this application. These observations suggest that diverse members of the S1 family of sss nucleases act similarly in cleaving non-specifically at bulges in heteroduplexes, and single-base mismatches are the least accessible because they present the smallest single-stranded region for enzyme binding. We conclude that a variety of sss nucleases and extracts can be effectively used for high-throughput mutation and polymorphism discovery. PMID:15141034
Xiao, Zhuo; Lie, Puchang; Fang, Zhiyuan; Yu, Luxin; Chen, Junhua; Liu, Jie; Ge, Chenchen; Zhou, Xuemeng; Zeng, Lingwen
2012-09-04
A lateral flow biosensor for detection of single nucleotide polymorphism based on circular strand displacement reaction (CSDPR) has been developed. Taking advantage of high fidelity of T4 DNA ligase, signal amplification by CSDPR, and the optical properties of gold nanoparticles, this assay has reached a detection limit of 0.01 fM.
Chávez, Bertha; Vilchis, Felipe; Rojano-Mejía, David; Coral Vázquez, Ramón Mauricio; Aguirre-García, María Del Carmen; Canto, Patricia
2017-08-01
Herein, we investigated potential associations between polymorphisms of genes related to estrogen metabolism and bone mineral density (BMD) in postmenopausal women. This was a cross-sectional study, in which two hundred and ninety postmenopausal Mexican-Mestizo women were studied. The BMD of the lumbar spine (LS), total hip (TH), and femoral neck (FN) was measured. The distribution of the genetic polymorphisms, including rs1799814 and rs1048943 at CYP1A1 as well as rs1056836 at CYP1B1, were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), single-stranded conformational polymorphism (SSCP), and DNA sequencing. Deviations from Hardy-Weinberg equilibrium (HWE) were tested, and linkage disequilibrium (LD) was calculated by direct correlation (r 2 ). Moreover, haplotype analysis was performed. All polymorphisms were in HWE. The genotype and allele distributions of the three single nucleotide polymorphisms (SNPs) studied showed no significant differences. However, statistical significance was reached when constructing haplotypes. The CG haplotype in CYP1A1 was associated with variations in LS and FN BMD after adjustment for covariates (p = 0.021 and 0.045, respectively), but the association with TH BMD was not significant. These results suggested that the CG haplotype in CYP1A1 may play an important role in the mechanism of osteoporosis and may be useful as a genetic marker.
Gehring, I; Geider, K
2012-07-01
Fire blight has spread from North America to New Zealand, Europe, and the Mediterranean region. We were able to differentiate strains from various origins with a novel PCR method. Three Single Nucleotide Polymorphisms (SNPs) in the Erwinia amylovora genome were characteristic of isolates from North America and could distinguish them from isolates from other parts of the world. They were derived from the galE, acrB, and hrpA genes of strains Ea273 and Ea1/79. These genes were analyzed by conventional PCR (cPCR) and quantitative PCR (qPCR) with differential primer annealing temperatures. North-American E. amylovora strains were further differentiated according to their production of L: -2,5-dihydrophenylalanine (DHP) as tested by growth inhibition of the yeast Rhodotorula glutinis. E. amylovora fruit tree (Maloideae) and raspberry (rubus) strains were also differentiated by Single Strand Conformational Polymorphism analysis. Strains from the related species Erwinia pyrifoliae isolated in Korea and Japan were all DHP positive, but were differentiated from each other by SNPs in the galE gene. Differential PCR is a rapid and simple method to distinguish E. amylovora as well as E. pyrifoliae strains according to their geographical origin.
Jafary, Fariba; Salehi, Mansoor; Sedghi, Maryam; Nouri, Nayereh; Jafary, Farzaneh; Sadeghi, Farzaneh; Motamedi, Shima; Talebi, Maede
2012-01-01
The mismatch repair system (MMR) is a post-replicative DNA repair mechanism whose defects can lead to cancer. The MSH3 protein is an essential component of the system. We postulated that MSH3 gene polymorphisms might therefore be associated with prostate cancer (PC). We studied MSH3 codon 222 and MSH3 codon 1036 polymorphisms in a group of Iranian sporadic PC patients. A total of 60 controls and 18 patients were assessed using the polymerase chain reaction and single strand conformational polymorphism. For comparing the genotype frequencies of patients and controls the chi-square test was applied. The obtained result indicated that there was significantly association between G/A genotype of MSH3 codon 222 and G/G genotype of MSH3 codon 1036 with an increased PC risk (P=0.012 and P=0.02 respectively). Our results demonstrated that MSH3 codon 222 and MSH3 codon 1036 polymorphisms may be risk factors for sporadic prostate cancer in the Iranian population.
Abo-Al-Ela, Haitham G; El-Magd, Mohammed Abu; El-Nahas, Abeer F; Mansour, Ali A
2014-08-01
Insulin-like growth factor 2 (IGF2) plays an important role in muscle growth and it might be used as a marker for the growth traits selection strategies in farm animals. The objectives of this study were to detect polymorphisms in exon 10 of IGF2 and to determine associations between these polymorphisms and growth traits in Egyptian water buffalo. PCR-single-strand conformation polymorphism (SSCP) and DNA sequencing methods were used to detect any prospective polymorphism. A novel single nucleotide polymorphism (SNP), C287A, was detected. It was a non-synonymous mutation and led to replacement of glutamine (Q) amino acid (aa) by histidine (H) aa. Three different SSCP patterns were observed: AA, AC, and CC, with frequencies of 0.540, 0.325, and 0.135, respectively. Association analyses revealed that the AA individuals had a higher average daily gain (ADG) than other individuals (CC and AC) from birth to 9 months of age. We conclude that the AA genotype in C287A SNP in the exon 10 of the IGF2 gene is associated with the ADG during the age from birth to 9 months and could be used as a potential genetic marker for selection of growth traits in Egyptian buffalo.
Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K
2013-09-15
The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.
Shaffer, H. Bradley; Fellers, Gary M.; Magee, Allison; Voss, S. Randal
2000-01-01
We present a comprehensive survey of genetic variation across the range of the narrowly distributed endemic Yosemite toad Bufo canorus, a declining amphibian restricted to the Sierra Nevada of California. Based on 322 bp of mitochondrial cytochrome b sequence data, we found limited support for the monophyly of B. canorus and its closely related congener B. exsul to the exclusion of the widespread western toad B. boreas. However, B. exsul was always phylogenetically nested within B. canorus, suggesting that the latter may not be monophyletic. SSCP (single-strand conformation polymorphism) analysis of 372 individual B. canorus from 28 localities in Yosemite and Kings Canyon National Parks revealed no shared haplotypes among these two regions and lead us to interpret these two parks as distinct management units for B. canorus. Within Yosemite, we found significant genetic substructure both at the level of major drainages and among breeding ponds. Kings Canyon samples show a different pattern, with substantial variation among breeding sites, but no substructure among drainages. Across the range of B. canorus as well as among Yosemite ponds, we found an isolation-by-distance pattern suggestive of a stepping stone model of migration. However, in Kings Canyon we found no hint of such a pattern, suggesting that movement patterns of toads may be quite different in these nearby parklands. Our data imply that management for B. canorus should focus at the individual pond level, and effective management may necessitate reintroductions if local extirpations occur. A brief review of other pond-breeding anurans suggests that highly structured populations are often the case, and thus that our results for B. canorus may be general for other species of frogs and toads.
Fabricius, K E; Mieog, J C; Colin, P L; Idip, D; van Oppen, M J H
2004-08-01
The potential of corals to associate with more temperature-tolerant strains of algae (zooxanthellae, Symbiodinium) can have important implications for the future of coral reefs in an era of global climate change. In this study, the genetic identity and diversity of zooxanthellae was investigated at three reefs with contrasting histories of bleaching mortality, water temperature and shading, in the Republic of Palau (Micronesia). Single-stranded conformation polymorphism and sequence analysis of the ribosomal DNA internal transcribed spacer (ITS)1 region was used for genotyping. A chronically warm but partly shaded coral reef in a marine lake that is hydrographically well connected to the surrounding waters harboured only two single-stranded conformation polymorphism profiles (i.e. zooxanthella communities). It consisted only of Symbiodinium D in all 13 nonporitid species and two Porites species investigated, with the remaining five Porites harbouring C*. Despite the high temperature in this lake (> 0.5 degrees above ambient), this reef did not suffer coral mortality during the (1998) bleaching event, however, no bleaching-sensitive coral families and genera occur in the coral community. This setting contrasts strongly with two other reefs with generally lower temperatures, in which 10 and 12 zooxanthella communities with moderate to low proportions of clade D zooxanthellae were found. The data indicate that whole coral assemblages, when growing in elevated seawater temperatures and at reduced irradiance, can be composed of colonies associated with the more thermo-tolerant clade D zooxanthellae. Future increases in seawater temperature might, therefore, result in an increasing prevalence of Symbiodinium phylotype D in scleractinian corals, possibly associated with a loss of diversity in both zooxanthellae and corals. Copyright 2004 Blackwell Publishing Ltd
Muraiso, T; Nomoto, S; Yamazaki, H; Mishima, Y; Kominami, R
1992-01-01
A protein that binds to a synthetic oligonucleotide of (CCT)12 has been purified from Ehrlich ascites tumor cells by a (CCT)12 affinity chromatography. The protein (p70) has an apparent molecular mass of 70 kDa, as assayed by Southwestern analysis. A competition experiment revealed that p70 binds to (CCT)12, (CCCT)8 and (CCTCCCT)6, but not to (CTT)12, (CT)16 and (CCTGCCT)6, suggesting that p70 has a sequence-specificity. The complementary (AGG)12 and the double stranded DNA did not show the binding. It is also confirmed by S1 nuclease analysis that the (AGG:CCT)12 duplex takes a single-stranded conformation in the absence of the protein. This raises a possibility that the duplex forms two single-stranded loops in chromosomes, the C-rich strand being bound to p70. Structural analysis of the resulting (AGG)12 strand by non-denaturing polyacrylamide gel electrophoresis demonstrated the presence of slower and faster migrated conformers in a neutral pH buffer containing 50 mM NaCl at 5 degrees C. The ratio was dependent on the DNA concentration. Both conformers disappeared in the absence of NaCl. This suggests that (AGG)12 can form intra- and inter-molecular complexes by non-Watson-Crick, guanine:guanine base-pairing. The possible biological function of the (AGG:CCT)n duplex and the p70 is discussed. Images PMID:1480484
Haplotype diversity of the myostatin gene among beef cattle breeds
Dunner, Susana; Miranda, M Eugenia; Amigues, Yves; Cañón, Javier; Georges, Michel; Hanset, Roger; Williams, John; Ménissier, François
2003-01-01
A total of 678 individuals from 28 European bovine breeds were both phenotyped and analysed at the myostatin locus by the Single Strand Conformation Polymorphism (SSCP) method. Seven new mutations were identified which contribute to the high polymorphism (1 SNP every 100 bp) present in this small gene; twenty haplotypes were described and a genotyping method was set up using the Oligonucleotide Ligation Assay (OLA) method. Some haplotypes appeared to be exclusive to a particular breed; this was the case for 5 in the Charolaise (involving mutation Q204X) and 7 in the Maine-Anjou (involving mutation E226X). The relationships between the different haplotypes were studied, thus allowing to test the earlier hypothesis on the origin of muscular hypertrophy in Europe: muscular hypertrophy (namely nt821(del11)) was mainly spread in different waves from northern Europe milk purpose populations in most breeds; however, other mutations (mostly disruptive) arose in a single breed, were highly selected and have since scarcely evolved to other populations. PMID:12605853
Kaushik, Mahima; Kukreti, Shrikant
2006-01-01
Structural polymorphism of DNA is a widely accepted property. A simple addition to this perception has been our recent finding, where a single nucleotide polymorphism (SNP) site present in a quasipalindromic sequence of beta-globin LCR exhibited a hairpin-duplex equilibrium. Our current studies explore that secondary structures adopted by individual complementary strands compete with formation of a perfect duplex. Using gel-electrophoresis, ultraviolet (UV)-thermal denaturation, circular dichroism (CD) techniques, we have demonstrated the structural transitions within a perfect duplex containing 11 bp quasipalindromic stretch (TGGGG(G/C)CCCCA), to hairpins and bulge duplex forms. The extended version of the 11 bp duplex, flanked by 5 bp on both sides also demonstrated conformational equilibrium between duplex and hairpin species. Gel-electrophoresis confirms that the duplex coexists with hairpin and bulge duplex/cruciform species. Further, in CD spectra of duplexes, presence of two overlapping positive peaks at 265 and 285 nm suggest the features of A- as well as B-type DNA conformation and show oligomer concentration dependence, manifested in A --> B transition. This indicates the possibility of an architectural switching at quasipalindromic region between linear duplex to a cruciform structure. Such DNA structural variations are likely to be found in the mechanics of molecular recognition and manipulation by proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riess, O.; Weber, B.; Hayden, M.R.
1992-10-01
The finding of a mutation in the beta subunit of the cyclic GMP (cGMP) phosphodiesterase gene causing retinal degeneration in mice (the Pdeb gene) prompted a search for disease-causing mutations in the human phosphodiesterase gene (PDEB gene) in patients with retinitis pigmentosa. All 22 exons including 196 bp of the 5[prime] region of the PDEB gene have been assessed for mutations by using single-strand conformational polymorphism analysis in 14 patients from 13 unrelated families with autosomal recessive retinitis pigmentosa (ARRP). No disease-causing mutations were found in this group of affected individuals of seven different ancestries. However, a frequent intronic andmore » two exonic polymorphisms (Leu[sup 489][yields]Gln and Gly[sup 842][yields]Gly) were identified. Segregation analysis using these polymorphic sites excludes linkage of ARRP to the PDEB gene in a family with two affected children. 43 refs., 3 figs., 2 tabs.« less
Population genetic structure of the dengue mosquito Aedes aegypti in Venezuela.
Herrera, Flor; Urdaneta, Ludmel; Rivero, José; Zoghbi, Normig; Ruiz, Johanny; Carrasquel, Gabriela; Martínez, José Antonio; Pernalete, Martha; Villegas, Patricia; Montoya, Ana; Rubio-Palis, Yasmin; Rojas, Elina
2006-09-01
The mosquito Aedes aegypti is the main vector of dengue in Venezuela. The genetic structure of this vector was investigated in 24 samples collected from eight geographic regions separated by up to 1160 km. We examined the distribution of a 359-basepair region of the NADH dehydrogenase subunit 4 mitochondrial gene among 1144 Ae. aegypti from eight collections. This gene was amplified by the polymerase chain reaction and tested for variation using single strand conformation polymorphism analysis. Seven haplotypes were detected throughout Venezuela and these were sorted into two clades. Significant differentiation was detected among collections and these were genetically isolated by distance.
Zhang, M; Bai, X J
2015-05-25
The polymerase chain reaction-single-strand conformation polymorphism technique was employed to measure mononucleotide diversity in the coding region of the leptin and leptin receptor genes in the Arctic fox. The relationships between specific genetic mutations and reproductive performance in Arctic foxes were determined to im-prove breeding strategies. We found that a leptin gene polymorphism was significantly associated with body weight (P < 0.01), abdominal circumference (P < 0.01), and fur length (P < 0.01). Furthermore, a polymorphism in the leptin receptor gene was associated with carcass weight and guard hair length (P < 0.01). Leptin and leptin receptor gene combinatorial genotypes were significantly associated with abdominal circumference, fur length (P < 0.01), and body weight (P < 0.05). The leptin gene is thus a key gene affecting body weight, abdominal circumference, and fur length in Arctic foxes, whereas variations in the leptin receptor mainly affect carcass weight and guard hair. The marker loci identified in this study can be used to assist in the selection of Arctic foxes for breeding to raise the production performance of this species.
Miraglia del Giudice, E; Santoro, N; Cirillo, G; Raimondo, P; Grandone, A; D'Aniello, A; Di Nardo, M; Perrone, L
2004-03-01
To test whether ghrelin variants could play a role in modulating some aspects of the obese phenotype during childhood. We screened the ghrelin gene in 300 Italian obese children and adolescents (mean age 10.5+/-3.2 y; range 4-19 y) and 200 controls by using the single-strand conformation polymorphism and the restriction fragment length polymoprhism analysis. No mutations were detected with the exception of two previously described polymorphisms, Arg51Gln and Leu72Met. For both variations, allelic frequencies were similar between patients and controls. Interestingly, we showed that the Leu72Met polymorphism was associated with differences in the age at obesity onset. Patients with the Met72 allele became obese earlier than homozygous patients for the wild Leu72 allele. The logrank test comparing the plots of the complement of Kaplan-Meier estimates between the two groups of patients was statistically significant (P<0.0001). It is unlikely that ghrelin variations cause the obesity due to single-gene mutations. The Leu72Met polymorphism of the ghrelin gene seems to play a role in anticipating the onset of obesity among children suggesting, therefore, that ghrelin may be involved in the pathophysiology of human adiposity.
Microbial diversity of landslide soils assessed by RFLP and SSCP fingerprints.
Guida, Marco; Cannavacciuolo, Paolo Losanno; Cesarano, Mara; Borra, Marco; Biffali, Elio; D'Alessandro, Raffaella; De Felice, Bruna
2014-08-01
Landslides are a significant component of natural disasters in most countries around the world. Understanding these destructive phenomena through the analysis of possible correlations between microbial communities and the alteration of the soil responsible for landslides is important in order to reduce their negative consequences. To address this issue, bacterial and fungal communities in soils triggering landslides in Termini-Nerano and Massa Lubrense-Nerano (Naples, Italy) were analysed by genetic profiling techniques. Fingerprints were generated by single-strand conformation polymorphisms (SSCP) and random amplified polymorphic DNA (RAPD). The microbial community in both soil types was enriched in species which could contribute to the degradation process occurring during landslides, forming biofilms and leading to the transformation or the formation of minerals. Indeed, some of the identified bacteria were found to favour the transformation of clay minerals. These findings suggest a possible relationship between bacterial and fungal community-colonising soils and the occurrence of landslides.
Wang, Xinyi; Zou, Mingjian; Huang, Hongduan; Ren, Yuqian; Li, Limei; Yang, Xiaoda; Li, Na
2013-03-15
We developed a highly differentiating, homogeneous gold nanoparticle (AuNP) enhanced fluorescence anisotropic method for single nucleotide polymorphism (SNP) detection at nanomolar level using toehold-mediated strand-displacement reaction. The template strand, containing a toehold domain with an allele-specific site, was immobilized on the surface of AuNPs, and the solution fluorescence anisotropy was markedly enhanced when the fluorescein-labeled blocking DNA was attached to the AuNP via hybridization. Strand-displacement by the target ssDNA strand resulted in detachment of fluorescein-labeled DNA from AuNPs, and thus decreased fluorescence anisotropy. The drastic kinetic difference in strand-displacement from toehold design was used to distinguish between the perfectly matched and the single-base mismatched strands. Free energy changes were calculated to elucidate the dependence of the differentiation ability on the mutation site in the toehold region. A solid negative signal change can be obtained for single-base mismatched strand in the dynamic range of the calibration curve, and a more than 10-fold signal difference can still be observed in a mixed solution containing 100 times the single-base mismatched strand, indicating the good specificity of the method. This proposed method can be performed with a standard spectrofluorimeter in a homogeneous and cost-effective manner, and has the potential to be extended to the application of fluorescence anisotropy method of SNP detection. Copyright © 2012 Elsevier B.V. All rights reserved.
Huang, Yong-Zhen; Wang, Qin; Zhang, Chun-Lei; Fang, Xing-Tang; Song, En-Liang; Chen, Hong
2016-01-01
Identification of the genes and polymorphisms underlying quantitative traits, and understanding these genes and polymorphisms affect economic growth traits, are important for successful marker-assisted selection and more efficient management strategies in commercial cattle (Bos taurus) population. Syndecan-3 (SDC3), a member of the syndecan family of type I transmembrane heparan sulfate proteoglycans is a novel regulator of feeding behavior and body weight. The aim of this study is to examine the association of the SDC3 polymorphism with growth traits in Chinese Jiaxian and Qinchuan cattle breeds (). Four single nucleotide polymorphisms (SNPs: 1-4) were detected in 555 cows from three Chinese native cattle breeds by means of sequencing pooled DNA samples and polymerase chain reaction-single stranded conformational polymorphism (PCR-SSCP) methods. We found one SNP (g.28362A > G) in intron and three SNPs (g.30742T > G, g.30821C > T and 33418 A > G) in exons. The statistical analyses indicated that these SNPs of SDC3 gene were associated with bovine body height, body length, chest circumference, and circumference of cannon bone (P < 0.05). The mutant-type variant was superior for growth traits; the heterozygote was associated with higher growth traits compared to wild-type homozygote. Our result confirms the polymorphisms in the SDC3 gene are associated with growth traits that may be used for marker-assisted selection in beef cattle breeding programs.
The impact of base stacking on the conformations and electrostatics of single-stranded DNA.
Plumridge, Alex; Meisburger, Steve P; Andresen, Kurt; Pollack, Lois
2017-04-20
Single-stranded DNA (ssDNA) is notable for its interactions with ssDNA binding proteins (SSBs) during fundamentally important biological processes including DNA repair and replication. Previous work has begun to characterize the conformational and electrostatic properties of ssDNA in association with SSBs. However, the conformational distributions of free ssDNA have been difficult to determine. To capture the vast array of ssDNA conformations in solution, we pair small angle X-ray scattering with novel ensemble fitting methods, obtaining key parameters such as the size, shape and stacking character of strands with different sequences. Complementary ion counting measurements using inductively coupled plasma atomic emission spectroscopy are employed to determine the composition of the ion atmosphere at physiological ionic strength. Applying this combined approach to poly dA and poly dT, we find that the global properties of these sequences are very similar, despite having vastly different propensities for single-stranded helical stacking. These results suggest that a relatively simple mechanism for the binding of ssDNA to non-specific SSBs may be at play, which explains the disparity in binding affinities observed for these systems. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Novel mutations of CYP3A4 in Chinese.
Hsieh, K P; Lin, Y Y; Cheng, C L; Lai, M L; Lin, M S; Siest, J P; Huang, J D
2001-03-01
Human cytochrome P450 3A4 is a major P450 enzyme in the liver and gastrointestinal tract. It plays important roles in the metabolism of a wide variety of drugs, some endogenous steroids, and harmful environmental contaminants. CYP3A4 exhibits a remarkable interindividual activity variation as high as 20-fold. To investigate whether the interindividual variation in CYP3A4 levels can be partly explained by genetic polymorphism, we analyzed DNA samples from 102 Chinese subjects by polymerase chain reaction (PCR)-single-strand conformation polymorphism analysis for novel point mutation in the CYP3A4 coding sequence and promoter region. Using PCR and directed sequencing method to establish the complete intron sequence of CYP3A4 from leukocytes, the complete genomic sequence from exon 1 through 13 of CYP3A4 was determined and published in the GenBank database (accession no. AF209389). CYP3A4-specific primers were designed accordingly. After PCR-single-strand conformation polymorphism and restriction fragment length polymorphism screening, we found three novel mutations; two are point mutations and one is insertion. The first variant allele (CYP3A4*4), an Ile118Val change, was found in 3 of 102 Chinese subjects. The next allele (CYP3A4*5), which causes a Pro218Arg amino acid change, was found in 2 of 102 subjects. We found an insertion in A(17776), designated as CYP3A4*6, which causes frame shift and an early stop codon in exon 9, in one heterozygous subject. We also investigated the CYP3A4 activity in these mutant subjects by measuring the morning spot urinary 6beta-hydroxycortisol to free cortisol ratio with the enzyme-linked immunosorbent assay method. When compared with healthy Chinese population data, the 6beta-hydroxycortisol to free cortisol ratio data suggested that these alleles (CYP3A4*4, CYP3A4*5, and CYP3A4*6) may decrease the CYP3A4 activity. Incidences of these mutations in Chinese subjects are rare. The prevalence of these point mutations in other ethnic groups and its effect on the metabolic activity of CYP3A4 remain to be further evaluated.
Advances in research on and diagnosis and treatment of achondroplasia in China
Wang, Yao; Liu, Zeying; Liu, Zhenxing; Zhao, Heng; Zhou, Xiaoyan; Cui, Yazhou; Han, Jinxiang
2013-01-01
Summary Achondroplasia is a rare autosomal dominant genetic disease. Research on achondroplasia in China, however, has received little emphasis. Around 80–90% of cases of neonatal achondroplasia result from mutations in fibroblast growth factor receptor 3 (FGFR3) according to polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). Recently, genetic research on achondroplasia in China made a major breakthrough by revealing two novel mutations located on the FGFR3 gene, thus helping to complete the pathological molecular map of achondroplasia. There are still, however, unknown aspects of the diagnosis and treatment of achondroplasia. This review will summarize advances in research on and the clinical diagnosis and treatment of achondroplasia in China. PMID:25343101
Novel mutations in the TULP1 gene causing autosomal recessive retinitis pigmentosa.
Paloma, E; Hjelmqvist, L; Bayés, M; García-Sandoval, B; Ayuso, C; Balcells, S; Gonzàlez-Duarte, R
2000-03-01
To assess the contribution of TULP1 to autosomal recessive retinitis pigmentosa (arRP). Fifteen exons of the gene were screened by single-strand conformation polymorphism analysis of 7 (of 49) arRP pedigrees showing cosegregation with TULP1 locus markers. In one of the seven families two allelic mutations, IVS4-2delAGA and c.937delC, were found in exons 5 and 10, respectively. Two novel mutations in TULP1 were found to be associated with arRP. That they both compromise the gene product supports their pathogenicity. This gene was present in no more than 2% of a panel of 49 Spanish families affected by arRP.
Surtees, Jennifer A; Alani, Eric
2006-07-14
Genetic studies in Saccharomyces cerevisiae predict that the mismatch repair (MMR) factor MSH2-MSH3 binds and stabilizes branched recombination intermediates that form during single strand annealing and gene conversion. To test this model, we constructed a series of DNA substrates that are predicted to form during these recombination events. We show in an electrophoretic mobility shift assay that S. cerevisiae MSH2-MSH3 specifically binds branched DNA substrates containing 3' single-stranded DNA and that ATP stimulates its release from these substrates. Chemical footprinting analyses indicate that MSH2-MSH3 specifically binds at the double-strand/single-strand junction of branched substrates, alters its conformation and opens up the junction. Therefore, MSH2-MSH3 binding to its substrates creates a unique nucleoprotein structure that may signal downstream steps in repair that include interactions with MMR and nucleotide excision repair factors.
Markers and mapping revisited: finding your gene.
Jones, Neil; Ougham, Helen; Thomas, Howard; Pasakinskiene, Izolda
2009-01-01
This paper is an update of our earlier review (Jones et al., 1997, Markers and mapping: we are all geneticists now. New Phytologist 137: 165-177), which dealt with the genetics of mapping, in terms of recombination as the basis of the procedure, and covered some of the first generation of markers, including restriction fragment length polymorphisms (RFLPs), random amplified polymorphic DNA (RAPDs), simple sequence repeats (SSRs) and quantitative trait loci (QTLs). In the intervening decade there have been numerous developments in marker science with many new systems becoming available, which are herein described: cleavage amplification polymorphism (CAP), sequence-specific amplification polymorphism (S-SAP), inter-simple sequence repeat (ISSR), sequence tagged site (STS), sequence characterized amplification region (SCAR), selective amplification of microsatellite polymorphic loci (SAMPL), single nucleotide polymorphism (SNP), expressed sequence tag (EST), sequence-related amplified polymorphism (SRAP), target region amplification polymorphism (TRAP), microarrays, diversity arrays technology (DArT), single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE) and methylation-sensitive PCR. In addition there has been an explosion of knowledge and databases in the area of genomics and bioinformatics. The number of flowering plant ESTs is c. 19 million and counting, with all the opportunity that this provides for gene-hunting, while the survey of bioinformatics and computer resources points to a rapid growth point for future activities in unravelling and applying the burst of new information on plant genomes. A case study is presented on tracking down a specific gene (stay-green (SGR), a post-transcriptional senescence regulator) using the full suite of mapping tools and comparative mapping resources. We end with a brief speculation on how genome analysis may progress into the future of this highly dynamic arena of plant science.
Mismatch repair gene MSH3 polymorphism is associated with the risk of sporadic prostate cancer.
Hirata, Hiroshi; Hinoda, Yuji; Kawamoto, Ken; Kikuno, Nobuyuki; Suehiro, Yutaka; Okayama, Naoko; Tanaka, Yuichiro; Dahiya, Rajvir
2008-05-01
The mismatch repair system is a DNA repair mechanism that corrects mispaired bases during DNA replication errors. Cancer cells deficient in MMR proteins have a 10(2) to 10(3)-fold increase in the mutation rate. Single nucleotide polymorphisms of mismatch repair genes have been shown to cause a decrease in DNA repair activity. We hypothesized that mismatch repair gene polymorphism could be a risk factor for prostate cancer and p53 Pro/Pro genotype carriers could influence MSH3 and MSH6 polymorphisms. DNA samples from 110 patients with prostate cancer and 110 healthy controls were analyzed by single strand conformational polymorphism and polymerase chain reaction-restriction fragment length polymorphism to determine the genotypic frequency of 5 polymorphic loci on 2 MMR genes (MSH3 and MSH6) and p53 codon72. The chi-square test was applied to compare genotype frequency between patients and controls. A significant increase in the G/A+A/A genotype of MSH3 Pro222Pro was observed in patients compared to controls (OR 1.87, 95% CI 1.0-3.5). The frequency of A/G + G/G genotypes of MSH3 exon23 Thr1036Ala also tended to increase in patients (OR 1.57, 95% CI 0.92-2.72). In p53 codon72 Arg/Pro + Pro/Pro carriers the frequency of the AG + GG genotype of MSH3 exon23 was significantly increased in patients compared to controls (OR 2.1, 95% CI 1.05-4.34). To our knowledge this is the first report of the association of MSH3 gene polymorphisms in prostate cancer. These results suggest that the MSH3 polymorphism may be a risk factor for prostate cancer.
Wang, Jiqing; Zhou, Huitong; Forrest, Rachel H J; Hu, Jiang; Liu, Xiu; Li, Shaobin; Luo, Yuzhu; Hickford, Jon G H
2017-09-01
Myogenic factor 5 (MYF5) plays an important role in regulating skeletal muscle, but to date there have been no reports on whether the gene is variable and whether this variation is associated with meat yield in sheep. In this study, four variants (A to D) of ovine MYF5 containing two Single Nucleotide Polymorphisms (SNPs) and one basepair (bp) insertion/deletion were detected by Polymerase Chain Reaction - Single Stranded Conformational Polymorphism (PCR-SSCP) analysis. Breed differences in variant frequencies were observed. The effect of variation in ovine MYF5 on lean meat yield, predicted using VIAScan® technology, was investigated in 388 male NZ Romney lambs. Only genotypes AA and AB were found in these lambs. Lambs with genotype AA had a higher leg yield (P=0.044), loin yield (P=0.002) and total yield (P=0.012) than those with genotype AB. No association with shoulder yield was detected. These results suggest that ovine MYF5 may be a valuable genetic marker for improved lean meat yield. Copyright © 2017 Elsevier Ltd. All rights reserved.
Residue-Specific Side-Chain Polymorphisms via Particle Belief Propagation.
Ghoraie, Laleh Soltan; Burkowski, Forbes; Li, Shuai Cheng; Zhu, Mu
2014-01-01
Protein side chains populate diverse conformational ensembles in crystals. Despite much evidence that there is widespread conformational polymorphism in protein side chains, most of the X-ray crystallography data are modeled by single conformations in the Protein Data Bank. The ability to extract or to predict these conformational polymorphisms is of crucial importance, as it facilitates deeper understanding of protein dynamics and functionality. In this paper, we describe a computational strategy capable of predicting side-chain polymorphisms. Our approach extends a particular class of algorithms for side-chain prediction by modeling the side-chain dihedral angles more appropriately as continuous rather than discrete variables. Employing a new inferential technique known as particle belief propagation, we predict residue-specific distributions that encode information about side-chain polymorphisms. Our predicted polymorphisms are in relatively close agreement with results from a state-of-the-art approach based on X-ray crystallography data, which characterizes the conformational polymorphisms of side chains using electron density information, and has successfully discovered previously unmodeled conformations.
The spatial configuration of ordered polynucleotide chains. II. The poly(rA) helix.
Olson, W K
1975-01-01
Approximate details of the spatial configuration of the ordered single-stranded poly(rA) molecule in dilute solution have been obtained in a combined theoretical analysis of base stacking and chain flexibility. Only those regularly repeating structures which fulfill the criterion of conformational flexibility (based upon all available experimental and theoretical evidence of preferred bond rotations) and which also exhibit the right-handed base stacking pattern observed in nmr investigations of poly(rA) are deemed suitable single-stranded helices. In addition, the helical geometry of the stacked structures is required to be consistent with the experimentally observed dimensions of both completely ordered and partially ordered poly(rA) chains. Only a single category of poly(rA) helices (very similar in all conformational details to the individual chains of the poly(rA) double-stranded X-ray structure) is thus obtained. Other conformationally feasible polynucleotide helices characterized simply by a parallel and overlapping base stacking arrangement are also discussed. PMID:1052529
Lee, Ja Yil; Kim, D. S.
2009-01-01
Guanine-rich DNA sequences can form G-quadruplexes. These four-stranded structures are known to form in several genomic regions and to influence certain biological activities. Sometimes, the instability of G-quadruplexes causes the abnormal biological processes. Mutation is a culprit for the destabilization of G-quadruplexes, but the details of mutated G-quadruplexes are poorly understood. In this article, we investigated the conformational dynamics of single-base mutated human telomeric G-quadruplexes in the presence of K+ with single-molecule FRET spectroscopy. We observed that the replacement of single guanine by thymine in a G-track induces various folded structures, i.e. structural polymorphism. Moreover, direct observation of their dynamics revealed that a single-base mutation causes fast unfolding of folded states under physiological conditions. Furthermore, we found that the degree of destabilization varies according to mutation positions. When the central guanine of a G-track is replaced, the G-quadruplexes unfold quickly at any K+ concentrations and temperature. Meanwhile, outer-quartet mutated G-quadruplexes have heterogeneous dynamics at intermediate K+ concentrations and longstanding folded states at high K+ concentrations. Several factors such as base-stacking interaction and K+ coordination are responsible for the different dynamics according to the mutation position. PMID:19359361
Adoligbe, C; Zan, Linsen; Farougou, S; Wang, Hongbao; Ujjan, J A
2012-04-01
The objective of this research was to detect bovine GDF10 gene polymorphism and analyze its association with body measurement traits (BMT) of animals sampled from 6 different Chinese indigenous cattle populations. The populations included Xuelong (Xl), Luxi (Lx), Qinchuan (Qc), Jiaxian red (Jx), Xianang (Xn) and Nanyang (Ny). Blood samples were taken from a total of 417 female animals stratified into age categories of 12-36 months. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) was employed to find out GDF10 single polymorphism nucleotide (SNPs) and explore their possible association with BMT. Sequence analysis of GDF10 gene revealed 3 SNPs in total: 1 in exon1 (G142A) and 2 in exon3 (A11471G, and T12495C). G142A and T12495C SNPs are both synonymous mutation. They showed 2 genotypes namely respectively (GG, GA) and (PP and PB). A11471G SNP is a missense mutation leading to the change of Alanine to Threonine amino acid. It showed three genotypes namely AA, BB and AB. Analysis of association of polymorphism with body measurement traits at the three locus showed that there were significant effects on BMT in Qc, Jx and Ny cattle population. These results suggest that the GDF10 gene might have potential effects on body measurement traits in the above mentioned cattle populations and could be used for marker-assisted selection.
Analysis of ELA-DQB exon 2 polymorphism in Argentine Creole horses by PCR-RFLP and PCR-SSCP.
Villegas-Castagnasso, E E; Díaz, S; Giovambattista, G; Dulout, F N; Peral-García, P
2003-08-01
The second exon of equine leucocyte antigen (ELA)-DQB genes was amplified from genomic DNA of 32 Argentine Creole horses by PCR. Amplified DNA was analysed by PCR-restriction fragment length polymorphism (RFLP) and PCR-single-strand conformation polymorphism (SSCP). The PCR-RFLP analysis revealed two HaeIII patterns, four RsaI patterns, five MspI patterns and two HinfI patterns. EcoRI showed no variation in the analysed sample. Additional patterns that did not account for known exon 2 DNA sequences were observed, suggesting the existence of novel ELA-DQB alleles. PCR-SSCP analysis exhibited seven different band patterns, and the number of bands per animal ranged from four to nine. Both methods indicated that at least two DQB genes are present. The presence of more than two alleles in each animal showed that the primers employed in this work are not specific for a unique DQB locus. The improvement of this PCR-RFLP method should provide a simple and rapid technique for an accurate definition of ELA-DQB typing in horses.
Lack of association between sigma receptor gene variants and schizophrenia.
Satoh, Fumiaki; Miyatake, Ryosuke; Furukawa, Aizo; Suwaki, Hiroshi
2004-08-01
Several pharmacological studies suggest the possible involvement of sigma(1) receptors in the pathogenesis of schizophrenia. An association has been reported between schizophrenia and two variants (GC-241-240TT and Gln2Pro) in the sigma(1) receptor gene (SIGMAR1). We also previously reported that, along with T-485 A, these two variants alter SIGMAR1 function. To investigate the role of SIGMAR1 in conveying susceptibility to schizophrenia, we performed a case-control study. We initially screened for polymorphisms in the SIGMAR1 coding region using PCR-single strand conformation polymorphism analysis. The distribution of SIGMAR1 polymorphisms was analyzed in 100 schizophrenic and 104 control subjects. A novel G620A variant was detected in exon4. G620A was predicted to alter the amino acid represented by codon 211 from arginine to glutamine. Our case-control study showed no significant association between the T-485 A, GC-241-240TT, Gln2Pro, and G620A (Arg211Gln) variants and schizophrenia and clinical characteristics. These findings suggest that these SIGMAR1 variants may not affect susceptibility to schizophrenia.
Chen, Yen-Ting; Hsu, Chiao-Ling; Hou, Shao-Yi
2008-04-15
The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly.
Liu, Ningning; Bu, Tianjia; Song, Yu; Zhang, Wei; Li, Jinjing; Zhang, Wenke; Shen, Jiacong; Li, Hongbin
2010-06-15
Single-stranded DNA binding proteins (SSB) interact with single-stranded DNA (ssDNA) specifically. Taking advantage of this character, we have employed Bacillus subtilis SSB protein to investigate the nature of force-induced conformation transition of double-stranded DNA (dsDNA) by using AFM-based single molecule force spectroscopy (SMFS) technique. Our results show that, when a dsDNA is stretched beyond its contour length, the dsDNA is partially melted, producing some ssDNA segments which can be captured by SSB proteins. We have also systematically investigated the effects of stretching length, waiting time, and salt concentration on the conformation transition of dsDNA and SSB-ssDNA interactions, respectively. Furthermore, the effect of proflavine, a DNA intercalator, on the SSB-DNA interactions has been investigated, and the results indicate that the proflavine-saturated dsDNA can be stabilized to the extent that the dsDNA will no longer melt into ssDNA under the mechanical force even up to 150 pN, and no SSB-DNA interactions are detectable.
Schwieger, Frank; Tebbe, Christoph C.
2000-01-01
Fourteen weeks after field release of luciferase gene-tagged Sinorhizobium meliloti L33 in field plots seeded with Medicago sativa, we found that the inoculant also occurred in bulk soil from noninoculated control plots. In rhizospheres of M. sativa plants, S. meliloti L33 could be detected in noninoculated plots 12 weeks after inoculation, indicating that growth in the rhizosphere preceded spread into bulk soil. To determine whether inoculation affected bacterial diversity, 1,119 bacteria were isolated from the rhizospheres of M. sativa and Chenopodium album, which was the dominant weed in the field plots. Amplified ribosomal DNA restriction analysis (ARDRA) revealed plant-specific fragment size frequencies. Dominant ARDRA groups were identified by 16S rRNA gene nucleotide sequencing. Database comparisons indicated that the rhizospheres contained members of the Proteobacteria (α, β, and γ subgroups), members of the Cytophaga-Flavobacterium group, and gram-positive bacteria with high G+C DNA contents. The levels of many groups were affected by the plant species and, in the case of M. sativa, by inoculation. The most abundant isolates were related to Variovorax sp., Arthrobacter ramosus, and Acinetobacter calcoaceticus. In the rhizosphere of M. sativa, inoculation reduced the numbers of cells of A. calcoaceticus and members of the genus Pseudomonas and increased the number of rhizobia. Cultivation-independent PCR–single-strand conformation polymorphism (SSCP) profiles of a 16S rRNA gene region confirmed the existence of plant-specific rhizosphere communities and the effect of the inoculant. All dominant ARDRA groups except Variovorax species could be detected. On the other hand, the SSCP profiles revealed products which could not be assigned to the dominant cultured isolates, indicating that the bacterial diversity was greater than the diversity suggested by cultivation. PMID:10919821
Identification, inheritance, and linkage of B-G-like and MHC class I genes in cranes
Jarvi, S.I.; Goto, R.M.; Gee, G.F.; Briles, W.E.; Miller, M.M.
1999-01-01
We identified B-G-like genes in the whooping and Florida sandhill cranes and linked them to the major histocompatibility complex (MHC). We evaluated the inheritance of B-G-like genes in families of whooping and Florida sandhill cranes using restriction fragment patterns (RFPs). Two B-G-like genes, designated wcbgl and wcbg2, were located within 8 kb of one another. The fully sequenced wcbg2 gene encodes a B-G IgV-like domain, an additional Ig-like domain, a transmembrane domain, and a single heptad domain typical of '-helical coiled coils. Patterns of restriction fragments in DNA from the whooping crane and from a number of other species indicate that the B-G-like gene families of cranes are large with diverse sequences. Segregation of RFPs in families of Florida sandhill cranes provide evidence for genetic polymorphism in the B-G-like genes. The restriction fragments generally segregated in concert with MHC haplotypes assigned by serological typing and by single stranded conformational polymorphism (SSCP) assays based in the second exon of the crane MHC class I genes. This study supports the concept of a long-term association of polymorphic B-G-like genes with the MHC. It also establishes SSCP as a means for evaluating MHC genetic variability in cranes.
Zhang, Yang; Zhu, Zhen; Xu, Qi; Chen, Guohong
2014-01-07
Primers based on the cDNA sequence of the goose growth hormone (GH) gene in GenBank were designed to amplify exon 2 of the GH gene in Huoyan goose. A total of 552 individuals were brooded in one batch and raised in Liaoning and Jiangsu Provinces, China. Single nucleotide polymorphisms (SNPs) of exon 2 in the GH gene were detected by the polymerase chain reaction (single strand conformation polymorphism method). Homozygotes were subsequently cloned, sequenced and analyzed. Two SNP mutations were detected, and 10 genotypes (referred to as AA, BB, CC, DD, AB, AC, AD, BC, BD and CD) were obtained. Allele D was predominant, and the frequencies of the 10 genotypes fit the Hardy-Weinberg equilibrium in the male, female and whole populations according to the chi-square test. Based on SNP types, the 10 genotypes were combined into three main genotypes. Multiple comparisons were carried out between different genotypes and production traits when the geese were 10 weeks old. Some indices of production performance were significantly (p < 0.05) associated with the genotype. Particularly, geese with genotype AB or BB were highly productive. Thus, these genotypes may serve as selection markers for production traits in Huoyan geese.
Identification, inheritance, and linkage of B-G-like and MHC class I genes in cranes.
Jarvi, S I; Goto, R M; Gee, G F; Briles, W E; Miller, M M
1999-01-01
We identified B-G-like genes in the whooping and Florida sandhill cranes and linked them to the major histocompatibility complex (MHC). We evaluated the inheritance of B-G-like genes in families of whooping and Florida sandhill cranes using restriction fragment patterns (RFPs). Two B-G-like genes, designated wcbg1 and wcbg2, were located within 8 kb of one another. The fully sequenced wcbg2 gene encodes a B-G IgV-like domain, an additional Ig-like domain, a transmembrane domain, and a single heptad domain typical of alpha-helical coiled coils. Patterns of restriction fragments in DNA from the whooping crane and from a number of other species indicate that the B-G-like gene families of cranes are large with diverse sequences. Segregation of RFPs in families of Florida sandhill cranes provide evidence for genetic polymorphism in the B-G-like genes. The restriction fragments generally segregated in concert with MHC haplotypes assigned by serological typing and by single stranded conformational polymorphism (SSCP) assays based in the second exon of the crane MHC class I genes. This study supports the concept of a long-term association of polymorphic B-G-like genes with the MHC. It also establishes SSCP as a means for evaluating MHC genetic variability in cranes.
Fornander, Louise H; Frykholm, Karolin; Reymer, Anna; Renodon-Cornière, Axelle; Takahashi, Masayuki; Nordén, Bengt
2012-06-01
Human RAD51 protein (HsRad51) catalyses the DNA strand exchange reaction for homologous recombination. To clarify the molecular mechanism of the reaction in vitro being more effective in the presence of Ca(2+) than of Mg(2+), we have investigated the effect of these ions on the structure of HsRad51 filament complexes with single- and double-stranded DNA, the reaction intermediates. Flow linear dichroism spectroscopy shows that the two ionic conditions induce significantly different structures in the HsRad51/single-stranded DNA complex, while the HsRad51/double-stranded DNA complex does not demonstrate this ionic dependence. In the HsRad51/single-stranded DNA filament, the primary intermediate of the strand exchange reaction, ATP/Ca(2+) induces an ordered conformation of DNA, with preferentially perpendicular orientation of nucleobases relative to the filament axis, while the presence of ATP/Mg(2+), ADP/Mg(2+) or ADP/Ca(2+) does not. A high strand exchange activity is observed for the filament formed with ATP/Ca(2+), whereas the other filaments exhibit lower activity. Molecular modelling suggests that the structural variation is caused by the divalent cation interfering with the L2 loop close to the DNA-binding site. It is proposed that the larger Ca(2+) stabilizes the loop conformation and thereby the protein-DNA interaction. A tight binding of DNA, with bases perpendicularly oriented, could facilitate strand exchange.
Polymorphism of Glucokinase Gene in Non-Insulin Dependent Diabetes Mellitus
Kim, Deog-Yoon; Choi, Jung-Hee; Woo, Jeong-Taek; Paeng, Jeong-Ryung; Yang, In-Myung; Kim, Sung-Woon; Kim, Jin-Woo; Kim, Young-Seol; Kim, Kwang-Won; Choi, Young-Kil
1994-01-01
Several lines of evidence suggest a strong genetic component to NIDDM. To clarify the role of glucokinase gene in the development of NIDDM, restriction fragment length polymorphism (RFLP) of glucokinase gene and 3′ microsatellite polymorphism analyses by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) were performed in NIDDM and control subjects. Compared to NIDDM with 1.3 kb allele/Pvu I digestion of glucokinase, 10% of NIDDM did not demonstrate 1.3 kb allele and these patients were charcterized by increased insulin secretion. In 3′ microsatellite polymorphism analysis, autoradiography of PCR products revealed three different alleles, including Z, Z+2 and Z+4. Z was the most common allele in both NIDDM and nondiabetic controls. There was no significant allele associated with NIDDM. Frequency of the homozygote Z/Z genotype was significantly lower in NIDDM subjects (16.7%) compared to normal control (46.7%) (p<0.05). There was no difference in clinical findings according to 3′ microsatellite genotypes in NIDDM. These data suggest that there does not appear to be a significant glucokinase allele associated with NIDDM but Z/Z genotype may play a suppressive role in the pathogenesis of a certain type of NIDDM in Korea. Further studies may be required to identify the molecular basis of this association. PMID:7913622
Equilibrious Strand Exchange Promoted by DNA Conformational Switching
NASA Astrophysics Data System (ADS)
Wu, Zhiguo; Xie, Xiao; Li, Puzhen; Zhao, Jiayi; Huang, Lili; Zhou, Xiang
2013-01-01
Most of DNA strand exchange reactions in vitro are based on toehold strategy which is generally nonequilibrium, and intracellular strand exchange mediated by proteins shows little sequence specificity. Herein, a new strand exchange promoted by equilibrious DNA conformational switching is verified. Duplexes containing c-myc sequence which is potentially converted into G-quadruplex are designed in this strategy. The dynamic equilibrium between duplex and G4-DNA is response to the specific exchange of homologous single-stranded DNA (ssDNA). The SER is enzyme free and sequence specific. No ATP is needed and the displaced ssDNAs are identical to the homologous ssDNAs. The SER products and exchange kenetics are analyzed by PAGE and the RecA mediated SER is performed as the contrast. This SER is a new feature of G4-DNAs and a novel strategy to utilize the dynamic equilibrium of DNA conformations.
Kaji, Takahiro; Ito, Syoji; Iwai, Shigenori; Miyasaka, Hiroshi
2009-10-22
Single-molecule and ensemble time-resolved fluorescence measurements were applied for the investigation of the conformational dynamics of single-stranded DNA, ssDNA, connected with a fluorescein dye by a C6 linker, where the motions both of DNA and the C6 linker affect the geometry of the system. From the ensemble measurement of the fluorescence quenching via photoinduced electron transfer with a guanine base in the DNA sequence, three main conformations were found in aqueous solution: a conformation unaffected by the guanine base in the excited state lifetime of fluorescein, a conformation in which the fluorescence is dynamically quenched in the excited-state lifetime, and a conformation leading to rapid quenching via nonfluorescent complex. The analysis by using the parameters acquired from the ensemble measurements for interphoton time distribution histograms and FCS autocorrelations by the single-molecule measurement revealed that interconversion in these three conformations took place with two characteristic time constants of several hundreds of nanoseconds and tens of microseconds. The advantage of the combination use of the ensemble measurements with the single-molecule detections for rather complex dynamic motions is discussed by integrating the experimental results with those obtained by molecular dynamics simulation.
Single-molecule dilution and multiple displacement amplification for molecular haplotyping.
Paul, Philip; Apgar, Josh
2005-04-01
Separate haploid analysis is frequently required for heterozygous genotyping to resolve phase ambiguity or confirm allelic sequence. We demonstrate a technique of single-molecule dilution followed by multiple strand displacement amplification to haplotype polymorphic alleles. Dilution of DNA to haploid equivalency, or a single molecule, is a simple method for separating di-allelic DNA. Strand displacement amplification is a robust method for non-specific DNA expansion that employs random hexamers and phage polymerase Phi29 for double-stranded DNA displacement and primer extension, resulting in high processivity and exceptional product length. Single-molecule dilution was followed by strand displacement amplification to expand separated alleles to microgram quantities of DNA for more efficient haplotype analysis of heterozygous genes.
Preparation of Single-Stranded Bacteriophage M13 DNA by Precipitation with Polyethylene Glycol.
Green, Michael R; Sambrook, Joseph
2017-11-01
Bacteriophage M13 single-stranded DNA is prepared from virus particles secreted by infected bacteria into the surrounding medium. Several methods are available to purify the polymorphic filamentous particles. In this protocol, the particles are concentrated by precipitation with polyethylene glycol (PEG) in the presence of high salt. Subsequent extraction with phenol releases the single-stranded DNA, which is then collected by precipitation with ethanol. The resulting preparation is pure enough to be used as a template for DNA sequencing. A yield of 5-10 µg of single-stranded DNA/mL of infected cells may be expected from recombinant bacteriophages bearing inserts of 300-1000 nt. © 2017 Cold Spring Harbor Laboratory Press.
Arko, B; Prezelj, J; Komel, R; Kocijancic, A; Hudler, P; Marc, J
2002-09-01
Osteoprotegerin (OPG) is a recently discovered member of the TNF receptor superfamily that acts as an important paracrine regulator of bone remodeling. OPG knockout mice develop severe osteoporosis, whereas administration of OPG can prevent ovariectomy-induced bone loss. These findings implicate a role for OPG in the development of osteoporosis. In the present study, we screened the OPG gene promoter for sequence variations and examined their association with bone mineral density (BMD) in 103 osteoporotic postmenopausal women. Single-strand conformation polymorphism analysis followed by DNA sequencing revealed a presence of four nucleotide substitutions: 209 G-->A, 245 T-->G, 889 C-->T, and 950 T-->C. The frequencies of genotypes were as follows: GG (89.3%), GA (10.7%) for 209 G-->A polymorphism; TT (89.3%), TG (10.7%) for 245 T-->G polymorphism; and TT (25.2%), TC (53.4%), CC (21.4%) for 950 T-->C polymorphism. Substitution 889 C-->T was found in only two patients. Statistically significant association of genotypes with BMD at the lumbar spine (P = 0.005) was observed for 209 G-->A and 245 T-->G polymorphisms. Haplotype GATG was associated with lower BMD as compared with GGTT haplotype. Our results suggest that 209 G-->A and 245 T-->G polymorphisms in the OPG gene promoter may contribute to the genetic regulation of BMD.
Molecular approaches to analysing the microbial composition of raw milk and raw milk cheese.
Quigley, Lisa; O'Sullivan, Orla; Beresford, Tom P; Ross, R Paul; Fitzgerald, Gerald F; Cotter, Paul D
2011-11-01
The availability and application of culture-independent tools that enable a detailed investigation of the microbiota and microbial biodiversity of food systems has had a major impact on food microbiology. This review focuses on the application of DNA-based technologies, such as denaturing gradient gel electrophoresis (DGGE), temporal temperature gradient gel electrophoresis (TTGE), single stranded conformation polymorphisms (SSCP), the polymerase chain reaction (PCR) and others, to investigate the diversity, dynamics and identity of microbes in dairy products from raw milk. Here, we will highlight the benefits associated with culture-independent methods which include enhanced sensitivity, rapidity and the detection of microorganisms not previously associated with such products. Copyright © 2011 Elsevier B.V. All rights reserved.
Yue, M; Tian, Y G; Wang, Y J; Gu, Y; Bayaer, N; Hu, Q; Gu, W W
2014-02-27
The IGF-1 gene is an important regulating factor that has a growth-promoting effect on growth hormone. The IGF-1 gene promotes muscle cell differentiation in the muscle cell formation process. The IGF-1 gene also regulates the growth of skeletal muscle during skeletal muscle growth. In addition, the IGF-1 gene plays an important role in the formation of mammals and poultry embryos, and the process of postnatal growth. The IGF-1 gene has been implicated as a candidate gene for the regulation of pig growth traits. We analyzed exon 3 of the IGF-1 gene polymorphism in Tibetan miniature pigs (N = 128) by polymerase chain reaction-single-strand conformation polymorphism and DNA sequencing. One single nucleotide polymorphism (T40C) was found on exon 3 of the IGF-1 gene. Statistical analysis of genotype frequencies revealed that the T allele was dominant in Tibetan miniature pigs at the T40C locus. The association analysis showed that the IGF-1 mutation had an effect on the body weight, body length, and chest circumference of pigs aged 6-8 months. In addition, the IGF-1 mutation had an effect on body weight in pigs aged 9-11 months (P < 0.05). We speculated that the pigs with the TT genotype grow more rapidly compared to those with the TC genotype. The TC genotype of the Tibetan miniature pig has a smaller body type. This information provides a theoretical basis for the genetic background of Tibetan miniature pigs.
Li, Ming-Wei; Zhu, Xing-Quan; Gasser, Robin B; Lin, Rui-Qing; Sani, Rehana A; Lun, Zhao-Rong; Jacobs, Dennis E
2006-10-01
Non-isotopic polymerase chain reaction (PCR)-based single-strand conformation polymorphism and sequence analyses of the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA (rDNA) were utilized to genetically characterise ascaridoids from dogs and cats from China by comparison with those from other countries. The study showed that Toxocara canis, Toxocara cati, and Toxascaris leonina from China were genetically the same as those from other geographical origins. Specimens from cats from Guangzhou, China, which were morphologically consistent with Toxocara malaysiensis, were the same genetically as those from Malaysia, with the exception of a polymorphism in the ITS-2 but no unequivocal sequence difference. This is the first report of T. malaysiensis in cats outside of Malaysia (from where it was originally described), supporting the proposal that this species has a broader geographical distribution. The molecular approach employed provides a powerful tool for elucidating the biology, epidemiology, and zoonotic significance of T. malaysiensis.
Gasser, R B; Rossi, L; Zhu, X
1999-11-01
The sequence of the second internal transcribed spacer of ribosomal DNA was determined for four species of Nematodirus (Nematodirus rupicaprae, Nematodirus oiratianus, Nematodirus davtiani alpinus and Nematodirus europaeus) from roe deer or alpine chamois. The second internal transcribed spacer of the four species varied in length from 228 to 236 bp, and the G + C contents ranged from 41 to 44%. While no intraspecific sequence variation was detected among multiple samples representing three of the taxa, sequence differences of 5.9-9.7% were detected among the four species, Nematodirus davtiani alpinus and N. rupicaprae were genetically most similar (94.1%), followed by N. oiratianus, N. europaeus and N. rupicaprae (91.1-91.5%), whereas N. oiratianus was genetically most different from N. davtiani alpinus. The interspecific sequence differences were exploited for the delineation of the four species by PCR-based restriction fragment length polymorphism (using two enzymes) and single-strand conformation polymorphism. The results have implications for diagnosis, epidemiology and for studying the systematics of the Nematodirinae.
Borrone, James W; Kuhn, David N; Schnell, Raymond J
2004-08-01
There is currently an international effort in improving disease resistance and crop yield in Theobroma cacao L., an economically important crop of the tropics, using marker-assisted selection for breeding. We are developing molecular genetic markers focusing upon gene families involved with disease resistance. One such family is the WRKY proteins, which are plant-specific transcriptional factors associated with regulating defense responses to both abiotic and biotic stresses. Degenerate PCR primers were designed to the highly conserved DNA-binding domain and other conserved motifs of group I and group II, subgroups a-c, WRKY genes. Sixteen individual WRKY fragments were isolated from a mixture of T. cacao DNA using one pair of primers. Of the 16 WRKY loci investigated, seven contained single nucleotide polymorphisms within the intron as detected by sequence comparison of the PCR products. Four of these were successfully converted into molecular markers and mapped in an F2 population by capillary electrophoresis-single strand conformation polymorphism analysis. This is the first report of a pair of degenerate primers amplifying WRKY loci directly from genomic DNA and demonstrates a simple method for developing useful genetic markers from members of a large gene family. Copyright 2004 Springer-Verlag
Vargas, Hugo E; Laskus, Tomasz; Radkowski, Marek; Wilkinson, Jeff; Balan, Vijay; Douglas, David D; Harrison, M Edwyn; Mulligan, David C; Olden, Kevin; Adair, Debra; Rakela, Jorge
2002-11-01
Patients with chronic hepatitis C frequently report tiredness, easy fatigability, and depression. The aim of this study is to determine whether hepatitis C virus (HCV) replication could be found in brain tissue in patients with hepatitis C and depression. We report two patients with recurrent hepatitis C after liver transplantation who also developed severe depression. One patient died of multiorgan failure and the other, septicemia caused by Staphylococcus aureussis. Both patients had evidence of severe hepatitis C recurrence with features of cholestatic fibrosing hepatitis. We were able to study samples of their central nervous system obtained at autopsy for evidence of HCV replication. The presence of HCV RNA-negative strand, which is the viral replicative form, was determined by strand-specific Tth-based reverse-transcriptase polymerase chain reaction. Viral sequences were compared by means of single-strand conformation polymorphism and direct sequencing. HCV RNA-negative strands were found in subcortical white matter from one patient and cerebral cortex from the other patient. HCV RNA-negative strands amplified from brain tissue differed by several nucleotide substitutions from serum consensus sequences in the 5' untranslated region. These findings support the concept of HCV neuroinvasion, and we speculate that it may provide a biological substrate to neuropsychiatric disorders observed in patients with chronic hepatitis C. The exact lineage of cells permissive for HCV replication and the possible interaction between viral replication and cerebral function that may lead to depression remain to be elucidated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozaki, N.; Lappalainen, J.; Linnoila, M.
Serotonin (5-HT){sub ID} receptors are 5-HT release-regulating autoreceptors in the human brain. Abnormalities in brain 5-HT function have been hypothesized in the pathophysiology of various psychiatric disorders, including obsessive-compulsive disorder, autism, mood disorders, eating disorders, impulsive violent behavior, and alcoholism. Thus, mutations occurring in 5-HT autoreceptors may cause or increase the vulnerability to any of these conditions. 5-HT{sub 1D{alpha}} and 5-HT{sub 1D{Beta}} subtypes have been previously localized to chromosomes 1p36.3-p34.3 and 6q13, respectively, using rodent-human hybrids and in situ localization. In this communication, we report the detection of a 5-HT{sub 1D{alpha}} receptor gene polymorphism by single strand conformation polymorphism (SSCP)more » analysis of the coding sequence. The polymorphism was used for fine scale linkage mapping of 5-HT{sub 1D{alpha}} on chromosome 1. This polymorphism should also be useful for linkage studies in populations and in families. Our analysis also demonstrates that functionally significant coding sequence variants of the 5-HT{sub 1D{alpha}} are probably not abundant either among alcoholics or in the general population. 14 refs., 1 fig., 1 tab.« less
Khodakov, Dmitriy A; Khodakova, Anastasia S; Huang, David M; Linacre, Adrian; Ellis, Amanda V
2015-03-04
Single nucleotide polymorphisms (SNPs) are a prime source of genetic diversity. Discriminating between different SNPs provides an enormous leap towards the better understanding of the uniqueness of biological systems. Here we report on a new approach for SNP discrimination using toehold-mediated DNA strand displacement. The distinctiveness of the approach is based on the combination of both 3- and 4-way branch migration mechanisms, which allows for reliable discrimination of SNPs within double-stranded DNA generated from real-life human mitochondrial DNA samples. Aside from the potential diagnostic value, the current study represents an additional way to control the strand displacement reaction rate without altering other reaction parameters and provides new insights into the influence of single nucleotide substitutions on 3- and 4-way branch migration efficiency and kinetics.
[Molecular techniques applied in species identification of Toxocara].
Fogt, Renata
2006-01-01
Toxocarosis is still an important and actual problem in human medicine. It can manifest as visceral (VLM), ocular (OLM) or covert (CT) larva migrans syndroms. Complicated life cycle of Toxocara, lack of easy and practical methods of species differentiation of the adult nematode and embarrassing in recognition of the infection in definitive hosts create difficulties in fighting with the infection. Although studies on human toxocarosis have been continued for over 50 years there is no conclusive answer, which of species--T. canis or T. cati constitutes a greater risk of transmission of the nematode to man. Neither blood serological examinations nor microscopic observations of the morphological features of the nematode give the satisfied answer on the question. Since the 90-ths molecular methods were developed for species identification and became useful tools being widely applied in parasitological diagnosis. This paper cover the survey of methods of DNA analyses used for identification of Toxocara species. The review may be helpful for researchers focused on Toxocara and toxocarosis as well as on detection of new species. The following techniques are described: PCR (Polymerase Chain Reaction), RFLP (Restriction Fragment Length Polymorphism), RAPD (Random Amplified Polymorphic DNA) and SSCP (Single Strand Conformation Polymorphism).
Missense mutation of the cholecystokinin B receptor gene: Lack of association with panic disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Tadafumi; Wang, Zhe Wu; Crowe, R.R.
1996-07-26
Cholecystokinin tetrapeptide (CCK{sub 4}) is known to induce panic attacks in patients with panic disorder at a lower dose than in normal controls. Therefore, the cholecystokinin B (CCK{sub B}) receptor gene is a candidate gene for panic disorder. We searched for mutations in the CCK{sub B} gene in 22 probands of panic disorder pedigrees, using single-strand conformation polymorphism (SSCP) analysis. Two polymorphisms were detected. A polymorphism in an intron (2491 C{yields}A) between exons 4 and 5 was observed in 10 of 22 probands. A missense mutation in the extracellular loop of exon 2 (1550 G{yields}A, Val{sup 125}{yields}Ile) was found inmore » only one proband. This mutation was also examined in additional 34 unrelated patients with panic disorder and 112 controls. The prevalence rate of this mutation was 8.8% in patients with panic disorder (3/34) and 4.4% in controls (5/112). The mutation did not segregate with panic disorder in two families where this could be tested. These results suggest no pathophysiological significance of this mutation in panic disorder. 21 refs., 4 figs., 1 tab.« less
Yeh, Joanne I; Shivachev, Boris; Rapireddy, Srinivas; Crawford, Matthew J; Gil, Roberto R; Du, Shoucheng; Madrid, Marcela; Ly, Danith H
2010-08-11
We have determined the structure of a PNA-DNA duplex to 1.7 A resolution by multiple-wavelength anomalous diffraction phasing method on a zinc derivative. This structure represents the first high-resolution 3D view of a hybrid duplex containing a contiguous chiral PNA strand with complete gamma-backbone modification ("gammaPNA"). Unlike the achiral counterpart, which adopts a random-fold, this particular gammaPNA is already preorganized into a right-handed helix as a single strand. The new structure illustrates the unique characteristics of this modified PNA, possessing conformational flexibility while maintaining sufficient structural integrity to ultimately adopt the preferred P-helical conformation upon hybridization with DNA. The unusual structural adaptability found in the gammaPNA strand is crucial for enabling the accommodation of backbone modifications while constraining conformational states. In conjunction with NMR analysis characterizing the structures and substructures of the individual building blocks, these results provide unprecedented insights into how this new class of chiral gammaPNA is preorganized and stabilized, before and after hybridization with a cDNA strand. Such knowledge is crucial for the future design and development of PNA for applications in biology, biotechnology, and medicine.
Sheng, Gang; Gogakos, Tasos; Wang, Jiuyu; Zhao, Hongtu; Serganov, Artem; Juranek, Stefan
2017-01-01
Abstract We have undertaken a systematic structural study of Thermus thermophilus Argonaute (TtAgo) ternary complexes containing single-base bulges positioned either within the seed segment of the guide or target strands and at the cleavage site. Our studies establish that single-base bulges 7T8, 5A6 and 4A5 on the guide strand are stacked-into the duplex, with conformational changes localized to the bulge site, thereby having minimal impact on the cleavage site. By contrast, single-base bulges 6’U7’ and 6’A7’ on the target strand are looped-out of the duplex, with the resulting conformational transitions shifting the cleavable phosphate by one step. We observe a stable alignment for the looped-out 6’N7’ bulge base, which stacks on the unpaired first base of the guide strand, with the looped-out alignment facilitated by weakened Watson–Crick and reversed non-canonical flanking pairs. These structural studies are complemented by cleavage assays that independently monitor the impact of bulges on TtAgo-mediated cleavage reaction. PMID:28911094
Focus on PNA Flexibility and RNA Binding using Molecular Dynamics and Metadynamics
NASA Astrophysics Data System (ADS)
Verona, Massimiliano Donato; Verdolino, Vincenzo; Palazzesi, Ferruccio; Corradini, Roberto
2017-02-01
Peptide Nucleic Acids (PNAs) can efficiently target DNA or RNA acting as chemical tools for gene regulation. Their backbone modification and functionalization is often used to increase the affinity for a particular sequence improving selectivity. The understanding of the trading forces that lead the single strand PNA to bind the DNA or RNA sequence is preparatory for any further rational design, but a clear and unique description of this process is still not complete. In this paper we report further insights into this subject, by a computational investigation aiming at the characterization of the conformations of a single strand PNA and how these can be correlated to its capability in binding DNA/RNA. Employing Metadynamics we were able to better define conformational pre-organizations of the single strand PNA and γ-modified PNA otherwise unrevealed through classical molecular dynamics. Our simulations driven on backbone modified PNAs lead to the conclusion that this γ-functionalization affects the single strand preorganization and targeting properties to the DNA/RNA, in agreement with circular dichroism (CD) spectra obtained for this class of compounds. MD simulations on PNA:RNA dissociation and association mechanisms allowed to reveal the critical role of central bases and preorganization in the binding process.
Focus on PNA Flexibility and RNA Binding using Molecular Dynamics and Metadynamics.
Verona, Massimiliano Donato; Verdolino, Vincenzo; Palazzesi, Ferruccio; Corradini, Roberto
2017-02-17
Peptide Nucleic Acids (PNAs) can efficiently target DNA or RNA acting as chemical tools for gene regulation. Their backbone modification and functionalization is often used to increase the affinity for a particular sequence improving selectivity. The understanding of the trading forces that lead the single strand PNA to bind the DNA or RNA sequence is preparatory for any further rational design, but a clear and unique description of this process is still not complete. In this paper we report further insights into this subject, by a computational investigation aiming at the characterization of the conformations of a single strand PNA and how these can be correlated to its capability in binding DNA/RNA. Employing Metadynamics we were able to better define conformational pre-organizations of the single strand PNA and γ-modified PNA otherwise unrevealed through classical molecular dynamics. Our simulations driven on backbone modified PNAs lead to the conclusion that this γ-functionalization affects the single strand preorganization and targeting properties to the DNA/RNA, in agreement with circular dichroism (CD) spectra obtained for this class of compounds. MD simulations on PNA:RNA dissociation and association mechanisms allowed to reveal the critical role of central bases and preorganization in the binding process.
Identification of new mutations in primary hyperoxaluria type 1 (PH1).
von Schnakenburg, C; Rumsby, G
1998-01-01
Primary hyperoxaluria type 1 (PH1) is caused by deficiency of the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). The AGXT gene, which codes for the 392 amino acid protein, has been mapped to chromosome 2q37.3. In order to identify new mutations in the AGXT gene we studied 79 PH1 patients using single strand conformation polymorphism analysis. In addition to a cluster of new mutations in exon 7 we report five novel mutations in exons 2, 4, 5, 9 and 10. These are T444C, G640A, G690A, 1008-1010delGCG and G1171A. These five new mutations contribute to our knowledge of the AGXT gene. Their possible consequences for PH1 phenotype and enzyme activity are discussed.
Geometric Patterns for Neighboring Bases Near the Stacked State in Nucleic Acid Strands.
Sedova, Ada; Banavali, Nilesh K
2017-03-14
Structural variation in base stacking has been analyzed frequently in isolated double helical contexts for nucleic acids, but not as often in nonhelical geometries or in complex biomolecular environments. In this study, conformations of two neighboring bases near their stacked state in any environment are comprehensively characterized for single-strand dinucleotide (SSD) nucleic acid crystal structure conformations. An ensemble clustering method is used to identify a reduced set of representative stacking geometries based on pairwise distances between select atoms in consecutive bases, with multiple separable conformational clusters obtained for categories divided by nucleic acid type (DNA/RNA), SSD sequence, stacking face orientation, and the presence or absence of a protein environment. For both DNA and RNA, SSD conformations are observed that are either close to the A-form, or close to the B-form, or intermediate between the two forms, or further away from either form, illustrating the local structural heterogeneity near the stacked state. Among this large variety of distinct conformations, several common stacking patterns are observed between DNA and RNA, and between nucleic acids in isolation or in complex with proteins, suggesting that these might be stable stacking orientations. Noncanonical face/face orientations of the two bases are also observed for neighboring bases in the same strand, but their frequency is much lower, with multiple SSD sequences across categories showing no occurrences of such unusual stacked conformations. The resulting reduced set of stacking geometries is directly useful for stacking-energy comparisons between empirical force fields, prediction of plausible localized variations in single-strand structures near their canonical states, and identification of analogous stacking patterns in newly solved nucleic acid containing structures.
Miyoshi, Daisuke; Ueda, Yu-Mi; Shimada, Naohiko; Nakano, Shu-Ichi; Sugimoto, Naoki; Maruyama, Atsushi
2014-09-01
Electrostatic interactions play a major role in protein-DNA interactions. As a model system of a cationic protein, herein we focused on a comb-type copolymer of a polycation backbone and dextran side chains, poly(L-lysine)-graft-dextran (PLL-g-Dex), which has been reported to form soluble interpolyelectrolyte complexes with DNA strands. We investigated the effects of PLL-g-Dex on the conformation and thermodynamics of DNA oligonucleotides forming various secondary structures. Thermodynamic analysis of the DNA structures showed that the parallel conformations involved in both DNA duplexes and triplexes were significantly and specifically stabilized by PLL-g-Dex. On the basis of thermodynamic parameters, it was further possible to design DNA switches that undergo structural transition responding to PLL-g-Dex from an antiparallel duplex to a parallel triplex even with mismatches in the third strand hybridization. These results suggest that polycationic molecules are able to induce structural polymorphism of DNA oligonucleotides, because of the conformation-selective stabilization effects. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Olmos, P; Acosta, A M; Schiaffino, R; Díaz, R; Alvarado, D; O'Brien, A; Muñoz, X; Arriagada, P; Claro, J C; Vega, R; Vollrath, V; Velasco, S; Emmerich, M; Maiz, A
1999-04-01
Recent studies suggest that polymorphisms associated to the aldose reductase gene could be related to early retinopathy in noninsulin dependent diabetics (NIDDM). There is also new interest on the genetic modulation of coagulation factors in relation to this complication. To look for a possible relationship between the rate of appearance of retinopathy and the genotype of (AC)n polymorphic marker associated to aldose reductase gene. A random sample of 27 NIDDM, aged 68.1 +/- 10.6 years, with a mean diabetes duration of 20.7 +/- 4.8 years and a mean glycosilated hemoglobin of 10.6 +/- 1.6%, was studied. The genotype of the (AC)n, polymorphic marker associated to the 5' end of the aldose reductase (ALR2) gene was determined by 32P-PCR plus sequenciation. Mutations of the factor XIII-A gene were studied by single stranded conformational polymorphism, sequenciation and restriction fragment length polymorphism. Four patients lacked the (AC)24 and had a higher rate of appearance of retinopathy than patients with the (AC)24 allele (0.0167 and 0.0907 score points per year respectively, p = 0.047). Both groups had similar glycosilated hemoglobin (11.7 +/- 0.2 and 10.5 +/- 1.6% respectively). Factor XIII gene mutations were not related to the rate of appearance of retinopathy. Our data suggest that the absence of the (AC)24 allele of the (AC)n polymorphic marker associated to the 5' end of the aldose reductase gene, is associated to a five fold reduction of retinopathy appearance rate.
Zhang, Xi; Zhang, Jing; Wu, Dongzhi; Liu, Zhijing; Cai, Shuxian; Chen, Mei; Zhao, Yanping; Li, Chunyan; Yang, Huanghao; Chen, Jinghua
2014-12-07
Locked nucleic acid (LNA) is applied in toehold-mediated strand displacement reaction (TMSDR) to develop a junction-probe electrochemiluminescence (ECL) biosensor for single-nucleotide polymorphism (SNP) detection in the BRCA1 gene related to breast cancer. More than 65-fold signal difference can be observed with perfectly matched target sequence to single-base mismatched sequence under the same conditions, indicating good selectivity of the ECL biosensor.
Mutations in the PDE6B gene in autosomal recessive retinitis pigmentosa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danciger, M.; Blaney, J.; Gao, Y.Q.
1995-11-01
We have studied 24 small families with presumed autosomal recessive inheritance of retinitis pigmentosa by a combination of haplotype analysis and exon screening. Initial analysis of the families was made with a dinucleotide repeat polymorphism adjacent to the gene for rod cGMP-phosphodiesterase (PDE6B). This was followed by denaturing gradient gel electrophoresis (DGGE) and single-strand conformation polymorphism electrophoresis (SSCPE) of the 22 exons and a portion of the 5{prime} untranslated region of the PDE6B gene in the probands of each family in which the PDE6B locus could not be ruled out from segregating with disease. Two probands were found with compoundmore » heterozygous mutations: Gly576Asp and His620(1-bp del) mutations were present in one proband, and a Lys706X null mutation and an AG to AT splice acceptor site mutation in intron 2 were present in the other. Only the affecteds of each of the two families carried both corresponding mutations. 29 refs., 3 figs., 1 tab.« less
Association of Melanocortin (MC4R) and Myostatin (MSTN) genes with carcass quality in rabbit.
El-Sabrout, Karim; Aggag, Sarah
2018-03-01
The aim of this study was to investigate the association of Melanocortin (MC4R) and Myostatin (MSTN) with the carcass quality of V-line and Alexandria line rabbits. MC4R and MSTN were screened by single-strand conformational polymorphism analysis (SSCP) then DNA was sequenced. The results identified four novel SNPs using the four studied primers of the MC4R and MSTN genes. The genotype (BB) has significant higher body weight (BW), carcass weight (CW) and dressing percentage (DP) than AA rabbits. There were no significant differences within the two lines in the carcass color (light pink) and carcass fat (CF). GLM analysis for the effect of genotypes on carcass traits demonstrated that the genotype (BB) was significantly associated with high carcass weight (CW) and dressing percentage (DP). The detected mutations and the analysis of carcass quality means revealed a significant association between MSTN and MC4R polymorphisms with some carcass traits that affect meat quality of rabbits. Copyright © 2017 Elsevier Ltd. All rights reserved.
Manibog, Kristine; Sankar, Kannan; Kim, Sun-Ae; Zhang, Yunxiang; Jernigan, Robert L.; Sivasankar, Sanjeevi
2016-01-01
Classical cadherin cell–cell adhesion proteins are essential for the formation and maintenance of tissue structures; their primary function is to physically couple neighboring cells and withstand mechanical force. Cadherins from opposing cells bind in two distinct trans conformations: strand-swap dimers and X-dimers. As cadherins convert between these conformations, they form ideal bonds (i.e., adhesive interactions that are insensitive to force). However, the biophysical mechanism for ideal bond formation is unknown. Here, we integrate single-molecule force measurements with coarse-grained and atomistic simulations to resolve the mechanistic basis for cadherin ideal bond formation. Using simulations, we predict the energy landscape for cadherin adhesion, the transition pathways for interconversion between X-dimers and strand-swap dimers, and the cadherin structures that form ideal bonds. Based on these predictions, we engineer cadherin mutants that promote or inhibit ideal bond formation and measure their force-dependent kinetics using single-molecule force-clamp measurements with an atomic force microscope. Our data establish that cadherins adopt an intermediate conformation as they shuttle between X-dimers and strand-swap dimers; pulling on this conformation induces a torsional motion perpendicular to the pulling direction that unbinds the proteins and forms force-independent ideal bonds. Torsional motion is blocked when cadherins associate laterally in a cis orientation, suggesting that ideal bonds may play a role in mechanically regulating cadherin clustering on cell surfaces. PMID:27621473
Polymorphism of DNA conformation inside the bacteriophage capsid.
Leforestier, Amélie
2013-03-01
Double-stranded DNA bacteriophage genomes are packaged into their icosahedral capsids at the highest densities known so far (about 50 % w:v). How the molecule is folded at such density and how its conformation changes upon ejection or packaging are fascinating questions still largely open. We review cryo-TEM analyses of DNA conformation inside partially filled capsids as a function of the physico-chemical environment (ions, osmotic pressure, temperature). We show that there exists a wide variety of DNA conformations. Strikingly, the different observed structures can be described by some of the different models proposed over the years for DNA organisation inside bacteriophage capsids: either spool-like structures with axial or concentric symmetries, or liquid crystalline structures characterised by a DNA homogeneous density. The relevance of these conformations for the understanding of DNA folding and unfolding upon ejection and packaging in vivo is discussed.
Focus on PNA Flexibility and RNA Binding using Molecular Dynamics and Metadynamics
Verona, Massimiliano Donato; Verdolino, Vincenzo; Palazzesi, Ferruccio; Corradini, Roberto
2017-01-01
Peptide Nucleic Acids (PNAs) can efficiently target DNA or RNA acting as chemical tools for gene regulation. Their backbone modification and functionalization is often used to increase the affinity for a particular sequence improving selectivity. The understanding of the trading forces that lead the single strand PNA to bind the DNA or RNA sequence is preparatory for any further rational design, but a clear and unique description of this process is still not complete. In this paper we report further insights into this subject, by a computational investigation aiming at the characterization of the conformations of a single strand PNA and how these can be correlated to its capability in binding DNA/RNA. Employing Metadynamics we were able to better define conformational pre-organizations of the single strand PNA and γ-modified PNA otherwise unrevealed through classical molecular dynamics. Our simulations driven on backbone modified PNAs lead to the conclusion that this γ-functionalization affects the single strand preorganization and targeting properties to the DNA/RNA, in agreement with circular dichroism (CD) spectra obtained for this class of compounds. MD simulations on PNA:RNA dissociation and association mechanisms allowed to reveal the critical role of central bases and preorganization in the binding process. PMID:28211525
Glavac, Damjan; Potocnik, Uros; Podpecnik, Darja; Zizek, Teofil; Smerkolj, Sava; Ravnik-Glavac, Metka
2002-04-01
We have studied 57 different mutations within three beta-globin gene promoter fragments with sizes 52 bp, 77 bp, and 193 bp by fluorescent capillary electrophoresis CE-SSCP analysis. For each mutation and wild type, energetically most-favorable predicted secondary structures were calculated for sense and antisense strands using the MFOLD DNA-folding algorithm in order to investigate if any correlation exists between predicted DNA structures and actual CE migration time shifts. The overall CE-SSCP detection rate was 100% for all mutations in three studied DNA fragments. For shorter 52 bp and 77 bp DNA fragments we obtained a positive correlation between the migration time shifts and difference in free energy values of predicted secondary structures at all temperatures. For longer 193 bp beta-globin gene fragments with 46 mutations MFOLD predicted different secondary structures for 89% of mutated strands at 25 degrees C and 40 degrees C. However, the magnitude of the mobility shifts did not necessarily correlate with their secondary structures and free energy values except for the sense strand at 40 degrees C where this correlation was statistically significant (r = 0.312, p = 0.033). Results of this study provided more direct insight into the mechanism of CE-SSCP and showed that MFOLD prediction could be helpful in making decisions about the running temperatures and in prediction of CE-SSCP data patterns, especially for shorter (50-100 bp) DNA fragments. Copyright 2002 Wiley-Liss, Inc.
Oudni-M'rad, Myriam; Cabaret, Jacques; M'rad, Selim; Chaâbane-Banaoues, Raja; Mekki, Mongi; Zmantar, Sofien; Nouri, Abdellatif; Mezhoud, Habib; Babba, Hamouda
2016-10-01
G1 genotype of Echinococcus granulosus sensu stricto is the major cause of hydatidosis in Northern Africa, Tunisia included. The genetic relationship between lung and liver localization were studied in ovine, bovine and human hydatid cysts in Tunisia. Allozyme variation and single strand conformation polymorphism were used for genetic differentiation. The first cause of genetic differentiation was the host species and the second was the localization (lung or liver). The reticulated genetic relationship between the liver or the lung human isolates and isolates from bovine lung, is indicative of recombination (sexual reproduction) or lateral genetic transfer. The idea of two specialized populations (one for the lung one for the liver) that are more or less successful according to host susceptibility is thus proposed. Copyright © 2016 Elsevier B.V. All rights reserved.
Kim, Kyu-nam; Kim, Kwang-min; Kim, Bom-taeck; Joo, Nam-seok; Cho, Doo-yeoun; Lee, Duck-joo
2012-04-01
Hypertension (HTN) is a major determinant of various cardiovascular events. Plasma levels of plasminogen activator inhibitor 1 (PAI-1) modulate this risk. A deletion/insertion polymorphism within the PAI-1 loci (4G/4G, 4G/5G, 5G/5G) affects the expression of this gene. The present study investigated the association between PAI-1 loci polymorphisms and HTN in Korean women. Korean women (n = 1312) were enrolled in this study to evaluate the association between PAI-1 4G/5G gene polymorphisms and HTN as well as other metabolic risk factors. PAI-1 loci polymorphisms were investigated using polymerase chain reaction amplification and single-strand conformation polymorphism analysis. The three genotype groups differed with respect to systolic blood pressure (P = 0.043), and diastolic blood pressure (P = 0.009) but not with respect to age, body mass index, total cholesterol, low or high density lipoprotein cholesterol, triglycerides, or fasting blood glucose. Carriers of the PAI-1 4G allele had more hypertension significantly (PAI-1 4G/5G vs. PAI-1 5G/5G, P = 0.032; PAI-1 4G/4G vs. PAI-1 5G/5G, P = 0.034). When stratified according to PAI-1 4G/5G polymorphism, there was no significant difference in all metabolic parameters among PAI-1 genotype groups in patients with HTN as well as subjects with normal blood pressure. The estimated odds ratio of the 4G/4G genotype and 4G/5G for HTN was 1.7 (P = 0.005), and 1.6 (P = 0.015), respectively. These findings might indicate that PAI-1 loci polymorphisms independently contribute to HTN and that gene-environmental interaction may be not associated in Korean women.
Mutation analysis of the Smad3 gene in human osteoarthritis.
Yao, Jun-Yan; Wang, Yan; An, Jing; Mao, Chun-Ming; Hou, Ning; Lv, Ya-Xin; Wang, You-Liang; Cui, Fang; Huang, Min; Yang, Xiao
2003-09-01
Osteoarthritis (OA) is the most common joint disease worldwide. Recent studies have shown that targeted disruption of Smad3 in mouse results in OA. To reveal the possible association between the Smad3 gene mutation and human OA, we employed polymerase chain reaction-single strand conformation polymorphism and sequencing to screen mutations in all nine exons of the Smad3 gene in 32 patients with knee OA and 50 patients with only bone fracture. A missense mutation of the Smad3 gene was found in one patient. The single base mutation located in the linker region of the SMAD3 protein was A --> T change in the position 2 of codon 197 and resulted in an asparagine to isoleucine amino-acid substitution. The expressions of matrix metalloproteinase 2 (MMP-2) and MMP-9 in sera of the patient carrying the mutation were higher than other OA patients and controls. This is the first report showing that the Smad3 gene mutations could be associated with the pathogenesis of human OA.
Resistance gene homologues in Theobroma cacao as useful genetic markers.
Kuhn, D N; Heath, M; Wisser, R J; Meerow, A; Brown, J S; Lopes, U; Schnell, R J
2003-07-01
Resistance gene homologue (RGH) sequences have been developed into useful genetic markers for marker-assisted selection (MAS) of disease resistant Theobroma cacao. A plasmid library of amplified fragments was created from seven different cultivars of cacao. Over 600 cloned recombinant amplicons were evaluated. From these, 74 unique RGHs were identified that could be placed into 11 categories based on sequence analysis. Primers specific to each category were designed. The primers specific for a single RGH category amplified fragments of equal length from the seven different cultivars used to create the library. However, these fragments exhibited single-strand conformational polymorphism (SSCP), which allowed us to map six of the RGH categories in an F(2) population of T. cacao. RGHs 1, 4 and 5 were in the same linkage group, with RGH 4 and 5 separated by less than 4 cM. As SSCP can be efficiently performed on our automated sequencer, we have developed a convenient and rapid high throughput assay for RGH alleles.
Lou, Jing; Wang, Zhaoyin; Wang, Xiao; Bao, Jianchun; Tu, Wenwen; Dai, Zhihui
2015-10-07
A "signal-on" electrochemiluminescent DNA biosensing platform was proposed based on the dual quenching and strand displacement reaction. This novel "signal-on" detection strategy revealed its sensitivity in achieving a detection limit of 2.4 aM and its selectivity in distinguishing single nucleotide polymorphism of target DNA.
Methods for MHC genotyping in non-model vertebrates.
Babik, W
2010-03-01
Genes of the major histocompatibility complex (MHC) are considered a paradigm of adaptive evolution at the molecular level and as such are frequently investigated by evolutionary biologists and ecologists. Accurate genotyping is essential for understanding of the role that MHC variation plays in natural populations, but may be extremely challenging. Here, I discuss the DNA-based methods currently used for genotyping MHC in non-model vertebrates, as well as techniques likely to find widespread use in the future. I also highlight the aspects of MHC structure that are relevant for genotyping, and detail the challenges posed by the complex genomic organization and high sequence variation of MHC loci. Special emphasis is placed on designing appropriate PCR primers, accounting for artefacts and the problem of genotyping alleles from multiple, co-amplifying loci, a strategy which is frequently necessary due to the structure of the MHC. The suitability of typing techniques is compared in various research situations, strategies for efficient genotyping are discussed and areas of likely progress in future are identified. This review addresses the well established typing methods such as the Single Strand Conformation Polymorphism (SSCP), Denaturing Gradient Gel Electrophoresis (DGGE), Reference Strand Conformational Analysis (RSCA) and cloning of PCR products. In addition, it includes the intriguing possibility of direct amplicon sequencing followed by the computational inference of alleles and also next generation sequencing (NGS) technologies; the latter technique may, in the future, find widespread use in typing complex multilocus MHC systems. © 2009 Blackwell Publishing Ltd.
Crimean-Congo hemorrhagic fever virus nucleocapsid protein has dual RNA binding modes.
Jeeva, Subbiah; Pador, Sean; Voss, Brittany; Ganaie, Safder Saieed; Mir, Mohammad Ayoub
2017-01-01
Crimean Congo hemorrhagic fever, a zoonotic viral disease, has high mortality rate in humans. There is currently no vaccine for Crimean Congo hemorrhagic fever virus (CCHFV) and chemical interventions are limited. The three negative sense genomic RNA segments of CCHFV are specifically encapsidated by the nucleocapsid protein into three ribonucleocapsids, which serve as templates for the viral RNA dependent RNA polymerase. Here we demonstrate that CCHFV nucleocapsid protein has two distinct binding modes for double and single strand RNA. In the double strand RNA binding mode, the nucleocapsid protein preferentially binds to the vRNA panhandle formed by the base pairing of complementary nucleotides at the 5' and 3' termini of viral genome. The CCHFV nucleocapsid protein does not have RNA helix unwinding activity and hence does not melt the duplex vRNA panhandle after binding. In the single strand RNA binding mode, the nucleocapsid protein does not discriminate between viral and non-viral RNA molecules. Binding of both vRNA panhandle and single strand RNA induce a conformational change in the nucleocapsid protein. Nucleocapsid protein remains in a unique conformational state due to simultaneously binding of structurally distinct vRNA panhandle and single strand RNA substrates. Although the role of dual RNA binding modes in the virus replication cycle is unknown, their involvement in the packaging of viral genome and regulation of CCHFV replication in conjunction with RdRp and host derived RNA regulators is highly likely.
Development of a sensor to study the DNA conformation using molecular logic gates
NASA Astrophysics Data System (ADS)
Roy, Arpan Datta; Dey, Dibyendu; Saha, Jaba; Chakraborty, Santanu; Bhattacharjee, D.; Hussain, Syed Arshad
2015-02-01
This communication reports our investigations on the Fluorescence Resonance Energy Transfer (FRET) between two laser dyes Acriflavine and Rhodamine B in absence and presence of DNA at different pH. It has been observed that energy transfer efficiency is largely affected by the presence of DNA as well as the pH of the system. It is well known that with increase in pH, DNA conformation changes from double stranded to single stranded (denaturation) and finally form random coil. Based on our experimental results two different types of molecular logic gates namely, XOR and OR logic have been demonstrated which can be used to have an idea about DNA conformation in solution.
Abdoli, R; Zamani, P; Deljou, A; Rezvan, H
2013-07-25
BMPR-1B and GDF9 genes are well known due to their important effects on litter size and mechanisms controlling ovulation rate in sheep. In the present study, polymorphisms of BMPR-1B gene exon 8 and GDF9 gene exon 1 were detected by single strand conformational polymorphism (SSCP) analysis and DNA sequencing methods in 100 Mehraban ewes. The PCR reaction forced to amplify 140 and 380-bp fragments of BMPR-1B and GDF9 genes, respectively. Two single nucleotide polymorphisms (SNPS) were identified in two different SSCP patterns of BMPR-1B gene (CC and CA genotypes) that deduced one amino acid exchange. Also, two SNPS were identified in three different SSCP patterns of GDF9 gene (AA, AG and GG genotypes) that deduced one amino acid exchanges. Two different secondary structures of protein were predicted for BMPR-1B exon 8, but the secondary protein structures predicted for GDF9 exon 1 were similar together. The evaluation of the associations between the SSCP patterns and the protein structure changes with reproduction traits showed that BMPR-1B exon 8 genotypes have significant effects on some of reproduction traits but the GDF9 genotypes did not have any significant effect. The CA genotype of BMPR-1B exon 8 had a significant positive effect on reproduction performance and could be considered as an important and new mutation, affecting the ewes reproduction performance. Marker assisted selection using BMPR-IB gene could be noticed to improve the reproduction traits in Mehraban sheep. Copyright © 2013 Elsevier B.V. All rights reserved.
Gene-Based Single Nucleotide Polymorphism Markers for Genetic and Association Mapping in Common Bean
2012-01-01
Background In common bean, expressed sequence tags (ESTs) are an underestimated source of gene-based markers such as insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). However, due to the nature of these conserved sequences, detection of markers is difficult and portrays low levels of polymorphism. Therefore, development of intron-spanning EST-SNP markers can be a valuable resource for genetic experiments such as genetic mapping and association studies. Results In this study, a total of 313 new gene-based markers were developed at target genes. Intronic variation was deeply explored in order to capture more polymorphism. Introns were putatively identified after comparing the common bean ESTs with the soybean genome, and the primers were designed over intron-flanking regions. The intronic regions were evaluated for parental polymorphisms using the single strand conformational polymorphism (SSCP) technique and Sequenom MassARRAY system. A total of 53 new marker loci were placed on an integrated molecular map in the DOR364 × G19833 recombinant inbred line (RIL) population. The new linkage map was used to build a consensus map, merging the linkage maps of the BAT93 × JALO EEP558 and DOR364 × BAT477 populations. A total of 1,060 markers were mapped, with a total map length of 2,041 cM across 11 linkage groups. As a second application of the generated resource, a diversity panel with 93 genotypes was evaluated with 173 SNP markers using the MassARRAY-platform and KASPar technology. These results were coupled with previous SSR evaluations and drought tolerance assays carried out on the same individuals. This agglomerative dataset was examined, in order to discover marker-trait associations, using general linear model (GLM) and mixed linear model (MLM). Some significant associations with yield components were identified, and were consistent with previous findings. Conclusions In short, this study illustrates the power of intron-based markers for linkage and association mapping in common bean. The utility of these markers is discussed in relation with the usefulness of microsatellites, the molecular markers by excellence in this crop. PMID:22734675
Thermal, spectroscopic, and ab initio structural characterization of carprofen polymorphs.
Bruni, Giovanna; Gozzo, Fabia; Capsoni, Doretta; Bini, Marcella; Macchi, Piero; Simoncic, Petra; Berbenni, Vittorio; Milanese, Chiara; Girella, Alessandro; Ferrari, Stefania; Marini, Amedeo
2011-06-01
Commercial and recrystallized polycrystalline samples of carprofen, a nonsteroidal anti-inflammatory drug, were studied by thermal, spectroscopic, and structural techniques. Our investigations demonstrated that recrystallized sample, stable at room temperature (RT), is a single polymorphic form of carprofen (polymorph I) that undergoes an isostructural polymorphic transformation by heating (polymorph II). Polymorph II remains then metastable at ambient conditions. Commercial sample is instead a mixture of polymorphs I and II. The thermodynamic relationships between the two polymorphs were determined through the construction of an energy/temperature diagram. The ab initio structural determination performed on synchrotron X-Ray powder diffraction patterns recorded at RT on both polymorphs allowed us to elucidate, for the first time, their crystal structure. Both crystallize in the monoclinic space group type P2(1) /c, and the unit cell similarity index and the volumetric isostructurality index indicate that the temperature-induced polymorphic transformation I → II is isostructural. Polymorphs I and II are conformational polymorphs, sharing a very similar hydrogen bond network, but with different conformation of the propanoic skeleton, which produces two different packing. The small conformational change agrees with the low value of transition enthalpy obtained by differential scanning calorimetry measurements and the small internal energy computed with density functional methods. Copyright © 2011 Wiley-Liss, Inc.
Development of a sensor to study the DNA conformation using molecular logic gates.
Roy, Arpan Datta; Dey, Dibyendu; Saha, Jaba; Chakraborty, Santanu; Bhattacharjee, D; Hussain, Syed Arshad
2015-02-05
This communication reports our investigations on the Fluorescence Resonance Energy Transfer (FRET) between two laser dyes Acriflavine and Rhodamine B in absence and presence of DNA at different pH. It has been observed that energy transfer efficiency is largely affected by the presence of DNA as well as the pH of the system. It is well known that with increase in pH, DNA conformation changes from double stranded to single stranded (denaturation) and finally form random coil. Based on our experimental results two different types of molecular logic gates namely, XOR and OR logic have been demonstrated which can be used to have an idea about DNA conformation in solution. Copyright © 2014 Elsevier B.V. All rights reserved.
Phytophthora species in forest streams in Oregon and Alaska.
Reeser, Paul W; Sutton, Wendy; Hansen, Everett M; Remigi, Philippe; Adams, Gerry C
2011-01-01
Eighteen Phytophthora species and one species of Halophytophthora were identified in 113 forest streams in Alaska, western Oregon and southwestern Oregon that were sampled by baiting or filtration of stream water with isolation on selective media. Species were identified by morphology and DNA characterization with single strand conformational polymorphism, COX spacer sequence and ITS sequence. ITS Clade 6 species were most abundant overall, but only four species, P. gonapodyides (37% of all isolates), P. taxon Salixsoil, P. taxon Oaksoil and P. pseudosyringae, were found in all three regions. The species assemblages were similar in the two Oregon regions, but P. taxon Pgchlamydo was absent in Alaska and one new species present in Alaska was absent in Oregon streams. The number of Phytophthora propagules in Oregon streams varied by season and in SW Oregon, where sampling continued year round, P. taxon Salixsoil, P. nemorosa and P. siskiyouensis were recovered only in some seasons.
Mutation testing in Treacher Collins Syndrome.
Ellis, P E; Dawson, M; Dixon, M J
2002-12-01
To report on a study where 97 subjects were screened for mutations in the Treacher Collins syndrome (TCS) gene TCOF1. Ninety-seven subjects with a clinical diagnosis of TCS were screened for potential mutations in TCOF1, by means of single strand conformation polymorphism (SSCP) analysis. In those subjects where potential mutations were detected, sequence analysis was performed to determine the site and type of mutation present. Thirty-six TCS-specific mutations are reported including 27 deletions, six point mutations, two splice junction mutations, and one insertion/deletion. This brings the total number of mutations reported to date to 105. The importance of detection of these mutations is mainly in postnatal diagnosis and genetic counselling. Knowledge of the family specific mutation may also be used in prenatal diagnosis to confirm whether the foetus is affected or not, and give the parents the choice of whether to continue with the pregnancy.
Somatic mutation detection in human biomonitoring.
Olsen, L S; Nielsen, L R; Nexø, B A; Wassermann, K
1996-06-01
Somatic cell gene mutation arising in vivo may be considered to be a biomarker for genotoxicity. Assays detecting mutations of the haemoglobin and glycophorin A genes in red blood cells and of the hypoxanthine-guanine phosphoribosyltransferase and human leucocyte antigenes in T-lymphocytes are available in humans. This MiniReview describes these assays and their application to studies of individuals exposed to genotoxic agents. Moreover, with the implementation of techniques of molecular biology mutation spectra can now be defined in addition to the quantitation of in vivo mutant frequencies. We describe current screening methods for unknown mutations, including the denaturing gradient gel electrophoresis, single strand conformation polymorphism analysis, heteroduplex analysis, chemical modification techniques and enzymatic cleavage methods. The advantage of mutation detection as a biomarker is that it integrates exposure and sensitivity in one measurement. With the analysis of mutation spectra it may thus be possible to identify the causative genotoxic agent.
Endemic Venezuelan Equine Encephalitis in Northern Peru
Aguilar, Patricia V.; Greene, Ivorlyne P.; Coffey, Lark L.; Medina, Gladys; Moncayo, Abelardo C.; Anishchenko, Michael; Ludwig, George V.; Turell, Michael J.; O’Guinn, Monica L.; Lee, John; Tesh, Robert B.; Watts, Douglas M.; Russell, Kevin L.; Hice, Christine; Yanoviak, Stephen; Morrison, Amy C.; Klein, Terry A.; Dohm, David J.; Guzman, Hilda; Travassos da Rosa, Amelia P.A.; Guevara, Carolina; Kochel, Tadeusz; Olson, James; Cabezas, Cesar
2004-01-01
Since Venezuelan equine encephalitis virus (VEEV) was isolated in Peru in 1942, >70 isolates have been obtained from mosquitoes, humans, and sylvatic mammals primarily in the Amazon region. To investigate genetic relationships among the Peru VEEV isolates and between the Peru isolates and other VEEV strains, a fragment of the PE2 gene was amplified and analyzed by single-stranded conformation polymorphism. Representatives of seven genotypes underwent sequencing and phylogenetic analysis. The results identified four VEE complex lineages that cocirculate in the Amazon region: subtypes ID (Panama and Colombia/Venezuela genotypes), IIIC, and a new, proposed subtype IIID, which was isolated from a febrile human, mosquitoes, and spiny rats. Both ID lineages and the IIID subtype are associated with febrile human illness. Most of the subtype ID isolates belonged to the Panama genotype, but the Colombia/Venezuela genotype, which is phylogenetically related to epizootic strains, also continues to circulate in the Amazon basin. PMID:15200823
Endemic Venezuelan equine encephalitis in northern Peru.
Aguilar, Patricia V; Greene, Ivorlyne P; Coffey, Lark L; Medina, Gladys; Moncayo, Abelardo C; Anishchenko, Michael; Ludwig, George V; Turell, Michael J; O'Guinn, Monica L; Lee, John; Tesh, Robert B; Watts, Douglas M; Russell, Kevin L; Hice, Christine; Yanoviak, Stephen; Morrison, Amy C; Klein, Terry A; Dohm, David J; Guzman, Hilda; Travassos da Rosa, Amelia P A; Guevara, Carolina; Kochel, Tadeusz; Olson, James; Cabezas, Cesar; Weaver, Scott C
2004-05-01
Since Venezuelan equine encephalitis virus (VEEV) was isolated in Peru in 1942, >70 isolates have been obtained from mosquitoes, humans, and sylvatic mammals primarily in the Amazon region. To investigate genetic relationships among the Peru VEEV isolates and between the Peru isolates and other VEEV strains, a fragment of the PE2 gene was amplified and analyzed by single-stranded conformation polymorphism. Representatives of seven genotypes underwent sequencing and phylogenetic analysis. The results identified four VEE complex lineages that cocirculate in the Amazon region: subtypes ID (Panama and Colombia/Venezuela genotypes), IIIC, and a new, proposed subtype IIID, which was isolated from a febrile human, mosquitoes, and spiny rats. Both ID lineages and the IIID subtype are associated with febrile human illness. Most of the subtype ID isolates belonged to the Panama genotype, but the Colombia/Venezuela genotype, which is phylogenetically related to epizootic strains, also continues to circulate in the Amazon basin.
Evaluation of the norrie disease gene in a family with incontinentia pigmenti.
Shastry, B S; Trese, M T
2000-01-01
Incontinentia pigmenti (IP) is an ectodermal multisystem disorder which can affect dental, ocular, cardiac and neurologic structures. The ocular changes of IP can have a very similar appearance to the retinal detachment of X-linked familial exudative vitreoretinopathy, which has been shown to be caused by the mutations in the Norrie disease gene. Therefore, it is of interest to determine whether similar mutations in the gene can account for the retinal pathology in patients with IP. To test our hypothesis, we have analyzed the entire Norrie disease gene for a family with IP, by single strand conformational polymorphism followed by DNA sequencing. The sequencing data revealed no disease-specific sequence alterations. These data suggest that ocular findings of IP are perhaps associated with different genes and there is no direct relationship between the genotype and phenotype. Copyright 2000 S. Karger AG, Basel
Teimourian, Shahram; Sazgara, Faezeh; de Boer, Martin; van Leeuwen, Karin; Roos, Dirk; Lashkary, Sharzad; Chavoshzadeh, Zahra; Nabavi, Mohammad; Bemanian, Mohammad Hassan; Isaian, Anna
2018-04-26
Chronic granulomatous disease (CGD) is an inherited disease of the innate immune system that results from defects in 1 of the 5 subunits of nicotinamide adenine dinucleotide phosphate oxidase complex and leads to life-threatening infections with granuloma formation. During 3 years of study, we recognized 10 male patients with X-linked CGD from a tertiary referral center for immune deficiencies in Iran. The CGD patients were diagnosed according to clinical features and biochemical tests, including nitroblue tetrazolium and dihydrorhodamine-1, 2, 3 tests, performed on patients and their mothers. In all patients, Western blot analysis showed a gp91 phenotype. Mutation screening by single strand conformation polymorphism and multiplex ligation-dependent probe amplification analysis of the CYBB gene encoding gp91, followed by sequencing, showed 9 different mutations, 4 of them novel as far as we know.
Identification and genetic mapping of a homeobox gene to the 4p16. 1 region of human chromosome 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadler, H.S.; Padanilam, B.J.; Solursh, M.
1992-12-01
A human craniofacial cDNA library was screened with a degenerate oligonucleotide probe based on the conserved third helix of homeobox genes. From this screening, we identified a homeobox gene, H6, which shared only 57-65% amino acid identity to previously reported homeodomains. H6 was physically mapped to the 4P16.1 region by using somatic cell hybrids containing specific deletions of human chromosome 4. Linkage data from a single-stranded conformational polymorphism derived from the 3[prime] untranslated region of the H6 cDNA placed this homeobox gene more than 20 centimorgans proximal of the previously mapped HOX7 gene on chromosome 4. Identity comparisons of themore » H6 Homeodomain with previously reported homeodomains reveal the highest identities to be with the Nk class of homeobox genes in Drosophila melanogaster. 53 refs., 5 figs., 2 tabs.« less
Qualtieri, Antonio; Le, Pera Maria; Pedace, Vera; Magariello, Angela; Brancati, Carlo
2002-02-01
We have identified a new neutral hemoglobin variant in a pregnant Italian woman, that resulted from a GTG-->CTG replacement at codon 126 of the beta chain, corresponding to a Val-->Leu amino acid change at position beta126(H4). Thermal and isopropanol stability tests were normal and there were no abnormal clinical features. Routine electrophoretic and ion exchange chromatographic methods for hemoglobin separation failed to show this variant, but reversed phase high performance liquid chromatography revealed an abnormal peak eluting near the normal beta chain. No abnormal tryptic peptide was revealed on the high performance liquid chromatographic elution pattern of the total globin digest. The mutation was determined at the DNA level by amplification of the three beta exons by polymerase chain reaction and direct sequencing of one exon that showed an abnormal migration on single strand conformational polymorphism analysis.
Fang, Q; Forrest, R H; Zhou, H; Frampton, C M; Hickford, J G H
2013-07-01
Variation in the ovine CAPN3 gene was analysed using PCR-single strand conformational polymorphism, and its effect on growth and carcass traits was assessed in 513 New Zealand Romney lambs produced by 17 unrelated rams. Among the four allelic variants detected, the presence of variant *02 was found to be associated with an increased proportion of shoulder yield (absent: 32.6±0.01%; present: 33.4±0.03%; P=0.016), and tended to be associated with increased shoulder yield (lean meat yield of the shoulder expressed as a percentage of the hot carcass weight) (absent: 16.6±0.06%; present: 17.02±0.20%; P=0.067). No association was detected with growth traits or other carcass traits. Copyright © 2013 Elsevier Ltd. All rights reserved.
Severe manifestations in carrier females in X linked retinitis pigmentosa.
Souied, E; Segues, B; Ghazi, I; Rozet, J M; Chatelin, S; Gerber, S; Perrault, I; Michel-Awad, A; Briard, M L; Plessis, G; Dufier, J L; Munnich, A; Kaplan, J
1997-01-01
Retinitis pigmentosa (RP) is a group of progressive hereditary disorders of the retina in which various modes of inheritance have been described. Here, we report on X linked RP in nine families with constant and severe expression in carrier females. In our series, however, the phenotype was milder and delayed in carrier females compared to hemizygous males. This form of X linked RP could be regarded therefore as partially dominant. The disease gene maps to chromosome Xp2.1 in the genetic interval encompassing the RP3 locus (Zmax=13.71 at the DXS1100 locus). Single strand conformation polymorphism and direct sequence analysis of the retinitis pigmentosa GTPase regulator (RPGR) gene, which accounts for RP3, failed to detect any mutation in our families. Future advances in the identification of X linked RP genes will hopefully help to elucidate the molecular basis of this X linked dominant RP. Images PMID:9350809
Shi, Ze; Castro, Carlos E; Arya, Gaurav
2017-05-23
Structural DNA nanotechnology, the assembly of rigid 3D structures of complex yet precise geometries, has recently been used to design dynamic, mechanically compliant nanostructures with tunable equilibrium conformations and conformational distributions. Here we use coarse-grained molecular dynamics simulations to provide insights into the conformational dynamics of a set of mechanically compliant DNA nanostructures-DNA hinges that use single-stranded DNA "springs" to tune the equilibrium conformation of a layered double-stranded DNA "joint" connecting two stiff "arms" constructed from DNA helix bundles. The simulations reproduce the experimentally measured equilibrium angles between hinge arms for a range of hinge designs. The hinges are found to be structurally stable, except for some fraying of the open ends of the DNA helices comprising the hinge arms and some loss of base-pairing interactions in the joint regions coinciding with the crossover junctions, especially in hinges designed to exhibit a small bending angle that exhibit large local stresses resulting in strong kinks in their joints. Principal component analysis reveals that while the hinge dynamics are dominated by bending motion, some twisting and sliding of hinge arms relative to each other also exists. Forced deformation of the hinges reveals distinct bending mechanisms for hinges with short, inextensible springs versus those with longer, more extensible springs. Lastly, we introduce an approach for rapidly predicting equilibrium hinge angles from individual force-deformation behaviors of its single- and double-stranded DNA components. Taken together, these results demonstrate that coarse-grained modeling is a promising approach for designing, predicting, and studying the dynamics of compliant DNA nanostructures, where conformational fluctuations become important, multiple deformation mechanisms exist, and continuum approaches may not yield accurate properties.
Current molecular genetics strategies for the diagnosis of lysosomal storage disorders.
Giugliani, Roberto; Brusius-Facchin, Ana-Carolina; Pasqualim, Gabriela; Leistner-Segal, Sandra; Riegel, Mariluce; Matte, Ursula
2016-01-01
Lysosomal storage disorders (LSDs) are a group of almost 50 monogenic diseases characterized by mutations causing deficiency of lysosomal enzymes or non-enzyme proteins involved in transport across the lysosomal membrane, protein maturation or lysosomal biogenesis. Usually, affected patients are normal at birth and have a progressive and severe disease with high morbidity and reduced life expectancy. The overall incidence of LSDs is usually estimated as 1:5000, but newborn screening studies are indicating that it could be much higher. Specific therapies were already developed for selected LSDs, making the timely and correct diagnosis very important for successful treatment and also for genetic counseling. In most LSD cases the biochemical techniques provide a reliable diagnosis. However, the identification of pathogenic mutations by genetic analysis is being increasingly recommended to provide additional information. In this paper we discuss the conventional methods for genetic analysis used in the LSDs [restriction fragment length polymorphism (RFLP), amplification-refractory mutation system (ARMS), single strand conformation polymorphism (SSCP), denaturing high performance liquid chromatography (dHPLC), real-time polymerase chain reaction, high resolution melting (HRM), multiplex ligation-dependent probe amplification (MLPA), Sanger sequencing] and also the newer approaches [massive parallel sequencing, array comparative genomic hybridization (CGH)].
Mutational analysis of the PTPN11 gene in Egyptian patients with Noonan syndrome.
Essawi, Mona L; Ismail, Manal F; Afifi, Hanan H; Kobesiy, Maha M; El Kotoury, Ahmed; Barakat, Maged M
2013-11-01
Noonan syndrome (NS) is inherited as an autosomal dominant disorder with dysmorphic facies, short stature, and cardiac defects, which can be caused by missense mutations in the protein tyrosine phosphatase nonreceptor type 11 (PTPN11) gene, which encodes src homology region 2 domain containing tyrosine phosphatase-2 (SHP-2), a protein tyrosine phosphatase that acts in signal transduction downstream to growth factors and cytokines. The current study aimed to study the molecular characterization of the PTPN11 gene among Egyptian patients with Noonan syndrome. Eleven exons of the PTPN11 gene were amplified and screened by single stranded conformational polymorphism (SSCP). DNA samples showing band shift in SSCP were subjected to sequencing. Mutational analysis of the PTPN11 gene revealed T→C transition at position 854 in exon 8, predicting Phe285Ser substitution within PTP domain of SHP-2 protein, in one NS patient and -21C→T polymorphism in intron 7 in four other cases. Knowing that NS is phenotypically heterogeneous, molecular characterization of the PTPN11 gene should serve to establish NS diagnosis in patients with atypical features, although lack of a mutation does not exclude the possibility of NS. Copyright © 2012. Published by Elsevier B.V.
Non-Canonical G-quadruplexes cause the hCEB1 minisatellite instability in Saccharomyces cerevisiae
Piazza, Aurèle; Cui, Xiaojie; Adrian, Michael; Samazan, Frédéric; Heddi, Brahim; Phan, Anh-Tuan; Nicolas, Alain G
2017-01-01
G-quadruplexes (G4) are polymorphic four-stranded structures formed by certain G-rich nucleic acids in vitro, but the sequence and structural features dictating their formation and function in vivo remains uncertain. Here we report a structure-function analysis of the complex hCEB1 G4-forming sequence. We isolated four G4 conformations in vitro, all of which bear unusual structural features: Form 1 bears a V-shaped loop and a snapback guanine; Form 2 contains a terminal G-triad; Form 3 bears a zero-nucleotide loop; and Form 4 is a zero-nucleotide loop monomer or an interlocked dimer. In vivo, Form 1 and Form 2 differently account for 2/3rd of the genomic instability of hCEB1 in two G4-stabilizing conditions. Form 3 and an unidentified form contribute to the remaining instability, while Form 4 has no detectable effect. This work underscores the structural polymorphisms originated from a single highly G-rich sequence and demonstrates the existence of non-canonical G4s in cells, thus broadening the definition of G4-forming sequences. DOI: http://dx.doi.org/10.7554/eLife.26884.001 PMID:28661396
Shankla, Manish; Aksimentiev, Aleksei
2014-01-01
Control over interactions with biomolecules holds the key to applications of graphene in biotechnology. One such application is nanopore sequencing, where a DNA molecule is electrophoretically driven through a graphene nanopore. Here, we investigate how interactions of single-stranded DNA and a graphene membrane can be controlled by electrically biasing the membrane. The results of our molecular dynamics simulations suggest that electric charge on graphene can force a DNA homopolymer to adopt a range of strikingly different conformations. The conformational response is sensitive to even very subtle nucleotide modifications, such as DNA methylation. The speed of DNA motion through a graphene nanopore is strongly affected by the graphene charge: a positive charge accelerates the motion whereas a negative charge arrests it. As a possible application of the effect, we demonstrate stop-and-go transport of DNA controlled by the charge of graphene. Such on-demand transport of DNA is essential for realizing nanopore sequencing. PMID:25296960
NASA Astrophysics Data System (ADS)
Shankla, Manish; Aksimentiev, Aleksei
2014-10-01
Control over interactions with biomolecules holds the key to applications of graphene in biotechnology. One such application is nanopore sequencing, where a DNA molecule is electrophoretically driven through a graphene nanopore. Here we investigate how interactions of single-stranded DNA and a graphene membrane can be controlled by electrically biasing the membrane. The results of our molecular dynamics simulations suggest that electric charge on graphene can force a DNA homopolymer to adopt a range of strikingly different conformations. The conformational response is sensitive to even very subtle nucleotide modifications, such as DNA methylation. The speed of DNA motion through a graphene nanopore is strongly affected by the graphene charge: a positive charge accelerates the motion, whereas a negative charge arrests it. As a possible application of the effect, we demonstrate stop-and-go transport of DNA controlled by the charge of graphene. Such on-demand transport of DNA is essential for realizing nanopore sequencing.
NASA Astrophysics Data System (ADS)
Ma, Ruiqin; He, Feng; Wen, Haishen; Li, Jifang; Shi, Bao; Shi, Dan; Liu, Miao; Mu, Weijie; Zhang, Yuanqing; Hu, Jian; Han, Weiguo; Zhang, Jianan; Wang, Qingqing; Yuan, Yuren; Liu, Qun
2012-03-01
As a specific gene of fish, cytochrome P450c17-II ( CYP17-II) gene plays a key role in the growth, development an reproduction level of fish. In this study, the single-stranded conformational polymorphism (SSCP) technique was used to characterize polymorphisms within the coding region of CYP17-II gene in a population of 75 male Japanese flounder ( Paralichthys olivaceus). Three single nucleotide polymorphisms (SNPs) were identified in CYP17-II gene of Japanese flounder. They were c.G594A (p.G188R), c.G939A and c.G1502A (p.G490D). SNP1 (c.G594A), located in exon 4 of CYP17-II gene, was significantly associated with gonadosomatic index (GSI). Individuals with genotype GG of SNP1 had significantly lower GSI ( P < 0.05) than those with genotype AA or AG. SNP2 (c.G939A) located at the CpG island of CYP17-II gene. The mutation changed the methylation of exon 6. Individuals with genotype AA of SNP2 had significantly lower serum testosterone (T) level and hepatosomatic index (HSI) compared to those with genotype GG. The results suggested that SNP2 could influence the reproductive endocrine of male Japanese flounder. However, the SNP3 (c.G1502A) located in exon 9 did not affect the four measured reproductive traits. This study showed that CYP17-II gene could be a potentially useful candidate gene for the research of genetic breeding and physiological aspects of Japanese flounder.
Programmed self-assembly of DNA/RNA for biomedical applications
NASA Astrophysics Data System (ADS)
Wang, Pengfei
Three self-assembly strategies were utilized for assembly of novel functional DNA/RNA nanostructures. RNA-DNA hybrid origami method was developed to fabricate nano-objects (ribbon, rectangle, and triangle) with precisely controlled geometry. Unlike conventional DNA origami which use long DNA single strand as scaffold, a long RNA single strand was used instead, which was folded by short DNA single strands (staples) into prescribed objects through sequence specific hybridization between RNA and DNA. Single stranded tiles (SST) and RNA-DNA hybrid origami were utilized to fabricate a variety of barcode-like nanostructures with unique patterns by expanding a plain rectangle via introducing spacers (10-bp dsDNA segment) between parallel duplexes. Finally, complex 2D array and 3D polyhedrons with multiple patterns within one structure were assembled from simple DNA motifs. Two demonstrations of biomedical applications of DNA nanotechnology were presented. Firstly, lambda-DNA was used as template to direct the fabrication of multi-component magnetic nanoparticle chains. Nuclear magnetic relaxation (NMR) characterization showed superb magnetic relaxativity of the nanoparticle chains which have large potential to be utilized as MRI contrast agents. Secondly, DNA nanotechnology was introduced into the conformational study of a routinely used catalytic DNAzyme, the RNA-cleaving 10-23 DNAzyme. The relative angle between two flanking duplexes of the catalytic core was determined (94.8°), which shall be able to provide a clue to further understanding of the cleaving mechanism of this DNAzyme from a conformational perspective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiang, R.; Lidral, A.C.; Ardinger, H.H.
1993-10-01
Genetic analysis and tissue-specific expression studies support a role for transforming growth-factor alpha (TGFA) in craniofacial development. Previous studies have confirmed an association of alleles for TGFA with nonsyndromic cleft lip with or without cleft palate (CL/P) in humans. The authors carried out a retrospective association study to determine whether specific allelic variants of the TGFA gene are also associated with cleft palate only (CPO). The PCR products from 12 overlapping sets of primers to the TGFA cDNA were examined by using single-strand conformational polymorphism analysis. Four DNA polymorphic sites for TGFA were identified in the 3[prime] untranslated region ofmore » the TGFA gene. These variants, as well as previously identified RFLPs for TGFA, were characterized in case and control populations for CPO by using X[sup 2] analysis. A significant association between alleles of TGFA and CPO was identified which further supports a role for this gene as one of the genetic determinants of craniofacial development. Sequence analysis of the variants disclosed a cluster of three variable sites within 30 bp of each other in the 3[prime] untranslated region previously associated with an antisense transcript. These studies extend the role for TGFA in craniofacial morphogenesis and support an interrelated mechanism underlying nonsyndromic forms of CL/P. 46 refs., 3 figs., 3 tabs.« less
Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids
Taylor, D. Lee; Bruns, Thomas D.
1997-01-01
We have investigated the mycorrhizal associations of two nonphotosynthetic orchids from distant tribes within the Orchidaceae. The two orchids were found to associate exclusively with two distinct clades of ectomycorrhizal basidiomycetous fungi over wide geographic ranges. Yet both orchids retained the internal mycorrhizal structure typical of photosynthetic orchids that do not associate with ectomycorrhizal fungi. Restriction fragment length polymorphism and sequence analysis of two ribosomal regions along with fungal isolation provided congruent, independent evidence for the identities of the fungal symbionts. All 14 fungal entities that were associated with the orchid Cephalanthera austinae belonged to a clade within the Thelephoraceae, and all 18 fungal entities that were associated with the orchid Corallorhiza maculata fell within the Russulaceae. Restriction fragment length polymorphism and single-strand conformational polymorphism analysis of ectomycorrhizal tree roots collected adjacent to Cephalanthera showed that (i) the fungi associated internally with Cephalanthera also form typical external ectomycorrhizae and that (ii) ectomycorrhizae formed by other Basidiomycetes were abundant where the orchid grows but these fungi did not associate with the orchid. This is the first proof of ectomycorrhizal epiparasitism in nature by an orchid. We argue that these orchids are cheaters because they do not provide fixed carbon to associated fungi. This view suggests that mycorrhizae, like other ancient mutualisms, are susceptible to cheating. The extreme specificity in these orchids relative to other ectomycorrhizal plants agrees with trends seen in more conventional parasites. PMID:9114020
Poltev, Valeri; Anisimov, Victor M; Danilov, Victor I; Garcia, Dolores; Sanchez, Carolina; Deriabina, Alexandra; Gonzalez, Eduardo; Rivas, Francisco; Polteva, Nina
2014-06-01
Our previous DFT computations of deoxydinucleoside monophosphate complexes with Na(+)-ions (dDMPs) have demonstrated that the main characteristics of Watson-Crick (WC) right-handed duplex families are predefined in the local energy minima of dDMPs. In this work, we study the mechanisms of contribution of chemically monotonous sugar-phosphate backbone and the bases into the double helix irregularity. Geometry optimization of sugar-phosphate backbone produces energy minima matching the WC DNA conformations. Studying the conformational variability of dDMPs in response to sequence permutation, we found that simple replacement of bases in the previously fully optimized dDMPs, e.g. by constructing Pyr-Pur from Pur-Pyr, and Pur-Pyr from Pyr-Pur sequences, while retaining the backbone geometry, automatically produces the mutual base position characteristic of the target sequence. Based on that, we infer that the directionality and the preferable regions of the sugar-phosphate torsions, combined with the difference of purines from pyrimidines in ring shape, determines the sequence dependence of the structure of WC DNA. No such sequence dependence exists in dDMPs corresponding to other DNA conformations (e.g., Z-family and Hoogsteen duplexes). Unlike other duplexes, WC helix is unique by its ability to match the local energy minima of the free single strand to the preferable conformations of the duplex. Copyright © 2013 Wiley Periodicals, Inc.
A Lateral Flow Biosensor for the Detection of Single Nucleotide Polymorphisms.
Zeng, Lingwen; Xiao, Zhuo
2017-01-01
A lateral flow biosensor (LFB) is introduced for the detection of single nucleotide polymorphisms (SNPs). The assay is composed of two steps: circular strand displacement reaction and lateral flow biosensor detection. In step 1, the nucleotide at SNP site is recognized by T4 DNA ligase and the signal is amplified by strand displacement DNA polymerase, which can be accomplished at a constant temperature. In step 2, the reaction product of step 1 is detected by a lateral flow biosensor, which is a rapid and cost effective tool for nuclei acid detection. Comparing with conventional methods, it requires no complicated machines. It is suitable for the use of point of care diagnostics. Therefore, this simple, cost effective, robust, and promising LFB detection method of SNP has great potential for the detection of genetic diseases, personalized medicine, cancer related mutations, and drug-resistant mutations of infectious agents.
Microsecond kinetics in model single- and double-stranded amylose polymers.
Sattelle, Benedict M; Almond, Andrew
2014-05-07
Amylose, a component of starch with increasing biotechnological significance, is a linear glucose polysaccharide that self-organizes into single- and double-helical assemblies. Starch granule packing, gelation and inclusion-complex formation result from finely balanced macromolecular kinetics that have eluded precise experimental quantification. Here, graphics processing unit (GPU) accelerated multi-microsecond aqueous simulations are employed to explore conformational kinetics in model single- and double-stranded amylose. The all-atom dynamics concur with prior X-ray and NMR data while surprising and previously overlooked microsecond helix-coil, glycosidic linkage and pyranose ring exchange are hypothesized. In a dodecasaccharide, single-helical collapse was correlated with linkages and rings transitioning from their expected syn and (4)C1 chair conformers. The associated microsecond exchange rates were dependent on proximity to the termini and chain length (comparing hexa- and trisaccharides), while kinetic features of dodecasaccharide linkage and ring flexing are proposed to be a good model for polymers. Similar length double-helices were stable on microsecond timescales but the parallel configuration was sturdier than the antiparallel equivalent. In both, tertiary organization restricted local chain dynamics, implying that simulations of single amylose strands cannot be extrapolated to dimers. Unbiased multi-microsecond simulations of amylose are proposed as a valuable route to probing macromolecular kinetics in water, assessing the impact of chemical modifications on helical stability and accelerating the development of new biotechnologies.
Gao, Zhong Feng; Ling, Yu; Lu, Lu; Chen, Ning Yu; Luo, Hong Qun; Li, Nian Bing
2014-03-04
Although various strategies have been reported for single-nucleotide polymorphisms (SNPs) detection, development of a time-saving, specific, and regenerated electrochemical sensing platform still remains a realistic goal. In this study, an ON-OFF switching of a regenerated biosensor based on a locked nucleic acid (LNA)-integrated and toehold-mediated strand displacement reaction technique is constructed for detection of SNPs. The LNA-integrated and methylene blue-labeled capture probe with an external toehold is designed to switch on the sensing system. The mutant-type DNA probe completes complementary with the capture probe to trigger the strand displacement reaction, which switches off the sensing system. However, when the single-base mismatched wild-type DNA probe is presented, the strand displacement reaction cannot be achieved; therefore, the sensing system still keeps the ON state. This DNA sensor is stable over five reuses. We further testify that the LNA-integrated sequence has better recognition ability for SNPs detection compared to the DNA-integrated sequence. Moreover, this DNA senor exhibits a remarkable discrimination capability of SNPs among abundant wild-type targets and 6000-fold (m/m) excess of genomic DNA. In addition, it is selective enough in complex and contaminant-ridden samples, such as human urine, soil, saliva, and beer. Overall, these results demonstrate that this reliable DNA sensor is easy to be fabricated, simple to operate, and stable enough to be readily regenerated.
Separation of 1-23-kb complementary DNA strands by urea-agarose gel electrophoresis.
Hegedüs, Eva; Kókai, Endre; Kotlyar, Alexander; Dombrádi, Viktor; Szabó, Gábor
2009-09-01
Double-stranded (ds), as well as denatured, single-stranded (ss) DNA samples can be analyzed on urea-agarose gels. Here we report that after denaturation by heat in the presence of 8 M urea, the two strands of the same ds DNA fragment of approximately 1-20-kb size migrate differently in 1 M urea containing agarose gels. The two strands are readily distinguished on Southern blots by ss-specific probes. The different migration of the two strands could be attributed to their different, base composition-dependent conformation impinging on the electrophoretic mobility of the ss molecules. This phenomenon can be exploited for the efficient preparation of strand-specific probes and for the separation of the complementary DNA strands for subsequent analysis, offering a new tool for various cell biological research areas.
Gui, Z; Liu, H Q; Wang, Y; Yuan, Q H; Xin, N; Zhang, X; Li, X L; Pi, Y S; Gao, J M
2014-12-04
In this study, 2 approaches were adopted to obtain good single-strand conformation polymorphism (SSCP) data for autotetraploid alfalfa; primers were added to PCR products, and fluorescent-labeled primers were utilized. PCR-SSCP conditions for a 331-bp fragment in the coding region of polygalacturonase-inhibiting protein gene 2 in alfalfa (MsPGIP2) were optimized, and the results showed that the best SSCP gel pattern could be obtained when the loading mixture was made by mixing 1 μL PCR products, 0.2 to 0.8 μL unlabeled primers (50 μM) and 4 to 16 μL loading buffer. Furthermore, the use of the fluorescent-labeled primers resulted in 2 separated electrophoresis images from 2 complementary single DNA strands, thus making the determination of alleles and idiotypes a relatively easy task. In addition, the results of sequencing prove that the determination of alleles and idiotypes were accurate based on SSCP analysis. Finally, a total of 9 alleles with 18 SNP sites were identified for MsPGIP2 in the alfalfa variety 'Algonquin'. In conclusion, MsPGIP2 possessed great genetic variation, and the addition of primers to the PCR products in combination with the fluorescent labeling of primers could significantly improve the sensitivity and resolution of SSCP analysis. This technique could be used for genetic diversity detection and marker-assisted breeding of useful genes in autopolyploid species such as alfalfa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pang, Yuan-Ping, E-mail: pang@mayo.edu
Highlights: • 1–4 interaction scaling factors are used to adjust conformational energy. • This article reports the effects of these factors on protein conformations. • Reducing these factors changes a helix to a strand in molecular dynamics simulation. • Increasing these factors causes the reverse conformational change. • These factors control the conformational equilibrium between helix and strand. - Abstract: 1–4 interaction scaling factors are used in AMBER forcefields to reduce the exaggeration of short-range repulsion caused by the 6–12 Lennard-Jones potential and a nonpolarizable charge model and to obtain better agreements of small-molecule conformational energies with experimental data. However,more » the effects of these scaling factors on protein secondary structure conformations have not been investigated until now. This article reports the finding that the 1–4 interactions among the protein backbone atoms separated by three consecutive covalent bonds are more repulsive in the α-helix conformation than in two β-strand conformations. Therefore, the 1–4 interaction scaling factors of protein backbone torsions ϕ and ψ control the conformational equilibrium between α-helix and β-strand. Molecular dynamics simulations confirm that reducing the ϕ and ψ scaling factors readily converts the α-helix conformation of AcO-(AAQAA){sub 3}-NH{sub 2} to a β-strand conformation, and the reverse occurs when these scaling factors are increased. These results suggest that the ϕ and ψ scaling factors can be used to generate the α-helix or β-strand conformation in situ and to control the propensities of a forcefield for adopting secondary structure elements.« less
Ratajczak, Katarzyna; Krazinski, Bartlomiej E; Kowalczyk, Anna E; Dworakowska, Beata; Jakiela, Slawomir; Stobiecka, Magdalena
2018-05-07
Cancer biomarkers offer unique prospects for the development of cancer diagnostics and therapy. One of such biomarkers, protein survivin (Sur), exhibits strong antiapoptotic and proliferation-enhancing properties and is heavily expressed in multiple cancers. Thus, it can be utilized to provide new modalities for modulating the cell-growth rate, essential for effective cancer treatment. Herein, we have focused on the development of a new survivin-based cancer detection platform for colorectal cancer cells SW480 using a turn-on fluorescence oligonucleotide molecular beacon (MB) probe, encoded to recognize Sur messenger RNA (mRNA). Contrary to the expectations, we have found that both the complementary target oligonucleotide strands as well as the single- and double-mismatch targets, instead of exhibiting the anticipated simple random conformations, preferentially formed secondary structure motifs by folding into small-loop hairpin structures. Such a conformation may interfere with, or even undermine, the biorecognition process. To gain better understanding of the interactions involved, we have replaced the classical Tyagi-Kramer model of interactions between a straight target oligonucleotide strand and a hairpin MB with a new model to account for the hairpin-hairpin interactions as the biorecognition principle. A detailed mechanism of these interactions has been proposed. Furthermore, in experimental work, we have demonstrated an efficient transfection of malignant SW480 cells with SurMB probes containing a fluorophore Joe (SurMB-Joe) using liposomal nanocarriers. The green emission from SurMB-Joe in transfected cancer cells, due to the hybridization of the SurMB-Joe loop with Sur mRNA hairpin target, corroborates Sur overexpression. On the other hand, healthy human-colon epithelial cells CCD 841 CoN show only negligible expression of survivin mRNA. These experiments provide the proof-of-concept for distinguishing between the cancer and normal cells by the proposed hairpin-hairpin interaction method. The single nucleotide polymorphism sensitivity and a low detection limit of 26 nM (S/N = 3σ) for complementary targets have been achieved.
Rotation-Induced Macromolecular Spooling of DNA
NASA Astrophysics Data System (ADS)
Shendruk, Tyler N.; Sean, David; Berard, Daniel J.; Wolf, Julian; Dragoman, Justin; Battat, Sophie; Slater, Gary W.; Leslie, Sabrina R.
2017-07-01
Genetic information is stored in a linear sequence of base pairs; however, thermal fluctuations and complex DNA conformations such as folds and loops make it challenging to order genomic material for in vitro analysis. In this work, we discover that rotation-induced macromolecular spooling of DNA around a rotating microwire can monotonically order genomic bases, overcoming this challenge. We use single-molecule fluorescence microscopy to directly visualize long DNA strands deforming and elongating in shear flow near a rotating microwire, in agreement with numerical simulations. While untethered DNA is observed to elongate substantially, in agreement with our theory and numerical simulations, strong extension of DNA becomes possible by introducing tethering. For the case of tethered polymers, we show that increasing the rotation rate can deterministically spool a substantial portion of the chain into a fully stretched, single-file conformation. When applied to DNA, the fraction of genetic information sequentially ordered on the microwire surface will increase with the contour length, despite the increased entropy. This ability to handle long strands of DNA is in contrast to modern DNA sample preparation technologies for sequencing and mapping, which are typically restricted to comparatively short strands, resulting in challenges in reconstructing the genome. Thus, in addition to discovering new rotation-induced macromolecular dynamics, this work inspires new approaches to handling genomic-length DNA strands.
Bagheri, Masoumeh; Moradi-Sharhrbabak, M; Miraie-Ashtiani, R; Safdari-Shahroudi, M; Abdollahi-Arpanahi, R
2016-02-01
Mastitis is a major source of economic loss in dairy herds. The objective of this research was to evaluate the association between genotypes within SLC11A1 and CXCR1 candidate genes and clinical mastitis in Holstein dairy cattle using the selective genotyping method. The data set contained clinical mastitis records of 3,823 Holstein cows from two Holstein dairy herds located in two different regions in Iran. Data included the number of cases of clinical mastitis per lactation. Selective genotyping was based on extreme values for clinical mastitis residuals (CMR) from mixed model analyses. Two extreme groups consisting of 135 cows were formed (as cases and controls), and genotyped for the two candidate genes, namely, SLC11A1 and CXCR1, using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), respectively. Associations between single nucleotide polymorphism (SNP) genotypes with CMR and breeding values for milk and protein yield were carried out by applying logistic regression analyses, i.e. estimating the probability of the heterogeneous genotype in the dependency of values for CMR and breeding values (BVs). The sequencing results revealed a novel mutation in 1139 bp of exon 11 of the SLC11A1 gene and this SNP had a significant association with CMR (P < 0.05). PCR-RFLP analysis leads to three banding patterns for CXCR1c.735C>G and these genotypes had significant relationships with CMR. Overall, the results showed that SLC11A1 and CXCR1 are valuable candidate genes for the improvement of mastitis resistance as well as production traits in dairy cattle populations.
Creze, Christophe; Ligabue, Alessio; Laurent, Sébastien; Lestini, Roxane; Laptenok, Sergey P.; Khun, Joelle; Vos, Marten H.; Czjzek, Mirjam; Myllykallio, Hannu; Flament, Didier
2012-01-01
Pyrococcus abyssi NucS is the founding member of a new family of structure-specific DNA endonucleases that interact with the replication clamp proliferating cell nuclear antigen (PCNA). Using a combination of small angle x-ray scattering and surface plasmon resonance analyses, we demonstrate the formation of a stable complex in solution, in which one molecule of the PabNucS homodimer binds to the outside surface of the PabPCNA homotrimer. Using fluorescent labels, PCNA is shown to increase the binding affinity of NucS toward single-strand/double-strand junctions on 5′ and 3′ flaps, as well as to modulate the cleavage specificity on the branched DNA structures. Our results indicate that the presence of a single major contact between the PabNucS and PabPCNA proteins, together with the complex-induced DNA bending, facilitate conformational flexibility required for specific cleavage at the single-strand/double-strand DNA junction. PMID:22431731
Creze, Christophe; Ligabue, Alessio; Laurent, Sébastien; Lestini, Roxane; Laptenok, Sergey P; Khun, Joelle; Vos, Marten H; Czjzek, Mirjam; Myllykallio, Hannu; Flament, Didier
2012-05-04
Pyrococcus abyssi NucS is the founding member of a new family of structure-specific DNA endonucleases that interact with the replication clamp proliferating cell nuclear antigen (PCNA). Using a combination of small angle x-ray scattering and surface plasmon resonance analyses, we demonstrate the formation of a stable complex in solution, in which one molecule of the PabNucS homodimer binds to the outside surface of the PabPCNA homotrimer. Using fluorescent labels, PCNA is shown to increase the binding affinity of NucS toward single-strand/double-strand junctions on 5' and 3' flaps, as well as to modulate the cleavage specificity on the branched DNA structures. Our results indicate that the presence of a single major contact between the PabNucS and PabPCNA proteins, together with the complex-induced DNA bending, facilitate conformational flexibility required for specific cleavage at the single-strand/double-strand DNA junction.
Walfort, B; Pandey, S K; Stalke, D
2001-09-07
A single ethylene oxide anion derived from the ether cleavage reaction of thf with ButLi is stabilised by the inverse podant [Li3(NBut)3S)]+ to give a high- and a low-temperature polymorph with a considerable difference in conformation and packing.
Characterization of the interaction of yeast enolase with polynucleotides.
al-Giery, A G; Brewer, J M
1992-09-23
Yeast enolase is inhibited under certain conditions by DNA. The enzyme binds to single-stranded DNA-cellulose. Inhibition was used for routine characterization of the interaction. The presence of the substrate 2-phospho-D-glycerate reduces inhibition and binding. Both yeast enolase isozymes behave similarly. Impure yeast enolase was purified by adsorption onto a single-stranded DNA-cellulose column followed by elution with substrate. Interaction with RNA, double-stranded DNA, or degraded DNA results in less inhibition, suggesting that yeast enolase preferentially binds single-stranded DNA. However, yeast enolase is not a DNA-unwinding protein. The enzyme is inhibited by the short synthetic oligodeoxynucleotides G6, G8 and G10 but not T8 or T6, suggesting some base specificity in the interaction. The interaction is stronger at more acid pH values, with an apparent pK of 5.6. The interaction is prevented by 0.3 M KCl, suggesting that electrostatic factors are important. Histidine or lysine reverse the inhibition at lower concentrations, while phosphate is still more effective. Binding of single-stranded DNA to enolase reduces the reaction of protein histidyl residues with diethylpyrocarbonate. The inhibition of yeast enolase by single-stranded DNA is not total, and suggests the active site is not directly involved in the interaction. Binding of substrate may induce a conformational change in the enzyme that interferes with DNA binding and vice versa.
Theory of high-force DNA stretching and overstretching.
Storm, C; Nelson, P C
2003-05-01
Single-molecule experiments on single- and double-stranded DNA have sparked a renewed interest in the force versus extension of polymers. The extensible freely jointed chain (FJC) model is frequently invoked to explain the observed behavior of single-stranded DNA, but this model does not satisfactorily describe recent high-force stretching data. We instead propose a model (the discrete persistent chain) that borrows features from both the FJC and the wormlike chain, and show that it resembles the data more closely. We find that most of the high-force behavior previously attributed to stretch elasticity is really a feature of the corrected entropic elasticity; the true stretch compliance of single-stranded DNA is several times smaller than that found by previous authors. Next we elaborate our model to allow coexistence of two conformational states of DNA, each with its own stretch and bend elastic constants. Our model is computationally simple and gives an excellent fit through the entire overstretching transition of nicked, double-stranded DNA. The fit gives the first value for the bend stiffness of the overstretched state. In particular, we find the effective bend stiffness for DNA in this state to be about 12 nm k(B)T, a value quite different from either the B-form or single-stranded DNA.
Chen, Haorong; Zhang, Hanyu; Pan, Jing; Cha, Tae-Gon; Li, Shiming; Andréasson, Joakim; Choi, Jong Hyun
2016-05-24
DNA origami has received enormous attention for its ability to program complex nanostructures with a few nanometer precision. Dynamic origami structures that change conformation in response to environmental cues or external signals hold great promises in sensing and actuation at the nanoscale. The reconfiguration mechanism of existing dynamic origami structures is mostly limited to single-stranded hinges and relies almost exclusively on DNA hybridization or strand displacement. Here, we show an alternative approach by demonstrating on-demand conformation changes with DNA-binding molecules, which intercalate between base pairs and unwind DNA double helices. The unwinding effect modulates the helicity mismatch in DNA origami, which significantly influences the internal stress and the global conformation of the origami structure. We demonstrate the switching of a polymerized origami nanoribbon between different twisting states and a well-constrained torsional deformation in a monomeric origami shaft. The structural transformation is shown to be reversible, and binding isotherms confirm the reconfiguration mechanism. This approach provides a rapid and reversible means to change DNA origami conformation, which can be used for dynamic and progressive control at the nanoscale.
Mutational screening of FGFR1, CER1, and CDON in a large cohort of trigonocephalic patients.
Jehee, Fernanda Sarquis; Alonso, Luis G; Cavalcanti, Denise P; Kim, Chong; Wall, Steven A; Mulliken, John B; Sun, Miao; Jabs, Ethylin Wang; Boyadjiev, Simeon A; Wilkie, Andrew O M; Passos-Bueno, Maria Rita
2006-03-01
Screen the known craniosynostotic related gene, FGFR1 (exon 7), and two new identified potential candidates, CER1 and CDON, in patients with syndromic and nonsyndromic metopic craniosynostosis to determine if they might be causative genes. Using single-strand conformational polymorphisms (SSCPs), denaturing high-performance liquid chromatography, and/or direct sequencing, we analyzed a total of 81 patients for FGFR1 (exon 7), 70 for CER1, and 44 for CDON. Patients were ascertained in the Centro de Estudos do Genoma Humano in São Paulo, Brazil (n = 39), the Craniofacial Unit, Oxford, U.K. (n = 23), and the Johns Hopkins University, Baltimore, Maryland (n = 31). Clinical inclusion criteria included a triangular head and/or forehead, with or without a metopic ridge, and a radiographic documentation of metopic synostosis. Both syndromic and nonsyndromic patients were studied. No sequence alterations were found for FGFR1 (exon 7). Different patterns of SSCP migration for CER1 compatible with the segregation of single nucleotide polymorphisms reported in the region were identified. Seventeen sequence alterations were detected in the coding region of CDON, seven of which are new, but segregation analysis in parents and homology studies did not indicate a pathological role. FGFR1 (exon 7), CER1, and CDON are not related to trigonocephaly in our sample and should not be considered as causative genes for metopic synostosis. Screening of FGFR1 (exon 7) for diagnostic purposes should not be performed in trigonocephalic patients.
Abdullah, Asadatun; Rehbein, Hartmut
2016-01-30
In spite of the many studies performed over the years, there are still problems in the authentication of closely related tuna species, not only for canned fish but also for raw products. With the aim of providing screening methods to identify different tuna species and related scombrids, segments of mitochondrial cytochrome b (cyt b) and nuclear parvalbumin genes were amplified and sequenced or subjected to single-strand conformation polymorphism (SSCP) and restriction fragment length polymorphism (RFLP) analyses. The nucleotide diagnostic sites in the cyt b gene of five tuna species from Indonesia were determined in this study and used to construct a phylogenetic tree. In addition, the suitability of the nuclear gene that encodes parvalbumin for the differentiation of tuna species was determined by SSCP and RFLP analyses of an intron segment. RFLP differentiated Thunnus albacares and from T. obesus, and fish species in the Thunnus genus could be distinguished from bullet tuna (Auxis rochei) by SSCP. Parvalbumin-based polymerase chain reaction systems could serve as an additional tool in the detection and identification of tuna and other Scombridae fish species for routine seafood control. This reaction can be performed in addition to the cyt b analysis as previously described. © 2015 Society of Chemical Industry.
Molecular characterization of a Toxocara variant from cats in Kuala Lumpur, Malaysia.
Zhu, X Q; Jacobs, D E; Chilton, N B; Sani, R A; Cheng, N A; Gasser, R B
1998-08-01
The ascaridoid nematode of cats from Kuala Lumpur, Malaysia, previously identified morphologically as Toxocara canis, was characterized using a molecular approach. The nuclear ribosomal DNA (rDNA) region spanning the first internal transcribed spacer (ITS-1), the 5.8S gene and the second internal transcribed spacer (ITS-2) was amplified and sequenced. The sequences for the parasite from Malaysian cats were compared with those for T. canis and T. cati. The sequence data showed that this taxon was genetically more similar to T. cati than to T. canis in the ITS-1, 5.8S and ITS-2. Differences in the ITS-1 and ITS-2 sequences between the taxa (9.4-26.1%) were markedly higher than variation between samples within T. canis and T. cati (0-2.9%). The sequence data demonstrate that the parasite from Malaysian cats is neither T. canis nor T. cati and indicate that it is a distinct species. Based on these data, PCR-linked restriction fragment length polymorphism (RFLP) and single-strand conformation polymorphism (SSCP) methods were employed for the unequivocal differentiation of the Toxocara variant from T. canis and T. cati. These methods should provide valuable tools for studying the life-cycle, transmission pattern(s) and zoonotic potential of this parasite.
Characterization of Leishmania isolates from Nepalese patients with visceral leishmaniasis.
Pandey, Kishor; Yanagi, Testuo; Pandey, Basu Dev; Mallik, Arun Kumar; Sherchand, Jeevan Bahadur; Kanbara, Hiroji
2007-05-01
In Nepal, visceral leishmaniasis (VL) is endemic in 13 districts of the central and eastern regions. A total of 166 bone-marrow aspirates were obtained from patients with suspected VL. Ninety-seven were identified as positive by microscopy, and 29 of those were successfully isolated and cultured. We characterized these isolates by molecular analysis and by their ability to infect mice. PCR-restriction fragment length polymorphism analysis of the mini-exon and the cysteine proteinase b gene showed that all isolates were Leishmania donovani, and the restriction pattern of the Nepalese isolates corresponded to the standard Indian strain of L. donovani but differed from that of the Kenyan strain. The single-strand conformation polymorphism analysis of ribosomal internal transcribed spacer showed no genetic heterogeneity within Nepalese isolates. Intraperitoneal inoculation with the promastigotes of all isolates resulted in amastigote proliferation in the spleen of 20 nude mice, of which ten isolates were highly infective, and ten were moderately infective, including one BALB/c mouse. Of the 20 amastigotes isolated from the spleen of nude mice, only the ten highly infective isolates infected BALB/c mice, of which, two isolates were considered to have low infectivity, three isolates were considered to be moderately infective, and five isolates were considered to be highly infective.
Buzard, G S; Enomoto, T; Hongyo, T; Perantoni, A O; Diwan, B A; Devor, D E; Reed, C D; Dove, L F; Rice, J M
1999-10-01
Peripheral nerve tumors (PNT) and melanomas induced transplacentally on day 14 of gestation in Syrian golden hamsters by N-nitrosoethylurea were analyzed for activated oncogenes by the NIH 3T3 transfection assay, and for mutations in the neu oncogene by direct sequencing, allele-specific oligonucleotide hybridization, MnlI restriction-fragment-length polymorphism, single-strand conformation polymorphism, and mismatch amplification mutation assays. All (67/67) of the PNT, but none of the melanomas, contained a somatic missense T --> A transversion within the neu oncogene transmembrane domain at a site corresponding to that which also occurs in rat schwannomas transplacentally induced by N-nitrosoethylurea. In only 2 of the 67 individual hamster PNT did the majority of tumor cells appear to carry the mutant neu allele, in contrast to comparable rat schwannomas in which it overwhelmingly predominates. The low fraction of hamster tumor cells carrying the mutation was stable through multiple transplantation passages. In the hamster, as in the rat, specific point-mutational activation of the neu oncogene thus constitutes the major pathway for induction of PNT by transplacental exposure to an alkylating agent, but the low allelic representation of mutant neu in hamster PNT suggests a significant difference in mechanism by which the mutant oncogene acts in this species.
A graphene-based platform for single nucleotide polymorphism (SNP) genotyping.
Liu, Meng; Zhao, Huimin; Chen, Shuo; Yu, Hongtao; Zhang, Yaobin; Quan, Xie
2011-06-15
A facile, rapid, stable and sensitive approach for fluorescent detection of single nucleotide polymorphism (SNP) is designed based on DNA ligase reaction and π-stacking between the graphene and the nucleotide bases. In the presence of perfectly matched DNA, DNA ligase can catalyze the linkage of fluorescein amidite-labeled single-stranded DNA (ssDNA) and a phosphorylated ssDNA, and thus the formation of a stable duplex in high yield. However, the catalytic reaction cannot effectively carry out with one-base mismatched DNA target. In this case, we add graphene to the system in order to produce different quenching signals due to its different adsorption affinity for ssDNA and double-stranded DNA. Taking advantage of the unique surface property of graphene and the high discriminability of DNA ligase, the proposed protocol exhibits good performance in SNP genotyping. The results indicate that it is possible to accurately determine SNP with frequency as low as 2.6% within 40 min. Furthermore, the presented flexible strategy facilitates the development of other biosensing applications in the future. Copyright © 2011 Elsevier B.V. All rights reserved.
Weiss, S; Zankel, A; Lebuhn, M; Petrak, S; Somitsch, W; Guebitz, G M
2011-03-01
The colonisation of activated zeolites (i.e. clinoptilolites) as carriers for microorganisms involved in the biogas process was investigated. Zeolite particle sizes of 1.0-2.5mm were introduced to anaerobic laboratory batch-cultures and to continuously operated bioreactors during biogas production from grass silage. Incubation over 5-84 days led to the colonisation of zeolite surfaces in small batch-cultures (500 ml) and even in larger scaled and flow-through disturbed bioreactors (28 l). Morphological insights were obtained by using scanning electron microscopy (SEM). Single strand conformation polymorphism (SSCP) analysis based on amplification of bacterial and archaeal 16S rRNA fragments demonstrated structurally distinct populations preferring zeolite as operational environment. via sequence analysis conspicuous bands from SSCP patterns were identified. Populations immobilised on zeolite (e.g. Ruminofilibacter xylanolyticum) showed pronounced hydrolytic enzyme activity (xylanase) shortly after re-incubation in sterilised sludge on model substrate. In addition, the presence of methanogenic archaea on zeolite particles was demonstrated. Copyright © 2010 Elsevier Ltd. All rights reserved.
Ataxia with isolated vitamin E deficiency in four siblings.
Shorer, Z; Parvari, R; Bril, G; Sela, B A; Moses, S
1996-11-01
We describe 4 siblings of a consanguineous Bedouin family with Friedreich ataxia phenotype in whom low serum vitamin E levels without other indicators of fat malabsorption were detected. Although age of onset and some of the clinical features were alike in all 4 patients, the electrophysiological parameters were markedly abnormal in 2, but normal in the other 2. Erythrocytes revealed both membranous and intracellular evidence of oxidative damage. The mutations described in other families with ataxia with isolated vitamin E deficiency were not detectable, nor was an abnormal single-stranded conformation polymorphism pattern apparent in the three exons at the 3' region of the gene. Vitamin E administration in pharmacological doses improved the neurological condition in 2 patients and also corrected some of the patients' erythrocyte cell abnormalities. The finding of vitamin E deficiency in other cases of Friedreich ataxia phenotype may allow treatment at an early stage of the disease, when large dose Vitamin E therapy may reverse the neurological lesions.
Larivière-Gauthier, Guillaume; Quessy, Sylvain; Fournaise, Sylvain; Letellier, Ann; Fravalo, Philippe
2015-07-01
This study describes and measures the impact of different compositions and finishes of stainless steel used in equipment in the meat industry on the transfer of natural flora and selected pathogens from artificially contaminated pork skin. It is known that the adhesion to surfaces of Listeria monocytogenes and Salmonella, 2 pathogens frequently found in contaminated pork meat, depends on the nature and roughness of the surface. Our results show no statistically significant differences in microbial transfer regardless of the types of stainless steel considered, with the highest measured transfer difference being 0.18 log colony-forming units (CFUs)/800 cm(2). Moreover, no differences in total microbial community were observed after transfer on the 5 types of stainless steel using single-strand conformation polymorphism (SSCP). It was concluded that the different characteristics of the stainless steel tested did not affect the initial bacterial transfer in this study.
Guivier, Emmanuel; Galan, Maxime; Malé, Pierre-Jean G; Kallio, Eva R; Voutilainen, Liina; Henttonen, Heikki; Olsson, Gert E; Lundkvist, Ake; Tersago, Katrien; Augot, Denis; Cosson, Jean-François; Charbonnel, Nathalie
2010-10-01
We analysed the influence of MHC class II Dqa and Drb genes on Puumala virus (PUUV) infection in bank voles (Myodes glareolus). We considered voles sampled in five European localities or derived from a previous experiment that showed variable infection success of PUUV. The genetic variation observed in the Dqa and Drb genes was assessed by using single-strand conformation polymorphism and pyrosequencing methods, respectively. Patterns were compared with those obtained from 13 microsatellites. We revealed significant genetic differentiation between PUUV-seronegative and -seropositive bank voles sampled in wild populations, at the Drb gene only. The absence of genetic differentiation observed at neutral microsatellites confirmed the important role of selective pressures in shaping these Drb patterns. Also, we found no significant associations between infection success and MHC alleles among laboratory-colonized bank voles, which is explained by a loss of genetic variability that occurred during the captivity of these voles.
Kang, In-Nee; Musa, Maslinda; Harun, Fatimah; Junit, Sarni Mat
2010-02-01
The FOXE1 gene was screened for mutations in a cohort of 34 unrelated patients with congenital hypothyroidism, 14 of whom had thyroid dysgenesis and 18 were normal (the thyroid status for 2 patients was unknown). The entire coding region of the FOXE1 gene was PCR-amplified, then analyzed using single-stranded conformational polymorphism, followed by confirmation by direct DNA sequencing. DNA sequencing analysis revealed a heterozygous A>G transition at nucleotide position 394 in one of the patients. The nucleotide transition changed asparagine to aspartate at codon 132 in the highly conserved region of the forkhead DNA binding domain of the FOXE1 gene. This mutation was not detected in a total of 104 normal healthy individuals screened. The binding ability of the mutant FOXE1 protein to the human thyroperoxidase (TPO) promoter was slightly reduced compared with the wild-type FOXE1. The mutation also caused a 5% loss of TPO transcriptional activity.
p53 mutation and expression in lymphoma.
Adamson, D. J.; Thompson, W. D.; Dawson, A. A.; Bennett, B.; Haites, N. E.
1995-01-01
Mutation and abnormal expression of p53 was studied in 38 lymphomas [five Hodgkin's disease and 33 non-Hodgkin's lymphoma (NHL)]. CM1 polyclonal antibody was used to detect overexpression of p53. Three missense mutations were characterised in three cases of NHL after screening exons 5-8 of p53 of all the tumours with single-strand conformation polymorphism (SSCP) analysis. Only two out of three tumours with a missense mutation showed abnormal expression of p53 as measured by CM1. Conversely, seven out of nine tumours with positive CM1 staining had no point mutation demonstrated. Overexpression of p53 in the cases of NHL occurred in three out of twenty four low-grade tumours and five out of nine high-grade tumours (Kiel classification). The results suggest that abnormalities of p53 are commoner in high-grade than low-grade NHL, and that positive immunocytochemistry cannot be used to determine which tumours have mutations of p53. Images Figure 1 Figure 2 PMID:7599045
Molecular defects leading to human complement component C6 deficiency in an African-American family
Zhu, Z-B; Totemchokchyakarn, K; Atkinson, T P; Volanakis, J E
1998-01-01
Complement component C6 deficiency (C6D) was diagnosed in a 16-year-old African-American male with meningococcal meningitis. The patient's father and two brothers also had C6D, but gave no history of meningitis or other neisserial infection. By using exon-specific polymerase chain reaction (PCR)/single-strand conformation polymorphism as a screening step and nucleotide sequencing of target exons, we determined that the proband was a compound heterozygote for two C6 gene mutations. The first, 1195delC located in exon 7, is a novel mutation, while the second, 1936delG in exon 12, has been described before to cause C6D in an unrelated African-American individual. Both mutations result in premature termination codons and C6 null alleles. Allele-specific PCR indicated that the proband's two brothers also inherited the 1195delC mutation from their heterozygous mother and the 1936delG mutation from their homozygous father. PMID:9472666
Bartels, Melissa; French, Roy; Graybosch, Robert A; Tatineni, Satyanarayana
2016-05-01
An infectious cDNA clone of Triticum mosaic virus (TriMV) (genus Poacevirus; family Potyviridae) was used to establish three independent lineages in wheat to examine intra-host population diversity levels within protein 1 (P1) and coat protein (CP) cistrons over time. Genetic variation was assessed at passages 9, 18 and 24 by single-strand conformation polymorphism, followed by nucleotide sequencing. The founding P1 region genotype was retained at high frequencies in most lineage/passage populations, while the founding CP genotype disappeared after passage 18 in two lineages. We found that rare TriMV genotypes were present only transiently and lineages followed independent evolutionary trajectories, suggesting that genetic drift dominates TriMV evolution. These results further suggest that experimental populations of TriMV exhibit lower mutant frequencies than that of Wheat streak mosaic virus (genus Tritimovirus; family Potyviridae) in wheat. Nevertheless, there was evidence for parallel evolution at a synonymous site in the TriMV CP cistron. Published by Elsevier Inc.
Habouzit, Frédéric; Hamelin, Jérôme; Santa-Catalina, Gaëlle; Steyer, Jean-P; Bernet, Nicolas
2014-01-01
To evaluate the impact of the nature of the support material on its colonization by a methanogenic consortium, four substrata made of different materials: polyvinyl chloride, 2 polyethylene and polypropylene were tested during the start-up of lab-scale fixed-film reactors. The reactor performances were evaluated and compared together with the analysis of the biofilms. Biofilm growth was quantified and the structure of bacterial and archaeal communities were characterized by molecular fingerprinting profiles (capillary electrophoresis-single strand conformation polymorphism). The composition of the inoculum was shown to have a major impact on the bacterial composition of the biofilm, whatever the nature of the support material or the organic loading rate applied to the reactors during the start-up period. In contrast, the biofilm archaeal populations were independent of the inoculum used but highly dependent on the support material. Supports favouring Archaea colonization, the limiting factor in the overall process, should be preferred. PMID:24612643
Yang, Yuhong; Mu, Yunxiang; Zhao, Yu; Liu, Xinyu; Zhao, Lili; Wang, Junmei; Xie, Yonghong
2007-05-01
To investigate the association between the mutations in lipoprotein lipase gene and hypertriglyceridemia (HTG). The lipoprotein lipase (LPL) gene was screened for mutations in 386 Chinese subjects with (108 cases in the HTG group) or without HTG (278 cases in the control group), by single-strand conformation polymorphism (SSCP) analysis and DNA sequencing. One novel silent mutation L103L, one missense mutation P207L, three splicing mutations Int3/3'-ass/C(-6) --> T, and the common S447X polymorphism has been identified in the whole coding region and exon-intron junctions of the LPL gene were examined. Heterozygous P207L found in the HTG group was the first case reported in Asia and subsequently another P207L heterozygote was found in the proband's family, all of which suggested that P207L was one of the causes of familial combined hyperlipidemia, but was not so prevalent as that in French Canadian. Int3/3'-ass/C(-6) --> T was found in both groups in the present study although it was regarded as a pathogenic variant to HTG earlier on. Moreover about the beneficial polymorphism S447X, there was also some supportive evidence that the levels of triglycerides (TG) in S447X carriers were significantly lower than noncarriers in the subjects without HTG. The association between the LPL variants and HTG is quite complicated and versatile, genotyping of LPL in a larger-scale screening should be necessary and justifiable.
Vacca, G M; Dettori, M L; Balia, F; Luridiana, S; Mura, M C; Carcangiu, V; Pazzola, M
2013-09-01
The purpose was to analyze the growth hormone GH1/GH2-N and GH2-Z gene copies and to assess their possible association with milk traits in Sarda sheep. Two hundred multiparous lactating ewes were monitored. The two gene copies were amplified separately and each was used as template for a nested PCR, to investigate single strand conformation polymorphism (SSCP) of the 5'UTR, exon-1, exon-5 and 3'UTR DNA regions. SSCP analysis revealed marked differences in the number of polymorphic patterns between the two genes. Sequencing revealed five nucleotide changes at the GH1/GH2-N gene. Five nucleotide changes occurred at the GH2-Z gene: one was located in exon-5 (c.556G > A) and resulted in a putative amino acid substitution G186S. All the nucleotide changes were copy-specific, except c.*30delT, which was common to both GH1/GH2-N and GH2-Z. Variability in the promoter regions of each gene might have consequences on the expression level, due to the involvement in potential transcription factor binding sites. Both gene copies influenced milk yield. A correlation with milk protein and casein content was also evidenced. These results may have implications that make them useful for future breeding strategies in dairy sheep breeding.
Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange.
Borgogno, María V; Monti, Mariela R; Zhao, Weixing; Sung, Patrick; Argaraña, Carlos E; Pezza, Roberto J
2016-03-04
Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3' end of the initiating DNA strand have a small effect, whereas most mismatches near the 5' end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange*
Borgogno, María V.; Monti, Mariela R.; Zhao, Weixing; Sung, Patrick; Argaraña, Carlos E.; Pezza, Roberto J.
2016-01-01
Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3′ end of the initiating DNA strand have a small effect, whereas most mismatches near the 5′ end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity. PMID:26709229
Allosteric Models for Cooperative Polymerization of Linear Polymers
Miraldi, Emily R.; Thomas, Peter J.; Romberg, Laura
2008-01-01
In the cytoskeleton, unfavorable nucleation steps allow cells to regulate where, when, and how many polymers assemble. Nucleated polymerization is traditionally explained by a model in which multistranded polymers assemble cooperatively, whereas linear, single-stranded polymers do not. Recent data on the assembly of FtsZ, the bacterial homolog of tubulin, do not fit either category. FtsZ can polymerize into single-stranded protofilaments that are stable in the absence of lateral interactions, but that assemble cooperatively. We developed a model for cooperative polymerization that does not require polymers to be multistranded. Instead, a conformational change allows subunits in oligomers to associate with high affinity, whereas a lower-affinity conformation is favored in monomers. We derive equations for calculating polymer concentrations, subunit conformations, and the apparent affinity of subunits for polymer ends. Certain combinations of equilibrium constants produce the sharp critical concentrations characteristic of cooperative polymerization. In these cases, the low-affinity conformation predominates in monomers, whereas virtually all polymers are composed of high-affinity subunits. Our model predicts that the three routes to forming HH dimers all involve unstable intermediates, limiting nucleation. The mathematical framework developed here can represent allosteric assembly systems with a variety of biochemical interpretations, some of which can show cooperativity, and others of which cannot. PMID:18502809
Pant, Kiran; Anderson, Brian; Perdana, Hendrik; Malinowski, Matthew A.; Win, Aye T.; Williams, Mark C.
2018-01-01
The model single-stranded DNA binding protein of bacteriophage T4, gene 32 protein (gp32) has well-established roles in DNA replication, recombination, and repair. gp32 is a single-chain polypeptide consisting of three domains. Based on thermodynamics and kinetics measurements, we have proposed that gp32 can undergo a conformational change where the acidic C-terminal domain binds internally to or near the single-stranded (ss) DNA binding surface in the core (central) domain, blocking ssDNA interaction. To test this model, we have employed a variety of experimental approaches and gp32 variants to characterize this conformational change. Utilizing stopped-flow methods, the association kinetics of wild type and truncated forms of gp32 with ssDNA were measured. When the C-domain is present, the log-log plot of k vs. [NaCl] shows a positive slope, whereas when it is absent (*I protein), there is little rate change with salt concentration, as expected for this model.A gp32 variant lacking residues 292–296 within the C-domain, ΔPR201, displays kinetic properties intermediate between gp32 and *I. The single molecule force-induced DNA helix-destabilizing activitiesas well as the single- and double-stranded DNA affinities of ΔPR201 and gp32 truncated at residue 295 also fall between full-length protein and *I. Finally, chemical cross-linking of recombinant C-domain and gp32 lacking both N- and C-terminal domains is inhibited by increasing concentrations of a short single-stranded oligonucleotide, and the salt dependence of cross-linking mirrors that expected for the model. Taken together, these results provide the first evidence in support of this model that have been obtained through structural probes. PMID:29634784
Study on four polymorphs of bifendate based on X-ray crystallography.
Nie, Jinju; Yang, Dezhi; Hu, Kun; Lu, Yang
2016-05-01
Bifendate, a synthetic anti-hepatitis drug, exhibits polycrystalline mode phenomena with 2 polymorphs reported (forms A and B). Single crystals of the known crystalline form B and 3 new crystallosolvates involving bifendate solvated with tetrahydrofuran (C), dioxane (D), and pyridine (E) in a stoichiometric ratio of 1:1 were obtained and characterized by X-ray crystallography, thermal analysis, and Fourier transform infrared (FT-IR) spectroscopy. The differences in molecular conformation, intermolecular interaction and crystal packing arrangement for the four polymorphs were determined and the basis for the polymorphisms was investigated. The rotation of single bonds resulted in different orientations for the biphenyl, methyl ester and methoxyl groups. All guest solvent molecules interacted with the host molecule via an interesting intercalative mode along the [1 0 0] direction in the channel formed by the host molecules through weak aromatic stacking interactions or non-classical hydrogen bonds, of which the volume and planarity played an important role in the intercalation of the host with the guest. The incorporation of solvent-augmented rotation of the C-C bond of the biphenyl group had a striking effect on the host molecular conformation and contributed to the formation of bifendate polymorphs. Moreover, the simulated powder X-ray diffraction (PXRD) patterns for each form were calculated on the basis of the single-crystal data and proved to be unique. The single-crystal structures of the four crystalline forms are reported in this paper.
Characterizing polymorphic inversions in human genomes by single-cell sequencing
Sanders, Ashley D.; Hills, Mark; Porubský, David; Guryev, Victor; Falconer, Ester; Lansdorp, Peter M.
2016-01-01
Identifying genomic features that differ between individuals and cells can help uncover the functional variants that drive phenotypes and disease susceptibilities. For this, single-cell studies are paramount, as it becomes increasingly clear that the contribution of rare but functional cellular subpopulations is important for disease prognosis, management, and progression. Until now, studying these associations has been challenged by our inability to map structural rearrangements accurately and comprehensively. To overcome this, we coupled single-cell sequencing of DNA template strands (Strand-seq) with custom analysis software to rapidly discover, map, and genotype genomic rearrangements at high resolution. This allowed us to explore the distribution and frequency of inversions in a heterogeneous cell population, identify several polymorphic domains in complex regions of the genome, and locate rare alleles in the reference assembly. We then mapped the entire genomic complement of inversions within two unrelated individuals to characterize their distinct inversion profiles and built a nonredundant global reference of structural rearrangements in the human genome. The work described here provides a powerful new framework to study structural variation and genomic heterogeneity in single-cell samples, whether from individuals for population studies or tissue types for biomarker discovery. PMID:27472961
Meisburger, Steve P.; Sutton, Julie L.; Chen, Huimin; Pabit, Suzette A.; Kirmizialtin, Serdal; Elber, Ron; Pollack, Lois
2013-01-01
Nucleic acids are highly charged polyelectrolytes that interact strongly with salt ions. Rigid, base-paired regions are successfully described with worm like chain models, but non base-paired single stranded regions have fundamentally different polymer properties because of their greater flexibility. Recently, attention has turned to single stranded nucleic acids due to the growing recognition of their biological importance, as well as the availability of sophisticated experimental techniques sensitive to the conformation of individual molecules. We investigate polyelectrolyte properties of poly(dT), an important and widely studied model system for flexible single stranded nucleic acids, in physiologically important mixed mono- and di-valent salt. We report measurements of the form factor and interparticle interactions using SAXS, end to end distances using smFRET, and number of excess ions using ASAXS. We present a coarse-grained model that accounts for flexibility, excluded volume, and electrostatic interactions in these systems. Predictions of the model are validated against experiment. We also discuss the state of all-atom, explicit solvent Molecular Dynamics simulations of poly(dT), the next step in understanding the complexities of ion interactions with these highly charged and flexible polymers. PMID:23606337
Serag, Maged F.; Abadi, Maram; Habuchi, Satoshi
2014-01-01
Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields. PMID:25283876
Nam, Ki Hyun; Ding, Fran; Haitjema, Charles; Huang, Qingqiu; DeLisa, Matthew P; Ke, Ailong
2012-10-19
The CRISPR (clustered regularly interspaced short palindromic repeats) system is a prokaryotic RNA-based adaptive immune system against extrachromosomal genetic elements. Cas2 is a universally conserved core CRISPR-associated protein required for the acquisition of new spacers for CRISPR adaptation. It was previously characterized as an endoribonuclease with preference for single-stranded (ss)RNA. Here, we show using crystallography, mutagenesis, and isothermal titration calorimetry that the Bacillus halodurans Cas2 (Bha_Cas2) from the subtype I-C/Dvulg CRISPR instead possesses metal-dependent endonuclease activity against double-stranded (ds)DNA. This activity is consistent with its putative function in producing new spacers for insertion into the 5'-end of the CRISPR locus. Mutagenesis and isothermal titration calorimetry studies revealed that a single divalent metal ion (Mg(2+) or Mn(2+)), coordinated by a symmetric Asp pair in the Bha_Cas2 dimer, is involved in the catalysis. We envision that a pH-dependent conformational change switches Cas2 into a metal-binding competent conformation for catalysis. We further propose that the distinct substrate preferences among Cas2 proteins may be determined by the sequence and structure in the β1-α1 loop.
In-silico analysis for RNA-interference mechanism of α-synuclein to treat Parkinson's disease.
Seema, S; Seenivasagam, R; Hemavathi, K
2013-01-01
Parkinson's Disease (PD) causing mutations in α-synuclein gene are ALA30PRO, GLU46LYS and ALA53THR. The conformational changes in proteins with respect to all the three mutations were analysed. These were used to predict the structures of Short Interfering RNA (siRNA) antisense strand and siRNA region. The siRNA binds with the argonaute protein forming RNA Induced Silencing Complex (RISC). Then, siRNA antisense-strand was attached to RISC. The structure of dicer (RNase-III-enzyme) cleaves double-stranded RNA (dsRNA) into two siRNA-strands. Incorporation of single siRNA-strand into RISC guides to pair with the complementary α-synuclein target-messenger RNA (mRNA) thereby enabling it to cleave the target.
Ahmadi, Slahadin; Rostamzadeh, Jalal; Khosravi, Darya; Shariati, Parvin; Shakiba, Nadia
2013-12-15
Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) has an inhibitory function on T cells and is critical for the induction of peripheral tolerance. CTLA-4 +49 G allele affects the CTLA-4 function and has been reported to be correlated with a higher risk of various autoimmune diseases including type 1 diabetes (T1D). The present study was conducted to investigate the association between the polymorphism of the CTLA-4 exon 1+49 A/G and susceptibility to TID and type 2 diabetes (T2D) in Kurds living in Iranian Kurdistan. The+49 A/G polymorphism was analyzed in 60 patients with T1D, 56 patients with T2D and 107 control subjects using PCR Single-strand Conformation Polymorphism (SSCP) and restriction fragment length polymorphism methods. All studied populations (T1D, T2D and Controls) were in Hardy-Weinberg equilibrium (p, 0.39, 0.94 and 0.89, respectively). Both+49 G allele (p = 0. 015, OR = 1.86) and +49 A/G genotype frequencies (p = 0. 012, OR = 2.31) were significantly higher in T1D patients than control. There was significant over-representation of the G allele in female T1D patients. No significant differences in +49 G allele and +49 A/G genotype frequencies were found between T2D and control subjects. SSCP analysis did not show new mutation in the amplified segment. The results of this study indicate that CTLA-4+49 A/G gene polymorphism confers genetic susceptibility to T1D but not T2D in the Kurdish population living in Iranian Kurdistan and women carrying the +49 G allele are at greater risk of getting T1D than men having the G allele.
Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair.
Sterpone, Silvia; Cozzi, Renata
2010-07-25
It is well known that ionizing radiation (IR) can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs) of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER). In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer.
Mlakar, Simona Jurkovic; Ostanek, Barbara
2011-01-01
Gilbert's syndrome is the most common hereditary disorder of bilirubin metabolism. The causative mutation in Caucasians is almost exclusively a (TA) dinucleotide insertion in the UGT1A1 promoter. Affected individuals are homozygous for the variant promoter and have 7 TA repeats instead of 6. Promoters with 5 and 8 TA repeats also exist but are extremely rare in Caucasians. The aim of our study was to develop denaturing high-performance liquid chromatography (DHPLC) assay for genotyping UGT1A1(TA)n polymorphism and to compare it with a previously described single-strand conformation polymorphism (SSCP) assay. Fifty DNA samples with common genotypes ((TA)6/6, (TA)6/7, (TA)7/7) as well as 7 samples with one of the following rare genotypes- (TA)5/6, (TA)5/7, (TA)6/8 or (TA)7/8 were amplified by polymerase chain reaction (PCR) and genotyped by DHPLC using sizing mode. All samples were previously genotyped by SSCP assay which was validated by sequencing analysis. All samples with either common or rare genotypes showed completely concordant results between DHPLC and SSCP assays. Our results show that sizing DHPLC assay is more efficient compared to classical SSCP assay due to shorter time of genotyping analysis, ability of genotyping increased number of samples per day, higher robustness, reproducibility and cost-effectiveness with no loss of accuracy in detection of all UGT1A1(TA)n genotypes. We developed a new DHPLC assay which is suitable for accurate, automated, highthroughput, robust genotyping of all UGT1A1(TA)n polymorphism variants, compared to a labour intensive and time-consuming SSCP assay.
Tilborg, Anaëlle; Jacquemin, Denis; Norberg, Bernadette; Perpète, Eric; Michaux, Catherine; Wouters, Johan
2011-12-01
Pharmaceutical compounds are mostly developed as solid dosage forms containing a single-crystal form. It means that the selection of a particular crystal state for a given molecule is an important step for further clinical outlooks. In this context, piracetam, a pharmaceutical molecule known since the sixties for its nootropic properties, is considered in the present work. This molecule is analyzed using several experimental and theoretical approaches. First, the conformational space of the molecule has been systematically explored by performing a quantum mechanics scan of the two most relevant dihedral angles of the lateral chain. The predicted stable conformations have been compared to all the reported experimental geometries retrieved from the Cambridge Structural Database (CSD) covering polymorphs and cocrystals structures. In parallel, different batches of powders have been recrystallized. Under specific conditions, single crystals of polymorph (III) of piracetam have been obtained, an outcome confirmed by crystallographic analysis. © 2011 International Union of Crystallography. Printed in Singapore – all rights reserved.
DNA conformation on surfaces measured by fluorescence self-interference.
Moiseev, Lev; Unlü, M Selim; Swan, Anna K; Goldberg, Bennett B; Cantor, Charles R
2006-02-21
The conformation of DNA molecules tethered to the surface of a microarray may significantly affect the efficiency of hybridization. Although a number of methods have been applied to determine the structure of the DNA layer, they are not very sensitive to variations in the shape of DNA molecules. Here we describe the application of an interferometric technique called spectral self-interference fluorescence microscopy to the precise measurement of the average location of a fluorescent label in a DNA layer relative to the surface and thus determine specific information on the conformation of the surface-bound DNA molecules. Using spectral self-interference fluorescence microscopy, we have estimated the shape of coiled single-stranded DNA, the average tilt of double-stranded DNA of different lengths, and the amount of hybridization. The data provide important proofs of concept for the capabilities of novel optical surface analytical methods of the molecular disposition of DNA on surfaces. The determination of DNA conformations on surfaces and hybridization behavior provide information required to move DNA interfacial applications forward and thus impact emerging clinical and biotechnological fields.
Study on DNA Damage Induced by Neon Beam Irradiation in Saccharomyces Cerevisiae
NASA Astrophysics Data System (ADS)
Lu, Dong; Li, Wenjian; Wu, Xin; Wang, Jufang; Ma, Shuang; Liu, Qingfang; He, Jinyu; Jing, Xigang; Ding, Nan; Dai, Zhongying; Zhou, Jianping
2010-12-01
Yeast strain Saccharomyces cerevisiae was irradiated with different doses of 85 MeV/u 20Ne10+ to investigate DNA damage induced by heavy ion beam in eukaryotic microorganism. The survival rate, DNA double strand breaks (DSBs) and DNA polymorphic were tested after irradiation. The results showed that there were substantial differences in DNA between the control and irradiated samples. At the dose of 40 Gy, the yeast cell survival rate approached 50%, DNA double-strand breaks were barely detectable, and significant DNA polymorphism was observed. The alcohol dehydrogenase II gene was amplified and sequenced. It was observed that base changes in the mutant were mainly transversions of T→G and T→C. It can be concluded that heavy ion beam irradiation can lead to change in single gene and may be an effective way to induce mutation.
Absorption by DNA single strands of adenine isolated in vacuo: The role of multiple chromophores
NASA Astrophysics Data System (ADS)
Nielsen, Lisbeth Munksgaard; Pedersen, Sara Øvad; Kirketerp, Maj-Britt Suhr; Nielsen, Steen Brøndsted
2012-02-01
The degree of electronic coupling between DNA bases is a topic being up for much debate. Here we report on the intrinsic electronic properties of isolated DNA strands in vacuo free of solvent, which is a good starting point for high-level excited states calculations. Action spectra of DNA single strands of adenine reveal sign of exciton coupling between stacked bases from blueshifted absorption bands (˜3 nm) relative to that of the dAMP mononucleotide (one adenine base). The bands are blueshifted by about 10 nm compared to those of solvated strands, which is a shift similar to that for the adenine molecule and the dAMP mononucleotide. Desolvation has little effect on the bandwidth, which implies that inhomogenous broadening of the absorption bands in aqueous solution is of minor importance compared to, e.g., conformational disorder. Finally, at high photon energies, internal conversion competes with electron detachment since dissociation of the bare photoexcited ions on the microsecond time scale is measured.
Polymorphic design of DNA origami structures through mechanical control of modular components.
Lee, Chanseok; Lee, Jae Young; Kim, Do-Nyun
2017-12-12
Scaffolded DNA origami enables the bottom-up fabrication of diverse DNA nanostructures by designing hundreds of staple strands, comprised of complementary sequences to the specific binding locations of a scaffold strand. Despite its exceptionally high design flexibility, poor reusability of staples has been one of the major hurdles to fabricate assorted DNA constructs in an effective way. Here we provide a rational module-based design approach to create distinct bent shapes with controllable geometries and flexibilities from a single, reference set of staples. By revising the staple connectivity within the desired module, we can control the location, stiffness, and included angle of hinges precisely, enabling the construction of dozens of single- or multiple-hinge structures with the replacement of staple strands up to 12.8% only. Our design approach, combined with computational shape prediction and analysis, can provide a versatile and cost-effective procedure in the design of DNA origami shapes with stiffness-tunable units.
Shi, Chao; Ge, Yujie; Gu, Hongxi; Ma, Cuiping
2011-08-15
Single nucleotide polymorphism (SNP) genotyping is attracting extensive attentions owing to its direct connections with human diseases including cancers. Here, we have developed a highly sensitive chemiluminescence biosensor based on circular strand-displacement amplification and the separation by magnetic beads reducing the background signal for point mutation detection at room temperature. This method took advantage of both the T4 DNA ligase recognizing single-base mismatch with high selectivity and the strand-displacement reaction of polymerase to perform signal amplification. The detection limit of this method was 1.3 × 10(-16)M, which showed better sensitivity than that of most of those reported detection methods of SNP. Additionally, the magnetic beads as carrier of immobility was not only to reduce the background signal, but also may have potential apply in high through-put screening of SNP detection in human genome. Copyright © 2011 Elsevier B.V. All rights reserved.
van Grinsven, Bart; Vanden Bon, Natalie; Strauven, Hannelore; Grieten, Lars; Murib, Mohammed; Monroy, Kathia L Jiménez; Janssens, Stoffel D; Haenen, Ken; Schöning, Michael J; Vermeeren, Veronique; Ameloot, Marcel; Michiels, Luc; Thoelen, Ronald; De Ceuninck, Ward; Wagner, Patrick
2012-03-27
In this article, we report on the heat-transfer resistance at interfaces as a novel, denaturation-based method to detect single-nucleotide polymorphisms in DNA. We observed that a molecular brush of double-stranded DNA grafted onto synthetic diamond surfaces does not notably affect the heat-transfer resistance at the solid-to-liquid interface. In contrast to this, molecular brushes of single-stranded DNA cause, surprisingly, a substantially higher heat-transfer resistance and behave like a thermally insulating layer. This effect can be utilized to identify ds-DNA melting temperatures via the switching from low- to high heat-transfer resistance. The melting temperatures identified with this method for different DNA duplexes (29 base pairs without and with built-in mutations) correlate nicely with data calculated by modeling. The method is fast, label-free (without the need for fluorescent or radioactive markers), allows for repetitive measurements, and can also be extended toward array formats. Reference measurements by confocal fluorescence microscopy and impedance spectroscopy confirm that the switching of heat-transfer resistance upon denaturation is indeed related to the thermal on-chip denaturation of DNA. © 2012 American Chemical Society
Thermodynamic insights into 2-thiouridine-enhanced RNA hybridization
Larsen, Aaron T.; Fahrenbach, Albert C.; Sheng, Jia; Pian, Julia; Szostak, Jack W.
2015-01-01
Nucleobase modifications dramatically alter nucleic acid structure and thermodynamics. 2-thiouridine (s2U) is a modified nucleobase found in tRNAs and known to stabilize U:A base pairs and destabilize U:G wobble pairs. The recently reported crystal structures of s2U-containing RNA duplexes do not entirely explain the mechanisms responsible for the stabilizing effect of s2U or whether this effect is entropic or enthalpic in origin. We present here thermodynamic evaluations of duplex formation using ITC and UV thermal denaturation with RNA duplexes containing internal s2U:A and s2U:U pairs and their native counterparts. These results indicate that s2U stabilizes both duplexes. The stabilizing effect is entropic in origin and likely results from the s2U-induced preorganization of the single-stranded RNA prior to hybridization. The same preorganizing effect is likely responsible for structurally resolving the s2U:U pair-containing duplex into a single conformation with a well-defined H-bond geometry. We also evaluate the effect of s2U on single strand conformation using UV- and CD-monitored thermal denaturation and on nucleoside conformation using 1H NMR spectroscopy, MD and umbrella sampling. These results provide insights into the effects that nucleobase modification has on RNA structure and thermodynamics and inform efforts toward improving both ribozyme-catalyzed and nonenzymatic RNA copying. PMID:26240387
Reversible Regulation of Catalytic Activity of Gold Nanoparticles with DNA Nanomachines
NASA Astrophysics Data System (ADS)
Zhou, Peipei; Jia, Sisi; Pan, Dun; Wang, Lihua; Gao, Jimin; Lu, Jianxin; Shi, Jiye; Tang, Zisheng; Liu, Huajie
2015-09-01
Reversible catalysis regulation has gained much attention and traditional strategies utilized reversible ligand coordination for switching catalyst’s conformations. However, it remains challenging to regulate the catalytic activity of metal nanoparticle-based catalysts. Herein, we report a new DNA nanomachine-driven reversible nano-shield strategy for circumventing this problem. The basic idea is based on the fact that the conformational change of surface-attached DNA nanomachines will cause the variation of the exposed surface active area on metal nanoparticles. As a proof-of-concept study, we immobilized G-rich DNA strands on gold nanoparticles (AuNPs) which have glucose oxidase (GOx) like activity. Through the reversible conformational change of the G-rich DNA between a flexible single-stranded form and a compact G-quadruplex form, the catalytic activity of AuNPs has been regulated reversibly for several cycles. This strategy is reliable and robust, which demonstrated the possibility of reversibly adjusting catalytic activity with external surface coverage switching, rather than coordination interactions.
Nam, Ki Hyun; Ding, Fran; Haitjema, Charles; Huang, Qingqiu; DeLisa, Matthew P.; Ke, Ailong
2012-01-01
The CRISPR (clustered regularly interspaced short palindromic repeats) system is a prokaryotic RNA-based adaptive immune system against extrachromosomal genetic elements. Cas2 is a universally conserved core CRISPR-associated protein required for the acquisition of new spacers for CRISPR adaptation. It was previously characterized as an endoribonuclease with preference for single-stranded (ss)RNA. Here, we show using crystallography, mutagenesis, and isothermal titration calorimetry that the Bacillus halodurans Cas2 (Bha_Cas2) from the subtype I-C/Dvulg CRISPR instead possesses metal-dependent endonuclease activity against double-stranded (ds)DNA. This activity is consistent with its putative function in producing new spacers for insertion into the 5′-end of the CRISPR locus. Mutagenesis and isothermal titration calorimetry studies revealed that a single divalent metal ion (Mg2+ or Mn2+), coordinated by a symmetric Asp pair in the Bha_Cas2 dimer, is involved in the catalysis. We envision that a pH-dependent conformational change switches Cas2 into a metal-binding competent conformation for catalysis. We further propose that the distinct substrate preferences among Cas2 proteins may be determined by the sequence and structure in the β1–α1 loop. PMID:22942283
Musa, Hassan H; Cheng, Jin H; Bao, Wen B; Li, Bi C; Mekki, Dafaalla M; Chen, Guo H
2007-08-01
A total of 243 individuals from Red Jungle Fowl (Gallus gallus spadiceus), Rugao, Anka, Wenchang and Silikes chicken populations were used for polymorphism analysis in functional apoVLDL-II gene by Restriction fragment length polymorphism and single strand conformation polymorphism markers. The results show that Anka population has highest gene diversity and Shannon information index, while Red jungle fowl shows highest effective number of allele. In addition, the higher coefficient of genetic differentiation (Gst) across all loci in apoVLDL-II was indicating that high variation is proportioned among populations. As expected total gene diversity (Ht) has upper estimate compared with within population genetic diversity (Hs) across all loci. The mean Gst value across all loci was (0.194) indicating about 19.4% of total genetic variation could be explained by breeds differences, while the remaining 80.6% was accounted for differences among individuals. The average apoVLDL-II gene flow across all loci in five chicken populations was 1.189. The estimates of genetic identity and distance confirm that these genes are significantly different between genetically fat and lean population, because fat type breed Anka shows highest distance with the other Silikes and Rugao whish are genetically lean. In addition, Wenchang and Red jungle fowl were found more closely and genetically related than the other breeds with 49.4% bootstrapping percentages, then they were related to Silikes by 100% bootstrapping percentages followed by Rugao and finally all of them are related with exotic fat breed Anka.
Inclán, Mario; Guijarro, Lluis; Pont, Isabel; Frías, Juan C; Rotger, Carmen; Orvay, Francisca; Costa, Antoni; García-España, Enrique; Albelda, M Teresa
2017-11-13
The interaction of a polyazacyclophane ligand having an ethylamine pendant arm functionalized with an anthryl group (L), with the single-stranded polynucleotides polyA, polyG, polyU, and polyC as well as with the double-stranded polynucleotides polyA-polyU, poly(dAT) 2 , and poly(dGC) 2 has been followed by UV/Vis titration, steady state fluorescence spectroscopy, and thermal denaturation measurements. In the case of the single-stranded polynucleotides, the UV/Vis and fluorescence titrations permit to distinguish between sequences containing purine and pyrimidine bases. For the double-stranded polynucleotides the UV/Vis measurements show for all of them hypochromicity and bathochromic shifts. However, the fluorescence studies reveal that both polyA-polyU and poly(dAT) 2 induce a twofold increase in the fluorescence, whereas interaction of poly(dGC) 2 with the ligand L induces a quenching of the fluorescence. Cu 2+ modulates the interaction with the double-stranded polynucleotides due to the conformation changes that its coordination induces in compound L. In general, the spectroscopic studies show that intercalation seems to be blocked by the formation of the metal complex. All these features suggest the possibility of using compound L as a sequence-selective fluorescence probe. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zielenski, J.; Markiewicz, D.; Fujiwara, M.
1993-03-01
The Hutterite population is a genetic isolate with an increased incidence of cystic fibrosis (CF). Previously the authors identified three CF haplotypes defined by polymorphisms flanking the CF transmembrane conductance regulator (CFTR) gene. [Delta]F508 was present on one of the haplotypes in only 35% of CF chromosomes. They hypothesized that the other two CF haplotypes, one of which was the most common and the other of which is rare, each harbored different non-[Delta]F508 mutations. Single-strand conformation polymorphism analysis detected a missense mutation, M1101K, in both chromosomes of a Hutterite patient carrying the two non-[Delta]F508 haplotypes. M1101K appears to have originatedmore » on an uncommon CFTR allele and to be infrequent outside the Hutterite population. The presence of M1101K on two haplotypes is likely the result of a CFTR intragenic recombination which occurred since the founding, 10-12 generations ago, of the Hutterite population. The crossover was located between exons 14a and 17b, an interval of approximately 15 kbp. [Delta]F508 and M1101K accounted for all of the CF mutations in patients from 16 CF families representing the three subdivisions of the Hutterite population. 38 refs., 3 figs., 1 tab.« less
Castro-Prieto, Aines; Wachter, Bettina; Melzheimer, Joerg; Thalwitzer, Susanne; Sommer, Simone
2011-01-01
The genes of the major histocompatibility complex (MHC) are a key component of the mammalian immune system and have become important molecular markers for fitness-related genetic variation in wildlife populations. Currently, no information about the MHC sequence variation and constitution in African leopards exists. In this study, we isolated and characterized genetic variation at the adaptively most important region of MHC class I and MHC class II-DRB genes in 25 free-ranging African leopards from Namibia and investigated the mechanisms that generate and maintain MHC polymorphism in the species. Using single-stranded conformation polymorphism analysis and direct sequencing, we detected 6 MHC class I and 6 MHC class II-DRB sequences, which likely correspond to at least 3 MHC class I and 3 MHC class II-DRB loci. Amino acid sequence variation in both MHC classes was higher or similar in comparison to other reported felids. We found signatures of positive selection shaping the diversity of MHC class I and MHC class II-DRB loci during the evolutionary history of the species. A comparison of MHC class I and MHC class II-DRB sequences of the leopard to those of other felids revealed a trans-species mode of evolution. In addition, the evolutionary relationships of MHC class II-DRB sequences between African and Asian leopard subspecies are discussed.
Primary hyperoxaluria type 1: a cluster of new mutations in exon 7 of the AGXT gene.
von Schnakenburg, C; Rumsby, G
1997-06-01
Primary hyperoxaluria type 1 (PH1) is a severe autosomal recessive inborn error of glyoxylate metabolism caused by deficiency of the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase. This enzyme is encoded by the AGXT gene on chromosome 2q37.3. DNA samples from 79 PH1 patients were studied using single strand conformation polymorphism analysis to detect sequence variants, which were then characterised by direct sequencing and confirmed by restriction enzyme digestion. Four novel mutations were identified in exon 7 of AGXT: a point mutation T853C, which leads to a predicted Ile244Thr amino acid substitution, occurred in nine patients. Two other mutations in adjacent nucleotides, C819T and G820A, mutated the same codon at residue 233 from arginine to cysteine and histidine, respectively. The fourth mutation, G860A, introduced a stop codon at amino acid residue 246. Enzyme studies in these patients showed that AGT catalytic activity was either very low or absent and that little or no immunoreactive protein was present. Together with a new polymorphism in exon 11 (C1342A) these findings underline the genetic heterogeneity of the AGXT gene. The novel mutation T853C is the second most common mutation found to date with an allelic frequency of 9% and will therefore be of clinical importance for the diagnosis of PH1.
Primary hyperoxaluria type 1: a cluster of new mutations in exon 7 of the AGXT gene.
von Schnakenburg, C; Rumsby, G
1997-01-01
Primary hyperoxaluria type 1 (PH1) is a severe autosomal recessive inborn error of glyoxylate metabolism caused by deficiency of the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase. This enzyme is encoded by the AGXT gene on chromosome 2q37.3. DNA samples from 79 PH1 patients were studied using single strand conformation polymorphism analysis to detect sequence variants, which were then characterised by direct sequencing and confirmed by restriction enzyme digestion. Four novel mutations were identified in exon 7 of AGXT: a point mutation T853C, which leads to a predicted Ile244Thr amino acid substitution, occurred in nine patients. Two other mutations in adjacent nucleotides, C819T and G820A, mutated the same codon at residue 233 from arginine to cysteine and histidine, respectively. The fourth mutation, G860A, introduced a stop codon at amino acid residue 246. Enzyme studies in these patients showed that AGT catalytic activity was either very low or absent and that little or no immunoreactive protein was present. Together with a new polymorphism in exon 11 (C1342A) these findings underline the genetic heterogeneity of the AGXT gene. The novel mutation T853C is the second most common mutation found to date with an allelic frequency of 9% and will therefore be of clinical importance for the diagnosis of PH1. Images PMID:9192270
Yang, Q L; Huang, X Y; Kong, J J; Zhao, S G; Liu, L X; Gun, S B
2016-08-19
Piglet diarrhea is one of the primary factors that affects the benefits of the swine industry. Recent studies have shown that exon 2 of the swine leukocyte antigen-DQA gene is associated with piglet resistance to diarrhea; however, the contributions of additional exon coding regions of this gene remain unclear. Here, we detected and sequenced variants in the exon 3 region and examined their associations with diarrhea infection in 425 suckling piglets using the polymerase chain reaction-single-strand conformational polymorphism and sequencing analysis. The results revealed that exon 3 of the swine leukocyte antigen-DQA gene is highly polymorphic and pivotal to both diarrhea susceptibility and resistance in piglets. We identified 14 genotypes (AA, AB, BB, BC, CC, EE, EF, BE, BF, CF, DD, DH, GG, and GF) and eight alleles (A-H) that were generated by 14 nucleotide variants, eight of which were novel, and three nucleotide deletions. Statistical analyses revealed that the genotypes AB and EF were associated with resistance to diarrheal disease (P < 0.05), and the genotype DD may contribute to diarrhea susceptibility but was unique to Large White pigs (P > 0.05). These results elucidate the genetic and immunological background to piglet diarrhea, and provide useful information for resistance breeding programs.
Tria, Antje; Hiort, Olaf; Sinnecker, Gernot H G
2004-01-01
Defects in the steroid 5alpha-reductase type 2 (SRD5A2) activity cause decreased formation of dihydrotestosterone (DHT) from testosterone (T), resulting in defective masculinization of external genitalia; the T/DHT ratio is increased. We investigated 10 patients with elevated T/DHT ratios in whom mutations in the SRD5A2 and AR genes had been excluded to find out whether structural alterations of the SRD5A1 gene could contribute to their genital malformations. Single-strand conformation polymorphism analysis and direct sequencing were used to detect variations in the SRD5A1 gene of the patients and of 49 adult fertile men who served as controls. The sequence analysis of exon 3 of the SRD5A1 gene indicated an adenine-to-guanine change (ACA vs. ACG), both triplets encoding the amino acid residue threonine. The ACG sequence was detected in 57% of all subjects and was equally distributed in patients and controls. The T/DHT ratio was significantly higher in controls with the ACG variant as compared with those having the ACA variant. However, no particular sequence aberration was found in the SRD5A1 genes of either group. Mutant SRD5A1 isoenzyme does not seem to play a crucial role in the development of hypospadias. Copyright 2004 S. Karger AG, Basel
Fu, Mao; Cheng, Hua; Chen, Lihong; Wu, Bin; Cai, Mengyin; Xie, Ding; Fu, Zuzhi
2002-12-01
To investigate whether genetic variation in cocaine and amphetamine-regulated transcript (CART) gene might contribute to the genesis of type 2 diabetes. Screening for mutations in the entire coding region for the CART gene were performed with polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) in 180 normoglycemic control subjects and 221 patients with type 2 diabetes. (1) Adenine deletion was identified at position 1,457 nucleotide located at untranslation area of exon 3. In normal weight control, the frequencies of CART-A + and CART-A-alleles were 83.6% and 16.4% respectively. The frequencies of CART-A + A +, A + A-, A-A- genotype were 68.9%, 29.4% and 1.7% respectively. (2) In diabetic patients, the frequencies of CART-A + and A-alleles were 84.6% and 15.4% respectively; the frequencies of CART-A + A +, A + A-, A-A- genotype were 71.9%, 25.3% and 2.7% respectively. The frequency of A deletion of the CART gene in diabetic patients did not differ significantly from normoglycemic control subjects. (3) Diabetic patients with the A deletion had increased total cholesterol, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol. Polymorphism was found in the 3'-untranslated region (Delta A1457) of CART in Chinese. A deletion in CART is not associated with type 2 diabetes, but may contribute to dyslipidemia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumaz, N.; Drougard, C.; Sarasin, A.
1993-11-15
The UV component of sunlight is the major carcinogen involved in the etiology of skin cancers. The authors have studied the rare, hereditary syndrome xeroderma pigmentosum (XP), which is characterized by a very high incidence of cutaneous tumors on exposed skin at an early age, probably due to a deficiency in excision repair of UV-induced lesions. It is interesting to determine the UV mutation spectrum in XP skin tumors in order to correlate the absence of repair of specific DNA lesions and the initiation of skin tumors. The p53 gene is frequently mutated in human cancers and represents a goodmore » target for studying mutation spectra since there are >100 potential sites for phenotypic mutations. Using reverse transcription-PCR and single-strand conformation polymorphism to analyze >40 XP skin tumors (mainly basal and squamous cell carcinomas), the authors have found that 40% (17 out of 43) contained at least one point mutation on the p53 gene. All the mutations were located at dipyrimidine sites, essentially at CC sequences, which are hot spots for UV-induced DNA lesions. Sixty-one percent of these mutations were tandem CC [yields] TT mutations considered to be unique to UV-induced lesions; these mutations are not observed in internal human tumors. All the mutations, except two, must be due to translesion synthesis of unrepaired dipyrimidine lesions left on the nontranscribed strand. These results show the existence of preferential repair of UV lesions [either pyrimidine dimers or pyrimidine-pyrimidone (6-4) photoproducts] on the transcribed strand in human tissues.« less
Li, Chia-Lung; Yang, Wei-Zen; Shi, Zhonghao; Yuan, Hanna S
2018-05-01
Tudor staphylococcal nuclease (TSN) is an evolutionarily conserved ribonuclease in eukaryotes that is composed of five staphylococcal nuclease-like domains (SN1-SN5) and a Tudor domain. TSN degrades hyper-edited double-stranded RNA, including primary miRNA precursors containing multiple I•U and U•I pairs, and mature miRNA during miRNA decay. However, how TSN binds and degrades its RNA substrates remains unclear. Here, we show that the C. elegans TSN (cTSN) is a monomeric Ca 2+ -dependent ribonuclease, cleaving RNA chains at the 5'-side of the phosphodiester linkage to produce degraded fragments with 5'-hydroxyl and 3'-phosphate ends. cTSN degrades single-stranded RNA and double-stranded RNA containing mismatched base pairs, but is not restricted to those containing multiple I•U and U•I pairs. cTSN has at least two catalytic active sites located in the SN1 and SN3 domains, since mutations of the putative Ca 2+ -binding residues in these two domains strongly impaired its ribonuclease activity. We further show by small-angle X-ray scattering that rice osTSN has a flexible two-lobed structure with open to closed conformations, indicating that TSN may change its conformation upon RNA binding. We conclude that TSN is a structure-specific ribonuclease targeting not only single-stranded RNA, but also unstructured regions of double-stranded RNA. This study provides the molecular basis for how TSN cooperates with RNA editing to eliminate duplex RNA in cell defense, and how TSN selects and degrades RNA during microRNA decay. © 2018 Li et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hata, Kuniki; Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195; Urushibara, Ayumi
Highlights: •We report a novel mechanism of radiation protection of DNA by chemical activity of ascorbic acid. •The “chemical repair” of DNA damage was revealed using biochemical assay and chemical kinetics analysis. •We found that ascorbic acid significantly repairs precursors of nucleobase lesions and abasic sites. •However, ascorbic acid seldom repairs precursors of DNA-strand breaks. -- Abstract: We quantified the damage yields produced in plasmid DNA by γ-irradiation in the presence of low concentrations (10–100 μM) of ascorbic acid, which is a major antioxidant in living systems, to clarify whether it chemically repairs radiation damage in DNA. The yield ofmore » DNA single strand breaks induced by irradiation was analyzed with agarose gel electrophoresis as conformational changes in closed circular plasmids. Base lesions and abasic sites were also observed as additional conformational changes by treating irradiated samples with glycosylase proteins. By comparing the suppression efficiencies to the induction of each DNA lesion, in addition to scavenging of the OH radicals derived from water radiolysis, it was found that ascorbic acid promotes the chemical repair of precursors of AP-sites and base lesions more effectively than those of single strand breaks. We estimated the efficiency of the chemical repair of each lesion using a kinetic model. Approximately 50–60% of base lesions and AP-sites were repaired by 10 μM ascorbic acid, although strand breaks were largely unrepaired by ascorbic acid at low concentrations. The methods in this study will provide a route to understanding the mechanistic aspects of antioxidant activity in living systems.« less
The role of sarcomere gene mutations in patients with idiopathic dilated cardiomyopathy
Møller, Daniel Vega; Andersen, Paal Skytt; Hedley, Paula; Ersbøll, Mads Kristian; Bundgaard, Henning; Moolman-Smook, Johanna; Christiansen, Michael; Køber, Lars
2009-01-01
We investigated a Danish cohort of 31 unrelated patients with idiopathic dilated cardiomyopathy (IDC), to assess the role that mutations in sarcomere protein genes play in IDC. Patients were genetically screened by capillary electrophoresis single strand conformation polymorphism and subsequently by bidirectional DNA sequencing of conformers in the coding regions of MYH7, MYBPC3, TPM1, ACTC, MYL2, MYL3, TNNT2, CSRP3 and TNNI3. Eight probands carried disease-associated genetic variants (26%). In MYH7, three novel mutations were found; in MYBPC3, one novel variant and two known mutations were found; and in TNNT2, a known mutation was found. One proband was double heterozygous. We find evidence of phenotypic plasticity: three mutations described earlier as HCM causing were found in four cases of IDC, with no history of a hypertrophic phase. Furthermore, one pedigree presented with several cases of classic DCM as well as one case with left ventricular non-compaction. Disease-causing sarcomere gene mutations were found in about one-quarter of IDC patients, and seem to play an important role in the causation of the disease. The genetics is as complex as seen in HCM. Thus, our data suggest that a genetic work-up should include screening of the most prominent sarcomere genes even in the absence of a family history of the disease. PMID:19293840
NASA Astrophysics Data System (ADS)
Bocchinfuso, Gianfranco; Mazzuca, Claudia; Conflitti, Paolo; Cori, Davide; Coviello, Tommasina; Palleschi, Antonio
2016-09-01
Scleroglucan (Sclg) is a polysaccharide that exhibits a triple helix conformation (triplex), both in aqueous solution and in the solid state, which is lost in DMSO solution, at high temperature and at high pH values. The triplex conformation is characterized by a high rigidity, responsible of Sclg peculiar properties. Although the relative stability of triplex and single strand has already been investigated, different structural details are still missing. In the present study, we analyse the structural properties and the factors stabilizing the single chain and the triple helix of Sclg in different conditions. To this end, we simulated both systems in water and in DMSO. The triple helix has been also simulated in the presence of chemical damages on one of the three strands (to reproduce in silico the effect of sonication) or by inducing a partial unfolding of the triplex structure. The computational results have been compared with experimental evidences in which the triplex denaturation, at alkaline pH values, has been followed by monitoring the UV and CD spectra of Congo red, used as a probe molecule. Our results indicate that sonication breaks the Sclg chains without appreciably changing the stability of the other tracts of triple helix. The simulated perturbed or partially unfolded triplexes show a clear tendency to form less ordered aggregates. Finally, our simulations put in evidence an important role of the hydrophobic interactions both in the triplex stability and in the aggregation processes observed after induced denaturation.
Polymorphism of a new Mannich base - [-4-methyl-2-((4-(4-nitrophenyl)piperazin-1-yl)methyl)phenol
NASA Astrophysics Data System (ADS)
Ayeni, Ayowole O.; Watkins, Gareth M.; Hosten, Eric C.
2018-05-01
Two polymorphs (forms I and II) of a new Mannich base 4-methyl-2-((4-(4-nitrophenyl)piperazin-1-yl)methyl)phenol have been isolated and characterized by single crystal and powder (experimental and theoretical) X-ray diffraction, thermal analysis (differential scanning calorimetry), Fourier transform infrared spectroscopy. 1H and 13C nuclear magnetic resonance spectroscopy was employed in characterising the new Mannich base. Single crystal X-ray diffraction revealed that the two polymorphs contain different conformers of the Mannich base whose hydrogen bonding schemes and packing arrangements in their respective crystals are different. Thermal analysis led to the conclusion that the two polymorphs are enantiotropically related, with a transition temperature of 138.5 °C.
G-quadruplex formation in telomeres enhances POT1/TPP1 protection against RPA binding
Ray, Sujay; Bandaria, Jigar N.; Qureshi, Mohammad H.; Yildiz, Ahmet; Balci, Hamza
2014-01-01
Human telomeres terminate with a single-stranded 3′ G overhang, which can be recognized as a DNA damage site by replication protein A (RPA). The protection of telomeres (POT1)/POT1-interacting protein 1 (TPP1) heterodimer binds specifically to single-stranded telomeric DNA (ssTEL) and protects G overhangs against RPA binding. The G overhang spontaneously folds into various G-quadruplex (GQ) conformations. It remains unclear whether GQ formation affects the ability of POT1/TPP1 to compete against RPA to access ssTEL. Using single-molecule Förster resonance energy transfer, we showed that POT1 stably loads to a minimal DNA sequence adjacent to a folded GQ. At 150 mM K+, POT1 loading unfolds the antiparallel GQ, as the parallel conformation remains folded. POT1/TPP1 loading blocks RPA’s access to both folded and unfolded telomeres by two orders of magnitude. This protection is not observed at 150 mM Na+, in which ssTEL forms only a less-stable antiparallel GQ. These results suggest that GQ formation of telomeric overhangs may contribute to suppression of DNA damage signals. PMID:24516170
Ignacak, M; Starzyk, J; Dziatkowiak, H; Trzeciak, W H
2002-03-01
Molecular diagnostics of the LHR gene was conducted in a 5-year-old boy with clinical symptoms and hormonal profile typical of precocious puberty. His parents and 4 sisters were also diagnosed. Single-strand conformation polymorphism analysis under temperature gradient conditions (Multitemperature SSCP) of 3 overlapping fragments of exon 11 of LHR gene revealed a mutation in the fragment spanning nucleotides 1072 to 1804. This mutation was found in the patient, in his mother and in his 4 sisters, and was confirmed by digestion with the use of restriction enzyme Bbr Cl. Direct sequencing revealed a heterozygous T1193C transition in the DNA fragment of the patient and in one of the alleles of his mother's and sister's DNA. This mutation causes Met398Thr substitution in the second transmembrane helix and results in a constitutive activation of LH receptor. This is the second identical mutation detected in Poland and one of the 7 identified so far in the world population.
Adenylosuccinate lyase (ADSL) and infantile autism: Absence of previously reported point mutation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fon, E.A.; Sarrazin, J.; Rouleau, G.A.
Autism is a heterogeneous neuropsychiatric syndrome of unknown etiology. There is evidence that a deficiency in the enzyme adenylosuccinate lyase (ADSL), essential for de novo purine biosynthesis, could be involved in the pathogenesis of certain cases. A point mutation in the ADSL gene, resulting in a predicted serine-to-proline substitution and conferring structural instability to the mutant enzyme, has been reported previously in 3 affected siblings. In order to determine the prevalence of the mutation, we PCR-amplified the exon spanning the site of this mutation from the genomic DNA of patients fulfilling DSM-III-R criteria for autistic disorder. None of the 119more » patients tested were found to have this mutation. Furthermore, on preliminary screening using single-strand conformation polymorphism (SSCP), no novel mutations were detected in the coding sequence of four ADSL exons, spanning approximately 50% of the cDNA. In light of these findings, it appears that mutations in the ADSL gene represent a distinctly uncommon cause of autism. 12 refs., 2 figs.« less
Parvari, R; Shen, J; Hershkovitz, E; Chen, Y T; Moses, S W
1998-04-01
Glycogen storage disease type III (GSD III) is an autosomal recessive disease caused by the deficiency of glycogen debranching enzyme (AGL). We report the finding of two new mutations in a GSD IIIa Ashkenazi Jewish patient. Both mutations are insertion of an adenine into a stretch of 8 adenines towards the 3' end of the coding region, one at position 3904 (3904insA) in exon 30, the second at position 4214 (4214insA) in exon 32. The mutations cause frameshifts and premature terminations of the glycogen debranching enzyme, the first causing a frameshift at amino acid 1304, the second causing a frameshift at amino acid 1408 of the total of 1532. These mutations demonstrate the importance of the 125 amino acids at the carboxy-terminus of the debrancher enzyme for its activity and support the suggestion that the putative glycogen binding domain is located in the carboxy-terminus of the AGL. The mutations cause distinctive single-strand conformation polymorphism (SSCP) patterns enabling easy detection.
Thummajitsakul, Sirikul; Klinbunga, Sirawut; Sittipraneed, Siriporn
2011-08-01
Genetic diversity and population differentiation of the stingless bee Tetragonula pagdeni (Schwarz) was assessed using single-strand conformational polymorphism (SSCP) analysis of a large subunit of the ribosomal RNA gene (16S rRNA). High levels of genetic variation among individuals within each population (North, Northeast, Central, Prachuap Khiri Khan, Chumphon, and Peninsular Thailand) of T. pagdeni were observed. Analysis of molecular variance indicated significant genetic differentiation among the six geographic populations (Φ (PT) = 0.28, P < 0.001) and between samples collected from north and south of the Isthmus of Kra (Φ (PT) = 0.18, P < 0.001). In addition, Φ (PT) values between all pairwise comparisons were statistically significant (P < 0.01), indicating strong degrees of intraspecific population differentiation. Therefore, PCR-SSCP is a simple and cost-effective technique applicable for routine population genetic analyses in T. pagdeni and other stingless bees. The results also provide an important baseline for the conservation and management of this ecologically important species.
Bellavia, Daniele; Dimarco, Eufrosina; Naselli, Flores; Caradonna, Fabio
2013-10-01
We have previously reported a molecular and cytogenetic characterization of three different 5S rDNA clusters in the sea urchin Paracentrotus lividus and recently, demonstrated the presence of high heterogeneity in functional 5S rRNA. In this paper, we show some important distinctive data on 5S rRNA transcription for this organism. Using single strand conformation polymorphism (SSCP) analysis, we demonstrate the existence of two classes of 5S rRNA, one which is embryo-specific and encoded by the smallest (700 bp) cluster and the other which is expressed at every stage and encoded by longer clusters (900 and 950 bp). We also demonstrate that the embryo-specific class of 5S rRNA is expressed in oocytes and embryonic stages and is silenced in adult tissue and that this phenomenon appears to be due exclusively to DNA methylation, as indicated by sensitivity to 5-azacytidine, unlike Xenopus where this mechanism is necessary but not sufficient to maintain the silenced status. © 2013 Elsevier Inc. All rights reserved.
Bryan, Heather M; Sim, Kathrin A; Darimont, Chris T; Paquet, Paul C; Wagner, Brent; Muñoz-Fuentes, Violeta; Smits, Judit E; Chilton, Neil B
2010-01-01
First-stage nematode larvae with a dorsal-spine (DSL) were detected in five of 1,565 fecal samples from gray wolves (Canis lupus) collected in British Columbia, Canada, between 2005 and 2008. Molecular techniques were used to identify the DSL because it was not possible to determine their species identity using morphologic characters. The DSL were identified as Parelaphostrongylus odocoilei based on the results of single-strand conformation polymorphism (SSCP) analyses and DNA sequencing of the ribosomal DNA first and second internal transcribed spacers. Finding DSL of P. odocoilei in the feces of gray wolves was unexpected because P. odocoilei adults are parasites of cervids and bovids. The most likely explanation for the presence of DSL in wolf feces is that they were ingested along with the viscera of recently consumed prey. This was probably black-tailed deer (Odocoileus hemionus columbianus), which are known in the sampling area to be hosts of P. odocoilei. The present study demonstrates the use of SSCP and DNA sequencing for the identification, to the species level, of parasitic nematode larvae in feces.
Grover, Sandeep; Fishman, Gerald A; Stone, Edwin M
2004-10-01
To define ophthalmic findings in a family with autosomal dominant retinitis pigmentosa and a novel IMPDH1 gene mutation. Genetic and observational family study. Sixteen affected members of a family with autosomal dominant retinitis pigmentosa. Ophthalmic examination, including best-corrected visual acuity (VA), slit-lamp biomicroscopy, direct and indirect ophthalmoscopy, Goldmann kinetic perimetry, and electroretinography were performed. Deoxyribonucleic acid single-strand conformation polymorphism (SSCP) analysis was done. Abnormal polymerase chain reaction products identified by SSCP analysis were sequenced bidirectionally. All affected patients had the onset of night blindness within the first decade of life. Ocular findings were characterized by diffuse retinal pigmentary degenerative changes, marked restriction of peripheral visual fields, severe loss of VA, nondetectable electroretinography amplitudes, and a high frequency of posterior subcapsular lens opacities. Affected members were observed to harbor a novel IMPDH1 gene mutation. A novel IMPDH1 gene mutation (Arg231Pro) was associated with a severe form of autosomal dominant retinitis pigmentosa. Families affected with a severe form of this genetic subtype should be investigated for a mutation in the IMPDH1 gene.
Hestekin, Christa N.; Lin, Jennifer S.; Senderowicz, Lionel; Jakupciak, John P.; O’Connell, Catherine; Rademaker, Alfred; Barron, Annelise E.
2012-01-01
Knowledge of the genetic changes that lead to disease has grown and continues to grow at a rapid pace. However, there is a need for clinical devices that can be used routinely to translate this knowledge into the treatment of patients. Use in a clinical setting requires high sensitivity and specificity (>97%) in order to prevent misdiagnoses. Single strand conformational polymorphism (SSCP) and heteroduplex analysis (HA) are two DNA-based, complementary methods for mutation detection that are inexpensive and relatively easy to implement. However, both methods are most commonly detected by slab gel electrophoresis, which can be labor-intensive, time-consuming, and often the methods are unable to produce high sensitivity and specificity without the use of multiple analysis conditions. Here we demonstrate the first blinded study using microchip electrophoresis-SSCP/HA. We demonstrate the ability of microchip electrophoresis-SSCP/HA to detect with 98% sensitivity and specificity >100 samples from the p53 gene exons 5–9 in a blinded study in an analysis time of less than 10 minutes. PMID:22002021
Role of Sequence and Structural Polymorphism on the Mechanical Properties of Amyloid Fibrils
Kim, Jae In; Na, Sungsoo; Eom, Kilho
2014-01-01
Amyloid fibrils playing a critical role in disease expression, have recently been found to exhibit the excellent mechanical properties such as elastic modulus in the order of 10 GPa, which is comparable to that of other mechanical proteins such as microtubule, actin filament, and spider silk. These remarkable mechanical properties of amyloid fibrils are correlated with their functional role in disease expression. This suggests the importance in understanding how these excellent mechanical properties are originated through self-assembly process that may depend on the amino acid sequence. However, the sequence-structure-property relationship of amyloid fibrils has not been fully understood yet. In this work, we characterize the mechanical properties of human islet amyloid polypeptide (hIAPP) fibrils with respect to their molecular structures as well as their amino acid sequence by using all-atom explicit water molecular dynamics (MD) simulation. The simulation result suggests that the remarkable bending rigidity of amyloid fibrils can be achieved through a specific self-aggregation pattern such as antiparallel stacking of β strands (peptide chain). Moreover, we have shown that a single point mutation of hIAPP chain constituting a hIAPP fibril significantly affects the thermodynamic stability of hIAPP fibril formed by parallel stacking of peptide chain, and that a single point mutation results in a significant change in the bending rigidity of hIAPP fibrils formed by antiparallel stacking of β strands. This clearly elucidates the role of amino acid sequence on not only the equilibrium conformations of amyloid fibrils but also their mechanical properties. Our study sheds light on sequence-structure-property relationships of amyloid fibrils, which suggests that the mechanical properties of amyloid fibrils are encoded in their sequence-dependent molecular architecture. PMID:24551113
Hinney, Anke; Hoch, Anne; Geller, Frank; Schäfer, Helmut; Siegfried, Wolfgang; Goldschmidt, Hanspeter; Remschmidt, Helmut; Hebebrand, Johannes
2002-06-01
Ghrelin induces obesity via central and peripheral mechanisms. Administration of ghrelin leads to increased food intake and decreased fat utilisation in rodents. Ghrelin levels are decreased in obese individuals. Recently, a polymorphism (Arg-51-Gln) within the ghrelin gene (GHRL) was described to be associated with obesity. We screened the GHRL coding region in 215 extremely obese German Children and adolescents (study group 1) and 93 normal weight students (study group 2) by single strand conformation polymorphism analysis (SSCP). We found the two previously described single nucleotide polymorphisms (SNP: Arg-51-Gln and Leu-72-Met) in similar frequencies in study groups 1 and 2 (allele frequencies were: 0.019 and 0.016 for the 51-Gln allele and 0.091 and 0.086 for the 72-Met allele, respectively). Hence, we could not confirm the previous finding. Additionally, two novel variants were identified within the coding region: (1) We detected one healthy normal weight individual with a frameshift mutation (2bp deletion at codon 34). This frameshift mutation affects the coding region of the mature ghrelin. Hence, it is highly likely that the normal weight student is haplo-insufficient for ghrelin. (2) An A to T transversion leads to an amino acid exchange from Gln to Leu at amino acid position 90. The frequency of the 90-Leu allele was significantly higher in the extremely obese children and adolescents (0.063) than in the normal weight students (0.016; nominal p = 0.011). Additionally, we genotyped 134 underweight students and 44 normal weight adults for this SNP. Genotype frequencies were similar in extremely obese children and adolescents, underweight students and normal weight adults (p > 0.8). In conclusion, we identified four sequence variants in the coding region of the ghrelin gene in individuals belonging to different weight extremes. A frameshift mutation was detected in a normal weight individual. None of the variants seem to influence weight regulation.
Dynamic Conformations of Nucleosome Arrays in Solution from Small-Angle X-ray Scattering
NASA Astrophysics Data System (ADS)
Howell, Steven C.
Chromatin conformation and dynamics remains unsolved despite the critical role of the chromatin in fundamental genetic functions such as transcription, replication, and repair. At the molecular level, chromatin can be viewed as a linear array of nucleosomes, each consisting of 147 base pairs (bp) of double-stranded DNA (dsDNA) wrapped around a protein core and connected by 10 to 90 bp of linker dsDNA. Using small-angle X-ray scattering (SAXS), we investigated how the conformations of model nucleosome arrays in solution are modulated by ionic condition as well as the effect of linker histone proteins. To facilitate ensemble modeling of these SAXS measurements, we developed a simulation method that treats coarse-grained DNA as a Markov chain, then explores possible DNA conformations using Metropolis Monte Carlo (MC) sampling. This algorithm extends the functionality of SASSIE, a program used to model intrinsically disordered biological molecules, adding to the previous methods for simulating protein, carbohydrates, and single-stranded DNA. Our SAXS measurements of various nucleosome arrays together with the MC generated models provide valuable solution structure information identifying specific differences from the structure of crystallized arrays.
NASA Astrophysics Data System (ADS)
He, Lijie; Langlet, Michel; Stambouli, Valerie
2017-03-01
The conformation and topological properties of DNA single strand probe molecules attached on solid surfaces are important, notably for the performances of devices such as biosensors. Commonly, the DNA probes are tethered to the surface using external linkers such as NH2. In this study, the role and influence of this amino-linker on the immobilization way and conformation of DNA probes on Ag nanoparticle surface is emphasized using Surface Enhanced Raman Spectroscopy (SERS). We compare the SERS spectra and their reproducibility in the case of two groups of DNA polybase probes which are polyA, polyC, polyT, and polyG. In the first group, the polybases exhibit an external NH2 functional linker while in the second group the polybases are NH2-free. The results show that the reproducibility of SERS spectra is enhanced in the case of the first group. It leads us to propose two models of polybase conformation on Ag surface according to the presence or the absence of the external NH2 linker. In the presence of the NH2 external linker, the latter would act as a major anchoring point. As a result, the polybases are much ordered with a less random orientation than in the case of NH2-free polybases. Consequently, in view of further in situ hybridization for biosensing applications, it is strongly recommended to use NH2 linker functionalized DNA probes.
USDA-ARS?s Scientific Manuscript database
We needed to obtain an alternative to conventional cloning to generate high-quality DNA sequences from a variety of nuclear orthologs for phylogenetic studies in potato, to save time and money and to avoid problems typically encountered in cloning. We tested a variety of SSCP protocols to include pu...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagstrom, D.J.; Snow, K.; Yuan, Z.
1994-09-01
For single gene defects in which there are a variety of mutations with significant frequencies, it is a challenge to find an efficient and sensitive method for mutation detection. For example, although 70% to 75% of CF chromosomes in a North American Caucasian population have the mutation {delta}F508, more than 400 mutations (mostly single base pair substitutions) are represented on the remaining chromosomes. SSCP analysis is a relatively straightforward procedure and therefore suitable for routine use in a clinical laboratory. However, previous reports have demonstrated suboptimal sensitivity rates in screening for mutations. We have developed a novel set of conditionsmore » which greatly enhances sensitivity and efficiency of SSCP. Our protocol incorporates multiplex PCR, stepping of wattages during electrophoresis and increased salt concentration at the anode relative to the gel. To screen for mutations in the CFTR gene, three multiplex PCR reactions are performed using identical thermocycler parameters. Sizes of PCR products range from 441 bp to 196 bp: size differences of > 30 bp are necessary to ensure separation during electrophoresis. All PCR products are separated by electrophoresis at room temperature on a single gel containing 8% (37.5:1) polyacrylamide, 5% glycerol and 1x TBE. Using an anode buffer with increased salt (2x TBE) sharpens smaller sized bands, and stepping watts from 5W to 20W during electrophoresis enhances sensitivity. Positive controls were used to demonstrate that mutations could be detected. Other mutations or polymorphisms were verified by cycle sequencing of PCR products or by alternative PCR-based assays for the more common mutations. Thus, using 3 PCR reactions per patient and one gel condition, we are able to achieve a CF mutation detection rate of approximately 90% in a North American Caucasian population.« less
Glacial refugia and recolonization pathways in the brown seaweed Fucus serratus.
Hoarau, G; Coyer, J A; Veldsink, J H; Stam, W T; Olsen, J L
2007-09-01
The last glacial maximum (20,000-18,000 years ago) dramatically affected extant distributions of virtually all northern European biota. Locations of refugia and postglacial recolonization pathways were examined in Fucus serratus (Heterokontophyta; Fucaceae) using a highly variable intergenic spacer developed from the complete mitochondrial genome of Fucus vesiculosus. Over 1,500 samples from the entire range of F. serratus were analysed using fluorescent single strand conformation polymorphism. A total of 28 mtDNA haplotypes was identified and sequenced. Three refugia were recognized based on high haplotype diversities and the presence of endemic haplotypes: southwest Ireland, the northern Brittany-Hurd Deep area of the English Channel, and the northwest Iberian Peninsula. The Irish refugium was the source for a recolonization sweep involving a single haplotype via northern Scotland and throughout Scandinavia, whereas recolonization from the Brittany-Hurd Deep refugium was more limited, probably because of unsuitable soft-bottom habitat in the Bay of Biscay and along the Belgian and Dutch coasts. The Iberian populations reflect a remnant refugium at the present-day southern boundary of the species range. A generalized skyline plot suggested exponential population expansion beginning in the mid-Pleistocene with maximal growth during the Eems interglacial 128,000-67,000 years ago, implying that the last glacial maximum mainly shaped population distributions rather than demography.
Temperature-dependent conformations of exciton-coupled Cy3 dimers in double-stranded DNA
NASA Astrophysics Data System (ADS)
Kringle, Loni; Sawaya, Nicolas P. D.; Widom, Julia; Adams, Carson; Raymer, Michael G.; Aspuru-Guzik, Alán; Marcus, Andrew H.
2018-02-01
Understanding the properties of electronically interacting molecular chromophores, which involve internally coupled electronic-vibrational motions, is important to the spectroscopy of many biologically relevant systems. Here we apply linear absorption, circular dichroism, and two-dimensional fluorescence spectroscopy to study the polarized collective excitations of excitonically coupled cyanine dimers (Cy3)2 that are rigidly positioned within the opposing sugar-phosphate backbones of the double-stranded region of a double-stranded (ds)-single-stranded (ss) DNA fork construct. We show that the exciton-coupling strength of the (Cy3)2-DNA construct can be systematically varied with temperature below the ds-ss DNA denaturation transition. We interpret spectroscopic measurements in terms of the Holstein vibronic dimer model, from which we obtain information about the local conformation of the (Cy3)2 dimer, as well as the degree of static disorder experienced by the Cy3 monomer and the (Cy3)2 dimer probe locally within their respective DNA duplex environments. The properties of the (Cy3)2-DNA construct we determine suggest that it may be employed as a useful model system to test fundamental concepts of protein-DNA interactions and the role of electronic-vibrational coherence in electronic energy migration within exciton-coupled bio-molecular arrays.
A 1:2 crystalline complex of ApA:proflavine: a model for binding to single-stranded regions in RNA.
Neidle, S; Taylor, G; Sanderson, M
1978-01-01
The structure of a 1"2 complex of adenylyl-(3',5')-adenosine phosphate and proflavine hemisulfate has been determined using the methods of x-ray crystallography. Since the ApA does not form a mini double helix, it may serve as a model for the interaction of planar molecules with single stranded nucleic acids. The dinucleotide adopts an extended conformation with the adenines in adjacent molecules forming base pairs. A most unusual feature of the molecule is that it does not obey the "rigid nucleotide" concept although none of the torsion angles occur in energetically unfavourable regions. This is most probably due to the strong interactions between the proflavine and the oligonucleotide. PMID:724521
A Brownian motor mechanism of translocation and strand separation by hepatitis C virus helicase.
Levin, Mikhail K; Gurjar, Madhura; Patel, Smita S
2005-05-01
Helicases translocate along their nucleic acid substrates using the energy of ATP hydrolysis and by changing conformations of their nucleic acid-binding sites. Our goal is to characterize the conformational changes of hepatitis C virus (HCV) helicase at different stages of ATPase cycle and to determine how they lead to translocation. We have reported that ATP binding reduces HCV helicase affinity for nucleic acid. Now we identify the stage of the ATPase cycle responsible for translocation and unwinding. We show that a rapid directional movement occurs upon helicase binding to DNA in the absence of ATP, resulting in opening of several base pairs. We propose that HCV helicase translocates as a Brownian motor with a simple two-stroke cycle. The directional movement step is fueled by single-stranded DNA binding energy while ATP binding allows for a brief period of random movement that prepares the helicase for the next cycle.
Wiegand, Thomas; Cadalbert, Riccardo; Gardiennet, Carole; Timmins, Joanna; Terradot, Laurent; Böckmann, Anja; Meier, Beat H
2016-11-02
DnaB helicases are bacterial, ATP-driven enzymes that unwind double-stranded DNA during DNA replication. Herein, we study the sequential binding of the "non-hydrolysable" ATP analogue AMP-PNP and of single-stranded (ss) DNA to the dodecameric DnaB helicase from Helicobacter pylori using solid-state NMR. Phosphorus cross-polarization experiments monitor the binding of AMP-PNP and DNA to the helicase. 13 C chemical-shift perturbations (CSPs) are used to detect conformational changes in the protein upon binding. The helicase switches upon AMP-PNP addition into a conformation apt for ssDNA binding, and AMP-PNP is hydrolyzed and released upon binding of ssDNA. Our study sheds light on the conformational changes which are triggered by the interaction with AMP-PNP and are needed for ssDNA binding of H. pylori DnaB in vitro. They also demonstrate the level of detail solid-state NMR can provide for the characterization of protein-DNA interactions and the interplay with ATP or its analogues. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DNA polymorphism identity determination using flow cytometry
Nolan, John P.; White, P. Scott; Cai, Hong
2001-01-01
DNA polymorphism identity determination using flow cytometry. Primers designed to be immobilized on microspheres are allowed to anneal to the DNA strand under investigation, and are extended by either DNA polymerase using fluorescent dideoxynucleotides or ligated by DNA ligase to fluorescent reporter oligonucleotides. The fluorescence of either the dideoxynucleotide or the reporter oligonucleotide attached to the immobilized primer is measured by flow cytometry, thereby identifying the nucleotide polymorphism on the DNA strand.
Conformational polymorphs of a novel TCNQ derivative carrying an acetylene group
NASA Astrophysics Data System (ADS)
Iida, Yuki; Kataoka, Makoto; Okuno, Tsunehisa
2018-01-01
TCNQ is one of the most important organic acceptors and lots of its derivatives have been prepared. However the reports on their crystal polymorphs are limited to their complexes, and simple polymorphs of TCNQ derivatives are uncommon. We succeeded in preparation of a novel TCNQ derivative, 2,2'-(2-(prop-2-yn-1-yloxy)cyclohexa-2,5-diene-1,4-diylidene)dimalononitrile, having a propynyloxy group on a substituent. This compound was found to have two crystal polymorphs depending on a solvent for recrystallization. In polymorph I, dimeric hydrogen bonds are formed between acetylenic hydrogens and cyano nitrogens with the molecule in an inversion symmetry. While, in polymorph II, the molecules make intermolecular hydrogen bonds between acetylenic hydrogens and cyano nitrogens with the molecule in 21 symmetry, forming a hydrogen bonded molecular helix along the b axis. Besides patterns of the intermolecular hydrogen bonds, difference was recognized in conformation of propynyloxy group. The molecule has an anti conformation in polymorph I and a gauche conformation in polymorph II. DFT calculation indicates that the anti conformer is less stable than the gauche one. But a solvation model suggests the anti conformer is estimated to be more stable in a toluene solution.
Kotze, M J; De Villiers, J N; Groenewald, J Z; Rooney, R N; Loubser, O; Thiart, R; Oosthuizen, C J; van Niekerk, M M; Groenewald, I M; Retief, A E; Warnich, L
1998-10-01
A subset of probands from 11 South African families with clinical and/or biochemical features of variegate porphyria (VP), but without the known protoporphyrinogen oxidase (PPOX) gene defects identified previously in the South African population, were subjected to mutation analysis. Disease-related mutation(s) could not be identified after screening virtually the entire PPOX gene by heteroduplex single-strand conformation polymorphism analysis (HEX-SSCP), although three new sequence variants were detected in exon 1 of the gene in three normal controls. The presence of these single base changes at nucleotide positions 22 (C/G), 27 (C/A) and 127 (C/A), in addition to the known exon 1 polymorphisms I-26 and I-150, indicates that this untranslated region of the PPOX gene is particularly mutation-prone. Furthermore, microsatellite markers flanking the PPOX and alpha-1 antitrypsin (PI) gene, on chromosomes 1 and 14, respectively, were used to assess the probability of involvement of these loci in disease presentation. Common alleles transmitted from affected parent to affected child were determined where possible in the mutation-negative index cases. Allelic frequencies of these
Turgeon, J; Bernatchez, L
2001-04-01
The comparative molecular phylogeography of regional fish fauna has revealed the wide distribution of young clades in freshwater fishes of formerly glaciated areas as well as interspecific incongruences in their refugial origins and recolonization routes. In this study, we employed single-strand conformation polymorphism (SSCP) and sequence analyses to describe mitochondrial DNA (mtDNA) polymorphism among 27 populations of the lake cisco (Coregonus artedi) from its entire range of distribution in order to evaluate the hypothesis of dual glacial refuges proposed by Bernatchez & Dodson against the traditional view that this species is solely of Mississippian origin. Results indicate that this taxon is composed of two closely related groups that are widely distributed and intermixed over most of the sampled range. The estimated level of divergence (0.48%), the contrast in the geographical distribution of each group, as well as the general distribution of C. artedi in North America together support the hypothesis that one group dispersed from a Mississippian refuge via the proglacial lakes, while the other is of Atlantic origin and also took advantages of earlier dispersal routes towards eastern Hudson Bay drainages. However, the signal of past range fragmentation revealed by a nested clade analysis was weak, and did not allow to formally exclude the hypothesis of a single Mississippian origin for both lineages. Comparisons with the phylogeographic patterns of other Nearctic freshwater fishes suggest that the salinity tolerance and thermal sensitivity of lake cisco may have been determinant for its extensive postglacial dispersal. The presence or co-occurrence of sympatric or allopatric eco/morphotypes were not found to be necessarily associated with the presence of both haplotype groups.
Zhong, Daibin; Menge, David M; Temu, Emmanuel A; Chen, Hong; Yan, Guiyun
2006-07-01
The yellow fever mosquito Aedes aegypti has been the subject of extensive genetic research due to its medical importance and the ease with which it can be manipulated in the laboratory. A molecular genetic linkage map was constructed using 148 amplified fragment length polymorphism (AFLP) and six single-strand conformation polymorphism (SSCP) markers. Eighteen AFLP primer combinations were used to genotype two reciprocal F2 segregating populations. Each primer combination generated an average of 8.2 AFLP markers eligible for linkage mapping. The length of the integrated map was 180.9 cM, giving an average marker resolution of 1.2 cM. Composite interval mapping revealed a total of six QTL significantly affecting Plasmodium susceptibility in the two reciprocal crosses of Ae. aegypti. Two common QTL on linkage group 2 were identified in both crosses that had similar effects on the phenotype, and four QTL were unique to each cross. In one cross, the four main QTL accounted for 64% of the total phenotypic variance, and digenic epistasis explained 11.8% of the variance. In the second cross, the four main QTL explained 66% of the variance, and digenic epistasis accounted for 16% of the variance. The actions of these QTL were either dominance or underdominance. Our results indicated that at least three new QTL were mapped on chromosomes 1 and 3. The polygenic nature of susceptibility to P. gallinaceum and epistasis are important factors for significant variation within or among mosquito strains. The new map provides additional information useful for further genetic investigation, such as identification of new genes and positional cloning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondoh, T.; Hayashi, K.; Matsumoto, T.
1995-10-09
We report two sisters in a family representing manifestations of Wiskott-Aldrich syndrome (WAS), an X-linked immunodeficiency disorder. An elder sister had suffered from recurrent infections, small thrombocytopenic petechiae, purpura, and eczema for 7 years. The younger sister had the same manifestations as the elder sister`s for a 2-year period, and died of intracranial bleeding at age 2 years. All the laboratory data of the two patients were compatible with WAS, although they were females. Sialophorin analysis with the selective radioactive labeling method of this protein revealed that in the elder sister a 115-KD band that should be specific for sialophorinmore » was reduced in quantity, and instead an additional 135-KD fragment was present as a main band. Polymerase chain reaction (PCR) analysis of the sialophorin gene and single-strand conformation polymorphism (SSCP) analysis of the PCR product demonstrated that there were no detectable size-change nor electrophoretic mobility change in the DNA from both patients. The results indicated that their sialophorin gene structure might be normal. Studies on the mother-daughter transmission of X chromosome using a pERT84-MaeIII polymorphic marker mapped at Xp21 and HPRT gene polymorphism at Xq26 suggested that each sister had inherited a different X chromosome from the mother. Two explanations are plausible for the occurrence of the WAS in our patients: the WAS in the patients is attributable to an autosomal gene mutation which may regulate the sialophorin gene expression through the WAS gene, or, alternatively, the condition in this family is an autosomal recessive disorder separated etiologically from the X-linked WAS. 17 refs., 6 figs., 1 tab.« less
Yoshimoto, K; Tanaka, C; Moritani, M; Shimizu, E; Yamaoka, T; Yamada, S; Sano, T; Itakura, M
1999-02-01
RET is a receptor tyrosine kinase expressed in neuroendocrine cells and tumors. RET is activated by a ligand complex comprising glial cell line-derived neurotrophic factor (GDNF) and GDNF receptor-alpha (GDNFR-alpha). Activating mutations of the RET proto-oncogene were found in multiple endocrine neoplasia (MEN) 2 and in sporadic medullary thyroid carcinoma and pheochromocytoma of neuroendocrine origin. Mutations of the RET proto-oncogene and the glial cell line-derived neurotrophic factor (GDNF) gene were examined in human pituitary tumors. No mutations of the RET proto-oncogene including the cysteine-rich region or codon 768 and 918 in the tyrosine kinase domain were detected in 172 human pituitary adenomas either by polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) or by PCR-restriction fragment length polymorphism (RFLP). Further, somatic mutations of the GDNF gene in 33 human pituitary adenomas were not detected by PCR-SSCP. One polymorphism of the GDNF gene at codon 145 of TGC or TGT was observed in a prolactinoma. The RET proto-oncogene message was detected in a normal human pituitary gland or 4 of 4 human pituitary adenomas with reverse transcription (RT)-PCR, and in rodent pituitary tumor cell lines with Western blotting. The expression of GDNF gene was detected in 1 of 4 human somatotroph adenomas, 1 of 2 corticotroph adenomas, and 2 of 6 rodent pituitary tumor cell lines with RT-PCR. Based on these, it is concluded that somatic mutations of the RET proto-oncogene or the GDNF gene do not appear to play a major role in the pituitary tumorigenesis in examined tumors.
Wang, Yong; Chen, Hongwei; Han, Diangang; Chen, Ying; Muhatai, Gemingguli; Kurban, Tursunjan; Xing, Jinming; He, Jianzhong
2017-01-02
The adipocyte-type fatty acid-binding protein (A-FABP) is considered a candidate gene for fat metabolism; thus, it affects fat deposition in chickens. The present study was designed to examine the polymorphism and mRNA abundance of the A-FABP gene with intramuscular fat (IMF) in the pectoralis muscles (PM) and leg muscles (LM) of Three-yellow Chicken (TYC) and Hetian-black Chicken (HTBC). In total, 60 TYCs and 60 HTBCs were sacrificed using exsanguination at market age. The IMF contents of the PM and LM in the HTBC were significantly higher than those in the TYC. Three genotypes of the A-FABP gene first exon, AA, AB, and BB, were examined by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP), and a C51 T mutational site, which is a silent substitution mutation, was revealed. The IMF contents of the AA genotype in the PM of the HTBC were significantly higher than those in the AB genotype; thus, the C51 T mutable site is a gene marker for selecting a higher IMF content in the PM of the HTBC. The relative expression of the A-FABP mRNA in the LM of the HTBC, which was measured by quantitative real-time PCR, was significantly higher than in the TYC. A significantly positive association was detected between A-FABP expression with the IMF contents of the PM and LM of both the TYC and the HTBC. These results provide basic data that might be helpful to further research the role of the A-FABP gene in fat deposition and fatty acid metabolism in chickens.
Wang, Yong; He, Jianzhong; Yang, Wenxuan; Muhantay, Gemenggul; Chen, Ying; Xing, Jinming; Liu, Jianzhu
2015-01-01
This study aims to determine the polymorphism and mRNA expression pattern of the heart-type fatty acid-binding protein (H-FABP) gene and their association with intramuscular fat (IMF) content in the breast and leg muscles of Baicheng oil chicken (BOC). A total of 720 chickens, including 240 black Baicheng oil chicken (BBOC), 240 silky Baicheng oil chicken (SBOC), and 240 white Baicheng oil chicken (WBOC) were raised. Three genotypes of H-FABP gene second extron following AA, AB, and BB were detected by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) strategy. The G939A site created AA genotype and G956A site created BB genotype. The content of IMF in AA genotype in breast muscle of BBOC was significantly higher than that of AB (p = 0.0176) and the genotype in leg muscle of WBOC was significantly higher than that of AB (p = 0.0145). The G939A site could be taken as genetic marker for higher IMF content selecting for breast muscle of BBOC and leg muscle of WBOC. The relative mRNA expression of H-FABP was measured by real-time PCR at 30, 60, 90, and 120 d. The IMF content significantly increased with age in both muscles. The mRNA expression level of H-FABP significantly decreased with age in both muscles of the three types of chickens. Moreover, a significant negative correlation between H-FABP abundance and IMF content in the leg muscles of WBOC (p = 0.035) was observed. The mRNA expression of H-FABP negatively correlated with the IMF content in both breast and leg muscles of BOC sat slaughter time. PMID:26323394
ICTV Virus Taxonomy Profile: Avsunviroidae.
Di Serio, Francesco; Li, Shi-Fang; Matoušek, Jaroslav; Owens, Robert A; Pallás, Vicente; Randles, John W; Sano, Teruo; Verhoeven, Jacobus Th J; Vidalakis, Georgios; Flores, Ricardo; Ictv Report Consortium
2018-05-01
Members of the family Avsunviroidae have a single-stranded circular RNA genome that adopts a rod-like or branched conformation and can form, in the strands of either polarity, hammerhead ribozymes involved in their replication in plastids through a symmetrical RNA-RNA rolling-circle mechanism. These viroids lack the central conserved region typical of members of the family Pospiviroidae. The family Avsunviroidae includes three genera, Avsunviroid, Pelamoviroid and Elaviroid, with a total of four species. This is a summary of the ICTV Report on the taxonomy of the family Avsunviroidae, which is available at http://www.ictv.global/report/avsunviroidae.
Strand swapping regulates the iron-sulfur cluster in the diabetes drug target mitoNEET
Baxter, Elizabeth Leigh; Jennings, Patricia A.; Onuchic, José N.
2012-01-01
MitoNEET is a recently identified diabetes drug target that coordinates a transferable 2Fe-2S cluster, and additionally contains an unusual strand swap. In this manuscript, we use a dual basin structure-based model to predict and characterize the folding and functionality of strand swapping in mitoNEET. We demonstrate that a strand unswapped conformation is kinetically accessible and that multiple levels of control are employed to regulate the conformational dynamics of the system. Environmental factors such as temperature can shift route preference toward the unswapped pathway. Additionally we see that a region recently identified as contributing to frustration in folding acts as a regulatory hinge loop that modulates conformational balance. Interestingly, strand unswapping transfers strain specifically to cluster-coordinating residues, opening the cluster-coordinating pocket. Strengthening contacts within the cluster-coordinating pocket opens a new pathway between the swapped and unswapped conformation that utilizes cracking to bypass the unfolded basin. These results suggest that local control within distinct regions affect motions important in regulating mitoNEET’s 2Fe-2S clusters. PMID:22308404
Direct Single-Molecule Observation of Mode and Geometry of RecA-Mediated Homology Search.
Lee, Andrew J; Endo, Masayuki; Hobbs, Jamie K; Wälti, Christoph
2018-01-23
Genomic integrity, when compromised by accrued DNA lesions, is maintained through efficient repair via homologous recombination. For this process the ubiquitous recombinase A (RecA), and its homologues such as the human Rad51, are of central importance, able to align and exchange homologous sequences within single-stranded and double-stranded DNA in order to swap out defective regions. Here, we directly observe the widely debated mechanism of RecA homology searching at a single-molecule level using high-speed atomic force microscopy (HS-AFM) in combination with tailored DNA origami frames to present the reaction targets in a way suitable for AFM-imaging. We show that RecA nucleoprotein filaments move along DNA substrates via short-distance facilitated diffusions, or slides, interspersed with longer-distance random moves, or hops. Importantly, from the specific interaction geometry, we find that the double-stranded substrate DNA resides in the secondary DNA binding-site within the RecA nucleoprotein filament helical groove during the homology search. This work demonstrates that tailored DNA origami, in conjunction with HS-AFM, can be employed to reveal directly conformational and geometrical information on dynamic protein-DNA interactions which was previously inaccessible at an individual single-molecule level.
RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA.
Martinez, Hugo M; Maizel, Jacob V; Shapiro, Bruce A
2008-06-01
Using primary and secondary structure information of an RNA molecule, the program RNA2D3D automatically and rapidly produces a first-order approximation of a 3-dimensional conformation consistent with this information. Applicable to structures of arbitrary branching complexity and pseudoknot content, it features efficient interactive graphical editing for the removal of any overlaps introduced by the initial generating procedure and for making conformational changes favorable to targeted features and subsequent refinement. With emphasis on fast exploration of alternative 3D conformations, one may interactively add or delete base-pairs, adjacent stems can be coaxially stacked or unstacked, single strands can be shaped to accommodate special constraints, and arbitrary subsets can be defined and manipulated as rigid bodies. Compaction, whereby base stacking within stems is optimally extended into connecting single strands, is also available as a means of strategically making the structures more compact and revealing folding motifs. Subsequent refinement of the first-order approximation, of modifications, and for the imposing of tertiary constraints is assisted with standard energy refinement techniques. Previously determined coordinates for any part of the molecule are readily incorporated, and any part of the modeled structure can be output as a PDB or XYZ file. Illustrative applications in the areas of ribozymes, viral kissing loops, viral internal ribosome entry sites, and nanobiology are presented.
Semsarha, Farid; Raisali, Gholamreza; Goliaei, Bahram; Khalafi, Hossein
2016-05-01
In order to obtain the energy deposition pattern of ionizing radiation in the nanometric scale of genetic material and to investigate the different sensitivities of the DNA conformations, direct effects of (60)Co gamma rays on the three A, B and Z conformations of DNA have been studied. For this purpose, single-strand breaks (SSB), double-strand breaks (DSB), base damage (BD), hit probabilities and three microdosimetry quantities (imparted energy, mean chord length and lineal energy) in the mentioned DNA conformations have been calculated and compared by using GEometry ANd Tracking 4 (Geant4) toolkit. The results show that A-, B- and Z-DNA conformations have the highest yields of DSB (1.2 Gy(-1) Gbp(-1)), SSB (25.2 Gy(-1) Gbp(-1)) and BD (4.81 Gy(-1) Gbp(-1)), respectively. Based on the investigation of direct effects of radiation, it can be concluded that the DSB yield is largely correlated to the topological characteristics of DNA models, although the SSB yield is not. Moreover, according to the comparative results of the present study, a reliable candidate parameter for describing the relationship between DNA damage yields and geometry of DNA models in the theoretical radiation biology research studies would be the mean chord length (4 V/S) of the models.
Montagnani, Marco; Abrahamsson, Anna; Gälman, Cecilia; Eggertsen, Gösta; Marschall, Hanns-Ulrich; Ravaioli, Elisa; Einarsson, Curt; Dawson, Paul A
2006-01-01
The etiology of most cases of idiopathic bile acid malabsorption (IBAM) is unknown. In this study, a Swedish family with bile acid malabsorption in three consecutive generations was screened for mutations in the ileal apical sodium-bile acid cotransporter gene (ASBT; gene symbol, SLC10A2) and in the genes for several of the nuclear receptors known to be important for ASBT expression: the farnesoid X receptor (FXR) and peroxisome proliferator activated receptor alpha (PPARα). The patients presented with a clinical history of idiopathic chronic watery diarrhea, which was responsive to cholestyramine treatment and consistent with IBAM. Bile acid absorption was determined using 75Se-homocholic acid taurine (SeHCAT); bile acid synthesis was estimated by measuring the plasma levels of 7α-hydroxy-4-cholesten-3-one (C4). The ASBT, FXR, and PPARα genes in the affected and unaffected family members were analyzed using single stranded conformation polymorphism (SSCP), denaturing HPLC, and direct sequencing. No ASBT mutations were identified and the ASBT gene did not segregate with the bile acid malabsorption phenotype. Similarly, no mutations or polymorphisms were identified in the FXR or PPARα genes associated with the bile acid malabsorption phenotype. These studies indicate that the intestinal bile acid malabsorption in these patients cannot be attributed to defects in ASBT. In the absence of apparent ileal disease, alternative explanations such as accelerated transit through the small intestine may be responsible for the IBAM. PMID:17171805
Suganthalakshmi, Balasubbu; Shukla, Dhananjay; Rajendran, Anand; Kim, Ramasamy; Nallathambi, Jeyabalan; Sundaresan, Periasamy
2007-04-19
X-linked juvenile retinoschisis (XLRS) is the leading cause of macular degeneration in males. This condition is caused by mutations in the RS1 gene and is, characterized by schisis within the retina. The purpose of this study was to identify the mutations in the RS1 gene associated with XLRS in an Indian cohort. The coding region of RS1 was analyzed for mutations by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) and restriction fragment length polymorphism (RFLP) analysis in six unrelated subjects clinically diagnosed as having XLRS and in their available family members. Direct sequencing was performed for all samples that displayed an electrophoretic mobility shift in SSCP gel. Mutation analysis of RS1 gene revealed five mutations in exon 6 like c.574C>T, c.583A>G, c.608C>T, c.617G>A, and c.637C>T, respectively, among them four missense mutations, one nonsense mutation, and two novel sequence variations. These mutations were found in individuals who exhibited clinical features of bilateral foveal and peripheral retinoschisis consistent with XLRS. The mutations were absent in the 100 age matched control samples analyzed. This is the first report of mutations in RS1 to be associated with XLRS in the Indian population. The identified genetic variations, phenotype and genotype correlations were consistent with other studies. Identification of the causative mutation in patients with XLRS is helpful in confirming the diagnosis and in counseling of family members.
Programming Chemical Reaction Networks Using Intramolecular Conformational Motions of DNA.
Lai, Wei; Ren, Lei; Tang, Qian; Qu, Xiangmeng; Li, Jiang; Wang, Lihua; Li, Li; Fan, Chunhai; Pei, Hao
2018-06-22
The programmable regulation of chemical reaction networks (CRNs) represents a major challenge toward the development of complex molecular devices performing sophisticated motions and functions. Nevertheless, regulation of artificial CRNs is generally energy- and time-intensive as compared to natural regulation. Inspired by allosteric regulation in biological CRNs, we herein develop an intramolecular conformational motion strategy (InCMS) for programmable regulation of DNA CRNs. We design a DNA switch as the regulatory element to program the distance between the toehold and branch migration domain. The presence of multiple conformational transitions leads to wide-range kinetic regulation spanning over 4 orders of magnitude. Furthermore, the process of energy-cost-free strand exchange accompanied by conformational change discriminates single base mismatches. Our strategy thus provides a simple yet effective approach for dynamic programming of complex CRNs.
Single-molecule comparison of DNA Pol I activity with native and analog nucleotides
NASA Astrophysics Data System (ADS)
Gul, Osman; Olsen, Tivoli; Choi, Yongki; Corso, Brad; Weiss, Gregory; Collins, Philip
2014-03-01
DNA polymerases are critical enzymes for DNA replication, and because of their complex catalytic cycle they are excellent targets for investigation by single-molecule experimental techniques. Recently, we studied the Klenow fragment (KF) of DNA polymerase I using a label-free, electronic technique involving single KF molecules attached to carbon nanotube transistors. The electronic technique allowed long-duration monitoring of a single KF molecule while processing thousands of template strands. Processivity of up to 42 nucleotide bases was directly observed, and statistical analysis of the recordings determined key kinetic parameters for the enzyme's open and closed conformations. Subsequently, we have used the same technique to compare the incorporation of canonical nucleotides like dATP to analogs like 1-thio-2'-dATP. The analog had almost no affect on duration of the closed conformation, during which the nucleotide is incorporated. On the other hand, the analog increased the rate-limiting duration of the open conformation by almost 40%. We propose that the thiolated analog interferes with KF's recognition and binding, two key steps that determine its ensemble turnover rate.
A two-stage mechanism of viral RNA compaction revealed by single molecule fluorescence
Borodavka, Alexander; Tuma, Roman; Stockley, Peter G.
2013-01-01
Long RNAs often exist as multiple conformers in equilibrium. For the genomes of single-stranded RNA viruses, one of these conformers must include a compacted state allowing the RNA to be confined within the virion. We have used single molecule fluorescence correlation spectroscopy to monitor the conformations of viral genomes and sub-fragments in the absence and presence of coat proteins. Cognate RNA-coat protein interactions in two model viruses cause a rapid collapse in the hydrodynamic radii of their respective RNAs. This is caused by protein binding at multiple sites on the RNA that facilitate additional protein-protein contacts. The collapsed species recruit further coat proteins to complete capsid assembly with great efficiency and fidelity. The specificity in RNA-coat protein interactions seen at single-molecule concentrations reflects the packaging selectivity seen for such viruses in vivo. This contrasts with many in vitro reassembly measurements performed at much higher concentrations. RNA compaction by coat protein or polycation binding are distinct processes, implying that defined RNA-coat protein contacts are required for assembly. PMID:23422316
Programmable motion of DNA origami mechanisms.
Marras, Alexander E; Zhou, Lifeng; Su, Hai-Jun; Castro, Carlos E
2015-01-20
DNA origami enables the precise fabrication of nanoscale geometries. We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements. We first design, fabricate, and characterize the mechanical behavior of flexible DNA origami rotational and linear joints that integrate stiff double-stranded DNA components and flexible single-stranded DNA components to constrain motion along a single degree of freedom and demonstrate the ability to tune the flexibility and range of motion. Multiple joints with simple 1D motion were then integrated into higher order mechanisms. One mechanism is a crank-slider that couples rotational and linear motion, and the other is a Bennett linkage that moves between a compacted bundle and an expanded frame configuration with a constrained 3D motion path. Finally, we demonstrate distributed actuation of the linkage using DNA input strands to achieve reversible conformational changes of the entire structure on ∼ minute timescales. Our results demonstrate programmable motion of 2D and 3D DNA origami mechanisms constructed following a macroscopic machine design approach.
Programmable motion of DNA origami mechanisms
Marras, Alexander E.; Zhou, Lifeng; Su, Hai-Jun; Castro, Carlos E.
2015-01-01
DNA origami enables the precise fabrication of nanoscale geometries. We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements. We first design, fabricate, and characterize the mechanical behavior of flexible DNA origami rotational and linear joints that integrate stiff double-stranded DNA components and flexible single-stranded DNA components to constrain motion along a single degree of freedom and demonstrate the ability to tune the flexibility and range of motion. Multiple joints with simple 1D motion were then integrated into higher order mechanisms. One mechanism is a crank–slider that couples rotational and linear motion, and the other is a Bennett linkage that moves between a compacted bundle and an expanded frame configuration with a constrained 3D motion path. Finally, we demonstrate distributed actuation of the linkage using DNA input strands to achieve reversible conformational changes of the entire structure on ∼minute timescales. Our results demonstrate programmable motion of 2D and 3D DNA origami mechanisms constructed following a macroscopic machine design approach. PMID:25561550
Chen, Ren-Jin; Yang, Zhang-Ping; Mao, Yong-Jiang; Chen, Ying; Chang, Ling-Ling; Ji, De-Jun; Wu, Hai-Tao; Li, Yun-Long; Li, Rui
2010-12-01
The polymorphism of Interleukin-8 (IL8) gene were investigated for 610 Chinese Holstein cows of 30 bull families from a dairy farm in Shanghai using Polymerase Chain Reaction-Single Strand Conformation Polymorphism (PCR-SSCP) technique with a mixed animal model to verify the effects of the polymorphisms on some milk productive performance, tested day milk yield, tested day fat percentage, tested day milk protein percentage, 305 d corrected milk yield, 305 d milk fat yield, 305 d milk protein yield, and somatic cell score (SCS). The aim was to explore the significant molecular marker in practical dairy production. Three genotypes were identified and the genotypic frequencies of KK, KA, and AA were 0.187, 0.451, and 0.362, respectively. The gene frequencies of K and A were 0.412 and 0.588. The results showed highly significant (P < 0.01) association of IL8 mutations with tested day milk yield, 305 d milk protein yield, 305 d corrected milk yield and 305 d milk fat yield, SCS and tested day milk protein percentage (P < 0.05). However, no association (P > 0.05) with tested day milk fat percentage was recorded. The cows with KK genotype had higher tested day milk yield, 305 d milk protein yield, 305 d corrected milk yield and 305 d milk fat yield than those with AA and KA genotypes (P < 0.01). The least square mean of SCS for KK was significantly lower than that with AA and KA genotypes (P < 0.01). AA genotype was significant lower in tested day milk protein percentage than KK and KA genotypes (P < 0.05). The IL8 gene genetic diversity has a great genetic effect on milk traits and mastitis resistance and could be a useful genetic marker for Chinese Holstein breeding.
Conformational flexibility and packing plausibility of repaglinide polymorphs
NASA Astrophysics Data System (ADS)
Rani, Dimpy; Goyal, Parnika; Chadha, Renu
2018-04-01
The present manuscript highlights the structural insight into the repaglinide polymorphs. The experimental screening for the possible crystal forms were carried out using various solvents, which generated three forms. The crystal structure of Form II and III was determined using PXRD pattern whereas structural analysis of Form I has already been reported. Form I, II and II was found to exist in P212121, PNA21 and P21/c space groups respectively. Conformational analysis was performed to account the conformational flexibility of RPG. The obtained conformers were further utilized to obtain the information about the crystal packing pattern of RPG polymorphs by polymorph prediction module. The lattice energy landscape, depicting the relationship between lattice energy and density of the polymorphs has been obtained for various possible polymorphs. The experimentally isolated polymorphs were successfully fitted into lattice energy landscape.
Nina, Mafalda; Fonné-Pfister, Raymonde; Beaudegnies, Renaud; Chekatt, Habiba; Jung, Pierre M J; Murphy-Kessabi, Fiona; De Mesmaeker, Alain; Wendeborn, Sebastian
2005-04-27
Thermodynamic and structural properties of a chemically modified DNA-RNA hybrid in which a phosphodiester linkage is replaced by a neutral amide-3 linkage (3'-CH(2)-CONH-5') were investigated using UV melting experiments, molecular dynamics simulations in explicit water, and continuum solvent models. van't Hoff analysis of the experimental UV melting curves suggests that the significant increase of the thermodynamic stability of a 15-mer DNA-RNA with seven alternated amide-3 modifications (+11 degrees C) is mainly due to an increased binding enthalpy. To further evaluate the origin in the observed affinities differences, the electrostatic contribution to the binding free energy was calculated by solving the Poisson-Boltzmann equation numerically. The nonelectrostatic contribution was estimated as the product of a hydrophobic surface tension coefficient and the surface area that is buried upon double strand formation. Structures were taken from 10 ns molecular dynamics simulations computed in a consistent fashion using explicit solvent, counterions, and the particle-mesh Ewald procedure. The present preliminary thermodynamic study suggests that the favorable binding free energy of the amide-3 DNA single strand to the complementary RNA is equally driven by electrostatic and nonpolar contributions to the binding compared to their natural analogues. In addition, molecular dynamics simulations in explicit water were performed on an amide-3 DNA single strand and the corresponding natural DNA. Results from the conformations cluster analysis of the simulated amide-3 DNA single strand ensembles suggest that the 25% of the population sampled within 10 ns has a pre-organized conformation where the sugar C3' endo pucker is favored at the 3'-flanking nucleotides. These structural and thermodynamic features contribute to the understanding of the observed increased affinities of the amide-3 DNA-RNA hybrids at the microscopic level.
Crystal structure of an Okazaki fragment at 2-A resolution
NASA Technical Reports Server (NTRS)
Egli, M.; Usman, N.; Zhang, S. G.; Rich, A.
1992-01-01
In DNA replication, Okazaki fragments are formed as double-stranded intermediates during synthesis of the lagging strand. They are composed of the growing DNA strand primed by RNA and the template strand. The DNA oligonucleotide d(GGGTATACGC) and the chimeric RNA-DNA oligonucleotide r(GCG)d(TATACCC) were combined to form a synthetic Okazaki fragment and its three-dimensional structure was determined by x-ray crystallography. The fragment adopts an overall A-type conformation with 11 residues per turn. Although the base-pair geometry, particularly in the central TATA part, is distorted, there is no evidence for a transition from the A- to the B-type conformation at the junction between RNA.DNA hybrid and DNA duplex. The RNA trimer may, therefore, lock the complete fragment in an A-type conformation.
Kuttel, Michelle M; Timol, Zaheer; Ravenscroft, Neil
2017-06-29
The capsular polysaccharide is the main virulence factor in meningococcus. The capsular polysaccharides for meningococcal serogroups Y and W are almost identical polymers of hexose-sialic acid, suggesting the possibility of cross-protection between group Y and W vaccines. However, early studies indicated that they elicit different levels of cross-protection. Here we explore the conformations of the meningococcal Y and W polysaccharides with molecular dynamics simulations of three repeating unit oligosaccharide strands. We find differences in Y and W antigen conformation: the Y polysaccharide has a single dominant conformation, whereas W exhibits a family of conformations including the Y conformation. This result is supported by our NMR NOESY analysis, which indicates key close contacts for W that are not present in Y. These conformational differences provide an explanation for the different levels of cross-protection measured for the Y and W monovalent vaccines and the high group W responses observed in HibMenCY-TT vaccinees. Copyright © 2017 Elsevier Ltd. All rights reserved.
Antiparallel Self-Association of a γ,α-Hybrid Peptide: More Relevance of Weak Interactions.
Venugopalan, Paloth; Kishore, Raghuvansh
2015-08-01
To learn how a preorganized peptide-based molecular template, together with diverse weak non-covalent interactions, leads to an effective self-association, we investigated the conformational characteristics of a simple γ,α-hybrid model peptide, Boc-γ-Abz-Gly-OMe. The single-crystal X-ray diffraction analysis revealed the existence of a fully extended β-strand-like structure stabilized by two non-conventional C-H⋅⋅⋅O=C intramolecular H-bonds. The 2D (1) H NMR ROESY experiment led us to propose that the flat topology of the urethane-γ-Abz-amide moiety is predominantly preserved in a non-polar environment. The self-association of the energetically more favorable antiparallel β-strand-mimic in solid-state engenders an unusual 'flight of stairs' fabricated through face-to-face and edge-to-edge Ar⋅⋅⋅Ar interactions. In conjunction with FT-IR spectroscopic analysis in chloroform, we highlight that conformationally semi-rigid γ-Abz foldamer in appositely designed peptides may encourage unusual β-strand or β-sheet-like self-association and supramolecular organization stabilized via weak attractive forces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conformational plasticity of the Ebola virus matrix protein.
Radzimanowski, Jens; Effantin, Gregory; Weissenhorn, Winfried
2014-11-01
Filoviruses are the causative agents of a severe and often fatal hemorrhagic fever with repeated outbreaks in Africa. They are negative sense single stranded enveloped viruses that can cross species barriers from its natural host bats to primates including humans. The small size of the genome poses limits to viral adaption, which may be partially overcome by conformational plasticity. Here we review the different conformational states of the Ebola virus (EBOV) matrix protein VP40 that range from monomers, to dimers, hexamers, and RNA-bound octamers. This conformational plasticity that is required for the viral life cycle poses a unique opportunity for development of VP40 specific drugs. Furthermore, we compare the structure to homologous matrix protein structures from Paramyxoviruses and Bornaviruses and we predict that they do not only share the fold but also the conformational flexibility of EBOV VP40. © 2014 The Protein Society.
Conformational dimorphism of isochroman-1-ones in the solid state
NASA Astrophysics Data System (ADS)
Babjaková, Eva; Hanulíková, Barbora; Dastychová, Lenka; Kuřitka, Ivo; Nečas, Marek; Vícha, Robert
2014-12-01
Isochroman-1-one derivatives, which are relatives of coumarins, display a broad spectrum of biological activity; therefore, these derivatives attract the attention of chemists. A series of new isochroman-1-ones were prepared by the reaction of benzyl-derived Grignard reagents with acyl chlorides. All of the prepared compounds were characterized using single-crystal X-ray diffraction as well as FT-IR, NMR and MS techniques. Single crystal X-ray diffraction analysis revealed that the isochromanones can adopt two distinct conformations in the solid state. For one of the compounds, two polymorphs with unique forms crystallized separately under different temperatures. The packing of all of the examined crystals is stabilized via weak intramolecular C-H⋯π and/or C-H⋯O interactions. Although the closed conformer was predominantly found in the actual crystals, the open conformer is thermochemically more stable for all of the examined compounds according to DFT calculations.
Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, Myungkoo
1995-12-06
Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7β, 8α-dihydoxy-9α, l0α-epoxy-7,8,9, 10-tetrahydrobenzo[α]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, (-)-trans-, (+)-cis- and (-)-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( ~25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant π-π stacking interactions between the pyrenyl residues and the bases.more » Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G 2 or G 3 (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N 2-dG in DNA isolated from the skin of mice treated topically with benzo[α]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N 2-dG.« less
Wang, Dingzhong; Tang, Wei; Wu, Xiaojie; Wang, Xinyi; Chen, Gengjia; Chen, Qiang; Li, Na; Liu, Feng
2012-08-21
Toehold-mediated strand displacement reaction (SDR) is first introduced to develop a simple quartz crystal microbalance (QCM) biosensor without an enzyme or label at normal temperature for highly selective and sensitive detection of single-nucleotide polymorphism (SNP) in the p53 tumor suppressor gene. A hairpin capture probe with an external toehold is designed and immobilized on the gold electrode surface of QCM. A successive SDR is initiated by the target sequence hybridization with the toehold domain and ends with the unfolding of the capture probe. Finally, the open-loop capture probe hybridizes with the streptavidin-coupled reporter probe as an efficient mass amplifier to enhance the QCM signal. The proposed biosensor displays remarkable specificity to target the p53 gene fragment against single-base mutant sequences (e.g., the largest discrimination factor is 63 to C-C mismatch) and high sensitivity with the detection limit of 0.3 nM at 20 °C. As the crucial component of the fabricated biosensor for providing the high discrimination capability, the design rationale of the capture probe is further verified by fluorescence sensing and atomic force microscopy imaging. Additionally, a recovery of 84.1% is obtained when detecting the target sequence in spiked HeLa cells lysate, demonstrating the feasibility of employing this biosensor in detecting SNPs in biological samples.
Wang, Sha-Sha; Thornton, Keith; Kuhn, Andrew M; Nadeau, James G; Hellyer, Tobin J
2003-10-01
The BD ProbeTec ET System is based on isothermal strand displacement amplification (SDA) of target nucleic acid coupled with homogeneous real-time detection using fluorescent probes. We have developed a novel, rapid method using this platform that incorporates a universal detection format for identification of single-nucleotide polymorphisms (SNPs) and other genotypic variations. The system uses a common pair of fluorescent Detector Probes in conjunction with unlabeled allele-specific Adapter Primers and a universal buffer chemistry to permit analysis of multiple SNP loci under generic assay conditions. We used Detector Probes labeled with different dyes to facilitate differentiation of two alternative alleles in a single reaction with no postamplification manipulation. We analyzed six SNPs within the human beta(2)-adrenergic receptor (beta(2)AR) gene, using whole blood, buccal swabs, and urine samples, and compared results with those obtained by DNA sequencing. Unprocessed whole blood was successfully genotyped with as little as 0.1-1 micro L of sample per reaction. All six beta(2)AR assays were able to accommodate >/==" BORDER="0">20 micro L of unprocessed whole blood. For the 14 individuals tested, genotypes determined with the six beta(2)AR assays agreed with DNA sequencing results. SDA-based allelic differentiation on the BD ProbeTec ET System can detect SNPs rapidly, using whole blood, buccal swabs, or urine.
Nong, Guang; Chow, Virginia; Schmidt, Liesbeth M; Dickson, Don W; Preston, James F
2007-08-01
Pasteuria species are endospore-forming obligate bacterial parasites of soil-inhabiting nematodes and water-inhabiting cladocerans, e.g. water fleas, and are closely related to Bacillus spp. by 16S rRNA gene sequence. As naturally occurring bacteria, biotypes of Pasteuria penetrans are attractive candidates for the biocontrol of various Meloidogyne spp. (root-knot nematodes). Failure to culture these bacteria outside their hosts has prevented isolation of genomic DNA in quantities sufficient for identification of genes associated with host recognition and virulence. We have applied multiple-strand displacement amplification (MDA) to generate DNA for comparative genomics of biotypes exhibiting different host preferences. Using the genome of Bacillus subtilis as a paradigm, MDA allowed quantitative detection and sequencing of 12 marker genes from 2000 cells. Meloidogyne spp. infected with P. penetrans P20 or B4 contained single nucleotide polymorphisms (SNPs) in the spoIIAB gene that did not change the amino acid sequence, or that substituted amino acids with similar chemical properties. Individual nematodes infected with P. penetrans P20 or B4 contained SNPs in the spoIIAB gene sequenced in MDA-generated products. Detection of SNPs in the spoIIAB gene in a nematode indicates infection by more than one genotype, supporting the need to sequence genomes of Pasteuria spp. derived from single spore isolates.
Dynamics of single-stranded DNA tethered to a solid
NASA Astrophysics Data System (ADS)
Radiom, Milad; Paul, Mark R.; Ducker, William A.
2016-06-01
Tethering is used to deliver specific biological and industrial functions. For example, single-stranded DNA (ssDNA) is tethered to polymerases and long sequences of double-stranded DNA (dsDNA) during replication, and to solids in DNA microarrays. However, tethering ssDNA to a large object limits not only the available ssDNA conformations, but also the range of time-scales over which the mechanical responses of ssDNA are important. In this work we examine the effect of tethering by measurement of the mechanical response of ssDNA that is tethered at each end to two separate atomic force microscope cantilevers in aqueous solution. Thermal motion of the cantilevers drives the ends of the ssDNA chain at frequencies near 2 kHz. The presence of a tethered molecule makes a large difference to the asymmetric cross-correlation of two cantilevers, which enables resolution of the mechanical properties in our experiments. By analysis of the correlated motion of the cantilevers we extract the friction and stiffness of the ssDNA. We find that the measured friction is much larger than the friction that is usually associated with the unencumbered motion of ssDNA. We also find that the measured relaxation time, ∼30 μs, is much greater than prior measurements of the free-molecule relaxation time. We attribute the difference to the loss of conformational possibilities as a result of constraining the ends of the ssDNA.
Lemmens, Bennie; van Schendel, Robin; Tijsterman, Marcel
2015-01-01
Faithful DNA replication is vital to prevent disease-causing mutations, chromosomal aberrations and malignant transformation. However, accuracy conflicts with pace and flexibility and cells rely on specialized polymerases and helicases to ensure effective and timely replication of genomes that contain DNA lesions or secondary structures. If and how cells can tolerate a permanent barrier to replication is, however, unknown. Here we show that a single unresolved G-quadruplexed DNA structure can persist through multiple mitotic divisions without changing conformation. Failed replication across a G-quadruplex causes single-strand DNA gaps that give rise to DNA double-strand breaks in subsequent cell divisions, which are processed by polymerase theta (POLQ)-mediated alternative end joining. Lineage tracing experiments further reveal that persistent G-quadruplexes cause genetic heterogeneity during organ development. Our data demonstrate that a single lesion can cause multiple unique genomic rearrangements, and that alternative end joining enables cells to proliferate in the presence of mitotically inherited replication blocks. PMID:26563448
Lemmens, Bennie; van Schendel, Robin; Tijsterman, Marcel
2015-11-13
Faithful DNA replication is vital to prevent disease-causing mutations, chromosomal aberrations and malignant transformation. However, accuracy conflicts with pace and flexibility and cells rely on specialized polymerases and helicases to ensure effective and timely replication of genomes that contain DNA lesions or secondary structures. If and how cells can tolerate a permanent barrier to replication is, however, unknown. Here we show that a single unresolved G-quadruplexed DNA structure can persist through multiple mitotic divisions without changing conformation. Failed replication across a G-quadruplex causes single-strand DNA gaps that give rise to DNA double-strand breaks in subsequent cell divisions, which are processed by polymerase theta (POLQ)-mediated alternative end joining. Lineage tracing experiments further reveal that persistent G-quadruplexes cause genetic heterogeneity during organ development. Our data demonstrate that a single lesion can cause multiple unique genomic rearrangements, and that alternative end joining enables cells to proliferate in the presence of mitotically inherited replication blocks.
Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K
1982-10-25
When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides.
Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K
1982-01-01
When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides. PMID:7177848
Chahin, Nassif; Uribe, Laura A; Debela, Ahmed M; Thorimbert, Serge; Hasenknopf, Bernold; Ortiz, Mayreli; Katakis, Ioannis; O'Sullivan, Ciara K
2018-06-07
Polyoxymetalates (POMs) ([SiW 11 O 39 {Sn(CH 2 ) 2 CO)}] 4- and [P 2 W 17 O 61 {Sn(CH 2 ) 2 CO)}] 6- ) were used to modify dideoxynucleotides (ddNTPs) through amide bond formation, and applied to the multiplexed detection of single nucleotide polymorphisms (SNPs) in an electrochemical primer extension reaction. Each gold electrode of an array was functionalised with a short single stranded thiolated DNA probe, specifically designed to extend with the POM-ddNTP at the SNP site to be interrogated. The system was applied to the simultaneous detection of 4 SNPs within a single stranded 103-mer model target generated using asymmetric PCR, highlighting the potential of POM-ddNTPs for targeted, multiplexed SNP detection. The four DNA bases were successfully labelled with both ([SiW 11 O 39 {Sn(CH 2 ) 2 CO)}] 4- and [P 2 W 17 O 61 {Sn(CH 2 ) 2 CO)}] 6- ), and [SiW 11 O 39 {Sn(CH 2 ) 2 CO)}] 4- demonstrated to be the more suitable due to its single oxidation peak, which provides an unequivocal signal. The POM-ddNTP enzymatically incorporated to the DNA anchored to the surface was visualised by AFM using gold coated mica. The developed assay has been demonstrated to be highly reproducible, simple to carry out and with very low non-specific background signals. Future work will focus on applying the developed platform to the detection of SNPs associated with rifampicin resistance in real samples from patients suffering from tuberculosis. Copyright © 2018. Published by Elsevier B.V.
Castro-Prieto, Aines; Wachter, Bettina; Melzheimer, Joerg; Thalwitzer, Susanne; Hofer, Heribert; Sommer, Simone
2012-01-01
Background Genes under selection provide ecologically important information useful for conservation issues. Major histocompatibility complex (MHC) class I and II genes are essential for the immune defence against pathogens from intracellular (e.g. viruses) and extracellular (e.g. helminths) origins, respectively. Serosurvey studies in Namibian cheetahs (Acinonyx juabuts) revealed higher exposure to viral pathogens in individuals from north-central than east-central regions. Here we examined whether the observed differences in exposure to viruses influence the patterns of genetic variation and differentiation at MHC loci in 88 free-ranging Namibian cheetahs. Methodology/Principal Findings Genetic variation at MHC I and II loci was assessed through single-stranded conformation polymorphism (SSCP) analysis and sequencing. While the overall allelic diversity did not differ, we observed a high genetic differentiation at MHC class I loci between cheetahs from north-central and east-central Namibia. No such differentiation in MHC class II and neutral markers were found. Conclusions/Significance Our results suggest that MHC class I variation mirrors the variation in selection pressure imposed by viruses in free-ranging cheetahs across Namibian farmland. This is of high significance for future management and conservation programs of this species. PMID:23145096
Castro-Prieto, Aines; Wachter, Bettina; Melzheimer, Joerg; Thalwitzer, Susanne; Hofer, Heribert; Sommer, Simone
2012-01-01
Genes under selection provide ecologically important information useful for conservation issues. Major histocompatibility complex (MHC) class I and II genes are essential for the immune defence against pathogens from intracellular (e.g. viruses) and extracellular (e.g. helminths) origins, respectively. Serosurvey studies in Namibian cheetahs (Acinonyx juabuts) revealed higher exposure to viral pathogens in individuals from north-central than east-central regions. Here we examined whether the observed differences in exposure to viruses influence the patterns of genetic variation and differentiation at MHC loci in 88 free-ranging Namibian cheetahs. Genetic variation at MHC I and II loci was assessed through single-stranded conformation polymorphism (SSCP) analysis and sequencing. While the overall allelic diversity did not differ, we observed a high genetic differentiation at MHC class I loci between cheetahs from north-central and east-central Namibia. No such differentiation in MHC class II and neutral markers were found. Our results suggest that MHC class I variation mirrors the variation in selection pressure imposed by viruses in free-ranging cheetahs across Namibian farmland. This is of high significance for future management and conservation programs of this species.
Sato, Y; Sugie, R; Tsuchiya, B; Kameya, T; Natori, M; Mukai, K
2001-12-01
To obtain an adequate quality and quantity of DNA from formalin-fixed and paraffin-embedded tissue, six different DNA extraction methods were compared. Four methods used deparaffinization by xylene followed by proteinase K digestion and phenol-chloroform extraction. The temperature of the different steps was changed to obtain higher yields and improved quality of extracted DNA. The remaining two methods used microwave heating for deparaffinization. The best DNA extraction method consisted of deparaffinization by microwave irradiation, protein digestion with proteinase K at 48 degrees C overnight, and no further purification steps. By this method, the highest DNA yield was obtained and the amplification of a 989-base pair beta-globin gene fragment was achieved. Furthermore, DNA extracted by means of this procedure from five gastric carcinomas was successfully used for single strand conformation polymorphism and direct sequencing assays of the beta-catenin gene. Because the microwave-based DNA extraction method presented here is simple, has a lower contamination risk, and results in a higher yield of DNA compared with the ordinary organic chemical reagent-based extraction method, it is considered applicable to various clinical and basic fields.
Onishi, Mariko; Sokuza, Yui; Nishikawa, Tomoki; Mori, Chiharu; Uwataki, Kimiko; Honoki, Kanya; Tsujiuchi, Toshifumi
2007-10-12
Mutations of the mitochondria DNA (mtDNA) displacement loop (D-loop) were investigated to clarify different changes of exogenous and endogenous liver carcinogenesis in rats. We induced hepatocellular carcinomas (HCCs) in rats with N-nitrosodiethylamine (DEN) and a choline-deficient l-amino acid-defined (CDAA) diet. DNAs were extracted from 10 HCCs induced by DEN and 10 HCCs induced by the CDAA diet. To identify mutations in mtDNA D-loop, polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) analysis, followed by nucleotide sequencing, was performed. Mutations were detected in 5 out of 10 HCCs (50%) induced by DEN. Four out of 5 mutations were G/C to A/T transitions at positions 15707, 15717, 15930, and 16087, and one T/A to C/G transition at position 15559. By contrast, no mutations were found in 10 HCCs induced by the CDAA diet. These results demonstrated that mutations in mtDNA D-loop occur in rat HCCs induced by DEN but not by the CDAA diet, suggesting that mtDNA D-loop is a target of exogenous liver carcinogenesis in rats.
Ratering, S.; Kramer, I.; Schmidt, M.; Zerr, W.; Schnell, S.
2012-01-01
In the present study, bacterial communities in 200-liter biogas reactors containing liquid manure consecutively fed with casein, starch, and cream were investigated over a period of up to 33 days. A 16S rRNA gene clone library identified Bacteroidetes and Firmicutes as the most abundant bacterial groups in the starting material, at 58.9% and 30.1% of sequences, respectively. The community development of both groups was monitored by real-time PCR and single-strand conformation polymorphism (SSCP) analysis. The Firmicutes and Bacteroidetes communities were unexpectedly stable and hardly influenced by batch-feeding events. The continuous feeding of starch led to community shifts that nevertheless contributed to a stable reactor performance. A longer starving period and a change in the pH value resulted in further community shifts within the Bacteroidetes but did not influence the Firmicutes. Predominant DNA bands from SSCP gels were cloned and sequenced. Sequences related to Peptococcaceae, Cytophagales, and Petrimonas sulfuriphila were found in all samples from all experiments. Real-time PCR demonstrated the abundance of members of the phylum Bacteroidetes and also reflected changes in gene copy numbers in conjunction with a changing pH value and acetate accumulation. PMID:22247168
An, Choa; Takahashi, Hajime; Kimura, Bon; Kuda, Takashi
2010-08-30
The bacterial flora of two Japanese traditional fermented fish products, aji-narezushi (salted and long-fermented horse mackerel (Trachurus japonicas) with rice) and iwashi-nukazuke (salted and long-fermented sardine (Sardinops melanostica) with rice bran), was analysed using non-culture-based polymerase chain reaction (PCR) denaturing gradient gel electrophoresis (DGGE) and culture-based PCR single-strand conformation polymorphism (SSCP) methods. Viable plate counts in aji-narezushi and iwashi-nukazuke were about 6.3-6.6 and 5.7-6.9 log colony-forming units g(-1) respectively. In the PCR-DGGE analysis, Lactobacillus acidipiscis was detected as the predominant bacterium in two of three aji-narezushi samples, while Lactobacillus versmoldensis was predominant in the third sample. By the PCR-SSCP method, Lb. acidipiscis and Lactobacillus plantarum were isolated as the predominant bacteria, while Lb. versmoldensis was not detected. The predominant bacterium in two of three iwashi-nukazuke samples was Tetragenococcus muriaticus, while Tetragenococcus halophilus was predominant in the third sample. The results suggest that the detection of some predominant lactic acid bacteria species in fermented fish by cultivation methods is difficult. Copyright (c) 2010 Society of Chemical Industry.
Novel application of the MSSCP method in biodiversity studies.
Tomczyk-Żak, Karolina; Kaczanowski, Szymon; Górecka, Magdalena; Zielenkiewicz, Urszula
2012-02-01
Analysis of 16S rRNA sequence diversity is widely performed for characterizing the biodiversity of microbial samples. The number of determined sequences has a considerable impact on complete results. Although the cost of mass sequencing is decreasing, it is often still too high for individual projects. We applied the multi-temperature single-strand conformational polymorphism (MSSCP) method to decrease the number of analysed sequences. This was a novel application of this method. As a control, the same sample was analysed using random sequencing. In this paper, we adapted the MSSCP technique for screening of unique sequences of the 16S rRNA gene library and bacterial strains isolated from biofilms growing on the walls of an ancient gold mine in Poland and determined whether the results obtained by both methods differed and whether random sequencing could be replaced by MSSCP. Although it was biased towards the detection of rare sequences in the samples, the qualitative results of MSSCP were not different than those of random sequencing. Unambiguous discrimination of unique clones and strains creates an opportunity to effectively estimate the biodiversity of natural communities, especially in populations which are numerous but species poor. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hestekin, Christa N; Lin, Jennifer S; Senderowicz, Lionel; Jakupciak, John P; O'Connell, Catherine; Rademaker, Alfred; Barron, Annelise E
2011-11-01
Knowledge of the genetic changes that lead to disease has grown and continues to grow at a rapid pace. However, there is a need for clinical devices that can be used routinely to translate this knowledge into the treatment of patients. Use in a clinical setting requires high sensitivity and specificity (>97%) in order to prevent misdiagnoses. Single-strand conformational polymorphism (SSCP) and heteroduplex analysis (HA) are two DNA-based, complementary methods for mutation detection that are inexpensive and relatively easy to implement. However, both methods are most commonly detected by slab gel electrophoresis, which can be labor-intensive, time-consuming, and often the methods are unable to produce high sensitivity and specificity without the use of multiple analysis conditions. Here, we demonstrate the first blinded study using microchip electrophoresis (ME)-SSCP/HA. We demonstrate the ability of ME-SSCP/HA to detect with 98% sensitivity and specificity >100 samples from the p53 gene exons 5-9 in a blinded study in an analysis time of <10 min. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Genetic characterisation of Taenia multiceps cysts from ruminants in Greece.
Al-Riyami, Shumoos; Ioannidou, Evi; Koehler, Anson V; Hussain, Muhammad H; Al-Rawahi, Abdulmajeed H; Giadinis, Nektarios D; Lafi, Shawkat Q; Papadopoulos, Elias; Jabbar, Abdul
2016-03-01
This study was designed to genetically characterise the larval stage (coenurus) of Taenia multiceps from ruminants in Greece, utilising DNA regions within the cytochrome c oxidase subunit 1 (partial cox1) and NADH dehydrogenase 1 (pnad1) mitochondrial (mt) genes, respectively. A molecular-phylogenetic approach was used to analyse the pcox1 and pnad1 amplicons derived from genomic DNA samples from individual cysts (n=105) from cattle (n=3), goats (n=5) and sheep (n=97). Results revealed five and six distinct electrophoretic profiles for pcox1 and pnad1, respectively, using single-strand conformation polymorphism. Direct sequencing of selected amplicons representing each of these profiles defined five haplotypes each for pcox1 and pnad1, among all 105 isolates. Phylogenetic analysis of individual sequence data for each locus, including a range of well-defined reference sequences, inferred that all isolates of T. multiceps cysts from ruminants in Greece clustered with previously published sequences from different continents. The present study provides a foundation for future large-scale studies on the epidemiology of T. multiceps in ruminants as well as dogs in Greece. Copyright © 2015 Elsevier B.V. All rights reserved.
Exclusion of a major role for the PTEN tumour-suppressor gene in breast carcinomas
Freihoff, D; Kempe, A; Beste, B; Wappenschmidt, B; Kreyer, E; Hayashi, Y; Meindl, A; Krebs, D; Wiestler, O D; Deimling, A von; Schmutzler, R K
1999-01-01
PTEN is a novel tumour-suppressor gene located on chromosomal band 10q23.3. This region displays frequent loss of heterozygosity (LOH) in a variety of human neoplasms including breast carcinomas. The detection of PTEN mutations in Cowden disease and in breast carcinoma cell lines suggests that PTEN may be involved in mammary carcinogenesis. We here report a mutational analysis of tumour specimens from 103 primary breast carcinomas and constitutive DNA from 25 breast cancer families. The entire coding region of PTEN was screened by single-strand conformation polymorphism (SSCP) analysis and direct sequencing using intron-based primers. No germline mutations could be identified in the breast cancer families and only one sporadic carcinoma carried a PTEN mutation at one allele. In addition, all sporadic tumours were analysed for homozygous deletions by differential polymerase chain reaction (PCR) and for allelic loss using the microsatellite markers D10S215, D10S564 and D10S573. No homozygous deletions were detected and only 10 out of 94 informative tumours showed allelic loss in the PTEN region. These results suggest that PTEN does not play a major role in breast cancer formation. 1999 Cancer Research Campaign PMID:10070865
Characterisation of four novel fibrillin-1 (FBN1) mutations in Marfan syndrome.
Adès, L C; Haan, E A; Colley, A F; Richard, R I
1996-01-01
Forty-four percent of the fibrillin-1 gene (FBN1) from 19 unrelated families with Marfan syndrome was screened for putative mutations by single strand conformational polymorphism (SSCP) analysis. Four novel mutations were identified and characterised in five people, three with classical Marfan syndrome (two from one family, and one from an unrelated family), one with a more severe phenotype, and one with neonatal Marfan syndrome. The base substitutions G2113A, G2132A, T3163G, and G3458A result in amino acid substitutions A705T, C711Y, C1055G, and C1152Y, respectively. C711Y, C1055G, and C1152Y lead to replacement of a cysteine by another amino acid; the latter two occur within epidermal growth factor-like motifs in exon 25 and 27, respectively. The A705T mutation occurs at exon 16 adjacent to the GT splice site. The A705T and C711Y mutations, at exon 16 and 17, respectively, are the first documented in the second transforming growth factor-beta 1 binding protein-like motif of FBN1. Images PMID:8863159
Quéméneur, Marianne; Bes, Méline; Postec, Anne; Mei, Nan; Hamelin, Jérôme; Monnin, Christophe; Chavagnac, Valérie; Payri, Claude; Pelletier, Bernard; Guentas-Dombrowsky, Linda; Gérard, Martine; Pisapia, Céline; Gérard, Emmanuelle; Ménez, Bénédicte; Ollivier, Bernard; Erauso, Gaël
2014-12-01
The shallow submarine hydrothermal field of the Prony Bay (New Caledonia) discharges hydrogen- and methane-rich fluids with low salinity, temperature (< 40°C) and high pH (11) produced by the serpentinization reactions of the ultramafic basement into the lagoon seawater. They are responsible for the formation of carbonate chimneys at the lagoon seafloor. Capillary electrophoresis single-strand conformation polymorphism fingerprinting, quantitative polymerase chain reaction and sequence analysis of 16S rRNA genes revealed changes in microbial community structure, abundance and diversity depending on the location, water depth, and structure of the carbonate chimneys. The low archaeal diversity was dominated by few uncultured Methanosarcinales similar to those found in other serpentinization-driven submarine and subterrestrial ecosystems (e.g. Lost City, The Cedars). The most abundant and diverse bacterial communities were mainly composed of Chloroflexi, Deinococcus-Thermus, Firmicutes and Proteobacteria. Functional gene analysis revealed similar abundance and diversity of both Methanosarcinales methanoarchaea, and Desulfovibrionales and Desulfobacterales sulfate-reducers in the studied sites. Molecular studies suggest that redox reactions involving hydrogen, methane and sulfur compounds (e.g. sulfate) are the energy driving forces of the microbial communities inhabiting the Prony hydrothermal system.
NASA Technical Reports Server (NTRS)
Piao, C. Q.; Willey, J. C.; Hei, T. K.; Hall, E. J. (Principal Investigator)
1999-01-01
The cellular and molecular mechanisms of radiation-induced lung cancer are not known. In the present study, alterations of p53 in tumorigenic human papillomavirus-immortalized human bronchial epithelial (BEP2D) cells induced by a single low dose of either alpha-particles or 1 GeV/nucleon (56)Fe were analyzed by PCR-single-stranded conformation polymorphism (SSCP) coupled with sequencing analysis and immunoprecipitation assay. A total of nine primary and four secondary tumor cell lines, three of which were metastatic, together with the parental BEP2D and primary human bronchial epithelial (NHBE) cells were studied. The immunoprecipitation assay showed overexpression of mutant p53 proteins in all the tumor lines but not in NHBE and BEP2D cells. PCR-SSCP and sequencing analysis found band shifts and gene mutations in all four of the secondary tumors. A G-->T transversion in codon 139 in exon 5 that replaced Lys with Asn was detected in two tumor lines. One mutation each, involving a G-->T transversion in codon 215 in exon 6 (Ser-->lle) and a G-->A transition in codon 373 in exon 8 (Arg-->His), was identified in the remaining two secondary tumors. These results suggest that p53 alterations correlate with tumorigenesis in the BEP2D cell model and that mutations in the p53 gene may be indicative of metastatic potential.
Godinho, R; Mendonça, B; Crespo, E G; Ferrand, N
2006-06-01
The study of nuclear genealogies in natural populations of nonmodel organisms is expected to provide novel insights into the evolutionary history of populations, especially when developed in the framework of well-established mtDNA phylogeographical scenarios. In the Iberian Peninsula, the endemic Schreiber's green lizard Lacerta schreiberi exhibits two highly divergent and allopatric mtDNA lineages that started to split during the late Pliocene. In this work, we performed a fine-scale analysis of the putative mtDNA contact zone together with a global analysis of the patterns of variation observed at the nuclear beta-fibrinogen intron 7 (beta-fibint7). Using a combination of DNA sequencing with single-strand conformational polymorphism (SSCP) analysis, we show that the observed genealogy at the beta-fibint7 locus reveals extensive admixture between two formerly isolated lizard populations while the two mtDNA lineages remain essentially allopatric. In addition, a private beta-fibint7 haplotype detected in the single population where both mtDNA lineages were found in sympatry is probably the result of intragenic recombination between the two more common and divergent beta-fibint7 haplotypes. Our results suggest that the progressive incorporation of nuclear genealogies in investigating the ancient demography and admixture dynamics of divergent genomes will be necessary to obtain a more comprehensive picture of the evolutionary history of organisms.
Analysis of MSH3 in endometrial cancers with defective DNA mismatch repair.
Swisher, E M; Mutch, D G; Herzog, T J; Rader, J S; Kowalski, L D; Elbendary, A; Goodfellow, P J
1998-01-01
To clarify the origin of defective mismatch repair (MMR) in sporadic endometrial cancers with microsatellite instability (MSI), a thorough mutation analysis was performed on the human mismatch repair gene MSH3. Twenty-eight MSI-positive endometrial cancers were investigated for mutations in the human mismatch repair gene MSH3 using single-strand conformation variant (SSCV) analysis of all 24 exons. All variants were sequenced. Loss of heterozygosity was investigated at all MSH3 polymorphisms discovered. A subset of tumors were investigated for methylation of the 5' promoter region of MSH3 using Southern blot hybridization. An identical single-base deletion (delta A) predicted to result in a truncated proteins was discovered in six tumors (21.4%). This deletion occurs in a string of eight consecutive adenosine residues (A8). Because simple repeat sequences are unstable in cells with defective MMR, the observed mutation may be an effect, rather than a cause, of MSI. Evidence of inactivation of the second MSH3 allele in tumors with the delta A mutation would strongly support a causal role for these MSH3 mutations. However, there was no evidence of a second mutation, loss of sequences, or methylation of the promoter region in any of the tumors with the delta A mutation. Although the delta A mutation is a frequent event in sporadic MSI-positive endometrial cancers, it may not be causally associated with defective DNA MMR.
Geng, Jia; Wang, Shaoying; Fang, Huaming; Guo, Peixuan
2013-01-01
Nanopores have been utilized to detect the conformation and dynamics of polymers, including DNA and RNA. Biological pores are extremely reproducible at the atomic level with uniform channel sizes. The channel of the bacterial virus phi29 DNA packaging motor is a natural conduit for the transportation of double-stranded DNA (dsDNA), and has the largest diameter among the well-studied biological channels. The larger channel facilitates translocation of dsDNA, and offers more space for further channel modification and conjugation. Interestingly, the relatively large wild type channel, which translocates dsDNA, cannot detect single-stranded nucleic acids (ssDNA or ssRNA) under the current experimental conditions. Herein, we reengineered this motor channel by removing the internal loop segment of the channel. The modification resulted in two classes of channels. One class was the same size as the wild type channel, while the other class had a cross-sectional area about 60% of the wild type. This smaller channel was able to detect the real-time translocation of single stranded nucleic acids at single-molecule level. While the wild type connector exhibited a one-way traffic property with respect to dsDNA translocation, the loop deleted connector was able to translocate ssDNA and ssRNA with equal competencies from both termini. This finding of size alterations in reengineered motor channels expands the potential application of the phi29 DNA packaging motor in nanomedicine, nanobiotechnology, and high-throughput single pore DNA sequencing. PMID:23488809
Aptamer sensor for cocaine using minor groove binder based energy transfer.
Zhou, Jinwen; Ellis, Amanda V; Kobus, Hilton; Voelcker, Nicolas H
2012-03-16
We report on an optical aptamer sensor for cocaine detection. The cocaine sensitive fluorescein isothiocyanate (FITC)-labeled aptamer underwent a conformational change from a partial single-stranded DNA with a short hairpin to a double-stranded T-junction in the presence of the target. The DNA minor groove binder Hoechst 33342 selectively bound to the double-stranded T-junction, bringing the dye within the Förster radius of FITC, and therefore initiating minor groove binder based energy transfer (MBET), and reporting on the presence of cocaine. The sensor showed a detection limit of 0.2 μM. The sensor was also implemented on a carboxy-functionalized polydimethylsiloxane (PDMS) surface by covalently immobilizing DNA aptamers. The ability of surface-bound cocaine detection is crucial for the development of microfluidic sensors. Copyright © 2012 Elsevier B.V. All rights reserved.
Barone, Giampaolo; Fonseca Guerra, Célia; Bickelhaupt, F Matthias
2013-01-01
We have computationally investigated the structure and stability of all 16 combinations of two out of the four natural DNA bases A, T, G and C in a di-2′-deoxyribonucleoside-monophosphate model DNA strand as well as in 10 double-strand model complexes thereof, using dispersion-corrected density functional theory (DFT-D). Optimized geometries with B-DNA conformation were obtained through the inclusion of implicit water solvent and, in the DNA models, of sodium counterions, to neutralize the negative charge of the phosphate groups. The results obtained allowed us to compare the relative stability of isomeric single and double strands. Moreover, the energy of the Watson–Crick pairing of complementary single strands to form double-helical structures was calculated. The latter furnished the following increasing stability trend of the double-helix formation energy: d(TpA)2
Linkage analysis in a family with Stickler syndrome leads to the exclusion of the COL2A1 locus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mottes, M.; Zolezzi, F.; Pignatti, P.F.
1994-09-01
Hereditary arthro-ophtalmopathy (AO) or Stickler Syndrome (MIM No. 10830) is a dominantly inherited disorder characterized by vitro-retinal degeneration and other connective tissue disturbances. Mutations in the COL2A1 gene, coding for type II collagen chains, have been described in a few patients. The wide spectrum of clinical manifestations is presumably due to genetic heterogeneity, since only about 50% of the Stickler families so far studied show cosegregation of the disease with the COL2A1 locus. We have investigated a large pedigree (19 individuals of whom 9 are affected) in which severe myopia with vitro-retinal degeneration consegregated with joint laxity, recurrent inguinal hernias,more » and degenerative changes of the hip and the knee. The 3{prime} end COL2A1 VNTR polymorphism was utilized for linkage analysis. In order to get the maximum informativity, we have analyzed the allelic microheterogeneity of this VNTR, due to the repeat sequence variation, by means of a single strand polymorphism. Mendelian inheritance of the different single strands was observed as expected. Discordance of segregation between the disease and the COL2A1 locus was thus established inequivocally in this family.« less
A Single Molecular Beacon Probe Is Sufficient for the Analysis of Multiple Nucleic Acid Sequences
Gerasimova, Yulia V.; Hayson, Aaron; Ballantyne, Jack; Kolpashchikov, Dmitry M.
2010-01-01
Molecular beacon (MB) probes are dual-labeled hairpin-shaped oligodeoxyribonucleotides that are extensively used for real-time detection of specific RNA/DNA analytes. In the MB probe, the loop fragment is complementary to the analyte: therefore, a unique probe is required for the analysis of each new analyte sequence. The conjugation of an oligonucleotide with two dyes and subsequent purification procedures add to the cost of MB probes, thus reducing their application in multiplex formats. Here we demonstrate how one MB probe can be used for the analysis of an arbitrary nucleic acid. The approach takes advantage of two oligonucleotide adaptor strands, each of which contains a fragment complementary to the analyte and a fragment complementary to an MB probe. The presence of the analyte leads to association of MB probe and the two DNA strands in quadripartite complex. The MB probe fluorescently reports the formation of this complex. In this design, the MB does not bind the analyte directly; therefore, the MB sequence is independent of the analyte. In this study one universal MB probe was used to genotype three human polymorphic sites. This approach promises to reduce the cost of multiplex real-time assays and improve the accuracy of single-nucleotide polymorphism genotyping. PMID:20665615
Haque, Farzin; Wang, Shaoying; Stites, Chris; Chen, Li; Wang, Chi; Guo, Peixuan
2015-01-01
The elegant architecture of the channel of bacteriophage phi29 DNA packaging motor has inspired the development of biomimetics for biophysical and nanobiomedical applications. The reengineered channel inserted into a lipid membrane exhibits robust electrophysiological properties ideal for precise sensing and fingerprinting of dsDNA at the single-molecule level. Herein, we used single channel conduction assays to quantitatively evaluate the translocation dynamics of dsDNA as a function of the length and conformation of dsDNA. We extracted the speed of dsDNA translocation from the dwell time distribution and estimated the various forces involved in the translocation process. A ~35-fold slower speed of translocation per base pair was observed for long dsDNA, a significant contrast to the speed of dsDNA crossing synthetic pores. It was found that the channel could translocate both dsDNA with ~32% of channel current blockage and ~64% for tetra-stranded DNA (two parallel dsDNA). The calculation of both cross-sectional areas of the dsDNA and tetra-stranded DNA suggested that the blockage was purely proportional to the physical space of the channel lumen and the size of the DNA substrate. Folded dsDNA configuration was clearly reflected in their characteristic current signatures. The finding of translocation of tetra-stranded DNA with 64% blockage is in consent with the recently elucidated mechanism of viral DNA packaging via a revolution mode that requires a channel larger than the dsDNA diameter of 2 nm to provide room for viral DNA revolving without rotation. The understanding of the dynamics of dsDNA translocation in the phi29 system will enable us to design more sophisticated single pore DNA translocation devices for future applications in nanotechnology and personal medicine. PMID:25890769
Hu, Yuhua; Xu, Xueqin; Liu, Qionghua; Wang, Ling; Lin, Zhenyu; Chen, Guonan
2014-09-02
A simple, ultrasensitive, and specific electrochemical biosensor was designed to determine the given DNA sequence of Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification. The target DNA (TD, the DNA sequence from the hypervarient region of 16S rDNA of Bacillus subtilis) could be detected by the differential pulse voltammetry (DPV) in a range from 0.1 fM to 20 fM with the detection limit down to 0.08 fM at the 3s(blank) level. This electrochemical biosensor exhibits high distinction ability to single-base mismatch, double-bases mismatch, and noncomplementary DNA sequence, which may be expected to detect single-base mismatch and single nucleotide polymorphisms (SNPs). Moreover, the applicability of the designed biosensor for detecting the given DNA sequence from Bacillus subtilis was investigated. The result obtained by electrochemical method is approximately consistent with that by a real-time quantitative polymerase chain reaction detecting system (QPCR) with SYBR Green.
Independent Control of Grafting Density and Conformation of Single-Stranded DNA Brushes
2007-01-02
Abstreiter G, Tornow M (2004) Langmuir 20:10086–10092. 20. Kimura-Suda H, Petrovykh DY, Tarlov MJ, Whitman LJ (2003) J Am Chem Soc 125:9014–9015. 21. Wolf...Tarlov MJ, Himpsel FJ, Whitman LJ (2006) J Am Chem Soc 128:2–3. 25. Rant U, Arinaga K, Fujiwara T, Fujita S, Tornow M, Yokoyama N, Abstreiter G (2003
Thermal stability of G-rich anti-parallel DNA triplexes upon insertion of LNA and α-L-LNA.
Kosbar, Tamer R; Sofan, Mamdouh A; Abou-Zeid, Laila; Pedersen, Erik B
2015-05-14
G-rich anti-parallel DNA triplexes were modified with LNA or α-L-LNA in their Watson-Crick and TFO strands. The triplexes were formed by targeting a pyrimidine strand to a putative hairpin formed by Hoogsteen base pairing in order to use the UV melting method to evaluate the stability of the triplexes. Their thermal stability was reduced when the TFO strand was modified with LNA or α-L-LNA. The same trend was observed when the TFO strand and the purine Watson-Crick strand both were modified with LNA. When all triad components were modified with α-L-LNA and LNA in the middle of the triplex, the thermal melting was increased. When the pyrimidine sequence was modified with a single insertion of LNA or α-L-LNA the ΔTm increased. Moreover, increasing the number of α-L-LNA in the pyrimidine target sequence to six insertions, leads to a high increase in the thermal stability. The conformational S-type structure of α-L-LNA in anti-parallel triplexes is preferable for triplex stability.
Sparse networks of directly coupled, polymorphic, and functional side chains in allosteric proteins.
Soltan Ghoraie, Laleh; Burkowski, Forbes; Zhu, Mu
2015-03-01
Recent studies have highlighted the role of coupled side-chain fluctuations alone in the allosteric behavior of proteins. Moreover, examination of X-ray crystallography data has recently revealed new information about the prevalence of alternate side-chain conformations (conformational polymorphism), and attempts have been made to uncover the hidden alternate conformations from X-ray data. Hence, new computational approaches are required that consider the polymorphic nature of the side chains, and incorporate the effects of this phenomenon in the study of information transmission and functional interactions of residues in a molecule. These studies can provide a more accurate understanding of the allosteric behavior. In this article, we first present a novel approach to generate an ensemble of conformations and an efficient computational method to extract direct couplings of side chains in allosteric proteins, and provide sparse network representations of the couplings. We take the side-chain conformational polymorphism into account, and show that by studying the intrinsic dynamics of an inactive structure, we are able to construct a network of functionally crucial residues. Second, we show that the proposed method is capable of providing a magnified view of the coupled and conformationally polymorphic residues. This model reveals couplings between the alternate conformations of a coupled residue pair. To the best of our knowledge, this is the first computational method for extracting networks of side chains' alternate conformations. Such networks help in providing a detailed image of side-chain dynamics in functionally important and conformationally polymorphic sites, such as binding and/or allosteric sites. © 2014 Wiley Periodicals, Inc.
Lankarani, Kamran B; Karbasi, Ashraf; Kalantari, Tahereh; Yarmohammadi, Hooman; Saberi-Firoozi, Mehdi; Alizadeh-Naeeni, Mahvash; Taghavi, Ali R; Fattahi, Mahammad R; Ghaderi, Abbas
2006-02-01
Ulcerative colitis (UC) is a multifactorial disease associated with dysregulated immunity. Recently, cytotoxic T lymphocyte associated antigen 4 (CTLA-4) gene polymorphisms have been reported in association with several autoimmune diseases in several populations. In the present study, the possible implication of the CTLA-4 gene as a risk factor for UC in the Iranian population was investigated. One hundred UC patients and 100 healthy subjects were studied. CTLA-4 exon 1 position 49 (A/G: codon 17: Thr/Ala) polymorphisms were investigated by polymerase chain reaction single strand confirmation polymorphism method. Four of the patients and one of the healthy controls were excluded from the study because of incomplete DNA extraction. The allele frequencies of A and G in 96 patients (A: 66.1%; G: 33.9%) were not significantly different from the 99 control subjects (A: 63.1%; G: 36.9%, P > 0.05). No significant differences in the distribution of genotype frequencies were observed between A + 49G gene polymorphisms and UC in the Iranian population (P > 0.05). CTLA-4 polymorphism is not associated with UC in the Iranian population.
The Promiscuity of [beta]-Strand Pairing Allows for Rational Design of [beta]-Sheet Face Inversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makabe, Koki; Koide, Shohei
2009-06-17
Recent studies suggest the dominant role of main-chain H-bond formation in specifying {beta}-sheet topology. Its essentially sequence-independent nature implies a large degree of freedom in designing {beta}-sheet-based nanomaterials. Here we show rational design of {beta}-sheet face inversions by incremental deletions of {beta}-strands from the single-layer {beta}-sheet of Borrelia outer surface protein A. We show that a {beta}-sheet structure can be maintained when a large number of native contacts are removed and that one can design large-scale conformational transitions of a {beta}-sheet such as face inversion by exploiting the promiscuity of strand-strand interactions. High-resolution X-ray crystal structures confirmed the success ofmore » the design and supported the importance of main-chain H-bonds in determining {beta}-sheet topology. This work suggests a simple but effective strategy for designing and controlling nanomaterials based on {beta}-rich peptide self-assemblies.« less
Structure and Temporal Dynamics of Populations within Wheat Streak Mosaic Virus Isolates
Hall, Jeffrey S.; French, Roy; Morris, T. Jack; Stenger, Drake C.
2001-01-01
Variation within the Type and Sidney 81 strains of wheat streak mosaic virus was assessed by single-strand conformation polymorphism (SSCP) analysis and confirmed by nucleotide sequencing. Limiting-dilution subisolates (LDSIs) of each strain were evaluated for polymorphism in the P1, P3, NIa, and CP cistrons. Different SSCP patterns among LDSIs of a strain were associated with single-nucleotide substitutions. Sidney 81 LDSI-S10 was used as founding inoculum to establish three lineages each in wheat, corn, and barley. The P1, HC-Pro, P3, CI, NIa, NIb, and CP cistrons of LDSI-S10 and each lineage at passages 1, 3, 6, and 9 were evaluated for polymorphism. By passage 9, each lineage differed in consensus sequence from LDSI-S10. The majority of substitutions occurred within NIa and CP, although at least one change occurred in each cistron except HC-Pro and P3. Most consensus sequence changes among lineages were independent, with substitutions accumulating over time. However, LDSI-S10 bore a variant nucleotide (G6016) in NIa that was restored to A6016 in eight of nine lineages by passage 6. This near-global reversion is most easily explained by selection. Examination of nonconsensus variation revealed a pool of unique substitutions (singletons) that remained constant in frequency during passage, regardless of the host species examined. These results suggest that mutations arising by viral polymerase error are generated at a constant rate but that most newly generated mutants are sequestered in virions and do not serve as replication templates. Thus, a substantial fraction of variation generated is static and has yet to be tested for relative fitness. In contrast, nonsingleton variation increased upon passage, suggesting that some mutants do serve as replication templates and may become established in a population. Replicated mutants may or may not rise to prominence to become the consensus sequence in a lineage, with the fate of any particular mutant subject to selection and stochastic processes such as genetic drift and population growth factors. PMID:11581391
Tohala, Luma; Oukacine, Farid; Ravelet, Corinne; Peyrin, Eric
2017-05-01
We recently reported that a great variety of DNA oligonucleotides (ONs) used as chiral selectors in partial-filling capillary electrophoresis (CE) exhibited interesting enantioresolution properties toward low-affinity DNA binders. Herein, the sequence prerequisites of ONs for the CE enantioseparation process were studied. First, the chiral resolution properties of a series of homopolymeric sequences (Poly-dT) of different lengths (from 5 to 60-mer) were investigated. It was shown that the size increase-dependent random coil-like conformation of Poly-dT favorably acted on the apparent selectivity and resolution. The base-unpairing state constituted also an important factor in the chiral resolution ability of ONs as the switch from the single-stranded to double-stranded structure was responsible for a significant decrease in the analyte selectivity range. Finally, the chemical diversity enhanced the enantioresolution ability of single-stranded ONs. The present work could lay the foundation for the design of performant ON chiral selectors for the CE separation of weak DNA binder enantiomers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A comparative study of two polymorphs of L-aspartic acid hydrochloride.
Benali-Cherif, Rim; Takouachet, Radhwane; Bendeif, El-Eulmi; Benali-Cherif, Nourredine
2014-07-01
Two polymorphs of L-aspartic acid hydrochloride, C4H8NO4(+)·Cl(-), were obtained from the same aqueous solution. Their crystal structures have been determined from single-crystal data collected at 100 K. The crystal structures revealed three- and two-dimensional hydrogen-bonding networks for the triclinic and orthorhombic polymorphs, respectively. The cations and anions are connected to one another via N-H···Cl and O-H···Cl interactions and form alternating cation-anion layer-like structures. The two polymorphs share common structural features; however, the conformations of the L-aspartate cations and the crystal packings are different. Furthermore, the molecular packing of the orthorhombic polymorph contains more interesting interactions which seems to be a favourable factor for more efficient charge transfer within the crystal.
Different disease-causing mutations in transthyretin trigger the same conformational conversion.
Steward, Robert E; Armen, Roger S; Daggett, Valerie
2008-03-01
Transthyretin (TTR)-containing amyloid fibrils are deposited in cardiac tissue as a natural consequence of aging. A large number of inherited mutations lead to amyloid diseases by accelerating TTR deposition in other organs. Amyloid formation is preceded by a disruption of the quaternary structure of TTR and conformational changes in the monomer. To study conformational changes preceding the formation of amyloid, we performed molecular dynamics simulations of the wild-type monomer, amyloidogenic variants (V30M, L55P, V122I) and a protective variant (T119M) at neutral and low pH. At low pH, the D strand dissociated from the beta-sheet to expose the A strand, consistent with experimental studies. In amyloidogenic variants and in the wild-type at low pH, there was a conformational change in the beta-sheets into alpha-sheet via peptide bond flips that was not observed at neutral pH in the wild-type monomer. The same residues participated in conversion in each amyloidogenic variant simulation, originating in the G strand between residues 106 and 109, with accelerated conversion at low pH. The T119M protective variant changed the local conformation of the H strand and suppressed the conversion observed in amyloidogenic variants.
Al-Dhaheri, Wafa; Hassouna, Imam; Karam, Sherif M
2018-05-01
Breast cancer is the most common type of cancer and the leading cause of cancer-related deaths among women in the United Arab Emirates and worldwide. Although many factors contribute to the high incidence of breast cancer, a considerable number of cases are related to environmental factors. In the present study, breast cancer was induced in female rats using a single dose, 80 mg/kg body wt, of the environmental carcinogen 7,12-dimethylbenz[a]anthracene (DMBA). The aim of the present study, was to characterize some of the molecular changes that occur during breast cancer development in the DMBA-treated rat model. Mammary gland tissues of control and DMBA-treated rats were processed for: i) immunohistochemical probing using anti-BRCA1 antibody to characterize and correlate the localization of this cell cycle protein during progression to cancer, ii) western blotting to analyze the alteration of p53 protein expression in preneoplastic and neoplastic lesions of the mammary glands, and iii) polymerase chain reactions using primers specific for BRCA1 and P53 genes followed by single stranded conformational polymorphism (SSCP) or restriction fragment length polymorphism (RFLP) assays to detect possible mutations in these genes during development of breast cancer. Microscopic examination revealed a wide range of preneoplastic and neoplastic lesions providing a sequence representing the multistep process of breast cancer formation in DMBA-treated rats. Probing for BRCA1 protein revealed a gradual defect in its translocation from the cytoplasm to the nucleus during breast cancer progression. In control rats, BRCA1 was present in the nuclei of terminal duct epithelial cells. However, in the preneoplastic lesions, BRCA1 was localized in both the cytoplasm and nuclei of the epithelial duct cells. In all malignant lesions, BRCA1 was mostly found in the cytoplasm. Western blotting revealed initial downregulation in the expression of p53 protein during breast cancer development. However, with progression towards malignancy, upregulation of p53 was observed. These changes were associated with polymorphism in p53 gene, which was detected in exon 5 using SSCP assay. However, using RFLP and BamHI to digest the PCR products of exon 11 of BRCA1 gene revealed no detectable polymorphisms. In conclusion, molecular characterization of the early changes that occur during development of breast cancer provides some clues for better understanding of its pathogenesis.
Mitchell, Sabrina; Ellingson, Clint; Coyne, Thomas; Hall, Lynn; Neill, Meaghan; Christian, Natalie; Higham, Catherine; Dobrowolski, Steven F; Tuchman, Mendel; Summar, Marshall
2009-01-01
The urea cycle is the primary means of nitrogen metabolism in humans and other ureotelic organisms. There are five key enzymes in the urea cycle: carbamoyl-phosphate synthetase 1 (CPS1), ornithine transcarbamylase (OTC), argininosuccinate synthetase (ASS1), argininosuccinate lyase (ASL), and arginase 1 (ARG1). Additionally, a sixth enzyme, N-acetylglutamate synthase (NAGS), is critical for urea cycle function, providing CPS1 with its necessary cofactor. Deficiencies in any of these enzymes result in elevated blood ammonia concentrations, which can have detrimental effects, including central nervous system dysfunction, brain damage, coma, and death. Functional variants, which confer susceptibility for disease or dysfunction, have been described for enzymes within the cycle; however, a comprehensive screen of all the urea cycle enzymes has not been performed. We examined the exons and intron/exon boundaries of the five key urea cycle enzymes, NAGS, and two solute carrier transporter genes (SLC25A13 and SLC25A15) for sequence alterations using single-stranded conformational polymorphism (SSCP) analysis and high-resolution melt profiling. SSCP was performed on a set of DNA from 47 unrelated North American individuals with a mixture of ethnic backgrounds. High-resolution melt profiling was performed on a nonoverlapping DNA set of either 47 or 100 unrelated individuals with a mixture of backgrounds. We identified 33 unarchived polymorphisms in this screen that potentially play a role in the variation observed in urea cycle function. Screening all the genes in the pathway provides a catalog of variants that can be used in investigating candidate diseases. Copyright 2008 Wiley-Liss, Inc.
Quantitative Monitoring of Microbial Species during Bioleaching of a Copper Concentrate.
Hedrich, Sabrina; Guézennec, Anne-Gwenaëlle; Charron, Mickaël; Schippers, Axel; Joulian, Catherine
2016-01-01
Monitoring of the microbial community in bioleaching processes is essential in order to control process parameters and enhance the leaching efficiency. Suitable methods are, however, limited as they are usually not adapted to bioleaching samples and often no taxon-specific assays are available in the literature for these types of consortia. Therefore, our study focused on the development of novel quantitative real-time PCR (qPCR) assays for the quantification of Acidithiobacillus caldus, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans , and Sulfobacillus benefaciens and comparison of the results with data from other common molecular monitoring methods in order to evaluate their accuracy and specificity. Stirred tank bioreactors for the leaching of copper concentrate, housing a consortium of acidophilic, moderately thermophilic bacteria, relevant in several bioleaching operations, served as a model system. The microbial community analysis via qPCR allowed a precise monitoring of the evolution of total biomass as well as abundance of specific species. Data achieved by the standard fingerprinting methods, terminal restriction fragment length polymorphism (T-RFLP) and capillary electrophoresis single strand conformation polymorphism (CE-SSCP) on the same samples followed the same trend as qPCR data. The main added value of qPCR was, however, to provide quantitative data for each species whereas only relative abundance could be deduced from T-RFLP and CE-SSCP profiles. Additional value was obtained by applying two further quantitative methods which do not require nucleic acid extraction, total cell counting after SYBR Green staining and metal sulfide oxidation activity measurements via microcalorimetry. Overall, these complementary methods allow for an efficient quantitative microbial community monitoring in various bioleaching operations.
Quantitative Monitoring of Microbial Species during Bioleaching of a Copper Concentrate
Hedrich, Sabrina; Guézennec, Anne-Gwenaëlle; Charron, Mickaël; Schippers, Axel; Joulian, Catherine
2016-01-01
Monitoring of the microbial community in bioleaching processes is essential in order to control process parameters and enhance the leaching efficiency. Suitable methods are, however, limited as they are usually not adapted to bioleaching samples and often no taxon-specific assays are available in the literature for these types of consortia. Therefore, our study focused on the development of novel quantitative real-time PCR (qPCR) assays for the quantification of Acidithiobacillus caldus, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans, and Sulfobacillus benefaciens and comparison of the results with data from other common molecular monitoring methods in order to evaluate their accuracy and specificity. Stirred tank bioreactors for the leaching of copper concentrate, housing a consortium of acidophilic, moderately thermophilic bacteria, relevant in several bioleaching operations, served as a model system. The microbial community analysis via qPCR allowed a precise monitoring of the evolution of total biomass as well as abundance of specific species. Data achieved by the standard fingerprinting methods, terminal restriction fragment length polymorphism (T-RFLP) and capillary electrophoresis single strand conformation polymorphism (CE-SSCP) on the same samples followed the same trend as qPCR data. The main added value of qPCR was, however, to provide quantitative data for each species whereas only relative abundance could be deduced from T-RFLP and CE-SSCP profiles. Additional value was obtained by applying two further quantitative methods which do not require nucleic acid extraction, total cell counting after SYBR Green staining and metal sulfide oxidation activity measurements via microcalorimetry. Overall, these complementary methods allow for an efficient quantitative microbial community monitoring in various bioleaching operations. PMID:28066365
Suganthalakshmi, Balasubbu; Shukla, Dhananjay; Rajendran, Anand; Kim, Ramasamy; Nallathambi, Jeyabalan
2007-01-01
Purpose X-linked juvenile retinoschisis (XLRS) is the leading cause of macular degeneration in males. This condition is caused by mutations in the RS1 gene and is, characterized by schisis within the retina. The purpose of this study was to identify the mutations in the RS1 gene associated with XLRS in an Indian cohort. Methods The coding region of RS1 was analyzed for mutations by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) and restriction fragment length polymorphism (RFLP) analysis in six unrelated subjects clinically diagnosed as having XLRS and in their available family members. Direct sequencing was performed for all samples that displayed an electrophoretic mobility shift in SSCP gel. Results Mutation analysis of RS1 gene revealed five mutations in exon 6 like c.574C>T, c.583A>G, c.608C>T, c.617G>A, and c.637C>T, respectively, among them four missense mutations, one nonsense mutation, and two novel sequence variations. These mutations were found in individuals who exhibited clinical features of bilateral foveal and peripheral retinoschisis consistent with XLRS. The mutations were absent in the 100 age matched control samples analyzed. Conclusions This is the first report of mutations in RS1 to be associated with XLRS in the Indian population. The identified genetic variations, phenotype and genotype correlations were consistent with other studies. Identification of the causative mutation in patients with XLRS is helpful in confirming the diagnosis and in counseling of family members. PMID:17515881
Hamzeiy, Hossein; Vahdati-Mashhadian, Nasser; Edwards, Helen J; Goldfarb, Peter S
2002-03-20
Human CYP3A4 is the major cytochrome P450 isoenzyme in adult human liver and is known to metabolise many xenobiotic and endogenous compounds. There is substantial inter-individual variation in the hepatic levels of CYP3A4. Although, polymorphic mutations have been reported in the 5' regulatory region of the CYP3A4 gene, those that have been investigated so far do not appear to have any effect on gene expression. To determine whether other mutations exist in this region of the gene, we have performed a new population screen on a panel of 101 human DNA samples. A 1140 bp section of the 5' proximal regulatory region of the CYP3A4 gene, containing numerous regulatory motifs, was amplified from genomic DNA as three overlapping segments. The 300 bp distal enhancer region at -7.9kb containing additional regulatory motifs was also amplified. Mutation analysis of the resulting PCR products was carried out using non-radioactive single strand conformation polymorphism (SSCP) and confirmatory sequencing of both DNA strands in those samples showing extra SSCP bands. In addition to detection of the previously reported CYP3A4*1B allele in nine subjects, three novel alleles were found: CYP3A4*1E (having a T-->A transversion at -369 in one subject), CYP3A4*1F (having a C-->G tranversion at -747 in 17 subjects) and CYP3A4*15B containing a nine-nucleotide insertion between -845 and -844 linked to an A-->G transition at -392 and a G-->A transition in exon 6 (position 485 in the cDNA) in one subject. All the novel alleles were heterozygous. No mutations were found in the upstream distal enhancer region. Our results clearly indicate that this rapid and simple SSCP approach can reveal mutant alleles in drug metabolising enzyme genes. Detection and determination of the frequency of novel alleles in CYP3A4 will assist investigation of the relationship between genotype, xenobiotic metabolism and toxicity in the CYP3A family of isoenzymes.
Mandai, Shintaro; Mori, Takayasu; Sohara, Eisei; Rai, Tatemitsu; Uchida, Shinichi
2015-12-01
Previous genome-wide association studies identified serine threonine kinase 39 (STK39), encoding STE20/SPS1-related proline/alanine-rich kinase, as one of a limited number of hypertension susceptibility genes. A recent meta-analysis confirmed the association of STK39 intronic polymorphism rs3754777 with essential hypertension, among previously reported hypertension-associated STK39 polymorphisms. However, the biochemical function of this polymorphism in the mechanism responsible for hypertension is yet to be clarified. We generated rs3754777G>A knockin human cell lines with clustered regularly interspaced short palindromic repeats-mediated genome engineering. Homozygous (A/A) and heterozygous (G/A) knockin human embryonic kidney cell lines were generated using a double nickase, single-guide RNAs targeting STK39 intron 5 around single-nucleotide polymorphism, and a 100-bp donor single-stranded DNA oligonucleotide. Reverse transcription polymerase chain reaction with sequencing analyses revealed the identical STK39 transcripts among the wild-type and both knockin cell lines. Quantitative reverse transcription polymerase chain reaction showed increased STK39 mRNA expression, and immunoblot analysis revealed increases in total and phosphorylated STE20/SPS1-related proline/alanine-rich kinase with increased phosphorylated Na-K-Cl cotransporter isoform 1 in both knockin cell lines. The largest increases in these molecules were observed in the homozygous cell line. These findings indicated that this intronic polymorphism increases STK39 transcription, leading to activation of the STE20/SPS1-related proline/alanine-rich kinase-solute carrier family 12A signaling cascade. Increased interactions between STE20/SPS1-related proline/alanine-rich kinase and the target cation-chloride cotransporters may be responsible for hypertension susceptibility in individuals with this polymorphism. © 2015 American Heart Association, Inc.
High-coverage methylation data of a gene model before and after DNA damage and homologous repair.
Pezone, Antonio; Russo, Giusi; Tramontano, Alfonso; Florio, Ermanno; Scala, Giovanni; Landi, Rosaria; Zuchegna, Candida; Romano, Antonella; Chiariotti, Lorenzo; Muller, Mark T; Gottesman, Max E; Porcellini, Antonio; Avvedimento, Enrico V
2017-04-11
Genome-wide methylation analysis is limited by its low coverage and the inability to detect single variants below 10%. Quantitative analysis provides accurate information on the extent of methylation of single CpG dinucleotide, but it does not measure the actual polymorphism of the methylation profiles of single molecules. To understand the polymorphism of DNA methylation and to decode the methylation signatures before and after DNA damage and repair, we have deep sequenced in bisulfite-treated DNA a reporter gene undergoing site-specific DNA damage and homologous repair. In this paper, we provide information on the data generation, the rationale for the experiments and the type of assays used, such as cytofluorimetry and immunoblot data derived during a previous work published in Scientific Reports, describing the methylation and expression changes of a model gene (GFP) before and after formation of a double-strand break and repair by homologous-recombination or non-homologous-end-joining. These data provide: 1) a reference for the analysis of methylation polymorphism at selected loci in complex cell populations; 2) a platform and the tools to compare transcription and methylation profiles.
High-coverage methylation data of a gene model before and after DNA damage and homologous repair
Pezone, Antonio; Russo, Giusi; Tramontano, Alfonso; Florio, Ermanno; Scala, Giovanni; Landi, Rosaria; Zuchegna, Candida; Romano, Antonella; Chiariotti, Lorenzo; Muller, Mark T.; Gottesman, Max E.; Porcellini, Antonio; Avvedimento, Enrico V.
2017-01-01
Genome-wide methylation analysis is limited by its low coverage and the inability to detect single variants below 10%. Quantitative analysis provides accurate information on the extent of methylation of single CpG dinucleotide, but it does not measure the actual polymorphism of the methylation profiles of single molecules. To understand the polymorphism of DNA methylation and to decode the methylation signatures before and after DNA damage and repair, we have deep sequenced in bisulfite-treated DNA a reporter gene undergoing site-specific DNA damage and homologous repair. In this paper, we provide information on the data generation, the rationale for the experiments and the type of assays used, such as cytofluorimetry and immunoblot data derived during a previous work published in Scientific Reports, describing the methylation and expression changes of a model gene (GFP) before and after formation of a double-strand break and repair by homologous-recombination or non-homologous-end-joining. These data provide: 1) a reference for the analysis of methylation polymorphism at selected loci in complex cell populations; 2) a platform and the tools to compare transcription and methylation profiles. PMID:28398335
Observing Holliday junction branch migration one step at a time
NASA Astrophysics Data System (ADS)
Ha, Taekjip
2004-03-01
During genetic recombination, two homologous DNA molecules undergo strand exchange to form a four-way DNA (Holliday) junction and the recognition and processing of this species by branch migration and junction resolving enzymes determine the outcome. We have used single molecule fluorescence techniques to study two intrinsic structural dynamics of the Holliday junction, stacking conformer transitions and spontaneous branch migration. Our studies show that the dynamics of branch migration, resolved with one base pair resolution, is determined by the stability of conformers which in turn depends on the local DNA sequences. Therefore, the energy landscape of Holliday junction branch migation is not uniform, but is rugged.
Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets.
Rant, Ulrich; Arinaga, Kenji; Scherer, Simon; Pringsheim, Erika; Fujita, Shozo; Yokoyama, Naoki; Tornow, Marc; Abstreiter, Gerhard
2007-10-30
We report a method to detect label-free oligonucleotide targets. The conformation of surface-tethered probe nucleic acids is modulated by alternating electric fields, which cause the molecules to extend away from or fold onto the biased surface. Binding (hybridization) of targets to the single-stranded probes results in a pronounced enhancement of the layer-height modulation amplitude, monitored optically in real time. The method features an exceptional detection limit of <3 x 10(8) bound targets per cm(2) sensor area. Single base-pair mismatches in the sequences of DNA complements may readily be identified; moreover, binding kinetics and binding affinities can be determined with high accuracy. When driving the DNA to oscillate at frequencies in the kHz regime, distinct switching kinetics are revealed for single- and double-stranded DNA. Molecular dynamics are used to identify the binding state of molecules according to their characteristic kinetic fingerprints by using a chip-compatible detection format.
Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets
Rant, Ulrich; Arinaga, Kenji; Scherer, Simon; Pringsheim, Erika; Fujita, Shozo; Yokoyama, Naoki; Tornow, Marc; Abstreiter, Gerhard
2007-01-01
We report a method to detect label-free oligonucleotide targets. The conformation of surface-tethered probe nucleic acids is modulated by alternating electric fields, which cause the molecules to extend away from or fold onto the biased surface. Binding (hybridization) of targets to the single-stranded probes results in a pronounced enhancement of the layer-height modulation amplitude, monitored optically in real time. The method features an exceptional detection limit of <3 × 108 bound targets per cm2 sensor area. Single base-pair mismatches in the sequences of DNA complements may readily be identified; moreover, binding kinetics and binding affinities can be determined with high accuracy. When driving the DNA to oscillate at frequencies in the kHz regime, distinct switching kinetics are revealed for single- and double-stranded DNA. Molecular dynamics are used to identify the binding state of molecules according to their characteristic kinetic fingerprints by using a chip-compatible detection format. PMID:17951434
Gille, H; Messer, W
1991-01-01
The leftmost region of the Escherichia coli origin of DNA replication (oriC) contains three tandemly repeated AT-rich 13mers which have been shown to become single-stranded during the early stages of initiation in vitro. Melting is induced by the ATP form of DnaA, the initiator protein of DNA replication. KMnO4 was used to probe for single-stranded regions and altered DNA conformation during the initiation of DNA replication at oriC in vitro and in vivo. Unpairing in the AT-rich 13mer region is thermodynamically stable even in the absence of DnaA protein, but only when divalent cations are omitted from the reaction. In the presence of Mg2+, oriC melting is strictly DnaA dependent. The sensitive region is distinct from that detected in the absence of DnaA as it is located further to the left within the minimal origin. In addition, the DNA is severely distorted between the three 13mers and the IHF binding site in oriC. A change of conformation can also be observed during the initiation of DNA replication in vivo. This is the first in vivo evidence for a structural change at the 13mers during initiation complex formation. Images PMID:2026151
Single helically folded aromatic oligoamides that mimic the charge surface of double-stranded B-DNA
NASA Astrophysics Data System (ADS)
Ziach, Krzysztof; Chollet, Céline; Parissi, Vincent; Prabhakaran, Panchami; Marchivie, Mathieu; Corvaglia, Valentina; Bose, Partha Pratim; Laxmi-Reddy, Katta; Godde, Frédéric; Schmitter, Jean-Marie; Chaignepain, Stéphane; Pourquier, Philippe; Huc, Ivan
2018-05-01
Numerous essential biomolecular processes require the recognition of DNA surface features by proteins. Molecules mimicking these features could potentially act as decoys and interfere with pharmacologically or therapeutically relevant protein-DNA interactions. Although naturally occurring DNA-mimicking proteins have been described, synthetic tunable molecules that mimic the charge surface of double-stranded DNA are not known. Here, we report the design, synthesis and structural characterization of aromatic oligoamides that fold into single helical conformations and display a double helical array of negatively charged residues in positions that match the phosphate moieties in B-DNA. These molecules were able to inhibit several enzymes possessing non-sequence-selective DNA-binding properties, including topoisomerase 1 and HIV-1 integrase, presumably through specific foldamer-protein interactions, whereas sequence-selective enzymes were not inhibited. Such modular and synthetically accessible DNA mimics provide a versatile platform to design novel inhibitors of protein-DNA interactions.
Quantifying side-chain conformational variations in protein structure
Miao, Zhichao; Cao, Yang
2016-01-01
Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs. PMID:27845406
Quantifying side-chain conformational variations in protein structure
NASA Astrophysics Data System (ADS)
Miao, Zhichao; Cao, Yang
2016-11-01
Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs.
Quantifying side-chain conformational variations in protein structure.
Miao, Zhichao; Cao, Yang
2016-11-15
Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs.
Sequence Dependent Interactions Between DNA and Single-Walled Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Roxbury, Daniel
It is known that single-stranded DNA adopts a helical wrap around a single-walled carbon nanotube (SWCNT), forming a water-dispersible hybrid molecule. The ability to sort mixtures of SWCNTs based on chirality (electronic species) has recently been demonstrated using special short DNA sequences that recognize certain matching SWCNTs of specific chirality. This thesis investigates the intricacies of DNA-SWCNT sequence-specific interactions through both experimental and molecular simulation studies. The DNA-SWCNT binding strengths were experimentally quantified by studying the kinetics of DNA replacement by a surfactant on the surface of particular SWCNTs. Recognition ability was found to correlate strongly with measured binding strength, e.g. DNA sequence (TAT)4 was found to bind 20 times stronger to the (6,5)-SWCNT than sequence (TAT)4T. Next, using replica exchange molecular dynamics (REMD) simulations, equilibrium structures formed by (a) single-strands and (b) multiple-strands of 12-mer oligonucleotides adsorbed on various SWCNTs were explored. A number of structural motifs were discovered in which the DNA strand wraps around the SWCNT and 'stitches' to itself via hydrogen bonding. Great variability among equilibrium structures was observed and shown to be directly influenced by DNA sequence and SWCNT type. For example, the (6,5)-SWCNT DNA recognition sequence, (TAT)4, was found to wrap in a tight single-stranded right-handed helical conformation. In contrast, DNA sequence T12 forms a beta-barrel left-handed structure on the same SWCNT. These are the first theoretical indications that DNA-based SWCNT selectivity can arise on a molecular level. In a biomedical collaboration with the Mayo Clinic, pathways for DNA-SWCNT internalization into healthy human endothelial cells were explored. Through absorbance spectroscopy, TEM imaging, and confocal fluorescence microscopy, we showed that intracellular concentrations of SWCNTs far exceeded those of the incubation solution, which suggested an energy-dependent pathway. Additionally, by means of pharmacological inhibition and vector-induced gene knockout studies, the DNA-SWCNTs were shown to enter the cells via Rac1-mediated macropinocytosis.
Wang, Bei; Zhou, Xiang; Yao, Dongbao; Sun, Xianbao; He, Miao; Wang, Xiaojing; Yin, Xue; Liang, Haojun
2017-10-03
A new model using a gold nanoparticle (AuNP)-DNA system to constrain leakage and improve efficiency of catalytic toehold-mediated strand displacement reactions was outlined. A 10-bp spacer on AuNPs and fourfold amount of fuels were determined for good performance of this model with an optimized toehold strategy. After the reaction at 25 °C for 10 h, a 258 pM target could be identified, which is a remarkable improvement compared with the traditional AuNP-DNA system without fuel. Moreover, this model was also studied to differentiate specific single nucleotide polymorphism on target with superior selection factors. This model may help by introducing a proposition of target detection to guide further investigation.
Protein stabilization by introduction of cross-strand disulfides.
Chakraborty, Kausik; Thakurela, Sudhir; Prajapati, Ravindra Singh; Indu, S; Ali, P Shaik Syed; Ramakrishnan, C; Varadarajan, Raghavan
2005-11-08
Disulfides cross-link residues in a protein that are separated in primary sequence and stabilize the protein through entropic destabilization of the unfolded state. While the removal of naturally occurring disulfides leads to protein destabilization, introduction of engineered disulfides does not always lead to significant stabilization of a protein. We have analyzed naturally occurring disulfides that span adjacent antiparallel strands of beta sheets (cross-strand disulfides). Cross-strand disulfides have recently been implicated as redox-based conformational switches in proteins such as gp120 and CD4. The propensity of these disulfides to act as conformational switches was postulated on the basis of the hypothesis that this class of disulfide is conformationally strained. In the present analysis, there was no evidence to suggest that cross-strand disulfides are more strained compared to other disulfides as assessed by their torsional energy. It was also observed that these disulfides occur solely at non-hydrogen-bonded (NHB) registered pairs of adjacent antiparallel strands and not at hydrogen-bonded (HB) positions as suggested previously. One of the half-cystines involved in cross-strand disulfide formation often occurs at an edge strand. Experimental confirmation of the stabilizing effects of such disulfides was carried out in Escherichia coli thioredoxin. Four pairs of cross-strand cysteines were introduced, two at HB and two at NHB pairs. Disulfides were formed in all four cases. However, as predicted from our analysis, disulfides at NHB positions resulted in an increase in melting temperature of 7-10 degrees C, while at HB positions there was a corresponding decrease of -7 degrees C. The reduced state of all proteins had similar stability.
Pereira, R M; Mesquita, P; Pires, V M R; Baptista, M C; Barbas, J P; Pimenta, J; Horta, A E M; Prates, J A M; Marques, C C
2018-07-15
An essential role of prion protein testis specific (PRNT) and prion protein 2 dublet (PRND) genes in the male reproductive function has been highlighted, although a deeper knowledge for the mechanisms involved is still lacking. Our goal was to determine the importance of the PRNT haplotypic variants and mRNA expression levels in ovine spermatozoa freezability and ability for fertilization and embryo developmental processes. Their association with the PRND gene polymorphisms was also analyzed. DNA from rams belonging to three Portuguese sheep breeds (n = 28) was screened by single-strand conformation polymorphism (SSCP) analysis to identify the PRNT and PRND polymorphisms. Semen collected from these rams was cryopreserved and fertility traits evaluated. The SSCP analyses revealed polymorphisms in the codons 6, 38, 43 and 48 of the PRNT coding region - respectively c.17C > T (p.Ser6Phe, which disrupts a consensus arginine-X-X serine/threonine motif); c.112G > C (p.Gly38 > Arg); and synonymous c.129T > C and c.144A > G. The polymorphisms in codons 6, 38 and 48 occur simultaneously while the one in codon 43 occurs independently. Six haplotypes were identified in the PRNT coding region, resulting in three different amino acid polymorphic variants (6S-38G-43C-48V, S6F-G38R-43C-48V and 6F-38R-43C-48V). The PRNT gene mRNA transcript level in spermatozoa was related to the identified haplotypic variants, either considering the codons 6-38-48 (P ≤ 0.0001) or the codon 43 alone (P ≤ 0.0001) or altogether (P ≤ 0.0001). An interaction between PRNT haplotypes and PRND genotypes on PRNT transcript level was also identified (P = 0.0003). Rams carrying the 17C-112G-144A PRNT haplotype had sperm with the highest post-thawed individual motility (P ≤ 0.03). Combined PRNT and PRND polymorphic variation influenced the post-thawed individual motility (P = 0.01). The male PRNT haplotypic, either considering the codons 6-38-48 and 43 altogether or the codon 43 alone, interfered (P ≤ 0.04) in embryo production rates. In conclusion, our data confirm that the PRNT gene is highly polymorphic in sheep and that the PRNT and PRND genotypes are associated. The identified polymorphisms of PRNT coding region seems to interfere on the ram spermatozoa mRNA transcript level and on male fertility, specifically in sperm freezability and ability for embryo development. Copyright © 2018. Published by Elsevier Inc.
Model systems for single molecule polymer dynamics
Latinwo, Folarin
2012-01-01
Double stranded DNA (dsDNA) has long served as a model system for single molecule polymer dynamics. However, dsDNA is a semiflexible polymer, and the structural rigidity of the DNA double helix gives rise to local molecular properties and chain dynamics that differ from flexible chains, including synthetic organic polymers. Recently, we developed single stranded DNA (ssDNA) as a new model system for single molecule studies of flexible polymer chains. In this work, we discuss model polymer systems in the context of “ideal” and “real” chain behavior considering thermal blobs, tension blobs, hydrodynamic drag and force–extension relations. In addition, we present monomer aspect ratio as a key parameter describing chain conformation and dynamics, and we derive dynamical scaling relations in terms of this molecular-level parameter. We show that asymmetric Kuhn segments can suppress monomer–monomer interactions, thereby altering global chain dynamics. Finally, we discuss ssDNA in the context of a new model system for single molecule polymer dynamics. Overall, we anticipate that future single polymer studies of flexible chains will reveal new insight into the dynamic behavior of “real” polymers, which will highlight the importance of molecular individualism and the prevalence of non-linear phenomena. PMID:22956980
Absolute cross-sections for DNA strand breaks and crosslinks induced by low energy electrons
Chen, Wenzhuang; Chen, Shiliang; Dong, Yanfang; Cloutier, Pierre; Sanche, Léon
2016-01-01
Absolute cross sections (CSs) for the interaction of low energy electrons with condensed macromolecules are essential parameters to accurately model ionizing radiation induced reactions. To determine CSs for various conformational DNA damage induced by 2–20 eV electrons, we investigated the influence of the attenuation length (AL) and penetration factor (f) using a mathematical model. Solid films of super-coiled plasmid DNA with thicknesses of 10, 15 and 20 nm were irradiated with 4.6, 5.6, 9.6 and 14.6 eV electrons. DNA conformational changes were quantified by gel electrophoresis, and the respective yields were extrapolated from exposure–response curves. The absolute CS, AL and f values were generated by applying the model developed by Rezaee et al. The values of AL were found to lie between 11 and 16 nm with the maximum at 14.6 eV. The absolute CSs for the loss of the supercoiled (LS) configuration and production of crosslinks (CL), single strand breaks (SSB) and double strand breaks (DSB) induced by 4.6, 5.6, 9.6 and 14.6 eV electrons are obtained. The CSs for SSB are smaller, but similar to those for LS, indicating that SSB are the main conformational damage. The CSs for DSB and CL are about one order of magnitude smaller than those of LS and SSB. The value of f is found to be independent of electron energy, which allows extending the absolute CSs for these types of damage within the range 2–20 eV, from previous measurements of effective CSs. When comparison is possible, the absolute CSs are found to be in good agreement with those obtained from previous similar studies with double-stranded DNA. The high values of the absolute CSs of 4.6 and 9.6 eV provide quantitative evidence for the high efficiency of low energy electrons to induce DNA damage via the formation of transient anions. PMID:27878170
Absolute cross-sections for DNA strand breaks and crosslinks induced by low energy electrons.
Chen, Wenzhuang; Chen, Shiliang; Dong, Yanfang; Cloutier, Pierre; Zheng, Yi; Sanche, Léon
2016-12-07
Absolute cross sections (CSs) for the interaction of low energy electrons with condensed macromolecules are essential parameters to accurately model ionizing radiation induced reactions. To determine CSs for various conformational DNA damage induced by 2-20 eV electrons, we investigated the influence of the attenuation length (AL) and penetration factor (f) using a mathematical model. Solid films of supercoiled plasmid DNA with thicknesses of 10, 15 and 20 nm were irradiated with 4.6, 5.6, 9.6 and 14.6 eV electrons. DNA conformational changes were quantified by gel electrophoresis, and the respective yields were extrapolated from exposure-response curves. The absolute CS, AL and f values were generated by applying the model developed by Rezaee et al. The values of AL were found to lie between 11 and 16 nm with the maximum at 14.6 eV. The absolute CSs for the loss of the supercoiled (LS) configuration and production of crosslinks (CL), single strand breaks (SSB) and double strand breaks (DSB) induced by 4.6, 5.6, 9.6 and 14.6 eV electrons are obtained. The CSs for SSB are smaller, but similar to those for LS, indicating that SSB are the main conformational damage. The CSs for DSB and CL are about one order of magnitude smaller than those of LS and SSB. The value of f is found to be independent of electron energy, which allows extending the absolute CSs for these types of damage within the range 2-20 eV, from previous measurements of effective CSs. When comparison is possible, the absolute CSs are found to be in good agreement with those obtained from previous similar studies with double-stranded DNA. The high values of the absolute CSs of 4.6 and 9.6 eV provide quantitative evidence for the high efficiency of low energy electrons to induce DNA damage via the formation of transient anions.
Duchi, Diego; Gryte, Kristofer; Robb, Nicole C; Morichaud, Zakia; Sheppard, Carol; Wigneshweraraj, Sivaramesh
2018-01-01
Abstract Transcription initiation is a major step in gene regulation for all organisms. In bacteria, the promoter DNA is first recognized by RNA polymerase (RNAP) to yield an initial closed complex. This complex subsequently undergoes conformational changes resulting in DNA strand separation to form a transcription bubble and an RNAP-promoter open complex; however, the series and sequence of conformational changes, and the factors that influence them are unclear. To address the conformational landscape and transitions in transcription initiation, we applied single-molecule Förster resonance energy transfer (smFRET) on immobilized Escherichia coli transcription open complexes. Our results revealed the existence of two stable states within RNAP–DNA complexes in which the promoter DNA appears to adopt closed and partially open conformations, and we observed large-scale transitions in which the transcription bubble fluctuated between open and closed states; these transitions, which occur roughly on the 0.1 s timescale, are distinct from the millisecond-timescale dynamics previously observed within diffusing open complexes. Mutational studies indicated that the σ70 region 3.2 of the RNAP significantly affected the bubble dynamics. Our results have implications for many steps of transcription initiation, and support a bend-load-open model for the sequence of transitions leading to bubble opening during open complex formation. PMID:29177430
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campeau, E.; Leon-Del-Rio, A.; Gravel, R.A.
Propionic acidemia is a rare autosomal recessive disorder characterized by a deficiency of the mitochondrial biotin-dependent enzyme, propionyl-CoA carboxylase (PCC). PCC has the structure {alpha}{sub 4}{beta}{sub 4}, with the {alpha} subunit containing the biotin prosthetic group. This study is concerned with defining the spectrum of mutations occurring in the PCCA gene encoding the {alpha} subunit. Mutations were initially assigned to this gene through complementation experiments done after somatic fusion of patient fibroblasts. The analyses were performed on PCR-amplified reverse transcripts of fibroblast RNA. The mutations were identified by single strand conformational polymorphism analysis and direct sequencing of PCR products. Threemore » candidate disease-causing mutations and one DNA polymorphism were identified in the {alpha} subunit sequence in different patients: (1) a 3 bp deletion {triangle}CTG{sub 2058-2060}, which eliminates Cys687 near the biotin binding site (Lys669); (2) T{sub 611}{r_arrow}A which converts Met204 to Lys in a highly conserved region matching that of an ATP binding site; (3) An {approximately}50 bp deletion near the 3{prime} end of the cDNA which likely corresponds to the loss of an exon due to a splicing defect; and (4) a 3 bp insertion, +CAG{sub 2203}, located downstream of the stop codon, which is likely a DNA polymorphism. In order to determine the effect of the Cys687 deletion on the biotinylation of PCC, we expressed the mutation in a 67 amino acid C-terminal fragment of the PCC {alpha} subunit in E. coli in which biotinylation is directed by the bacterial biotin ligase. While the mutant peptide was expressed at about half-normal levels, the biotinylation of the peptide that was present was reduced to only {approximately}20% normal. We suggest, therefore, that the absence of PCC activity due to {triangle}Cys687 results at least in part from defective biotinylation of an unstable protein.« less
Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamino, K.; Anderson, L.; O'dahl, S.
1992-11-01
A large number of familial Alzheimer disease (FAD) kindreds were examined to determine whether mutations in the amyloid precursor protein (APP) gene could be responsible for the disease. Previous studies have identified three mutations at APP codon 717 which are pathogenic for Alzheimer disease (AD). Samples from affected subjects were examined for mutations in exons 16 and 17 of the APP gene. A combination of direct sequencing and single-strand conformational polymorphism analysis was used. Sporadic AD and normal controls were also examined by the same methods. Five sequence variants were identified. One variant at APP codon 693 resulted in amore » Glu[yields]Gly change. This is the same codon as the hereditary cerebral hemorrhage with amyloidosis-Dutch type Glu[yields]Gln mutation. Another single-base change at APP codon 708 did not alter the amino acid encoded at this site. Two point mutations and a 6-bp deletion were identified in the intronic sequences surrounding exon 17. None of the variants could be unambigously determined to be responsible for FAD. The larger families were also analyzed by testing for linkage of FAD to a highly polymorphic short tandem repeat marker (D21S210) that is tightly linked to APP. Highly negative LOD scores were obtained for the family groups tested, and linkage was formally excluded beyond [theta] = .10 for the Volga German kindreds, [theta] = .20 for early-onset non-Volga Germans, and [theta] = .10 for late-onset families. LOD scores for linkage of FAD to markers centromeric to APP (D21S1/S11, D21S13, and D21S215) were also negative in the three family groups. These studies show that APP mutations account for AD in only a small fraction of FAD kindreds. 49 refs., 6 figs., 4 tabs.« less
Kar, Anirban; Jones, Nathan; Arat, N Özlem; Fishel, Richard; Griffith, Jack
2018-04-19
Conformations adopted by long stretches of single stranded DNA (ssDNA) are of central interest in understanding the architecture of replication forks, R loops, and other structures generated during DNA metabolism in vivo. This is particularly so if the ssDNA consists of short nucleotide repeats. Such studies have been hampered by the lack of defined substrates greater than ~150 nt, and the absence of high-resolution biophysical approaches. Here we describe the generation of very long ssDNA consisting of the mammalian telomeric repeat (5'-TTAGGG-3')n as well as the interrogation of its structure by electron microscopy (EM) and single molecule magnetic tweezers (smMT). This repeat is of particular interest as it contains a run of 3 contiguous guanine residues capable of forming G quartets as ssDNA. Fluorescent-dye exclusion assays confirmed that this G-strand ssDNA forms ubiquitous G-quadruplex folds. EM revealed thick bead-like filaments that condensed the DNA ~12 fold. The bead-like structures were 5 nm and 8 nm in diameter and linked by thin filaments. The G-strand ssDNA displayed initial stability to smMT force extension that ultimately released in steps that were multiples ~28 nm at forces between 6-12 pN; well below the >20 pN required to unravel G-quadruplexes. Most smMT steps were consistent with the disruption of the beads seen by EM. Binding by RAD51 distinctively altered the force extension properties of the G-strand ssDNA, suggesting a stochastic G-quadruplex-dependent condensation model that is discussed. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Rajkumar, Sankaranarayanan; Vasavada, Abhay R.; Praveen, Mamidipudi R.; Ananthan, Rajendran; Reddy, Geereddy B.; Tripathi, Harsha; Ganatra, Darshini A.; Arora, Anshul I.; Patel, Alpesh R.
2013-01-01
Purpose. To explore different molecular factors impairing the activities of superoxide dismutase (SOD) isoforms in senile cataractous lenses. Methods. Enzyme activity of SOD isoforms, levels of their corresponding cofactors copper (Cu), manganese (Mn), zinc (Zn), and expression of mRNA transcripts and proteins were determined in the lenses of human subjects with and without cataract. DNA from lens epithelium (LE) and peripheral blood was isolated. Polymerase chain reaction–single strand conformation polymorphism (PCR-SSCP) followed by sequencing was carried out to screen somatic mutations. The impact of intronic insertion/deletion (INDEL) variations on the splicing process and on the resultant transcript was evaluated. Genotyping of IVS4+42delG polymorphism of SOD1 gene was done by PCR–restriction fragment length polymorphism (RFLP). Results. A significant decrease in Cu/Zn- and Mn-SOD activity (P < 0.001) and in Cu/Zn-SOD transcript (P < 0.001) and its protein (P < 0.05) were found in cataractous lenses. No significant change in the level of copper (P = 0.36) and an increase in the level of manganese (P = 0.01) and zinc (P = 0.02) were observed in cataractous lenses. A significant positive correlation between the level of Cu/Zn-SOD activity and the levels of Cu (P = 0.003) and Zn (P = 0.005) was found in the cataractous lenses. DNA sequencing revealed three intronic INDEL variations in exon4 of SOD1 gene. Splice-junction analysis showed the potential of IVS4+42delG in creating a new cryptic acceptor site. If it is involved in alternate splicing, it could result in generation of SOD1 mRNA transcripts lacking exon4 region. Transcript analysis revealed the presence of complete SOD1 mRNA transcripts. Genotyping revealed the presence of IVS4+42delG polymorphism in all subjects. Conclusions. The decrease in the activity of SOD1 isoform in cataractous lenses was associated with the decreased level of mRNA transcripts and their protein expression and was not associated with either modulation in the level of enzyme cofactors or with INDEL variations. PMID:23970468
A label-free, fluorescence based assay for microarray
NASA Astrophysics Data System (ADS)
Niu, Sanjun
DNA chip technology has drawn tremendous attention since it emerged in the mid 90's as a method that expedites gene sequencing by over 100-fold. DNA chip, also called DNA microarray, is a combinatorial technology in which different single-stranded DNA (ssDNA) molecules of known sequences are immobilized at specific spots. The immobilized ssDNA strands are called probes. In application, the chip is exposed to a solution containing ssDNA of unknown sequence, called targets, which are labeled with fluorescent dyes. Due to specific molecular recognition among the base pairs in the DNA, the binding or hybridization occurs only when the probe and target sequences are complementary. The nucleotide sequence of the target is determined by imaging the fluorescence from the spots. The uncertainty of background in signal detection and statistical error in data analysis, primarily due to the error in the DNA amplification process and statistical distribution of the tags in the target DNA, have become the fundamental barriers in bringing the technology into application for clinical diagnostics. Furthermore, the dye and tagging process are expensive, making the cost of DNA chips inhibitive for clinical testing. These limitations and challenges make it difficult to implement DNA chip methods as a diagnostic tool in a pathology laboratory. The objective of this dissertation research is to provide an alternative approach that will address the above challenges. In this research, a label-free assay is designed and studied. Polystyrene (PS), a commonly used polymeric material, serves as the fluorescence agent. Probe ssDNA is covalently immobilized on polystyrene thin film that is supported by a reflecting substrate. When this chip is exposed to excitation light, fluorescence light intensity from PS is detected as the signal. Since the optical constants and conformations of ssDNA and dsDNA (double stranded DNA) are different, the measured fluorescence from PS changes for the same intensity of excitation light. The fluorescence contrast is used to quantify the amount of probe-target hybridization. A mathematical model that considers multiple reflections and scattering is developed to explain the mechanism of the fluorescence contrast which depends on the thickness of the PS film. Scattering is the dominant factor that contributes to the contrast. The potential of this assay to detect single nucleotide polymorphism is also tested.
What controls the hybridization thermodynamics of spherical nucleic acids?
Randeria, Pratik S; Jones, Matthew R; Kohlstedt, Kevin L; Banga, Resham J; Olvera de la Cruz, Monica; Schatz, George C; Mirkin, Chad A
2015-03-18
The hybridization of free oligonucleotides to densely packed, oriented arrays of DNA modifying the surfaces of spherical nucleic acid (SNA)-gold nanoparticle conjugates occurs with negative cooperativity; i.e., each binding event destabilizes subsequent binding events. DNA hybridization is thus an ever-changing function of the number of strands already hybridized to the particle. Thermodynamic quantification of this behavior reveals a 3 orders of magnitude decrease in the binding constant for the capture of a free oligonucleotide by an SNA conjugate as the fraction of pre-hybridized strands increases from 0 to ∼30%. Increasing the number of pre-hybridized strands imparts an increasing enthalpic penalty to hybridization that makes binding more difficult, while simultaneously decreasing the entropic penalty to hybridization, which makes binding more favorable. Hybridization of free DNA to an SNA is thus governed by both an electrostatic barrier as the SNA accumulates charge with additional binding events and an effect consistent with allostery, where hybridization at certain sites on an SNA modify the binding affinity at a distal site through conformational changes to the remaining single strands. Leveraging these insights allows for the design of conjugates that hybridize free strands with significantly higher efficiencies, some of which approach 100%.
Ananda, Guruprasad; Hile, Suzanne E.; Breski, Amanda; Wang, Yanli; Kelkar, Yogeshwar; Makova, Kateryna D.; Eckert, Kristin A.
2014-01-01
Interruptions of microsatellite sequences impact genome evolution and can alter disease manifestation. However, human polymorphism levels at interrupted microsatellites (iMSs) are not known at a genome-wide scale, and the pathways for gaining interruptions are poorly understood. Using the 1000 Genomes Phase-1 variant call set, we interrogated mono-, di-, tri-, and tetranucleotide repeats up to 10 units in length. We detected ∼26,000–40,000 iMSs within each of four human population groups (African, European, East Asian, and American). We identified population-specific iMSs within exonic regions, and discovered that known disease-associated iMSs contain alleles present at differing frequencies among the populations. By analyzing longer microsatellites in primate genomes, we demonstrate that single interruptions result in a genome-wide average two- to six-fold reduction in microsatellite mutability, as compared with perfect microsatellites. Centrally located interruptions lowered mutability dramatically, by two to three orders of magnitude. Using a biochemical approach, we tested directly whether the mutability of a specific iMS is lower because of decreased DNA polymerase strand slippage errors. Modeling the adenomatous polyposis coli tumor suppressor gene sequence, we observed that a single base substitution interruption reduced strand slippage error rates five- to 50-fold, relative to a perfect repeat, during synthesis by DNA polymerases α, β, or η. Computationally, we demonstrate that iMSs arise primarily by base substitution mutations within individual human genomes. Our biochemical survey of human DNA polymerase α, β, δ, κ, and η error rates within certain microsatellites suggests that interruptions are created most frequently by low fidelity polymerases. Our combined computational and biochemical results demonstrate that iMSs are abundant in human genomes and are sources of population-specific genetic variation that may affect genome stability. The genome-wide identification of iMSs in human populations presented here has important implications for current models describing the impact of microsatellite polymorphisms on gene expression. PMID:25033203
Glyde, Robert; Ye, Fuzhou; Darbari, Vidya Chandran; Zhang, Nan; Buck, Martin; Zhang, Xiaodong
2017-07-06
Gene transcription is carried out by RNA polymerases (RNAPs). For transcription to occur, the closed promoter complex (RPc), where DNA is double stranded, must isomerize into an open promoter complex (RPo), where the DNA is melted out into a transcription bubble and the single-stranded template DNA is delivered to the RNAP active site. Using a bacterial RNAP containing the alternative σ 54 factor and cryoelectron microscopy, we determined structures of RPc and the activator-bound intermediate complex en route to RPo at 3.8 and 5.8 Å. Our structures show how RNAP-σ 54 interacts with promoter DNA to initiate the DNA distortions required for transcription bubble formation, and how the activator interacts with RPc, leading to significant conformational changes in RNAP and σ 54 that promote RPo formation. We propose that DNA melting is an active process initiated in RPc and that the RNAP conformations of intermediates are significantly different from that of RPc and RPo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
DNA Scrunching in the Packaging of Viral Genomes.
Waters, James T; Kim, Harold D; Gumbart, James C; Lu, Xiang-Jun; Harvey, Stephen C
2016-07-07
The motors that drive double-stranded DNA (dsDNA) genomes into viral capsids are among the strongest of all biological motors for which forces have been measured, but it is not known how they generate force. We previously proposed that the DNA is not a passive substrate but that it plays an active role in force generation. This "scrunchworm hypothesis" holds that the motor proteins repeatedly dehydrate and rehydrate the DNA, which then undergoes cyclic shortening and lengthening motions. These are captured by a coupled protein-DNA grip-and-release cycle to rectify the motion and translocate the DNA into the capsid. In this study, we examined the interactions of dsDNA with the dodecameric connector protein of bacteriophage ϕ29, using molecular dynamics simulations on four different DNA sequences, starting from two different conformations (A-DNA and B-DNA). In all four simulations starting with the protein equilibrated with A-DNA in the channel, we observed transitions to a common, metastable, highly scrunched conformation, designated A*. This conformation is very similar to one recently reported by Kumar and Grubmüller in much longer MD simulations on B-DNA docked into the ϕ29 connector. These results are significant for four reasons. First, the scrunched conformations occur spontaneously, without requiring lever-like protein motions often believed to be necessary for DNA translocation. Second, the transition takes place within the connector, providing the location of the putative "dehydrator". Third, the protein has more contacts with one strand of the DNA than with the other; the former was identified in single-molecule laser tweezer experiments as the "load-bearing strand". Finally, the spontaneity of the DNA-protein interaction suggests that it may play a role in the initial docking of DNA in motors like that of T4 that can load and package any sequence.
Identification of four novel mutations in the COL4A5 gene of patients with Alport syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemmink, H.H.; Schroeder, C.H.; Brunner, H.G.
1993-08-01
The type IV collagen [alpha]5 chain (COL4A5) genes of patients with Alport syndrome were tested for major gene rearrangements by Southern blot analysis, using COL4A5 cDNA clones as probes. In addition, individual exons were screened for small mutations by single-strand conformation polymorphism (SSCP) analysis. Four new COL4A5 mutations were detected. A duplication of the nine most 3[prime] located nucleotides of exon 49 and the first nucleotide of intron 49 was identified in the COL4A5 gene of one patient. Two patients displayed single base substitutions leading to, respectively, a proline to threonine and an arginine to glutamine substitution in the C-terminalmore » end. Both substitutions involve amino acids conserved through evolution. In COL4A5 intron 41 a mutation changing the splice acceptor site from AG to AA was identified. All mutations cosegregate with the clinical phenotype of Alport syndrome in affected family members. In a control population of 50 individuals tested by PCR-SSCP these mutations were never identified. Together with two mutations reported previously, a total of six mutations were found in 26 patients with Alport syndrome (23%) after systematic screening of about 30% of the COL4A5 coding region. The clinical features of these six patients are described in detail. 21 refs., 2 figs., 3 tabs.« less
Vasconcelos, O; Sivakumar, K; Dalakas, M C; Quezado, M; Nagle, J; Leon-Monzon, M; Dubnick, M; Gajdusek, D C; Goldfarb, L G
1995-01-01
Mutations in the human phosphofructokinase muscle subunit gene (PFKM) are known to cause myopathy classified as glycogenosis type VII (Tarui disease). Previously described molecular defects include base substitutions altering encoded amino acids or resulting in abnormal splicing. We report a mutation resulting in phosphofructokinase deficiency in three patients from an Ashkenazi Jewish family. Using a reverse transcription PCR assay, PFKM subunit transcripts differing by length were detected in skeletal muscle tissue of all three affected subjects. In the longer transcript, an insertion of 252 nucleotides totally homologous to the structure of the 10th intron of the PFKM gene was found separating exon 10 from exon 11. In addition, two single base transitions were identified by direct sequencing: [exon 6; codon 95; CGA (Arg) to TGA (stop)] and [exon 7; codon 172; ACC (Thr) to ACT (Thr)] in either transcript. Single-stranded conformational polymorphism and restriction enzyme analyses confirmed the presence of these point substitutions in genomic DNA and strongly suggested homozygosity for the pathogenic allele. The nonsense mutation at codon 95 appeared solely responsible for the phenotype in these patients, further expanding genetic heterogeneity of Tarui disease. Transcripts with and without intron 10 arising from identical mutant alleles probably resulted from differential pre-mRNA processing and may represent a novel message from the PFKM gene. Images Fig. 2 Fig. 4 Fig. 5 PMID:7479776
Ulstrup, K E; Van Oppen, M J H
2003-12-01
Intra- and intercolony diversity and distribution of zooxanthellae in acroporid corals is largely uncharted. In this study, two molecular methods were applied to determine the distribution of zooxanthellae in the branching corals Acropora tenuis and A. valida at several reef locations in the central section of the Great Barrier Reef. Sun-exposed and shaded parts of all colonies were examined. Single-stranded conformational polymorphism analysis showed that individual colonies of A. tenuis at two locations harbour two strains of Symbiodinium belonging to clade C (C1 and C2), whereas conspecific colonies at two other reefs harboured a single zooxanthella strain. A. valida was found to simultaneously harbour strains belonging to two distinct phylogenetic clades (C and D) at all locations sampled. A novel method with improved sensitivity (quantitative polymerase chain reaction using Taqman fluorogenic probes) was used to map the relative abundance distribution of the two zooxanthella clades. At two of the five sampling locations both coral species were collected. At these two locations, composition of the zooxanthella communities showed the same pattern in both coral species, i.e. correlation with ambient light in Pioneer Bay and an absence thereof in Nelly Bay. The results show that the distribution of genetically distinct zooxanthellae is correlated with light regime and possibly temperature in some (but not all) colonies of A. tenuis and A. valida and at some reef locations, which we interpret as acclimation to local environmental conditions.
Activated zeolite--suitable carriers for microorganisms in anaerobic digestion processes?
Weiß, S; Lebuhn, M; Andrade, D; Zankel, A; Cardinale, M; Birner-Gruenberger, R; Somitsch, W; Ueberbacher, B J; Guebitz, G M
2013-04-01
Plant cell wall structures represent a barrier in the biodegradation process to produce biogas for combustion and energy production. Consequently, approaches concerning a more efficient de-polymerisation of cellulose and hemicellulose to monomeric sugars are required. Here, we show that natural activated zeolites (i.e. trace metal activated zeolites) represent eminently suitable mineral microhabitats and potential carriers for immobilisation of microorganisms responsible for anaerobic hydrolysis of biopolymers stabilising related bacterial and methanogenic communities. A strategy for comprehensive analysis of immobilised anaerobic populations was developed that includes the visualisation of biofilm formation via scanning electron microscopy and confocal laser scanning microscopy, community and fingerprint analysis as well as enzyme activity and identification analyses. Using SDS polyacrylamide gel electrophoresis, hydrolytical active protein bands were traced by congo red staining. Liquid chromatography/mass spectroscopy revealed cellulolytical endo- and exoglucanase (exocellobiohydrolase) as well as hemicellulolytical xylanase/mannase after proteolytic digestion. Relations to hydrolytic/fermentative zeolite colonisers were obtained by using single-strand conformation polymorphism analysis (SSCP) based on amplification of bacterial and archaeal 16S rRNA fragments. Thereby, dominant colonisers were affiliated to the genera Clostridium, Pseudomonas and Methanoculleus. The specific immobilisation on natural zeolites with functional microbes already colonising naturally during the fermentation offers a strategy to systematically supply the biogas formation process responsive to population dynamics and process requirements.
Lesnik, René; Brettar, Ingrid; Höfle, Manfred G
2016-01-01
Water samples of the Drinking Water Supply System (DWSS) of the city of Braunschweig were analysed for its Legionella species composition using genus-specific PCR amplicons and single-strand conformation polymorphism (SSCP) fingerprint analyses based on 16S rRNA genes. These analyses comprised the whole supply chain including raw water, treatment process and large-scale storage, and a seasonal study of finished drinking water sampled monthly from cold and hot tap water. Treatment of raw water had a major impact on Legionella species by reducing their diversity and abundances. The Legionella species composition of the tap water was highly distinct from that of both source waters. In cold water, 8–14 different phylotypes of Legionella (PTLs) were observed per sample with relative abundances ranging from >1% to 53%. In hot water, L. pneumophila was present during all seasons at high relative abundances (8–40%) accompanied by 5–14 other PTLs of which 6 PTLs were in common with cold water. This thermophilic Legionella community, including L. pneumophila, was able to grow in the hot water above 50 °C. Such thermophilic Legionella populations are of general relevance for drinking water management and public health, but also for the ecology and evolution of the genus Legionella. PMID:26528838
Association of RGA-SSCP markers with resistance to downy mildew and anthracnose in grapevines.
Tantasawat, P A; Poolsawat, O; Prajongjai, T; Chaowiset, W; Tharapreuksapong, A
2012-07-02
Downy mildew (Plasmopara viticola) and anthracnose (Sphaceloma ampelinum) are two major diseases that severely affect most grapevine (Vitis vinifera) cultivars grown commercially in Thailand. Progress of conventional breeding programs of grapevine for improved resistance to these diseases can be speeded up by selection of molecular markers associated with resistance traits. We evaluated the association between 13 resistance gene analog (RGA)-single-strand conformation polymorphism (SSCP) markers with resistance to downy mildew and anthracnose in 71 segregating progenies of seven cross combinations between susceptible cultivars and resistant lines. F(1) hybrids from each cross were assessed for resistance to downy mildew and anthracnose (isolates Nk4-1 and Rc2-1) under laboratory conditions. Association of resistance traits with RGA-SSCP markers was evaluated using simple linear regression analysis. Three RGA-SSCP markers were found to be significantly correlated with anthracnose resistance, whereas significant correlation with downy mildew resistance was observed for only one RGA-SSCP marker. These results demonstrate the usefulness of RGA-SSCP markers. Four candidate markers with significant associations to resistance to these two major diseases of grapevine were identified. However, these putative associations between markers and resistance need to be verified with larger segregating populations before they can be used for marker-assisted selection.
Primordial linkage of β2-microglobulin to the MHC.
Ohta, Yuko; Shiina, Takashi; Lohr, Rebecca L; Hosomichi, Kazuyoshi; Pollin, Toni I; Heist, Edward J; Suzuki, Shingo; Inoko, Hidetoshi; Flajnik, Martin F
2011-03-15
β2-Microglobulin (β2M) is believed to have arisen in a basal jawed vertebrate (gnathostome) and is the essential L chain that associates with most MHC class I molecules. It contains a distinctive molecular structure called a constant-1 Ig superfamily domain, which is shared with other adaptive immune molecules including MHC class I and class II. Despite its structural similarity to class I and class II and its conserved function, β2M is encoded outside the MHC in all examined species from bony fish to mammals, but it is assumed to have translocated from its original location within the MHC early in gnathostome evolution. We screened a nurse shark bacterial artificial chromosome library and isolated clones containing β2M genes. A gene present in the MHC of all other vertebrates (ring3) was found in the bacterial artificial chromosome clone, and the close linkage of ring3 and β2M to MHC class I and class II genes was determined by single-strand conformational polymorphism and allele-specific PCR. This study satisfies the long-held conjecture that β2M was linked to the primordial MHC (Ur MHC); furthermore, the apparent stability of the shark genome may yield other genes predicted to have had a primordial association with the MHC specifically and with immunity in general.
Ecology and characterization of polyhydroxyalkanoate-producing microorganisms on and in plants.
Gasser, Ilona; Müller, Henry; Berg, Gabriele
2009-10-01
Polyhydroxyalkanoates are energy reserve polymers produced by bacteria to survive periods of starvation in natural habitats. Little is known about the ecology of polyhydroxyalkanoate-producing bacteria. To analyse the occurrence of this specific group on/in seven different plant species, a combined strategy containing culture-dependent and -independent methods was applied. Using microbial fingerprint techniques (single-strand conformation polymorphism analysis with specific primers for phaC gene encoding the key enzyme of the polyhydroxyalkanoate synthesis), a high number of bands were especially found for the rhizosphere. Furthermore, cluster analysis revealed plant species-specific communities. Isolation of bacteria, recognition of brightly refractile cytoplasmatic inclusions, lipophilic stainings and a PCR strategy targeted on the phaC gene were used as a culture-dependent strategy for the detection of polyhydroxyalkanoate-producing bacteria. Results again represent a high degree of plant specificity: the rhizosphere of sugar beet contained the highest number of positive strains. This was confirmed by quantitative PCR: the relative copy number of phaC was statistically and significantly enhanced in all rhizospheres in comparison with bulk soil. New polyhydroxyalkanoate-producing bacterial species were detected: for example, Burkholderia terricola, Lysobacter gummosus, Pseudomonas extremaustralis, Pseudomonas brassicacearum and Pseudomonas orientalis. Our results confirm the hypothesis that the rhizosphere is an interesting hidden reservoir for polyhydroxyalkanoate producers.
Detection of a novel silent deletion, a missense mutation and a nonsense mutation in TCOF1.
Fujioka, Hirotaka; Ariga, Tadashi; Horiuchi, Katsumi; Ishikiriyama, Satoshi; Oyama, Kimie; Otsu, Makoto; Kawashima, Kunihiro; Yamamoto, Yuhei; Sugihara, Tsuneki; Sakiyama, Yukio
2008-12-01
Treacher Collins syndrome (TCS) is a disorder of craniofacial development, that is caused by mutations in the TCOF1 gene. TCS is inherited as an autosomal dominant trait, and haploinsufficiency of the TCOF1 gene product treacle is proposed to be etiologically involved. Mutational analysis of the TCOF1 gene was done in 10 patients diagnosed with TCS using single-strand conformation polymorphism and direct sequencing. Among these 10 patients, a novel 9 bp deletion was found, together with a previously reported 2 bp deletion, a novel missense mutation and a novel nonsense mutation in three different families. Familial studies allowed judgment of whether these abnormal findings were responsible for the TCS phenotype, or not. The 9 bp deletion of three amino acids Lys-Glu-Lys (1378-1380), which was located in the nuclear localization domain of treacle, seemed not essential for the treacle function. In contrast, the novel mutation of Ala26Val is considered to affect the LisH domain, an important domain of treacle. All of the mutations thus far detected in exon 5 have resulted in frameshift, but a nonsense mutation was detected (Lys159Stop). The information obtained in the present study provides additional insights into the functional domains of treacle.
Delineation of the Marfan phenotype associated with mutations in exons 23-32 of the FBN1 gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putnam, E.A.; Cho, M.; Milewicz, D.M.
Marfan syndrome is a dominantly inherited connective tissue disorder with a wide range of phenotypic severity. The condition is the result of mutations in FBN1, a large gene composed of 65 exons encoding the fibrillin-1 protein. While mutations causing classic manifestations of Marfan syndrome have been identified throughout the FBN1 gene, the six previously characterized mutations resulting in the severe, perinatal lethal form of Marfan syndrome have clustered in exons 24-32 of the gene. We screened 8 patients with either neonatal Marfan syndrome or severe cardiovascular complications of Marfan syndrome for mutations in this region of the gene. Using intron-basedmore » exon-specific primers, we amplified exons 23-32 from genomic DNAs, screened these fragments by single-stranded conformational polymorphism analysis, and sequenced indicated exons. This analysis documented mutations in exons 25-27 of the FBN1 mutations in 6 of these patients. These results, taken together with previously published FBN1 mutations in this region, further define the phenotype associated with mutations in exons 24-32 of the FBN1 gene, information important for the development of possible diagnostic tests and genetic counseling. 49 refs., 4 figs., 2 tabs.« less
Muldoon, L. L.; Neuwelt, E. A.; Pagel, M. A.; Weiss, D. L.
1994-01-01
The Korat cat provides an animal model for type II GM2-gangliosidosis (Sandhoff disease) that may be suitable for tests of gene replacement therapy with the HEXB gene encoding the beta subunit of the beta-hexosaminidases. In the present report, we examined the brain and liver pathology of a typical Sandhoff-affected cat. We characterized the feline HEXB complementary DNA (cDNA) and determined the molecular defect in this feline model. cDNA libraries were produced from one normal and one affected animal, and cDNA clones homologous to human HEXB were sequenced. In the affected cDNA clone, the deletion of a cytosine residue at position +39 of the putative coding region results in a frame shift and a stop codon at base +191. This disease-related deletion was consistently detected by sequencing of cloned polymerase chain reaction amplified reverse transcribed messenger RNA from one more normal Korat and two additional affected animals. The defect was further demonstrated using single-strand conformational polymorphism analysis of the polymerase chain reaction products. In addition, alternative splicing of both normal and affected messenger RNAs was demonstrated. These results should facilitate the use of this animal model to assess gene therapy. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8178934
Muldoon, L L; Neuwelt, E A; Pagel, M A; Weiss, D L
1994-05-01
The Korat cat provides an animal model for type II GM2-gangliosidosis (Sandhoff disease) that may be suitable for tests of gene replacement therapy with the HEXB gene encoding the beta subunit of the beta-hexosaminidases. In the present report, we examined the brain and liver pathology of a typical Sandhoff-affected cat. We characterized the feline HEXB complementary DNA (cDNA) and determined the molecular defect in this feline model. cDNA libraries were produced from one normal and one affected animal, and cDNA clones homologous to human HEXB were sequenced. In the affected cDNA clone, the deletion of a cytosine residue at position +39 of the putative coding region results in a frame shift and a stop codon at base +191. This disease-related deletion was consistently detected by sequencing of cloned polymerase chain reaction amplified reverse transcribed messenger RNA from one more normal Korat and two additional affected animals. The defect was further demonstrated using single-strand conformational polymorphism analysis of the polymerase chain reaction products. In addition, alternative splicing of both normal and affected messenger RNAs was demonstrated. These results should facilitate the use of this animal model to assess gene therapy.
Fibrinogen Lincoln: a new truncated alpha chain variant with delayed clotting.
Ridgway, H J; Brennan, S O; Gibbons, S; George, P M
1996-04-01
A patient referred for preoperative investigation of prolonged bleeding and easy bruising was found to have increased thrombin and reptilase times; however, the thrombin catalysed release of fibrinopeptides A and B was normal. Analysis of five other family members, spanning three generations, indicated that three had a similar defect and suggested autosomal dominant inheritance. Non-reducing SDS-PAGE of purified fibrinogen from affected individuals showed that the 340 kD form of their fibrinogen ran as a doublet. SSCP (single-stranded conformational polymorphism) analysis of exon 5 of the A alpha gene, which encodes the C-terminal half of the chain, confirmed the presence of a mutation. Cycle sequencing of PCR amplified DNA revealed a 13 base pair deletion (nt 4758-4770), resulting in a frame-shift at Ala 475, which translates as four new amino acids before terminating at a new stop codon (-476His-Cys-Leu-Ala-Stop). The presence of a circulating truncated A alpha chain was confirmed when SDS-PAGE gels were probed with an alpha chain specific antisera; which showed that the variant A alpha chain comigrated with gamma chains. The truncation results in a variant A alpha chain with a deletion of 131 amino acids (480-610), and four new amino acids at the C-terminal.
Novel Tay-Sachs disease mutations from China.
Akalin, N; Shi, H P; Vavougios, G; Hechtman, P; Lo, W; Scriver, C R; Mahuran, D; Kaplan, F
1992-01-01
We describe three HEXA mutations associated with infantile Tay-Sachs disease (TSD) in three unrelated nonconsanguineous Chinese families. Novel mutations were found in two of these families. The third is a previously reported mutation (G-->A transition at nt 1444) (Nakano et al., 1988). Direct sequencing of PCR products identified a novel insertion of an A after nt 547 in family 1. This change generates an early termination codon 6 bp downstream from the insertion site. Allele-specific oligonucleotide hybridization confirmed homozygosity in the proband. Single strand conformational polymorphism analysis and direct sequencing of amplified exon 13 revealed a T-->C transition at nt 1453 with the corresponding amino acid substitution W485R in the second family. This mutation creates an Fnu4HI restriction site. The proband is homozygous for this allele. When the site-specific mutagenized alpha cDNA carrying the T-->C transition at nt 1453 was expressed in COS 1 cells hexosaminidase S activity was not detectable above background. A G-->A transition at nt 1444 (exon 13) corresponding to the E482K substitution was found in the third family. This mutation occurs at a CpG dinucleotide. It has been reported in an Italian TSD proband and causes defective intracellular transport of the alpha-subunit from the rough endoplasmic reticulum to the Golgi apparatus.
Lesnik, René; Brettar, Ingrid; Höfle, Manfred G
2016-05-01
Water samples of the Drinking Water Supply System (DWSS) of the city of Braunschweig were analysed for its Legionella species composition using genus-specific PCR amplicons and single-strand conformation polymorphism (SSCP) fingerprint analyses based on 16S rRNA genes. These analyses comprised the whole supply chain including raw water, treatment process and large-scale storage, and a seasonal study of finished drinking water sampled monthly from cold and hot tap water. Treatment of raw water had a major impact on Legionella species by reducing their diversity and abundances. The Legionella species composition of the tap water was highly distinct from that of both source waters. In cold water, 8-14 different phylotypes of Legionella (PTLs) were observed per sample with relative abundances ranging from >1% to 53%. In hot water, L. pneumophila was present during all seasons at high relative abundances (8-40%) accompanied by 5-14 other PTLs of which 6 PTLs were in common with cold water. This thermophilic Legionella community, including L. pneumophila, was able to grow in the hot water above 50 °C. Such thermophilic Legionella populations are of general relevance for drinking water management and public health, but also for the ecology and evolution of the genus Legionella.
Zaremba, J; Feil, S; Juszko, J; Myga, W; van Duijnhoven, G; Berger, W
1998-09-01
To describe the phenotypic variability in a Polish Norrie disease (ND) family associated with the missense mutation A63D. A patient with spared vision from a Polish ND family underwent detailed ophthalmological examinations including slit-lamp biomicroscopy, ultrasound (USG), angiography, Goldmann kinetic visual field, and electroretinography (ERG). Mutation screening was carried out using the single-strand conformation polymorphism (SSCP) technique and subsequent DNA sequencing of the coding part of the ND gene. A mutation was detected (exon 3, A63D) in a large Polish family with 12 affected males, all but one presenting with classical ND symptoms. In one male, partially preserved vision was observed up to 40 years of age (distance acuity of the right eye 1/50 and left eye 2/50). Slit-lamp examination revealed remnants of a persistent primary vitreous and hyaloid artery. Upon angiography, the retina was vascularized within the posterior pole but not in the periphery. The ERG revealed pathological changes characteristic for chorioretinal degenerations. Within one family, individuals with identical sequence alterations in the ND gene can show remarkable phenotypic variability of the ocular symptoms. These findings indicate the involvement of additional factors (epigenetic or genetic) in ocular pathogenesis of ND.
Yang, Yue-Qin; Wu, Liang; Chen, Jin-Xing; Sun, Jian-Zhong; Li, Meng; Li, Dong-Mei; Lu, Hai-Ying; Su, Zhi-Hong; Lin, Xin-Qiu; Li, Ji-Cheng
2008-09-28
To study the relationship between nm23H1 gene genetic instability and its clinical pathological characteristics in Chinese digestive system cancer patients. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) was used to analyze the microsatellite instability (MSI) and loss of heterozygosity (LOH). Immunohistochemistry was employed to detect the expression of nm23H1. The MSI was higher in TNM stage I + II than in stage III + IV of gastric, colonic and gallbladder carcinomas. The LOH was higher in TNM stage III + IV than in stage I + II of gastric, colonic and hepatocellular carcinomas. Lymphatic metastasis was also observed. The expression of nm23H1 protein was lower in TNM stage III + IV than in stage I + II of these tumors and in patients with lymphatic metastasis.The nm23H1 protein expression was higher in the LOH negative group than in the LOH positive group. MSI and LOH may independently control the biological behaviors of digestive system cancers. MSI could serve as an early biological marker of digestive system cancers. Enhanced expression of nm23H1 protein could efficiently inhibit cancer metastasis and improve its prognosis. LOH mostly appears in late digestive system cancer.
Heuer, W; Stiesch, M; Abraham, W R
2011-02-01
Supra- and subgingival biofilm formation is considered to be mainly responsible for early implant failure caused by inflammations of periimplant tissues. Nevertheless, little is known about the complex microbial diversity and interindividual similarities around dental implants. An atraumatic assessment was made of the diversity of microbial communities around titanium implants by single strand conformation polymorphism (SSCP) analysis of the 16S rRNA gene amplicons as well as subsequent sequence analysis. Samples of adherent supra- and subgingival periimplant biofilms were collected from ten patients. Additionally, samples of sulcusfluid were taken at titanium implant abutments and remaining teeth. The bacteria in the samples were characterized by SSCP and sequence analysis. A high diversity of bacteria varying between patients and within one patient at different locations was found. Bacteria characteristic for sulcusfluid and supra- and subgingival biofilm communities were identified. Sulcusfluid of the abutments showed higher abundance of Streptococcus species than from residual teeth. Prevotella and Rothia species frequently reported from the oral cavity were not detected at the abutments suggesting a role as late colonizers. Different niches in the human mouth are characterized by specific groups of bacteria. Implant abutments are a very valuable approach to study dental biofilm development in vivo.
Liu, Xiao-Lin; Liu, Wen-Jun
2007-04-01
Analyses of microbial community structure in bio-ceramics (BC) and biological activated carbon (BAC), which widely used in drinking water treatment were performed by polymerase-chain-reaction-single-strand-conformation-polymorphism (PCR-SSCP) targeted eubacterial 16S ribosomal RNA gene. Microorganisms on bio-ceramics and biological activated carbon were detached by ultrasonic, culturing on R2A and LB agar, respectively, followed by genome DNA extracting. Results show that larger than 10 kb genome DNA could be extracted from all the samples except the BAC samples processed by ultrasonic. However, quantities of the extracted DNA were different. 408 bp gene fragments were observed after PCR using the extracted genome DNA as templates. These gene fragments were digested with lambda exonuclease followed by SSCP electrophoresis. Same SSCP profiles were observed between ultrasonic eluting, R2A and LB agar culturing. The identity of the segment from bio-ceramics with uncultured Pseudomonas sp. Clone FTL201 16S rDNA (GenBank, AF509293.1) fragment was 92%, and identities of the two segments from BAC with Bacillus sp. JH19 16S rDNA (GenBank , DQ232748.1) fragment and Bacterium VA-S-11 16S rDNA (GenBank, AY395279.1) fragment were 100% and 99%, respectively.
Genotyping of K-ras codons 12 and 13 mutations in colorectal cancer by capillary electrophoresis.
Chen, Yen-Ling; Chang, Ya-Sian; Chang, Jan-Gowth; Wu, Shou-Mei
2009-06-26
Point mutations of the K-ras gene located in codons 12 and 13 cause poor responses to the anti-epidermal growth factor receptor (anti-EGFR) therapy of colorectal cancer (CRC) patients. Besides, mutations of K-ras gene have also been proven to play an important role in human tumor progression. We established a simple and effective capillary electrophoresis (CE) method for simultaneous point mutation detection in codons 12 and 13 of K-ras gene. We combined one universal fluorescence-based nonhuman-sequence primer and two fragment-oriented primers in one tube, and performed this two-in-one polymerase chain reaction (PCR). PCR fragments included wild type and seven point mutations at codons 12 and 13 of K-ras gene. The amplicons were analyzed by single-strand conformation polymorphism (SSCP)-CE method. The CE analysis was performed by using a 1x Tris-borate-EDTA (TBE) buffer containing 1.5% (w/v) hydroxyethylcellulose (HEC) (MW 250,000) under reverse polarity with 15 degrees C and 30 degrees C. Ninety colorectal cancer patients were blindly genotyped using this developed method. The results showed good agreement with those of DNA sequencing method. The SSCP-CE was feasible for mutation screening of K-ras gene in populations.
Performance study of biofilter developed to treat H2S from wastewater odour
Omri, Ilhem; Aouidi, Fethia; Bouallagui, Hassib; Godon, Jean-Jacques; Hamdi, Moktar
2013-01-01
Biofiltration is an efficient biotechnological process used for waste gas abatement in various industrial processes. It offers low operating and capital costs and produces minimal secondary waste streams. The objective of this study was to evaluate the performance of a pilot scale biofilter in terms of pollutants’ removal efficiencies and the bacterial dynamics under different inlet concentrations of H2S. The treatment of odourous pollutants by biofiltration was investigated at a municipal wastewater treatment plant (WWTP) (Charguia, Tunis, Tunisia). Sampling and analyses were conducted for 150 days. Inlet H2S concentration recorded was between 200 and 1300 mg H2S.m−3. Removal efficiencies reached 99% for the majority of the running time at an empty bed retention time (EBRT) of 60 s. Heterotrophic bacteria were found to be the dominant microorganisms in the biofilter. The bacteria were identified as the members of the genus Bacillus, Pseudomonas and xanthomonadacea bacterium. The polymerase chain reaction-single stranded conformation polymorphism (PCR-SSCP) method showed that bacterial community profiles changed with the H2S inlet concentration. Our results indicated that the biofilter system, containing peat as the packing material, was proved able to remove H2S from the WWTP odourous pollutants. PMID:23961233
Folding cooperativity in a three-stranded beta-sheet model.
Roe, Daniel R; Hornak, Viktor; Simmerling, Carlos
2005-09-16
The thermodynamic behavior of a previously designed three-stranded beta-sheet was studied via several microseconds of standard and replica exchange molecular dynamics simulations. The system is shown to populate at least four thermodynamic minima, including two partially folded states in which only a single hairpin is formed. Simulated melting curves show different profiles for the C and N-terminal hairpins, consistent with differences in secondary structure content in published NMR and CD/FTIR measurements, which probed different regions of the chain. Individual beta-hairpins that comprise the three-stranded beta-sheet are observed to form cooperatively. Partial folding cooperativity between the component hairpins is observed, and good agreement between calculated and experimental values quantifying this cooperativity is obtained when similar analysis techniques are used. However, the structural detail in the ensemble of conformations sampled in the simulations permits a more direct analysis of this cooperativity than has been performed on the basis of experimental data. The results indicate the actual folding cooperativity perpendicular to strand direction is significantly larger than the lower bound obtained previously.
Folding cooperativity in a 3-stranded β-sheet model
Roe, Daniel R.; Hornak, Viktor
2015-01-01
Summary The thermodynamic behavior of a previously designed three-stranded β-sheet was studied via several µs of standard and replica exchange molecular dynamics simulations. The system is shown to populate at least four thermodynamic minima, including 2 partially folded states in which only a single hairpin is formed. Simulated melting curves show different profiles for the C and N-terminal hairpins, consistent with differences in secondary structure content in published NMR and CD/FTIR measurements, which probed different regions of the chain. Individual β-hairpins that comprise the 3-stranded β-sheet are observed to form cooperatively. Partial folding cooperativity between the component hairpins is observed, and good agreement between calculated and experimental values quantifying this cooperativity is obtained when similar analysis techniques are used. However, the structural detail in the ensemble of conformations sampled in the simulations permits a more direct analysis of this cooperatively than has been performed based on experimental data. The results indicate the actual folding cooperativity perpendicular to strand direction is significantly larger than the lower bound obtained previously. PMID:16095612
Harms, Klaus; Lunnan, Asbjørn; Hülter, Nils; Mourier, Tobias; Vinner, Lasse; Andam, Cheryl P.; Marttinen, Pekka; Fridholm, Helena; Hansen, Anders Johannes; Hanage, William P.; Nielsen, Kaare Magne; Willerslev, Eske; Johnsen, Pål Jarle
2016-01-01
In a screen for unexplained mutation events we identified a previously unrecognized mechanism generating clustered DNA polymorphisms such as microindels and cumulative SNPs. The mechanism, short-patch double illegitimate recombination (SPDIR), facilitates short single-stranded DNA molecules to invade and replace genomic DNA through two joint illegitimate recombination events. SPDIR is controlled by key components of the cellular genome maintenance machinery in the gram-negative bacterium Acinetobacter baylyi. The source DNA is primarily intragenomic but can also be acquired through horizontal gene transfer. The DNA replacements are nonreciprocal and locus independent. Bioinformatic approaches reveal occurrence of SPDIR events in the gram-positive human pathogen Streptococcus pneumoniae and in the human genome. PMID:27956618
DNA-directed mutations. Leading and lagging strand specificity
NASA Technical Reports Server (NTRS)
Sinden, R. R.; Hashem, V. I.; Rosche, W. A.
1999-01-01
The fidelity of replication has evolved to reproduce B-form DNA accurately, while allowing a low frequency of mutation. The fidelity of replication can be compromised, however, by defined order sequence DNA (dosDNA) that can adopt unusual or non B-DNA conformations. These alternative DNA conformations, including hairpins, cruciforms, triplex DNAs, and slipped-strand structures, may affect enzyme-template interactions that potentially lead to mutations. To analyze the effect of dosDNA elements on spontaneous mutagenesis, various mutational inserts containing inverted repeats or direct repeats were cloned in a plasmid containing a unidirectional origin of replication and a selectable marker for the mutation. This system allows for analysis of mutational events that are specific for the leading or lagging strands during DNA replication in Escherichia coli. Deletions between direct repeats, involving misalignment stabilized by DNA secondary structure, occurred preferentially on the lagging strand. Intermolecular strand switch events, correcting quasipalindromes to perfect inverted repeats, occurred preferentially during replication of the leading strand.
Costa, Alessandro; Renault, Ludovic; Swuec, Paolo; Petojevic, Tatjana; Pesavento, James J; Ilves, Ivar; MacLellan-Gibson, Kirsty; Fleck, Roland A; Botchan, Michael R; Berger, James M
2014-01-01
The Cdc45/Mcm2-7/GINS (CMG) helicase separates DNA strands during replication in eukaryotes. How the CMG is assembled and engages DNA substrates remains unclear. Using electron microscopy, we have determined the structure of the CMG in the presence of ATPγS and a DNA duplex bearing a 3′ single-stranded tail. The structure shows that the MCM subunits of the CMG bind preferentially to single-stranded DNA, establishes the polarity by which DNA enters into the Mcm2-7 pore, and explains how Cdc45 helps prevent DNA from dissociating from the helicase. The Mcm2-7 subcomplex forms a cracked-ring, right-handed spiral when DNA and nucleotide are bound, revealing unexpected congruencies between the CMG and both bacterial DnaB helicases and the AAA+ motor of the eukaryotic proteasome. The existence of a subpopulation of dimeric CMGs establishes the subunit register of Mcm2-7 double hexamers and together with the spiral form highlights how Mcm2-7 transitions through different conformational and assembly states as it matures into a functional helicase. DOI: http://dx.doi.org/10.7554/eLife.03273.001 PMID:25117490
Rajendran, Arivazhagan; Endo, Masayuki; Hidaka, Kumi; Lan Thao Tran, Phong; Mergny, Jean-Louis; Sugiyama, Hiroshi
2013-01-01
Guanine-rich oligonucleotides often show a strong tendency to form supramolecular architecture, the so-called G-quadruplex structure. Because of the biological significance, it is now considered to be one of the most important conformations of DNA. Here, we describe the direct visualization and single-molecule analysis of the formation of a tetramolecular G-quadruplex in KCl solution. The conformational changes were carried out by incorporating two duplex DNAs, with G–G mismatch repeats in the middle, inside a DNA origami frame and monitoring the topology change of the strands. In the absence of KCl, incorporated duplexes had no interaction and laid parallel to each other. Addition of KCl induced the formation of a G-quadruplex structure by stably binding the duplexes to each other in the middle. Such a quadruplex formation allowed the DNA synapsis without disturbing the duplex regions of the participating sequences, and resulted in an X-shaped structure that was monitored by atomic force microscopy. Further, the G-quadruplex formation in KCl solution and its disruption in KCl-free buffer were analyzed in real-time. The orientation of the G-quadruplex is often difficult to control and investigate using traditional biochemical methods. However, our method using DNA origami could successfully control the strand orientations, topology and stoichiometry of the G-quadruplex. PMID:23863846
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, F. J.; Pokkuluri, P. R.; Schiffer, M.
2000-12-19
The antibody light chain variable domain (V{sub L}){sup 1} and myelin protein zero (MPZ) are representatives of the functionally diverse immunoglobulin superfamily. The V{sub L} is a subunit of the antigen-binding component of antibodies, while MPZ is the major membrane-linked constituent of the myelin sheaths that coat peripheral nerves. Despite limited amino acid sequence homology, the conformations of the core structures of the two proteins are largely superimposable. Amino acid variations in V{sub L} account for various conformational disease outcomes, including amyloidosis. However, the specific amino acid changes in V{sub L} that are responsible for disease have been obscured bymore » multiple concurrent primary structure alterations. Recently, certain demyelination disorders have been linked to point mutations and single amino acid polymorphisms in MPZ. We demonstrate here that some pathogenic variations in MPZ correspond to changes suspected of determining amyloidosis in V{sub L}. This unanticipated observation suggests that studies of the biophysical origin of conformational disease in one member of a superfamily of homologous proteins may have implications throughout the superfamily. In some cases, findings may account for overt disease; in other cases, due to the natural repertoire of inherited polymorphisms, variations in a representative protein may predict subclinical impairment of homologous proteins.« less
Sinha, Rangana; Hossain, Maidul; Kumar, Gopinatha Suresh
2009-04-01
Design and synthesis of new small molecules binding to double-stranded RNA necessitate complete understanding of the molecular aspects of the binding of many existing molecules. Toward this goal, in this work we evaluated the biophysical aspects of the interaction of a DNA intercalator (proflavine) and a minor groove binder (hoechst 33258) with two polymorphic forms of polyCG, namely, the right-handed Watson-Crick base paired A-form and the left-handed Hoogsteen base paired H(L)-form, by absorption, fluorescence, and viscometry experiments. The energetics of the interaction of these molecules with the RNA structures has also been elucidated by isothermal titration calorimetry (ITC). Results suggest that proflavine strongly intercalates in both forms of polyCG, whereas hoechst shows mainly groove-binding modes. The binding of both drugs to both forms of RNA resulted in significant conformational change to the RNA structure with the bound molecules being placed in the chiral RNA helix. ITC profiles for both proflavine and hoechst show two binding sites. Binding of proflavine to both forms of RNA is endothermic and entropy driven in the first site and exothermic and enthalpy driven in the second site, whereas hoechst binding to both forms of RNA is exothermic and enthalpy driven in the first site and endothermic and entropy driven in the second site. This study suggests that the binding affinity characteristics and energetics of interaction of these DNA binding molecules with the RNA conformations are significantly different and may serve as data for future development of effective structure-selective RNA-based drugs.
Willwand, K; Baldauf, A Q; Deleu, L; Mumtsidu, E; Costello, E; Beard, P; Rommelaere, J
1997-10-01
The right-end telomere of replicative form (RF) DNA of the autonomous parvovirus minute virus of mice (MVM) consists of a sequence that is self-complementary except for a three nucleotide loop around the axis of symmetry and an interior bulge of three unpaired nucleotides on one strand (designated the right-end 'bubble'). This right-end inverted repeat can exist in the form of a folded-back strand (hairpin conformation) or in an extended form, base-paired to a copy strand (duplex conformation). We recently reported that the right-end telomere is processed in an A9 cell extract supplemented with the MVM nonstructural protein NS1. This processing is shown here to result from the NS1-dependent nicking of the complementary strand at a unique position 21 nt inboard of the folded-back genomic 5' end. DNA species terminating in duplex or hairpin configurations, or in a mutated structure that has lost the right-end bulge, are all cleaved in the presence of NS1, indicating that features distinguishing these structures are not prerequisites for nicking under the in vitro conditions tested. Cleavage of the hairpin structure is followed by strand-displacement synthesis, generating the right-end duplex conformation, while processing of the duplex structure leads to the release of free right-end telomeres. In the majority of molecules, displacement synthesis at the right terminus stops a few nucleotides before reaching the end of the template strand, possibly due to NS1 which is covalently bound to this end. A fraction of the right-end duplex product undergoes melting and re-folding into hairpin structures (formation of a 'rabbit-ear' structure).
Astuto, L M; Bork, J M; Weston, M D; Askew, J W; Fields, R R; Orten, D J; Ohliger, S J; Riazuddin, S; Morell, R J; Khan, S; Riazuddin, S; Kremer, H; van Hauwe, P; Moller, C G; Cremers, C W R J; Ayuso, C; Heckenlively, J R; Rohrschneider, K; Spandau, U; Greenberg, J; Ramesar, R; Reardon, W; Bitoun, P; Millan, J; Legge, R; Friedman, T B; Kimberling, W J
2002-08-01
Usher syndrome type I is characterized by congenital hearing loss, retinitis pigmentosa (RP), and variable vestibular areflexia. Usher syndrome type ID, one of seven Usher syndrome type I genetic localizations, have been mapped to a chromosomal interval that overlaps with a nonsyndromic-deafness localization, DFNB12. Mutations in CDH23, a gene that encodes a putative cell-adhesion protein with multiple cadherin-like domains, are responsible for both Usher syndrome and DFNB12 nonsyndromic deafness. Specific CDH23 mutational defects have been identified that differentiate these two phenotypes. Only missense mutations of CDH23 have been observed in families with nonsyndromic deafness, whereas nonsense, frameshift, splice-site, and missense mutations have been identified in families with Usher syndrome. In the present study, a panel of 69 probands with Usher syndrome and 38 probands with recessive nonsyndromic deafness were screened for the presence of mutations in the entire coding region of CDH23, by heteroduplex, single-strand conformation polymorphism, and direct sequence analyses. A total of 36 different CDH23 mutations were detected in 45 families; 33 of these mutations were novel, including 18 missense, 3 nonsense, 5 splicing defects, 5 microdeletions, and 2 insertions. A total of seven mutations were common to more than one family. Numerous exonic and intronic polymorphisms also were detected. Results of ophthalmologic examinations of the patients with nonsyndromic deafness have found asymptomatic RP-like manifestations, indicating that missense mutations may have a subtle effect in the retina. Furthermore, patients with mutations in CDH23 display a wide range of hearing loss and RP phenotypes, differing in severity, age at onset, type, and the presence or absence of vestibular areflexia.
Shevah, Orit; Rubinstein, Menachem; Laron, Zvi
2004-10-01
Laron Syndrome, first described in Israel, is a form of dwarfism similar to isolated growth hormone deficiency caused by molecular defects in the GH receptor gene. To characterize the molecular defects of the GH-R in Laron syndrome patients followed in our clinic. Of the 63 patients in the cohort, we investigated 31 patients and 32 relatives belonging to several ethnic origins. Molecular analysis of the GH-R gene was performed using the single strand conformation polymorphism and DNA sequencing techniques. Eleven molecular defects including a novel mutation were found. Twenty-two patients carried mutations in the extracellular domain, one in the transmembrane domain, and 3 siblings with typical Laron syndrome presented a normal GH-R. Of interest are, on one hand, different mutations within the same ethnic groups: W-15X and 5, 6 exon deletion in Jewish-Iraqis, and E180 splice and 5, 6 exon deletion in Jewish-Moroccans; and on the other hand, identical findings in patients from distinct regions: the 785-1 G to T mutation in an Israeli-Druze and a Peruvian patient. A polymorphism in exon 6, Gly168Gly, was found in 15 probands. One typical Laron patient from Greece was heterozygous for R43X in exon 4 and heterozygous for Gly168Gly. In addition, a novel mutation in exon 5: substitution of T to G replacing tyrosine 86 for aspartic acid (Y86D) is described. This study demonstrates: a) an increased focal incidence of Laron syndrome in different ethnic groups from our area with a high incidence of consanguinity; and b) a relationship between molecular defects of the GH-R, ethnic group and geographic area.
Burchardt, Pawel; Nowak, Witold; Gozdzicka-Jozefiak, Anna; Link, Rafal; Grotowski, Tomasz; Wisniecka, Anna; Siminiak, Tomasz
2009-07-01
Insulin-like growth factor-1 (IGF-1) plays an important role in arterial homeostasis. Its properties seem to depend on circulating IGF-1 level changes. The various IGF-1 levels are caused by varied expression of IGF-1 gene, due to the polymorphic structure of IGF-1 gene or its regulatory sequences. We examined the P1 promoter, being responsible for most IGF-1 transcripts, in patients with stable angina, to evaluate its sequence changes and to assess its influence on protein synthesis as well as on the degree of arteriosclerosis. For that purpose we evaluated the DNA isolated from blood cells. The DNA was amplified by using polymerase chain reaction (PCR), then analyzed using the SSCP (single-strand conformation polymorphism) technique. Products of every stage were verified by electrophoresis on agarose gel. In addition, every patient had coronary angiography performed and IGF-1, IGFBP3, and lipid levels measured. The SSCP in the region between -1115 and -784 nt was less commonly observed among subjects with positive MI (myocardial infarction) familial history (P = 0.0008) and with MI history (P = 0.012) than in patients without these conditions. Subjects with this irregularity tended towards higher circulating IGF-1 levels. In addition high Gensini scores - over 95th percentile, 105 points in our study - were more frequent in SSCP patients (P = 0.03). We presume that presence of SSCP in the P1 region between -1115 and -784 nt may positively affect coronary arteries by increasing circulating IGF-1 levels, but its clinical importance requires molecular verification and further studies.
Zeng, Jun; Zong, Li-li; Mao, Ting; Huang, Yu-xing; Xu, Zheng-mei
2011-10-01
To investigate the distribution of pathogenic C.albican genotype and Candida species in association with the severity of vulvovaginal candidiasis (VVC). Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) of the internal transcribed spacer analysis was employed to identify the Candida species isolated from the vaginal secretions of 198 patients with acute VVC. SSCP and GeneScan analyses of microsatellite locus I polymorphism were used to determine the genotypes of the clinical isolates of C. albican associated with VVC. All the patients were scored for clinical signs and symptoms to evaluate the severity of VVC. A total of 198 Candida strains were isolated from VVC patients, including 140 (70.7%) C. albicans strains and 58 (29.3%) non-albicans strains. In the 95 patients with severe VVC and 103 with mild-moderate VVC, C.albican was detected in 62.1% and 76.6% of the patients, respectively (P=0.011). Thirty-eight microsatellite locus I genotypes were detected in 140 unrelated C. albican strains, among which the dominant genotypes 30-45 (44 strians, 31.43%) and 32-46 (23 strains, 16.43%) were the most common, followed by genotypes 30-46 (4 strains, 2.86%) and 32-47 (9 strains, 6.42%). The overall frequencies of the 4 genotypes were significantly higher in severe VVC than in mild-moderate VVC cases (77.9% vs 42.0%, P<0.001). C. albicans remains the most common pathogenic Candia species in patients with VVC, but the non-alibcans species seem more likely to cause severe VVC. The dominant genotypes of C. albicans with a tropism for the vagina are correlated to the severity of VVC.
Astuto, L. M.; Bork, J. M.; Weston, M. D.; Askew, J. W.; Fields, R. R.; Orten, D. J.; Ohliger, S. J.; Riazuddin, S.; Morell, R. J.; Khan, S.; Riazuddin, S.; Kremer, H.; van Hauwe, P.; Moller, C. G.; Cremers, C. W. R. J.; Ayuso, C.; Heckenlively, J. R.; Rohrschneider, K.; Spandau, U.; Greenberg, J.; Ramesar, R.; Reardon, W.; Bitoun, P.; Millan, J.; Legge, R.; Friedman, T. B.; Kimberling, W. J.
2002-01-01
Usher syndrome type I is characterized by congenital hearing loss, retinitis pigmentosa (RP), and variable vestibular areflexia. Usher syndrome type ID, one of seven Usher syndrome type I genetic localizations, have been mapped to a chromosomal interval that overlaps with a nonsyndromic-deafness localization, DFNB12. Mutations in CDH23, a gene that encodes a putative cell-adhesion protein with multiple cadherin-like domains, are responsible for both Usher syndrome and DFNB12 nonsyndromic deafness. Specific CDH23 mutational defects have been identified that differentiate these two phenotypes. Only missense mutations of CDH23 have been observed in families with nonsyndromic deafness, whereas nonsense, frameshift, splice-site, and missense mutations have been identified in families with Usher syndrome. In the present study, a panel of 69 probands with Usher syndrome and 38 probands with recessive nonsyndromic deafness were screened for the presence of mutations in the entire coding region of CDH23, by heteroduplex, single-strand conformation polymorphism, and direct sequence analyses. A total of 36 different CDH23 mutations were detected in 45 families; 33 of these mutations were novel, including 18 missense, 3 nonsense, 5 splicing defects, 5 microdeletions, and 2 insertions. A total of seven mutations were common to more than one family. Numerous exonic and intronic polymorphisms also were detected. Results of ophthalmologic examinations of the patients with nonsyndromic deafness have found asymptomatic RP–like manifestations, indicating that missense mutations may have a subtle effect in the retina. Furthermore, patients with mutations in CDH23 display a wide range of hearing loss and RP phenotypes, differing in severity, age at onset, type, and the presence or absence of vestibular areflexia. PMID:12075507
NASA Astrophysics Data System (ADS)
Awwadi, Firas F.; Hodali, Hamdallah A.
2018-02-01
Syntheses and crystal structures of two polymorphs of the complex [Co(II)(L)], where H2L = 2,2'-[cis-1,2-diaminocyclohexanediylbis (nitrilo-methylidyne)]bis (5-dimethyl-amino]phenol, have been studied. The two polymorphs concomitantly crystallized by vapour diffusion of solvent. The first polymorph (I) crystallized as a racemate in the centrosymmetric tetragonal I41/a space group. The second polymorph (II) crystallized in the chiral orthorhombic space group P212121. The chiral conformers of symmetrical cis-1,2-disubstituted cyclohexane molecules cannot be resolved in the liquid or gas phases, due to the rapid ring inversion. In the present study, the two chiral conformers are present in crystals of polymorph I, whereas, only one chiral conformer is present in crystals of polymorph II. Crystal structure analysis indicated that the formation of two different polymorphs of [Co(II)(L)] complex can be rationalized based on Csbnd H⋯Co anagostic interactions. Density Functional Theory (DFT) calculations indicated that Csbnd H⋯Co interactions are due to HOMO-LUMO interactions.
Park, HaJeung; González, Àlex L; Yildirim, Ilyas; Tran, Tuan; Lohman, Jeremy R; Fang, Pengfei; Guo, Min; Disney, Matthew D
2015-06-23
Spinocerebellar ataxia type 10 (SCA10) is caused by a pentanucleotide repeat expansion of r(AUUCU) within intron 9 of the ATXN10 pre-mRNA. The RNA causes disease by a gain-of-function mechanism in which it inactivates proteins involved in RNA biogenesis. Spectroscopic studies showed that r(AUUCU) repeats form a hairpin structure; however, there were no high-resolution structural models prior to this work. Herein, we report the first crystal structure of model r(AUUCU) repeats refined to 2.8 Å and analysis of the structure via molecular dynamics simulations. The r(AUUCU) tracts adopt an overall A-form geometry in which 3 × 3 nucleotide (5')UCU(3')/(3')UCU(5') internal loops are closed by AU pairs. Helical parameters of the refined structure as well as the corresponding electron density map on the crystallographic model reflect dynamic features of the internal loop. The computational analyses captured dynamic motion of the loop closing pairs, which can form single-stranded conformations with relatively low energies. Overall, the results presented here suggest the possibility for r(AUUCU) repeats to form metastable A-from structures, which can rearrange into single-stranded conformations and attract proteins such as heterogeneous nuclear ribonucleoprotein K (hnRNP K). The information presented here may aid in the rational design of therapeutics targeting this RNA.
Park, HaJeung; González, Àlex L.; Yildirim, Ilyas; Tran, Tuan; Lohman, Jeremy R.; Fang, Pengfei; Guo, Min; Disney, Matthew D.
2016-01-01
Spinocerebellar ataxia type 10 (SCA10) is caused by a pentanucleotide repeat expansion of r(AUUCU) within intron 9 of the ATXN10 pre-mRNA. The RNA causes disease by a gain-of-function mechanism in which it inactivates proteins involved in RNA biogenesis. Spectroscopic studies showed that r(AUUCU) repeats form a hairpin structure; however, there were no high-resolution structural models prior to this work. Herein, we report the first crystal structure of model r(AUUCU) repeats refined to 2.8 Å and analysis of the structure via molecular dynamics simulations. The r(AUUCU) tracts adopt an overall A-form geometry in which 3 × 3 nucleotide 5′UCU3′/3′UCU5′ internal loops are closed by AU pairs. Helical parameters of the refined structure as well as the corresponding electron density map on the crystallographic model reflect dynamic features of the internal loop. The computational analyses captured dynamic motion of the loop closing pairs, which can form single-stranded conformations with relatively low energies. Overall, the results presented here suggest the possibility for r(AUUCU) repeats to form metastable A-from structures, which can rearrange into single-stranded conformations and attract proteins such as heterogeneous nuclear ribonucleoprotein K (hnRNP K). The information presented here may aid in the rational design of therapeutics targeting this RNA. PMID:26039897
Eichhorn, Catherine D.; Feng, Jun; Suddala, Krishna C.; Walter, Nils G.; Brooks, Charles L.; Al-Hashimi, Hashim M.
2012-01-01
Single-stranded RNAs (ssRNAs) are ubiquitous RNA elements that serve diverse functional roles. Much of our understanding of ssRNA conformational behavior is limited to structures in which ssRNA directly engages in tertiary interactions or is recognized by proteins. Little is known about the structural and dynamic behavior of free ssRNAs at atomic resolution. Here, we report the collaborative application of nuclear magnetic resonance (NMR) and replica exchange molecular dynamics (REMD) simulations to characterize the 12 nt ssRNA tail derived from the prequeuosine riboswitch. NMR carbon spin relaxation data and residual dipolar coupling measurements reveal a flexible yet stacked core adopting an A-form-like conformation, with the level of order decreasing toward the terminal ends. An A-to-C mutation within the polyadenine tract alters the observed dynamics consistent with the introduction of a dynamic kink. Pre-ordering of the tail may increase the efficacy of ligand binding above that achieved by a random-coil ssRNA. The REMD simulations recapitulate important trends in the NMR data, but suggest more internal motions than inferred from the NMR analysis. Our study unmasks a previously unappreciated level of complexity in ssRNA, which we believe will also serve as an excellent model system for testing and developing computational force fields. PMID:22009676
Mak, Chi H
2015-11-25
While single-stranded (ss) segments of DNAs and RNAs are ubiquitous in biology, details about their structures have only recently begun to emerge. To study ssDNA and RNAs, we have developed a new Monte Carlo (MC) simulation using a free energy model for nucleic acids that has the atomisitic accuracy to capture fine molecular details of the sugar-phosphate backbone. Formulated on the basis of a first-principle calculation of the conformational entropy of the nucleic acid chain, this free energy model correctly reproduced both the long and short length-scale structural properties of ssDNA and RNAs in a rigorous comparison against recent data from fluorescence resonance energy transfer, small-angle X-ray scattering, force spectroscopy and fluorescence correlation transport measurements on sequences up to ∼100 nucleotides long. With this new MC algorithm, we conducted a comprehensive investigation of the entropy landscape of small RNA stem-loop structures. From a simulated ensemble of ∼10(6) equilibrium conformations, the entropy for the initiation of different size RNA hairpin loops was computed and compared against thermodynamic measurements. Starting from seeded hairpin loops, constrained MC simulations were then used to estimate the entropic costs associated with propagation of the stem. The numerical results provide new direct molecular insights into thermodynaimc measurement from macroscopic calorimetry and melting experiments.
Zhang, Xiaoru; Xu, Yunpeng; Zhao, Yanqing; Song, Weiling
2013-01-15
We report a strategy for the transduction of DNA hybridization into a readily detectable photoelectrochemical signal by means of a conformational change analogous to electrochemical DNA (E-DNA) approach. To demonstrate the effect of distance change for photosensitizer to the surface of electrode on the change of photocurrent, photosensitizer Ru(bpy)(2)(dcbpy)(2+) tagged DNA stem-loop structures were self-assembled onto a nanogold modified ITO electrode. Hybridization induced a large conformational change in DNA structure, which in turn significantly altered the electron-transfer tunneling distance between the electrode and photosensitizer. The resulting change in photocurrent was proportional to the concentration of DNA in the range of 1.0×10(-10)-8.0×10(-9)M. In order to improve the sensitivity of the photoelectrochemical biosensor, an amplified detection method based on isothermal strand displacement polymerization reaction was employed. With multiple rounds of isothermal strand replication, which led to strand displacement and constituted consecutive signal amplification, a detection limit of 9.4×10(-14)M target DNA was achieved. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
de Pinho Pessoa Nogueira, Luciana; de Oliveira, Yara S.; de C. Fonseca, Jéssica; Costa, Wendell S.; Raffin, Fernanda N.; Ellena, Javier; Ayala, Alejandro Pedro
2018-03-01
Rifampicin is a semi-synthetic drug derived from rifamycin B, and currently integrates the fixed dose combination tablet formulations used in the treatment of tuberculosis. It is also used in the leprosy polychemotherapy and prophylaxis, which are diseases classified as neglected according to the World Health Organization. Rifampicin is a polymorphic drug and its desirable polymorphic form is labeled as II, being the main goal of this study the elucidation of its crystalline structure. Polymorph II is characterized by two molecules with different conformations in the asymmetric unit and the following lattice parameters: a = 14.0760 (10) Å, b = 17.5450 (10) Å, c = 17.5270 (10) Å, β = 92.15°. Differently to the previously reported structures, a charge transference from the hydroxyl group of the naphthoquinone of one conformer to the nitrogen of the piperazine group of the second conformer was observed. The relevance of the knowledge of this crystalline structure, which is the preferred polymorph for pharmaceutical formulations, was evidenced by analyzing raw materials with polymorphic mixtures. Thus, the results presented in this contribution close an old information gap allowing the complete solid-state characterization of rifampicin.
Cuccia, Louis A; Ruiz, Eliseo; Lehn, Jean-Marie; Homo, Jean-Claude; Schmutz, Marc
2002-08-02
The synthesis and characterization of an alternating pyridine-pyridazine strand comprising thirteen heterocycles are described. Spontaneous folding into a helical secondary structure is based on a general molecular self-organization process enforced by the conformational information encoded within the primary structure of the molecular strand itself. Conformational control based on heterocyclic "helicity codons" illustrates a strategy for designing folding properties into synthetic oligomers (foldamers). Strong intermolecular interactions of the highly ordered lock-washer subunits of compound 3 results in hierarchical supramolecular self-assembly into protofibrils and fibrils. Compound 3 also forms mechanically stable two-dimensional Langmuir-Blodgett and cast thin films.
Kirouac, Kevin N.; Basu, Ashis K.; Ling, Hong
2013-01-01
Polycyclic aromatic hydrocarbons and their nitro derivatives are culprits of the detrimental health effects of environmental pollution. These hydrophobic compounds metabolize to reactive species and attach to DNA producing bulky lesions, such as N-[deoxyguanosine-8-yl]-1-aminopyrene (APG), in genomic DNA. The bulky adducts block DNA replication by high-fidelity polymerases and compromise replication fidelities and efficiencies by specialized lesion bypass polymerases. Here we present three crystal structures of the DNA polymerase Dpo4, a model translesion DNA polymerase of the Y family, in complex with APG-lesion-containing DNA in pre-insertion and extension stages. APG is captured in two conformations in the pre-insertion complex; one is highly exposed to the solvent, whereas the other is harbored in a shallow cleft between the finger and unique Y family little finger domain. In contrast, APG is in a single conformation at the extension stage, in which the pyrene ring is sandwiched between the little finger domain and a base from the turning back single-stranded template strand. Strikingly, a nucleotide intercalates the DNA helix to form a quaternary complex with Dpo4, DNA, and an incoming nucleotide, which stabilizes the distorted DNA structure at the extension stage. The unique APG DNA conformations in Dpo4 inhibit DNA translocation through the polymerase active site for APG bypass. We also modeled an insertion complex that illustrates a solvent-exposed pyrene ring contributing to an unstable insertion state. The structural work combined with our lesion replication assays provides a novel structural mechanism on bypass of DNA adducts containing polycyclic aromatic hydrocarbon moieties. PMID:23876706
Kirouac, Kevin N; Basu, Ashis K; Ling, Hong
2013-11-15
Polycyclic aromatic hydrocarbons and their nitro derivatives are culprits of the detrimental health effects of environmental pollution. These hydrophobic compounds metabolize to reactive species and attach to DNA producing bulky lesions, such as N-[deoxyguanosine-8-yl]-1-aminopyrene (APG), in genomic DNA. The bulky adducts block DNA replication by high-fidelity polymerases and compromise replication fidelities and efficiencies by specialized lesion bypass polymerases. Here we present three crystal structures of the DNA polymerase Dpo4, a model translesion DNA polymerase of the Y family, in complex with APG-lesion-containing DNA in pre-insertion and extension stages. APG is captured in two conformations in the pre-insertion complex; one is highly exposed to the solvent, whereas the other is harbored in a shallow cleft between the finger and unique Y family little finger domain. In contrast, APG is in a single conformation at the extension stage, in which the pyrene ring is sandwiched between the little finger domain and a base from the turning back single-stranded template strand. Strikingly, a nucleotide intercalates the DNA helix to form a quaternary complex with Dpo4, DNA, and an incoming nucleotide, which stabilizes the distorted DNA structure at the extension stage. The unique APG DNA conformations in Dpo4 inhibit DNA translocation through the polymerase active site for APG bypass. We also modeled an insertion complex that illustrates a solvent-exposed pyrene ring contributing to an unstable insertion state. The structural work combined with our lesion replication assays provides a novel structural mechanism on bypass of DNA adducts containing polycyclic aromatic hydrocarbon moieties. © 2013.
USDA-ARS?s Scientific Manuscript database
Previous research has found that there is a QTL affecting calving and conformation traits on Bos taurus (BTA) autosome 18 that may be related to increased calf birth weights, which are not routinely recorded in the US. Birth weight (BW) data from large, intensively managed dairies in eastern German...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernández-Santoyo, A.; Del Pozo Yauner, L; Fuentes-Silva, D
Systemic amyloid light-chain (LC) amyloidosis is a disease process characterized by the pathological deposition of monoclonal LCs in tissue. All LC subtypes are capable of fibril formation although {lambda} chains, particularly those belonging to the {lambda}6 type, are overrepresented. Here, we report the thermodynamic and in vitro fibrillogenic properties of several mutants of the {lambda}6 protein 6aJL2 in which Pro7 and/or His8 was substituted by Ser or Pro. The H8P and H8S mutants were almost as stable as the wild-type protein and were poorly fibrillogenic. In contrast, the P7S mutation decreased the thermodynamic stability of 6aJL2 and greatly enhanced itsmore » capacity to form amyloid-like fibrils in vitro. The crystal structure of the P7S mutant showed that the substitution induced both local and long-distance effects, such as the rearrangement of the VL (variable region of the light chain)-VL interface. This mutant crystallized in two orthorhombic polymorphs, P2{sub 1}2{sub 1}2{sub 1} and C222{sub 1}. In the latter, a monomer that was not arranged in the typical Bence-Jones dimer was observed for the first time. Crystal-packing analysis of the C222{sub 1} lattice showed the establishment of intermolecular {beta}-{beta} interactions that involved the N-terminus and {beta}-strand B and that these could be relevant in the mechanism of LC fibril formation. Our results strongly suggest that Pro7 is a key residue in the conformation of the N-terminal sheet switch motif and, through long-distance interactions, is also critically involved in the contacts that stabilized the VL interface in {lambda}6 LCs.« less
Fluorescence-based strategies to investigate the structure and dynamics of aptamer-ligand complexes
NASA Astrophysics Data System (ADS)
Perez-Gonzalez, Cibran; Lafontaine, Daniel; Penedo, J.
2016-08-01
In addition to the helical nature of double-stranded DNA and RNA, single-stranded oligonucleotides can arrange themselves into tridimensional structures containing loops, bulges, internal hairpins and many other motifs. This ability has been used for more than two decades to generate oligonucleotide sequences, so-called aptamers, that can recognize certain metabolites with high affinity and specificity. More recently, this library of artificially-generated nucleic acid aptamers has been expanded by the discovery that naturally occurring RNA sequences control bacterial gene expression in response to cellular concentration of a given metabolite. The application of fluorescence methods has been pivotal to characterize in detail the structure and dynamics of these aptamer-ligand complexes in solution. This is mostly due to the intrinsic high sensitivity of fluorescence methods and also to significant improvements in solid-phase synthesis, post-synthetic labelling strategies and optical instrumentation that took place during the last decade. In this work, we provide an overview of the most widely employed fluorescence methods to investigate aptamer structure and function by describing the use of aptamers labelled with a single dye in fluorescence quenching and anisotropy assays. The use of 2-aminopurine as a fluorescent analog of adenine to monitor local changes in structure and fluorescence resonance energy transfer (FRET) to follow long-range conformational changes is also covered in detail. The last part of the review is dedicated to the application of fluorescence techniques based on single-molecule microscopy, a technique that has revolutionized our understanding of nucleic acid structure and dynamics. We finally describe the advantages of monitoring ligand-binding and conformational changes, one molecule at a time, to decipher the complexity of regulatory aptamers and summarize the emerging folding and ligand-binding models arising from the application of these single-molecule FRET microscopy techniques.
Fluorescence-Based Strategies to Investigate the Structure and Dynamics of Aptamer-Ligand Complexes
Perez-Gonzalez, Cibran; Lafontaine, Daniel A.; Penedo, J. Carlos
2016-01-01
In addition to the helical nature of double-stranded DNA and RNA, single-stranded oligonucleotides can arrange themselves into tridimensional structures containing loops, bulges, internal hairpins and many other motifs. This ability has been used for more than two decades to generate oligonucleotide sequences, so-called aptamers, that can recognize certain metabolites with high affinity and specificity. More recently, this library of artificially-generated nucleic acid aptamers has been expanded by the discovery that naturally occurring RNA sequences control bacterial gene expression in response to cellular concentration of a given metabolite. The application of fluorescence methods has been pivotal to characterize in detail the structure and dynamics of these aptamer-ligand complexes in solution. This is mostly due to the intrinsic high sensitivity of fluorescence methods and also to significant improvements in solid-phase synthesis, post-synthetic labeling strategies and optical instrumentation that took place during the last decade. In this work, we provide an overview of the most widely employed fluorescence methods to investigate aptamer structure and function by describing the use of aptamers labeled with a single dye in fluorescence quenching and anisotropy assays. The use of 2-aminopurine as a fluorescent analog of adenine to monitor local changes in structure and fluorescence resonance energy transfer (FRET) to follow long-range conformational changes is also covered in detail. The last part of the review is dedicated to the application of fluorescence techniques based on single-molecule microscopy, a technique that has revolutionized our understanding of nucleic acid structure and dynamics. We finally describe the advantages of monitoring ligand-binding and conformational changes, one molecule at a time, to decipher the complexity of regulatory aptamers and summarize the emerging folding and ligand-binding models arising from the application of these single-molecule FRET microscopy techniques. PMID:27536656
Hellman, Lance M.; Spear, Tyler J.; Koontz, Colton J.; Melikishvili, Manana; Fried, Michael G.
2014-01-01
O6-alkylguanine-DNA alkyltransferase (AGT) is a single-cycle DNA repair enzyme that removes pro-mutagenic O6-alkylguanine adducts from DNA. Its functions with short single-stranded and duplex substrates have been characterized, but its ability to act on other DNA structures remains poorly understood. Here, we examine the functions of this enzyme on O6-methylguanine (6mG) adducts in the four-stranded structure of the human telomeric G-quadruplex. On a folded 22-nt G-quadruplex substrate, binding saturated at 2 AGT:DNA, significantly less than the ∼5 AGT:DNA found with linear single-stranded DNAs of similar length, and less than the value found with the telomere sequence under conditions that inhibit quadruplex formation (4 AGT:DNA). Despite these differences, AGT repaired 6mG adducts located within folded G-quadruplexes, at rates that were comparable to those found for a duplex DNA substrate under analogous conditions. Repair was kinetically biphasic with the amplitudes of rapid and slow phases dependent on the position of the adduct within the G-quadruplex: in general, adducts located in the top or bottom tetrads of a quadruplex stack exhibited more rapid-phase repair than did adducts located in the inner tetrad. This distinction may reflect differences in the conformational dynamics of 6mG residues in G-quadruplex DNAs. PMID:25080506
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Kaushik; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in
2015-07-28
Single-stranded DNA (ss-DNA) binding proteins specifically bind to the single-stranded regions of the DNA and protect it from premature annealing, thereby stabilizing the DNA structure. We have carried out atomistic molecular dynamics simulations of the aqueous solutions of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein complexed with two short ss-DNA segments. Attempts have been made to explore the influence of the formation of such complex structures on the microscopic dynamics and hydrogen bond properties of the interfacial water molecules. It is found that the water molecules involved in bridging themore » ss-DNA segments and the protein domains form a highly constrained thin layer with extremely retarded mobility. These water molecules play important roles in freezing the conformational oscillations of the ss-DNA oligomers and thereby forming rigid complex structures. Further, it is demonstrated that the effect of complexation on the slow long-time relaxations of hydrogen bonds at the interface is correlated with hindered motions of the surrounding water molecules. Importantly, it is observed that the highly restricted motions of the water molecules bridging the protein and the DNA components in the complexed forms originate from more frequent hydrogen bond reformations.« less
Purification of polymorphic components of complex genomes
Stodolsky, Marvin
1991-01-01
A method is disclosed for processing related subject and reference macromolecule populations composed of complementary strands into their respective subject and reference populations of representative fragments and effectuating purification of unique polymorphic subject fragments.
Purification of polymorphic components of complex genomes
Stodolsky, M.
1988-01-21
A method for processing related subject and reference macromolecule composed of complementary strand into their respective subject and reference populations of representative fragments and effectuating purification of unique polymorphic subject fragments. 1 fig.
NASA Astrophysics Data System (ADS)
Zhu, Lei; Cui, Li; Miao, Jianjun
2006-03-01
A series of asymmetric triphenylene imidazolium salts with different spacer lengths (C5, C8, and C11) were synthesized and their ionic complexes with double-strand DNA were prepared in aqueous solution. The molecular composition of the complexes was determined by FTIR analysis. The liquid crystalline morphology was characterized by polarized light microscopy, X-ray diffraction (XRD), and transmission electron microscope. 2D XRD results indicated an oblique columnar phase for the complex with a short spacer length of C5, while lamello-columnar phases for those with longer spacer lengths (C8 and C11). Thin film circular dichroism results showed the disappearing of any helical conformation in the DNA in all the complexes. Instead, the complexation between single-strand RNA and discotic cationic lipids did not show columnar morphology; therefore, the columnar liquid crystalline morphology in the DNA-discotic cationic lipid complexes was attributed to the DNA double-strand chain rigidity.
Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA
Oberstrass, Florian C.; Fernandes, Louis E.; Bryant, Zev
2012-01-01
B-DNA becomes unstable under superhelical stress and is able to adopt a wide range of alternative conformations including strand-separated DNA and Z-DNA. Localized sequence-dependent structural transitions are important for the regulation of biological processes such as DNA replication and transcription. To directly probe the effect of sequence on structural transitions driven by torque, we have measured the torsional response of a panel of DNA sequences using single molecule assays that employ nanosphere rotational probes to achieve high torque resolution. The responses of Z-forming d(pGpC)n sequences match our predictions based on a theoretical treatment of cooperative transitions in helical polymers. “Bubble” templates containing 50–100 bp mismatch regions show cooperative structural transitions similar to B-DNA, although less torque is required to disrupt strand–strand interactions. Our mechanical measurements, including direct characterization of the torsional rigidity of strand-separated DNA, establish a framework for quantitative predictions of the complex torsional response of arbitrary sequences in their biological context. PMID:22474350
Probing Gαi1 Protein Activation at Single Amino Acid Resolution
Sun, Dawei; Maeda, Shoji; Matkovic, Milos; Mendieta, Sandro; Mayer, Daniel; Dawson, Roger; Schertler, Gebhard F.X.; Madan Babu, M.; Veprintsev, Dmitry B.
2016-01-01
We present comprehensive single amino acid resolution maps of the residues stabilising the human Gαi1 subunit in nucleotide- and receptor-bound states. We generated these maps by measuring the effects of alanine mutations on the stability of Gαi1 and of the rhodopsin-Gαi1 complex. We identified stabilization clusters in the GTPase and helical domains responsible for structural integrity and the conformational changes associated with activation. In activation cluster I, helices α1 and α5 pack against strands β1-3 to stabilize the nucleotide-bound states. In the receptor-bound state, these interactions are replaced by interactions between α5 and strands β4-6. Key residues in this cluster are Y320, crucial for the stabilization of the receptor-bound state, and F336, which stabilizes nucleotide-bound states. Destabilization of helix α1, caused by rearrangement of this activation cluster, leads to the weakening of the inter-domain interface and release of GDP. PMID:26258638
Chen, Xia; Liu, Liu; Chen, Yong; Yang, Yuting; Yang, Chao-Yie; Guo, Tianyue; Lei, Ming; Sun, Haiying; Wang, Shaomeng
2018-05-10
Telomeric repeat binding factor 2 (TRF2) is a telomere-associated protein that plays an important role in the formation of the 3' single strand DNA overhang and the "T loop", two structures critical for the stability of the telomeres. Apollo is a 5'-exonuclease recruited by TRF2 to the telomere and contributes to the formation of the 3' single strand DNA overhang. Knocking down of Apollo can induce DNA damage response similar to that caused by the knocking down of TRF2. In this Letter, we report the design and synthesis of a class of cyclic peptidic mimetics of the TRFH binding motif of Apollo (Apollo TBM ). We found conformational control of the C terminal residues of Apollo TBM can effectively improve the binding affinity. We have obtained a crystal structure of a cyclic peptidic Apollo peptide mimetic ( 34 ) complexed with TRF2, which provides valuable guidance to the future design of TRF2 inhibitors.
Tunable graphene quantum point contact transistor for DNA detection and characterization
Girdhar, Anuj; Sathe, Chaitanya; Schulten, Klaus; Leburton, Jean-Pierre
2015-01-01
A graphene membrane conductor containing a nanopore in a quantum point contact (QPC) geometry is a promising candidate to sense, and potentially sequence, DNA molecules translocating through the nanopore. Within this geometry, the shape, size, and position of the nanopore as well as the edge configuration influences the membrane conductance caused by the electrostatic interaction between the DNA nucleotides and the nanopore edge. It is shown that the graphene conductance variations resulting from DNA translocation can be enhanced by choosing a particular geometry as well as by modulating the graphene Fermi energy, which demonstrates the ability to detect conformational transformations of a double-stranded DNA, as well as the passage of individual base pairs of a single-stranded DNA molecule through the nanopore. PMID:25765702
2012-01-01
Background High-resolution genetic maps are needed in many crops to help characterize the genetic diversity that determines agriculturally important traits. Hybridization to microarrays to detect single feature polymorphisms is a powerful technique for marker discovery and genotyping because of its highly parallel nature. However, microarrays designed for gene expression analysis rarely provide sufficient gene coverage for optimal detection of nucleotide polymorphisms, which limits utility in species with low rates of polymorphism such as lettuce (Lactuca sativa). Results We developed a 6.5 million feature Affymetrix GeneChip® for efficient polymorphism discovery and genotyping, as well as for analysis of gene expression in lettuce. Probes on the microarray were designed from 26,809 unigenes from cultivated lettuce and an additional 8,819 unigenes from four related species (L. serriola, L. saligna, L. virosa and L. perennis). Where possible, probes were tiled with a 2 bp stagger, alternating on each DNA strand; providing an average of 187 probes covering approximately 600 bp for each of over 35,000 unigenes; resulting in up to 13 fold redundancy in coverage per nucleotide. We developed protocols for hybridization of genomic DNA to the GeneChip® and refined custom algorithms that utilized coverage from multiple, high quality probes to detect single position polymorphisms in 2 bp sliding windows across each unigene. This allowed us to detect greater than 18,000 polymorphisms between the parental lines of our core mapping population, as well as numerous polymorphisms between cultivated lettuce and wild species in the lettuce genepool. Using marker data from our diversity panel comprised of 52 accessions from the five species listed above, we were able to separate accessions by species using both phylogenetic and principal component analyses. Additionally, we estimated the diversity between different types of cultivated lettuce and distinguished morphological types. Conclusion By hybridizing genomic DNA to a custom oligonucleotide array designed for maximum gene coverage, we were able to identify polymorphisms using two approaches for pair-wise comparisons, as well as a highly parallel method that compared all 52 genotypes simultaneously. PMID:22583801
Stoffel, Kevin; van Leeuwen, Hans; Kozik, Alexander; Caldwell, David; Ashrafi, Hamid; Cui, Xinping; Tan, Xiaoping; Hill, Theresa; Reyes-Chin-Wo, Sebastian; Truco, Maria-Jose; Michelmore, Richard W; Van Deynze, Allen
2012-05-14
High-resolution genetic maps are needed in many crops to help characterize the genetic diversity that determines agriculturally important traits. Hybridization to microarrays to detect single feature polymorphisms is a powerful technique for marker discovery and genotyping because of its highly parallel nature. However, microarrays designed for gene expression analysis rarely provide sufficient gene coverage for optimal detection of nucleotide polymorphisms, which limits utility in species with low rates of polymorphism such as lettuce (Lactuca sativa). We developed a 6.5 million feature Affymetrix GeneChip® for efficient polymorphism discovery and genotyping, as well as for analysis of gene expression in lettuce. Probes on the microarray were designed from 26,809 unigenes from cultivated lettuce and an additional 8,819 unigenes from four related species (L. serriola, L. saligna, L. virosa and L. perennis). Where possible, probes were tiled with a 2 bp stagger, alternating on each DNA strand; providing an average of 187 probes covering approximately 600 bp for each of over 35,000 unigenes; resulting in up to 13 fold redundancy in coverage per nucleotide. We developed protocols for hybridization of genomic DNA to the GeneChip® and refined custom algorithms that utilized coverage from multiple, high quality probes to detect single position polymorphisms in 2 bp sliding windows across each unigene. This allowed us to detect greater than 18,000 polymorphisms between the parental lines of our core mapping population, as well as numerous polymorphisms between cultivated lettuce and wild species in the lettuce genepool. Using marker data from our diversity panel comprised of 52 accessions from the five species listed above, we were able to separate accessions by species using both phylogenetic and principal component analyses. Additionally, we estimated the diversity between different types of cultivated lettuce and distinguished morphological types. By hybridizing genomic DNA to a custom oligonucleotide array designed for maximum gene coverage, we were able to identify polymorphisms using two approaches for pair-wise comparisons, as well as a highly parallel method that compared all 52 genotypes simultaneously.
Lenz, Tobias L; Eizaguirre, Christophe; Becker, Sven; Reusch, Thorsten BH
2009-01-01
Background In all jawed vertebrates, highly polymorphic genes of the major histocompatibility complex (MHC) encode antigen presenting molecules that play a key role in the adaptive immune response. Their polymorphism is composed of multiple copies of recently duplicated genes, each possessing many alleles within populations, as well as high nucleotide divergence between alleles of the same species. Experimental evidence is accumulating that MHC polymorphism is a result of balancing selection by parasites and pathogens. In order to describe MHC diversity and analyse the underlying mechanisms that maintain it, a reliable genotyping technique is required that is suitable for such highly variable genes. Results We present a genotyping protocol that uses Reference Strand-mediated Conformation Analysis (RSCA), optimised for recently duplicated MHC class IIB genes that are typical for many fish and bird species, including the three-spined stickleback, Gasterosteus aculeatus. In addition we use a comprehensive plasmid library of MHC class IIB alleles to determine the nucleotide sequence of alleles represented by RSCA allele peaks. Verification of the RSCA typing by cloning and sequencing demonstrates high congruency between both methods and provides new insight into the polymorphism of classical stickleback MHC genes. Analysis of the plasmid library additionally reveals the high resolution and reproducibility of the RSCA technique. Conclusion This new RSCA genotyping protocol offers a fast, but sensitive and reliable way to determine the MHC allele repertoire of three-spined sticklebacks. It therefore provides a valuable tool to employ this highly polymorphic and adaptive marker in future high-throughput studies of host-parasite co-evolution and ecological speciation in this emerging model organism. PMID:19291291
Cole, Jacqueline M.; Low, Kian Sing; Gong, Yun
2015-11-24
Here, we present the discovery of a new crystal structure polymorph (1) and pseudopolymorph (2) of the Black Dye, one of the world’s leading dyes for dye-sensitized solar cells, DSSCs (10.4% device performance efficiency). This reveals that Black Dye molecules can adopt multiple low-energy conformers. This is significant since it challenges existing models of the Black Dye···TiO 2 adsorption process that renders a DSSC working electrode; these have assumed a single molecular conformation that refers to the previously reported Black Dye crystal structure (3). The marked structural differences observed between 1, 2, and 3 make the need for modeling multiplemore » conformations more acute. Additionally, the ordered form of the Black Dye (1) provides a more appropriate depiction of its anionic structure, especially regarding its anchoring group and NCS bonding descriptions. The tendency toward NCS ligand isomerism, evidenced via the disordered form 2, has consequences for electron injection and electron recombination in Black Dye embedded DSSC devices. Dyes 2 and 3 differ primarily by the absence or presence of a solvent of crystallization, respectively; solvent environment effects on the dye are thereby elucidated. This discovery of multiple Black Dye conformers from diffraction, with atomic-level definition, complements recently reported nanoscopic evidence for multiple dye conformations existing at a dye···TiO 2 interface, for a chemically similar DSSC dye; those results emanated from imaging and spectroscopy, but were unresolved at the submolecular level. Taken together, these findings lead to the general notion that multiple dye conformations should be explicitly considered when modeling dye···TiO 2 interfaces in DSSCs, at least for ruthenium-based dye complexes.« less
Bereir, R E H; Mohamed, H S; Seielstad, M; El Hassani, A M; Khalil, E A G; Peacock, C S; Blackwell, J M; Ibrahim, M E
2003-09-01
Four single nucleotide polymorphisms (SNPs) and a variable number of tandem repeats (VNTR) polymorphism located within disease associated/causing genes were typed in four populations of different tribal and ethnic affiliation from the Sudan. The genotype and allele frequencies were compared with those of other groups from published and unpublished data of world populations. The combined Sudanese sample conformed with Hardy-Weinberg equilibrium (HWE) expectation. However, population sub-structuring according to ethnic/linguistic group indicated at least two SNPs in departure from HWE. Differences in allele frequencies and genotype distribution between groups was also noted in three of the four SNPs. The other loci were distributed homogeneously within the populations studied with genotype frequencies in agreement with HWE expectation. These results highlight the importance of inter-population stratification for polymorphic markers, as well as the potential influence of evolutionary history and ethnic variation of loci, in the general distribution of SNPs and other polymorphisms.
Association of GABA(B)R1 receptor gene polymorphism with obstructive sleep apnea syndrome.
Bayazit, Yildirim A; Yilmaz, Metin; Kokturk, Oguz; Erdal, M Emin; Ciftci, Tansu; Gokdogan, Tuba; Kemaloglu, Yusuf; Ileri, Fikret
2007-01-01
GABA(B)R (gamma-amino butyric acid B receptor)-mediated neurotransmission has been implicated in the pathophysiology of a variety of neuropsychiatric disorders. GABA(B)R1 gene variants were identified by single-strand conformation analysis. The nucleotide exchanges cause a substitution of alanine to valine in exon 1a1 (Ala20Val), a substitution of glycine to serine in exon 7 (Gly489Ser) and a silent C to G nucleotide exchange encoding the amino acid phenylalanine in exon 11 (Phe658Phe). The significance of GABA(B)R1a gene polymorphism in obstructive sleep apnea syndrome (OSAS) as well as the association of these polymorphisms with the polysomnography findings in OSAS patients are not known. In this study, we aimed to assess the significance of 3 different GABA(B)R1 gene polymorphisms (Ala20Val, Gly489Ser and Phe658Phe) in OSAS. Seventy-five patients (23 female and 52 male) with OSAS and 99 healthy volunteers (51 female, 48 male) were included in the study to assess Ala20Val, Gly489Ser and Phe658Phe polymorphisms of the GABA(B)R1 gene. For the Ala20Val variants, there was no significant difference between the genotypes and allele frequencies of the patients and controls, nor between both genders (p > 0.05). For Phe658Phe polymorphism, there was no significant difference between genotypes and allele frequencies of the patients and controls (p > 0.05). However, the C/C genotype was overrepresented and the T/C genotype was less frequent in male than female patients (p = 0.03). The C/C genotype was overrepresented and the T/C genotype was less frequent in male patients than male controls (p = 0.01). For GABA(B)R1-Gly489Ser polymorphism, all of the patients and controls had G/G genotype. The apnea arousal index scores of the male patients with C/C genotype were significantly higher than in the patients with C/T genotype (p = 0.01). The percent total sleep time in non-REM 1 scores of the male patients with T/T genotype were significantly higher than in the patients with T/C genotype (p = 0.021). The percent total sleep time in non-REM 2 scores of the female patients with C/C genotype were significantly higher than in the patients with C/T genotype (p = 0.006). The Ala20Val polymorphism of the GABA(B)R1 gene may be associated with OSAS, whereas Gly489Ser polymorphism does not seem to be involved in OSAS. The C/C variant of the Phe658Phe polymorphism GABA(B)R1 gene seems associated with the occurrence of OSAS and is also associated with some sleep related parameters (apnea arousal index and percent total sleep time in non-REM) recorded by polysomnography. Copyright (c) 2007 S. Karger AG, Basel.
Chai, Wenxiang; Hong, Mingwei; Song, Li; Jia, Guohua; Shi, Hongsheng; Guo, Jiayu; Shu, Kangying; Guo, Bing; Zhang, Yicheng; You, Wenwu; Chen, Xueyuan
2015-05-04
Three luminescent polymorphs based on a new copper(I) complex Cu(2-QBO)(PPh3)PF6 (1, PPh3 = triphenylphosphine, 2-QBO = 2-(2'-quinolyl)benzoxazole) have been synthesized and characterized by FT-IR, UV-vis, elemental analyses, and single-crystal X-ray diffraction analyses. Each polymorph can reversibly convert from one to another through appropriate procedures. Interestingly, such interconversion can be distinguished by their intrinsic crystal morphologies and colors (namely α, dark yellow plate, β, orange block, γ, light yellow needle) as well as photoluminescent (PL) properties. X-ray crystal structure analyses of these three polymorphs show three different supramolecular structures from 1D to 3D, which are expected to be responsible for the formation of three different crystal morphologies such as needle, plate, and block. Combination of the experimental data with DFT calculations on these three polymorphs reveals that the polymorphic interconversion is triggered by the conformation isomerization of the 2-QBO ligand and can be successfully controlled by the polarity of the process solvents (affecting the molecular dipole moment) and thermodynamics (affecting the molecular total energy). It is also found that the different crystal colors of polymorphs and their PL properties are derived from different θ values (dihedral angle between benzoxazolyl and quinolyl group of the 2-QBO ligand) and P-Cu-P angles based on TD-DFT calculations. Moreover, an interesting phase interconversion between γ and β has also been found under different temperature, and this result is consistent with the DFT calculations in which the total energy of β is larger than that of γ. This polymorphism provides a good model to study the relationship between the structure and the physical properties in luminescent copper(I) complexes as well as some profound insights into their PL properties.
Stewart, Barry J; Wardle, Simon J; Haniford, David B
2002-08-15
The frequency of DNA transposition in transposition systems that employ a strand transfer step may be significantly affected by the occurrence of a disintegration reaction, a reaction that reverses the strand transfer event. We have asked whether disintegration occurs in the Tn10 transposition system. We show that disintegration substrates (substrates constituting one half of the strand transfer product) are assembled into a transpososome that mimics the strand transfer intermediate. This strand transfer transpososome (STT) does appear to support an intermolecular disintegration reaction, but only at a very low level. Strikingly, assembly of the STT is not dependent on IHF, a host protein that is required for de novo assembly of all previously characterized Tn10 transpososomes. We suggest that disintegration substrates are able to form both transposon end and target type contacts with transposase because of their enhanced conformational flexibility. This probably allows the conformation of DNA within the complex that prevents the destructive disintegration reaction, and is responsible for relaxing the DNA sequence requirements for STT formation relative to other Tn10 transpososomes.
Stewart, Barry J.; Wardle, Simon J.; Haniford, David B.
2002-01-01
The frequency of DNA transposition in transposition systems that employ a strand transfer step may be significantly affected by the occurrence of a disintegration reaction, a reaction that reverses the strand transfer event. We have asked whether disintegration occurs in the Tn10 transposition system. We show that disintegration substrates (substrates constituting one half of the strand transfer product) are assembled into a transpososome that mimics the strand transfer intermediate. This strand transfer transpososome (STT) does appear to support an intermolecular disintegration reaction, but only at a very low level. Strikingly, assembly of the STT is not dependent on IHF, a host protein that is required for de novo assembly of all previously characterized Tn10 transpososomes. We suggest that disintegration substrates are able to form both transposon end and target type contacts with transposase because of their enhanced conformational flexibility. This probably allows the conformation of DNA within the complex that prevents the destructive disintegration reaction, and is responsible for relaxing the DNA sequence requirements for STT formation relative to other Tn10 transpososomes. PMID:12169640
Miyakura, Yasuyuki; Tahara, Makiko; Lefor, Alan T; Yasuda, Yoshikazu; Sugano, Kokichi
2014-11-24
Methylation of the MLH1 promoter region has been suggested to be a major mechanism of gene inactivation in sporadic microsatellite instability-positive (MSI-H) colorectal cancers (CRCs). Recently, single-nucleotide polymorphism (SNP) in the MLH1 promoter region (MLH1-93G/A; rs1800734) has been proposed to be associated with MLH1 promoter methylation, loss of MLH1 protein expression and MSI-H tumors. We examined the association of MLH1-93G/A and six other SNPs surrounding MLH1-93G/A with the methylation status in 210 consecutive sporadic CRCs in Japanese patients. Methylation of the MLH1 promoter region was evaluated by Na-bisulfite polymerase chain reaction (PCR)/single-strand conformation polymorphism (SSCP) analysis. The genotype frequencies of SNPs located in the 54-kb region surrounding the MLH1-93G/A SNP were examined by SSCP analysis. Methylation of the MLH1 promoter region was observed in 28.6% (60/210) of sporadic CRCs. The proportions of MLH1-93G/A genotypes A/A, A/G and G/G were 26% (n=54), 51% (n=108) and 23% (n=48), respectively, and they were significantly associated with the methylation status (p=0.01). There were no significant associations between genotype frequency of the six other SNPs and methylation status. The A-allele of MLH1-93G/A was more common in cases with methylation than the G-allele (p=0.0094), especially in females (p=0.0067). In logistic regression, the A/A genotype of the MLH1-93G/A SNP was shown to be the most significant risk factor for methylation of the MLH1 promoter region (odds ratio 2.82, p=0.003). Furthermore, a haplotype of the A-allele of rs2276807 located -47 kb upstream from the MLH1-93G/A SNP and the A-allele of MLH1-93G/A SNP was significantly associated with MLH1 promoter methylation. These results indicate that individuals, and particularly females, carrying the A-allele at the MLH1-93G/A SNP, especially in association with the A-allele of rs2276807, may harbor an increased risk of methylation of the MLH1 promoter region.
Single nucleotide polymorphisms of DNA repair genes as predictors of radioresponse.
Parliament, Matthew B; Murray, David
2010-10-01
Radiation therapy is a key modality in the treatment of cancer. Substantial progress has been made in unraveling the molecular events which underpin the responses of malignant and surrounding normal tissues to ionizing radiation. An understanding of the genes involved in processes such as DNA double-strand break repair, DNA damage response, cell-cycle control, apoptosis, cellular antioxidant defenses, and cytokine production, has evolved toward examination of how genetic variants, most often, single nucleotide polymorphisms (SNPs), may influence interindividual radioresponse. Experimental approaches, such as candidate SNP-association studies, genome-wide association studies, and massively parallel sequencing are being proposed to address these questions. We present a focused review of the evidence supporting an association between SNPs in DNA repair genes and radioresponse in normal tissues and tumors. Although preliminary results indicate possible associations, there are methodological weaknesses in many of the studies, and independent validation of SNPs as biomarkers of radioresponse in much larger cohorts will likely require research cooperation through international consortia. Copyright © 2010 Elsevier Inc. All rights reserved.
Fazakerley, G V; Quignard, E; Teoule, R; Guy, A; Guschlbauer, W
1987-09-15
We report two-dimensional NOE (NOESY) spectra on the sequence d(GCGATCATGG).d(CCATGATCGC) which contains the unmethylated dam site. As expected the DNA adopts a B-form conformation but appears to be distorted at the TG step of the second strand. This distorsion, probably bending, is not seen on the opposite strand. When the first strand is methylated on adenine in the GATC or CATG sequence the NOESY spectra indicate little or no change in the conformation. However the single strand-duplex exchange is slowed down to the slow-exchange region on a proton NMR time scale. We have assigned the exchangeable imino and cytidine amino resonances of the three duplexes. From the imino linewidths as a function of temperature, we observe that the unmethylated and the hemimethylated Gm6ATC duplexes melt normally from the ends. However, this is not so for the hemimethylated Cm6ATG duplex which, apart from the terminal base pairs, melts cooperatively and at higher temperature. In spectra recorded in H2O a second duplex is observed, for the Gm6ATC sequence, which we have not been able to identify. It is however unlikely to be a hairpin structure. Ultraviolet-melting curves also indicate the presence of two transitions for this duplex. The effect of methylation upon base-pair lifetimes has been studied by comparing the above three duplexes. Little effect is observed upon methylation in the GATC sequence but a drastic increase in the lifetimes of all base pairs is observed upon methylation in the CATG sequence.
Purification of polymorphic components of complex genomes
Stodolsky, M.
1991-07-16
A method is disclosed for processing related subject and reference macromolecule populations composed of complementary strands into their respective subject and reference populations of representative fragments and effectuating purification of unique polymorphic subject fragments. 1 figure.
Marine mammal strandings in the New Caledonia region, Southwest Pacific.
Borsa, Philippe
2006-04-01
Four hundred twenty three marine mammals, in 72 stranding events, were recorded between 1877 and 2005 in New Caledonia, the Loyalty Islands, and Vanuatu in the southwest Pacific. Sixteen species were represented in this count, including: minke whale, Balaenoptera acutorostrata (1 single stranding), sei whale, B. borealis (1 single stranding), blue whale, B. musculus (1 single stranding), humpback whale, Megaptera novaeangliae (2 single strandings), giant sperm whale, Physeter macrocephalus (18 single strandings, 2 pair strandings), pygmy sperm whale, Kogia breviceps (5 single strandings), dwarf sperm whale, K. sima (2 single strandings, 1 triple stranding), Blainville's beaked whale, Mesoplodon densirostris (2 single strandings), short-finned pilot whale, Globicephala macrorhynchus (4 strandings, 56 individuals), melon-headed whale, Peponocephala electra (1 single stranding and 2 mass strandings totalling 231 individuals), common dolphin, Delphinus delphis (1 single stranding), spinner dolphin, Stenella longirostris (1 pair stranding and 2 mass strandings of groups of approximately 30 individuals each), Indian Ocean bottlenose dolphin, Tursiops aduncus (2 single strandings), dugong, Dugong dugon (14 single strandings), and New Zealand fur seal, Arctocephalus forsteri (3 single strandings). A stranded rorqual identified as an Antarctic minke whale (B. bonaerensis), with coloration patterns that did not match known descriptions, was also reported. Sei whale was recorded for the first time in the tropical Southwest Pacific region and Antarctic minke whale, melon-headed whale, and Indian Ocean bottlenose dolphin were recorded for the first time in New Caledonia. Strandings of sperm whales were most frequent in the spring, but also occurred in autumn months, suggesting a seasonal pattern of occurrence possibly related to seasonal migration. One stranded humpback whale bore the scars of a killer whale's attack and one dugong was injured by a shark. Scars left by propellers were noted on several stranded animals including one Antarctic minke whale, one pygmy sperm whale, one dwarf sperm whale, and four dugongs. Collisions with vessels were suspected to be a frequent cause of death for dugong.
PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Hui; Gao, Pu; Rajashankar, Kanagalaghatta R.
C2c1 is a newly identified guide RNA-mediated type V-B CRISPR-Cas endonuclease that site-specifically targets and cleaves both strands of target DNA. We have determined crystal structures of Alicyclobacillus acidoterrestris C2c1 (AacC2c1) bound to sgRNA as a binary complex and to target DNAs as ternary complexes, thereby capturing catalytically competent conformations of AacC2c1 with both target and non-target DNA strands independently positioned within a single RuvC catalytic pocket. Moreover, C2c1-mediated cleavage results in a staggered seven-nucleotide break of target DNA. crRNA adopts a pre-ordered five-nucleotide A-form seed sequence in the binary complex, with release of an inserted tryptophan, facilitating zippering upmore » of 20-bp guide RNA:target DNA heteroduplex on ternary complex formation. Notably, the PAM-interacting cleft adopts a “locked” conformation on ternary complex formation. Structural comparison of C2c1 ternary complexes with their Cas9 and Cpf1 counterparts highlights the diverse mechanisms adopted by these distinct CRISPR-Cas systems, thereby broadening and enhancing their applicability as genome editing tools.« less
Cohort analysis of a single nucleotide polymorphism on DNA chips.
Schwonbeck, Susanne; Krause-Griep, Andrea; Gajovic-Eichelmann, Nenad; Ehrentreich-Förster, Eva; Meinl, Walter; Glatt, Hansrüdi; Bier, Frank F
2004-11-15
A method has been developed to determine SNPs on DNA chips by applying a flow-through bioscanner. As a practical application we demonstrated the fast and simple SNP analysis of 24 genotypes in an array of 96 spots with a single hybridisation and dissociation experiment. The main advantage of this methodical concept is the parallel and fast analysis without any need of enzymatic digestion. Additionally, the DNA chip format used is appropriate for parallel analysis up to 400 spots. The polymorphism in the gene of the human phenol sulfotransferase SULT1A1 was studied as a model SNP. Biotinylated PCR products containing the SNP (The SNP summary web site: ) (mutant) and those containing no mutation (wild-type) were brought onto the chips coated with NeutrAvidin using non-contact spotting. This was followed by an analysis which was carried out in a flow-through biochip scanner while constantly rinsing with buffer. After removing the non-biotinylated strand a fluorescent probe was hybridised, which is complementary to the wild-type sequence. If this probe binds to a mutant sequence, then one single base is not fully matching. Thereby, the mismatched hybrid (mutant) is less stable than the full-matched hybrid (wild-type). The final step after hybridisation on the chip involves rinsing with a buffer to start dissociation of the fluorescent probe from the immobilised DNA strand. The online measurement of the fluorescence intensity by the biochip scanner provides the possibility to follow the kinetics of the hybridisation and dissociation processes. According to the different stability of the full-match and the mismatch, either visual discrimination or kinetic analysis is possible to distinguish SNP-containing sequence from the wild-type sequence.
Li, Ying; Ji, Xiaoting; Song, Weiling; Guo, Yingshu
2013-04-03
A cross-circular amplification system for sensitive detection of adenosine triphosphate (ATP) in cancer cells was developed based on aptamer-target interaction, magnetic microbeads (MBs)-assisted strand displacement amplification and target recycling. Here we described a new recognition probe possessing two parts, the ATP aptamer and the extension part. The recognition probe was firstly immobilized on the surface of MBs and hybridized with its complementary sequence to form a duplex. When combined with ATP, the probe changed its conformation, revealing the extension part in single-strand form, which further served as a toehold for subsequent target recycling. The released complementary sequence of the probe acted as the catalyst of the MB-assisted strand displacement reaction. Incorporated with target recycling, a large amount of biotin-tagged MB complexes were formed to stimulate the generation of chemiluminescence (CL) signal in the presence of luminol and H2O2 by incorporating with streptavidin-HRP, reaching a detection limit of ATP as low as 6.1×10(-10)M. Moreover, sample assays of ATP in Ramos Burkitt's lymphoma B cells were performed, which confirmed the reliability and practicality of the protocol. Copyright © 2013 Elsevier B.V. All rights reserved.
Scholz, V; Weidner, J; Köhnlein, W; Frekers, D; Wörtche, H J
1997-01-01
The yield of single-strand breaks (ssb) and double-strand breaks (dsb) produced by alpha-particles at the end of their track in DNA-films was determined experimentally. Helium nuclei were accelerated to 600 keV in the 400 kV ion accelerator and scattered at a carbon target. The elastically scattered alpha-particles with energies of 344 keV and 485 keV were used to irradiate supercircular plasmid DNA in vacuo. For the dosimetry of the alpha-particles a surface barrier detector was used and the energy distribution of the alpha-particles determined. The energy loss of the particles in the DNA-layer was calculated. DNA samples were separated into the three conformational isomers using agarose gel electrophoresis. After fluorochromation the number of ssb and dsb per plasmid DNA molecule was established from the band intensities assuming the validity of Poisson statistics. Linear dose effect correlations were found for ssb and dsb per plasmid molecule. In the case of 344 keV-alpha-particles the yield of dsb was (8.6 +/- 0.9) x 10(-11) breaks/Gy x dalton. The ratio of ssb/dsb was 0.5 +/- 0.2. This is at least a factor of six larger than the ratio found in experiments with higher energy alpha-particles and from model calculations. Similar experiments with protons yielded a relative biological effectiveness (rbe) value of 2.8 for the induction of double-strand breaks by track end alpha-particles.
Mechanochemical regulations of RPA's binding to ssDNA
NASA Astrophysics Data System (ADS)
Chen, Jin; Le, Shimin; Basu, Anindita; Chazin, Walter J.; Yan, Jie
2015-03-01
Replication protein A (RPA) is a ubiquitous eukaryotic single-stranded DNA (ssDNA) binding protein that serves to protect ssDNA from degradation and annealing, and as a template for recruitment of many downstream factors in virtually all DNA transactions in cell. During many of these transactions, DNA is tethered and is likely subject to force. Previous studies of RPA's binding behavior on ssDNA were conducted in the absence of force; therefore the RPA-ssDNA conformations regulated by force remain unclear. Here, using a combination of atomic force microscopy imaging and mechanical manipulation of single ssDNA tethers, we show that force mediates a switch of the RPA bound ssDNA from amorphous aggregation to a much more regular extended conformation. Further, we found an interesting non-monotonic dependence of the binding affinity on monovalent salt concentration in the presence of force. In addition, we discovered that zinc in micromolar concentrations drives ssDNA to a unique, highly stiff and more compact state. These results provide new mechanochemical insights into the influences and the mechanisms of action of RPA on large single ssDNA.
Paulsrud, Per; Lindblad, Peter
1998-01-01
We examined the genetic diversity of Nostoc symbionts in some lichens by using the tRNALeu (UAA) intron as a genetic marker. The nucleotide sequence was analyzed in the context of the secondary structure of the transcribed intron. Cyanobacterial tRNALeu (UAA) introns were specifically amplified from freshly collected lichen samples without previous DNA extraction. The lichen species used in the present study were Nephroma arcticum, Peltigera aphthosa, P. membranacea, and P. canina. Introns with different sizes around 300 bp were consistently obtained. Multiple clones from single PCRs were screened by using their single-stranded conformational polymorphism pattern, and the nucleotide sequence was determined. No evidence for sample heterogenity was found. This implies that the symbiont in situ is not a diverse community of cyanobionts but, rather, one Nostoc strain. Furthermore, each lichen thallus contained only one intron type, indicating that each thallus is colonized only once or that there is a high degree of specificity. The same cyanobacterial intron sequence was also found in samples of one lichen species from different localities. In a phylogenetic analysis, the cyanobacterial lichen sequences grouped together with the sequences from two free-living Nostoc strains. The size differences in the intron were due to insertions and deletions in highly variable regions. The sequence data were used in discussions concerning specificity and biology of the lichen symbiosis. It is concluded that the tRNALeu (UAA) intron can be of great value when examining cyanobacterial diversity. PMID:9435083
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, W.; Scott, L.; Cohn, D.
Osteogenesis imperfecta (OI) is usually due to mutations in the type I procollagen genes COL1A1 and COL1A2. Point mutations close to the N-terminus are generally milder than those near the C-terminus of the molecule (the gradient hypothesis of collagen mutations). We describe a patient with moderately severe OI due to a mutation in the N-terminal portion of the triple helical domain of the {alpha}1(I) chain. Electrophoretic analysis of collagen isolated from fibroblast cultures suggested the abnormal presence of a cysteine in the N-terminal portion of the {alpha}1(I) chain. Five overlapping DNA fragments amplified from fibroblast RNA were screened for mutationsmore » using single strand conformational polymorphism (SSCP) and heteroduplex analyses. Direct DNA sequence analysis of the single positive fragment demonstrated a G to T transversion, corresponding to a glycine to cysteine substitution at position 226 of the triple helical domain of the {alpha}1(I) chain. The mutation was confirmed by restriction enzyme analysis of amplified genomic DNA. The mutation was not present in fibroblasts from either phenotypically normal parent. Combining this mutation with other reported mutations, glycine to cysteine substitutions at positions 205, 211, 223, and 226 produce a moderately severe phenotype whereas flanking mutations at positions 175 and 382 produce a mild phenotype. This data supports a regional rather than a gradient model of the relationship between the nature and location of type I collagen mutations and OI phenotype.« less
Chen, Xiuhua; Qi, Xiling; Tan, Yanhong; Xu, Zhifang; Xu, Aining; Zhang, Linlin; Wang, Hongwei
2011-06-15
JAK2V617F mutation has been reported in 90% of patients with polycythemia vera (PV) and about 50% of patients with essential thromobocythemia (ET) and primary myelofibrosis (PMF). Recently, acquired mutations in the transmembrane-juxtamembrane region of MPL (MPLW515 mutations) have been reported in approximately 5% of JAK2V617F-negative PMF and about 1% of all cases of ET. MPL is the receptor for thrombopoietin that regulates the production of platelets by bone marrow. It is likely that some mutations more closely related to ET in MPL exon10 may have been missed by current assays. We inferred that there might be other mutations in MPL exon10 for MPN patients in addition to MPLW515 mutations. To investigate its mutation types and prevalence in Chinese patients with myeloproliferative neoplasms (MPN), we performed mutation detection on MPL exon10 in 103 JAK2V617F-negative MPN patients by single strand conformation polymorphism (SSCP) and allele-specific PCR (AS-PCR) combined with sequencing. As a result, one previously unrecognized MPL mutation (12-bp in-frame insertion) was identified in one patient with ET in addition to an MPLW515K mutation identified in one PMF patient. This confirms our hypothesis that BCR/ABL negative and JAK2V617F-negative MPN patients have other mutations besides W515 mutation in MPL exon10 and mutations other than single nucleotide exchange also exist. In addition, MPL mutation was associated with Chinese MPN patients. Copyright © 2011 Elsevier Inc. All rights reserved.
Primary hyperoxaluria: genotype-phenotype correlation.
Pirulli, Doroti; Marangella, Martino; Amoroso, Antonio
2003-01-01
Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder caused by a deficiency of alanine-glyoxylate aminotransferase (AGT), which is encoded by a single copy gene (AGXT). Molecular diagnosis was used in conjunction with clinical, biochemical and enzymological data to evaluate genotype-phenotype correlation. Patients can present a severe form of PH1, an adult form and a mild to moderate decrease in renal function. Biochemical diagnosis is made by plasma, urine and dialyzate oxalate and glycolate assays, and by liver AGT activity and pyridoxine responsitivity. Molecular genetic diagnosis can be made using different techniques, for example, the single strand conformation polymorphism technique (SSCP), followed by the sequencing of the 11 AGXT exons. The disease is clinically and genetically classified as highly heterogeneous. Mutant alleles can be recognised in 80- 90% of chromosomes, depending on the techniques used. Mutations in exons 1, 2, 4 and 10 are more frequent in Italian patients. Normalized AGT activity seems to be lower in the severe form than in the adult form. Double heterozygous patients present a lower age at disease onset and they were more frequent in the more severe than in mild severe disease. The 444T>C mutation was more frequent in the severe form, while the opposite was observed for 630G>A. 630G>A mutation homozygotes had a higher AGT residual activity. The presence of allelic heterogeneity of the AGXT could be responsible, to some extent, for the phenotypic heterogeneity in PH1. Homozygous genotypes were more frequent than expected and were associated with a less severe form of the disease.
AGXT gene mutations and their influence on clinical heterogeneity of type 1 primary hyperoxaluria.
Amoroso, A; Pirulli, D; Florian, F; Puzzer, D; Boniotto, M; Crovella, S; Zezlina, S; Spanò, A; Mazzola, G; Savoldi, S; Ferrettini, C; Berutti, S; Petrarulo, M; Marangella, M
2001-10-01
Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder that is caused by a deficiency of alanine: glyoxylate aminotransferase (AGT), which is encoded by a single copy gene (AGXT). Molecular diagnosis was used in conjunction with clinical, biochemical, and enzymological data to evaluate genotype-phenotype correlation. Twenty-three unrelated, Italian PH1 patients were studied, 20 of which were grouped according to severe form of PH1 (group A), adult form (group B), and mild to moderate decrease in renal function (group C). All 23 patients were analyzed by using the single-strand conformation polymorphism technique followed by the sequencing of the 11 AGXT exons. Relevant chemistries, including plasma, urine and dialyzate oxalate and glycolate assays, liver AGT activity, and pyridoxine responsiveness, were performed. Both mutant alleles were found in 21 out of 23 patients, and 13 different mutations were recognized in exons 1, 2, 4, and 10. Normalized AGT activity was lower in the severe form than in the adult form (P < 0.05). Double heterozygous patients presented a lower age at the onset of the disease (P = 0.025), and they were more frequent in group A (75%) than in the group B (14%; P = 0.0406). The T444C mutation was more frequent in the severe form (P < 0.05), and the opposite was observed for G630A (P < 0.05). G630A mutation homozygotes had a higher AGT residual activity (P = 0.00001). This study confirms the allelic heterogeneity of the AGXT, which could to some extent be responsible for the phenotypic heterogeneity in PH1.
Shieh, H S; Berman, H M; Dabrow, M; Neidle, S
1980-01-01
A 2:2 complex of proflavine and deoxycytidylyl-3', 5'-guanosine has been crystallized and its structure determined by x-ray crystallography. The two dinucleoside phosphate strands form self complementary duplexes with Watson Crick hydrogen bonds. One proflavin is asymmetrically intercalated between the base pairs and the other is stacked above them. The conformations of the nucleotides are unusual in that one strand has C3',C2'endomixed sugar puckering and the other has C3',C3' endo deoxyribose sugars. These results show that the conformation of the 3'sugar is of secondary importance to the intercalated geometry. PMID:7355129
Single Molecule Enzymology via Nanoelectronic Circuits
NASA Astrophysics Data System (ADS)
Collins, Philip
Traditional single-molecule techniques rely on fluorescence or force transduction to monitor conformational changes and biochemical activity. Recent demonstrations of single-molecule monitoring with electronic transistors are poised to add to the single-molecule research toolkit. The transistor-based technique is sensitive to the motion of single charged side chain residues and can transduce those motions with microsecond resolution, opening the doors to single-molecule enzymology with unprecedented resolution. Furthermore, the solid-state platform provides opportunities for parallelization in arrays and long-duration monitoring of one molecule's activity or processivity, all without the limitations caused by photo-oxidation or mutagenic fluorophore incorporation. This presentation will review some of these advantages and their particular application to DNA polymerase I processing single-stranded DNA templates. This research was supported financially by the NIH NCI (R01 CA133592-01), the NIH NIGMS (1R01GM106957-01) and the NSF (DMR-1104629 and ECCS-1231910).
Shin, In Sub; Shimada, Yuta; Horiguchi-Babamoto, Emi; Matsumoto, Shinya
2018-04-01
We obtained two conformational polymorphs of 2,5-dichloro-3,6-bis(dibenzylamino)-p-hydroquinone, C 34 H 30 Cl 2 N 2 O 2 . Both polymorphs have an inversion centre at the centre of the hydroquinone ring (Z' = 1/2), and there are no significant differences between their bond lengths and angles. The most significant structural difference in the molecular conformations was found in the rotation of the phenyl rings of the two crystallographically independent benzyl groups. The crystal structures of the polymorphs were distinguishable with respect to the arrangement of the hydroquinone rings and the packing motif of the phenyl rings that form part of the benzyl groups. The phenyl groups of one polymorph are arranged in a face-to-edge motif between adjacent molecules, with intermolecular C-H...π interactions, whereas the phenyl rings in the other polymorph form a lamellar stacking pattern with no significant intermolecular interactions. We suggest that this partial conformational difference in the molecular structures leads to the significant structural differences observed in their molecular arrangements.
Polymorphs and polymorphic cocrystals of temozolomide.
Babu, N Jagadeesh; Reddy, L Sreenivas; Aitipamula, Srinivasulu; Nangia, Ashwini
2008-07-07
Crystal polymorphism in the antitumor drug temozolomide (TMZ), cocrystals of TMZ with 4,4'-bipyridine-N,N'-dioxide (BPNO), and solid-state stability were studied. Apart from a known X-ray crystal structure of TMZ (form 1), two new crystalline modifications, forms 2 and 3, were obtained during attempted cocrystallization with carbamazepine and 3-hydroxypyridine-N-oxide. Conformers A and B of the drug molecule are stabilized by intramolecular amide N--HN(imidazole) and N--HN(tetrazine) interactions. The stable conformer A is present in forms 1 and 2, whereas both conformers crystallized in form 3. Preparation of polymorphic cocrystals I and II (TMZBPNO 1:0.5 and 2:1) were optimized by using solution crystallization and grinding methods. The metastable nature of polymorph 2 and cocrystal II is ascribed to unused hydrogen-bond donors/acceptors in the crystal structure. The intramolecularly bonded amide N-H donor in the less stable structure makes additional intermolecular bonds with the tetrazine C==O group and the imidazole N atom in stable polymorph 1 and cocrystal I, respectively. All available hydrogen-bond donors and acceptors are used to make intermolecular hydrogen bonds in the stable crystalline form. Synthon polymorphism and crystal stability are discussed in terms of hydrogen-bond reorganization.
Human LDL Structural Diversity Studied by IR Spectroscopy
Fernández-Higuero, José A.; Salvador, Ana M.; Martín, Cesar; Milicua, José Carlos G.; Arrondo, José L. R.
2014-01-01
Lipoproteins are responsible for cholesterol traffic in humans. Low density lipoprotein (LDL) delivers cholesterol from liver to peripheral tissues. A misleading delivery can lead to the formation of atherosclerotic plaques. LDL has a single protein, apoB-100, that binds to a specific receptor. It is known that the failure associated with a deficient protein-receptor binding leads to plaque formation. ApoB-100 is a large single lipid-associated polypeptide difficulting the study of its structure. IR spectroscopy is a technique suitable to follow the different conformational changes produced in apoB-100 because it is not affected by the size of the protein or the turbidity of the sample. We have analyzed LDL spectra of different individuals and shown that, even if there are not big structural changes, a different pattern in the intensity of the band located around 1617 cm−1 related with strands embedded in the lipid monolayer, can be associated with a different conformational rearrangement that could affect to a protein interacting region with the receptor. PMID:24642788
Riccardi, Laura; Nguyen, Phuong H; Stock, Gerhard
2012-04-10
To describe the structure and dynamics of oligomers during peptide aggregation, a method is proposed that considers both the intramolecular and intermolecular structures of the multimolecule system and correctly accounts for its degeneracy. The approach is based on the "by-parts" strategy, which partitions a complex molecular system into parts, determines the metastable conformational states of each part, and describes the overall conformational state of the system in terms of a product basis of the states of the parts. Starting from a molecular dynamics simulation of n molecules, the method consists of three steps: (i) characterization of the intramolecular structure, that is, of the conformational states of a single molecule in the presence of the other molecules (e.g., β-strand or random coil); (ii) characterization of the intermolecular structure through the identification of all occurring aggregate states of the peptides (dimers, trimers, etc.); and (iii) construction of the overall conformational states of the system in terms of a product basis of the n "single-molecule" states and the aggregate states. Considering the Alzheimer β-amyloid peptide fragment Aβ16-22 as a first application, about 700 overall conformational states of the trimer (Aβ16-22)3 were constructed from all-atom molecular dynamics simulation in explicit water. Based on these states, a transition network reflecting the free energy landscape of the aggregation process can be constructed that facilitates the identification of the aggregation pathways.
Assessing the diversity of AM fungi in arid gypsophilous plant communities.
Alguacil, M M; Roldán, A; Torres, M P
2009-10-01
In the present study, we used PCR-Single-Stranded Conformation Polymorphism (SSCP) techniques to analyse arbuscular mycorrhizal fungi (AMF) communities in four sites within a 10 km(2) gypsum area in Southern Spain. Four common plant species from these ecosystems were selected. The AM fungal small-subunit (SSU) rRNA genes were subjected to PCR, cloning, SSCP analysis, sequencing and phylogenetic analyses. A total of 1443 SSU rRNA sequences were analysed, for 21 AM fungal types: 19 belonged to the genus Glomus, 1 to the genus Diversispora and 1 to the Scutellospora. Four sequence groups were identified, which showed high similarity to sequences of known glomalean species or isolates: Glo G18 to Glomus constrictum, Glo G1 to Glomus intraradices, Glo G16 to Glomus clarum, Scut to Scutellospora dipurpurescens and Div to one new genus in the family Diversisporaceae identified recently as Otospora bareai. There were three sequence groups that received strong support in the phylogenetic analysis, and did not seem to be related to any sequences of AM fungi in culture or previously found in the database; thus, they could be novel taxa within the genus Glomus: Glo G4, Glo G2 and Glo G14. We have detected the presence of both generalist and potential specialist AMF in gypsum ecosystems. The AMF communities were different in the plant studied suggesting some degree of preference in the interactions between these symbionts.
Accordi, Elen Dias; Xekouki, Paraskevi; Azevedo, Bruna; de Alexandre, Rodrigo Bertollo; Frasson, Carla; Gantzel, Siliane Marie; Papadakis, Georgios Z; Angelousi, Anna; Stratakis, Constantine A; Sotomaior, Vanessa Santos; Faucz, Fabio R
2016-07-01
Thyroid cancer is the most common endocrine gland malignancy. Advances in understanding the genetic basis for thyroid cancer revealed the potential involvement of several genes in the formation of thyroid tumors. Mutations in the gene coding for succinate dehydrogenase subtype B (SDHB) have been implicated in papillary thyroid cancer (PTC). Succinate dehydrogenase (SDH) is a heterotetrameric protein composed of four subunits, SDHA, SDHB, SDHC, and SDHD, and participates in both the electron transport chain and the tricarboxylic acid cycle. The aim of the study was to evaluate the association between variants in the SDHA, SDHB, SDHC, and SDHD genes and familiar PTC in a large Brazilian family. Four patients with PTC, 1 patient with PTC and gastrointestinal stromal tumor (GIST), 1 patient with GIST, and their relatives - several of them with different thyroid problems - from a large Brazilian family were screened for genetic variations of SDHx genes with the use of polymerase chain reaction-single-stranded conformational polymorphism and direct sequencing. Only one rare variation in SDHA was found in some of the family members, but not segregating with the disease. No other genetic variants of these genes were detected in the family members that presented with PTC and/or GIST. Familiar PTC and a GIST were not associated with SDHx mutations; additional genetic defects, yet unknown, may be responsible for the development of tumor.
HLA-A*02 allele frequencies and haplotypic associations in Koreans.
Park, M H; Whang, D H; Kang, S J; Han, K S
2000-03-01
We have investigated the frequencies of HLA-A*02 alleles and their haplotypic associations with HLA-B and -DRB1 loci in 439 healthy unrelated Koreans, including 214 parents from 107 families. All of the 227 samples (51.7%) typed as A2 by serology were analyzed for A*02 alleles using polymerase chain reaction (PCR)-low ionic strength-single-strand conformation polymorphism (LIS-SSCP) method. A total of six different A*02 alleles were detected (A*02 allele frequency 29.6%): A*0201/9 (16.6%), *0203 (0.5%), *0206 (9.3%), *0207 (3.0%), and one each case of *0210 and *02 undetermined type. Two characteristic haplotypes showing the strongest linkage disequilibrium were A*0203-B38-DRB]*1502 and A*0207-B46-DRB1*0803. Besides these strong associations, significant two-locus associations (P<0.001) were observed for A*0201 with B61, DRB1*0901 and DRB1*1401, and for A*0206 with B48 and B61. HLA haplotypes carrying HLA-A2 showed a variable distribution of A*02 alleles, and all of the eight most common A2-B-DR haplotypes occurring at frequencies of > or =1% were variably associated with two different A*02 alleles. These results demonstrate that substantial heterogeneity is present in the distribution of HLA-A*02 alleles and related haplotypes in Koreans.
Molecular diagnosis of analbuminemia: a new case caused by a nonsense mutation in the albumin gene.
Dagnino, Monica; Caridi, Gianluca; Haenni, Ueli; Duss, Adrian; Aregger, Fabienne; Campagnoli, Monica; Galliano, Monica; Minchiotti, Lorenzo
2011-01-01
Analbuminemia is a rare autosomal recessive disorder manifested by the absence, or severe reduction, of circulating serum albumin (ALB). We report here a new case diagnosed in a 45 years old man of Southwestern Asian origin, living in Switzerland, on the basis of his low ALB concentration (0.9 g/L) in the absence of renal or gastrointestinal protein loss, or liver dysfunction. The clinical diagnosis was confirmed by a mutational analysis of the albumin (ALB) gene, carried out by single-strand conformational polymorphism (SSCP), heteroduplex analysis (HA), and DNA sequencing. This screening of the ALB gene revealed that the proband is homozygous for two mutations: the insertion of a T in a stretch of eight Ts spanning positions c.1289 + 23-c.1289 + 30 of intron 10 and a c.802 G > T transversion in exon 7. Whereas the presence of an additional T in the poly-T tract has no direct deleterious effect, the latter nonsense mutation changes the codon GAA for Glu244 to the stop codon TAA, resulting in a premature termination of the polypeptide chain. The putative protein product would have a length of only 243 amino acid residues instead of the normal 585 found in the mature serum albumin, but no evidence for the presence in serum of such a truncated polypeptide chain could be obtained by two dimensional electrophoresis and western blotting analysis.
Scherwinski, Katja; Grosch, Rita; Berg, Gabriele
2008-04-01
The aim of this study was to assess the biocontrol efficacy against Rhizoctonia solani of three bacterial antagonists introduced into naturally Rhizoctonia-infested lettuce fields and to analyse their impact on the indigenous plant-associated bacteria and fungi. Lettuce seedlings were inoculated with bacterial suspensions of two endophytic strains, Serratia plymuthica 3Re4-18 and Pseudomonas trivialis 3Re2-7, and with the rhizobacterium Pseudomonas fluorescens L13-6-12 7 days before and 5 days after planting in the field. Similar statistically significant biocontrol effects were observed for all applied bacterial antagonists compared with the uninoculated control. Single-strand conformation polymorphism analysis of 16S rRNA gene or ITS1 fragments revealed a highly diverse rhizosphere and a less diverse endophytic microbial community for lettuce. Representatives of several bacterial (Alpha-, Beta- and Gammaproteobacteria, Firmicutes, Bacteriodetes), fungal (Ascomycetes, Basidiomycetes) and protist (Oomycetes) groups were present inside or on lettuce plants. Surprisingly, given that lettuce is a vegetable that is eaten raw, species of genera such as Flavobacterium, Burkholderia, Staphylococcus, Cladosporium and Aspergillus, which contain potentially human pathogenic strains, were identified. Analysis of the indigenous bacterial and endophytic fungal populations revealed only negligible, short-term effects resulting from the bacterial treatments, and that they were more influenced by field site, plant growth stage and microenvironment.
Grosch, Rita; Scherwinski, Katja; Lottmann, Jana; Berg, Gabriele
2006-12-01
A broad spectrum of fungal antagonists was evaluated as potential biocontrol agents (BCAs) against the soil-borne pathogen Rhizoctonia solani using a new combination of in vitro and in vivo assays. The in vitro characterisation of diverse parameters including the ability to parasitise mycelium and to inhibit the germination of Rhizoctonia sclerotia at different temperatures resulted in the selection of six potential fungal antagonists. These were genotypically characterised by their BOX-PCR fingerprints, and identified as Trichoderma reesei and T. viride by partial 18S rDNA sequencing. When potato sprouts were treated with Trichoderma, all isolates significantly reduced the incidence of Rhizoctonia symptoms. Evaluated under growth chamber conditions, the selected Trichoderma isolates either partly or completely controlled the dry mass loss of lettuce caused by R. solani. Furthermore, the antagonistic Trichoderma strains were active under field conditions. To analyse the effect of Trichoderma treatment on indigenous root-associated microbial communities, we performed a DNA-dependent SSCP (Single-Strand Conformation Polymorphism) analysis of 16S rDNA/ITS sequences. In this first assessment study for Trichoderma it was shown that the pathogen and the vegetation time had much more influence on the composition of the microbiota than the BCA treatment. After evaluation of all results, three Trichoderma strains originally isolated from Rhizoctonia sclerotia were selected as promising BCAs.
Opelt, Katja; Berg, Christian; Schönmann, Susan; Eberl, Leo; Berg, Gabriele
2007-10-01
Mosses represent ecological niches that harbor a hitherto largely uncharacterized microbial diversity. To investigate which factors affect the biodiversity of bryophyte-associated bacteria, we analyzed the bacterial communities associated with two moss species, which exhibit different ecological behaviors and importance in bog ecosystems, Sphagnum magellanicum and Sphagnum fallax, from six temperate and boreal bogs in Germany and Norway. Furthermore, their surrounding plant communities were studied. Molecular analysis of bacterial communities was determined by single-strand conformation polymorphism (SSCP) analysis using eubacterial and genus-specific primers for the dominant genera Burkholderia and Serratia as well as by sequence analysis of a Burkholderia 16S rRNA gene clone library. Plant communities were analyzed by monitoring the abundance and composition of bryophyte and vascular plant species, and by determining ecological indicator values. Interestingly, we found a high degree of host specificity for associated bacterial and plant communities of both Sphagnum species independent of the geographical region. Calculation of diversity indices on the basis of SSCP gels showed that the S. fallax-associated communities displayed a statistically significant higher degree of diversity than those associated with S. magellanicum. In contrast, analyses of plant communities of Sphagnum-specific habitats resulted in a higher diversity of S. magellanicum-specific habitats for all six sites. The higher content of nutrients in the S. fallax-associated ecosystems can explain higher diversity of microorganisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunden, S.L.F.; Nichols, B.E.; Alward, W.L.M.
Juvenile onset primary open angle glaucoma has been mapped by linkage to 1q21-q31. Several candidate genes were evaluated in the same family used to identify the primary linkage. Atrionatriuretic peptide receptor A (NPR1) and laminin C1 (LAMC1) have been previously mapped to this region and could putatively play a role in the pathogenesis of glaucoma. A third gene, the peripheral cannabis receptor (CNR2) was not initially mapped in humans but was a candidate because of the relief that cannabis affords some patients with primary open angle glaucoma. Microsatellites associated with NPR1 and LAMC1 revealed multiple recombinations in affected members ofmore » this pedigree. CNR2 was shown to be on chromosome 1 by PCR amplification of a 150 bp fragment of the 3{prime} untranslated region in monochromosomal somatic cell hybrids (NIGMS panel No. 2). These primers also revealed a two allele single strand conformation polymorphism which showed multiple recombinants with juvenile onset primary open angle glaucoma in large pedigrees, segregating this disorder. The marker was then mapped to 1p34-p36 by linkage, with the most likely location between liver alkaline phosphatase (ALPL) and alpha-L-1 fucosidase (FUCA1).« less
Milferstedt, Kim; Santa-Catalina, Gaëlle; Godon, Jean-Jacques; Escudié, Renaud; Bernet, Nicolas
2013-01-01
Many natural and engineered biofilm systems periodically face disturbances. Here we present how the recovery time of a biofilm between disturbances (expressed as disturbance frequency) shapes the development of morphology and community structure in a multi-species biofilm at the landscape scale. It was hypothesized that a high disturbance frequency favors the development of a stable adapted biofilm system while a low disturbance frequency promotes a dynamic biofilm response. Biofilms were grown in laboratory-scale reactors over a period of 55-70 days and exposed to the biocide monochloramine at two frequencies: daily or weekly pulse injections. One untreated reactor served as control. Biofilm morphology and community structure were followed on comparably large biofilm areas at the landscape scale using automated image analysis (spatial gray level dependence matrices) and community fingerprinting (single-strand conformation polymorphisms). We demonstrated that a weekly disturbed biofilm developed a resilient morphology and community structure. Immediately after the disturbance, the biofilm simplified but recovered its initial complex morphology and community structure between two biocide pulses. In the daily treated reactor, one organism largely dominated a morphologically simple and stable biofilm. Disturbances primarily affected the abundance distribution of already present bacterial taxa but did not promote growth of previously undetected organisms. Our work indicates that disturbances can be used as lever to engineer biofilms by maintaining a biofilm between two developmental states. PMID:24303024
Wéry, Nathalie; Bru-Adan, Valérie; Minervini, Céline; Delgénes, Jean-Philippe; Garrelly, Laurent; Godon, Jean-Jacques
2008-05-01
The dynamics of Legionella spp. and of dominant bacteria were investigated in water from a cooling tower plant over a 9-month period which included several weeks when Legionella pneumophila proliferated. The structural diversity of both the bacteria and the Legionella spp. was monitored by a fingerprint technique, single-strand conformation polymorphism, and Legionella spp. and L. pneumophila were quantified by real-time quantitative PCR. The structure of the bacterial community did not change over time, but it was perturbed periodically by chemical treatment or biofilm detachment. In contrast, the structure of the Legionella sp. population changed in different periods, its dynamics at times showing stability but also a rapid major shift during the proliferation of L. pneumophila in July. The dynamics of the Legionella spp. and of dominant bacteria were not correlated. In particular, no change in the bacterial community structure was observed during the proliferation of L. pneumophila. Legionella spp. present in the cooling tower system were identified by cloning and sequencing of 16S rRNA genes. A high diversity of Legionella spp. was observed before proliferation, including L. lytica, L. fallonii, and other Legionella-like amoebal pathogen types, along with as-yet-undescribed species. During the proliferation of L. pneumophila, Legionella sp. diversity decreased significantly, L. fallonii and L. pneumophila being the main species recovered.
Wéry, Nathalie; Bru-Adan, Valérie; Minervini, Céline; Delgénes, Jean-Philippe; Garrelly, Laurent; Godon, Jean-Jacques
2008-01-01
The dynamics of Legionella spp. and of dominant bacteria were investigated in water from a cooling tower plant over a 9-month period which included several weeks when Legionella pneumophila proliferated. The structural diversity of both the bacteria and the Legionella spp. was monitored by a fingerprint technique, single-strand conformation polymorphism, and Legionella spp. and L. pneumophila were quantified by real-time quantitative PCR. The structure of the bacterial community did not change over time, but it was perturbed periodically by chemical treatment or biofilm detachment. In contrast, the structure of the Legionella sp. population changed in different periods, its dynamics at times showing stability but also a rapid major shift during the proliferation of L. pneumophila in July. The dynamics of the Legionella spp. and of dominant bacteria were not correlated. In particular, no change in the bacterial community structure was observed during the proliferation of L. pneumophila. Legionella spp. present in the cooling tower system were identified by cloning and sequencing of 16S rRNA genes. A high diversity of Legionella spp. was observed before proliferation, including L. lytica, L. fallonii, and other Legionella-like amoebal pathogen types, along with as-yet-undescribed species. During the proliferation of L. pneumophila, Legionella sp. diversity decreased significantly, L. fallonii and L. pneumophila being the main species recovered. PMID:18390683
Gozu, Hulya; Avsar, Melike; Bircan, Rifat; Claus, Maren; Sahin, Serap; Sezgin, Ozlem; Deyneli, Oguzhan; Paschke, Ralf; Cirakoglu, Beyazit; Akalin, Sema
2005-04-01
Autonomously functioning thyroid nodules (AFTNs) can present as hyperfunctioning adenomas or toxic multinodular goiters. In the last decade, a large number of activating mutations have been identified in the thyrotropin receptor (TSHR) gene in autonomously functioning thyroid nodules. Most have been situated close to, or within the sixth transmembrane segment and third intracellular loop of the TSHR where the receptor interacts with the Gs protein. In this study we describe two novel mutations in the sixth transmembrane segment of the TSHR causing hyperfunctioning thyroid nodules. Genomic DNAs were isolated from four hyperfunctioning thyroid nodules, normal tissues and peripheral leukocytes of two patients with toxic multinodular goiter. After amplifying the related regions, TSHR and G(s)alpha genes were analyzed by single-strand conformation polymorphism (SSCP) analysis. The precise localization of the mutations was identified by automatic DNA sequence analysis. Functional studies were done by site-directed mutagenesis and transfection of a mutant construct into COS-7 cells. We identified two novel TSHR mutations in two hyperfunctioning thyroid nodules: Phe631Val in the first patient and Iso630Met in the second patient. Both mutant receptors display an increase in constitutive stimulation of basal cyclic adenosine monophosphate (cAMP) levels compared to the wild-type receptor. This confirms that these mutant receptors cause hyperfunctioning thyroid nodules.
Neoplasia of the ampulla of Vater. Ki-ras and p53 mutations.
Scarpa, A.; Capelli, P.; Zamboni, G.; Oda, T.; Mukai, K.; Bonetti, F.; Martignoni, G.; Iacono, C.; Serio, G.; Hirohashi, S.
1993-01-01
Eleven tumors of the ampulla of Vater (5 stage IV and 2 stage II adenocarcinomas, 1 stage II papillary carcinoma, 1 neuroendocrine carcinoma, and 2 adenomas, one with foci of carcinoma) were examined for Ki-ras and p53 gene mutations by single-strand conformation polymorphism analysis and direct sequencing of polymerase chain reaction-amplified DNA fragments. Ki-ras mutations were found in one adenocarcinoma and in the adenoma with foci of carcinoma, both involving mainly the intraduodenal bile duct component of the ampulla. Seven cases showed p53 gene mutations: four advanced-stage adenocarcinomas, the papillary carcinoma, the neuroendocrine carcinoma, and the adenoma with foci of carcinoma. Nuclear accumulation of p53 protein was immunohistochemically detected in the morphologically high-grade areas of the five cancers harboring a p53 gene missense point mutation. The adenomas, the two frame shift-mutated cancers, and the adenomatous and low-grade cancer areas of mutated carcinomas were immunohistochemically negative. Our data suggest that in ampullary neoplasia 1) p53 mutations are common abnormalities associated with the transformation of adenomas and low-grade cancers into morphologically high-grade carcinomas, and 2) Ki-ras mutations are relatively less frequent and might be restricted to tumors originating from the bile duct component of the ampulla. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8475992
Identification of Diatraea spp. (Lepidoptera: Crambidae) based on cytochrome oxidase II.
Barrera, Gloria Patricia; Villamizar, Laura Fernanda; Espinel, Carlos; Quintero, Edgar Mauricio; Belaich, Mariano Nicolás; Toloza, Deisy Liseth; Ghiringhelli, Pablo Daniel; Vargas, Germán
2017-01-01
Diatraea spp. (Lepidoptera: Crambidae) are a group of insects that are agriculture pests in many economically relevant crops such as sugarcane, sorghum, corn and rice. Recognized species for this genus respond differentially to natural enemies used in their biological control, emphasizing the importance of species in a regional approach. Currently, identification is based on the male genitalia. However, the availability of specimens collected from field and subjectivity based on the character recognition can seriously hamper species identification, and therefore result in inadequate pest management. To overcome this, individuals of Diatraea spp. preliminarily classified male genitalia and obtained from reared conditions and the field (both derived from natural populations occurring in Colombia) were analyzed using genitalic morphometry and molecular biology specifically using a fragment of the cytochrome oxidase subunit II (CO II) mitochondrial gene. Although morphometric analysis did not show any overriding results regarding genitalia morphology, the bioinformatics analyses of CO II sequences resulted in an adequate classification of the individuals within the recognized species. It also, revealed that the occurrence of clades associated with geographical distribution may be associated with cryptic species. The latter was also confirmed by a Single-Strand Conformation Polymorphism (SSCP) methodology evaluating the same fragment of CO II. This experimental approach allows properly recognizing each species and in consequence is proposed as an effective tool in Diatraea species identification.
Identification of Diatraea spp. (Lepidoptera: Crambidae) based on cytochrome oxidase II
Villamizar, Laura Fernanda; Espinel, Carlos; Quintero, Edgar Mauricio; Belaich, Mariano Nicolás; Toloza, Deisy Liseth
2017-01-01
Diatraea spp. (Lepidoptera: Crambidae) are a group of insects that are agriculture pests in many economically relevant crops such as sugarcane, sorghum, corn and rice. Recognized species for this genus respond differentially to natural enemies used in their biological control, emphasizing the importance of species in a regional approach. Currently, identification is based on the male genitalia. However, the availability of specimens collected from field and subjectivity based on the character recognition can seriously hamper species identification, and therefore result in inadequate pest management. To overcome this, individuals of Diatraea spp. preliminarily classified male genitalia and obtained from reared conditions and the field (both derived from natural populations occurring in Colombia) were analyzed using genitalic morphometry and molecular biology specifically using a fragment of the cytochrome oxidase subunit II (CO II) mitochondrial gene. Although morphometric analysis did not show any overriding results regarding genitalia morphology, the bioinformatics analyses of CO II sequences resulted in an adequate classification of the individuals within the recognized species. It also, revealed that the occurrence of clades associated with geographical distribution may be associated with cryptic species. The latter was also confirmed by a Single-Strand Conformation Polymorphism (SSCP) methodology evaluating the same fragment of CO II. This experimental approach allows properly recognizing each species and in consequence is proposed as an effective tool in Diatraea species identification. PMID:28873431
Sotomatsu, M; Hayashi, Y; Kawamura, M; Yugami, S; Shitara, T
1993-10-01
A new human pre-B acute lymphoblastic leukemia cell line (KMO-90) was established from the bone marrow sample of a 12-year-old girl with acute lymphoblastic leukemia (ALL) carrying 1;19 chromosome translocation. KMO-90 cells expressed HLA-DR, CD10, CD19, and CD22 antigens. These cells had also cytoplasmic immunoglobulin lacking surface immunoglobulin, indicating that these had a pre-B phenotype. Chromosome analysis of this cell line showed 48, XX, +8, +19, t(1;19)(q23;p13). Southern blot analysis showed the same sized rearrangements of the E2A gene in KMO-90 cells as those in the original leukemic cells. By means of reverse transcriptase-polymerase chain reaction analysis, we detected E2A/PBX1 fusion transcripts in KMO-90 cells. KMO-90 is useful when studying the role of the 1;19 translocation in the etiology of pre-B ALL. Furthermore, we studied alterations of the p53 gene in this cell line by polymerase chain reaction, single-strand conformation polymorphism analysis. KMO-90 cells were identified to have a point mutation at codon 177 (CCC-->TCC) of the p53 gene, suggesting that alterations of the p53 gene may have an important role in the establishment of this cell line.
Tamary, H; Yaniv, I; Stein, J; Dgany, O; Shalev, Z; Shechter, T; Resnitzky, P; Shaft, D; Zoldan, M; Kornreich, L; Levy, R; Cohen, A; Moser, R A; Kapelushnik, J; Shalev, H
2003-09-01
Familial thrombocytopenia is a relatively rare and heterogeneous group of clinical and genetic syndromes of unknown etiology. Recently, mutations in a few hematopoietic transcription factors were implicated in dysmegakaryopoiesis with and without dyserythropoietic anemia. The aim of the present study was to describe the clinical and hematologic picture of members of a Bedouin family with severe congenital thrombocytopenia associated with neutropenia and anemia and to determine the possible involvement of hematopoietic transcription factor genes in their disease. Four members of a Bedouin family presented with severe bleeding tendency, including intracranial hemorrhage in three. Three of the four were successfully treated with allogenic human leukocyte antigen (HLA)-matched bone marrow transplants. Measurements of serum erythropoietin and thrombopoietin levels, bone marrow electron microscopy, and megakaryocytic colony were grown for each patient in addition to DNA amplification and single-strand conformation polymorphism of each exon of the NF-E2, Fli-1, FOG-1, and Gfi-1b in genes. Bone marrow studies revealed dysmegakaryopoiesis and mild dyserythropoiesis. A low number of bone marrow megakaryocyte colony-forming units was found, as well as a slightly elevated serum thrombopoietin level. No mutation was identified in any of the transcription factor genes examined. A unique autosomal recessive bone marrow disorder with prominent involvement of megakaryocytes is described. Defects were not identified in transcription factors affecting the common myeloid progenitor.
Effects of Disinfection on Legionella spp., Eukarya, and Biofilms in a Hot Water System
Moletta-Denat, Marina; Frère, Jacques; Onillon, Séverine; Trouilhé, Marie-Cécile; Robine, Enric
2012-01-01
Legionella species are frequently detected in hot water systems, attached to the surface as a biofilm. In this work, the dynamics of Legionella spp. and diverse bacteria and eukarya associated together in the biofilm, coming from a pilot scale 1 system simulating a real hot water system, were investigated throughout 6 months after two successive heat shock treatments followed by three successive chemical treatments. Community structure was assessed by a fingerprint technique, single-strand conformation polymorphism (SSCP). In addition, the diversity and dynamics of Legionella and eukarya were investigated by small-subunit (SSU) ribosomal cloning and sequencing. Our results showed that pathogenic Legionella species remained after the heat shock and chemical treatments (Legionella pneumophila and Legionella anisa, respectively). The biofilm was not removed, and the bacterial community structure was transitorily affected by the treatments. Moreover, several amoebae had been detected in the biofilm before treatments (Thecamoebae sp., Vannella sp., and Hartmanella vermiformis) and after the first heat shock treatment, but only H. vermiformis remained. However, another protozoan affiliated with Alveolata, which is known as a host cell for Legionella, dominated the eukaryal species after the second heat shock and chemical treatment tests. Therefore, effective Legionella disinfection may be dependent on the elimination of these important microbial components. We suggest that eradicating Legionella in hot water networks requires better study of bacterial and eukaryal species associated with Legionella in biofilms. PMID:22820326
Perera, Piyumali K; Gasser, Robin B; Jabbar, Abdul
2015-03-01
Oriental theileriosis is a tick-borne, protozoan disease of cattle caused by one or more genotypes of Theileria orientalis complex. In this study, we assessed sequence variability in a region of the 23kDa piroplasm membrane protein (p23) gene within and among three T. orientalis genotypes (designated buffeli, chitose and ikeda) in south-eastern Australia. Genomic DNA (n=100) was extracted from blood of infected cattle from various locations endemic for oriental theileriosis and tested by polymerase chain reaction (PCR)-coupled mutation scanning (single-strand conformation polymorphism (SSCP)) and targeted sequencing analysis. Eight distinct sequences represented all DNA samples, and three genotypes were found: buffeli (n=3), chitose (3) and ikeda (2). Nucleotide pairwise comparisons among these eight sequences revealed considerably higher variability among the genotypes (6.6-11.7%) than within them (0-1.9%), indicating that the p23 gene region allows the accurate identification of T. orientalis genotypes. In the future, we will combine this gene with other molecular markers to study the genetic structure of T. orientalis populations in Australasia, which will pave the way to establish a highly sensitive and specific PCR-based assay for genotypic diagnosis of infection and for assessing levels of parasitaemia in cattle. Copyright © 2014 Elsevier GmbH. All rights reserved.
Major histocompatibility complex variation in the endangered Przewalski's horse.
Hedrick, P W; Parker, K M; Miller, E L; Miller, P S
1999-01-01
The major histocompatibility complex (MHC) is a fundamental part of the vertebrate immune system, and the high variability in many MHC genes is thought to play an essential role in recognition of parasites. The Przewalski's horse is extinct in the wild and all the living individuals descend from 13 founders, most of whom were captured around the turn of the century. One of the primary genetic concerns in endangered species is whether they have ample adaptive variation to respond to novel selective factors. In examining 14 Przewalski's horses that are broadly representative of the living animals, we found six different class II DRB major histocompatibility sequences. The sequences showed extensive nonsynonymous variation, concentrated in the putative antigen-binding sites, and little synonymous variation. Individuals had from two to four sequences as determined by single-stranded conformation polymorphism (SSCP) analysis. On the basis of the SSCP data, phylogenetic analysis of the nucleotide sequences, and segregation in a family group, we conclude that four of these sequences are from one gene (although one sequence codes for a nonfunctional allele because it contains a stop codon) and two other sequences are from another gene. The position of the stop codon is at the same amino-acid position as in a closely related sequence from the domestic horse. Because other organisms have extensive variation at homologous loci, the Przewalski's horse may have quite low variation in this important adaptive region. PMID:10430594
Arrestin gene mutations in autosomal recessive retinitis pigmentosa.
Nakazawa, M; Wada, Y; Tamai, M
1998-04-01
To assess the clinical and molecular genetic studies of patients with autosomal recessive retinitis pigmentosa associated with a mutation in the arrestin gene. Results of molecular genetic screening and case reports with DNA analysis and clinical features. University medical center. One hundred twenty anamnestically unrelated patients with autosomal recessive retinitis pigmentosa. DNA analysis was performed by single strand conformation polymorphism followed by nucleotide sequencing to search for a mutation in exon 11 of the arrestin gene. Clinical features were characterized by visual acuity slitlamp biomicroscopy, fundus examinations, fluorescein angiography, kinetic visual field testing, and electroretinography. We identified 3 unrelated patients with retinitis pigmentosa associated with a homozygous 1-base-pair deletion mutation in codon 309 of the arrestin gene designated as 1147delA. All 3 patients showed pigmentary retinal degeneration in the midperipheral area with or without macular involvement. Patient 1 had a sibling with Oguchi disease associated with the same mutation. Patient 2 demonstrated pigmentary retinal degeneration associated with a golden-yellow reflex in the peripheral fundus. Patients 1 and 3 showed features of retinitis pigmentosa without the golden-yellow fundus reflex. Although the arrestin 1147delA has been known as a frequent cause of Oguchi disease, this mutation also may be related to the pathogenesis of autosomal recessive retinitis pigmentosa. This phenomenon may provide evidence of variable expressivity of the mutation in the arrestin gene.
Klevering, B Jeroen; Yzer, Suzanne; Rohrschneider, Klaus; Zonneveld, Marijke; Allikmets, Rando; van den Born, L Ingeborgh; Maugeri, Alessandra; Hoyng, Carel B; Cremers, Frans P M
2004-12-01
Mutations in the ABCA4 gene have been associated with autosomal recessive Stargardt disease (STGD1), cone-rod dystrophy (CRD), and retinitis pigmentosa (RP). We employed a recently developed genotyping microarray, the ABCR400-chip, to search for known ABCA4 mutations in patients with isolated or autosomal recessive CRD (54 cases) or RP (90 cases). We performed detailed ophthalmologic examinations and identified at least one ABCA4 mutation in 18 patients (33%) with CRD and in five patients (5.6%) with RP. Single-strand conformation polymorphism (SSCP) analysis and subsequent DNA sequencing revealed four novel missense mutations (R24C, E161K, P597S, G618E) and a novel 1-bp deletion (5888delG). Ophthalmoscopic abnormalities in CRD patients ranged from minor granular pigmentary changes in the posterior pole to widespread atrophy. In 12 patients with recordable electroretinogram (ERG) tracings, a cone-rod pattern was detected. Three patients demonstrated progression from a retinal dystrophy resembling STGD1 to a more widespread degeneration, and were subsequently diagnosed as CRD. In addition to a variable degree of atrophy, all RP patients displayed ophthalmologic characteristics of classic RP. When detectable, ERG recordings in these patients demonstrated rod-cone patterns of photoreceptor degeneration. In conclusion, in this study, we show that the ABCA4 mutation chip is an efficient first screening tool for arCRD.
Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy.
Maugeri, A; Klevering, B J; Rohrschneider, K; Blankenagel, A; Brunner, H G; Deutman, A F; Hoyng, C B; Cremers, F P
2000-10-01
The photoreceptor cell-specific ATP-binding cassette transporter gene (ABCA4; previously denoted "ABCR") is mutated, in most patients, with autosomal recessive (AR) Stargardt disease (STGD1) or fundus flavimaculatus (FFM). In addition, a few cases with AR retinitis pigmentosa (RP) and AR cone-rod dystrophy (CRD) have been found to have ABCA4 mutations. To evaluate the importance of the ABCA4 gene as a cause of AR CRD, we selected 5 patients with AR CRD and 15 patients from Germany and The Netherlands with isolated CRD. Single-strand conformation-polymorphism analysis and sequencing revealed 19 ABCA4 mutations in 13 (65%) of 20 patients. In six patients, mutations were identified in both ABCA4 alleles; in seven patients, mutations were detected in one allele. One complex ABCA4 allele (L541P;A1038V) was found exclusively in German patients with CRD; one patient carried this complex allele homozygously, and five others were compound heterozygous. These findings suggest that mutations in the ABCA4 gene are the major cause of AR CRD. A primary role of the ABCA4 gene in STGD1/FFM and AR CRD, together with the gene's involvement in an as-yet-unknown proportion of cases with AR RP, strengthens the idea that mutations in the ABCA4 gene could be the most frequent cause of inherited retinal dystrophy in humans.
Matsumoto, I; Tsubota, K; Satake, Y; Kita, Y; Matsumura, R; Murata, H; Namekawa, T; Nishioka, K; Iwamoto, I; Saitoh, Y; Sumida, T
1996-01-01
Sjogren's syndrome (SS) is an autoimmune disease characterized by lymphocytic infiltration into lacrimal and salivary glands leading to symptomatic dry eyes and mouth. Immunohistological studies have clarified that the majority of infiltrating lymphocytes around the lacrimal glands and labial salivary glands are CD4 positive alphabeta T cells. To analyze the pathogenesis of T cells infiltrating into lacrimal and labial salivary glands, we examined T cell clonotype of these cells in both glands from four SS patients using PCR-single-strand conformation polymorphism (SSCP) and a sequencing method. SSCP analysis showed that some infiltrating T cells in both glands expand clonally, suggesting that the cells proliferate by antigen-driven stimulation. Intriguingly, six to sixteen identical T cell receptor (TCR) Vbeta genes were commonly found in lacrimal glands and labial salivary glands from individual patients. This indicates that some T cells infiltrating into both glands recognize the shared epitopes on autoantigens. Moreover, highly conserved amino acid sequence motifs were found in the TCR CDR3 region bearing the same TCR Vbeta family gene from four SS patients, supporting the notion that the shared epitopes on antigens are limited. In conclusion, these findings suggest that some autoreactive T cells infiltrating into the lips and eyes recognized restricted epitopes of a common autoantigen in patients with SS. PMID:8621782
Trivers, G E; De Benedetti, V M; Cawley, H L; Caron, G; Harrington, A M; Bennett, W P; Jett, J R; Colby, T V; Tazelaar, H; Pairolero, P; Miller, R D; Harris, C C
1996-10-01
Serum anti-p53 antibodies (p53-Abs) may be surrogate markers for both p53 alterations and preclinical cancer. Ancillary to a prospective trial to abate progressive development of clinical stages of chronic obstructive pulmonary disease, we conducted a retrospective, nested case-control study. Twenty-three cases were diagnosed with cancer during the trial. Enzyme immunoassay, immunoblotting, and immunoprecipitation were used to detect p53-Abs in serum, immunohistochemistry (IHC) to detect p53 accumulation, and single-strand conformation polymorphism and DNA sequencing to detect p53 mutations in tumor samples. p53-Abs were detected by three types of assays in five (23%) of the cancer patients, 80% of whom had detectable p53-Abs before diagnosis: 2 lung cancers (7 and 6 months before), 1 prostate cancer (11 months), and 1 breast cancer (5 months). Four Ab-positive patients had IHC-positive tumors. Two of 4 Ab-positive patients and 2 of 14 Ab-negative had p53 missense mutations or base pair deletion and IHC-positive tumors. The 44 noncancer COPD controls, matched with the cancer cases for age, gender, and smoking habits, were negative for p53-Abs. These results indicate that p53-Abs may facilitate the early diagnosis of cancer in a subset of smokers with chronic obstructive pulmonary disease who are at an increased cancer risk.
Molecular genotyping of ABO blood groups in some population groups from India.
Ray, Sabita; Gorakshakar, Ajit C; Vasantha, K; Nadkarni, Anita; Italia, Yazdi; Ghosh, Kanjaksha
2014-01-01
Indian population is characterized by the presence of various castes and tribal groups. Various genetic polymorphisms have been used to differentiate among these groups. Amongst these, the ABO blood group system has been extensively studied. There is no information on molecular genotyping of ABO blood groups from India. Therefore, the main objective of this study was to characterize the common A, B and O alleles by molecular analysis in some Indian population groups. One hundred samples from the mixed population from Mumbai, 101 samples from the Dhodia tribe and 100 samples from the Parsi community were included in this study. Initially, the samples were phenotyped by standard serologic techniques. PCR followed by single strand conformational polymorphsim (SSCP) was used for molecular ABO genotyping. Samples showing atypical SSCP patterns were further analysed by DNA sequencing to characterize rare alleles. Seven common ABO alleles with 19 different genotypes were found in the mixed population. The Dhodias showed 12 different ABO genotypes and the Parsis revealed 15 different ABO genotypes with six common ABO alleles identified in each of them. Two rare alleles were also identified. This study reports the distribution of molecular genotypes of ABO alleles among some population groups from India. Considering the extremely heterogeneous nature of the Indian population, in terms of various genotype markers like blood groups, red cell enzymes, etc., many more ABO alleles are likely to be encountered.
Formation of template-switching artifacts by linear amplification.
Chakravarti, Dhrubajyoti; Mailander, Paula C
2008-07-01
Linear amplification is a method of synthesizing single-stranded DNA from either a single-stranded DNA or one strand of a double-stranded DNA. In this protocol, molecules of a single primer DNA are extended by multiple rounds of DNA synthesis at high temperature using thermostable DNA polymerases. Although linear amplification generates the intended full-length single-stranded product, it is more efficient over single-stranded templates than double-stranded templates. We analyzed linear amplification over single- or double-stranded mouse H-ras DNA (exon 1-2 region). The single-stranded H-ras template yielded only the intended product. However, when the double-stranded template was used, additional artifact products were observed. Increasing the concentration of the double-stranded template produced relatively higher amounts of these artifact products. One of the artifact DNA bands could be mapped and analyzed by sequencing. It contained three template-switching products. These DNAs were formed by incomplete DNA strand extension over the template strand, followed by switching to the complementary strand at a specific Ade nucleotide within a putative hairpin sequence, from which DNA synthesis continued over the complementary strand.
Conformational Order in Aggregates of Conjugated Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Nicholas E.; Kohlstedt, Kevin L.; Savoie, Brett M.
With the abundant variety and increasing chemical complexity of conjugated poly-friers proliferating the field of organic semiconductors, it has become increasingly important to correlate the polymer molecular structure with its mesoscale conformational and morphological attributes. For instance, it is unknown which combinations of chemical moieties and periodicities predictably produce mesoscale ordering. Interestingly) not all ordered morphologies result in efficient devices. In this work we have parametrized accurate classical force-fields and used these to compute the conformational and aggregation characteristics of single strands of common conjugated polymers. Molecular dynamics trajectories are shown to reproduce experimentally observed polymeric ordering, concluding that efficientmore » organic photovoltaic devices span a range of polymer conformational classes, and suggesting that the solution-phase morphologies have far-reaching effects. Encouragingly, these simulations indicate that despite the wide-range of conformational classes present in successful devices, local molecular ordering, and not long-range crystallinity, appears to be the necessary requirement for efficient devices. Finally, we examine what makes a "good" solvent for conjugated polymers, concluding that dispersive pi-electron solvent-polymer interactions, and not the electrostatic potential of the backbone interacting with the solvent, are what primarily determine a polymer's solubility in a particular solvent, and consequently its morphological characteristics.« less
Effect of single-strand break on branch migration and folding dynamics of Holliday junctions.
Palets, Dmytro; Lushnikov, Alexander Y; Karymov, Mikhail A; Lyubchenko, Yuri L
2010-09-22
The Holliday junction (HJ), or four-way junction, is a central intermediate state of DNA for homologous genetic recombination and other genetic processes such as replication and repair. Branch migration is the process by which the exchange of homologous DNA regions occurs, and it can be spontaneous or driven by proteins. Unfolding of the HJ is required for branch migration. Our previous single-molecule fluorescence studies led to a model according to which branch migration is a stepwise process consisting of consecutive migration and folding steps. Folding of the HJ in one of the folded conformations terminates the branch migration phase. At the same time, in the unfolded state HJ rapidly migrates over entire homology region of the HJ in one hop. This process can be affected by irregularities in the DNA double helical structure, so mismatches almost terminate a spontaneous branch migration. Single-stranded breaks or nicks are the most ubiquitous defects in the DNA helix; however, to date, their effect on the HJ branch migration has not been studied. In addition, although nicked HJs are specific substrates for a number of enzymes involved in DNA recombination and repair, the role of this substrate specificity remains unclear. Our main goal in this work was to study the effect of nicks on the efficiency of HJ branch migration and the dynamics of the HJ. To accomplish this goal, we applied two single-molecule methods: atomic force microscopy and fluorescence resonance energy transfer. The atomic force microscopy data show that the nick does not prevent branch migration, but it does decrease the probability that the HJ will pass the DNA lesion. The single-molecule fluorescence resonance energy transfer approaches were instrumental in detailing the effects of nicks. These studies reveal a dramatic change of the HJ dynamics. The nick changes the structure and conformational dynamics of the junctions, leading to conformations with geometries that are different from those for the intact HJ. On the basis of these data, we propose a model of branch migration in which the propensity of the junction to unfold decreases the lifetimes of folded states, thereby increasing the frequency of junction fluctuations between the folded states. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Frkanec; Visnjevac; Kojic-Prodic; Zinic
2000-02-04
Chiral calix[4]arene derivatives with four O-(N-acetyl-PhgOMe), (1), (Phg denotes R-phenylglycine), or O-(N-acetyl-LeuOMe) (2) strands have been synthesised. Both compounds exist in chloroform in stable cone conformations with a noncovalently organised cavity at the lower rim that is formed by circular interstrand amidic hydrogen bonds. Such organisation affects both the selectivity and extraction/transport properties of 1 and 2 toward metal cations. Calix[4]arene derivatives with one OCH2COPhgOMe strand (3), two OCH2COPhgOMe strands (5) and with 1,3-OMe-2,4-(O-CH2COPhgOMe) substituents (4) at the lower rim have also been prepared. For 3, a conformation stabilised by a circular hydrogen-bond arrangement is found in chloroform, while 4 exists as a time-averaged C2 conformation with two intramolecular NH ...OCH3 hydrogen bonds. Compound 5 has a unique hydrogen-bonding motif in solution and in the solid state with two three-centred NH-.. O and two OH...O hydrogen bonds at the lower rim. This motif keeps 5 in the flattened cone conformation in chloroform. The X-ray structure analysis of 1 revealed a molecular structure with C2 symmetry; this structure is organised in infinite chains by intra- and intermolecular H bonds. The solid-state and solution structures of the [1-Na]ClO4 complex are identical, C4 symmetric cone conformations.
The structure of human tripeptidyl peptidase II as determined by a hybrid approach.
Schönegge, Anne-Marie; Villa, Elizabeth; Förster, Friedrich; Hegerl, Reiner; Peters, Jürgen; Baumeister, Wolfgang; Rockel, Beate
2012-04-04
Tripeptidyl-peptidase II (TPPII) is a high molecular mass (∼5 MDa) serine protease, which is thought to act downstream of the 26S proteasome, cleaving peptides released by the latter. Here, the structure of human TPPII (HsTPPII) has been determined to subnanometer resolution by cryoelectron microscopy and single-particle analysis. The complex is built from two strands forming a quasihelical structure harboring a complex system of inner cavities. HsTPPII particles exhibit some polymorphism resulting in complexes consisting of nine or of eight dimers per strand. To obtain deeper insights into the architecture and function of HsTPPII, we have created a pseudoatomic structure of the HsTPPII spindle using a comparative model of HsTPPII dimers and molecular dynamics flexible fitting. Analyses of the resulting hybrid structure of the HsTPPII holocomplex provide new insights into the mechanism of maturation and activation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Xin, Y P; Zan, L S; Wang, Y H; Liu, Y F; Tian, W Q; Fan, Y Y
2011-01-01
The correlations between Y chromosome polymorphisms and the carcass traits were studied in five Chinese beef cattle populations by PCR, single strand conformation polymorphism and Y-STR sequence analysis. Nine alleles and their frequencies were identified on Y-STR UMN0929 region in Qinchuan (n=116), Luxi (n=112), Jinnan (n=104) pure breeds, Simmental×Qinchuan crossbred (n=80) and Angus×Qinchuan crossbred (n=96). The most popular A-176 and B-178 alleles were presented in all 5 cattle populations in the range of 12% (Jinnan) to 66% (Simmental×Qinchuan). The allele I-194 presented Luxi and Angus×Qinchuan. In Qinchun cattle, G-190 and E-186 alleles had bigger effect on BPI (4.23±0.32 and 4.22±0.48 kg/cm, P<0.01) and CW (325.40±49.42 and 316.73±45.29 kg, P<0.01), respectively. In Luxi cattle, I-194 allele affected higher BPI (4.08±0.35 kg/cm, P<0.01) and CW (302.07±17.55 kg, P<0.01), respectively. In Jinnan cattle breed, H-192 had higher BPI (4.32±0.50 kg/cm, P<0.05) and CW (327.87±59.37 kg, P<0.05), respectively. In Simmental×Qinchuan cross breed, C-180 allele affected largely on BPI (5.16±0.25 kg/cm, P<0.05) and CW (393.16±25.92 kg, P<0.05). In Angus×Qinchuan cross breed, I-194 had higher BPI (4.43±0.33 kg, P<0.05) and CW (346.63±29.77 kg, P<0.05). Correlations between alleles and other carcass traits (net meat weight, top grade weight, slaughter rate, net meat rate, loin-eye muscle area, carcass length, meet tenderness and shear force) were also analyzed using mixed-effect model. Cattle Y-STR UMN0929 loci alleles and its correlation with carcass traits in beef cattle populations could be implemented into the cattle breeding program for choosing beef cattle with better carcass traits.
Xu, Wenjun; Dai, Hanjun; Lu, Tingting; Zhang, Xiaohui; Dong, Bing; Li, Yang
2011-01-01
To describe the clinical and genetic findings in one Chinese family with autosomal recessive retinitis pigmentosa (arRP) and in three unrelated Chinese families with Usher syndrome type II (USH2). One family (FR1) with arRP and three unrelated families (F6, F7, and F8) with Usher syndrome (USH), including eight affected members and seven unaffected family individuals were examined clinically. The study included 100 normal Chinese individuals as normal controls. After obtaining informed consent, peripheral blood samples from all participants were collected and genomic DNA was extracted. Genotyping and haplotyping analyses were performed on the known genetic loci for arRP with a panel of polymorphic markers in family FR1. In all four families, the coding region (exons 2-72), including the intron-exon boundary of the USH2A (Usher syndrome type -2A protein) gene, was screened by PCR and direct DNA sequencing. Whenever substitutions were identified in a patient, a restriction fragment length polymorphism (RFLP) analysis, single strand conformation polymorphism (SSCP) analysis, or high resolution melt curve analysis (HRM) was performed on all available family members and on the 100 normal controls. The affected individuals presented with typical fundus features of retinitis pigmentosa (RP), including narrowing of the vessels, bone-spicule pigmentation, and waxy optic discs. The electroretinogram (ERG) wave amplitudes of the available probands were undetectable. Audiometric tests in the affected individuals in family FR1 were normal, while indicating moderate to severe sensorineural hearing impairment in the affected individuals in families F6, F7, and F8. Vestibular function was normal in all patients from all four families. The disease-causing gene in family FR1 was mapped to the USH2A locus on chromosome 1q41. Seven novel mutations (two missenses, one 7-bp deletion, two small deletions, and two nonsenses) were detected in the four families after sequencing analysis of USH2A. The results further support that mutations of USH2A are also responsible for non-syndromic RP. The mutation spectrum among Chinese patients might differ from that among European Caucasians.
NASA Astrophysics Data System (ADS)
Benarous, N.; Cherouana, A.; Aubert, Emmanuel; Durand, Pierrick; Dahaoui, S.
2016-02-01
Two new polymorphs of Schiff base, (E)-2-((2,6-dichlorobenzylidene)amino)benzonitrile, were prepared from the condensation of 4-amino-benzonitrile and 2,6-dichlorobenzaldehyde. The two polymorphs crystallize in two different space groups: P21/c for polymorph (I) with volume 1264.23(2) Å3 and Pbca for polymorph (II) with volume 2469.3(2) Å3. The two polymorphs have been characterized by FT-IR and UV-VIS spectroscopy. The crystal structures of both compounds were determined by single X-ray analysis. The difference between the two polymorphs was observed at the angle between the two phenyl rings which is 4.81° for the first one and 82.27° for the second one. Both crystal structures are built on the basis of moderate and weak hydrogen bonds. Theoretical calculations on isolated molecules at the MP2 cc-pVDZ level show that the two polymorphs correspond to two molecular conformations that are within less than 1 kJ mol-1 and DFT periodic calculations indicate that (II) is more stable than (I) by 4.1 kJ mol-1 of formula unit. Additionally, we performed TD-DFT calculation for free ligands to support the experimental data.
Procedure for normalization of cDNA libraries
Bonaldo, Maria DeFatima; Soares, Marcelo Bento
1997-01-01
This invention provides a method to normalize a cDNA library constructed in a vector capable of being converted to single-stranded circles and capable of producing complementary nucleic acid molecules to the single-stranded circles comprising: (a) converting the cDNA library in single-stranded circles; (b) generating complementary nucleic acid molecules to the single-stranded circles; (c) hybridizing the single-stranded circles converted in step (a) with complementary nucleic acid molecules of step (b) to produce partial duplexes to an appropriate Cot; (e) separating the unhybridized single-stranded circles from the hybridized single-stranded circles, thereby generating a normalized cDNA library.
NASA Astrophysics Data System (ADS)
Bukalov, Sergey S.; Aysin, Rinat R.; Leites, Larissa A.; Kurykin, Mikhail A.; Khrustalev, Victor N.
2015-10-01
Calculation of potential energy surface (PES) of isolated molecule of copper(II) diiminate Cu[CF3С(NH)C(F)C(NH)CF3]2 (1) resulted a double-well curve with the minima corresponding to equivalent screwed conformations. The low barrier leads to molecular non-rigidity which seems to be the reason of conformational polymorphism in crystals, reported in [1]. For one of newly found polymorphs, the X-ray structure was determined. The differences in the Raman and UV-vis spectra between differently colored species and their solutions were revealed, they are determined by different geometries of Cu(II) coordination polyhedron and different systems of intermolecular interactions in crystals. Transformations of the polymorphs under thermal, mechanical and photo exposures were studied.
Polymorphism complexity and handedness inversion in serum albumin amyloid fibrils.
Usov, Ivan; Adamcik, Jozef; Mezzenga, Raffaele
2013-12-23
Protein-based amyloid fibrils can show a great variety of polymorphic structures within the same protein precursor, although the origins of these structural homologues remain poorly understood. In this work we investigate the fibrillation of bovine serum albumin--a model globular protein--and we follow the polymorphic evolution by a statistical analysis of high-resolution atomic force microscopy images, complemented, at larger length scales, by concepts based on polymer physics formalism. We identify six distinct classes of coexisting amyloid fibrils, including flexible left-handed twisted ribbons, rigid right-handed helical ribbons and nanotubes. We show that the rigid fibrils originate from flexible fibrils through two diverse polymorphic transitions, first, via a single-fibril transformation when the flexible left-handed twisted ribbons turn into the helical left-handed ribbons, to finally evolve into nanotube-like structures, and second, via a double-fibril transformation when two flexible left-handed twisted ribbons wind together resulting in a right-handed twisted ribbon, followed by a rigid right-handed helical ribbon polymorphic conformation. Hence, the change in handedness occurs with an increase in the level of the fibril's structural organization.
Eggplant latent viroid: a friendly experimental system in the family Avsunviroidae.
Daròs, José-Antonio
2016-10-01
Eggplant latent viroid (ELVd) is the only species of the genus Elaviroid (family Avsunviroidae). All the viroids in the family Avsunviroidae contain hammerhead ribozymes in the strands of both polarities, and are considered to replicate in the chloroplasts of infected cells. This family includes two other genera: Avsunviroid and Pelamoviroid. ELVd consists of a single-stranded, circular, non-coding RNA of 332-335 nucleotides that folds in a branched quasi-rod-like minimum free-energy conformation. RNAs of complementary polarity exist in infected cells and are considered to be replication intermediates. Plus (+) polarity is assigned arbitrarily to the strand that accumulates at a higher concentration in infected tissues. HOST: To date, ELVd has only been shown to infect eggplant (Solanum melongena L.), the species in which it was discovered. A very narrow host range seems to be a common property in members of the family Avsunviroidae. ELVd infections of eggplants are apparently symptomless. ELVd is transmitted mechanically and by seed. http://subviral.med.uottawa.ca. © 2015 BSPP and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chojnowski, Grzegorz, E-mail: gchojnowski@genesilico.pl; Waleń, Tomasz; University of Warsaw, Banacha 2, 02-097 Warsaw
2015-03-01
A computer program that builds crystal structure models of nucleic acid molecules is presented. Brickworx is a computer program that builds crystal structure models of nucleic acid molecules using recurrent motifs including double-stranded helices. In a first step, the program searches for electron-density peaks that may correspond to phosphate groups; it may also take into account phosphate-group positions provided by the user. Subsequently, comparing the three-dimensional patterns of the P atoms with a database of nucleic acid fragments, it finds the matching positions of the double-stranded helical motifs (A-RNA or B-DNA) in the unit cell. If the target structure ismore » RNA, the helical fragments are further extended with recurrent RNA motifs from a fragment library that contains single-stranded segments. Finally, the matched motifs are merged and refined in real space to find the most likely conformations, including a fit of the sequence to the electron-density map. The Brickworx program is available for download and as a web server at http://iimcb.genesilico.pl/brickworx.« less
Free-energy simulations reveal molecular mechanism for functional switch of a DNA helicase
Ma, Wen; Whitley, Kevin D; Schulten, Klaus
2018-01-01
Helicases play key roles in genome maintenance, yet it remains elusive how these enzymes change conformations and how transitions between different conformational states regulate nucleic acid reshaping. Here, we developed a computational technique combining structural bioinformatics approaches and atomic-level free-energy simulations to characterize how the Escherichia coli DNA repair enzyme UvrD changes its conformation at the fork junction to switch its function from unwinding to rezipping DNA. The lowest free-energy path shows that UvrD opens the interface between two domains, allowing the bound ssDNA to escape. The simulation results predict a key metastable 'tilted' state during ssDNA strand switching. By simulating FRET distributions with fluorophores attached to UvrD, we show that the new state is supported quantitatively by single-molecule measurements. The present study deciphers key elements for the 'hyper-helicase' behavior of a mutant and provides an effective framework to characterize directly structure-function relationships in molecular machines. PMID:29664402
Free-energy simulations reveal molecular mechanism for functional switch of a DNA helicase.
Ma, Wen; Whitley, Kevin D; Chemla, Yann R; Luthey-Schulten, Zaida; Schulten, Klaus
2018-04-17
Helicases play key roles in genome maintenance, yet it remains elusive how these enzymes change conformations and how transitions between different conformational states regulate nucleic acid reshaping. Here, we developed a computational technique combining structural bioinformatics approaches and atomic-level free-energy simulations to characterize how the Escherichia coli DNA repair enzyme UvrD changes its conformation at the fork junction to switch its function from unwinding to rezipping DNA. The lowest free-energy path shows that UvrD opens the interface between two domains, allowing the bound ssDNA to escape. The simulation results predict a key metastable 'tilted' state during ssDNA strand switching. By simulating FRET distributions with fluorophores attached to UvrD, we show that the new state is supported quantitatively by single-molecule measurements. The present study deciphers key elements for the 'hyper-helicase' behavior of a mutant and provides an effective framework to characterize directly structure-function relationships in molecular machines. © 2018, Ma et al.
NASA Astrophysics Data System (ADS)
Ploetz, Evelyn; Lerner, Eitan; Husada, Florence; Roelfs, Martin; Chung, Sangyoon; Hohlbein, Johannes; Weiss, Shimon; Cordes, Thorben
2016-09-01
Advanced microscopy methods allow obtaining information on (dynamic) conformational changes in biomolecules via measuring a single molecular distance in the structure. It is, however, extremely challenging to capture the full depth of a three-dimensional biochemical state, binding-related structural changes or conformational cross-talk in multi-protein complexes using one-dimensional assays. In this paper we address this fundamental problem by extending the standard molecular ruler based on Förster resonance energy transfer (FRET) into a two-dimensional assay via its combination with protein-induced fluorescence enhancement (PIFE). We show that donor brightness (via PIFE) and energy transfer efficiency (via FRET) can simultaneously report on e.g., the conformational state of double stranded DNA (dsDNA) following its interaction with unlabelled proteins (BamHI, EcoRV, and T7 DNA polymerase gp5/trx). The PIFE-FRET assay uses established labelling protocols and single molecule fluorescence detection schemes (alternating-laser excitation, ALEX). Besides quantitative studies of PIFE and FRET ruler characteristics, we outline possible applications of ALEX-based PIFE-FRET for single-molecule studies with diffusing and immobilized molecules. Finally, we study transcription initiation and scrunching of E. coli RNA-polymerase with PIFE-FRET and provide direct evidence for the physical presence and vicinity of the polymerase that causes structural changes and scrunching of the transcriptional DNA bubble.
Ploetz, Evelyn; Lerner, Eitan; Husada, Florence; Roelfs, Martin; Chung, SangYoon; Hohlbein, Johannes; Weiss, Shimon; Cordes, Thorben
2016-01-01
Advanced microscopy methods allow obtaining information on (dynamic) conformational changes in biomolecules via measuring a single molecular distance in the structure. It is, however, extremely challenging to capture the full depth of a three-dimensional biochemical state, binding-related structural changes or conformational cross-talk in multi-protein complexes using one-dimensional assays. In this paper we address this fundamental problem by extending the standard molecular ruler based on Förster resonance energy transfer (FRET) into a two-dimensional assay via its combination with protein-induced fluorescence enhancement (PIFE). We show that donor brightness (via PIFE) and energy transfer efficiency (via FRET) can simultaneously report on e.g., the conformational state of double stranded DNA (dsDNA) following its interaction with unlabelled proteins (BamHI, EcoRV, and T7 DNA polymerase gp5/trx). The PIFE-FRET assay uses established labelling protocols and single molecule fluorescence detection schemes (alternating-laser excitation, ALEX). Besides quantitative studies of PIFE and FRET ruler characteristics, we outline possible applications of ALEX-based PIFE-FRET for single-molecule studies with diffusing and immobilized molecules. Finally, we study transcription initiation and scrunching of E. coli RNA-polymerase with PIFE-FRET and provide direct evidence for the physical presence and vicinity of the polymerase that causes structural changes and scrunching of the transcriptional DNA bubble. PMID:27641327
Procedure for normalization of cDNA libraries
Bonaldo, M.D.; Soares, M.B.
1997-12-30
This invention provides a method to normalize a cDNA library constructed in a vector capable of being converted to single-stranded circles and capable of producing complementary nucleic acid molecules to the single-stranded circles comprising: (a) converting the cDNA library in single-stranded circles; (b) generating complementary nucleic acid molecules to the single-stranded circles; (c) hybridizing the single-stranded circles converted in step (a) with complementary nucleic acid molecules of step (b) to produce partial duplexes to an appropriate Cot; (e) separating the unhybridized single-stranded circles from the hybridized single-stranded circles, thereby generating a normalized cDNA library. 1 fig.
Persistent hydrogen bonding in polymorphic crystal structures.
Galek, Peter T A; Fábián, László; Allen, Frank H
2009-02-01
The significance of hydrogen bonding and its variability in polymorphic crystal structures is explored using new automated structural analysis methods. The concept of a chemically equivalent hydrogen bond is defined, which may be identified in pairs of structures, revealing those types of bonds that may persist, or not, in moving from one polymorphic form to another. Their frequency and nature are investigated in 882 polymorphic structures from the Cambridge Structural Database. A new method to compare conformations of equivalent molecules is introduced and applied to derive distinct subsets of conformational and packing polymorphs. The roles of chemical functionality and hydrogen-bond geometry in persistent interactions are systematically explored. Detailed structural comparisons reveal a large majority of persistent hydrogen bonds that are energetically crucial to structural stability.
Shen, Li; Yin, Zhihua; Wu, Wei; Ren, Yangwu; Li, Xuelian; Zhou, Baosen
2014-01-01
Background The ataxia-telangiectasia mutated (ATM) gene plays an important role in the DNA double-strand breaks repair pathway. Single nucleotide polymorphisms (SNPs) of DNA repair genes are suspected to influence the risk of lung cancer. This study aimed to investigate the association between the ATM -111G>A (rs189037) polymorphism, environmental risk factors and the risk of lung adenocarcinoma in Chinese female non-smokers. Methods A hospital-based case-control study of 487 lung cancer patients and 516 matched cancer-free controls was conducted. Information concerning demographic and environmental risk factors was obtained for each case and control by a trained interviewer. After informed consent was obtained, 10 ml venous blood was collected from each subject for biomarker testing. Single nucleotide polymorphism was determined by using TaqMan method. Results This study showed that the individuals with ATM rs189037 AA genotype were at an increased risk for lung adenocarcinoma compared with those carrying the GA or GG genotype (adjusted odds ratios (OR) 1.44, 95% confidence interval (CI) 1.02–2.02, P = 0.039). The stratified analysis suggested that increased risk associated with ATM rs189037 AA genotype in individuals who never or seldom were exposed to cooking oil fumes (adjusted OR 1.89, 95%CI 1.03–3.49, P = 0.040). Conclusions ATM rs189037 might be associated with the risk of lung adenocarcinoma in Chinese non-smoking females. Furthermore, ATM rs189037 AA genotype might be a risk factor of lung adenocarcinoma among female non-smokers without cooking oil fume exposure. PMID:24819391
Ramirez-Garcia, Sergio Alberto; Flores-Alvarado, Luis Javier; Topete-González, Luz Rosalba; Charles-Niño, Claudia; Mazariegos-Rubi, Manuel; Dávalos-Rodríguez, Nory Omayra
2016-01-01
TJP1 gene encodes a ZO-1 protein that is required for the recruitment of occludins and claudins in tight junction, and is involved in cell polarisation. It has different variations, the frequency of which has been studied in different populations. In Mexico there are no studies of this gene. These are required because their polymorphisms can be used in studies associated with medicine and surgery. Therefore, the aim of this study was to estimate the frequency of alleles and genotypes of rs2291166 gene polymorphism TJP1 in Mexico Mestizos population, and to estimate the conformational effect of an amino acid change. A total of 473 individuals were included. The rs2291166 polymorphism was identified PASA PCR-7% PAGE, and stained with silver nitrate. The conformational effect of amino acid change was performed in silico, and was carried out with servers ProtPraram Tool and Search Database with Fasta. The most frequent allele in the two populations is the ancestral allele (T). A genotype distribution similar to other populations was found. The polymorphism is in Hardy-Weinberg, p>0.05. Changing aspartate to alanine produced a conformational change. The study reveals a high frequency of the ancestral allele at rs2291166 polymorphism in the Mexican population. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.
Muguruma, Hitoshi; Hotta, Shu
2006-11-23
The titled compound exists as two polymorphic solid phases (denoted form-I and form-II). Form-I obtained by as-synthesized material is a more stable phase. Form-II is a less stable phase. Spontaneous solid-solid transformation from form-II to form-I is observed in the temperature range between room temperature and the melting point of form-I (Tm = 156.5 degrees C), and its activation energy is estimated to be 96 kJ mol-1 by Arrhenius plot. The solid-solute-solid transformation (recrystallization from solution) from form-II to form-I is also observed. In contrast, form-II is obtained only by a solid-melt-solid transformation from form-I. Therefore, the system of two polymorphs is monotropic. The solid-state NMR measurement shows that form-I has the molecular conformation of complete S-syn-anti-syn in the oligothiophene backbone, whereas form-II has that of S-all-anti. With the solution NMR data, the polymorphism could not be observed. Therefore, the polymorphs originate from the different molecular packing involving the conformational change of the molecule. This unique property is attributed to the extra bulky terminal groups of the compounds. However, despite the extra bulky terminal groups, the mentioned polymorphism is not observed in the titled compound analogue which has S-all-anti conformation (like form-II).
Catalano, Valentina; Moreno-Sanz, Paula; Lorenzi, Silvia; Grando, Maria Stella
2016-09-21
The genetic varietal authentication of wine was investigated according to DNA isolation procedures reported for enological matrices and also by testing 11 commercial extraction kits and various protocol modifications. Samples were collected at different stages of the winemaking process of renowned Italian wines Brunello di Montalcino, Lambruschi Modenesi, and Trento DOC. Results demonstrated not only that grape DNA loss is produced by the fermentation process but also that clarification and stabilization operations contribute to the reduction of double-stranded DNA content on wine. Despite the presence of inhibitors, downstream PCR genotyping yielded reliable nuclear and chloroplast SSR markers for must samples, whereas no amplification or inconsistent results were obtained at later stages of the vinification. In addition, a TaqMan genotyping assay based on cultivar-specific single-nucleotide polymorphisms (SNPs) was designed, which allowed assessment of grapevine DNA mixtures. Once the wine matrix limitations are overcome, this sensitive tool may be implemented for the relative quantification of cultivars used for blend wines or frauds.
Amino acid sequence of the Amur tiger prion protein.
Wu, Changde; Pang, Wanyong; Zhao, Deming
2006-10-01
Prion diseases are fatal neurodegenerative disorders in human and animal associated with conformational conversion of a cellular prion protein (PrP(C)) into the pathologic isoform (PrP(Sc)). Various data indicate that the polymorphisms within the open reading frame (ORF) of PrP are associated with the susceptibility and control the species barrier in prion diseases. In the present study, partial Prnp from 25 Amur tigers (tPrnp) were cloned and screened for polymorphisms. Four single nucleotide polymorphisms (T423C, A501G, C511A, A610G) were found; the C511A and A610G nucleotide substitutions resulted in the amino acid changes Lysine171Glutamine and Alanine204Threoine, respectively. The tPrnp amino acid sequence is similar to house cat (Felis catus ) and sheep, but differs significantly from other two cat Prnp sequences that were previously deposited in GenBank.
Rajasekaran, M.; Abirami, Santhanam; Chen, Chinpan
2011-01-01
Background Arylamine N-acetyltransferase 2 (NAT2) is an important catalytic enzyme that metabolizes the carcinogenic arylamines, hydrazine drugs and chemicals. This enzyme is highly polymorphic in different human populations. Several polymorphisms of NAT2, including the single amino acid substitutions R64Q, I114T, D122N, L137F, Q145P, R197Q, and G286E, are classified as slow acetylators, whereas the wild-type NAT2 is classified as a fast acetylator. The slow acetylators are often associated with drug toxicity and efficacy as well as cancer susceptibility. The biological functions of these 7 mutations have previously been characterized, but the structural basis behind the reduced catalytic activity and reduced protein level is not clear. Methodology/Principal Findings We performed multiple molecular dynamics simulations of these mutants as well as NAT2 to investigate the structural and dynamical effects throughout the protein structure, specifically the catalytic triad, cofactor binding site, and the substrate binding pocket. None of these mutations induced unfolding; instead, their effects were confined to the inter-domain, domain 3 and 17-residue insert region, where the flexibility was significantly reduced relative to the wild-type. Structural effects of these mutations propagate through space and cause a change in catalytic triad conformation, cofactor binding site, substrate binding pocket size/shape and electrostatic potential. Conclusions/Significance Our results showed that the dynamical properties of all the mutant structures, especially in inter-domain, domain 3 and 17-residue insert region were affected in the same manner. Similarly, the electrostatic potential of all the mutants were altered and also the functionally important regions such as catalytic triad, cofactor binding site, and substrate binding pocket adopted different orientation and/or conformation relative to the wild-type that may affect the functions of the mutants. Overall, our study may provide the structural basis for reduced catalytic activity and protein level, as was experimentally observed for these polymorphisms. PMID:21980537
Smectic phase in suspensions of gapped DNA duplexes
Salamonczyk, Miroslaw; Zhang, Jing; Portale, Giuseppe; ...
2016-11-15
Smectic ordering in aqueous solutions of monodisperse stiff double-stranded DNA fragments is known not to occur, in spite of the fact that these systems exhibit both chiral nematic and columnar mesophases. Here, we show, unambiguously, that a smectic-A type of phase is formed by increasing the DNA's flexibility through the introduction of an unpaired single-stranded DNA spacer in the middle of each duplex. This is unusual for a lyotropic system, where flexibility typically destabilizes the smectic phase. We also report on simulations suggesting that the gapped duplexes (resembling chain-sticks) attain a folded conformation in the smectic layers, and argue thatmore » this layer structure, which we designate as smectic-fA phase, is thermodynamically stabilized by both entropic and energetic contributions to the system's free energy. These results demonstrate that DNA as a building block offers an exquisitely tunable means to engineer a potentially rich assortment of lyotropic liquid crystals.« less
Janska, Agnieszka; Goswami, Panchali; Renault, Ludovic; Abid Ali, Ferdos; Kotecha, Abhay; Costa, Alessandro
2017-01-01
The replisome unwinds and synthesizes DNA for genome duplication. In eukaryotes, the Cdc45–MCM–GINS (CMG) helicase and the leading-strand polymerase, Pol epsilon, form a stable assembly. The mechanism for coupling DNA unwinding with synthesis is starting to be elucidated, however the architecture and dynamics of the replication fork remain only partially understood, preventing a molecular understanding of chromosome replication. To address this issue, we conducted a systematic single-particle EM study on multiple permutations of the reconstituted CMG–Pol epsilon assembly. Pol epsilon contains two flexibly tethered lobes. The noncatalytic lobe is anchored to the motor of the helicase, whereas the polymerization domain extends toward the side of the helicase. We observe two alternate configurations of the DNA synthesis domain in the CMG-bound Pol epsilon. We propose that this conformational switch might control DNA template engagement and release, modulating replisome progression. PMID:28373564
Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components
NASA Astrophysics Data System (ADS)
Gerling, Thomas; Wagenbauer, Klaus F.; Neuner, Andrea M.; Dietz, Hendrik
2015-03-01
We demonstrate that discrete three-dimensional (3D) DNA components can specifically self-assemble in solution on the basis of shape-complementarity and without base pairing. Using this principle, we produced homo- and heteromultimeric objects, including micrometer-scale one- and two-stranded filaments and lattices, as well as reconfigurable devices, including an actuator, a switchable gear, an unfoldable nanobook, and a nanorobot. These multidomain assemblies were stabilized via short-ranged nucleobase stacking bonds that compete against electrostatic repulsion between the components’ interfaces. Using imaging by electron microscopy, ensemble and single-molecule fluorescence resonance energy transfer spectroscopy, and electrophoretic mobility analysis, we show that the balance between attractive and repulsive interactions, and thus the conformation of the assemblies, may be finely controlled by global parameters such as cation concentration or temperature and by an allosteric mechanism based on strand-displacement reactions.
DNA damage mediated transcription arrest: Step back to go forward.
Mullenders, Leon
2015-12-01
The disturbance of DNA helix conformation by bulky DNA damage poses hindrance to transcription elongating due to stalling of RNA polymerase at transcription blocking lesions. Stalling of RNA polymerase provokes the formation of R-loops, i.e. the formation of a DNA-RNA hybrid and a displaced single stranded DNA strand as well as displacement of spliceosomes. R-loops are processed into DNA single and double strand breaks by NER factors depending on TC-NER factors leading to genome instability. Moreover, stalling of RNA polymerase induces a strong signal for cell cycle arrest and apoptosis. These toxic and mutagenic effects are counteracted by a rapid recruitment of DNA repair proteins to perform transcription coupled nucleotide excision repair (TC-NER) to remove the blocking DNA lesions and to restore transcription. Recent studies have highlighted the role of backtracking of RNA polymerase to facilitate TC-NER and identified novel factors that play key roles in TC-NER and in restoration of transcription. On the molecular level these factors facilitate stability of the repair complex by promotion and regulation of various post-translational modifications of NER factors and chromatin substrate. In addition, the continuous flow of new factors that emerge from screening assays hints to several regulatory levels to safeguard the integrity of transcription elongation after disturbance by DNA damage that have yet to be explored. Copyright © 2015 Elsevier B.V. All rights reserved.
Giessner-Prettre, C; Ribas Prado, F; Pullman, B; Kan, L; Kast, J R; Ts'o, P O
1981-01-01
A FORTRAN computer program called SHIFTS is described. Through SHIFTS, one can calculate the NMR chemical shifts of the proton resonances of single and double-stranded nucleic acids of known sequences and of predetermined conformations. The program can handle RNA and DNA for an arbitrary sequence of a set of 4 out of the 6 base types A,U,G,C,I and T. Data files for the geometrical parameters are available for A-, A'-, B-, D- and S-conformations. The positions of all the atoms are calculated using a modified version of the SEQ program [1]. Then, based on this defined geometry three chemical shift effects exerted by the atoms of the neighboring nucleotides on the protons of each monomeric unit are calculated separately: the ring current shielding effect: the local atomic magnetic susceptibility effect (including both diamagnetic and paramagnetic terms); and the polarization or electric field effect. Results of the program are compared with experimental results for a gamma (ApApGpCpUpU) 2 helical duplex and with calculated results on this same helix based on model building of A'-form and B-form and on graphical procedure for evaluating the ring current effects.
Nature vs. nurture in human sociality: multi-level genomic analyses of social conformity.
Chen, Biqing; Zhu, Zijian; Wang, Yingying; Ding, Xiaohu; Guo, Xiaobo; He, Mingguang; Fang, Wan; Zhou, Qin; Zhou, Shanbi; Lei, Han; Huang, Ailong; Chen, Tingmei; Ni, Dongsheng; Gu, Yuping; Liu, Jianing; Rao, Yi
2018-05-01
Social conformity is fundamental to human societies and has been studied for more than six decades, but our understanding of its mechanisms remains limited. Individual differences in conformity have been attributed to social and cultural environmental influences, but not to genes. Here we demonstrate a genetic contribution to conformity after analyzing 1,140 twins and single-nucleotide polymorphism (SNP)-based studies of 2,130 young adults. A two-step genome-wide association study (GWAS) revealed replicable associations in 9 genomic loci, and a meta-analysis of three GWAS with a sample size of ~2,600 further confirmed one locus, corresponding to the NAV3 (Neuron Navigator 3) gene which encodes a protein important for axon outgrowth and guidance. Further multi-level (haplotype, gene, pathway) GWAS strongly associated genes including NAV3, PTPRD (protein tyrosine phosphatase receptor type D), ARL10 (ADP ribosylation factor-like GTPase 10), and CTNND2 (catenin delta 2), with conformity. Magnetic resonance imaging of 64 subjects shows correlation of activation or structural features of brain regions with the SNPs of these genes, supporting their functional significance. Our results suggest potential moderate genetic influence on conformity, implicate several specific genetic elements in conformity and will facilitate further research on cellular and molecular mechanisms underlying human conformity.
Akbari, Fahimeh; Foroutan, Masumeh
2018-02-14
In this study, the water droplet behaviour of four different types of single-strand DNA with homogeneous base sequence on a graphene substrate during evaporation of the droplet was investigated using molecular dynamics (MD) simulation. The simulation results indicated that the evaporation depended on the DNA sequence. The observed changes can be divided into four parts: (i) vaporization mode, (ii) evaporation flux, (iii) mechanism of single-strand placement on the surface, and (iv) consideration of remaining single strands after evaporation. Our simulation observations indicated different evaporation modes for thymine biodroplets as compared to those for other biodroplets. The evaporation of the thymine biodroplets occurred with an increase in the contact angle, while that of the other biodroplets occur in a constant contact angle mode. Moreover, thymine biodroplets generate the lowest contact line compared to other single strands, and it is always placed far away from the centre of the droplets during evaporation. Investigating variations in the evaporation flux shows that thymine has the highest evaporation flux and guanine has the lowest. Moreover, during initial evaporation, the flux of evaporation increases at the triple point of the biodroplets containing thymine single strands, while it decreases in the other biodroplets. The following observation was obtained from the study of the placement of single strands on the substrate: guanine and thymine interacted slower than other single strands during evaporation with graphene, adenine single strand had a higher folding during evaporation, and guanine single strand showed the lowest end-to-end distance. The investigation of single-strand DNA after evaporation shows that adenine produces the most stable structure at the end of evaporation. In addition, cytosine is the most stretched single-strand DNA due to its lack of internal π-π stacking and hydrogen bonding. Therefore, cytosine single strand is more accessible for use in microarrays to detect target single strands.
Assenberg, René; Mastrangelo, Eloise; Walter, Thomas S; Verma, Anil; Milani, Mario; Owens, Raymond J; Stuart, David I; Grimes, Jonathan M; Mancini, Erika J
2009-12-01
The flavivirus genome comprises a single strand of positive-sense RNA, which is translated into a polyprotein and cleaved by a combination of viral and host proteases to yield functional proteins. One of these, nonstructural protein 3 (NS3), is an enzyme with both serine protease and NTPase/helicase activities. NS3 plays a central role in the flavivirus life cycle: the NS3 N-terminal serine protease together with its essential cofactor NS2B is involved in the processing of the polyprotein, whereas the NS3 C-terminal NTPase/helicase is responsible for ATP-dependent RNA strand separation during replication. An unresolved question remains regarding why NS3 appears to encode two apparently disconnected functionalities within one protein. Here we report the 2.75-A-resolution crystal structure of full-length Murray Valley encephalitis virus NS3 fused with the protease activation peptide of NS2B. The biochemical characterization of this construct suggests that the protease has little influence on the helicase activity and vice versa. This finding is in agreement with the structural data, revealing a single protein with two essentially segregated globular domains. Comparison of the structure with that of dengue virus type 4 NS2B-NS3 reveals a relative orientation of the two domains that is radically different between the two structures. Our analysis suggests that the relative domain-domain orientation in NS3 is highly variable and dictated by a flexible interdomain linker. The possible implications of this conformational flexibility for the function of NS3 are discussed.
Molecular Mechanism of Scanning and Start Codon Selection in Eukaryotes
Hinnebusch, Alan G.
2011-01-01
Summary: The correct translation of mRNA depends critically on the ability to initiate at the right AUG codon. For most mRNAs in eukaryotic cells, this is accomplished by the scanning mechanism, wherein the small (40S) ribosomal subunit attaches to the 5′ end of the mRNA and then inspects the leader base by base for an AUG in a suitable context, using complementarity with the anticodon of methionyl initiator tRNA (Met-tRNAiMet) as the key means of identifying AUG. Over the past decade, a combination of yeast genetics, biochemical analysis in reconstituted systems, and structural biology has enabled great progress in deciphering the mechanism of ribosomal scanning. A robust molecular model now exists, describing the roles of initiation factors, notably eukaryotic initiation factor 1 (eIF1) and eIF1A, in stabilizing an “open” conformation of the 40S subunit with Met-tRNAiMet bound in a low-affinity state conducive to scanning and in triggering rearrangement into a “closed” conformation incompatible with scanning, which features Met-tRNAiMet more tightly bound to the “P” site and base paired with AUG. It has also emerged that multiple DEAD-box RNA helicases participate in producing a single-stranded “landing pad” for the 40S subunit and in removing the secondary structure to enable the mRNA to traverse the 40S mRNA-binding channel in the single-stranded form for base-by-base inspection in the P site. PMID:21885680
Electron Microscopic Visualization of Protein Assemblies on Flattened DNA Origami.
Mallik, Leena; Dhakal, Soma; Nichols, Joseph; Mahoney, Jacob; Dosey, Anne M; Jiang, Shuoxing; Sunahara, Roger K; Skiniotis, Georgios; Walter, Nils G
2015-07-28
DNA provides an ideal substrate for the engineering of versatile nanostructures due to its reliable Watson-Crick base pairing and well-characterized conformation. One of the most promising applications of DNA nanostructures arises from the site-directed spatial arrangement with nanometer precision of guest components such as proteins, metal nanoparticles, and small molecules. Two-dimensional DNA origami architectures, in particular, offer a simple design, high yield of assembly, and large surface area for use as a nanoplatform. However, such single-layer DNA origami were recently found to be structurally polymorphous due to their high flexibility, leading to the development of conformationally restrained multilayered origami that lack some of the advantages of the single-layer designs. Here we monitored single-layer DNA origami by transmission electron microscopy (EM) and discovered that their conformational heterogeneity is dramatically reduced in the presence of a low concentration of dimethyl sulfoxide, allowing for an efficient flattening onto the carbon support of an EM grid. We further demonstrated that streptavidin and a biotinylated target protein (cocaine esterase, CocE) can be captured at predesignated sites on these flattened origami while maintaining their functional integrity. Our demonstration that protein assemblies can be constructed with high spatial precision (within ∼2 nm of their predicted position on the platforms) by using strategically flattened single-layer origami paves the way for exploiting well-defined guest molecule assemblies for biochemistry and nanotechnology applications.
Dykeman, Eric C; Stockley, Peter G; Twarock, Reidun
2013-09-09
The current paradigm for assembly of single-stranded RNA viruses is based on a mechanism involving non-sequence-specific packaging of genomic RNA driven by electrostatic interactions. Recent experiments, however, provide compelling evidence for sequence specificity in this process both in vitro and in vivo. The existence of multiple RNA packaging signals (PSs) within viral genomes has been proposed, which facilitates assembly by binding coat proteins in such a way that they promote the protein-protein contacts needed to build the capsid. The binding energy from these interactions enables the confinement or compaction of the genomic RNAs. Identifying the nature of such PSs is crucial for a full understanding of assembly, which is an as yet untapped potential drug target for this important class of pathogens. Here, for two related bacterial viruses, we determine the sequences and locations of their PSs using Hamiltonian paths, a concept from graph theory, in combination with bioinformatics and structural studies. Their PSs have a common secondary structure motif but distinct consensus sequences and positions within the respective genomes. Despite these differences, the distributions of PSs in both viruses imply defined conformations for the packaged RNA genomes in contact with the protein shell in the capsid, consistent with a recent asymmetric structure determination of the MS2 virion. The PS distributions identified moreover imply a preferred, evolutionarily conserved assembly pathway with respect to the RNA sequence with potentially profound implications for other single-stranded RNA viruses known to have RNA PSs, including many animal and human pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.
Genetics and Genomics of Longitudinal Lung Function Patterns in Individuals with Asthma
Yates, Katherine P.; Zhou, Xiaobo; Guo, Feng; Sternberg, Alice L.; Van Natta, Mark L.; Wise, Robert A.; Szefler, Stanley J.; Sharma, Sunita; Kho, Alvin T.; Cho, Michael H.; Croteau-Chonka, Damien C.; Castaldi, Peter J.; Jain, Gaurav; Sanyal, Amartya; Zhan, Ye; Lajoie, Bryan R.; Dekker, Job; Stamatoyannopoulos, John; Covar, Ronina A.; Zeiger, Robert S.; Adkinson, N. Franklin; Williams, Paul V.; Kelly, H. William; Grasemann, Hartmut; Vonk, Judith M.; Koppelman, Gerard H.; Postma, Dirkje S.; Raby, Benjamin A.; Houston, Isaac; Lu, Quan; Fuhlbrigge, Anne L.; Tantisira, Kelan G.; Silverman, Edwin K.; Tonascia, James; Strunk, Robert C.; Weiss, Scott T.
2016-01-01
Rationale: Patterns of longitudinal lung function growth and decline in childhood asthma have been shown to be important in determining risk for future respiratory ailments including chronic airway obstruction and chronic obstructive pulmonary disease. Objectives: To determine the genetic underpinnings of lung function patterns in subjects with childhood asthma. Methods: We performed a genome-wide association study of 581 non-Hispanic white individuals with asthma that were previously classified by patterns of lung function growth and decline (normal growth, normal growth with early decline, reduced growth, and reduced growth with early decline). The strongest association was also measured in two additional cohorts: a small asthma cohort and a large chronic obstructive pulmonary disease metaanalysis cohort. Interaction between the genomic region encompassing the most strongly associated single-nucleotide polymorphism and nearby genes was assessed by two chromosome conformation capture assays. Measurements and Main Results: An intergenic single-nucleotide polymorphism (rs4445257) on chromosome 8 was strongly associated with the normal growth with early decline pattern compared with all other pattern groups (P = 6.7 × 10−9; odds ratio, 2.8; 95% confidence interval, 2.0–4.0); replication analysis suggested this variant had opposite effects in normal growth with early decline and reduced growth with early decline pattern groups. Chromosome conformation capture experiments indicated a chromatin interaction between rs4445257 and the promoter of the distal CSMD3 gene. Conclusions: Early decline in lung function after normal growth is associated with a genetic polymorphism that may also protect against early decline in reduced growth groups. Clinical trial registered with www.clinicaltrials.gov (NCT00000575). PMID:27367781
Mao, Huihui; Luo, Guanghua; Zhan, Yuxia; Zhang, Jun; Yao, Shuang; Yu, Yang
2018-04-30
The base-quenched probe method for detecting single nucleotide polymorphisms (SNPs) relies on real-time PCR and melting-curve analysis, which might require only one pair of primers and one probe. At present, it has been successfully applied to detect SNPs of multiple genes. However, the mechanism of the base-quenched probe method remains unclear. Therefore, we investigated the possible mechanism of fluorescence quenching by DNA bases in aqueous solution using spectroscopic techniques. It showed that the possible mechanism might be photo-induced electron transfer. We next analyzed electron transfer or transmission between DNA bases and fluorophores. The data suggested that in single-stranded DNA, the electrons of the fluorophore are transferred to the orbital of pyrimidine bases (thymine (T) and cytosine (C)), or that the electron orbitals of the fluorophore are occupied by electrons from purine bases (guanine (G) and adenine (A)), which lead to fluorescence quenching. In addition, the electrons of a fluorophore excited by light can be transmitted along double-stranded DNA, which gives rise to stronger fluorescence quenching. Furthermore, we demonstrated that the quenching efficiency of bases is in the order of G > C ≥ A ≥ T and the capability of electron transmission of base-pairs in double-stranded DNA is in the order of CG[combining low line] ≥ GC[combining low line] > TA[combining low line] ≥ AT[combining low line] (letters representing bases on the complementary strand of the probe are bold and underlined), and the most common commercial fluorophores including FAM, HEX, TET, JOE, and TAMRA could be influenced by bases and are in line with this mechanism and regularity.
Method for producing labeled single-stranded nucleic acid probes
Dunn, John J.; Quesada, Mark A.; Randesi, Matthew
1999-10-19
Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.