Science.gov

Sample records for singly ionized rare

  1. Classification of Large Cellular Populations and Discovery of Rare Cells Using Single Cell Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry.

    PubMed

    Ong, Ta-Hsuan; Kissick, David J; Jansson, Erik T; Comi, Troy J; Romanova, Elena V; Rubakhin, Stanislav S; Sweedler, Jonathan V

    2015-07-21

    Cell-to-cell variability and functional heterogeneity are integral features of multicellular organisms. Chemical classification of cells into cell type is important for understanding cellular specialization as well as organismal function and organization. Assays to elucidate these chemical variations are best performed with single cell samples because tissue homogenates average the biochemical composition of many different cells and oftentimes include extracellular components. Several single cell microanalysis techniques have been developed but tend to be low throughput or require preselection of molecular probes that limit the information obtained. Mass spectrometry (MS) is an untargeted, multiplexed, and sensitive analytical method that is well-suited for studying chemically complex individual cells that have low analyte content. In this work, populations of cells from the rat pituitary, the rat pancreatic islets of Langerhans, and from the Aplysia californica nervous system, are classified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI) MS by their peptide content. Cells were dispersed onto a microscope slide to generate a sample where hundreds to thousands of cells were separately located. Optical imaging was used to determine the cell coordinates on the slide, and these locations were used to automate the MS measurements to targeted cells. Principal component analysis was used to classify cellular subpopulations. The method was modified to focus on the signals described by the lower principal components to explore rare cells having a unique peptide content. This approach efficiently uncovers and classifies cellular subtypes as well as discovers rare cells from large cellular populations.

  2. Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source.

    PubMed

    Mühlberger, F; Saraji-Bozorgzad, M; Gonin, M; Fuhrer, K; Zimmermann, R

    2007-11-01

    Orthogonal acceleration time-of-flight mass spectrometers (oaTOFMS), which are exhibiting a pulsed orthogonal extraction of ion bunches into the TOF mass analyzer from a continuous primary ion beam, are well-suited for continuous ionization methods such as electron impact ionization (EI). Recently an electron beam pumped rare gas excimer lamp (EBEL) was introduced, which emits intensive vacuum UV (VUV) radiation at, e.g., 126 nm (argon excimer) and is well suited as the light source for soft single photon ionization (SPI) of organic molecules. In this paper, a new compact oaTOFMS system which allows switching between SPI, using VUV-light from an EBEL-light source, and conventional EI is described. With the oaTOFMS system, EBEL-SPI and EI mass spectral transients can be recorded at very high repetition rates (up to 100 kHz), enabling high duty cycles and therefore good detection efficiencies. By using a transient recorder card with the capability to perform on-board accumulation of the oaTOF transients, final mass spectra with a dynamic range of 106 can be saved to the hard disk at a rate of 10 Hz. As it is possible to change the ionization modes (EI and SPI) rapidly, a comprehensive monitoring of complex gases with highly dynamic compositions, such as cigarette smoke, is possible. In this context, the EI based mass spectra address the bulk composition (compounds such as water, oxygen, carbon dioxide, etc. in the up to percentage concentration range) as well as some inorganic trace gases such as argon, sulfur dioxide, etc. down to the low ppm level. The EBEL-SPI mass spectra on the other hand are revealing the organic composition down to the lower ppb concentration range.

  3. Single ionization of molecular iodine

    NASA Astrophysics Data System (ADS)

    Smith, Dale L.; Tagliamonti, Vincent; Dragan, James; Gibson, George N.

    2017-01-01

    We performed a study of the single ionization of iodine, I2 over a range of wavelengths. Single ionization of I2 is unexpectedly found to have a contribution from inner molecular orbitals involving the 5 s electrons. The I+I+ dissociation channel was recorded through velocity map imaging, and the kinetic-energy release of each channel was determined with two-dimensional fitting of the images. Most of the measured kinetic-energy data were inconsistent with ionization to the X , A , and B states of I2 + , implying ionization from deeper orbitals. A pump-probe Fourier transform technique was used to look for modulation at the X - and A -state vibrational frequencies to see if they were intermediate states in a two-step process. X - and A -state modulation was seen only for kinetic-energy releases below 0.2 eV, consistent with dissociation through the B state. From these results and intensity-, polarization-, and wavelength-dependent experiments we found no evidence of bond softening, electron rescattering, or photon mediation through the X or A states to higher-energy single-ionization channels.

  4. Electron Impact Ionization of the Rare Gases

    NASA Astrophysics Data System (ADS)

    Lohmann, Birgit

    2008-10-01

    Detailed information about the electron impact ionization process can be obtained from fully differential cross section measurements, in which the ionized electron is detected in coincidence with the outgoing scattered projectile electron. Incident and outgoing electron momenta are completely determined in these measurements. A considerable body of experimental and theoretical data exists for H and He targets, and the level of agreement between theory and experiment for these simple atoms is exceptional. However, there are still significant discrepancies between theory and experiment in the case of ionization of more complex atomic targets such as the heavier rare gas atoms. In this talk I will present recent measurements and theoretical predictions of fully differential cross sections for ionization of a range of rare gas targets: He, Ne, Ar and Xe. The talk will concentrate primarily on experiments which have been performed by two experimental groups, our group in Australia [1-3] and that of Lahmam-Bennani [3-5] in France. The experimental conditions span two different kinematic regimes, one with intermediate incident electron energy and low ejected electron energy, and the other with higher incident electron energy, and ejected electron energies which correspond to large energy transfer in the collision process. All experiments have been performed in a coplanar asymmetric configuration in which the scattered electron is detected at a small forward scattering angle. The experimental apparatus used in Australia is of quite different design to that in France, and I will present the results of an experiment in which the two groups have collaborated to produce data under identical kinematic conditions and for the same targets, using these two very different experimental approaches. This comprehensive set of experimental data has provided an interesting challenge to theory, and I will discuss the state of play with regard to the alignment between curent state

  5. Attogram measurement of rare isotopes by CW resonance ionization mass spectrometry

    SciTech Connect

    Bushaw, B.A.

    1992-05-01

    Three-color double-resonance ionization mass spectrometry, using two single-frequency cw dye lasers and a cw carbon dioxide laser, has been applied to the detection of attogram quantities of rare radionuclides. {sup 210}Pb has been measured in human hair and brain tissue samples to assess indoor radon exposure. Measurements on {sup 90}Sr have shown overall isotopic selectivity of greater than 10{sup 9} despite unfavorable isotope shifts relative to the major stable isotope, {sup 88}Sr.

  6. Attogram measurement of rare isotopes by CW resonance ionization mass spectrometry

    SciTech Connect

    Bushaw, B.A.

    1992-05-01

    Three-color double-resonance ionization mass spectrometry, using two single-frequency cw dye lasers and a cw carbon dioxide laser, has been applied to the detection of attogram quantities of rare radionuclides. {sup 210}Pb has been measured in human hair and brain tissue samples to assess indoor radon exposure. Measurements on {sup 90}Sr have shown overall isotopic selectivity of greater than 10{sup 9} despite unfavorable isotope shifts relative to the major stable isotope, {sup 88}Sr.

  7. Single Photon Thermal Ionization of C60

    NASA Astrophysics Data System (ADS)

    Hansen, Klavs; Richter, Robert; Alagia, Michele; Stranges, Stefano; Schio, Luca; Salén, Peter; Yatsyna, Vasyl; Feifel, Raimund; Zhaunerchyk, Vitali

    2017-03-01

    We report on experiments which show that C60 can ionize in an indirect, quasithermal boiloff process after absorption of a single photon. The process involves a large number of incoherently excited valence electrons and yields electron spectra with a Boltzmann distribution with temperatures exceeding 104 K . It is expected to be present for other molecules and clusters with a comparatively large number of valence electrons. The astrophysical consequences are briefly discussed.

  8. Photo-ionization rate coefficients for the rare gases

    NASA Astrophysics Data System (ADS)

    Pang, Xuexia

    2005-01-01

    By introducing the converting method from electron-impact ionization cross sections to rate coefficients through using a semi-experiential formula, we try to probe a semi-experiential formula for converting the photo-ionization cross sections into photo-ionization rate coefficient. It"s found that photo-ionization rate coefficient is direct proportion to photo-ionization cross sections, the rate S is related with light resource.

  9. Cross sections for short pulse single and double ionization ofhelium

    SciTech Connect

    Palacios, Alicia; Rescigno, Thomas N.; McCurdy, C. William

    2007-11-27

    In a previous publication, procedures were proposed for unambiguously extracting amplitudes for single and double ionization from a time-dependent wavepacket by effectively propagating for an infinite time following a radiation pulse. Here we demonstrate the accuracy and utility of those methods for describing two-photon single and one-photon double ionization of helium. In particular it is shown how narrow features corresponding to autoionizing states are easily resolved with these methods.

  10. The photodouble ionization of the ns shell of rare gases

    NASA Astrophysics Data System (ADS)

    Argenti, L.; Bolognesi, P.; Colle, R.; Feyer, V.; Avaldi, L.

    2009-11-01

    The triple differential cross sections, TDCS, for the photodouble ionization of He, Ne, Ar and Xe leading to the He2+ (1s0 1Se), Ne2+(2s02p6 1Se), Ar2+(3s03p6 1Se)and Xe2+(5s05p6 1Se) states have been measured at about 20 eV above their respective thresholds with the two photoelectrons equally sharing the excess energy. The experimental data are analysed using a novel parametrization recently proposed. A satisfactory representation of the shape of the measured TDCS and their dependence on the increasing correlation with the principal quantum number of the ionised orbital is achieved.

  11. A Miniaturized Linear Wire Ion Trap with Electron Ionization and Single Photon Ionization Sources

    NASA Astrophysics Data System (ADS)

    Wu, Qinghao; Tian, Yuan; Li, Ailin; Andrews, Derek; Hawkins, Aaron R.; Austin, Daniel E.

    2017-05-01

    A linear wire ion trap (LWIT) with both electron ionization (EI) and single photon ionization (SPI) sources was built. The SPI was provided by a vacuum ultraviolet (VUV) lamp with the ability to softly ionize organic compounds. The VUV lamp was driven by a pulse amplifier, which was controlled by a pulse generator, to avoid the detection of photons during ion detection. Sample gas was introduced through a leak valve, and the pressure in the system is shown to affect the signal-to-noise ratio and resolving power. Under optimized conditions, the limit of detection (LOD) for benzene was 80 ppbv using SPI, better than the LOD using EI (137 ppbv). System performance was demonstrated by distinguishing compounds in different classes from gasoline.

  12. A Miniaturized Linear Wire Ion Trap with Electron Ionization and Single Photon Ionization Sources

    NASA Astrophysics Data System (ADS)

    Wu, Qinghao; Tian, Yuan; Li, Ailin; Andrews, Derek; Hawkins, Aaron R.; Austin, Daniel E.

    2017-01-01

    A linear wire ion trap (LWIT) with both electron ionization (EI) and single photon ionization (SPI) sources was built. The SPI was provided by a vacuum ultraviolet (VUV) lamp with the ability to softly ionize organic compounds. The VUV lamp was driven by a pulse amplifier, which was controlled by a pulse generator, to avoid the detection of photons during ion detection. Sample gas was introduced through a leak valve, and the pressure in the system is shown to affect the signal-to-noise ratio and resolving power. Under optimized conditions, the limit of detection (LOD) for benzene was 80 ppbv using SPI, better than the LOD using EI (137 ppbv). System performance was demonstrated by distinguishing compounds in different classes from gasoline.

  13. Development of a Portable Single Photon Ionization-Photoelectron Ionization Time-of-Flight Mass Spectrometer

    PubMed Central

    Huang, Yunguang; Li, Jinxu; Tang, Bin; Zhu, Liping; Hou, Keyong; Li, Haiyang

    2015-01-01

    A vacuum ultraviolet lamp based single photon ionization- (SPI-) photoelectron ionization (PEI) portable reflecting time-of-flight mass spectrometer (TOFMS) was designed for online monitoring gas samples. It has a dual mode ionization source: SPI for analyte with ionization energy (IE) below 10.6 eV and PEI for IE higher than 10.6 eV. Two kinds of sampling inlets, a capillary inlet and a membrane inlet, are utilized for high concentration and trace volatile organic compounds, respectively. A mass resolution of 1100 at m/z 64 has been obtained with a total size of 40 × 31 × 29 cm, the weight is 27 kg, and the power consumption is only 70 W. A mixture of benzene, toluene, and xylene (BTX), SO2, and discharging products of SF6 were used to test its performance, and the result showed that the limit of quantitation for BTX is as low as 5 ppbv (S/N = 10 : 1) with linear dynamic ranges greater than four orders of magnitude. The portable TOFMS was also evaluated by analyzing volatile organic compounds from wine and decomposition products of SF6 inside of a gas-insulated switchgear. PMID:26587023

  14. An atomic model for neutral and singly ionized uranium

    NASA Technical Reports Server (NTRS)

    Maceda, E. L.; Miley, G. H.

    1979-01-01

    A model for the atomic levels above ground state in neutral, U(0), and singly ionized, U(+), uranium is described based on identified atomic transitions. Some 168 states in U(0) and 95 in U(+) are found. A total of 1581 atomic transitions are used to complete this process. Also discussed are the atomic inverse lifetimes and line widths for the radiative transitions as well as the electron collisional cross sections.

  15. An atomic model for neutral and singly ionized uranium

    NASA Technical Reports Server (NTRS)

    Maceda, E. L.; Miley, G. H.

    1979-01-01

    A model for the atomic levels above ground state in neutral, U(0), and singly ionized, U(+), uranium is described based on identified atomic transitions. Some 168 states in U(0) and 95 in U(+) are found. A total of 1581 atomic transitions are used to complete this process. Also discussed are the atomic inverse lifetimes and line widths for the radiative transitions as well as the electron collisional cross sections.

  16. The ionization rate inversion of H? induced by the single and double UV photon(s)

    NASA Astrophysics Data System (ADS)

    He, Pei-Lun; He, Feng

    2013-11-01

    The ionization of H? in the strong UV laser pulse is studied by numerically solving the time-dependent Schrödinger equation. In analogy to Young's double-slit interference, the ionized electron originating from two nuclei will constructively, or destructively interfere, depending on the UV frequencies. The fluctuation of the ionization rate as a function of the laser frequency is observed. The destructive interference suppresses the single-photon ionization rate, so that the double-photon ionization rate can be larger than the single-photon ionization rate. When such an ionization-rate inversion happens, the electron momentum spectra splits into several peaks.

  17. Detection of single atoms by resonance ionization spectroscopy

    SciTech Connect

    Hurst, G.S.

    1986-01-01

    Rutherford's idea for counting individual atoms can, in principle, be implemented for nearly any type of atom, whether stable or radioactive, by using methods of resonance ionization. With the RIS technique, a laser is tuned to a wavelength which will promote a valence electron in a Z-selected atom to an excited level. Additional resonance or nonresonance photoabsorption steps are used to achieve nearly 100% ionization efficiencies. Hence, the RIS process can be saturated for the Z-selected atoms; and since detectors are available for counting either single electrons or positive ions, one-atom detection is possible. Some examples are given of one-atom detection, including that of the noble gases, in order to show complementarity with AMS methods. For instance, the detection of /sup 81/Kr using RIS has interesting applications for solar neutrino research, ice-cap dating, and groundwater dating. 39 refs., 7 figs., 2 tabs.

  18. Electron impact ionization of liquid and gaseous water: a single-center partial-wave approach.

    PubMed

    Champion, C

    2010-01-07

    In this work, we report a unified methodology to express the molecular wavefunctions of water in both vapor and liquid phases by means of a single-center approach. These latter are then used as input data in a theoretical treatment--previously published and successfully tested--for describing the water ionization process in the first Born approximation (Champion et al 2006 Phys. Rev. A 73 012717). The multi-differential and total cross sections also obtained are reported for the two thermodynamical phases investigated and compared to the rare existing experimental and theoretical data.

  19. Multiple ionization of rare gas atoms irradiated with intense VUV radiation.

    PubMed

    Wabnitz, H; de Castro, A R B; Gürtler, P; Laarmann, T; Laasch, W; Schulz, J; Möller, T

    2005-01-21

    The interaction of intense vacuum-ultraviolet radiation from a free-electron laser with rare gas atoms is investigated. The ionization products of xenon and argon atomic beams are analyzed with time-of-flight mass spectroscopy. At 98 nm wavelength and approximately 10(13) W/cm(2) multiple charged ions up to Xe6+ (Ar4+) are detected. From the intensity dependence of multiple charged ion yields the mechanisms of multiphoton processes were derived. In the range of approximately 10(12)-10(13) W/cm(2) the ionization is attributed to sequential multiphoton processes. The production of multiple charged ions saturates at 5-30 times lower power densities than at 193 and 564 nm wavelength, respectively.

  20. Single ionization of helium by 730-eV electrons

    SciTech Connect

    Stevenson, M. A.; Lohmann, B.; Bray, I.; Fursa, D. V.; Stelbovics, A. T.

    2007-03-15

    We present fully differential measurements of 730-eV electron-impact single ionization of the ground state of helium with 205- or 100-eV outgoing electrons. Internormalized data are obtained for coplanar geometries with the fast electron detected at {theta}{sub A}=6 degree sign , 9 degree sign , and 12 degree sign . The data are compared, where possible, with the corresponding data of Catoire et al. [J. Phys. B 39, 2827 (2006)] and the convergent close-coupling theory. An improved agreement is found between the present measurements and the theory.

  1. The level structure of singly-ionized actinium

    NASA Astrophysics Data System (ADS)

    Ürer, Güldem; Özdemir, Leyla

    2012-08-01

    We have presented a multiconfiguration Dirac-Fock (MCDF) study in the framework of Breit and quantum electrodynamic (QED) effects on the low-lying level structure of singly-ionized actinium (Ac II). The computations have been carried out for 16 even- and 40 odd-parity levels. Excitation energies and electric dipole transition parameters, such as wavelengths, oscillator strengths and transition probabilities (or rates), for these low-lying levels have been reported. Results obtained have been compared with other available works in the literature.

  2. A COMPARISON OF FAR INFRARED AND RAMAN SPECTRA OF SOME RARE EARTH GARNET SINGLE CRYSTALS,

    DTIC Science & Technology

    RARE EARTH COMPOUNDS, *INFRARED SPECTRA), (*GARNET, RARE EARTH COMPOUNDS), (* RAMAN SPECTROSCOPY, RARE EARTH COMPOUNDS), SINGLE CRYSTALS, ALUMINATES...PHONONS, YTTRIUM COMPOUNDS, YTTERBIUM COMPOUNDS, TERBIUM COMPOUNDS, DYSPROSIUM COMPOUNDS, CANADA

  3. Depolarizing collisions with hydrogen: Neutral and singly ionized alkaline earths

    SciTech Connect

    Manso Sainz, Rafael; Ramos, Andrés Asensio; Bueno, Javier Trujillo; Aguado, Alfredo

    2014-06-20

    Depolarizing collisions are elastic or quasielastic collisions that equalize the populations and destroy the coherence between the magnetic sublevels of atomic levels. In astrophysical plasmas, the main depolarizing collider is neutral hydrogen. We consider depolarizing rates on the lowest levels of neutral and singly ionized alkali earths Mg I, Sr I, Ba I, Mg II, Ca II, and Ba II, due to collisions with H°. We compute ab initio potential curves of the atom-H° system and solve the quantum mechanical dynamics. From the scattering amplitudes, we calculate the depolarizing rates for Maxwellian distributions of colliders at temperatures T ≤ 10,000 K. A comparative analysis of our results and previous calculations in the literature is completed. We discuss the effect of these rates on the formation of scattering polarization patterns of resonant lines of alkali earths in the solar atmosphere, and their effect on Hanle effect diagnostics of solar magnetic fields.

  4. Ionization detector, electrode configuration and single polarity charge detection method

    DOEpatents

    He, Zhong

    1998-01-01

    An ionization detector, an electrode configuration and a single polarity charge detection method each utilize a boundary electrode which symmetrically surrounds first and second central interlaced and symmetrical electrodes. All of the electrodes are held at a voltage potential of a first polarity type. The first central electrode is held at a higher potential than the second central or boundary electrodes. By forming the first and second central electrodes in a substantially interlaced and symmetrical pattern and forming the boundary electrode symmetrically about the first and second central electrodes, signals generated by charge carriers are substantially of equal strength with respect to both of the central electrodes. The only significant difference in measured signal strength occurs when the charge carriers move to within close proximity of the first central electrode and are received at the first central electrode. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge.

  5. Ionization detector, electrode configuration and single polarity charge detection method

    DOEpatents

    He, Z.

    1998-07-07

    An ionization detector, an electrode configuration and a single polarity charge detection method each utilize a boundary electrode which symmetrically surrounds first and second central interlaced and symmetrical electrodes. All of the electrodes are held at a voltage potential of a first polarity type. The first central electrode is held at a higher potential than the second central or boundary electrodes. By forming the first and second central electrodes in a substantially interlaced and symmetrical pattern and forming the boundary electrode symmetrically about the first and second central electrodes, signals generated by charge carriers are substantially of equal strength with respect to both of the central electrodes. The only significant difference in measured signal strength occurs when the charge carriers move to within close proximity of the first central electrode and are received at the first central electrode. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge. 10 figs.

  6. Varicosity of a single breast: a rare entity.

    PubMed

    Jain, Vinod; Misra, Samir; Jaiswal, Vaibhav; Singh, Saumya

    2014-09-19

    Varicosity of the breasts is a rare clinical entity that may lead to symptoms such as prominent vascular markings over the breasts and may be painless; in long-standing cases it can lead to recurrent bleeding episodes. Bilateral venous affection in the breasts has been described in the literature; however, unilateral affection is a rarely documented phenomenon. Since vascular affliction of a single breast is rare and there is inherent difficulty in obtaining a histopathological diagnosis against a background of suspicion of malignancy, it is always challenging to provide optimal management to the patient. We are reporting a rare case of a 42-year-old, postmenopausal Indian woman with a long-standing history of unilateral varicosity of the left breast, who was treated successfully with a simple mastectomy; postoperative histopathology was consistent with benign vascular lesion, that is, angiomatosis.

  7. Separation of rare earth isotopes using resonance ionization time-of-flight mass spectrometry

    SciTech Connect

    Armstrong, D.P.; McCulla, W.H.; Schweitzer, G.K.

    1985-01-01

    Stable isotopes comprise a very large portion of the periodic table. They find a wide variety of applications, which include serving as precursors for radioisotopes and radiopharmaceuticals and as accelerated particle targets. Isotopes of the lanthanides, with very high boiling points and low natural abundances, are often difficult to separate by conventional electromagnetic techniques. Photoionization is a potential alternative method. We have devised a system in which an atomic beam of the rare earth metal is admitted to the ionization region of a time-of-flight mass spectrometer. Photoionization is achieved using a pulsed, two-photon laser scheme. Preliminary results from the photoionization of samarium are discussed. 5 refs., 3 figs., 1 tab.

  8. Ionization heating in rare-gas clusters under intense XUV laser pulses

    SciTech Connect

    Arbeiter, Mathias; Fennel, Thomas

    2010-07-15

    The interaction of intense extreme ultraviolet (XUV) laser pulses ({lambda}=32 nm, I=10{sup 11}-10{sup 14} W/cm{sup 2}) with small rare-gas clusters (Ar{sub 147}) is studied by quasiclassical molecular dynamics simulations. Our analysis supports a very general picture of the charging and heating dynamics in finite samples under short-wavelength radiation that is of relevance for several applications of free-electron lasers. First, up to a certain photon flux, ionization proceeds as a series of direct photoemission events producing a jellium-like cluster potential and a characteristic plateau in the photoelectron spectrum as observed in Bostedt et al. [Phys. Rev. Lett. 100, 133401 (2008)]. Second, beyond the onset of photoelectron trapping, nanoplasma formation leads to evaporative electron emission with a characteristic thermal tail in the electron spectrum. A detailed analysis of this transition is presented. Third, in contrast to the behavior in the infrared or low vacuum ultraviolet range, the nanoplasma energy capture proceeds via ionization heating, i.e., inner photoionization of localized electrons, whereas collisional heating of conduction electrons is negligible up to high laser intensities. A direct consequence of the latter is a surprising evolution of the mean energy of emitted electrons as function of laser intensity.

  9. Microstructural defects in some rare earth laves phase single crystals

    SciTech Connect

    Bi, Y.J.; Abell, J.S. . School of Metallurgy and Materials.)

    1993-08-15

    With the extensive research in magnetic behavior of rare earth intermetallic compounds, more specific microstructural characterization on the available single crystals is obviously necessary because many interpretations of the physical property measurements can be particularly dependent on the knowledge of the microstructural defects, impurity distributions, etc. Among the more interesting and also the most extensively investigated rare earth intermetallics are RAl[sub 2](R = rare earth elements) compounds, which have the C15 cubic Laves phase structure with the tetrahedra of smaller Al atoms residing at the four corners of the cubic cell. While much effort has been devoted to understanding the nature of the magnetism of RAl[sub 2] single crystals by neutron diffraction, e.g. heat capacity measurements, x-ray topography, etc., little work has been performed on characterization of microstructural defects and their effects on physical property measurements. In this work, the authors report a microstructural study on as-grown single crystals of CeAl[sub 2] and TbAl[sub 2] by transmission electron microscopy (TEM). The presence of (001) growth faults in CeAl[sub 2] single crystals and (111) planar defects in TbAl[sub 2] single crystals have been identified, and the possible formation mechanism and the influence on the magnetic properties are discussed.

  10. Single and double ionization of magnesium by electron impact: A classical study

    NASA Astrophysics Data System (ADS)

    Dubois, J.; Berman, S. A.; Chandre, C.; Uzer, T.

    2017-02-01

    We consider electron impact-driven single and double ionization of magnesium in the energy range of 10 to 100 eV. Our classical Hamiltonian model of these (e ,2 e ) and (e ,3 e ) processes sheds light on their total cross sections and reveals the underlying ionization mechanisms. Two pathways are at play in single ionization: delayed and direct. In contrast, only the direct process is observed in double ionization, ruling out the excitation-autoionization channel. We also provide evidence that the so-called Two-Step 2 mechanism predominates over the Two-Step 1 mechanism, in agreement with experiments.

  11. Single-photon ionization quadrupole mass spectrometry with an electron beam pumped excimer light source.

    PubMed

    Mühlberger, F; Wieser, J; Morozov, A; Ulrich, A; Zimmermann, R

    2005-04-01

    The application of soft ionization methods for mass spectrometry (MS), such as single-photon ionization (SPI) using vacuum ultraviolet (VUV) light, provides powerful analytical instrumentation for real-time on-line monitoring of organic substances in gaseous matrixes. A compact and mobile quadrupole mass spectrometer (QMS) system using a novel electron beam pumped rare gas VUV lamp for SPI has been developed for on-line analysis of organic trace compounds (ppb concentrations). The VUV radiation of the light source is employed for SPI in the ion source of the QMS. The concept of the interfacing of the VUV light source with the QMS is described and the SPI-QMS is characterized. On-line detection limits down to 50 ppb for benzene, toluene, and m-xylene were achieved. The instrument is well suited for continuous measurements of aromatic and aliphatic trace compounds and can therefore be used for on-line monitoring of trace compounds in dynamically fluctuating process gases. First measurements of gas standards, petrochemical samples, and on-line monitoring of automotive exhaust are presented.

  12. Cross Sections for Ionization of Rare Gas Excimers by Electron Impact and Atomic and Molecular Processes in Excimer Lasers.

    DTIC Science & Technology

    1980-03-01

    Theoretical cross sections for ionization of msetastable excimers - helium , neon, argon, krypton and zenon - and of metastable mercury are presented...AO-A086 698 GEORGIA INST OF TECH ATLANTA SCHOOL. OF PHYSICS FB20/5 CROSS SECTION1S FOR IONIZATION OF RARE GAS EXCIMERS By ELECTRON -- ETC(O) MAR 80 M...in Excimer Lasers. - -- 7 AUT 4OR(u) 8. CONTRACT OR GRANT NUMBER-) M. Raymond Flannery aW K. J./McCann . I F33615-78-C-20 128 9 PERFORMING

  13. Light and molecular ions: the emergence of vacuum UV single-photon ionization in MS.

    PubMed

    Hanley, Luke; Zimmermann, Ralf

    2009-06-01

    Thanks to recent technological advances and single-photon ionization's (SPI's) ability to detect all organics, the technique could become the long-sought universal soft ionization method. (To listen to a podcast about this feature, please go to the Analytical Chemistry Web site at pubs.acs.org/journal/ancham.).

  14. Raman Investigations of Rare Earth Arsenate Single Crystals

    SciTech Connect

    Barros, G; Santos, C. C.; Ayala, A. P.; Guedes, I.; Boatner, Lynn A; Loong, C. K.

    2010-01-01

    Polarized Raman Spectroscopy was used to investigate the room-temperature phonon characteristics of a series of rare-earth arsenate (REAsO4, RE = Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, and Lu) single crystals. The Raman data were interpreted in a systematic manner based on the known tetragonal zircon structure of these compounds, and assignments and correlations were made for the observed bands. We found that the wavenumber of the internal modes of the AsO4 tetrahedron increased with increasing atomic number, and for three out of four lattice wavenumbers observed, this tendency was not nearly so marked as in the case of the internal mode wavenumber.

  15. Electron Impact Ionization Cross Sections and Rate Coefficients for Single Carbon Freon Molecules

    NASA Astrophysics Data System (ADS)

    Pal, Satyendra; Kumar, Neeraj

    2015-09-01

    Single carbon Freon molecules or chlorofluorocarbons (CFCs) are important industrial material with wide-ranging applications as refrigerant, aerosol propellant and semiconductor etchant, etc. The large-scale industrial consumption is of particular environmental concern because of its potential for ozone destruction in the stratosphere. In the present work, we have extended and generalized the modified Jain-Khare (JK) semi-empirical formalism for the evaluation of the total ionization cross sections corresponding to the formation of the cations in the electron impact ionization of molecules to the electron impact ionization of single carbon freon molecules, viz. CFCl3, CF2Cl2 and CF3Cl. The integral partial and the total ionization cross sections as function of incident electron energy are evaluated in the energy range varying from ionization threshold to 1000 eV. In absence of available differential cross sections, the corresponding derived partial and total ionization cross sections revealed a reasonably good agreement with the experimental and theoretical data, wherever available. In addition to the differential and integral ionization cross sections, we have also calculated the ionization rate coefficients using the evaluated partial ionization cross sections and the Maxwell-Boltzmann distribution as a function of electron temperature/energy. The work is supported by DST, New Delhi, India.

  16. Resonant two-photon ionization of fluorene rare-gas van der Waals complexes

    NASA Astrophysics Data System (ADS)

    Leutwyler, Samuel; Even, Uzi; Jortner, Joshua

    1983-12-01

    Resonant two-photon ionization combined with time-of-flight mass spectrometry was applied for the interrogation of the S0 → S1 electronic-vibrational excitations of van der Waals complexes of fluorene (FL) with rare-gas atoms and N2 in supersonic jets. Energy-resolved and mass-resolved spectra of FL ṡ Ne, FL ṡ Arn (n=1-3), FL ṡ Kr, FL ṡ Xe, and FL ṡ N2 were recorded over the energy range 0-800 cm-1 above the electronic origin of S1. The red microscopic spectral shifts of the electronic origins of FL ṡ R (R=Ar, Kr, and Xe) complexes are dominated by dispersive interactions, being proportional to the polarizability of R. The vibrational level structure of FL ṡ Rn (R=Ar, Kr, and Xe) complexes exhibits intramolecular vibrational excitations of FL, as well as intermolecular vibrations, which involve the relative motion of FL and R in the complex. The spectra of FL ṡ Ne and FL ṡ N2 reveal a rich vibrational structure in the vicinity of the electronic origin, indicating a substantial change of the nuclear configuration upon electronic excitation. Upper and lower bounds on the dissociation energies of FL ṡ R (R=Ne, Kr, and Xe) and FL ṡ Ar2 were inferred from the vibrational level structure in the mass-resolved spectra, where the disappearance of the signal of the parent van der Waals ion and the appearance of the ion signal of the fragments mark the onset of the vibrational predissociation process.

  17. STORAGE RING CROSS-SECTION MEASUREMENTS FOR ELECTRON IMPACT SINGLE AND DOUBLE IONIZATION OF Fe{sup 9+} AND SINGLE IONIZATION OF Fe{sup 10+}

    SciTech Connect

    Hahn, M.; Novotny, O.; Savin, D. W.; Becker, A.; Grieser, M.; Krantz, C.; Wolf, A.; Lestinsky, M.; Repnow, R.; Mueller, A.; Schippers, S.; Spruck, K.

    2012-11-20

    We have measured electron impact ionization from the ground state of Fe{sup 9+} and Fe{sup 10+} over the relative electron-ion collision energy ranges 200-1900 eV and 250-1800 eV, respectively. The ions were confined in an ion storage ring long enough for essentially all metastable levels to radiatively relax to the ground state. For single ionization, we find a number of discrepancies between the existing theoretical cross sections and our results. The calculations appear to neglect some excitation-autoionization (EA) channels, particularly from n = 3 to n' excitations, which are important near threshold, and those from n = 2 {yields} 3 excitations, which contribute at about 650 eV. Conversely, at higher energies the calculations appear to overestimate the importance of EA channels due to excitation into levels where n {>=} 4. The resulting experimental rate coefficients agree with the most recent theory for Fe{sup 9+} to within 16% and for Fe{sup 10+} to within 19% at temperatures where these ions are predicted to form in collisional ionization equilibrium. We have also measured double ionization of Fe{sup 9+} forming Fe{sup 11+} in the energy range 450-3000 eV and found that although there is an appreciable cross section for direct double ionization, the dominant mechanism appears to be through direct ionization of an inner shell electron producing an excited state that subsequently stabilizes through autoionization.

  18. Fully differential single-photon double ionization of magnesium

    NASA Astrophysics Data System (ADS)

    Yip, Frank L.; Rescigno, Thomas N.; McCurdy, C. William

    2016-05-01

    The valence-shell double ionization of atomic magnesium is calculated using a grid-based representation of the 3s2 electron configuration in the presence of a fully-occupied frozen-core configuration. Atomic orbitals are constructed from an underlying finite element discrete variable representation (FEM-DVR) that facilitate accurate representation of the interaction between the inner shell electrons with those entering the continuum. Comparison between the similar processes of double ionization of the ns2 atoms helium, beryllium and magnesium are presented to further illuminate the role of valence-shell electron correlation in atomic targets with analogous configurations and symmetries. Both a time-independent and time-dependent formalism for evaluating double ionization amplitudes is applied to these many-electron targets. Results are compared with recent theoretical calculations and experimental measurements. Work supported by the US Dept. of Energy, Division of Chemical Sciences Contract DE-AC02-05CH11231 and the National Science Foundation, No. PHY-1509971.

  19. The formation of molecules in interstellar clouds from singly and multiply ionized atoms

    NASA Technical Reports Server (NTRS)

    Langer, W. D.

    1978-01-01

    The suggestion is considered that multiply ionized atoms produced by K- and L-shell X-ray ionization and cosmic-ray ionization can undergo ion-molecule reactions and also initiate molecule production. The role of X-rays in molecule production in general is discussed, and the contribution to molecule production of the C(+) radiative association with hydrogen is examined. Such gas-phase reactions of singly and multiply ionized atoms are used to calculate molecular abundances of carbon-, nitrogen-, and oxygen-bearing species. The column densities of the molecules are evaluated on the basis of a modified version of previously developed isobaric cloud models. It is found that reactions of multiply ionized carbon with H2 can contribute a significant fraction of the observed CH in diffuse interstellar clouds in the presence of diffuse X-ray structures or discrete X-ray sources and that substantial amounts of CH(+) can be produced under certain conditions.

  20. Organic semiconducting single crystals as solid-state sensors for ionizing radiation.

    PubMed

    Fraboni, Beatrice; Ciavatti, Andrea; Basiricò, Laura; Fraleoni-Morgera, Alessandro

    2014-01-01

    So far, organic semiconductors have been mainly proposed as detectors for ionizing radiation in the indirect conversion approach, i.e. as scintillators, which convert ionizing radiation into visible photons, or as photodiodes, which detect visible photons coming from a scintillator and convert them into an electrical signal. The direct conversion of ionizing radiation into an electrical signal within the same device is a more effective process than indirect conversion, since it improves the signal-to-noise ratio and it reduces the device response time. We report here the use of Organic Semiconducting Single Crystals (OSSCs) as intrinsic direct ionizing radiation detectors, thanks to their stability, good transport properties and large interaction volume. Ionizing radiation X-ray detectors, based on low-cost solution-grown OSSCs, are here shown to operate at room temperature, providing a stable linear response with increasing dose rate in the ambient atmosphere and in high radiation environments.

  1. The formation of molecules in interstellar clouds from singly and multiply ionized atoms

    NASA Technical Reports Server (NTRS)

    Langer, W. D.

    1978-01-01

    The suggestion is considered that multiply ionized atoms produced by K- and L-shell X-ray ionization and cosmic-ray ionization can undergo ion-molecule reactions and also initiate molecule production. The role of X-rays in molecule production in general is discussed, and the contribution to molecule production of the C(+) radiative association with hydrogen is examined. Such gas-phase reactions of singly and multiply ionized atoms are used to calculate molecular abundances of carbon-, nitrogen-, and oxygen-bearing species. The column densities of the molecules are evaluated on the basis of a modified version of previously developed isobaric cloud models. It is found that reactions of multiply ionized carbon with H2 can contribute a significant fraction of the observed CH in diffuse interstellar clouds in the presence of diffuse X-ray structures or discrete X-ray sources and that substantial amounts of CH(+) can be produced under certain conditions.

  2. The Townsend coefficient of ionization in atmospheric pressure rare gas plasma

    NASA Astrophysics Data System (ADS)

    Zvereva, G.

    2015-12-01

    In the work the influence of the processes characteristic for atmospheric pressure heavy inert gases discharge plasma on the value of the first Townsend ionization coefficient were investigated. Krypton plasma was considered. Calculations have shown that the greatest impact on the value of the first Townsend ionization coefficient has dissociative recombination of molecular ions, followed by descending influence processes occur: stepwise ionization, the electron-electron collisions and superelastic ones. The effect of these processes begins to appear at concentrations of electrons and excited particles higher than 1012 cm-3. At times shorter than the time of molecular ions formation, when dissociative recombination is absent, should expect a significant increase of the ionization coefficient.

  3. Relativistic contributions to single and double core electron ionization energies of noble gases.

    PubMed

    Niskanen, J; Norman, P; Aksela, H; Agren, H

    2011-08-07

    We have performed relativistic calculations of single and double core 1s hole states of the noble gas atoms in order to explore the relativistic corrections and their additivity to the ionization potentials. Our study unravels the interplay of progression of relaxation, dominating in the single and double ionization potentials of the light elements, versus relativistic one-electron effects and quantum electrodynamic effects, which dominate toward the heavy end. The degree of direct relative additivity of the relativistic corrections for the single electron ionization potentials to the double electron ionization potentials is found to gradually improve toward the heavy elements. The Dirac-Coulomb Hamiltonian is found to predict a scaling ratio of ∼4 for the relaxation induced relativistic energies between double and single ionization. Z-scaling of the computed quantities were obtained by fitting to power law. The effects of nuclear size and form were also investigated and found to be small. The results indicate that accurate predictions of double core hole ionization potentials can now be made for elements across the full periodic table.

  4. Relativistic contributions to single and double core electron ionization energies of noble gases

    SciTech Connect

    Niskanen, J.; Norman, P.; Aksela, H.; Aagren, H.

    2011-08-07

    We have performed relativistic calculations of single and double core 1s hole states of the noble gas atoms in order to explore the relativistic corrections and their additivity to the ionization potentials. Our study unravels the interplay of progression of relaxation, dominating in the single and double ionization potentials of the light elements, versus relativistic one-electron effects and quantum electrodynamic effects, which dominate toward the heavy end. The degree of direct relative additivity of the relativistic corrections for the single electron ionization potentials to the double electron ionization potentials is found to gradually improve toward the heavy elements. The Dirac-Coulomb Hamiltonian is found to predict a scaling ratio of {approx}4 for the relaxation induced relativistic energies between double and single ionization. Z-scaling of the computed quantities were obtained by fitting to power law. The effects of nuclear size and form were also investigated and found to be small. The results indicate that accurate predictions of double core hole ionization potentials can now be made for elements across the full periodic table.

  5. Single ionization of water molecules in collisions with bare ions

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Mandal, C. R.; Purkait, M.

    2016-04-01

    We present the double differential cross sections (DDCSs) for the direct ionization of water molecules by impact of fully stripped helium, carbon and oxygen atoms, respectively. In the present formalism, we have represented the wavefunction in the entrance channel as the product of a plane wave for the projectile and an accurate one-center-molecular wavefunction of the water molecule by Moccia (1964 J. Chem. Phys. 40 2186). In the exit channel, we have expressed the total wavefunction as the product of pair-wise Coulomb wavefunctions among the ejected electron, projectile ion and the residual target ion, respectively. The contributions of DDCSs for five different molecular orbitals of water to the spectrum of angular distributions have been analyzed for several electron emission energies. The present results for DDCSs are compared with existing experimental and theoretical findings. We find an overall good agreement between our calculated results and the experimental findings for electron emission cross sections. In addition, DDCS results for ionization from different orbitals at a few electron emission energies are given in tabular form.

  6. Charge cluster distribution in nanosites traversed by a single ionizing particle An experimental approach

    NASA Astrophysics Data System (ADS)

    Pszona, S.; Bantsar, A.; Kula, J.

    2008-11-01

    A method for modeling charge cluster formation by a single ionizing particle in nanoelectronic structures of few nanometres size is presented. The method is based on experimental modeling of charge formation in the equivalent gaseous nanosites irradiated by single charged particles and the subsequent scaling procedure to a needed medium. Propane irradiated by alpha particles is presented as an example.

  7. Quasi-simultaneous acquisition of hard electron ionization and soft single-photon ionization mass spectra during GC/MS analysis by rapid switching between both ionization methods: analytical concept, setup, and application on diesel fuel.

    PubMed

    Eschner, Markus S; Gröger, Thomas M; Horvath, Thomas; Gonin, Marc; Zimmermann, Ralf

    2011-05-15

    This work describes the realization of rapid switching between hard electron ionization (EI) and soft single-photon ionization (SPI) integrated in a compact orthogonal acceleration time-of-flight mass spectrometer. Vacuum-ultraviolet (VUV) photons of 9.8 eV (126 nm) emitted from the innovative electron-beam-pumped rare-gas excimer light source (EBEL) filled with argon are focused into the ion chamber by an ellipsoidal mirror optic for accomplishing of SPI. This novel orthogonal acceleration time-of-flight mass spectrometer with switching capability was hyphenated to one-dimensional gas chromatography (GC) and comprehensive two-dimensional (2D) gas chromatography (GC × GC) for the first time. Within this demonstration study, a maximum switching frequency of 80 Hz was applied for investigation of a mineral-oil-type diesel sample. This approach allows the quasi-simultaneous acquisition of complementary information about the fragmentation pattern (EI) as well as the molecular mass (SPI) of compounds within a single analysis. Furthermore, by application of a polar GC column for separation, the SPI data can be displayed in a 2D contour plot, leading to a comprehensive 2D characterization (GC × MS), whereas the typical group-type assignment for diesel is also met.

  8. Single- and multi-photon ionization studies of organosulfur species

    SciTech Connect

    Cheung, Yu -San

    1999-02-12

    Accurate ionization energies (IE`s) for molecular species are used for prediction of chemical reactivity and are of fundamental importance to chemists. The IE of a gaseous molecule can be determined routinely in a photoionization or a photoelectron experiment. IE determinations made in conventional photoionization and photoelectron studies have uncertainties in the range of 3--100 meV (25--250 cm-1). In the past decade, the most exciting development in the field of photoionization and photoelectron spectroscopy has been the availability of high resolution, tunable ultraviolet (UV) and vacuum ultraviolet (VUV) laser sources. The laser pulsed field ionization photoelectron (PFI-PE) scheme is currently the state-of-the-art photoelectron spectroscopic technique and is capable of providing photoelectron energy resolution close to the optical resolution. The author has focused attention on the photoionization processes of some sulfur-containing species. The studies of the photoionization and photodissociation on sulfur-containing compounds [such as CS2, CH3SH, CH3SSCH3, CH3CH2SCH2CH3, HSCH2CH2SH and C4H4S (thiophene) and sulfur-containing radicals, such as HS, CS, CH3S, CH3CH2S and CH3SS], have been the major subjects in the group because sulfur is an important species contributing to air pollution in the atmosphere. The modeling of the combustion and oxidation of sulfur compounds represents important steps for the control of both the production and the elimination of sulfur-containing pollutants. Chapter 1 is a general introduction of the thesis. Chapters 2 and 6 contain five papers published in, or accepted for publication in, academic periodicals. In Chapter 7, the progress of the construction in the laboratory of a new vacuum ultraviolet laser system equipped with a reflectron mass

  9. Auger spectrum of a water molecule after single and double core ionization

    SciTech Connect

    Inhester, L.; Burmeister, C. F.; Groenhof, G.; Grubmueller, H.

    2012-04-14

    The high intensity of free electron lasers opens up the possibility to perform single-shot molecule scattering experiments. However, even for small molecules, radiation damage induced by absorption of high intense x-ray radiation is not yet fully understood. One of the striking effects which occurs under intense x-ray illumination is the creation of double core ionized molecules in considerable quantity. To provide insight into this process, we have studied the dynamics of water molecules in single and double core ionized states by means of electronic transition rate calculations and ab initio molecular dynamics (MD) simulations. From the MD trajectories, photoionization and Auger transition rates were computed based on electronic continuum wavefunctions obtained by explicit integration of the coupled radial Schroedinger equations. These rates served to solve the master equations for the populations of the relevant electronic states. To account for the nuclear dynamics during the core hole lifetime, the calculated electron emission spectra for different molecular geometries were incoherently accumulated according to the obtained time-dependent populations, thus neglecting possible interference effects between different decay pathways. We find that, in contrast to the single core ionized water molecule, the nuclear dynamics for the double core ionized water molecule during the core hole lifetime leaves a clear fingerprint in the resulting electron emission spectra. The lifetime of the double core ionized water was found to be significantly shorter than half of the single core hole lifetime.

  10. Auger spectrum of a water molecule after single and double core ionization.

    PubMed

    Inhester, L; Burmeister, C F; Groenhof, G; Grubmüller, H

    2012-04-14

    The high intensity of free electron lasers opens up the possibility to perform single-shot molecule scattering experiments. However, even for small molecules, radiation damage induced by absorption of high intense x-ray radiation is not yet fully understood. One of the striking effects which occurs under intense x-ray illumination is the creation of double core ionized molecules in considerable quantity. To provide insight into this process, we have studied the dynamics of water molecules in single and double core ionized states by means of electronic transition rate calculations and ab initio molecular dynamics (MD) simulations. From the MD trajectories, photoionization and Auger transition rates were computed based on electronic continuum wavefunctions obtained by explicit integration of the coupled radial Schrödinger equations. These rates served to solve the master equations for the populations of the relevant electronic states. To account for the nuclear dynamics during the core hole lifetime, the calculated electron emission spectra for different molecular geometries were incoherently accumulated according to the obtained time-dependent populations, thus neglecting possible interference effects between different decay pathways. We find that, in contrast to the single core ionized water molecule, the nuclear dynamics for the double core ionized water molecule during the core hole lifetime leaves a clear fingerprint in the resulting electron emission spectra. The lifetime of the double core ionized water was found to be significantly shorter than half of the single core hole lifetime.

  11. Single-photon single ionization of W+ ions: experiment and theory

    SciTech Connect

    Müller, A.; Schippers, S.; Hellhund, J.; Holste, K.; Kilcoyne, A. L. D.; Phaneuf, R. A.; Ballance, C. P.; McLaughlin, B. M.

    2015-10-08

    Experimental and theoretical results are reported for photoionization of Ta-like (W+) tungsten ions. Absolute cross sections were measured in the energy range 16-245 eV employing the photon-ion merged-beam setup at the advanced light source in Berkeley. Detailed photon-energy scans at 100 meV bandwidth were performed in the 16-108 eV range. In addition, the cross section was scanned at 50 meV resolution in regions where fine resonance structures could be observed. Theoretical results were obtained from a Dirac-Coulomb R-matrix approach. Photoionization cross section calculations were performed for singly ionized atomic tungsten ions in their J = 1/2, ground level and the associated excited metastable levels with J = 3/2, 5/2, 7/2 and 9/2. Since the ion beams used in the experiments must be expected to contain long-lived excited states also from excited configurations, additional cross-section calculations were performed for the second-lowest term, J = 5/2, and for the 4 F term, with J = 3/2, 5/2, 7/2 and 9/2. Given the complexity of the electronic structure of W + the calculations reproduce the main features of the experimental cross section quite well.

  12. Single-photon single ionization of W+ ions: experiment and theory

    DOE PAGES

    Müller, A.; Schippers, S.; Hellhund, J.; ...

    2015-10-08

    Experimental and theoretical results are reported for photoionization of Ta-like (W+) tungsten ions. Absolute cross sections were measured in the energy range 16-245 eV employing the photon-ion merged-beam setup at the advanced light source in Berkeley. Detailed photon-energy scans at 100 meV bandwidth were performed in the 16-108 eV range. In addition, the cross section was scanned at 50 meV resolution in regions where fine resonance structures could be observed. Theoretical results were obtained from a Dirac-Coulomb R-matrix approach. Photoionization cross section calculations were performed for singly ionized atomic tungsten ions in their J = 1/2, ground level and themore » associated excited metastable levels with J = 3/2, 5/2, 7/2 and 9/2. Since the ion beams used in the experiments must be expected to contain long-lived excited states also from excited configurations, additional cross-section calculations were performed for the second-lowest term, J = 5/2, and for the 4 F term, with J = 3/2, 5/2, 7/2 and 9/2. Given the complexity of the electronic structure of W + the calculations reproduce the main features of the experimental cross section quite well.« less

  13. Momentum spectra for single and double electron ionization of He in relativistic collisions

    NASA Astrophysics Data System (ADS)

    Wood, C. J.; Olson, R. E.; Schmitt, W.; Moshammer, R.; Ullrich, J.

    1997-11-01

    The complete momentum spectra for single and double ionization of He by 1-GeV/u (β=0.88) U92+ have been investigated using a classical trajectory Monte Carlo method corrected for the relativistic projectile. The 1/r12 electron-electron interaction has been included in the post-collision region for double ionization to incorporate the effects of both the nuclear-electron and electron-electron ionizing interactions, and to access the effects of electron correlation in the electron spectra. Experimental measurements were able to determine the longitudinal momentum spectra for single ionization; these observations are in accordance with the theoretical predictions for the three-body momentum balance between projectile, recoil ion, and ionized electron. In particular, the Lorentz contraction of the Coulomb interaction of the projectile manifests itself in the decrease of the post-collision interaction of the projectile with the electron and recoil ion, causing them to recoil back-to-back as in the case for a short electromagnetic pulse. This feature is clearly displayed in both the theoretical and experimental longitudinal momentum spectra, and by comparing to calculations that are performed at the same collision speed but do not include the relativistic potentials. Moreover, collision plane spectra of the three particles demonstrate that the momenta of the recoil ion and ionized electron are preferentially equal, and opposite, to each other. The electron spectra for double ionization show that the inclusion of the electron-electron interaction in the post-collision regime partitions the combined ionization momentum of the electrons so that the electrons are preferentially emitted in opposite azimuthal angles to one another. This is in contrast to calculations made assuming independent electrons.

  14. Photo-double-ionization of the ns shell of rare gases

    NASA Astrophysics Data System (ADS)

    Argenti, L.; Bolognesi, P.; Colle, R.; Feyer, V.; Avaldi, L.

    2009-06-01

    The triple differential cross sections (TDCS) for the photodouble ionization of He, Ne, Ar, and Xe leading to the He2+(1s0S1e) , Ne2+(2s02p6S1e) , Ar2+(3s03p6S1e) , and Xe2+(5s05p6S1e) states have been measured at about 20 eV above their respective thresholds with the two photoelectrons equally sharing the excess energy. The experimental data are analyzed using a parametrization recently proposed [J. Phys. B 41, 245205 (2008)] which takes into account experimental uncertainties. The parametrization provides a satisfactory representation of the shape of the measured TDCS. The study of the behavior of the gerade amplitude of the TDCS in the different targets gives hints on the dependence of the electron correlation with the principal quantum number n of the ionized ns orbital.

  15. Toward single electron resolution phonon mediated ionization detectors

    NASA Astrophysics Data System (ADS)

    Mirabolfathi, Nader; Harris, H. Rusty; Mahapatra, Rupak; Sundqvist, Kyle; Jastram, Andrew; Serfass, Bruno; Faiez, Dana; Sadoulet, Bernard

    2017-05-01

    Experiments seeking to detect rare event interactions such as dark matter or coherent elastic neutrino nucleus scattering are striving for large mass detectors with very low detection threshold. Using Neganov-Luke phonon amplification effect, the Cryogenic Dark Matter Search (CDMS) experiment is reaching unprecedented RMS resolutions of ∼14 eVee. CDMSlite is currently the most sensitive experiment to WIMPs of mass ∼5 GeV/c2 but is limited in achieving higher phonon gains due to an early onset of leakage current into Ge crystals. The contact interface geometry is particularly weak for blocking hole injection from the metal, and thus a new design is demonstrated that allows high voltage bias via vacuum separated electrode. With an increased bias voltage and a×2 Luke phonon gain, world best RMS resolution of sigma ∼7 eVee for 0.25 kg (d=75 mm, h=1 cm) Ge detectors was achieved. Since the leakage current is a function of the field and the phonon gain is a function of the applied voltage, appropriately robust interface blocking material combined with thicker substrate (25 mm) will reach a resolution of ∼2.8 eVee. In order to achieve better resolution of ∼ eV, we are investigating a layer of insulator between the phonon readout surface and the semiconductor crystals.

  16. [Development of a membrane inlet-single photon ionization/chemical ionization-mass spectrometer for online analysis of VOCs in water].

    PubMed

    Hua, Lei; Wu, Qing-Hao; Hou, Ke-Yong; Cui, Hua-Peng; Chen, Ping; Zhao, Wu-Duo; Xie, Yuan-Yuan; Li, Hai-Yang

    2011-12-01

    A home-made membrane inlet- single photon ionization/chemical ionization- time-of-flight mass spectrometer has been described. A vacuum ultraviolet (VUV) lamp with photon energy of 10.6 eV was used as the light source for single photon ionization (SPI). Chemical ionization (CI) was achieved through ion-molecule reactions with O2- reactant ions generated by photoelectron ionization. The two ionization modes could be rapidly switched by adjusting electric field in the ionization region within 2 s. Membrane inlet system used for rapid enrichment of volatile organic compounds (VOCs) in water was constructed by using a polydimethylsiloxane (PDMS) membrane with a thickness of 50 microm. A purge gas was added to accelerate desorption of analytes from the membrane surface. The purge gas could also help to prevent the pump oil back-streaming into the ionization region from the analyzer chamber and improve the signal to noise ratio (S/N). Achieved detection limits were 2 microg x L(-1) for methyl tert-butyl ether (MTBE) in SPI mode and 1 microg x L(-1) for chloroform in SPI-CI mode within 10 s analysis time, respectively. The instrument has been successfully applied to the rapid analysis of MTBE in simulated underground water nearby petrol station and VOCs in disinfected drinking water. The results indicate that the instrument has a great application prospect for online analysis of VOCs in water.

  17. Auger spectrum of a water molecule after single and double core ionization

    NASA Astrophysics Data System (ADS)

    Inhester, Ludger; Burmeister, Carl F.; Groenhof, Gerrit; Grubmueller, Helmut

    2012-06-01

    The high intensity of Free Electron Lasers (FEL) opens up the possibility to perform single-shot molecule scattering experiments. However, even for small molecules radiation damage induced by absorption of intense x-ray radiation is not yet fully understood. To provide insight into this process, we have studied the dynamics of water molecules in single and double core ionized states by means of electronic transition rate calculations and ab initio molecular dynamics (MD) simulations. From MD trajectories photoionization and Auger transition rates were computed based on electronic continuum wavefunctions obtained by explicit integration of the coupled radial Schr"odinger equations. To account for the nuclear dynamics during the core hole lifetime, the calculated electron emission spectra for different molecular geometries were accumulated according to the obtained time-dependent populations. We find that, in contrast to the single core ionized water molecule, the nuclear dynamics for the double core ionized water molecule during the core hole lifetime leaves a clear fingerprint on the electron emission spectra. In addition, the lifetime of the double core ionized water was found to be significantly shorter than half of the single core hole lifetime.

  18. [An investigation of ionizing radiation dose in a manufacturing enterprise of ion-absorbing type rare earth ore].

    PubMed

    Zhang, W F; Tang, S H; Tan, Q; Liu, Y M

    2016-08-20

    Objective: To investigate radioactive source term dose monitoring and estimation results in a manufacturing enterprise of ion-absorbing type rare earth ore and the possible ionizing radiation dose received by its workers. Methods: Ionizing radiation monitoring data of the posts in the control area and supervised area of workplace were collected, and the annual average effective dose directly estimated or estimated using formulas was evaluated and analyzed. Results: In the control area and supervised area of the workplace for this rare earth ore, α surface contamination activity had a maximum value of 0.35 Bq/cm(2) and a minimum value of 0.01 Bq/cm(2); β radioactive surface contamination activity had a maximum value of 18.8 Bq/cm(2) and a minimum value of 0.22 Bq/cm(2). In 14 monitoring points in the workplace, the maximum value of the annual average effective dose of occupational exposure was 1.641 mSv/a, which did not exceed the authorized limit for workers (5 mSv/a) , but exceeded the authorized limit for general personnel (0.25 mSv/a) . The radionuclide specific activity of ionic mixed rare earth oxides was determined to be 0.9. Conclusion: The annual average effective dose of occupational exposure in this enterprise does not exceed the authorized limit for workers, but it exceeds the authorized limit for general personnel. We should pay attention to the focus of the radiation process, especially for public works radiation.

  19. Double and single ionization of He and H{sub 2} by slow protons and antiprotons

    SciTech Connect

    Kimura, Mineo |; Shimamura, Isao; Inokuti, Mitio

    1994-12-31

    Double and single ionization of He and H{sub 2} by proton (p) and antiproton ({bar p})impact in the energy region below 50 keV was studied theoretically by using the semiclassical molecular picture. As the energy decreased, the ratio of the double- to the single-ionization cross section increased for impact and decreased for p impact for both He and H{sub 2}. These trends are consistent with recent measurements for He. Ionization mechanisms differ distinctly for p impact and {bar p} impact. For p impact, the dominant mechanism for double ionization at the lower energies is sequential ladder climbing by the two electrons through various excited channels and finally into the continuum. For {bar p} impact, in contrast, the approaching negative charge distorts both the He and H{sub 2} electron clouds toward the other side of the nucleus and decreases the electron binding energies. These effects enhance electron-electron interactions, increasing double ionization. For the H{sub 2}, an effect of molecular orientation is an additional complication in determining the dynamics.

  20. Metallic single-walled carbon nanotube for ionized radiation detection

    NASA Astrophysics Data System (ADS)

    Banadaki, Yaser M.; Srivastava, Ashok; Sharifi, Safura

    2016-04-01

    In this paper, we have explored the feasibility of a metallic single-walled carbon nanotube (SWCNT) as a radiation detector. The effect of SWCNTs' exposure to different ion irradiations is considered with the displacement damage dose (DDD) methodology. The analytical model of the irradiated resistance of metallic SWCNT has been developed and verified by the experimental data for increasing DDD from 1012 MeV/g to 1017 MeV/g. It has been found that the resistance variation of SWCNT by increasing DDD can be significant depending on the length and diameter of SWCNT, such that the DDD as low as 1012 (MeV/g) can be detected using the SWCNT with 1cm length and 5nm diameter. Increasing the length and diameter of SWCNT can result in both the higher radiation sensitivity of resistance and the extension of detection range to lower DDD.

  1. Miniaturized ionization gas sensors from single metal oxide nanowires.

    PubMed

    Hernandez-Ramirez, Francisco; Prades, Juan Daniel; Hackner, Angelika; Fischer, Thomas; Mueller, Gerhard; Mathur, Sanjay; Morante, Joan Ramon

    2011-02-01

    Gas detection experiments were performed with individual tin dioxide (SnO2) nanowires specifically configured to observe surface ion (SI) emission response towards representative analyte species. These devices were found to work at much lower temperatures (T≈280 °C) and bias voltages (V≈2 V) than their micro-counterparts, thereby demonstrating the inherent potential of individual nanostructures in building functional nanodevices. High selectivity of our miniaturized sensors emerges from the dissimilar sensing mechanisms of those typical of standard resistive-type sensors (RES). Therefore, by employing this detection principle (SI) together with RES measurements, better selectivity than that observed in standard metal oxide sensors could be demonstrated. Simplicity and specificity of the gas detection as well as low-power consumption make these single nanowire devices promising technological alternatives to overcome the major drawbacks of solid-state sensor technologies.

  2. The interaction of an ionizing ligand with enzymes having a single ionizing group. Implications for the reaction of folate analogues with dihydrofolate reductase.

    PubMed

    Stone, S R; Morrison, J F

    1983-06-29

    Binding theory has been developed for the reaction of an ionizing enzyme with an ionizing ligand. Consideration has been given to the most general scheme in which all possible reactions and interconversions occur as well as to schemes in which certain interactions do not take place. Equations have been derived in terms of the variation of the apparent dissociation constant (Kiapp) as a function of pH. These equations indicate that plots of pKiapp against pH can be wave-, half-bell- or bell-shaped according to the reactions involved. A wave is obtained whenever there is formation of the enzyme-ligand complexes, ionized enzyme . ionized ligand and protonated enzyme . protonated ligand. The additional formation of singly protonated enzyme-ligand complexes does not affect the wave form of the plot, but can influence the shape of the overall curve. The formation of either ionized enzyme . ionized ligand or protonated enzyme . protonated ligand, with or without singly protonated enzyme-ligand species, gives rise to a half-bell-shaped plot. If only singly protonated enzyme-ligand complexes are formed the plots are bell-shaped, but it is not possible to deduce the ionic forms of the reactants that participate in complex formation. Depending on the reaction pathways, true values for the ionization and dissociation constants may or may not be determined.

  3. Feasibility of coherent xuv spectroscopy on the 1S-2S transition in singly ionized helium

    SciTech Connect

    Herrmann, M.; Saathoff, G.; Gohle, C.; Ozawa, A.; Batteiger, V.; Knuenz, S.; Kolachevsky, N.; Udem, Th.; Haas, M.; Jentschura, U. D.; Kottmann, F.; Leibfried, D.; Schuessler, H. A.; Haensch, T. W.

    2009-05-15

    The 1S-2S two-photon transition in singly ionized helium is a highly interesting candidate for precision tests of bound-state quantum electrodynamics (QED). With the recent advent of extreme ultraviolet frequency combs, highly coherent quasi-continuous-wave light sources at 61 nm have become available, and precision spectroscopy of this transition now comes into reach for the first time. We discuss quantitatively the feasibility of such an experiment by analyzing excitation and ionization rates, propose an experimental scheme, and explore the potential for QED tests.

  4. Frustrated double and single ionization in a two-electron triatomic molecule H+ 3

    NASA Astrophysics Data System (ADS)

    Chen, A.; Lazarou, C.; Price, H.; Emmanouilidou, A.

    2016-12-01

    Using a semi-classical model, we study the formation of highly excited neutral fragments during the fragmentation of {{{H}}}3+, a two-electron triatomic molecule, driven by an intense near-IR laser field. To do so, we first formulate a microcanonical distribution for arbitrary one-electron triatomic molecules. We then study frustrated double and single ionization in strongly driven {{{H}}}3+ and compute the kinetic energy release of the nuclei for these two processes. Moreover, we investigate the dependence of frustrated ionization on the strength of the laser field as well as on the geometry of the initial molecular state.

  5. Full hyperfine structure analysis of singly ionized molybdenum

    NASA Astrophysics Data System (ADS)

    Bouazza, Safa

    2017-03-01

    For a first time a parametric study of hyperfine structure of Mo II configuration levels is presented. The newly measured A and B hyperfine structure (hfs) constants values of Mo II 4d5, 4d45s and 4d35s2 configuration levels, for both 95 and 97 isotopes, using Fast-ion-beam laser-induced fluorescence spectroscopy [1] are gathered with other few data available in literature. A fitting procedure of an isolated set of these three lowest even-parity configuration levels has been performed by taking into account second-order of perturbation theory including the effects of closed shell-open shell excitations. Moreover the same study was done for Mo II odd-parity levels; for both parities two sets of fine structure parameters as well as the leading eigenvector percentages of levels and Landé-factor gJ, relevant for this paper are given. We present also predicted singlet, triplet and quintet positions of missing experimental levels up to 85000 cm-1. The single-electron hfs parameter values were extracted in their entirety for 97Mo II and for 95Mo II: for instance for 95Mo II, a4d01 =-133.37 MHz and a5p01 =-160.25 MHz for 4d45p; a4d01 =-140.84 MHz, a5p01 =-170.18 MHz and a5s10 =-2898 MHz for 4d35s5p; a5s10 =-2529 (2) MHz and a4d01 =-135.17 (0.44) MHz for the 4d45s. These parameter values were analysed and compared with diverse ab-initio calculations. We closed this work with giving predicted values of magnetic dipole and electric quadrupole hfs constants of all known levels, whose splitting are not yet measured.

  6. On the intermolecular Coulombic decay of singly and doubly ionized states of water dimer.

    PubMed

    Stoychev, Spas D; Kuleff, Alexander I; Cederbaum, Lorenz S

    2010-10-21

    A semiquantitative study of the intermolecular Coulombic decay (ICD) of singly and doubly ionized water dimer has been carried out with the help of ab initio computed ionization spectra and potential energy curves (PECs). These PECs are particular cuts through the (H(2)O)(2), (H(2)O)(2) (+), and (H(2)O)(2) (++) hypersurfaces along the distance between the two oxygen atoms. A comparison with the recently published experimental data for the ICD in singly ionized water dimers [T. Jahnke, H. Sann, T. Havermeier et al., Nat. Phys. 6, 139 (2010)] and in large water clusters [M. Mucke, M. Braune, S. Barth et al., Nat. Phys. 6, 143 (2010)] shows that such a simplified description in which the internal degrees of freedom of the water molecules are frozen gives surprisingly useful results. Other possible decay channels of the singly ionized water dimer are also investigated and the influence of the H-atom participating in the hydrogen bond on the spectra of the proton-donor and proton-acceptor molecules in the dimer is discussed. Importantly, the decay processes of one-site dicationic states of water dimer are discussed and an estimate of the ICD-electron spectra is made. More than 33% of the dications produced by Auger decay are found to undergo ICD. The qualitative results show that the ICD following Auger decay in water is also expected to be an additional source of low-energy electrons proven to be extremely important for causing damages to living tissues.

  7. Photon Energy Deposition in Strong-Field Single Ionization of Multielectron Molecules.

    PubMed

    Zhang, Wenbin; Li, Zhichao; Lu, Peifen; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Lin, Kang; Ma, Junyang; He, Feng; Zeng, Heping; Wu, Jian

    2016-09-02

    Molecules exposed to strong laser fields may coherently absorb multiple photons and deposit the energy into electrons and nuclei, triggering the succeeding dynamics as the primary stage of the light-molecule interaction. We experimentally explore the electron-nuclear sharing of the absorbed photon energy in above-threshold multiphoton single ionization of multielectron molecules. Using CO as a prototype, vibrational and orbital resolved electron-nuclear sharing of the photon energy is observed. Different from the simplest one- or two-electron systems, the participation of the multiple orbitals and the coupling of various electronic states in the strong-field ionization and dissociation processes alter the photon energy deposition dynamics of the multielectron molecule. The population of numerous vibrational states of the molecular cation as the energy reservoir in the ionization process plays an important role in photon energy sharing between the emitted electron and the nuclear fragments.

  8. Charge trapping in aligned single-walled carbon nanotube arrays induced by ionizing radiation exposure

    SciTech Connect

    Esqueda, Ivan S.; Cress, Cory D.; Che, Yuchi; Cao, Yu; Zhou, Chongwu

    2014-02-07

    The effects of near-interfacial trapping induced by ionizing radiation exposure of aligned single-walled carbon nanotube (SWCNT) arrays are investigated via measurements of gate hysteresis in the transfer characteristics of aligned SWCNT field-effect transistors. Gate hysteresis is attributed to charge injection (i.e., trapping) from the SWCNTs into radiation-induced traps in regions near the SWCNT/dielectric interface. Self-consistent calculations of surface-potential, carrier density, and trapped charge are used to describe hysteresis as a function of ionizing radiation exposure. Hysteresis width (h) and its dependence on gate sweep range are investigated analytically. The effects of non-uniform trap energy distributions on the relationship between hysteresis, gate sweep range, and total ionizing dose are demonstrated with simulations and verified experimentally.

  9. Two-effective-center approximation for proton-impact single ionization of hydrogen molecules

    NASA Astrophysics Data System (ADS)

    Ghanbari-Adivi, Ebrahim

    2015-10-01

    Some closed-form expressions are derived for the partial direct and indirect transition amplitudes for proton-impact single ionization of the hydrogen molecules using a first-order two-effective center continuum-wave approximation. The method satisfies the correct boundary conditions in the entrance channel. The basic assumption in this model is that when the active electron is ionized from one of the atomic centers in the molecule, the other scattering center is completely screened by the passive electron. Consequently, the transition amplitude can be expressed as a superposition of the partial ionization amplitudes from two independent scattering centers located at a constant distance from each other. The superposition of the partial amplitudes leads to different interference patterns for various orientations of the molecular target. The calculated cross sections are compared with the experiments and also with other theories. The comparison shows that the present results are reliable.

  10. Characterization of rare-earth-doped nanophosphors for photodynamic therapy excited by clinical ionizing radiation beams

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash; Najmr, Stan; Paik, Taejong; Tenuto, Michael E.; Murray, Christopher B.; Finlay, Jarod C.; Friedberg, Joseph S.

    2015-03-01

    We investigated the optical properties of novel terbium (Tb3+)-doped nanophosphors with various host compounds irradiated by clinical electron, photon, and proton beams for their potential as optical probes. The emission spectra of nanophosphors embedded in tissue-mimicking phantoms were collected by an optical fiber connected to a CCD-coupled spectrograph while the samples were irradiated with electron and photon beams generated by a medical linear accelerator and proton beams generated by a clinical cyclotron. We characterized the luminescence of such nanophosphors as a function of the beam energy and observed a dose dependency of the luminescence signal. We demonstrated x-ray luminescence, cathodoluminescence, and ionoluminescence of the nanophosphors in clinical ionizing radiation fields, which indicates their potential as downconverters of high-energy radiation into visible light.

  11. Single ionization and capture cross sections from biological molecules by bare projectile impact*

    NASA Astrophysics Data System (ADS)

    Quinto, Michele A.; Monti, Juan M.; Montenegro, Pablo D.; Fojón, Omar A.; Champion, Christophe; Rivarola, Roberto D.

    2017-02-01

    We report calculations on single differential and total cross sections for single ionization and single electron capture from biological targets, namely, vapor water and DNA nucleobasese molecules, by bare projectile impact: H+, He2+, and C6+. They are performed within the Continuum Distorted Wave - Eikonal Initial State approximation and compared to several existing experimental data. This study is oriented to the obtention of a reliable set of theoretical data to be used as input in a Monte Carlo code destined to micro- and nano- dosimetry.

  12. Single, double and triple ionization of tetraphenyl iron(III) porphyrin chloride

    NASA Astrophysics Data System (ADS)

    Feil, S.; Winkler, M.; Sulzer, P.; Ptasinska, S.; Denifl, S.; Zappa, F.; Krautler, B.; Mark, T. D.; Scheier, P.

    2006-09-01

    Tetraphenyl iron(III) porphyrin chloride (FeTPPCl) cations are generated in the gas phase by electron impact ionization. The ionization is accompanied by extensive fragmentation as well as formation of doubly and triply charged ions. The most prominent fragments are analyzed and identified by fitting with calculated natural isotope patterns. Appearance energies of the most abundant singly and doubly charged product ions are determined. For the singly charged parent ions FeTPPCl+, CuTPP+ and the fragment ion FeTPP+ we obtain a value of 9.7 +/- 0.5 eV which is about 3 eV higher than the value published for photo ionization of FeTPPCl. The appearance energy of the doubly charged ion FeTPP2+ is obtained to be 18 eV. The additional loss of one or two phenyl groups requires between 10 and 14 eV more for singly and doubly charged ions. Also, the metastable decay of singly and doubly charged ions is investigated with the mass analyzed ion kinetic energy (MIKE) scan technique, performed on a three sector field mass spectrometer (BEE-geometry). In the mass spectrum and the MIKE scans a strongly reduced stability of the porphyrin ions is observed with increasing charge state.

  13. Evidence of strong projectile-target-core interaction in single ionization of neon by electron impact

    SciTech Connect

    Yan, S.; Zhang, P.; Xu, S.; Ma, X.; Zhang, S. F.; Zhu, X. L.; Feng, W. T.; Liu, H. P.

    2010-11-15

    The momentum distributions of recoil ions were measured in the single ionization of neon by electron impact at incident energies between 80 and 2300 eV. It was found that there are a noticeable number of recoil ions carrying large momenta, and the relative contributions of these ions becomes more pronounced with the further decrease of incident electron energy. These observed behaviors indicate that there is a strong projectile-target-core interaction in the single-ionization reaction. By comparing our results with those of electron-neon elastic scattering, we concluded that the elastic scattering of the projectile electron on the target core plays an important role at low and intermediate collision energies.

  14. [Real-time analysis of polyvinyl chloride thermal decomposition/combustion products with single photon ionization/photoelectron ionization online mass spectrometer].

    PubMed

    Chen, Wen-Dong; Hou, Ke-Yong; Chen, Ping; Li, Fang-Long; Zhao, Wu-Duo; Cui, Hua-Peng; Hua, Lei; Xie, Yuan-Yuan; Li, Hai-Yang

    2013-01-01

    With the features of a broad range of ionizable compounds, reduced fragments and simple mass spectrum, a homemade magnetic field enhanced photoelectron ionization (MEPEI) source combined with single photon ionization (SPI) for time-of-flight mass spectrometer was built and applied to analyze thermal decomposition/combustion products of polyvinyl chloride (PVC). The combined ion source can be switched very fast between SPI mode and SPI-MEPEI mode for detecting different targeted compounds, and only adjusting the voltage of the electrode in the ionization region to trigger the switch. Among the PVC thermal decomposition/combustion products, HCl and CO2, which ionization energies (12.74 eV, 13.77 eV respectively) were higher than the energy of photon (10.60 eV), were ionized by MEPEI, while alkenes, dichloroethylene, benzene and its homologs, monochlorobenzene, styrene, indane, naphthalene and its homologs were ionized by SPI and MEPEI simultaneously. Spectra of interested products as a function of temperatures indicated that products are formed via two main mechanisms: (1) dechlorination and intramolecular cyclization can lead to the formation of HCl, benzene and naphthalene at 250-370 degrees C; (2) intermolecular crosslinking leads to the formation of alkyl aromatics such as toluene and xylene/ethylbenzene at 380-510 degrees C. The experimental results show that the combined ion source of SPI/ SPI-MEPEI for TOF-MS has broad application prospects in the online analysis field.

  15. Hyperfine structure and isotope shifts of transitions in neutral and singly ionized ytterbium

    NASA Technical Reports Server (NTRS)

    Berends, R. W.; Maleki, L.

    1992-01-01

    The present experimental investigation of the hyperfine structure and isotopic shifts of transitions in neutral and singly-ionized Yb, which constitute a system of some interest to microwave-frequency standards, used counterpropagating pump and probe laser beams directed through a hollow-cathode discharge lamp. The results obtained are in agreement with previous measurements except in the case of the Yb-173(+) 6 2P0 sub 3/2 state, which is more accurately determined.

  16. All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yuan, Chengqian; Liu, Xianhu; Zeng, Chenghui; Zhang, Hanyu; Jia, Meiye; Wu, Yishi; Luo, Zhixun; Fu, Hongbing; Yao, Jiannian

    2016-02-01

    We report here the development of a reflectron time-of-flight mass spectrometer utilizing single-photon ionization based on an all-solid-state deep ultraviolet (DUV) laser system. The DUV laser was achieved from the second harmonic generation using a novel nonlinear optical crystal KBe2BO3F2 under the condition of high-purity N2 purging. The unique property of this laser system (177.3-nm wavelength, 15.5-ps pulse duration, and small pulse energy at ˜15 μJ) bears a transient low power density but a high single-photon energy up to 7 eV, allowing for ionization of chemicals, especially organic compounds free of fragmentation. Taking this advantage, we have designed both pulsed nanospray and thermal evaporation sources to form supersonic expansion molecular beams for DUV single-photon ionization mass spectrometry (DUV-SPI-MS). Several aromatic amine compounds have been tested revealing the fragmentation-free performance of the DUV-SPI-MS instrument, enabling applications to identify chemicals from an unknown mixture.

  17. All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry.

    PubMed

    Yuan, Chengqian; Liu, Xianhu; Zeng, Chenghui; Zhang, Hanyu; Jia, Meiye; Wu, Yishi; Luo, Zhixun; Fu, Hongbing; Yao, Jiannian

    2016-02-01

    We report here the development of a reflectron time-of-flight mass spectrometer utilizing single-photon ionization based on an all-solid-state deep ultraviolet (DUV) laser system. The DUV laser was achieved from the second harmonic generation using a novel nonlinear optical crystal KBe2BO3F2 under the condition of high-purity N2 purging. The unique property of this laser system (177.3-nm wavelength, 15.5-ps pulse duration, and small pulse energy at ∼15 μJ) bears a transient low power density but a high single-photon energy up to 7 eV, allowing for ionization of chemicals, especially organic compounds free of fragmentation. Taking this advantage, we have designed both pulsed nanospray and thermal evaporation sources to form supersonic expansion molecular beams for DUV single-photon ionization mass spectrometry (DUV-SPI-MS). Several aromatic amine compounds have been tested revealing the fragmentation-free performance of the DUV-SPI-MS instrument, enabling applications to identify chemicals from an unknown mixture.

  18. Ionization of elements in medium power capacitively coupled argon plasma torch with single and double ring electrodes.

    PubMed

    Ponta, Michaela; Frentiu, Maria; Frentiu, Tiberiu

    2012-06-01

    A medium power, low Ar consumption capacitively coupled plasma torch (275 W, 0.4 L min-1) with molybdenum tubular electrode and single or two ring electrodes in non-local thermodynamic equilibrium (LTE) was characterized with respect to its ability to achieve element ionization. Ionization degrees of Ca, Mg, Mn and Cd were determined from ionic-to-atomic emission ratio and ionization equilibrium according to Saha's equation. The ionization degrees resulted from the Saha equation were higher by 9-32% than those obtained from spectral lines intensity in LTE regime and closer to reality. A linear decrease of ionization with increase of ionization energy of elements was observed. Plasma torch with two ring electrodes provided higher ionization degrees (85 ± 7% Ca, 79 ± 7% Mn, 80 ± 7% Mg and 73 ± 8% Cd) than those in single ring arrangement (70 ± 6% Ca, 57 ± 7% Mn, 57 ± 8% Mg and 42 ± 9% Cd). The Ca ionization decreased linearly by up to 79 ± 4% and 53 ± 6% in plasma with two ring electrodes and single ring respectively in the presence of up to 400 µg mL-1 Na as interferent. The studied plasma was effective in element ionization and could be a potential ion source in mass spectrometry.

  19. Rare-earth distribution behaviour and lattice parameter changes on rare-earth substituted garnet single crystals

    NASA Astrophysics Data System (ADS)

    Kimura, H.; Numazawa, T.; Sato, M.

    1994-08-01

    The selection of rare-earth substituted Ga and Al garnets in solid solution and their growth to single crystals using the conventional Czochralski technique is described. The crystals grown were investigated for their distribution behavior and lattice parameter changes in order to understand their characteristics in the solid solution. Investigation was by means of an ICP chemical analysis and X-ray diffraction analysis with powdered samples ground from wafers taken from both the tops and tails of the crystals grown.

  20. Method for harvesting rare earth barium copper oxide single crystals

    DOEpatents

    Todt, Volker R.; Sengupta, Suvankar; Shi, Donglu

    1996-01-01

    A method of preparing high temperature superconductor single crystals. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid.

  1. Method for harvesting rare earth barium copper oxide single crystals

    DOEpatents

    Todt, V.R.; Sengupta, S.; Shi, D.

    1996-04-02

    A method of preparing high temperature superconductor single crystals is disclosed. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid. 2 figs.

  2. Fast detection of narcotics by single photon ionization mass spectrometry and laser ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Laudien, Robert; Schultze, Rainer; Wieser, Jochen

    2010-10-01

    In this contribution two analytical devices for the fast detection of security-relevant substances like narcotics and explosives are presented. One system is based on an ion trap mass spectrometer (ITMS) with single photon ionization (SPI). This soft ionization technique, unlike electron impact ionization (EI), reduces unwanted fragment ions in the mass spectra allowing the clear determination of characteristic (usually molecular) ions. Their enrichment in the ion trap and identification by tandem MS investigations (MS/MS) enables the detection of the target substances in complex matrices at low concentrations without time-consuming sample preparation. For SPI an electron beam pumped excimer light source of own fabrication (E-Lux) is used. The SPI-ITMS system was characterized by the analytical study of different drugs like cannabis, heroin, cocaine, amphetamines, and some precursors. Additionally, it was successfully tested on-site in a closed illegal drug laboratory, where low quantities of MDMA could be directly detected in samples from floors, walls and lab equipments. The second analytical system is based on an ion mobility (IM) spectrometer with resonant multiphoton ionization (REMPI). With the frequency quadrupled Nd:YAG laser (266 nm), used for ionization, a selective and sensitive detection of aromatic compounds is possible. By application of suited aromatic dopants, in addition, also non-aromatic polar compounds are accessible by ion molecule reactions like proton transfer or complex formation. Selected drug precursors could be successfully detected with this device as well, qualifying it to a lower-priced alternative or useful supplement of the SPI-ITMS system for security analysis.

  3. Nanophotonic ionization for ultratrace and single-cell analysis by mass spectrometry.

    PubMed

    Walker, Bennett N; Stolee, Jessica A; Vertes, Akos

    2012-09-18

    Recent mechanistic studies have indicated that at subwavelength post diameters and selected aspect ratios nanopost arrays (NAPA) exhibit ion yield resonances ( Walker , B. N. , Stolee , J. A. , Pickel , D. L. , Retterer , S. T. , and Vertes , A. J. Phys. Chem. C 2010 , 114 , 4835 - 4840 ). In this contribution we explore the analytical utility of these optimized structures as matrix-free platforms for laser desorption ionization mass spectrometry (LDI-MS). Using NAPA, we show that high ionization efficiencies enable the detection of ultratrace amounts of analytes (e.g., ∼800 zmol of verapamil) with a dynamic range spanning up to 4 orders of magnitude. Due to the clean nanofabrication process and the lack of matrix material, minimal background interferences are present in the low-mass range. We demonstrate that LDI from NAPA ionizes a broad class of small molecules including pharmaceuticals, natural products, metabolites, and explosives. Quantitation of resveratrol in red wine samples shows that the analysis of targeted analytes in complex mixtures is feasible with minimal sample preparation using NAPA-based LDI. We also describe how multiple metabolite species can be directly detected in single yeast cells deposited on the NAPA chip. Twenty-four metabolites, or 4% of the yeast metabolome, were identified in the single-cell spectra.

  4. Vacuum ultraviolet lamp based magnetic field enhanced photoelectron ionization and single photon ionization source for online time-of-flight mass spectrometry.

    PubMed

    Wu, Qinghao; Hua, Lei; Hou, Keyong; Cui, Huapeng; Chen, Wendong; Chen, Ping; Wang, Weiguo; Li, Jinghua; Li, Haiyang

    2011-12-01

    A magnetic field enhanced photoelectron ionization (MEPEI) source combined with single photon ionization (SPI) was developed for an orthogonal acceleration time-of-flight mass spectrometer (oaTOFMS). A commercial radio frequency (rf) powered vacuum ultraviolet (VUV) lamp was used as SPI light source, and the photoelectrons generated by photoelectric effect were accelerated to induce electron ionization (EI). The MEPEI was obtained by applying a magnetic field of about 800 G with a permanent annular magnet. Compared to a nonmagnetic field photoelectron ionization source, the signal intensities for SO(2), SF(6), O(2), and N(2) in MEPEI were improved more than 2 orders with the photoelectron energy around 20 eV, while most of the characteristics of soft ionization still remained. Simulation with SIMION showed that the sensitivity enhancement in MEPEI was ascribed to the increase of the electron moving path and the improvement of the electrons transmission. The limits of detection for SO(2) and benzene were 750 and 80 ppbv within a detection time of 4 s, respectively. The advantages of the source, including broad range of ionizable compounds, reduced fragments, and good sensitivity with low energy MEPEI, were demonstrated by monitoring pyrolysis products of polyvinyl chloride (PVC) and the intermediate products in discharging of the SF(6) gas inpurity.

  5. Detection of singly ionized energetic lunar pick-up ions upstream of earth's bow shock

    NASA Technical Reports Server (NTRS)

    Hilchenbach, M.; Hovestadt, D.; Klecker, B.; Moebius, E.

    1992-01-01

    Singly ionized suprathermal ions upstream of the earth's bow shock have been detected by using the time-of-flight spectrometer SULEICA on the AMPTE/IRM satellite. The data were collected between August and December 1985. The flux of the ions in the mass range between 23 and 37 amu is highly anisotropic towards the earth. The ions are observed with a period of about 29 days around new moon (+/- 3 days). The correlation of the energy of the ions with the solar wind speed and the interplanetary magnetic field orientation indicates the relation to the pick-up process. We conclude that the source of these pick-up ions is the moon. We argue that due to the impinging solar wind, atoms are sputtered off the lunar surface, ionized in the sputtering process or by ensuing photoionization and picked up by the solar wind.

  6. EXTENDED ANALYSIS OF THE SPECTRUM OF SINGLY IONIZED CHROMIUM (Cr II)

    SciTech Connect

    Sansonetti, Craig J.; Nave, Gillian

    2014-08-01

    We have made new observations of the spectrum of singly ionized chromium (Cr II) in the region 2850-37900 Å with the National Institute of Standards and Technology 2 m Fourier transform spectrometer. These data extend our previously reported observations in the near-ultra-violet region. We present a comprehensive list of more than 5300 Cr II lines classified as transitions among 456 even and 457 odd levels, 179 of which are newly located in this work. Using highly excited levels of the 3d {sup 4}({sup 5} D)5g, 3d {sup 4}({sup 5} D)6g, and 3d {sup 4}({sup 5}D)6h configurations, we derive an improved ionization energy of 132971.02 ± 0.12 cm{sup –1} (16.486305 ± 0.000015 eV)

  7. Extended Analysis of the Spectrum of Singly Ionized Chromium (Cr II)

    NASA Astrophysics Data System (ADS)

    Sansonetti, Craig J.; Nave, Gillian

    2014-08-01

    We have made new observations of the spectrum of singly ionized chromium (Cr II) in the region 2850-37900 Å with the National Institute of Standards and Technology 2 m Fourier transform spectrometer. These data extend our previously reported observations in the near-ultra-violet region. We present a comprehensive list of more than 5300 Cr II lines classified as transitions among 456 even and 457 odd levels, 179 of which are newly located in this work. Using highly excited levels of the 3d 4(5 D)5g, 3d 4(5 D)6g, and 3d 4(5D)6h configurations, we derive an improved ionization energy of 132971.02 ± 0.12 cm-1 (16.486305 ± 0.000015 eV).

  8. Photon-number-resolved asymmetric dissociative single ionization of H2

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbin; Li, Hui; Lin, Kang; Lu, Peifen; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Ma, Junyang; Li, Hanxiao; Zeng, Heping; He, Feng; Wu, Jian

    2017-09-01

    The electron-nuclear joint energy spectrum allows one to unambiguously count the total number of photons absorbed by the electrons and nuclei of a molecule. Driven by phase-controlled, linearly polarized two-color femtosecond laser pulses, we experimentally demonstrate that the asymmetric bond breaking of a singly ionized H2 depends on the total number of photons absorbed by the molecule in the ionization and dissociation processes. The accessibilities of different dissociation pathways and their interference-induced asymmetric electron localization as a function of the absorbed photons are retrieved. Our results strengthen the understanding of the directional bond breaking of a molecule from the aspect of the correlated electron-nuclear dynamics.

  9. Superelastic rescattering in single ionization of helium in strong laser fields

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Chao; Jaron-Becker, Agnieszka; He, Feng

    2016-10-01

    Rescattering is a central process in ultrafast physics, in which an electron, freed from an atom and accelerated by a laser field, loses its energy by producing high-order harmonics or multiple ionization. Here, taking helium as a prototypical atom, we demonstrate numerically superelastic rescattering in single ionization of an atom. In this scenario, the absorption of a high-energy extreme ultraviolet photon leads to emission of one electron and excitation of the second one into its first excited state, forming He+*. A time-delayed midinfrared laser pulse accelerates the freed electron, drives it back to the He+*, and induces the transition of the bound electron to the ground state of the ion. Identification of the superelastic rescattering process in the photoelectron momentum spectra provides a means to determine the photoelectron momentum at the time of rescattering without using any information of the time-delayed probe laser pulse.

  10. Doubly differential single and multiple ionization of krypton by electron impact

    SciTech Connect

    Lucio, O. G. de; Gavin, J.; DuBois, R. D.

    2007-05-15

    Differential measurements for single and multiple ionization of Kr by 240 and 500 eV electron impact are presented. Using a pulsed extraction field, Kr{sup +}, Kr{sup 2+}, and Kr{sup 3+} ions were measured in coincidence with scattered electrons for energy losses up to 120 eV and scattering angles between 16 degree sign and 90 degree sign . Scaling properties of the doubly differential cross sections (DDCS) are investigated as a function of energy loss, scattering angle, and momentum transfer. It is shown that scaling the DDCS as outlined by Kim and Inokuti and plotting them versus a parameter consisting of the momentum transfer divided by the square root of the impact energy times 1-cos({theta}), where {theta} is the scattering angle, yielded similar curves, but with different magnitudes, for single and multiple ionization. Normalizing these curves together produced two universal curves, one appropriate for single and multiple electron emission at larger scattering angles ({theta}{>=}30 degree sign ) and one appropriate for small scattering angles ({theta}<30 degree sign )

  11. Application and field test of a mobile thermal desorption - single photon ionization - ion trap mass spectrometer (TD-SPI-ITMS) for trace detection of security relevant substances

    NASA Astrophysics Data System (ADS)

    Schramm, Elisabeth; Heindl, Thomas; Hölzer, Jasper; McNeish, Alexander; Puetz, Michael; Ries, Hermann; Schall, Patricia; Schulte-Ladbeck, Rasmus; Schultze, Rainer; Sklorz, Martin; Spieker, Gerd; Trebbe, Roman; Ulrich, Andreas; Wieser, Jochen; Zimmermann, Ralf

    2009-05-01

    The objective of this accomplished project funded by the German BMBF was to develop a single photon ionization ion trap mass spectrometer (SPI-ITMS) for detection of security relevant substances in complex matrices at low concentrations. The advantage of such a soft ionization technique is a reduction of target ion fragmentation allowing identification of signals from complex matrices and enabling MS/MS capability. To obtain low detection limits, the applied photon energy has to be below the ionization potential (IP) of the bulk matrix components. Therefore, photon energies between 8 eV (155 nm) and 12 eV (103 nm) are necessary which was achieved with newly developed electron beam excimer lamps (EBEL). They generate light at different wavelengths depending on the selected rare gas emitting wavelengths adapted to the analyzed substances. So, e.g. with a krypton-EBEL with 8.4 eV photon energy most narcotics can be ionized without notable fragmentation. Due to their higher IPs, EBEL with higher photon energy have to be used for most explosives. Very low false-positive and false-negative rates have been achieved using MS/MS studies. First field tests of a demonstrator provided the proof of principle.

  12. COMPREHENSIVE OBSERVATIONS OF THE ULTRAVIOLET SPECTRUM AND IMPROVED ENERGY LEVELS FOR SINGLY IONIZED CHROMIUM (Cr II)

    SciTech Connect

    Sansonetti, Craig J.; Nave, Gillian; Reader, Joseph; Kerber, Florian

    2012-10-15

    We report new observations of the spectrum of singly ionized chromium (Cr II) in the region 1142-3954 A. The spectra were recorded with the National Institute of Standards and Technology 10.7 m normal-incidence vacuum spectrograph and FT700 vacuum ultraviolet Fourier transform spectrometer. More than 3600 lines are classified as transitions among 283 even and 368 odd levels. The new spectral data are used to re-optimize the energy levels, reducing their uncertainties by a typical factor of 20.

  13. Comprehensive Observations of the Ultraviolet Spectrum and Improved Energy Levels for Singly Ionized Chromium (Cr II)

    NASA Astrophysics Data System (ADS)

    Sansonetti, Craig J.; Nave, Gillian; Reader, Joseph; Kerber, Florian

    2012-10-01

    We report new observations of the spectrum of singly ionized chromium (Cr II) in the region 1142-3954 Å. The spectra were recorded with the National Institute of Standards and Technology 10.7 m normal-incidence vacuum spectrograph and FT700 vacuum ultraviolet Fourier transform spectrometer. More than 3600 lines are classified as transitions among 283 even and 368 odd levels. The new spectral data are used to re-optimize the energy levels, reducing their uncertainties by a typical factor of 20.

  14. Properties of Hollow Molecules Probed by Single-Photon Double Ionization

    SciTech Connect

    Lablanquie, P.; Penent, F.; Palaudoux, J.; Selles, P.; Carniato, S.; Andric, L.; Bucar, K.; Zitnik, M.; Huttula, M.; Eland, J. H. D.; Shigemasa, E.; Soejima, K.; Hikosaka, Y.; Suzuki, I. H.; Nakano, M.; Ito, K.

    2011-02-11

    The formation of hollow molecules (with a completely empty K shell in one constituent atom) through single-photon core double ionization has been demonstrated using a sensitive magnetic bottle experimental technique combined with synchrotron radiation. Detailed properties are presented such as the spectroscopy, formation, and decay dynamics of the N{sub 2}{sup 2+} K{sup -2} main and satellite states and the strong chemical shifts of double K holes on an oxygen atom in CO, CO{sub 2}, and O{sub 2} molecules.

  15. Comprehensive Wavelengths, Energy Levels, and Hyperfine Structure Parameters of Singly-Ionized Iron-Group Elements

    NASA Astrophysics Data System (ADS)

    Nave, Gillian

    We propose to measure wavelengths, energy levels, and hyperfine structure parameters of Ni II, Mn II, Sc II and other singly-ionized iron-group elements, covering the wavelength range 80 nm to 5500 nm. We shall use archival data from spectrometers at NIST and Kitt Peak National Observatory for spectra above 140 nm. Additional experimental observations will be taken if needed using Fourier transform spectrometers at NIST. Spectra will be taken using our normal incidence grating spectrograph to provide better sensitivity than the FT spectra and to extend the wavelength range down to 80 nm. We aim to produce a comprehensive description of the spectra of all singly-ionized iron- group elements. The wavelength uncertainty of the strong lines will be better than 1 part in 10^7. For most singly-ionized iron-group elements available laboratory data have uncertainties an order of magnitude larger than astronomical observations over wide spectra ranges. Some of these laboratory measurements date back to the 1960's. Since then, Fourier transform spectroscopy has made significant progress in improving the accuracy and quantity of data in the UV-vis-IR region, but high quality Fourier transform spectra are still needed for Mn II, Ni II and Sc II. Fourier transform spectroscopy has low sensitivity in the VUV region and is limited to wavelengths above 140 nm. Spectra measured with high-resolution grating spectrographs are needed in this region in order to obtain laboratory data of comparable quality to the STIS and COS spectrographs on the Hubble Space Telescope. Currently, such data exist only for Fe II and Cr II. Lines of Sc II, V II, and Mn II show hyperfine structure, but hyperfine structure parameters have been measured for relatively few lines of these elements. Significant errors can occur if hyperfine structure is neglected when abundances are determined from stellar spectra. Measurements of hyperfine structure parameters will be made using Fourier transform spectroscopy

  16. Single photon ionization and chemical ionization combined ion source based on a vacuum ultraviolet lamp for orthogonal acceleration time-of-flight mass spectrometry.

    PubMed

    Hua, Lei; Wu, Qinghao; Hou, Keyong; Cui, Huapeng; Chen, Ping; Wang, Weiguo; Li, Jinghua; Li, Haiyang

    2011-07-01

    A novel combined ion source based on a vacuum ultraviolet (VUV) lamp with both single photon ionization (SPI) and chemical ionization (CI) capabilities has been developed for an orthogonal acceleration time-of-flight mass spectrometer (oaTOFMS). The SPI was accomplished using a commercial 10.6 eV krypton discharge lamp with a photon flux of about 10(11) photons s(-1), while the CI was achieved through ion-molecule reactions with O(2)(+) reactant ions generated by photoelectron ionization at medium vacuum pressure (MVP). To achieve high ionization efficiency, the ion source pressure was elevated to 0.3 mbar and the photoionization length was extended to 36 mm. As a result, limits of detection (LODs) down to 3, 4, and 6 ppbv were obtained for benzene, toluene, and p-xylene in MVP-SPI mode, and values of 8 and 10 ppbv were obtained for toluene and chloroform, respectively, in SPI-CI mode. As it is feasible to switch between MVP-SPI mode and SPI-CI mode rapidly, this system is capable of monitoring complex organic mixtures with a wide range of ionization energies (IEs). The analytical capacity of this system was demonstrated by measuring dehydrogenation products of long-chain paraffins to olefins through direct capillary sampling and drinking water disinfection byproducts from chlorine through a membrane interface.

  17. In situ metabolic profiling of single cells by laser ablation electrospray ionization mass spectrometry.

    PubMed

    Shrestha, Bindesh; Vertes, Akos

    2009-10-15

    Depending on age, phase in the cell cycle, nutrition, and environmental factors, individual cells exhibit large metabolic diversity. To explore metabolic variations in cell populations, laser ablation electrospray ionization (LAESI) mass spectrometry (MS) was used for the in situ analysis of individual cells at atmospheric pressure. Single cell ablation was achieved by delivering mid-IR laser pulses through the etched tip of a GeO(2)-based glass fiber. Metabolic analysis was performed from single cells and small cell populations of Allium cepa and Narcissus pseudonarcissus bulb epidermis, as well as single eggs of Lytechinus pictus. Of the 332 peaks detected for A. cepa, 35 were assigned to metabolites with the help of accurate ion masses and tandem MS. The metabolic profiles from single cells of the two plant species included a large variety of oligosaccharides including possibly fructans in A. cepa, and alkaloids, e.g., lycorine in N. pseudonarcissus. Analysis of adjacent individual cells with a difference in pigmentation showed that, in addition to essential metabolites found in both variants, the pigmented cells contained anthocyanidins, other flavonoids, and their glucosides. Analysis of single epidermal cells from different scale leaves in an A. cepa bulb showed metabolic differences corresponding to their age. Our results indicate the feasibility of using LAESI-MS for the in situ analysis of metabolites in single cells with potential applications in studying cell differentiation, changes due to disease states, and response to xenobiotics.

  18. Rare Earth Doped Silica Nanoparticles via Thermolysis of a Single Source Metallasilsesquioxane Precursor

    PubMed Central

    Davies, Gemma-Louise; O’Brien, John; Gun’ko, Yurii K.

    2017-01-01

    Rare earth metal doped silica nanoparticles have significant advantages over traditional organic dyes and quantum dots. Silsesquioxanes are promising precursors in the production of silica nanoparticles by thermolysis, due to their structural similarities with silica materials. This manuscript describes the production of a new Eu3+-based metallasilsesquioxane species and its use as a single source precursor in the thermolytic production of luminescent rare earth metal doped silica nanoparticles with characteristic emission in the visible region of the spectrum. PMID:28378754

  19. Rare Earth Doped Silica Nanoparticles via Thermolysis of a Single Source Metallasilsesquioxane Precursor

    NASA Astrophysics Data System (ADS)

    Davies, Gemma-Louise; O'Brien, John; Gun'Ko, Yurii K.

    2017-04-01

    Rare earth metal doped silica nanoparticles have significant advantages over traditional organic dyes and quantum dots. Silsesquioxanes are promising precursors in the production of silica nanoparticles by thermolysis, due to their structural similarities with silica materials. This manuscript describes the production of a new Eu3+-based metallasilsesquioxane species and its use as a single source precursor in the thermolytic production of luminescent rare earth metal doped silica nanoparticles with characteristic emission in the visible region of the spectrum.

  20. Rare Earth Doped Silica Nanoparticles via Thermolysis of a Single Source Metallasilsesquioxane Precursor.

    PubMed

    Davies, Gemma-Louise; O'Brien, John; Gun'ko, Yurii K

    2017-04-05

    Rare earth metal doped silica nanoparticles have significant advantages over traditional organic dyes and quantum dots. Silsesquioxanes are promising precursors in the production of silica nanoparticles by thermolysis, due to their structural similarities with silica materials. This manuscript describes the production of a new Eu(3+)-based metallasilsesquioxane species and its use as a single source precursor in the thermolytic production of luminescent rare earth metal doped silica nanoparticles with characteristic emission in the visible region of the spectrum.

  1. Qualitative and quantitative metabolomic investigation of single neurons by capillary electrophoresis electrospray ionization mass spectrometry

    PubMed Central

    Nemes, Peter; Rubakhin, Stanislav S.; Aerts, Jordan T.; Sweedler, Jonathan V.

    2013-01-01

    Single-cell mass spectrometry (MS) empowers metabolomic investigations by decreasing analytical dimensions to the size of individual cells and subcellular structures. We describe a protocol for investigating and quantifying metabolites in individual isolated neurons using single-cell capillary electrophoresis hyphenated to electrospray ionization time-of-flight MS. The protocol requires ~2 h for sample preparation, neuron isolation, and metabolite extraction, and 1 h for metabolic measurement. The approach was used to detect more than 300 distinct compounds in the mass range of typical metabolites in various individual neurons (25–500-µm in diameter) isolated from the sea slug (Aplysia californica) central and rat (Rattus norvegicus) peripheral nervous systems. A subset of identified compounds was sufficient to reveal metabolic differences among freshly isolated neurons of different types and changes in the metabolite profiles of cultured neurons. The protocol can be applied to the characterization of the metabolome in a variety of smaller cells and/or subcellular domains. PMID:23538882

  2. Electron capture and single ionization in H+ + Ar collisions: classical calculations

    NASA Astrophysics Data System (ADS)

    Frémont, F.

    2016-03-01

    A classical model is used to study electron capture and single ionization (SI) following H+ + Ar collisions at projectile energies varying from 400 to 40 keV. In the present model, the Ar electrons are treated independently from each other, and only the 3s and 3p electrons are supposed to be captured by the projectile. In addition, a Coulombic potential with an effective charge Z eff = 6.75, derived from Slater rules, is used in the calculations to simulate the screening of the Ar nucleus due to the presence of the core and 2l electrons. Total cross sections for single electron capture and SI are calculated and compared with previous experiments and earlier calculations based on a semiclassical approach. The reasonable agreement we observed allows a preliminary study of double electron capture (DC). The total cross section for DC is found to be much larger than the experimental one. Possible reasons for this disagreement are discussed.

  3. Primary Mandibular First Molar with Single Root and Single Canal: A Case Report of a Rare Morphology

    PubMed Central

    Bahrololoomi, Zahra; Ghafourifard, Roya; Soleimani, Ali Asghar

    2014-01-01

    Single rooted primary mandibular first molar is a rare developmental anomaly. Literatures reveal that failure of invagination of Hertwig’s epithelial root sheath leads to this unusual root form. Thorough knowledge of root canal morphology and anatomical variations of primary teeth can help a pediatric dentist in successful root canal treatment. Hereby, we describe two cases of primary mandibular first molars with an unusual morphology as a single root called pyramidal molar. PMID:25628671

  4. Single-photon double and triple ionization of acetaldehyde (ethanal) studied by multi-electron coincidence spectroscopy

    NASA Astrophysics Data System (ADS)

    Zagorodskikh, S.; Zhaunerchyk, V.; Mucke, M.; Eland, J. H. D.; Squibb, R. J.; Karlsson, L.; Linusson, P.; Feifel, R.

    2015-12-01

    Single-photon multiple ionization processes of acetaldehyde (ethanal) have been experimentally investigated by utilizing a multi-particle coincidence technique based on the time-of-flight magnetic bottle principle, in combination with either a synchrotron radiation source or a pulsed helium discharge lamp. The processes investigated include double and triple ionization in the valence region as well as single and double Auger decay of core-ionized acetaldehyde. The latter are studied site-selectively for chemically different carbon core vacancies, scrutinizing early theoretical predictions specifically made for the case of acetaldehyde. Moreover, Auger processes in shake-up and core-valence ionized states are investigated. In the cases where the processes involve simultaneous emission of two electrons, the distributions of the energy sharing are presented, emphasizing either the knock-out or shake-off mechanism.

  5. Nondestructive photon detection using a single rare-earth ion coupled to a photonic cavity

    NASA Astrophysics Data System (ADS)

    O'Brien, Chris; Zhong, Tian; Faraon, Andrei; Simon, Christoph

    2016-10-01

    We study the possibility of using single rare-earth ions coupled to a photonic cavity with high cooperativity for performing nondestructive measurements of photons, which would be useful for global quantum networks and photonic quantum computing. We calculate the achievable fidelity as a function of the parameters of the rare-earth ion and photonic cavity, which include the ion's optical and spin dephasing rates, the cavity linewidth, the single-photon coupling to the cavity, and the detection efficiency. We suggest a promising experimental realization using current state-of-the-art technology in Nd:YVO4.

  6. A laser desorption-electron impact ionization ion trap mass spectrometer for real-time analysis of single atmospheric particles

    NASA Astrophysics Data System (ADS)

    Simpson, E. A.; Campuzano-Jost, P.; Hanna, S. J.; Robb, D. B.; Hepburn, J. H.; Blades, M. W.; Bertram, A. K.

    2009-04-01

    A novel aerosol ion trap mass spectrometer combining pulsed IR laser desorption with electron impact (EI) ionization for single particle studies is described. The strengths of this instrument include a two-step desorption and ionization process to minimize matrix effects; electron impact ionization, a universal and well-characterized ionization technique; vaporization and ionization inside the ion trap to improve sensitivity; and an ion trap mass spectrometer for MSn experiments. The instrument has been used for mass spectral identification of laboratory generated pure aerosols in the 600 nm-1.1 [mu]m geometric diameter range of a variety of aromatic and aliphatic compounds, as well as for tandem mass spectrometry studies (up to MS3) of single caffeine particles. We investigate the effect of various operational parameters on the mass spectrum and fragmentation patterns. The single particle detection limit of the instrument was found to be a 325 nm geometric diameter particle (8.7 × 107 molecules or 22 fg) for 2,4-dihydroxybenzoic acid. Lower single particle detection limits are predicted to be attainable by modifying the EI pulse. The use of laser desorption-electron impact (LD-EI) in an ion trap is a promising technique for determining the size and chemical composition of single aerosol particles in real time.

  7. X-Ray Gas Ionization Studies with a Single-Walled Nanotube (SWNT) Sensor

    NASA Astrophysics Data System (ADS)

    Asare Agyapong, Paul

    Due to their high surface areas, Single-Walled Nanotubes (SWNTs) and their thin films, are wonderful media for sensing applications. To establish the radiation sensing mechanism and limits of an SWNT ion sensor, we performed gas ionization studies with an Amptek Mini-x x-ray source. We irradiated the sensor under varying conditions of source to sensor distance, gas concentration, and fill-gas type. The mechanism of the SWNT sensor, which is responsive to the gaseous ions the radiation generates, resembles that of conventional gas filled detectors with reduced power requirements. Additionally, the small size of the sensor favors the development of miniaturized and portable radiation detectors which retain high sensitivity. Sensor responsiveness to radiation, such as x-rays and gamma rays, can be maximized by enclosure in various noble gasses, which are chemically non-reactive, have small magnitudes of ionization potentials, and readily produce charged species when subjected to radiation. When encapsulated with gaseous argon, the SWNT sensors were shown to be up to 246% more sensitive to 1.34 Sv dose of 20 keV x-rays than sensors enclosed in air. The dependence of the sensors' electrical response to fill-gas material helps to push the minimum detection capabilities of this technology to new limits. Optimal performance may result through the use of more readily ionized gasses such as xenon or penning gas mixtures. Through Monte Carlo simulation and PIN diode measurements, the x-ray source intensity was determined and used to establish exposure rates for each test case. These sensors display changes in resistivity when exposed to charged ions, with no direct response to x-rays, gamma rays, and neutron radiation particles.

  8. Irradiation Damage in Gd2Ti2O7 Single Crystals: Ballistic vs Ionization Processes

    SciTech Connect

    Moll, Sandra; Sattonnay, Gael; Thome, Lionel; Jagielski, Jacek; Decorse, C; Simon, Patrick; Monnet, Isabelle; Weber, William J

    2011-01-01

    The structural transformations induced in Gd2Ti2O7 single crystals irradiated at high energies (870 MeV Xe), where ionization processes (electronic stopping) dominate, and at low energies (4 MeV Au), where ballistic processes (nuclear stopping) dominate, have been studied via the combination of Rutherford backscattering spectrometry and channeling, Raman spectroscopy and transmission electron microscopy experiments. At high energy, amorphization occurs directly in individual ion tracks from the extreme electronic energy deposition from ionization, and full amorphization results from the overlapping of these tracks as described by a direct impact model. The track diameters determined from RBS/C and TEM data lie in the range 6-8 nm. At low energy, amorphization occurs via indirect processes, driven by ballistic nuclear energy deposition from the ions, that is accounted for in the framework of both the direct-impact/defect stimulated and multi-step damage accumulation models. The ion fluence for total amorphization of the irradiated layer is much higher (0.5 ion nm-2) at low energy than at high energy (0.05 ion nm-2), consistent with the nuclear stopping at low energy (5.2 keV/nm) compared to the electronic stopping at high energy (29 keV/nm).

  9. Critically Evaluated Energy Levels, Spectral Lines, Transition Probabilities, and Intensities of Singly Ionized Vanadium (V ii)

    NASA Astrophysics Data System (ADS)

    Saloman, Edward B.; Kramida, Alexander

    2017-08-01

    The energy levels, observed spectral lines, and transition probabilities of singly ionized vanadium, V ii, have been compiled. The experimentally derived energy levels belong to the configurations 3d 4, 3d 3 ns (n = 4, 5, 6), 3d 3 np, and 3d 3 nd (n = 4, 5), 3d 34f, 3d 24s 2, and 3d 24s4p. Also included are values for some forbidden lines that may be of interest to the astrophysical community. Experimental Landé g-factors and leading percentages for the levels are included when available, as well as Ritz wavelengths calculated from the energy levels. Wavelengths and transition probabilities are reported for 3568 and 1896 transitions, respectively. From the list of observed wavelengths, 407 energy levels are determined. The observed intensities, normalized to a common scale, are provided. From the newly optimized energy levels, a revised value for the ionization energy is derived, 118,030(60) cm-1, corresponding to 14.634(7) eV. This is 130 cm-1 higher than the previously recommended value from Iglesias et al.

  10. Single and double ionization of helium by the impact of fast charged particles

    NASA Astrophysics Data System (ADS)

    Jones, S.; Madison, D. H.; Macek, Joseph H.

    2005-12-01

    A survey of the recent literature shows that paradoxes abound in electron- and ion-impact ionization of helium. For example, Schulz et al. [M. Schulz, R. Moshammer, D. Fischer, H. Kollmus, D.H. Madison, S. Jones, J. Ullrich, Nature 422 (2003) 48] found that first-Born and three-body distorted-wave (3DW) theories reproduced their data for single ionization of helium by very fast fully stripped carbon ions in the scattering plane, but not outside the scattering plane. For much slower impacting carbon ions, however, Madison et al. [D.H. Madison, D. Fischer, M. Foster, M. Schulz, R. Moshammer, S. Jones, J. Ullrich, Phys. Rev. Lett. 91 (2003) 253201] found good agreement between 3DW theory and experiment, even outside the scattering plane. This creates a dilemma, since distorted-wave perturbation theories are generally thought to improve with increasing, not decreasing, projectile speed! In this contribution, we will address these and other issues, and suggest possible ways of proceeding.

  11. Comparison of plasma excitation, ionization, and energy influx in single and dual frequency capacitive discharges

    NASA Astrophysics Data System (ADS)

    Sahu, B. B.; Han, Jeon G.

    2016-12-01

    Argon (Ar) plasma characteristics in a single and dual-frequency (DF), capacitively coupled plasma processing system are compared for drive frequencies 13.56 MHz, 320 MHz and their mixture as dual frequencies (DF). We present frequency dependent changes that occur in discharges in terms of plasma parameters such as plasma density, electron temperature, electron energy distribution function, optical emission, gas temperature, and metastable Ar density in a pressure range of 10-150 mTorr. Additionally, this work also presents the formulation and characterization of energy fluxes from plasma to a substrate/probe during the plasma generation. By variation of the operating pressure and plasma excitation frequency, the different contributions originating from the kinetic energy, the recombination of charge carriers such as electrons and ions at the surface along with the contributions from the neutral and excited species are determined. Data reveals that Ar metastable density in low-frequency radio frequency (RF) plasma is not a strong function of operating pressure even though plasma ionization increases with pressure. However, in the case of high-frequency and DF, the excitation of Ar metastable decreases and ionization increases due to enhanced collisions and efficient electron-neutral momentum/energy transfer. Also, data reveals that energy flux in the low-frequency RF plasmas is very high compared to that of high-frequency and DF operations.

  12. Quantification of Rare Single-Molecule Species Based on Fluorescence Lifetime.

    PubMed

    Liu, Cong; Rastogi, Ajay; Yeh, Hsin-Chih

    2017-04-11

    Single-molecule tracking combined with fluorescence lifetime analysis can be a powerful tool for direct molecular quantification in solution. However, it is not clear what molecular identification accuracy and number of single-molecule tracks are required to achieve a precise quantification of rare molecular species. Here we carry out this calculation based on experimentally obtained single-molecule lifetime data and an unbiased ratio estimator. Our results indicate that even at the molecular identification accuracy of 0.99999, 1.8 million tracks are still required in order to achieve 95% confidence level in rare species quantification with relative error less than ±5%. Our work highlights the fundamental challenges that we are facing in precise single-molecule identification and quantification without amplification.

  13. Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons.

    PubMed

    Habib, Naomi; Li, Yinqing; Heidenreich, Matthias; Swiech, Lukasz; Avraham-Davidi, Inbal; Trombetta, John J; Hession, Cynthia; Zhang, Feng; Regev, Aviv

    2016-08-26

    Single-cell RNA sequencing (RNA-Seq) provides rich information about cell types and states. However, it is difficult to capture rare dynamic processes, such as adult neurogenesis, because isolation of rare neurons from adult tissue is challenging and markers for each phase are limited. Here, we develop Div-Seq, which combines scalable single-nucleus RNA-Seq (sNuc-Seq) with pulse labeling of proliferating cells by 5-ethynyl-2'-deoxyuridine (EdU) to profile individual dividing cells. sNuc-Seq and Div-Seq can sensitively identify closely related hippocampal cell types and track transcriptional dynamics of newborn neurons within the adult hippocampal neurogenic niche, respectively. We also apply Div-Seq to identify and profile rare newborn neurons in the adult spinal cord, a noncanonical neurogenic region. sNuc-Seq and Div-Seq open the way for unbiased analysis of diverse complex tissues.

  14. Simultaneous ESI-APCI+ ionization and fragmentation pathways for nine benzodiazepines and zolpidem using single quadrupole LC-MS.

    PubMed

    Galaon, Toma; Vacaresteanu, Catalina; Anghel, Dan-Florin; David, Victor

    2014-05-01

    Nine important 1,4-benzodiazepines and zolpidem were characterized by liquid chromatography-mass spectrometry using a multimode ionization source able to generate ions using both electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), and a single quadrupole mass analyzer. An optimum chromatographic separation was applied for all target compounds in less than 8 minutes using a Zorbax Eclipse Plus column (100 × 4.6 mm, 3.5 µm) kept at 35°C and a 0.3% HCOOH/ACN/IPA (61:34:5) mobile phase pumped at 1 ml/min. Optimization of LC-MS method generated low limit of quantitation (LOQ) values situated in the range 0.3-20.5 ng/ml. Comparison between differences in method sensitivity, under specified chromatographic conditions, when using ESI-only, APCI-only, and simultaneous ESI-APCI ionization with such a multimode source was discussed. Mixed ESI-APCI(+) mode proved to be the most sensitive ionization generating an average 35% detector response increase compared to ESI-only ionization and 350% detector response increase with respect to APCI-only ionization. Characterization of the nine benzodiazepines and zolpidem concerning their MS fragmentation pathway following 'in-source' collision-induced dissociation is discussed in detail and some general trends regarding these fragmentations are set.

  15. Single-photon double K-shell ionization of low-Z atoms

    NASA Astrophysics Data System (ADS)

    Hoszowska, J.; Kheifets, A. S.; Dousse, J.-Cl; Bray, I.; Cao, W.; Fennane, K.; Kayser, Y.; Kavčič, M.; Szlachetko, J.; Szlachetko, M.

    2010-02-01

    The photon energy dependence of the double K-shell ionization of light atoms is reported. Experimental double-to-single photoionization cross section ratios for Mg, Al, Si and Ca were obtained from measurements of high-resolution x-ray emission spectra. The double photoionization (DPI) cross-sections for K-shell hollow atom production are compared to convergent close-coupling calculations (CCC) for neutral atoms and He-like ions. The relative importance of the initial-state and final-state electron-electron interactions to the K-shell DPI in many-electron atoms and two-electron ions is addressed. Physical mechanisms and scaling laws of the K-shell double photoionization are examined. A semiempirical universal scaling of the DPI cross sections with the effective nuclear charge for neutral atoms 2<=Z<=47 is established.

  16. Characteristics of krypton ion emission from a gas field ionization source with a single atom tip

    NASA Astrophysics Data System (ADS)

    Shichi, Hiroyasu; Matsubara, Shinichi; Hashizume, Tomihiro

    2017-06-01

    A scanning ion beam instrument equipped with a gas field ionization source (GFIS) has been commercialized, but only helium and neon are currently available as GFISs. The characteristics of krypton ion emission from a single atom tip (SAT) have not been reported yet. In this study, the characteristics of krypton ion emission were investigated by field ion microscopy. At 65 K, the krypton ion emission current reached approximately 40 pA, which is 1 order of magnitude higher than that at 130 K. As the krypton gas pressure was increased, the krypton ion current increased. At a pressure of 0.3 Pa, the emission current was anticipated to reach 200 pA, which may be high enough for nanofabrication. The variation of the krypton ion current was as low as 5% in one hour. We concluded that a krypton ion beam instrument equipped with a GFIS will be a powerful tool for nanofabrication.

  17. Energy levels of neutral and singly ionized berkelium, /sup 249/Bk I and II

    SciTech Connect

    Worden, E.F.; Conway, J.G.; Blaise, J.

    1987-09-01

    Energy-level analyses of the observed emission spectrum of berkelium have yielded 179 odd and 186 even levels of neutral berkelium Bk I, and 42 odd and 117 even levels of singly ionized berkelium Bk II. The levels are tabulated with the J value, the g value, the configuration and hyperfine constants A and B, and the width given for many of the levels. The ground states of Bk I and Bk II are (Rn)5f/sup 9/7s/sup 2/ /sup 6/H/sup 0//sub 15/2/ and (Rn)5f/sup 9/7s /sup 7/H/sup 0//sub 8/, respectively. A table lists the lowest level of each identified electronic configuration of Bk I and Bk II.

  18. Single ionization of CH{sub 4} by bare ions: Fully differential cross sections

    SciTech Connect

    Fernandez-Menchero, L.; Otranto, S.

    2010-08-15

    A theoretical study of fully differential cross sections for the single ionization of CH{sub 4} by collisions with H{sup +}, He{sup 2+}, and C{sup 6+} ions at energies in the order of MeV/amu is presented. We work in terms of the Born-3DW model, which considers a non-Coulomb central potential for the interaction of the active electron with the molecular core. Results obtained with the Born-3DW model are compared to those obtained with the Born-C3 model, which assumes this potential as purely Coulombic. The anisotropic potential of the CH{sub 4} molecule is smoothed through an angular integration, and results are averaged over all the possible orientations of the target molecule. Results for the lesser bound molecular orbitals (1T and 2A{sub 1}) are presented and discussed for different projectile momentum transfers for the coplanar geometry.

  19. STORAGE RING CROSS SECTION MEASUREMENTS FOR ELECTRON IMPACT SINGLE AND DOUBLE IONIZATION OF Fe{sup 13+} AND SINGLE IONIZATION OF Fe{sup 16+} AND Fe{sup 17+}

    SciTech Connect

    Hahn, M.; Novotny, O.; Savin, D. W.; Becker, A.; Grieser, M.; Krantz, C.; Repnow, R.; Wolf, A.; Bernhardt, D.; Mueller, A.; Schippers, S.; Spruck, K.; Lestinsky, M.

    2013-04-10

    We report measurements of electron impact ionization for Fe{sup 13+}, Fe{sup 16+}, and Fe{sup 17+} over collision energies from below threshold to above 3000 eV. The ions were recirculated using an ion storage ring. Data were collected after a sufficiently long time that essentially all the ions had relaxed radiatively to their ground state. For single ionization of Fe{sup 13+}, we find that previous single pass experiments are more than 40% larger than our results. Compared to our work, the theoretical cross section recommended by Arnaud and Raymond is more than 30% larger, while that of Dere is about 20% greater. Much of the discrepancy with Dere is due to the theory overestimating the contribution of excitation-autoionization via n = 2 excitations. Double ionization of Fe{sup 13+} is dominated by direct ionization of an inner shell electron accompanied by autoionization of a second electron. Our results for single ionization of Fe{sup 16+} and Fe{sup 17+} agree with theoretical calculations to within the experimental uncertainties.

  20. Single ionization in highly charged ion-atom collisions at low to intermediate velocities

    NASA Astrophysics Data System (ADS)

    Abdallah, Mohammad Abdallah

    1998-11-01

    Single electron ejection from neutral targets (He and Ne) by the impact of low to highly charged ions (p, He+,/ Ne+,/ He2+,/ C6+,/ O8+, and Ne10+) at low to intermediate impact velocities is studied. A novel technique of electron momentum imaging is implemented. In this technique two-dimensional electron momentum distributions are produced in coincidence with recoil ions and projectile ions. In first generation experiments we studied the ejected electron momentum distributions without analyzing recoil ions momentum. This series of experiments revealed a charge-state dependence and velocity dependence that are contradictory to a dominant saddle point ionization mechanism at intermediate velocities. It showed a possibility of an agreement with a saddle centered distributions for low charge states at low collision velocities. To pursue the problem in more detail, we developed a second generation spectrometer which allowed us to fully determine the recoil ions momentum. This allowed us to determine the collision plane, energy loss (Q-value), and impact parameter for every collision that resulted in a single (target) electron ejection. This series of experiments revealed for the first time very marked structure in electron spectra that were impossible to observe in other experiments. These structures indicate the quasi-molecular nature of the collision process even at velocities comparable to the electron 'classical' orbital velocity. For the collisions of p, He+, and He2+ with He, a π-orbital shape of the electron momentum distribution is observed. This indicates the importance of the rotational coupling 2p/sigma/to2p/pi in the initial promotion of the ground state electron. This is followed by further promotions to the continuum. This agrees with the 'classical' description implied by the saddle-point ionization mechanism picture.

  1. Possible detection of singly ionized oxygen in the Type Ia SN 2010kg

    NASA Astrophysics Data System (ADS)

    Barna, B.; Vinko, J.; Silverman, J. M.; Marion, G. H.; Wheeler, J. C.

    2016-04-01

    We present direct spectroscopic modelling of 11 high signal-to-noise ratio observed spectra of the Type Ia supernova (SN) 2010kg, taken between -10 and +5 d with respect to B-maximum. The synthetic spectra, calculated with the SYN++ code, span the range between 4100 and 8500 Å. Our results are in good agreement with previous findings for other Type Ia SNe. Most of the spectral features are formed at or close to the photosphere, but some ions, like Fe II and Mg II, also form features at ˜2000-5000 km s-1 above the photosphere. The well-known high-velocity features of the Ca II IR-triplet as well as Si II λ6355 are also detected. The single absorption feature at ˜4400 Å, which usually has been identified as due to Si III, is poorly fit with Si III in SN 2010kg. We find that the fit can be improved by assuming that this feature is due to either C III or O II, located in the outermost part of the ejecta, ˜4000-5000 km s-1 above the photosphere. Since the presence of C III is unlikely, because of the lack of the necessary excitation/ionization conditions in the outer ejecta, we identify this feature as due to O II. The simultaneous presence of O I and O II is in good agreement with the optical depth calculations and the temperature distribution in the ejecta of SN 2010kg. This could be the first identification of singly ionized oxygen in a Type Ia SN atmosphere.

  2. Double and single ionization of He and other targets studied using cold target recoil momentum spectroscopy

    SciTech Connect

    Doerner, R.; Feagin, J. M.; Brauning, H.; Jagutzki, O.; Jung, M.; Kanter, E. P.; Khemliche, H.; Kravis, S.; Mergel, V.; Prior, M. H.; Schmidt-Boeking, H.; Spielberger, L.; Ullrich, J.; Unverzagt, M.; Vogt, T.

    1997-04-01

    Double ionization of an atom by a single photon is the simplest and most fundamental many-electron process. The ejection of two electrons following the absorption of one photon is strictly prohibited in an independent electron approximation. Thus determining the probability of double photoionization alone is already a challenging test of the understanding of electron-electron correlation. Furthermore, in the slow breakup of a bound system into three charged particles, the final state wave function must represent a high degree of few-body Coulomb correlation involving the simultaneous interaction of all three particles. The case of double photoionization is again particularly well suited to study this problem as the energy and the angular momentum delivered to the system can be very well controlled. Helium, as the most basic three body system, has been the target of extensive studies over the past decades. The purpose of this project has been to study double and single ionization using cold target recoil ion momentum spectroscopy (COLTRIMS). This technique has been widely applied within the area of ion-atom collisions to study the dynamics of energy and momentum transfer in collisions between few-electron systems, and the entire technical machinery has been transferred to photon-atom collisions. The technique uses space- and time-imaging of He{sup +} and He{sup ++} recoil ions created in photon-He collisions to measure the full momentum vector of each ion produced. Event-mode recording is used and a solid angle of nearly 4{pi} is realized, allowing an extremely high data-collection efficiency. In order to reduce the initial momentum spread of the He target a precooled supersonic He jet is used.

  3. Coupled Cluster Studies of Ionization Potentials and Electron Affinities of Single-Walled Carbon Nanotubes.

    PubMed

    Peng, Bo; Govind, Niranjan; Aprà, Edoardo; Klemm, Michael; Hammond, Jeff R; Kowalski, Karol

    2017-02-16

    In this paper, we apply equation-of-motion coupled cluster (EOM-CC) methods in the studies of the vertical ionization potentials (IPs) and electron affinities (EAs) for a series of single-walled carbon nanotubes (SWCNT). The EOM-CC formulations for IPs and EAs employing excitation manifolds spanned by single and double excitations (IP/EA-EOM-CCSD) are used to study the IPs and EAs of the SWCNTs as a function of the nanotube length. Several armchair nanotubes corresponding to C20nH20 models with n = 2-6 have been used in benchmark calculations. In agreement with previous studies, we demonstrate that the electronegativity of C20nH20 systems remains, to a large extent, independent of the nanotube length. We also compare IP/EA-EOM-CCSD results with those obtained with coupled cluster models with single and double excitations corrected by perturbative triples, CCSD(T), and density functional theory (DFT) using global and range-separated hybrid exchange-correlation functionals.

  4. Electron emission from single-electron capture with simultaneous single-ionization reactions in 30-keV/u He{sup 2+}-on-argon collisions

    SciTech Connect

    Ma, X.; Zhang, S. F.; Zhu, X. L.; Feng, W. T.; Li, B.; Liu, H. P.; Zhang, R. T.; Guo, D. L.; Yan, S. C.; Zhang, P. J.; Wang, Q.; Li, C. Y.; Wang, J. G.

    2011-05-15

    Electron emission from the single-electron capture with simultaneous single ionization in 30 keV/u He{sup 2+} on argon was investigated using a reaction microscope, providing the electron energy spectra and momentum distributions. Intensive peaks for electrons with near-zero kinetic energies have been observed. It is demonstrated that mechanisms contributing to the electron emission include direct transfer ionization (DTI), double-electron capture with autoionization (DECA), and single-electron capture with autoionization (SECA) of target. Comparison of resonance energies shows that Ar{sup +} ions in SECA decay mainly through the 3s3p{sup 5}3d states by emitting Auger electrons, and He** in DECA decay through the 2l2l' states. The dependence of electron emission on the transverse momentum exchange has been studied. In the transfer ionization channel studied here, the DTI process dominates the electron emission, and no saddle point electron mechanism has been found.

  5. Electron emission from single-electron capture with simultaneous single-ionization reactions in 30-keV/u He2+-on-argon collisions

    NASA Astrophysics Data System (ADS)

    Ma, X.; Zhang, R. T.; Zhang, S. F.; Zhu, X. L.; Feng, W. T.; Guo, D. L.; Li, B.; Liu, H. P.; Li, C. Y.; Wang, J. G.; Yan, S. C.; Zhang, P. J.; Wang, Q.

    2011-05-01

    Electron emission from the single-electron capture with simultaneous single ionization in 30 keV/u He2+ on argon was investigated using a reaction microscope, providing the electron energy spectra and momentum distributions. Intensive peaks for electrons with near-zero kinetic energies have been observed. It is demonstrated that mechanisms contributing to the electron emission include direct transfer ionization (DTI), double-electron capture with autoionization (DECA), and single-electron capture with autoionization (SECA) of target. Comparison of resonance energies shows that Ar+ ions in SECA decay mainly through the 3s3p53d states by emitting Auger electrons, and He** in DECA decay through the 2l2l' states. The dependence of electron emission on the transverse momentum exchange has been studied. In the transfer ionization channel studied here, the DTI process dominates the electron emission, and no saddle point electron mechanism has been found.

  6. Ultrashort-pulse sources based on single-mode rare-earth-doped fibers

    NASA Astrophysics Data System (ADS)

    Fermann, M. E.

    1994-03-01

    An overview of ultrashort-pulse sources based on single-mode rare-earth-doped fibers is given. A wide range of pulse-generation schemes comprising mode-locked fiber lasers, parametric pulse sources and hybrid diode-fiber amplifier sources are discussed. Both actively and passively mode-locked fiber lasers are described and their specific merits and operation regimes are elucidated. Techniques for improving the spectral quality and the output powers of diode-based systems based on amplification in rare-earth-doped fibers are also reviewed. Finally, applications are discussed and directions for future research are indicated.

  7. Double-differential cross sections for single ionization of simple polyatomic molecules by proton impact

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Halder, S.; Mukherjee, S.; Mandal, C. R.; Purkait, M.

    2017-09-01

    A theoretical study of double-differential cross sections (DDCSs) for single ionization of CH4andNH3 molecules by collision with proton is presented at 0.25, 1, and 2 MeV, respectively. For the final state, we use a continuum distorted wave that contains the product of three-Coulomb distortion due to pairwise Coulombic interactions for which it is called the three-Coulomb wave model. In the entrance channel, the Coulomb distortion between the incoming projectile and the target is taken. In this model, the ground state of the polyatomic molecule is described by means of an accurate one-center molecular wave function, which is a linear combination of atomic orbitals. The contributions of DDCSs for different molecular orbitals of the polyatomic molecules to the spectrum of angular distributions at different electron emission energies have also been analyzed. Generally the preference for ionization depends on the binding energy of the active electron in molecular orbital in the ascending order of loosely bound electrons to more tightly bound electrons. At large ejected electron and projectile energy, the lesser bound electrons in the molecules dominate the DDCS at extreme forward emission angles. The present DDCS results are compared with available experimental and the theoretical findings. In case of ammonia molecules, good agreement is observed at all projectile energies, showing that the present model is sufficient to explain all the experimental data for double-differential cross sections. However, some degree of discrepancy is observed at 2 MeV proton impact for small electron emission angles when CH4 molecular target is considered.

  8. Scaling properties of field ionization of Rydberg atoms in single-cycle THz pulses: 1D considerations

    NASA Astrophysics Data System (ADS)

    Agueny, H.; Chovancova, M.; Hansen, J. P.; Kocbach, L.

    2016-12-01

    In recent experiments of single-cycle field ionization of excited Na(nd) atoms with principal quantum number n\\in [6,15] (Li and Jones 2014 Phys. Rev. Lett. 112 143006) it was shown that the maximum field intensity necessary to ionize 10% of the atoms decreases with increasing n according to an {n}-3 power law dependence. This scaling property at the same ionization probability was confirmed in classical trajectory Monte Carlo calculations. In this work we note that the scaling relation in the experiment is much more general, it is in fact valid for all ionization probabilities. When applied to the emitted electron energies it places a very wide distribution of electron momenta from different initial states onto a narrow range. These aspects are investigated in a one-dimensional model with a 3D hydrogen-like spectrum. Calculations confirm the general {n}-3 scaling relation for the ionization probability and that this particular scaling of the kinetic emission spectrum puts the ejected electron momenta on a narrow common scale. The ionization mechanism itself is identified as quantum mechanical tunneling and the nature of the tunneling process is the direct origin of the scaling law.

  9. Multiplex single-cell quantification of rare RNA transcripts from protoplasts in a model plant system.

    PubMed

    Kadam, Ulhas S; Schulz, Burkhard; Irudayaraj, Joseph M K

    2017-06-01

    Here we demonstrate multiplex and simultaneous detection of four different rare RNA species from plant, Arabidopsis thaliana, using surface-enhanced Raman spectroscopy (SERS) and gold nanoprobes at single-cell resolution. We show the applicability of nanoparticle-based Raman spectroscopic sensor to study intracellular RNA copies. First, we demonstrate that gold-nanoparticles decorated with Raman probes and carrying specific nucleic acid probe sequences can be uptaken by the protoplasts. We confirm the internalization of gold nanoprobes by transmission electron microscopy, inductively-coupled plasma-mass spectrometry and fluorescence imaging. Second, we show the utility of a SERS platform to monitor individual alternatively spliced (AS) variants and miRNA copies within single cells. Finally, the distinctive spectral features of Raman-active dyes were exploited for multiplex analysis of AtPTB2, AtDCL2, miR156a and miR172a. Furthermore, single-cell studies were validated by in vitro quantification and evaluation of nanotoxicity of gold probes. Raman tag functionalized gold nanosensors yielded an approach for the tracking of rare RNAs within the protoplasts. The SERS-based approach for quantification of RNAs has the capability to be a highly sensitive, accurate and discerning method for single-cell studies including AS variants quantification and rare miRNA detection in specific plant species. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  10. Compendium of Single Event Effects, Total Ionizing Dose, and Displacement Damage for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; OBryan, Martha V.; Chen, Dakai; Campola, Michael J.; Casey, Megan C.; Pellish, Jonathan A.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Ladbury, Raymond L.; Berg, Melanie D.; Gigliuto, Robert A.; Boutte, Alvin J.; Cochran, Donna J.; Buchner, Stephen P.; Violette, Daniel P.

    2014-01-01

    We present results and analysis investigating the effects of radiation on a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects (SEE), proton-induced displacement damage (DD), and total ionizing dose (TID). Introduction: This paper is a summary of test results.NASA spacecraft are subjected to a harsh space environment that includes exposure to various types of ionizing radiation. The performance of electronic devices in a space radiation environment is often limited by its susceptibility to single event effects (SEE), total ionizing dose (TID), and displacement damage (DD). Ground-based testing is used to evaluate candidate spacecraft electronics to determine risk to spaceflight applications. Interpreting the results of radiation testing of complex devices is quite difficult. Given the rapidly changing nature of technology, radiation test data are most often application-specific and adequate understanding of the test conditions is critical. Studies discussed herein were undertaken to establish the application-specific sensitivities of candidate spacecraft and emerging electronic devices to single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), single-event transient (SET), TID, enhanced low dose rate sensitivity (ELDRS), and DD effects.

  11. Theoretical and experimental quantification of doubly and singly differential cross sections for electron-induced ionization of isolated tetrahydrofuran molecules

    SciTech Connect

    Champion, Christophe; Quinto, Michele A.; Bug, Marion U.; Baek, Woon Y.; Weck, Philippe F.

    2014-07-29

    Electron-induced ionization of the commonly used surrogate of the DNA sugar-phosphate backbone, namely, the tetrahydrofuran molecule, is here theoretically described within the 1st Born approximation by means of quantum-mechanical approach. Comparisons between theory and recent experiments are reported in terms of doubly and singly differential cross sections.

  12. Theoretical and experimental quantification of doubly and singly differential cross sections for electron-induced ionization of isolated tetrahydrofuran molecules

    DOE PAGES

    Champion, Christophe; Quinto, Michele A.; Bug, Marion U.; ...

    2014-07-29

    Electron-induced ionization of the commonly used surrogate of the DNA sugar-phosphate backbone, namely, the tetrahydrofuran molecule, is here theoretically described within the 1st Born approximation by means of quantum-mechanical approach. Comparisons between theory and recent experiments are reported in terms of doubly and singly differential cross sections.

  13. Compendium of Single Event Effects, Total Ionizing Dose, and Displacement Damage for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; O'Bryan, Martha V.; Chen, Dakai; Campola, Michael J.; Casey, Megan C.; Pellish, Jonathan A.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Ladbury, Raymond L.; Berg, Melanie D.; Gigliuto, Robert A.; Boutte, Alvin J.; Cochran, Donna J.; Buchner, Stephen P.; Violette, Daniel P.

    2014-01-01

    We present results and analysis investigating the effects of radiation on a variety of candidate spacecraft electronics to proton and heavy ion-induced single-event effects (SEE), proton-induced displacement damage (DD), and total ionizing dose (TID). This paper is a summary of test results.

  14. One- and two-photon ionization of DNA single and double helices studied by laser flash photolysis at 266 nm.

    PubMed

    Marguet, Sylvie; Markovitsi, Dimitra; Talbot, Francis

    2006-06-15

    The ionization of the DNA single and double helices (dA)20, (dT)20, (dAdT)10(dAdT)10 and (dA)20(dT)20, induced by nanosecond pulses at 266 nm, is studied by time-resolved absorption spectroscopy. The variation of the hydrated electron concentration with the absorbed laser intensity shows that, in addition to two-photon ionization, one-photon ionization takes place for (dAdT)10(dAdT)10, (dA)20(dT)20 and (dA)20 but not for (dT)20. The spectra of all adenine-containing oligomers at the microsecond time-scale correspond to the adenine deprotonated radical formed in concentrations comparable to that of the hydrated electron. The quantum yield for one-photon ionization of the oligomers (ca. 10(-3)) is higher by at least 1 order of magnitude than that of dAMP, showing clearly that organization of the bases in single and double helices leads to an important lowering of the ionization potential. The propensity of (dAdT)10(dAdT)10, containing alternating adenine-thymine sequences, to undergo one-photon ionization is lower than that of (dA)20(dT)20 and (dA)20, containing adenine runs. Pairing of the (dA)20 with the complementary strand leads to a decrease of quantum yield for one photon ionization by about a factor of 2.

  15. Single-photon ionization and detection of Ga, In, and Asn species in GaAs growth

    NASA Astrophysics Data System (ADS)

    Alstrin, April L.; Strupp, Paul G.; Cook, Laura; Leone, Stephen R.

    1993-04-01

    In this paper, single photon ionization time-of-flight mass spectroscopy (SPI-TOFMS) is used to monitor chemical fluxes of In, Ga, and Asn, relevant in molecular beam epitaxy of GaAs. With single photon ionization at 118 nm (10.5 eV), the photon energy is large enough to ionize the species, but not sufficient to ionize and fragment. The lack of molecular dissociation of species such as As2 and As4 greatly simplifies the interpretation of mass spectra. SPI-TOFMS provides the ability to measure densities, and hence fluxes, of multiple chemical species above a substrate noninvasively and in real time during conventional molecular beam epitaxy. The relative ionization efficiencies of Ga and the Asn species at 118 nm are determined. Additionally, this laser probing technique is used to study the isothermal and temperature programmed desorption of arsenic from Si(100). The catalytic cracking of As4 on Si is also examined and discussed. This technique promises to be a valuable in-situ optical diagnostic for III-V and II-VI molecular beam epitaxy.

  16. An integrated microfluidic chip system for single-cell secretion profiling of rare circulating tumor cells.

    PubMed

    Deng, Yuliang; Zhang, Yu; Sun, Shuai; Wang, Zhihua; Wang, Minjiao; Yu, Beiqin; Czajkowsky, Daniel M; Liu, Bingya; Li, Yan; Wei, Wei; Shi, Qihui

    2014-12-16

    Genetic and transcriptional profiling, as well as surface marker identification of single circulating tumor cells (CTCs) have been demonstrated. However, quantitatively profiling of functional proteins at single CTC resolution has not yet been achieved, owing to the limited purity of the isolated CTC populations and a lack of single-cell proteomic approaches to handle and analyze rare CTCs. Here, we develop an integrated microfluidic system specifically designed for streamlining isolation, purification and single-cell secretomic profiling of CTCs from whole blood. Key to this platform is the use of photocleavable ssDNA-encoded antibody conjugates to enable a highly purified CTC population with <75 'contaminated' blood cells. An enhanced poly-L-lysine barcode pattern is created on the single-cell barcode chip for efficient capture rare CTC cells in microchambers for subsequent secreted protein profiling. This system was extensively evaluated and optimized with EpCAM-positive HCT116 cells seeded into whole blood. Patient blood samples were employed to assess the utility of the system for isolation, purification and single-cell secretion profiling of CTCs. The CTCs present in patient blood samples exhibit highly heterogeneous secretion profile of IL-8 and VEGF. The numbers of secreting CTCs are found not in accordance with CTC enumeration based on immunostaining in the parallel experiments.

  17. Investigation of Rare Single-Nucleotide PCDH15 Variants in Schizophrenia and Autism Spectrum Disorders

    PubMed Central

    Ishizuka, Kanako; Kimura, Hiroki; Wang, Chenyao; Xing, Jingrui; Kushima, Itaru; Arioka, Yuko; Oya-Ito, Tomoko; Uno, Yota; Okada, Takashi; Mori, Daisuke; Ozaki, Norio

    2016-01-01

    Both schizophrenia (SCZ) and autism spectrum disorders (ASD) are neuropsychiatric disorders with overlapping genetic etiology. Protocadherin 15 (PCDH15), which encodes a member of the cadherin super family that contributes to neural development and function, has been cited as a risk gene for neuropsychiatric disorders. Recently, rare variants of large effect have been paid attention to understand the etiopathology of these complex disorders. Thus, we evaluated the impacts of rare, single-nucleotide variants (SNVs) in PCDH15 on SCZ or ASD. First, we conducted coding exon-targeted resequencing of PCDH15 with next-generation sequencing technology in 562 Japanese patients (370 SCZ and 192 ASD) and detected 16 heterozygous SNVs. We then performed association analyses on 2,096 cases (1,714 SCZ and 382 ASD) and 1,917 controls with six novel variants of these 16 SNVs. Of these six variants, four (p.R219K, p.T281A, p.D642N, c.3010-1G>C) were ultra-rare variants (minor allele frequency < 0.0005) that may increase disease susceptibility. Finally, no statistically significant association between any of these rare, heterozygous PCDH15 point variants and SCZ or ASD was found. Our results suggest that a larger sample size of resequencing subjects is necessary to detect associations between rare PCDH15 variants and neuropsychiatric disorders. PMID:27058588

  18. Ion time-of-flight determinations of doubly to singly ionized mercury ion ratios from a mercury electron bombardment discharge

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Kemp, R. F.; Hall, D. F.

    1973-01-01

    Doubly to singly charged mercury ion ratios in electron bombardment ion thruster exhaust beams have been determined as functions of bombardment discharge potential, thrust beam current, thrust beam radial position, acceleration-deceleration voltage ratio, and propellant utilization fraction. A mathematical model for two-step ionization processes has been derived, and calculated ion ratios are compared to observed ratios. Production of Hg(++) appears to result primarily from sequential ionization of Hg(+) in the discharge. Experimental and analytical results are presented, and design, construction, and operation features of an electrostatic deflection ion time-of-flight analyzer for the determination of the above-mentioned ratios are reviewed.

  19. Recoil Momentum Spectroscopy of Double and Single Ionization of He by 80-400 eV Photons

    NASA Astrophysics Data System (ADS)

    Dörner, R.; Kravis, S.; Cocke, C. L.; Vogt, T.; Mergel, V.; Unverzagt, M.; Spielberger, L.; Damrau, M.; Jagutzki, O.; Ali, I.; Weaver, B.; Ullmann, K.; Schmidt-Böcking, H.; Khemliche, H.; Prior, M. H.; Warwick, T.; Ullrich, J.; Jung, M.; Kanter, E. P.; Hsu, C. C.; Sonntag, B.; Rotenberg, E.; Denlinger, J.; Manson, S. T.; Feagin, J.

    1996-05-01

    We have measured the ratio (R) between double and single ionization of He by photons between 85 eV and 400 eV using COLTRIMS.(J. Ullrich et al., Comm. At. Mol. Phys. \\underline30), 285 (1994). The experiment, performed at the Berkeley ALS, eliminates many systematic errors which have plagued previous attempts to measure R. The values of R obtained are about 25% below those previously reported but are in good agreement with several recent theoretical calculations. We also report preliminary results of triply differential cross sections for double ionization of He measured near threshold.

  20. Radial artery pseudoaneurysm: A rare complication after a single arterial puncture for blood-gas analysis.

    PubMed

    Patel, Kajal Nitin; Gandhi, Shruti P; Sutariya, Harsh C

    2016-10-01

    With a reported incidence of 0.048%, radial artery pseudoaneurysm (PA) is a rare but serious complication of arterial cannulation. We report a case of PA developing after a single puncture of the right radial artery for arterial blood-gas analysis diagnosed by Doppler ultrasound in young male patient. The development of PA after puncture of radial artery for continuous blood pressure monitoring and serial blood-gas analysis has been reported in the past; however, to the best of our knowledge, there is only one case report of development of PA after a single arterial puncture for blood-gas analysis is reported in the past.

  1. Single-cell technologies are revolutionizing the approach to rare cells.

    PubMed

    Proserpio, Valentina; Lönnberg, Tapio

    2016-03-01

    In the last lustrum single-cell techniques such as single-cell quantitative PCR, RNA and DNA sequencing, and the state-of-the-art cytometry by time of flight (CyTOF) mass cytometer have allowed a detailed analysis of the sub-composition of different organs from the bone marrow hematopoietic compartment to the brain. These fine-grained analyses have highlighted the great heterogeneity within each cell compartment revealing previously unknown subpopulations of cells. In this review, we analyze how this fast technological evolution has improved our understanding of the biological processes with a particular focus on rare cells of the immune system.

  2. Resonance Ionization of Heavy Noble Gases: The Potential of KR and Xe Measurements from Single Pre-Solar Grains

    NASA Astrophysics Data System (ADS)

    Thonnard, N.

    1995-09-01

    measure noble gases from fourteen individual "X" SiC grains, previously identified by ion microprobe analysis, was unsuccessful with the 2,000 132Xe atom detection limit of the mass spectrometer [12,13]. From the Kr concentration measurements of SiC particles KJF by Lewis et al. [6], a 2 micrometer diameter particle will on average contain 134 Kr atoms. If only 4% of the SiC grains contain the majority of the noble gas atoms, then a single gas rich grain will contain 3,350 Kr atoms, or 12, 75, 385, 398, 1910, and 580 atoms for 78Kr through 86Kr, respectively. The Xe single-grain abundances would be similar. Resonance ionization, an emerging laser-based element analysis technique, is being harnessed to a wide variety of problems in which minute quantities of a particular element need to be measured efficiently in the presence of an overwhelmingly larger background of other materials [14]. By utilizing lasers tuned to specific atomic energy levels of the analyte element, ions are produced selectively in a mass spectrometer with much higher efficiency than possible using conventional methods, such as electron bombardment, thermal ionization, or ion sputtering. In a static resonance ionization system for noble gases, the combination of high ionization efficiency and sample concentrator results in an extremely fast (~3 min. detection half-life vs. ~60 min. for conventional systems) analyzer with a detection limit of ~100 85Kr atoms [15]. In addition to the almost complete absence of interferences, the short analysis time significantly reduces the background contribution of outgassing in the mass spectrometer. Although using a less efficient laser scheme resulting in slightly slower analyses, a similar system has recently been completed and dedicated to extraterrestrial Xe measurements [16]. At the newly formed Institute for Rare Isotope Measurements [17], the noble gas equipment that had previously been at Atom Sciences [14,15] is being re-installed and upgraded to provide

  3. Rapid comprehensive characterization of crude oils by thermogravimetry coupled to fast modulated gas chromatography-single photon ionization time-of-flight mass spectrometry.

    PubMed

    Wohlfahrt, S; Fischer, M; Saraji-Bozorgzad, M; Matuschek, G; Streibel, T; Post, E; Denner, T; Zimmermann, R

    2013-09-01

    Comprehensive multi-dimensional hyphenation of a thermogravimetry device (i.e. a thermobalance) to gas chromatography and single photon ionization-time-of-flight mass spectrometry (TG-GC×SPI-MS) has been used to investigate two crude oil samples of different geographical origin. The source of the applied vacuum ultraviolet radiation is an electron beam pumped rare gas excimer lamp (EBEL). The soft photoionization favors the formation of molecular ions. Introduction of a fast, rapidly modulated gas chromatographic separation step in comparison with solely TG-SPI-MS enables strongly enhanced detection especially with such highly complex organic matrices as crude oil. In contrast with former TG-SPI-MS measurements, separation and identification of overlying substances is possible because of different GC retention times. The specific contribution of isobaric compounds to one mass signal is determined for alkanes, naphthalenes, alkylated benzenes, and other compounds.

  4. Double-differential cross sections for single ionization of helium by bare ion impact

    NASA Astrophysics Data System (ADS)

    Jana, S.; Samanta, R.; Purkait, M.

    2013-11-01

    Double-differential cross sections (DDCS) for single ionization of helium by impact of proton and highly charged carbon ion have been calculated in the framework of four-body formalism using the three-Coulomb wave model (3C-4B) and first Born approximation (FBA-4B), respectively. The correlated motion of the particles interacting through long-range Coulomb potential is properly taken into account in the final state. In this paper, the energy and angular distributions of DDCS of low- and high-energy electron emission for ground-state helium atoms have been investigated. The ejected electrons are affected by the two-center field of the target and the projectile ion. The two-center effects are confined to comparison with other theoretical results. The results obtained, both from the 3C-4B and FBA-4B models, are compared with other theoretical and experimental findings. The present results are found to reproduce the peak structure of the experimental observations. Large discrepancy occurs between the present two theories at forward and backward angles except about the emission angle 90°. The present computed results obtained by the 3C-4B model are in good agreement with the available experimental findings.

  5. Development of a compact laser-based single photon ionization time-of-flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    Tonokura, Kenichi; Kanno, Nozomu; Yamamoto, Yukio; Yamada, Hiroyuki

    2010-02-01

    We have developed a compact, laser-based, single photon ionization time-of-flight mass spectrometer (SPI-TOF-MS) for on-line monitoring of trace organic species. To obtain the mass spectrum, we use a nearly fragmentation-free SPI technique with 10.5 eV (118 nm) vacuum ultraviolet laser pulses generated by frequency tripling of the third harmonic of an Nd:YAG laser. The instrument can be operated in a linear TOF-MS mode or a reflectron TOF-MS mode in the coaxial design. We designed ion optics to optimize detection sensitivity and mass resolution. For data acquisition, the instrument is controlled using LabVIEW control software. The total power requirement for the vacuum unit, control electronics unit, ion optics, and detection system is approximately 100 W. We achieve a detection limit of parts per billion by volume (ppbv) for on-line trace analysis of several organic compounds. A mass resolution of 800 at about 100 amu is obtained for reflectron TOF-MS mode in a 0.35 m long instrument. The application of on-line monitoring of diesel engine exhaust was demonstrated.

  6. Role of the recoil ion in single-electron capture and single-ionization processes for collisions of protons with He and Ar atoms

    NASA Astrophysics Data System (ADS)

    Focke, P.; Olson, R. E.; Cariatore, N. D.; Alessi, M.; Otranto, S.

    2017-05-01

    In this work the single-electron capture and single-ionization processes are studied for proton collisions with He and Ar atoms at impact energies in the range 25-100 keV. Classical trajectory Monte Carlo simulations are benchmarked against experimental data obtained at the reaction microscope in Bariloche, Argentina, which employs the cold target recoil-ion momentum spectroscopy technique. Special emphasis is placed on describing the momentum transfer to the recoil ion for these collision systems.

  7. Single Low-Dose Ionizing Radiation Induces Genotoxicity in Adult Zebrafish and its Non-Irradiated Progeny.

    PubMed

    Lemos, J; Neuparth, T; Trigo, M; Costa, P; Vieira, D; Cunha, L; Ponte, F; Costa, P S; Metello, L F; Carvalho, A P

    2017-02-01

    This study investigated to what extent a single exposure to low doses of ionizing radiation can induce genotoxic damage in irradiated adult zebrafish (Danio rerio) and its non-irradiated F1 progeny. Four groups of adult zebrafish were irradiated with a single dose of X-rays at 0 (control), 100, 500 and 1000 mGy, respectively, and couples of each group were allowed to reproduce following irradiation. Blood of parental fish and whole-body offspring were analysed by the comet assay for detection of DNA damage. The level of DNA damage in irradiated parental fish increased in a radiation dose-dependent manner at day 1 post-irradiation, but returned to the control level thereafter. The level of DNA damage in the progeny was directly correlated with the parental irradiation dose. Results highlight the genotoxic risk of a single exposure to low-dose ionizing radiation in irradiated individuals and also in its non-irradiated progeny.

  8. Extraction Behaviors of Heavy Rare Earths with Organophosphoric Extractants: The Contribution of Extractant Dimer Dissociation, Acid Ionization, and Complexation. A Quantum Chemistry Study.

    PubMed

    Jing, Yu; Chen, Ji; Chen, Li; Su, Wenrou; Liu, Yu; Li, Deqian

    2017-03-30

    Heavy rare earths (HREs), namely Ho(3+), Er(3+), Tm(3+), Yb(3+) and Lu(3+), are rarer and more exceptional than light rare earths, due to the stronger extraction capacity for 100 000 extractions. Therefore, their incomplete stripping and high acidity of stripping become problems for HRE separation by organophosphoric extractants. However, the theories of extractant structure-performance relationship and molecular design method of novel HRE extractants are still not perfect. Beyond the coordination chemistry of the HRE-extracted complex, the extractant dimer dissociation, acid ionization, and complexation behaviors can be crucial to HRE extraction and reactivity of ionic species for understanding and further improving the extraction performance. To address the above issues, three primary fundamental processes, including extractant dimer dissociation, acid ionization, and HRE complexation, were identified and investigated systematically. The intrinsic extraction performances of HRE cations with four acidic organophosphoric extractants (P507, P204, P227 and Cyanex 272) were studied by using relativistic energy-consistent 4f core pseudopotentials, combined with density functional theory and a solvation model. Four acidic organophosphoric extractants have been qualified quantitatively from microscopic structures to chemical properties. It has been found that the Gibbs free energy changes of the overall extraction process (sequence: P204 > P227 > P507 > Cyanex 272) and their differences as a function of HREs (sequence: Ho/Er > Er/Tm > Tm/Yb > Yb/Lu) are in good agreement with the experimental maximum extraction capacities and separation factors. These results could provide an important approach to evaluate HRE extractants by the comprehensive consideration of dimer dissociation, acid ionization, and complexation processes. This paper also demonstrates the importance of the P-O bond, the P-C bond, isomer substituent, and solvation effects on the structure

  9. Single-cell messenger RNA sequencing reveals rare intestinal cell types.

    PubMed

    Grün, Dominic; Lyubimova, Anna; Kester, Lennart; Wiebrands, Kay; Basak, Onur; Sasaki, Nobuo; Clevers, Hans; van Oudenaarden, Alexander

    2015-09-10

    Understanding the development and function of an organ requires the characterization of all of its cell types. Traditional methods for visualizing and isolating subpopulations of cells are based on messenger RNA or protein expression of only a few known marker genes. The unequivocal identification of a specific marker gene, however, poses a major challenge, particularly if this cell type is rare. Identifying rare cell types, such as stem cells, short-lived progenitors, cancer stem cells, or circulating tumour cells, is crucial to acquire a better understanding of normal or diseased tissue biology. To address this challenge we first sequenced the transcriptome of hundreds of randomly selected cells from mouse intestinal organoids, cultured self-organizing epithelial structures that contain all cell lineages of the mammalian intestine. Organoid buds, like intestinal crypts, harbour stem cells that continuously differentiate into a variety of cell types, occurring at widely different abundances. Since available computational methods can only resolve more abundant cell types, we developed RaceID, an algorithm for rare cell type identification in complex populations of single cells. We demonstrate that this algorithm can resolve cell types represented by only a single cell in a population of randomly sampled organoid cells. We use this algorithm to identify Reg4 as a novel marker for enteroendocrine cells, a rare population of hormone-producing intestinal cells. Next, we use Reg4 expression to enrich for these rare cells and investigate the heterogeneity within this population. RaceID confirmed the existence of known enteroendocrine lineages, and moreover discovered novel subtypes, which we subsequently validated in vivo. Having validated RaceID we then applied the algorithm to ex vivo-isolated Lgr5-positive stem cells and their direct progeny. We find that Lgr5-positive cells represent a homogenous abundant population of stem cells mixed with a rare population of Lgr5

  10. Rare missense variants within a single gene form yin yang haplotypes.

    PubMed

    Curtis, David

    2016-01-01

    Yin yang haplotype pairs differ at every SNP. They would not be accounted for by population models that incorporate sequential mutation, with or without recombination. Previous reports have claimed that there is a tendency for common SNPs to form yin yang haplotypes more often than would be expected by sequential mutation or by a random sample of all possible haplotypic arrangements of alleles. In the course of analysing next-generation sequencing data, instances of yin yang haplotypes being formed by very rare variants within a single gene were observed. As an example, this report describes a completely yin yang haplotype formed by eight rare missense variants in the ABCA13 gene. Of 1000 genome subjects, 21 have a copy of the alternate allele at all eight of these positions and a single subject is homozygous for all of them. None of the other 1070 subjects possesses any of the altetrnates. Thus, the eight alternate alleles are always found together and never occur separately. The existence of such yin yang haplotypes has important implications for statistical methods for analysing rare variants. Also, they may be of use for gaining a better understanding of the history of human populations.

  11. Optical detection of a single rare-earth ion in a crystal

    PubMed Central

    Kolesov, R.; Xia, K.; Reuter, R.; Stöhr, R.; Zappe, A.; Meijer, J.; Hemmer, P.R.; Wrachtrup, J.

    2012-01-01

    Rare-earth-doped laser materials show strong prospects for quantum information storage and processing, as well as for biological imaging, due to their high-Q 4f↔4f optical transitions. However, the inability to optically detect single rare-earth dopants has prevented these materials from reaching their full potential. Here we detect a single photostable Pr3+ ion in yttrium aluminium garnet nanocrystals with high contrast photon antibunching by using optical upconversion of the excited state population of the 4f↔4f optical transition into ultraviolet fluorescence. We also demonstrate on-demand creation of Pr3+ ions in a bulk yttrium aluminium garnet crystal by patterned ion implantation. Finally, we show generation of local nanophotonic structures and cell death due to photochemical effects caused by upconverted ultraviolet fluorescence of praseodymium-doped yttrium aluminium garnet in the surrounding environment. Our study demonstrates versatile use of rare-earth atomic-size ultraviolet emitters for nanoengineering and biotechnological applications. PMID:22929786

  12. Hyperfine structure constants of singly ionized manganese obtained from analysis of Fourier Transform spectra

    NASA Astrophysics Data System (ADS)

    Townley-Smith, Keeley; Nave, Gillian; Imperial College London

    2016-01-01

    There is an on-going project in the Atomic Spectroscopy Group at NIST to obtain comprehensive spectral data for all of the singly ionized iron group elements and acquire more accurate energy levels, wavelengths and hyperfine structure (HFS) constants. The heavy abundance of the iron group elements and their contributions to a wide range of stellar spectra makes them of interest for astrophysical observations.Existing spectroscopic data for Mn are insufficient to model spectra obtained from HgMn stars such as HD 175640. Since manganese has an odd number of nucleons, its spectral lines generally exhibit HFS, a relativistic effect due to interaction between the magnetic moment of the nucleus and the orbiting electrons. If proper treatment of line broadening effects such as HFS is not taken, there is a poor fit of the lines in stellar spectra, leading to an overestimate of the abundance of Mn. The abnormally high abundance of manganese in HgMn stars means both weak and strong transitions are important. Weak lines may not be observed in the laboratory, but HFS constants for them can be derived from stronger transitions that combine with the two levels involved in the weak transition.Holt et al. (1999) measured HFS constants for 56 energy levels using laser spectroscopy. We have analyzed Fourier Transform spectra of a high current Mn/Ni hollow cathode lamp to obtain magnetic dipole A constants levels of Mn II. The A constants of Holt et al. (1999, MNRAS 306, 1007) for the z5P, z7P2, a5P and z5F levels were the starting point for our analysis, from which we derived A constants for 71 energy levels, including 51 previously unstudied levels. Our A constant for the a7S3 ground level differs by 5x10-4 cm-1 from that of Blackwell-Whitehead et al. (2005, ApJS 157, 402) and has a factor of 6 lower uncertainty.

  13. Isotope-selective trapping of rare calcium ions using high-power incoherent light sources for the second step of photo-ionization

    NASA Astrophysics Data System (ADS)

    Tanaka, U.; Matsunishi, H.; Morita, I.; Urabe, S.

    2005-10-01

    Rare calcium isotope 48Ca+ (0.187%) has been selectively loaded in a linear Paul trap using two ultraviolet light emitting diodes with the output power of 85 mW for the second excitation in a two-step photo-ionization process. Isotope selectivity has been achieved by utilizing the isotope shifts for the 4s2 1 S 0 4s4p1 P 1 transition of neutral calcium atom. Sympathetic cooling of 48Ca+ ions has been demonstrated using 40Ca+ ions as refrigerant ions. Purification of rare isotope 42Ca+ ions (0.647%) from a mixture of 40Ca+ (96.9%) and 42Ca+ ions has been performed by adjusting the detuning of the cooling laser frequency, which overcomes the imperfect selectivity for some rare isotopes having close resonance frequencies to that of 40Ca in the 4s2 1 S 0 4s4p1 P 1 transition. The methods can be applied to 43Ca+ ion (0.135%) that has been considered as one of the attractive candidates for quantum information processing as well as for an optical frequency standard.

  14. Elucidating the mechanisms of double ionization using intense half-cycle, single-cycle, and double half-cycle pulses

    SciTech Connect

    Kamta, G. Lagmago; Starace, Anthony F.

    2003-10-01

    We investigate the interaction of a two-active electron system (Li{sup -}) with intense single-cycle and double half-cycle pulses. The 'intensity' and 'frequency' considered correspond to the 'multiphoton above-barrier regime'. For the single-cycle pulse (SCP), the electric field changes sign once, allowing electron wave packets created during the first half cycle to recollide with the parent ion when driven back by the field. For the double half-cycle pulse (DHP), however, the electric field does not change sign, and electron wave packets created during the first half cycle are not driven back to the parent ion. We find that both single and double ionization are significantly larger for the SCP than for the DHP, thereby elucidating the role of the rescattering mechanism. On the other hand, doubly ionized electrons produced by a half-cycle pulse and a DHP are found to have angular distributions in which one electron is ejected in the direction of the pulse field, and the other in the opposite direction. This clear signature of electron correlations suggests that 'shake-off', 'knockout', and, possibly, 'multiphoton-sharing' processes are alternative contributing mechanisms for double ionization in this regime.

  15. Matrix-assisted laser desorption/ionization mass spectrometry method for selectively producing either singly or multiply charged molecular ions.

    PubMed

    Trimpin, Sarah; Inutan, Ellen D; Herath, Thushani N; McEwen, Charles N

    2010-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is noted for its ability to produce primarily singly charged ions. This is an attribute when using direct ionization for complex mixtures such as protein digests or synthetic polymers. However, the ability to produce multiply charged ions, as with electrospray ionization (ESI), has advantages such as extending the mass range on mass spectrometers with limited mass-to-charge (m/z) range and enhancing fragmentation for structural characterization. We designed and fabricated a novel field free transmission geometry atmopsheric pressure (AP) MALDI source mounted to a high-mass resolution Orbitrap Exactive mass spectrometer. We report the ability to produce at will either singly charged ions or highly charged ions using a MALDI process by simply changing the matrix or the matrix preparation conditions. Mass spectra with multiply charged ions very similar to those obtained with ESI of proteins such as cytochrome c and ubiquitin are obtained with low femtomole amounts applied to the MALDI target plate and for peptides such as angiotensin I and II with application of attomole amounts. Single scan acquisitions produce sufficient ion current even from proteins.

  16. Lattice distortion in single crystal rare-earth arsenide/GaAs nanocomposites

    SciTech Connect

    Young, A. J.; Schultz, B. D.; Palmstrøm, C. J.

    2014-02-17

    Epitaxial single crystal nanocomposites comprised of rare-earth arsenide nanoparticles embedded in GaAs (001) layers produce a larger change in lattice parameter than expected from the lattice parameters of relaxed films. Despite similar cubic structures and lattice parameters, elongation of the interfacial bond length between the two materials induces additional strain causing an expansion in the nanocomposite lattice. The interface bond length is material dependent with an average atomic layer spacing at the ErAs:GaAs interface of 1.9 Å while the spacing at the ScAs:GaAs interface is only 1.4 Å. Implications for lattice matching various single crystal epitaxial nanostructures in semiconductors are discussed.

  17. Laserspray ionization on a commercial atmospheric pressure-MALDI mass spectrometer ion source: selecting singly or multiply charged ions.

    PubMed

    McEwen, Charles N; Larsen, Barbara S; Trimpin, Sarah

    2010-06-15

    Multiply charged ions, similar to those obtained with electrospray ionization, are produced at atmospheric pressure (AP) using standard MALDI conditions of laser fluence and reflective geometry. Further, the charge state can be switched to singly charged ions nearly instantaneously by changing the voltage applied to the MALDI target plate. Under normal AP-MALDI operating conditions in which a voltage is applied to the target plate, primarily singly charged ions are observed, but at or near zero volts, highly charged ions are observed for peptides and proteins. Thus, switching between singly and multiply charged ions requires only manipulation of a single voltage. As in ESI, multiple charging, produced using the AP-MALDI source, allows compounds with molecular weights beyond the mass-to-charge limit of the mass spectrometer to be observed and improves the fragmentation relative to singly charged ions.

  18. Electrode configuration and signal subtraction technique for single polarity charge carrier sensing in ionization detectors

    DOEpatents

    Luke, P.

    1996-06-25

    An ionization detector electrode and signal subtraction apparatus and method provide at least one first conductive trace formed onto the first surface of an ionization detector. The first surface opposes a second surface of the ionization detector. At least one second conductive trace is also formed on the first surface of the ionization detector in a substantially interlaced and symmetrical pattern with the at least one first conductive trace. Both of the traces are held at a voltage potential of a first polarity type. By forming the traces in a substantially interlaced and symmetric pattern, signals generated by a charge carrier are substantially of equal strength with respect to both of the traces. The only significant difference in measured signal strength occurs when the charge carrier moves to within close proximity of the traces and is received at the collecting trace. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge and to determine the position at which the charge carrier originated within the ionization detector. 9 figs.

  19. Electrode configuration and signal subtraction technique for single polarity charge carrier sensing in ionization detectors

    DOEpatents

    Luke, Paul

    1996-01-01

    An ionization detector electrode and signal subtraction apparatus and method provides at least one first conductive trace formed onto the first surface of an ionization detector. The first surface opposes a second surface of the ionization detector. At least one second conductive trace is also formed on the first surface of the ionization detector in a substantially interlaced and symmetrical pattern with the at least one first conductive trace. Both of the traces are held at a voltage potential of a first polarity type. By forming the traces in a substantially interlaced and symmetric pattern, signals generated by a charge carrier are substantially of equal strength with respect to both of the traces. The only significant difference in measured signal strength occurs when the charge carrier moves to within close proximity of the traces and is received at the collecting trace. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge and to determine the position at which the charge carrier originated within the ionization detector.

  20. The ionization of a low-density intercloud medium by a single O star

    NASA Technical Reports Server (NTRS)

    Elmegreen, B. G.

    1976-01-01

    The ionization structure of hydrogen in a cloud-containing low-density gas surrounding an O star is calculated, emphasizing how UV photons cause the ionization of hydrogen in regions which are totally obscured from the star by neutral clouds. Particular consideration is given to the ionization of such obscured regions by diffuse Lyman continuum radiation produced when H(+) recombines directly to the ground state. The assumed physical structure of the cloud-containing neighborhood of an O star is discussed, a method is outlined for expressing the emission and absorption properties of the neutral clouds and their shadows in terms of effective volume emissivities and absorption coefficients on a line of sight, and equations of radiative transfer are derived for diffuse and stellar radiation in a cloud-containing H II region. Reradiation of Lyman continuum photons from the ionized boundary layer of a neutral cloud or shadow is analyzed. The expected emission measure across a large cloud-containing H II region is determined and found to compare well with that obtained from observations of H-alpha emission around runaway O stars. It is shown that the hydrogen in cloud shadows may be completely ionized by diffuse radiation within approximately half the Stroemgren radius, depending on the extent of that radius, the average frequency of the Lyman continuum radiation from the star, and the average cloud size.

  1. Effect of rare earth ions on the properties of glycine phosphite single crystals

    NASA Astrophysics Data System (ADS)

    Senthilkumar, K.; Moorthy Babu, S.; Kumar, Binay; Bhagavannarayana, G.

    2013-01-01

    Optically transparent glycine phosphite (GPI) single crystals doped with rare earth metal ions (Ce, Nd and La) were grown from aqueous solution by employing the solvent evaporation and slow cooling methods. Co-ordination of dopants with GPI was confirmed by X-ray fluorescence spectroscopic analysis. Single crystal X-ray diffraction analysis was carried out to determine the lattice parameters and to analyze the structural morphology of GPI with dopants, which indicates that cell parameters of doped crystals were significantly varied with pure GPI. Crystalline perfection of doped GPI crystals was determined by high resolution X-ray diffraction analysis by means of full width at half maximum values. Influence of the dopants on the optical properties of the material was determined. Paraelectric to ferroelectric transition temperature (Tc) of doped GPI crystals were identified using differential scanning calorimetric measurements. Piezoelectric charge coefficient d33 was measured for pure and doped GPI crystals. Hysteresis (P-E) loop was traced for ferroelectric b-axis and (100) plane of pure and doped GPI crystals with different biasing field and ferroelectric parameters were calculated. Mechanical stability of crystals was determined by Vickers microhardness measurements; elastic stiffness constant 'C11' and yield strength 'σy' were calculated from hardness values. Mechanical and ferroelectric properties of doped crystals were improved with doping of rare earth metals.

  2. Single sample resolution of rare microbial dark matter in a marine invertebrate metagenome

    PubMed Central

    Miller, Ian J.; Weyna, Theodore R.; Fong, Stephen S.; Lim-Fong, Grace E.; Kwan, Jason C.

    2016-01-01

    Direct, untargeted sequencing of environmental samples (metagenomics) and de novo genome assembly enable the study of uncultured and phylogenetically divergent organisms. However, separating individual genomes from a mixed community has often relied on the differential-coverage analysis of multiple, deeply sequenced samples. In the metagenomic investigation of the marine bryozoan Bugula neritina, we uncovered seven bacterial genomes associated with a single B. neritina individual that appeared to be transient associates, two of which were unique to one individual and undetectable using certain “universal” 16S rRNA primers and probes. We recovered high quality genome assemblies for several rare instances of “microbial dark matter,” or phylogenetically divergent bacteria lacking genomes in reference databases, from a single tissue sample that was not subjected to any physical or chemical pre-treatment. One of these rare, divergent organisms has a small (593 kbp), poorly annotated genome with low GC content (20.9%) and a 16S rRNA gene with just 65% sequence similarity to the closest reference sequence. Our findings illustrate the importance of sampling strategy and de novo assembly of metagenomic reads to understand the extent and function of bacterial biodiversity. PMID:27681823

  3. Single sample resolution of rare microbial dark matter in a marine invertebrate metagenome

    DOE PAGES

    Miller, Ian J.; Weyna, Theodore R.; Fong, Stephen S.; ...

    2016-09-29

    Direct, untargeted sequencing of environmental samples (metagenomics) and de novo genome assembly enable the study of uncultured and phylogenetically divergent organisms. However, separating individual genomes from a mixed community has often relied on the differential-coverage analysis of multiple, deeply sequenced samples. In the metagenomic investigation of the marine bryozoan Bugula neritina, we uncovered seven bacterial genomes associated with a single B. neritina individual that appeared to be transient associates, two of which were unique to one individual and undetectable using certain “universal” 16S rRNA primers and probes. We recovered high quality genome assemblies for several rare instances of “microbial darkmore » matter,” or phylogenetically divergent bacteria lacking genomes in reference databases, from a single tissue sample that was not subjected to any physical or chemical pre-treatment. One of these rare, divergent organisms has a small (593 kbp), poorly annotated genome with low GC content (20.9%) and a 16S rRNA gene with just 65% sequence similarity to the closest reference sequence. Lastly, our findings illustrate the importance of sampling strategy and de novo assembly of metagenomic reads to understand the extent and function of bacterial biodiversity.« less

  4. Single sample resolution of rare microbial dark matter in a marine invertebrate metagenome

    SciTech Connect

    Miller, Ian J.; Weyna, Theodore R.; Fong, Stephen S.; Lim-Fong, Grace E.; Kwan, Jason C.

    2016-09-29

    Direct, untargeted sequencing of environmental samples (metagenomics) and de novo genome assembly enable the study of uncultured and phylogenetically divergent organisms. However, separating individual genomes from a mixed community has often relied on the differential-coverage analysis of multiple, deeply sequenced samples. In the metagenomic investigation of the marine bryozoan Bugula neritina, we uncovered seven bacterial genomes associated with a single B. neritina individual that appeared to be transient associates, two of which were unique to one individual and undetectable using certain “universal” 16S rRNA primers and probes. We recovered high quality genome assemblies for several rare instances of “microbial dark matter,” or phylogenetically divergent bacteria lacking genomes in reference databases, from a single tissue sample that was not subjected to any physical or chemical pre-treatment. One of these rare, divergent organisms has a small (593 kbp), poorly annotated genome with low GC content (20.9%) and a 16S rRNA gene with just 65% sequence similarity to the closest reference sequence. Lastly, our findings illustrate the importance of sampling strategy and de novo assembly of metagenomic reads to understand the extent and function of bacterial biodiversity.

  5. Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Seng, Piseth; Abat, Cedric; Rolain, Jean Marc; Colson, Philippe; Lagier, Jean-Christophe; Gouriet, Frédérique; Fournier, Pierre Edouard; Drancourt, Michel; La Scola, Bernard; Raoult, Didier

    2013-07-01

    During the past 5 years, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has become a powerful tool for routine identification in many clinical laboratories. We analyzed our 11-year experience in routine identification of clinical isolates (40 months using MALDI-TOF MS and 91 months using conventional phenotypic identification [CPI]). Among the 286,842 clonal isolates, 284,899 isolates of 459 species were identified. The remaining 1,951 isolates were misidentified and required confirmation using a second phenotypic identification for 670 isolates and using a molecular technique for 1,273 isolates of 339 species. MALDI-TOF MS annually identified 112 species, i.e., 36 species/10,000 isolates, compared to 44 species, i.e., 19 species/10,000 isolates, for CPI. Only 50 isolates required second phenotypic identifications during the MALDI-TOF MS period (i.e., 4.5 reidentifications/10,000 isolates) compared with 620 isolates during the CPI period (i.e., 35.2/10,000 isolates). We identified 128 bacterial species rarely reported as human pathogens, including 48 using phenotypic techniques (22 using CPI and 37 using MALDI-TOF MS). Another 75 rare species were identified using molecular methods. MALDI-TOF MS reduced the time required for identification by 55-fold and 169-fold and the cost by 5-fold and 96-fold compared with CPI and gene sequencing, respectively. MALDI-TOF MS was a powerful tool not only for routine bacterial identification but also for identification of rare bacterial species implicated in human infectious diseases. The ability to rapidly identify bacterial species rarely described as pathogens in specific clinical specimens will help us to study the clinical burden resulting from the emergence of these species as human pathogens, and MALDI-TOF MS may be considered an alternative to molecular methods in clinical laboratories.

  6. Auger ionization beats photo-oxidation of semiconductor quantum dots: extended stability of single-molecule photoluminescence.

    PubMed

    Yamashita, Shin-Ichi; Hamada, Morihiko; Nakanishi, Shunsuke; Saito, Hironobu; Nosaka, Yoshio; Wakida, Shin-Ichi; Biju, Vasudevanpillai

    2015-03-23

    Despite the bright and tuneable photoluminescence (PL) of semiconductor quantum dots (QDs), the PL instability induced by Auger recombination and oxidation poses a major challenge in single-molecule applications of QDs. The incomplete information about Auger recombination and oxidation is an obstacle in the resolution of this challenge. Here, we report for the first time that Auger-ionized QDs beat self-sensitized oxidation and the non-digitized PL intensity loss. Although high-intensity photoactivation insistently induces PL blinking, the transient escape of QDs into the ultrafast Auger recombination cycle prevents generation of singlet oxygen ((1) O2 ) and preserves the PL intensity. By the detection of the NIR phosphorescence of (1) O2 and evaluation of the photostability of single QDs in aerobic, anaerobic, and (1) O2 scavenger-enriched environments, we disclose relations of Auger ionization and (1) O2 -mediated oxidation to the PL stability of single QDs, which will be useful during the formulation of QD-based single-molecule imaging tools and single-photon devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effectiveness of projectile screening in single and multiple ionization of Ne by B{sup 2+}

    SciTech Connect

    Wolff, W.; Luna, H.; Santos, A. C. F.; Montenegro, E. C.; DuBois, R. D.; Montanari, C. C.; Miraglia, J. E.

    2011-10-15

    Pure multiple ionization cross sections of Ne by B{sup 2+} projectiles have been measured in the energy range of 0.75 to 4.0 MeV and calculated using the continuum distorted wave-eikonal initial state approximation. The experiment and calculations show that the ionization cross sections by B{sup 2+}, principally for the production of highly charged recoils, is strongly enhanced when compared to the bare projectile with the same charge state, He{sup 2+}, at the same velocities.

  8. Effect of absorbed dose of ionizing radiation on the decomposition of rare earth nitrates placed in cellular corundum

    SciTech Connect

    Zakharov, M.A.; Kryukov, E.B.; Kuranov, K.V.

    1994-11-01

    The effect of irradiation at different dose rates on the decomposition of a rare earth (Nd) nitrate in cellular corundum is studied. Thermal analysis showed that irradiation lowers the decomposition temperature of Nd nitrate. Increasing the dose rate increases the extent of Nd(NO{sub 3}){sub 3}{center_dot}nH{sub 2}O decomposition (including denitration). The presence of the {Chi}-phase of Al{sub 2}O{sub 3} in the samples facilitates the irreversible immobilization of fission products by considerably lowering the reaction temperature of the matrix with deposited Nd nitrate to form NdAlO{sub 3}.

  9. Large single domain 123 material produced by seeding with single crystal rare earth barium copper oxide single crystals

    DOEpatents

    Todt, Volker; Miller, Dean J.; Shi, Donglu; Sengupta, Suvankar

    1998-01-01

    A method of fabricating bulk YBa.sub.2 Cu.sub.3 O.sub.x where compressed powder oxides and/or carbonates of Y and Ba and Cu present in mole ratios to form YBa.sub.2 Cu.sub.3 O.sub.x are heated in the presence of a Nd.sub.1+x Ba.sub.2-x Cu.sub.3 O.sub.y seed crystal to a temperature sufficient to form a liquid phase in the YBa.sub.2 Cu.sub.3 O.sub.x while maintaining the seed crystal solid. The materials are slowly cooled to provide a YBa.sub.2 Cu.sub.3 O.sub.x material having a predetermined number of domains between 1 and 5. Crack-free single domain materials can be formed using either plate shaped seed crystals or cube shaped seed crystals with a pedestal of preferential orientation material.

  10. Detection of rare and possibly carcinogenic human papillomavirus genotypes as single infections in invasive cervical cancer.

    PubMed

    Geraets, Daan; Alemany, Laia; Guimera, Nuria; de Sanjose, Silvia; de Koning, Maurits; Molijn, Anco; Jenkins, David; Bosch, Xavier; Quint, Wim

    2012-12-01

    The contribution of carcinogenic human papillomavirus (HPV) types to the burden of cervical cancer has been well established. However, the role and contribution of phylogenetically related HPV genotypes and rare variants remains uncertain. In a recent global study of 8977 HPV-positive invasive cervical carcinomas (ICCs), the genotype remained unidentified in 3.7% by the HPV SPF10 PCR-DEIA-LiPA25 (version 1) algorithm. The 331 ICC specimens with unknown genotype were analysed by a novel sequence methodology, using multiple selected short regions in L1. This demonstrated HPV genotypes that have infrequently or never been detected in ICC, ie HPV26, 30, 61, 67, 68, 69, 73 and 82, and rare variants of HPV16, 18, 26, 30, 34, 39, 56, 67, 68, 69, 82 and 91. These are not identified individually by LiPA25 and only to some extent by other HPV genotyping assays. Most identified genotypes have a close phylogenetic relationship with established carcinogenic HPVs and have been classified as possibly carcinogenic by IARC. Except for HPV85, all genotypes in α-species 5, 6, 7, 9 and 11 were encountered as single infections in ICCs. These species of established and possibly carcinogenic HPV types form an evolutionary clade. We have shown that the possibly carcinogenic types were detected only in squamous cell carcinomas, which were often keratinizing and diagnosed at a relatively higher mean age (55.3 years) than those associated with established carcinogenic types (50.9 years). The individual frequency of the possibly carcinogenic types in ICCs is low, but together they are associated with 2.25% of the 8338 included ICCs with a single HPV type. This fraction is greater than seven of the established carcinogenic types individually. This study provides evidence that possibly carcinogenic HPV types occur as single infections in invasive cervical cancer, strengthening the circumstantial evidence of a carcinogenic role.

  11. Oxidative phosphorylation in mitochondria of small-intestinal enterocytes at chronic and single exposure to low power ionizing radiation.

    PubMed

    Кhуzhnyak, S V; Bezdrobna, L K; Stepanova, L I; Morozova, V S; Voitsitskіy, V M

    2014-09-01

    Objective - to investigate the intensity of oxidation and phosphorylation processes in the small intestine enterocytes mitochondria of the rats under chronic and single exposure to ionizing radiation of low power. Materials and methods. The single irradiation of the rats with X-rays was performed using the RUM-17 equipment (at the dose of 0.055 Gy/min) for absorbed doses of 0.1; 0.5 and 1.0 Gy. The functional state of mitochondria was evaluated in 1 h and 24 h after irradiation. The chronic external γ-irradiation (at the dose rate of 0.72 cGy/min to achieve a total dose of 0.3; 0.6 and 1.0 Gy was performed using the "Etalon" equipment which contained 60Co. The intensity of the oxidation and phosphorylation activity of the small intestine enterocytes mitochondria was assessed by the polarographic method. Results. The use of malate as exogenous substrate allowed to assess the functioning of all areas of the electron transport chain of mitochondria in experimental conditions. The increase in the intensity of mitochondrial respiration was found in all conditions and terms of research in response to irradiation. In chronic ionizing radiation appears partial separation of interface processes of oxidation and phosphorylation, as evidenced by the decrease in value of the index control and ADP / O and reducing efficiency phosphorylation (decrease of value Vf). For single exposure disconnection of coupling processes oxidation and phosphorylation were not accompanied by changes in the index of oxidative phosphorylation, however, was characterized by reduced ratio V4S/V4АТP. Conclusions. Single and chronic exposure to low power of ionizing radiation leads to an increase in intensity of respiration and disruption of oxidative phosphorylation as a result of separation of interface processes of oxidation and phosphorylation. In chronic exposure received changes were accompanied by inhibition of ATP from ADP and FN because no change of ATP hydrolase activity of mitochondria was

  12. Triply differential measurements of single ionization of argon by 1-keV positron and electron impact

    NASA Astrophysics Data System (ADS)

    Gavin, J.; de Lucio, O. G.; DuBois, R. D.

    2017-06-01

    By establishing coincidences between target ions and scattered projectiles, and coincidences between target ions, scattered projectiles, and ejected electrons, triply differential cross-section (TDCS) information was generated in terms of projectile energy loss and scattering angles for interactions between 1-keV positrons and electrons and Ar atoms. The conversion of the raw experimental information to the TDCS is discussed. The single-ionization TDCS exhibits two distinguishable regions (lobes) where binary and recoil interactions can be described by two peaks. A comparison of the positron and electron impact data shows that the relative intensity of both binary and recoil interactions decreases exponentially as a function of the momentum transfer and is larger when ionization is induced by positron impact, when compared with electron impact.

  13. Total ionizing dose and single-event effect in vertical channel double-gate nMOSFETs

    NASA Astrophysics Data System (ADS)

    Tan, Fei; An, Xia; Xue, Shoubin; Huang, Liangxi; Wu, Weikang; Zhang, Xing; Huang, Ru

    2013-05-01

    In this paper, the total ionizing dose (TID) and single-event effect (SEE) in vertical channel double-gate (DG) nMOSFETs are comprehensively investigated. Due to the vertical channel structure and the excellent gate control capability, the vertical channel DG transistor is relatively resistant to TID and transient ionization effect. However, the dc characteristics of vertical channel DG device are very sensitive to permanent damage induced by a few ions hitting the device. The on-state current and transconductance of the vertical channel DG MOSFETs show significant degradation after exposure to heavy ions, which is attributed to the formation of displacement damage in the channel. As the device feature size scales down to the deca-nanometer regime, the influence of permanent damage induced by a few ions striking the device static performance cannot be ignored and should be seriously considered in radiation-hardened technologies.

  14. Dissociative ionization of the H 2O molecule induced by medium-energy singly charged projectiles

    NASA Astrophysics Data System (ADS)

    Kovács, S. T. S.; Herczku, P.; Juhász, Z.; Sarkadi, L.; Gulyás, L.; Sulik, B.

    2017-09-01

    We report on the fragmentation of the water molecule by 1 MeV H+ and He+ and 650 keV N+ ion impact. The fragment-ion energy spectra were measured by an electrostatic spectrometer at different observation angles. The obtained double-differential fragmentation cross sections for N+ are found to be more than an order of magnitude higher than that for H+. The relative ratios of the fragmentation channels are also different for the three projectiles. Additional fragmentation channels were observed in the spectra for He+ and for N+ impact, which are missing in the case of H+. From the analysis of the kinetic energy of the fragments, the maximum observed degree of ionization was found to be qmax=3 , 4, and 5 for H + , He + , and N + impact, respectively. Absolute multiple-ionization cross sections have been determined. They are compared with the predictions of the classical trajectory Monte Carlo and continuum-distorted-wave eikonal-initial-state theories. At lower degrees of ionization, theories provide reasonable agreement with experiment. The systematic overestimation of the cross section by the theories towards higher degrees of ionization indicates the failure of the independent particle model.

  15. Large single domain 123 material produced by seeding with single crystal rare earth barium copper oxide single crystals

    DOEpatents

    Todt, V.; Miller, D.J.; Shi, D.; Sengupta, S.

    1998-07-07

    A method of fabricating bulk YBa{sub 2}Cu{sub 3}O{sub x} where compressed powder oxides and/or carbonates of Y and Ba and Cu present in mole ratios to form YBa{sub 2}Cu{sub 3}O{sub x} are heated in the presence of a Nd{sub 1+x}Ba{sub 2{minus}x}Cu{sub 3}O{sub y} seed crystal to a temperature sufficient to form a liquid phase in the YBa{sub 2}Cu{sub 3}O{sub x} while maintaining the seed crystal solid. The materials are slowly cooled to provide a YBa{sub 2}Cu{sub 3}O{sub x} material having a predetermined number of domains between 1 and 5. Crack-free single domain materials can be formed using either plate shaped seed crystals or cube shaped seed crystals with a pedestal of preferential orientation material. 7 figs.

  16. Familial Mediterranean fever with a single MEFV mutation: comparison of rare and common mutations in a Turkish paediatric cohort.

    PubMed

    Soylemezoglu, Oguz; Kandur, Yasar; Duzova, Ali; Ozkaya, Ozan; Kasapcopur, Ozgür; Baskin, Esra; Fidan, Kibriya; Yalcinkaya, Fatos

    2015-01-01

    Presence of common MEFV gene mutations strengthened the diagnosis of FMF in addition to the typical clinical characteristics of FMF. However, there are also rare mutations. P369S, A744S, R761H, K695R, F479L are the main rare mutations in Turkish population. We aimed to evaluate FMF patients with a single allele MEFV mutation and to compare patients with common and rare mutations. We retrospectively reviewed the medical records of FMF patients with a single allele mutation who were followed up between 2008 and 2013 in six centres. We compared the patients with rare and common mutations for disease severity score, frequent exacerbations ( >1 attack per month), long attack period (>3 day), symptoms, age at the onset of symptoms, gender, consanguinity, and family history. Two hundred and seventeen patients (M/F=101/116) with the diagnosis of FMF and single mutation were included. Heterozygote mutations were defined as common (M694V, V726A, M68OI) and rare mutations (A744S, P369S, K695R, R761H, F479L). Sixty-seven patients (27 males, 40 females) had one single rare mutation and 150 (74 males, 76 females) had one single common mutation. No difference was found between the rare and common mutations with respect to the disease severity score. There was no significant difference between common and rare heterozygote form of mutations in terms of disease severity. Patients with typical characteristics of FMF, with some rare mutations (A744S, P369S) should be treated in the same manner as patients with a common mutation.

  17. Wave-packet continuum-discretization approach to single ionization of helium by antiprotons and energetic protons

    NASA Astrophysics Data System (ADS)

    Abdurakhmanov, I. B.; Kadyrov, A. S.; Bray, I.; Bartschat, K.

    2017-08-01

    The recently developed wave-packet continuum-discretization approach [I. B. Abdurakhmanov, A. S. Kadyrov, and I. Bray, Phys. Rev. A 94, 022703 (2016), 10.1103/PhysRevA.94.022703] is extended to antiproton-helium collisions. The helium target is treated as a three-body Coulomb system using a frozen-core approximation, in which the electron-electron correlation within the target is accounted for through the static interaction. The Schrödinger equation for the helium target is solved numerically to yield bound and continuum states of the active electron. The resulting continuum state is used to construct wave-packet pseudostates with arbitrary energies. The energies of the pseudostates are chosen in a way that is ideal for detailed differential ionization studies. Two-electron target wave functions, formed from the bound and continuum wave-packet states of the active electron and the 1 s orbital of He+, are then utilized in the single-center semiclassical impact-parameter close-coupling scheme. A comprehensive set of benchmark results, from angle-integrated to fully differential cross sections for antiproton impact single ionization of helium in the energy range from 1 keV to 1 MeV, is provided. Furthermore, we use our single-center convergent close-coupling approach to study fully differential single ionization of helium by 1-MeV proton impact. The calculated results are in good agreement with recent experimental measurements [H. Gassert, O. Chuluunbaatar, M. Waitz, F. Trinter, H.-K. Kim, T. Bauer, A. Laucke, C. Müller, J. Voigtsberger, M. Weller et al., Phys. Rev. Lett. 116, 073201 (2016), 10.1103/PhysRevLett.116.073201] for all considered geometries.

  18. Shifting Paradigm of Association Studies: Value of Rare Single-Nucleotide Polymorphisms

    PubMed Central

    Gorlov, Ivan P.; Gorlova, Olga Y.; Sunyaev, Shamil R.; Spitz, Margaret R.; Amos, Christopher I.

    2008-01-01

    Summary Currently, single-nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) of >5% are preferentially used in case-control association studies of common human diseases. Recent technological developments enable inexpensive and accurate genotyping of a large number of SNPs in thousands of cases and controls, which can provide adequate statistical power to analyze SNPs with MAF <5%. Our purpose was to determine whether evaluating rare SNPs in case-control association studies could help identify causal SNPs for common diseases. We suggest that slightly deleterious SNPs (sdSNPs) subjected to weak purifying selection are major players in genetic control of susceptibility to common diseases. We compared the distribution of MAFs of synonymous SNPs with that of nonsynonymous SNPs (1) predicted to be benign, (2) predicted to be possibly damaging, and (3) predicted to be probably damaging by PolyPhen. Our sources of data were the International HapMap Project, ENCODE, and the SeattleSNPs project. We found that the MAF distribution of possibly and probably damaging SNPs was shifted toward rare SNPs compared with the MAF distribution of benign and synonymous SNPs that are not likely to be functional. We also found an inverse relationship between MAF and the proportion of nsSNPs predicted to be protein disturbing. On the basis of this relationship, we estimated the joint probability that a SNP is functional and would be detected as significant in a case-control study. Our analysis suggests that including rare SNPs in genotyping platforms will advance identification of causal SNPs in case-control association studies, particularly as sample sizes increase. PMID:18179889

  19. Rare Variants Association Analysis in Large-Scale Sequencing Studies at the Single Locus Level

    PubMed Central

    Lu, Wenbin; Tzeng, Jung-Ying

    2016-01-01

    Genetic association analyses of rare variants in next-generation sequencing (NGS) studies are fundamentally challenging due to the presence of a very large number of candidate variants at extremely low minor allele frequencies. Recent developments often focus on pooling multiple variants to provide association analysis at the gene instead of the locus level. Nonetheless, pinpointing individual variants is a critical goal for genomic researches as such information can facilitate the precise delineation of molecular mechanisms and functions of genetic factors on diseases. Due to the extreme rarity of mutations and high-dimensionality, significances of causal variants cannot easily stand out from those of noncausal ones. Consequently, standard false-positive control procedures, such as the Bonferroni and false discovery rate (FDR), are often impractical to apply, as a majority of the causal variants can only be identified along with a few but unknown number of noncausal variants. To provide informative analysis of individual variants in large-scale sequencing studies, we propose the Adaptive False-Negative Control (AFNC) procedure that can include a large proportion of causal variants with high confidence by introducing a novel statistical inquiry to determine those variants that can be confidently dispatched as noncausal. The AFNC provides a general framework that can accommodate for a variety of models and significance tests. The procedure is computationally efficient and can adapt to the underlying proportion of causal variants and quality of significance rankings. Extensive simulation studies across a plethora of scenarios demonstrate that the AFNC is advantageous for identifying individual rare variants, whereas the Bonferroni and FDR are exceedingly over-conservative for rare variants association studies. In the analyses of the CoLaus dataset, AFNC has identified individual variants most responsible for gene-level significances. Moreover, single-variant results

  20. Pancake kidney with a single ureter: a rare incidental observation at autopsy.

    PubMed

    Kanchan, Tanuj; Murlimanju, B V; Saralaya, Vasudha V

    2017-01-01

    We report an extremely rare case of a pancake kidney with a single ureter. During the medicolegal autopsy on the body of a traffic accident victim, the kidneys were not located in the abdomen. The anterior surfaces of both kidneys were completely fused in the pelvic cavity, and the kidney was shaped like a pancake. This pancake kidney had accessory renal arteries around it and one renal vein from each kidney. The left renal vein was much smaller in diameter than the right one. There were two major calyces, one each from each kidney. The major calyces joined to form a single renal pelvis from both the kidneys, which continued as a single ureter. The renal pelvis and ureter lay posterior to the pancake kidney. Urologists and pelvic surgeons should be aware of the variant anatomy of the pancake kidney, particularly concerning its vasculature, to prevent unexpected catastrophic bleeding. If the kidneys are not located in the abdominal cavity, the autopsy surgeon must consider the possibility of its presence in the pelvic cavity. This could be especially important during medicolegal investigations into allegations of missing kidneys and unlawful kidney transplantations.

  1. Single-Phase Rare-Earth Oxide/Aluminum Oxide Glasses

    NASA Technical Reports Server (NTRS)

    Weber, J. K. Richard; Abadie, John G.; Hixson, April D.; Nordine, Paul C.

    2006-01-01

    Glasses that comprise rare-earth oxides and aluminum oxide plus, optionally, lesser amounts of other oxides, have been invented. The other oxide(s) can include SiO2, B2O3, GeO2, and/or any of a variety of glass-forming oxides that have been used heretofore in making a variety of common and specialty glasses. The glasses of the invention can be manufactured in bulk single-phase forms to ensure near uniformity in optical and mechanical characteristics, as needed for such devices as optical amplifiers, lasers, and optical waveguides (including optical fibers). These glasses can also be formulated to have high indices of refraction, as needed in some of such devices.

  2. An isolated single L-II type coronary artery anomaly: A rare coronary anomaly

    PubMed Central

    Ermis, Emrah; Demirelli, Selami; Korkmaz, Ali Fuat; Sahin, Bingul Dilekci; Kantarci, Abdulmecit

    2015-01-01

    Summary The incidence of congenital artery anomalies is 0.2–1.4%, and most are benign. Single coronary artery (SCA) anomalies are very rare. The right coronary artery (RCA) originating from the left coronary system is one such SCA anomaly, and the risk of sudden cardiac death (SCD) increases if it courses between the pulmonary artery and aorta and coexists with other congenital heart diseases. Additionally, coursing of the RCA between the great vessels increases the risk of atherosclerosis. We herein present the case of a 57 year-old man who was admitted to our cardiology outpatient clinic and diagnosed with an SCA anomaly in which the RCA arose from the left main coronary artery (LMCA) and coursed between the pulmonary artery and aorta. However a critical stenosis was not detected in imaging techniques, and myocardial perfusion scintigraphic evidence of ischaemia was found in a small area. Therefore, he was managed with conservative medical therapy. PMID:26668781

  3. Double ionization of single oriented water molecules by electron impact: Second-order Born description

    SciTech Connect

    Dal Cappello, C.; Champion, C.; Kada, I.; Mansouri, A.

    2011-06-15

    The double ionization of isolated water molecules fixed in space is investigated within a theoretical approach based on the second-order Born approximation. Electron angular distributions have been studied for specific kinematical conditions. The three usual mechanisms, the shake-off and the two two-step mechanisms, have been identified. A significant contribution of the two-step mechanism is clearly visible for some particular kinematics.

  4. Numerical simulation of the double-to-single ionization ratio for the helium atom in strong laser fields

    NASA Astrophysics Data System (ADS)

    Chen, Zhangjin; Zheng, Yanyan; Yang, Weifeng; Song, Xiaohong; Xu, Junliang; DiMauro, L. F.; Zatsarinny, Oleg; Bartschat, Klaus; Morishita, Toru; Zhao, Song-Feng; Lin, C. D.

    2015-12-01

    We present calculations on the ratio between double and single ionization of helium by a strong laser pulse at a wavelength of 780 nm using the quantitative rescattering (QRS) model. According to this model, the yield for the doubly charged ion He+2 can be obtained by multiplying the returning electron wave packet (RWP) with the total cross sections (TCSs) for electron impact ionization and electron impact excitation of +He in the singlet spin channel. The singlet constraint was imposed since the interaction of the helium atom with the laser and the recollision processes both preserve the total spin of the system. An R -matrix (close-coupling) code is used to obtain accurate TCSs, while the RWPs, according to the QRS, are calculated by the strong-field approximation for high-energy photoelectrons. The laser field, which lowers the required energy for the electron to escape from the nucleus at the time of recollision, is also taken into account. The simulated results are in good agreement with the measured He+2/+He ratio over a broad range of laser intensities. The result demonstrates that the QRS approach based on the rescattering model is fully capable of quantitatively interpreting nonsequential double ionization processes.

  5. Observation of terahertz-radiation-induced ionization in a single nano island.

    PubMed

    Seo, Minah; Kang, Ji-Hun; Kim, Hyo-Suk; Hyong Cho, Joon; Choi, Jaebin; Min Jhon, Young; Lee, Seok; Hun Kim, Jae; Lee, Taikjin; Park, Q-Han; Kim, Chulki

    2015-05-22

    Terahertz (THz) electromagnetic wave has been widely used as a spectroscopic probe to detect the collective vibrational mode in vast molecular systems and investigate dielectric properties of various materials. Recent technological advances in generating intense THz radiation and the emergence of THz plasmonics operating with nanoscale structures have opened up new pathways toward THz applications. Here, we present a new opportunity in engineering the state of matter at the atomic scale using THz wave and a metallic nanostructure. We show that a medium strength THz radiation of 22 kV/cm can induce ionization of ambient carbon atoms through interaction with a metallic nanostructure. The prepared structure, made of a nano slot antenna and a nano island located at the center, acts as a nanogap capacitor and enhances the local electric field by two orders of magnitudes thereby causing the ionization of ambient carbon atoms. Ionization and accumulation of carbon atoms are also observed through the change of the resonant condition of the nano slot antenna and the shift of the characteristic mode in the spectrum of the transmitted THz waves.

  6. Observation of terahertz-radiation-induced ionization in a single nano island

    NASA Astrophysics Data System (ADS)

    Seo, Minah; Kang, Ji-Hun; Kim, Hyo-Suk; Hyong Cho, Joon; Choi, Jaebin; Min Jhon, Young; Lee, Seok; Hun Kim, Jae; Lee, Taikjin; Park, Q.-Han; Kim, Chulki

    2015-05-01

    Terahertz (THz) electromagnetic wave has been widely used as a spectroscopic probe to detect the collective vibrational mode in vast molecular systems and investigate dielectric properties of various materials. Recent technological advances in generating intense THz radiation and the emergence of THz plasmonics operating with nanoscale structures have opened up new pathways toward THz applications. Here, we present a new opportunity in engineering the state of matter at the atomic scale using THz wave and a metallic nanostructure. We show that a medium strength THz radiation of 22 kV/cm can induce ionization of ambient carbon atoms through interaction with a metallic nanostructure. The prepared structure, made of a nano slot antenna and a nano island located at the center, acts as a nanogap capacitor and enhances the local electric field by two orders of magnitudes thereby causing the ionization of ambient carbon atoms. Ionization and accumulation of carbon atoms are also observed through the change of the resonant condition of the nano slot antenna and the shift of the characteristic mode in the spectrum of the transmitted THz waves.

  7. Observation of terahertz-radiation-induced ionization in a single nano island

    PubMed Central

    Seo, Minah; Kang, Ji-Hun; Kim, Hyo-Suk; Hyong Cho, Joon; Choi, Jaebin; Min Jhon, Young; Lee, Seok; Hun Kim, Jae; Lee, Taikjin; Park, Q-Han; Kim, Chulki

    2015-01-01

    Terahertz (THz) electromagnetic wave has been widely used as a spectroscopic probe to detect the collective vibrational mode in vast molecular systems and investigate dielectric properties of various materials. Recent technological advances in generating intense THz radiation and the emergence of THz plasmonics operating with nanoscale structures have opened up new pathways toward THz applications. Here, we present a new opportunity in engineering the state of matter at the atomic scale using THz wave and a metallic nanostructure. We show that a medium strength THz radiation of 22 kV/cm can induce ionization of ambient carbon atoms through interaction with a metallic nanostructure. The prepared structure, made of a nano slot antenna and a nano island located at the center, acts as a nanogap capacitor and enhances the local electric field by two orders of magnitudes thereby causing the ionization of ambient carbon atoms. Ionization and accumulation of carbon atoms are also observed through the change of the resonant condition of the nano slot antenna and the shift of the characteristic mode in the spectrum of the transmitted THz waves. PMID:25998840

  8. "DUST BUSTER" - A Single Photon Ionization TOF MS for Cometary Dusts

    NASA Technical Reports Server (NTRS)

    Chen, C.-Y.; Calaway, W. F.; Lee, Typhoon; Moore, J. F.; Pellin, M. J.; Veryovkin, I. V.

    2003-01-01

    It is hard to predict the properties and composition of dust that will be returned by STARDUST from WED- 2. The most interesting but challenging case would be grains, pg to fg in weight, each carrying its own isotopic signature characteristic of its source zones in a variety of stars. How do we extract the maximum amount of science from such grains? Clearly, the best that can be accomplished is to measure every atom in each grain.Academia Sinica and Argonne National Laboratory (ANL) have entered into a collaboration to develop a SPI TOF MS instrument for analysis of stardust grains. A new instrument will be built at Academia Sinica based on the new TOF mass spectrometer design developed, built and operating at ANL. The instrument is intended for SPI TOF MS analysis of elements from Ca to Cu plus Li after first using SIMS to measure H, C, N, 0, Si, and S. There are still technical challenges facing the technique. We will need to improve submicrometer sample handling, avoid the effects of space charge, and increase the Mamie range of the detector. The most difficult obstacle to overcome may be the fact that the flux density of present high repetition rate, WV lasers is below the level needed to ensure full ionization (saturation) in the source region, which must be several mm in size to achieve the high useful yield needed for analysis of small stardust grains. A potential breakthrough effort is to exploit the novel free electron laser being pioneered at ANL. In principle, this FEL can reach ionization saturation and is tunable up to photon energies of 25 eV, which is higher than the ionization potential of any element.

  9. "DUST BUSTER" - A Single Photon Ionization TOF MS for Cometary Dusts

    NASA Technical Reports Server (NTRS)

    Chen, C.-Y.; Calaway, W. F.; Lee, Typhoon; Moore, J. F.; Pellin, M. J.; Veryovkin, I. V.

    2003-01-01

    It is hard to predict the properties and composition of dust that will be returned by STARDUST from WED- 2. The most interesting but challenging case would be grains, pg to fg in weight, each carrying its own isotopic signature characteristic of its source zones in a variety of stars. How do we extract the maximum amount of science from such grains? Clearly, the best that can be accomplished is to measure every atom in each grain.Academia Sinica and Argonne National Laboratory (ANL) have entered into a collaboration to develop a SPI TOF MS instrument for analysis of stardust grains. A new instrument will be built at Academia Sinica based on the new TOF mass spectrometer design developed, built and operating at ANL. The instrument is intended for SPI TOF MS analysis of elements from Ca to Cu plus Li after first using SIMS to measure H, C, N, 0, Si, and S. There are still technical challenges facing the technique. We will need to improve submicrometer sample handling, avoid the effects of space charge, and increase the Mamie range of the detector. The most difficult obstacle to overcome may be the fact that the flux density of present high repetition rate, WV lasers is below the level needed to ensure full ionization (saturation) in the source region, which must be several mm in size to achieve the high useful yield needed for analysis of small stardust grains. A potential breakthrough effort is to exploit the novel free electron laser being pioneered at ANL. In principle, this FEL can reach ionization saturation and is tunable up to photon energies of 25 eV, which is higher than the ionization potential of any element.

  10. Light-particle single ionization of argon: Influence of the projectile charge sign

    SciTech Connect

    Otranto, S.; Olson, R. E.

    2009-07-15

    The ionization of the 3p orbital of argon by incident electrons and positrons is studied by means of the post version of the continuum distorted wave-eikonal initial-state model. Results are presented at both 200 and 500 eV impact energies for conditions amenable to present experiments. Differences in the fully differential cross sections (FDCSs) are analyzed and the influence of the projectile charge sign on the emission dynamics is discussed. The FDCSs are found to display the classic binary plus recoil peak structure at 500 eV, but transition to a more complicated four-lobed structure at the lower impact energy.

  11. Classical and quantum-mechanical scaling of ionization from excited hydrogen atoms in single-cycle THz pulses

    NASA Astrophysics Data System (ADS)

    Chovancova, M.; Agueny, H.; Rørstad, J. J.; Hansen, J. P.

    2017-08-01

    Excited atoms, or nanotip surfaces, exposed to strong single-cycle terahertz radiation emit electrons with energies strongly dependent on the characteristics of the initial state. Here we consider scaling properties of the ionization probability and electron momenta of H(n d ) atoms exposed to a single-cycle pulse of duration 0.5-5 ps, with n =9 ,12 ,15 . Results from three-dimensional quantum and classical calculations are in good agreement for long pulse lengths, independent of pulse strength. However, differences appear when the two approaches are compared at the most detailed level of density distributions. For the longest pulse lengths a mixed power law, n -scaling relation, α n-4+(1 -α ) n-3 is shown to hold. Our quantum calculations show that the scaling relation puts its imprint on the momentum distribution of the ionized electrons as well: By multiplying the emitted electron momenta of varying initial n level with the appropriate scaling factor the spectra fall onto a common momentum range. Furthermore, the characteristic momenta of emitted electrons from a fixed n level are proportional to the pulse strength of the driving field.

  12. Theoretical study of photoelectron angular distributions in single-photon ionization of aligned N{sub 2} and CO{sub 2}

    SciTech Connect

    Jin Cheng; Zhao Songfeng; Le, Anh-Thu; Lin, C. D.; Lucchese, R. R.

    2010-03-15

    We calculate photoelectron angular distributions (PADs) resulting from single-photon (43 eV) ionization of molecules that have been transiently aligned with a short laser pulse. The total ionization cross sections of N{sub 2} and CO{sub 2} vs the time delay between the aligning laser pulse and the soft x-ray photon are calculated and compared to experimental results reported by I. Thomann et al. [J. Phys. Chem. A 112, 9382 (2008)]. We present the PADs from these aligned molecules in the laboratory frame which can be compared directly with future experiments from aligned N{sub 2} and CO{sub 2}. The alignment dependence of single-photon ionization, multiphoton ionization, and high-order harmonic generation are also analyzed.

  13. Grid-based methods for diatomic quantum scattering problems II: Time-dependent treatment of single- and two-photon ionization of H2+

    SciTech Connect

    Rescigno, Thomas N.; Tao, L.; McCurdy, C.W.

    2009-04-20

    The time-dependent Schr\\"odinger equation for H2+ in a time-varying electromagnetic field is solved in the fixed-nuclei approximation using a previously developed finite-element/ discrete variable representation in prolate spheroidal coordinates. Amplitudes for single- and two-photon ionization are obtained using the method of exterior complex scaling to effectively propagate the field-free solutions from the end of the radiation pulse to infinite times. Cross sections are presented for one-and two-photon ionization for both parallel and perpendicular polarization of the photon field, as well as photoelectron angular distributions for two-photon ionization.

  14. Single-crystal Rare-earth Doped YAG Fiber Lasers Grown by the Laser-heated Pedestal Growth Technique

    DTIC Science & Technology

    2014-02-04

    thulium have been successfully doped into single crystal (SC) yttrium aluminum garnet (YAG, Y3Al5O12) fibers by use of the laser heated pedestal growth...holmium and thulium have been successfully doped into single crystal (SC) yttrium aluminum garnet (YAG, Y3Al5O12) fibers by use of the laser heated...Ann Arbor, MI 48109 dSPAWAR System Center, San Diego, CA ABSTRACT High concentrations of the rare-earth elements erbium, holmium and thulium

  15. Ionization of high-density deep donor defect states explains the low photovoltage of iron pyrite single crystals.

    PubMed

    Cabán-Acevedo, Miguel; Kaiser, Nicholas S; English, Caroline R; Liang, Dong; Thompson, Blaise J; Chen, Hong-En; Czech, Kyle J; Wright, John C; Hamers, Robert J; Jin, Song

    2014-12-10

    Iron pyrite (FeS2) is considered a promising earth-abundant semiconductor for solar energy conversion with the potential to achieve terawatt-scale deployment. However, despite extensive efforts and progress, the solar conversion efficiency of iron pyrite remains below 3%, primarily due to a low open circuit voltage (VOC). Here we report a comprehensive investigation on {100}-faceted n-type iron pyrite single crystals to understand its puzzling low VOC. We utilized electrical transport, optical spectroscopy, surface photovoltage, photoelectrochemical measurements in aqueous and acetonitrile electrolytes, UV and X-ray photoelectron spectroscopy, and Kelvin force microscopy to characterize the bulk and surface defect states and their influence on the semiconducting properties and solar conversion efficiency of iron pyrite single crystals. These insights were used to develop a circuit model analysis for the electrochemical impedance spectroscopy that allowed a complete characterization of the bulk and surface defect states and the construction of a detailed energy band diagram for iron pyrite crystals. A holistic evaluation revealed that the high-density of intrinsic surface states cannot satisfactorily explain the low photovoltage; instead, the ionization of high-density bulk deep donor states, likely resulting from bulk sulfur vacancies, creates a nonconstant charge distribution and a very narrow surface space charge region that limits the total barrier height, thus satisfactorily explaining the limited photovoltage and poor photoconversion efficiency of iron pyrite single crystals. These findings lead to suggestions to improve single crystal pyrite and nanocrystalline or polycrystalline pyrite films for successful solar applications.

  16. General model of depolarization and transfer of polarization of singly ionized atoms by collisions with hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Derouich, M.

    2017-02-01

    Simulations of the generation of the atomic polarization is necessary for interpreting the second solar spectrum. For this purpose, it is important to rigorously determine the effects of the isotropic collisions with neutral hydrogen on the atomic polarization of the neutral atoms, ionized atoms and molecules. Our aim is to treat in generality the problem of depolarizing isotropic collisions between singly ionized atoms and neutral hydrogen in its ground state. Using our numerical code, we computed the collisional depolarization rates of the p-levels of ions for large number of values of the effective principal quantum number n* and the Unsöld energy Ep. Then, genetic programming has been utilized to fit the available depolarization rates. As a result, strongly non-linear relationships between the collisional depolarization rates, n* and Ep are obtained, and are shown to reproduce the original data with accuracy clearly better than 10%. These relationships allow quick calculations of the depolarizing collisional rates of any simple ion which is very useful for the solar physics community. In addition, the depolarization rates associated to the complex ions and to the hyperfine levels can be easily derived from our results. In this work we have shown that by using powerful numerical approach and our collisional method, general model giving the depolarization of the ions can be obtained to be exploited for solar applications.

  17. QED effects in 1s and 2s single and double ionization potentials of the noble gases

    NASA Astrophysics Data System (ADS)

    Niskanen, J.; Jänkälä, K.; Huttula, M.; Föhlisch, A.

    2017-04-01

    We present calculations on the quantum electrodynamics (QED) effects in 1s and 2s single and double ionization potentials of noble gases from Ne to Rn as perturbations on relativistic four-component Dirac-Fock wavefunctions. The most dominant effect originates from the self-energy of the core-electron that yields corrections of similar order as the transverse interaction. For 1s ionization potentials, a match within few eV against the known experimental values is obtained, and our work reveals considerable QED effects in the photoelectron binding energies across the periodic table—most strikingly even for Ne. We perform power-law fits for the corrections as a function of Z and interpolate the QED correction of ˜-0.55 eV for S1s. Due to this, the K-edge electron spectra of the third row and below need QED for a match in the absolute energy when using state-of-the-art instrumentation.

  18. QED effects in 1s and 2s single and double ionization potentials of the noble gases.

    PubMed

    Niskanen, J; Jänkälä, K; Huttula, M; Föhlisch, A

    2017-04-14

    We present calculations on the quantum electrodynamics (QED) effects in 1s and 2s single and double ionization potentials of noble gases from Ne to Rn as perturbations on relativistic four-component Dirac-Fock wavefunctions. The most dominant effect originates from the self-energy of the core-electron that yields corrections of similar order as the transverse interaction. For 1s ionization potentials, a match within few eV against the known experimental values is obtained, and our work reveals considerable QED effects in the photoelectron binding energies across the periodic table-most strikingly even for Ne. We perform power-law fits for the corrections as a function of Z and interpolate the QED correction of ∼-0.55 eV for S1s. Due to this, the K-edge electron spectra of the third row and below need QED for a match in the absolute energy when using state-of-the-art instrumentation.

  19. Effect of initial-state target polarization on the single ionization of helium by 1-keV electron impact

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Yan; Ma, Xiao-Yan; Li, Xia; Miao, Xiang-Yang; Jia, Xiang-Fu

    2012-07-01

    We report new results of triple differential cross sections for the single ionization of helium by 1-KeV electron impact at the ejection energy of 10 eV. Investigations have been made for both the perpendicular plane and the plane perpendicular to the momentum transfer geometries. The present calculation is based on the three-Coulomb wave function. Here we have also incorporated the effect of target polarization in the initial state. A comparison is made between the present calculation with the results of other theoretical methods and a recent experiment [Dürr M, Dimopoulou C, Najjari B, Dorn A, Bartschat K, Bray I, Fursa D V, Chen Z, Madison D H and Ullrich J 2008 Phys. Rev. A 77 032717]. At an impact energy of 1 KeV, the target polarization is found to induce a substantial change of the cross section for the ionization process. We observe that the effect of target polarization plays a dominant role in deciding the shape of triple differential cross sections.

  20. Investigation of Singly Ionized Iodine Spectroscopy in Support of Electrostatic Propulsion Diagnostics Development

    DTIC Science & Technology

    2012-07-02

    lab.32,16 However, commercially available single mode diode lasers have also been successfully used in the past.33,25 Such lasers provide a...significantly less expensive laser source capable of scanning across 20 GHz, or more. It should be noted that the line widths of commercial laser diodes are 15–30...transitions for laser -induced fluorescence of an accelerated atomic iodine singly charged ion (I+). While the second spectrum of iodine has been analyzed

  1. The magnetocrystalline anisotropy properties of rare earth-transition metal single crystals and thin films

    NASA Astrophysics Data System (ADS)

    Mendoza, William Arnold

    1998-12-01

    Rare earth-transition metal magnet materials form the basis of high energy bulk and thin film permanent magnets which have desirable intrinsic properties (Curie temperature Tsb{c}, saturation magnetization Msb{s}, and anisotropy field Hsb{a}) needed for practical applications. This study focused on the intrinsic properties of two iron-rich classes of rare earth-transition metal materials, and on Sm-Co type thin film magnets which have applications where the use of bulk magnets is not optimal, as in defense and space applications where weight and size constraints exist. Research efforts focused on iron-rich, ThMnsb{12}-type crystal samples across the NdFesb{10-x}Cosb{x}Mosb2 series and a new iron-rich Rsb3(Fe,M)sb{29} series which was discovered by a group at the General Motors Company. Single crystals of NdFesb{10-x}Cosb{x}Mosb2 with x epsilon \\{0, 1, 3, 5, 7, 10\\}, and Rsb3Fesb{29-x}Tisb{x} with R epsilon\\ Ce, Nd, Pr\\ and x = 1.5 were grown by the Czochralski technique using a tri-arc furnace. Only polycrystalline samples had been available previously; single crystals are better defined and characterized and for that reason are expected to give more accurate information about the magneto-crystalline anisotropy of these magnetic alloys. Temperature-induced spin reorientations were observed in NdFesb{10-x}Cosb{x}Mosb2 for x < 5 as were field-induced spin reorientations for x ≥ 3, restricting their use for permanent magnet applications. Magnetic anisotropy in NdFesb{10-x}Cosb{x}Mosb2 was augmented by Co addition, but the anisotropy seen in Rsb3Fesb{29-x}Tisb{x} was quite low for permanent magnet applications. Aligned Smsb2Cosb{17} films usually require subsequent annealing for optimum results. Growth of in-plane aligned hard magnetic films without need for subsequent processing is desirable for device applications so composite SmCosb5 and Sm(Co,Fe,Cu,Zr)sb7 thin films were grown on Alsb2Osb3, MgO (100), Si (100), AlN, and c-plane (001) sapphire substrates to

  2. Regularities And Irregularities Of The Stark Parameters For Single Ionized Noble Gases

    NASA Astrophysics Data System (ADS)

    Peláez, R. J.; Djurovic, S.; Cirišan, M.; Aparicio, J. A.; Mar S.

    2010-07-01

    Spectroscopy of ionized noble gases has a great importance for the laboratory and astrophysical plasmas. Generally, spectra of inert gases are important for many physics areas, for example laser physics, fusion diagnostics, photoelectron spectroscopy, collision physics, astrophysics etc. Stark halfwidths as well as shifts of spectral lines are usually employed for plasma diagnostic purposes. For example atomic data of argon krypton and xenon will be useful for the spectral diagnostic of ITER. In addition, the software used for stellar atmosphere simulation like TMAP, and SMART require a large amount of atomic and spectroscopic data. Availability of these parameters will be useful for a further development of stellar atmosphere and evolution models. Stark parameters data of spectral lines can also be useful for verification of theoretical calculations and investigation of regularities and systematic trends of these parameters within a multiplet, supermultiplet or transition array. In the last years, different trends and regularities of Stark parameters (halwidths and shifts of spectral lines) have been analyzed. The conditions related with atomic structure of the element as well as plasma conditions are responsible for regular or irregular behaviors of the Stark parameters. The absence of very close perturbing levels makes Ne II as a good candidate for analysis of the regularities. Other two considered elements Kr II and Xe II with complex spectra present strong perturbations and in some cases an irregularities in Stark parameters appear. In this work we analyze the influence of the perturbations to Stark parameters within the multiplets.

  3. Triple Differential Cross Sections for single ionization of the Ethane molecule

    NASA Astrophysics Data System (ADS)

    Ali, Esam; Nixon, Kate; Ning, Chuangang; Murray, Andrew; Madison, Don

    2015-09-01

    We report experimental and theoretical results for electron-impact (e,2e) ionization of the Ethane molecule (C2H6) in the coplanar scattering geometry for four different ejected electron energies Ea = 5,10,15, and 20 eV respectively, and for each ejected electron energy, the projectile scattering angle is fixed at 10°. We will show that the TDCS is very sensitive for the case of two heavy nuclei surrounded by lighter H nuclei. On the theoretical side, we have used the M3DW coupled with the Orientation Averaged Molecular Orbital (OAMO) approximation and proper average (PA) over all orientations. These approximations show good agreement with experimental data for the binary peaks. However, for the recoil peak region, experiment finds a noticeable peak while theory predicts no peak. No recoil peak suggests no (or very weak) nuclear scattering, so we have investigated the importance of nuclear scattering by moving the nuclei closer to the center of mass. This work is supported by the US National Science Foundation under Grant No. PHY-1068237 and XSEDE resources provided by the Texas Advanced Computing Center (Grant No. TG-MCA07S029).

  4. Single-photon double ionization of H2 away from equilibrium: A showcase of two-center electron interference

    NASA Astrophysics Data System (ADS)

    Serov, Vladislav V.; Ivanov, I. A.; Kheifets, A. S.

    2012-08-01

    We demonstrate the effect of two-center interference on single-photon double ionization [double photoionization (DPI)] of the aligned H2 molecule when it shrinks or expands from the equilibrium internuclear distance. This interference affects the first stage of the DPI process in which the primary photoelectron is ejected predominantly along the polarization axis of light and its geometrical interference factor is most sensitive to the internuclear distance in the parallel (Σ) orientation of the internuclear and polarization axes. This effect is responsible for strong modification of the DPI amplitude in the parallel orientation while the corresponding amplitude for the perpendicular (Π) orientation is rather insensitive to the internuclear distance. The combination of these two factors explains the profound kinetic energy release effect on the fully differential cross sections of DPI of H2.

  5. Differential cross sections for the single ionization of H2 by 75 keV proton impact

    NASA Astrophysics Data System (ADS)

    Igarashi, A.; Gulyás, L.

    2017-02-01

    We have calculated the double and triple differential cross sections for electron ejection with energy of 14.6 eV in single ionization of H2 by 75 keV proton impact. A molecular version of the continuum distorted wave-eikonal initial state approach is applied, where the interaction between the projectile and the residual molecular ion is considered more properly than in previous applications of the method. For triple differential cross sections, the present results are in better agreement with the experimental data than those of other descriptions when large momentum transfer values are considered. For double differential cross sections the experimental data are reproduced quite well for both coherent and incoherent proton beams.

  6. Fully differential cross section for single ionization of helium by 1 KeV electrons in the eikonal approximation

    NASA Astrophysics Data System (ADS)

    Dey, R.; Roy, A. C.

    2009-07-01

    We report new results for fully differential cross sections for the single ionization of helium by 1 KeV electron impact at the ejection energy of 10 eV. Investigations have been made for both the scattering and perpendicular planes. The present calculation is based on the eikonal approximation due to Glauber. Here we have also incorporated the effect of classical post collision interaction (PCI) in the Glauber approximation (GA). A comparison is made of the present calculation with the results of other theoretical methods and the recent experiment [M. Dürr, C. Dimopoulou, B. Najjari, A. Dorn, K. Bartschat, I. Bray, D.V. Fursa, Z. Chen, D.H. Madison, J. Ullrich, Phys. Rev. A 77 (2008) 032717]. The Glauber results are in good agreement with the experiment in the scattering plane, but strong discrepancies are observed in the plane perpendicular to it. The effect of PCI is not substantial in the present kinematics.

  7. Measurement and calculation of the Stark-broadening parameters for the resonance lines of singly ionized calcium and magnesium.

    NASA Technical Reports Server (NTRS)

    Jones, W. W.; Sanchez, A.; Greig, J. R.; Griem, H. R.

    1972-01-01

    The electron-impact-broadened profiles of the resonance lines of singly ionized calcium and magnesium have been measured using an electromagnetically driven shock tube and a rapid-scanning Fabry-Perot spectrometer. For an electron density of 10 to the 17th power per cu cm and a temperature of 19,000 K, we found the Lorentzian half-width of the Ca+ line to be 0.086 A plus or minus 10% and of the Mg+ line to be 0.044 A plus or minus 10%. Using the quantum-mechanical theory of Barnes and Peach and our semiclassical calculation for the calcium lines, we found that the temperature dependence of the theoretical curves is close to that measured, although both theories predict actual values which are somewhat large.

  8. Total ionizing dose (TID) effect and single event effect (SEE) in quasi-SOI nMOSFETs

    NASA Astrophysics Data System (ADS)

    Tan, Fei; Huang, Ru; An, Xia; Wu, Weikang; Feng, Hui; Huang, Liangxi; Fan, Jiewen; Zhang, Xing; Wang, Yangyuan

    2014-01-01

    This paper studies the total ionizing dose (TID) and single event effect (SEE) in quasi-SOI nMOSFETs for the first time. After exposure to gamma rays, the off-state leakage current (Ioff) of a quasi-SOI device increases with the accumulating TID, and the on-state bias configuration is shown to be the worst-case bias configuration during irradiation. Although an additional TID-sensitive region is introduced by the unique structure of the quasi-SOI device, the influence of positive charge trapped in L-type oxide layers on the degradation of device performance is neglectable. Since the TID-induced leakage path in the quasi-SOI device is greatly reduced due to the isolation of L-type oxide layers, the TID-induced Ioff degradation in the quasi-SOI device is greatly suppressed. In addition, 3D simulation is performed to investigate the SEE of the quasi-SOI device. The full-width at half-maximum (FWHM) of worst-case drain current transient and collected charges of the quasi-SOI device after single-ion-striking is smaller than in a bulk Si device, indicating that the quasi-SOI device inherits the advantage of an SOI device in single event transient immunity. Therefore, the quasi-SOI device, which has improved electrical properties and radiation-hardened characteristics for both TID and SEE, can be considered as one of the promising candidates for space applications.

  9. Semiclassical calculations of electron impact Stark widths and shifts of singly ionized atom lines revisited

    NASA Astrophysics Data System (ADS)

    Blagojević, Branimir; Konjević, Nikola

    2017-09-01

    The Stark broadening parameters for spectral lines of singly charged Mg II, Al II, Si II, Zn II, Sn II, Hg II, and Pb II ions, calculated in numerically improved semiclassical formalism of Griem are reported and compared with the original results of Griem for Mg, Al and Si ions and the semiclassical calculations in a version of Dimitrijević and Sahal-Bréchot for Mg ions. Detailed comparison with the experimental data is carried out, also.

  10. Identification by Molecular Methods and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry and Antifungal Susceptibility Profiles of Clinically Significant Rare Aspergillus Species in a Referral Chest Hospital in Delhi, India.

    PubMed

    Masih, Aradhana; Singh, Pradeep K; Kathuria, Shallu; Agarwal, Kshitij; Meis, Jacques F; Chowdhary, Anuradha

    2016-09-01

    Aspergillus species cause a wide spectrum of clinical infections. Although Aspergillus fumigatus and Aspergillus flavus remain the most commonly isolated species in aspergillosis, in the last decade, rare and cryptic Aspergillus species have emerged in diverse clinical settings. The present study analyzed the distribution and in vitro antifungal susceptibility profiles of rare Aspergillus species in clinical samples from patients with suspected aspergillosis in 8 medical centers in India. Further, a matrix-assisted laser desorption ionization-time of flight mass spectrometry in-house database was developed to identify these clinically relevant Aspergillus species. β-Tubulin and calmodulin gene sequencing identified 45 rare Aspergillus isolates to the species level, except for a solitary isolate. They included 23 less common Aspergillus species belonging to 12 sections, mainly in Circumdati, Nidulantes, Flavi, Terrei, Versicolores, Aspergillus, and Nigri Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identified only 8 (38%) of the 23 rare Aspergillus isolates to the species level. Following the creation of an in-house database with the remaining 14 species not available in the Bruker database, the MALDI-TOF MS identification rate increased to 95%. Overall, high MICs of ≥2 μg/ml were noted for amphotericin B in 29% of the rare Aspergillus species, followed by voriconazole in 20% and isavuconazole in 7%, whereas MICs of >0.5 μg/ml for posaconazole were observed in 15% of the isolates. Regarding the clinical diagnoses in 45 patients with positive rare Aspergillus species cultures, 19 (42%) were regarded to represent colonization. In the remaining 26 patients, rare Aspergillus species were the etiologic agent of invasive, chronic, and allergic bronchopulmonary aspergillosis, allergic fungal rhinosinusitis, keratitis, and mycetoma.

  11. Mapping spin coherence of a single rare-earth ion in a crystal onto a single photon polarization state.

    PubMed

    Kolesov, Roman; Xia, Kangwei; Reuter, Rolf; Jamali, Mohammad; Stöhr, Rainer; Inal, Tugrul; Siyushev, Petr; Wrachtrup, Jörg

    2013-09-20

    We report on optical detection of a single photostable Ce(3+) ion in an yttrium aluminium garnet (YAG) crystal and on its magneto-optical properties at room temperature. The spin quantum state of the emitting level of a single cerium ion in YAG can be initialized by a circularly polarized laser pulse. Coherent precession of the electron spin is read out by observing temporal behavior of circularly polarized fluorescence of the ion. This implies direct mapping of the spin quantum state of Ce(3+) ion onto the polarization state of the emitted photon and represents the quantum interface between a single spin and a single photon.

  12. Theory of multiphoton single and double ionization of two-electron atomic systems driven by short-wavelength electric fields: An ab initio treatment

    SciTech Connect

    Foumouo, Emmanuel; Piraux, Bernard; Kamta, Gerard Lagmago; Edah, Gaston

    2006-12-15

    We give a detailed account of an ab initio computational treatment of multiphoton single ionization (with or without excitation) as well as double ionization of two-electron atoms exposed to short-wavelength electric fields. This treatment is time dependent and based on a spectral method of configuration interaction type combined with Jacobi or J-matrix calculations. It involves a complete treatment of electron-electron correlation in the initial and final states as well as during the time propagation. The atom eigenvalue problem is first solved by means of the spectral method. It consists of expanding the atom wave function in a basis of products of complex Coulomb-Sturmian functions of the electron radial coordinates and bipolar harmonics of the angular coordinates. This method allows a high-resolution study of many atomic states, in particular high-lying singly excited states as well as many doubly excited states. Results for He are presented and discussed in detail. The time-dependent Schroedinger equation is then solved by means of an explicit scheme of Runge-Kutta type. An accurate calculation of the probability of single and double ionization is carried out by projecting the ionizing wave packet on fully correlated multichannel scattering wave functions generated by means of the J-matrix method. After a detailed analysis of the accuracy of this method, we show that our results for the total cross section of one-photon single and double ionization of He and H{sup -} are in very good agreement with those obtained by the most sophisticated approaches. Two-photon double ionization of He is then considered, and results are presented in a frequency regime where substantial discrepancies subsist between all existing calculations. Our results demonstrate that electron correlations in the final state play a significant role.

  13. Single cell ionization by a laser trap: a preliminary study in measuring radiation dose and charge in BT20 breast carcinoma cells

    PubMed Central

    Kelley, Michele; Gao, Ying; Erenso, Daniel

    2016-01-01

    In this work, a preliminary study in the application of a laser trap for ionization of living carcinoma cells is presented. The study was conducted using BT20 breast carcinoma cells cultured and harvested in our laboratory. Each cell, for a total of 50 cells, was trapped and ionized by a high intensity infrared laser at 1064 nm. The threshold radiation dose and the resultant charge from the ionization for each cell were determined. With the laser trap serving as a radiation source, the cell underwent dielectric breakdown of the membrane. When this process occurs, the cell becomes highly charged and its dielectric susceptibility changes. The charge creates an increasing electrostatic force while the changing dielectric susceptibility diminishes the strength of the trapping force. Consequently, at some instant of time the cell gets ejected from the trap. The time inside the trap while the cell is being ionized, the intensity of the radiation, and the post ionization trajectory of the cell were used to determine the threshold radiation dose and the charge for each cell. The measurement of the charge vs ionization radiation dose at single cell level could be useful in the accuracy of radiotherapy as the individual charges can collectively create a strong enough electrical interaction to cause dielectric breakdown in other cells in a tumor. PMID:27699110

  14. Single differential projectile ionization cross sections d σ/dEe for 50 AMeV U28+ in the ESR storage ring

    NASA Astrophysics Data System (ADS)

    Hagmann, Siegbert; Hillenbrand, Pierre-Michel; Stoehlker, Thomas; Litvinov, Yuri; Appa-Sparc Collaboration

    2013-05-01

    The very high intensity beams of relativistic high Z ions with incident collision energies up to 2.7AGeV requested for experiments using the SIS100 synchrotron of FAIR require that 1.3 1011 ions at 2.6Hz be injected from SIS12/18 into SIS100. The needed luminosity of the beam can only be achieved for such high Z ions when - considering the space charge limit (~A/q2) - a low charge state q of the ion to be accelerated keeps the particle density at the highest feasible level. For a thorough understanding of beam loss it is imperative that the mechanisms active in projectile ionization be understood quantitatively to provide benchmarks for advancedab initio theories beyond first order. We have embarked on an experimental investigation of single differential projectile ionization cross sections d σ/dEe (SDCS) for single and multiple ionization of U28+in the ESR storage ring by measuring the electron loss to continuum (ELC) cusp at 00 with respect to the beam axis employing our imaging forward electron spectrometer. This was motivated by the high relative fraction of multiple ionization estimated to exceed 40%. We report first results for absolute projectile ionization SDCS for U28+. We find a remarkably high asymmetry for the ELC cusp. This is at strong variance with the line shape expected for validity of first order theories.

  15. Single ventricle, bicuspid aorta and interatrial wall aneurysm as a rare complex adult congenital heart disease: a case report

    PubMed Central

    2009-01-01

    Background Single ventricle, bicuspid aortic valve and interatrial wall aneurysm in adulthood are a rare and unique case in medical literature. This presented case with congenital heart disease has never been treated surgically and clinical consequences seriously presented in adulthood. Case presentation A 27 year old man with complex congenital heart disease presented. At the age of six, the single ventricle was ultrasonographly diagnosed, but at age 27 clinical consequences started to be seriously present. We explored his history, clinical course, physical examination, laboratory findings, medical treatments and actual patient condition. Conclusion The possibilities for surgical evaluation are presented. PMID:19183494

  16. Hyperfine structure of the odd-parity configuration 4f95d in singly ionized terbium

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Furmann, B.

    2017-10-01

    Within this work experimental investigations of the hyperfine structure for the odd-parity levels belonging to the configuration 4f95d in Tb II were performed. Out of 15 known electronic levels in this configuration, 12 were examined in this context, 11 of them for the first time. Altogether 25 transitions were studied with the odd-parity levels under investigation involved as the lower levels and another 4 transitions involving the previously known odd-parity levels, belonging to the configuration 4f96s. As a by-product, also the hyperfine structure constants for the upper even-parity levels were determined, which in most cases could be compared to the earlier literature data. Semi-empirical calculations of the fine- and the hyperfine structure were performed in single configuration basis. Also ab initio calculations of the hyperfine structure parameters were carried out. Results of the semi-empirical analysis should be considered preliminary because of the scarcity of the available experimental data, in particular the low number of the known electronic levels in the configuration studied.

  17. Rare Earth Ion Mediated Fluorescence Accumulation on a Single Microbead: An Ultrasensitive Strategy for the Detection of Protein Kinase Activity at the Single-Cell Level.

    PubMed

    Zhang, Xiaobo; Liu, Chenghui; Wang, Honghong; Wang, Hui; Li, Zhengping

    2015-12-07

    A single microbead-based fluorescence imaging (SBFI) strategy that enables detection of protein kinase activity from single cell lysates is reported. We systematically investigated the ability of various rare earth (RE) ions, immobilized on the microbead, for specific capturing of kinase-induced phosphopeptides, and Dy(3+) was found to be the most prominent one. Through the efficient concentration of kinase-induced fluorescent phosphopeptides on a Dy(3+) -functionalized single microbead, kinase activity can be detected and quantified by reading the fluorescence on the microbead with a confocal fluorescence microscope. Owing to the extremely specific recognition of Dy(3+) towards phosphopeptides and the highly-concentrated fluorescence accumulation on only one microbead, ultrahigh sensitivity has been achieved for the SBFI strategy which allows direct kinase analysis at the single-cell level. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Time-dependent configuration-interaction-singles calculation of the 5 p -subshell two-photon ionization cross section in xenon

    NASA Astrophysics Data System (ADS)

    Karamatskou, Antonia; Santra, Robin

    2017-01-01

    The 5 p two-photon ionization cross section of xenon in the photon-energy range below the one-photon ionization threshold is calculated within the time-dependent configuration-interaction-singles (TDCIS) method. The TDCIS calculations are compared to random-phase-approximation calculations [Wendin et al., J. Opt. Soc. Am. B 4, 833 (1987), 10.1364/JOSAB.4.000833] and are found to reproduce the energy positions of the intermediate Rydberg states reasonably well. The effect of interchannel coupling is also investigated and found to change the cross section of the 5 p shell only slightly compared to the intrachannel case.

  19. Single and double ionization of the camphor molecule excited around the C 1s edge.

    PubMed

    de Castilho, R B; Ramalho, T C; Nunez, C V; Coutinho, L H; Santos, A C F; Pilling, S; Lago, A F; Silva-Moraes, M O; de Souza, G G B

    2014-08-15

    An interesting class of volatile compounds, the monoterpenes, is present in some plants although their functions are not yet fully understood. We have studied the interaction of the camphor molecule with monochromatic high-energy photons (synchrotron radiation) using time-of-flight mass spectrometry and coincidence techniques. A commercial sample of S-camphor was admitted into the vacuum chamber, without purification, through an inlet system. Monochromatic light with energy around the C 1s edge was generated by the TGM beamline at the Brazilian Synchrotron Facility. A Wiley-McLaren mass spectrometer was used to characterize and detect the ions formed by the camphor photoionization. The data analysis was supported by energy calculations. Although the fragmentation patterns were basically the same at 270 eV and 330 eV, it was observed that above the C 1s edge the contribution to the spectrum from lower mass/charge fragment ions increased, pointing to a higher degree of dissociation of the molecule. Projections of the PEPIPICO spectra demonstrated the existence of unstable doubly charged species. The Gibbs free energy was calculated using the Møller-Plesset perturbation theory (MP2) for the neutral, singly and doubly excited camphor molecule. Our PEPIPICO spectrum clearly demonstrated the formation of doubly ionic dissociative species. From a slope analysis, we propose a secondary decay after a deferred charge separation mechanism in which, after a few steps, the camphor dication dissociates into C2 H3 (+) and C3 H5 (+) . This is the main relaxation route observed at 270 eV and 330 eV. The large energy difference between the mono and the dication (of the order of 258.2 kcal/mol) may explain the experimentally observed absence of stable dications in the spectra, because their formation is disadvantaged energetically. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Single-frequency 571nm VECSEL for photo-ionization of magnesium

    NASA Astrophysics Data System (ADS)

    Burd, S. C.; Leinonen, T.; Penttinen, J. P.; Allcock, D. T. C.; Slichter, D. H.; Srinivas, R.; Wilson, A. C.; Guina, M.; Leibfried, D.; Wineland, D. J.

    2016-06-01

    We report the development of an intracavity-frequency-doubled vertical external-cavity surface-emitting laser (VECSEL) emitting at 571 nm for photoionization of magnesium. The laser employs a V-cavity geometry with a gain chip at the end of one cavity arm and a lithium triborate (LBO) crystal for second harmonic generation. The gain chip has a bottom-emitting design with ten GaInAs quantum wells of 7 nm thickness, which are strain compensated by GaAsP. The system is capable of producing up to 2.4 +/- 0.1 W (total power in two separate output beams) in the visible. The free-running relative intensity noise was measured to be below -55 dBc/Hz over all frequencies from 1 Hz to 1 MHz. With acoustic isolation and temperature regulation of the laser breadboard, the mode-hop free operation time is typically over 5 hrs. To improve the long-term frequency stability, the laser can be locked to a Doppler-free transition of molecular iodine. To estimate the short-term linewidth, the laser was tuned to the resonance of a reference cavity. From analysis of the on-resonance Hänsch-Couillaud error signal we infer a linewidth of 50 +/- 10 kHz. Light at 285 nm is generated with an external build-up cavity containing a β-barium borate (BBO) crystal. The UV light is used for loading 25Mg+ ions in a surface-electrode RF Paul trap. These results demonstrate the applicability and versatility of high-power, single-frequency VECSELs with intracavity harmonic generation for applications in atomic and molecular physics.

  1. New Measurement of Singly Ionized Selenium Spectra by High Resolution Fourier Transform and Grating Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hala, Noman; Nave, G.; Kramida, A.; Ahmad, T.; Nahar, S.; Pradhan, A.

    2015-05-01

    We report new measurements of singly ionised selenium, an element of the iron group detected in nearly twice as many planetary nebulae as any other trans-iron element. We use the NIST 2 m UV/Vis/IR and FT700 UV/Vis Fourier transform spectrometers over the wavelength range of 2000 Å-2.5 μm, supplemented in the lower wavelength region 300-2400 Å with grating spectra taken on a 3-m normal incidence vacuum spectrograph. The analysis of Se II is being extended, covering the wide spectral region from UV to IR. From our investigation, we found serious inconsistency and incompleteness in the previously published results, where several levels were reported without any designation. The analysis is being revised and extended with the help of semiempirical quasi-relativistic Hartree-Fock calculations, starting with the 4s24p3- [4s24p2(4d +5d +5s +6s) +4s4p4] transition array. Out of fifty-two previously reported levels, we rejected thirteen and found several new level values. With the new measurements, we expect to observe transitions between 4s24p2(4d +5s) and 4s24p2(5p +4f), lying in the visible and IR region. A complete interpretation of the level system of both parities will be assisted by least squares fitted parametric calculations. In all, we have already classified about 450 observed lines involving 89 energy levels.

  2. Meta-analysis of Gene-Level Associations for Rare Variants Based on Single-Variant Statistics

    PubMed Central

    Hu, Yi-Juan; Berndt, Sonja I.; Gustafsson, Stefan; Ganna, Andrea; Berndt, Sonja I.; Gustafsson, Stefan; Mägi, Reedik; Ganna, Andrea; Wheeler, Eleanor; Feitosa, Mary F.; Justice, Anne E.; Monda, Keri L.; Croteau-Chonka, Damien C.; Day, Felix R.; Esko, Tõnu; Fall, Tove; Ferreira, Teresa; Gentilini, Davide; Jackson, Anne U.; Luan, Jian’an; Randall, Joshua C.; Vedantam, Sailaja; Willer, Cristen J.; Winkler, Thomas W.; Wood, Andrew R.; Workalemahu, Tsegaselassie; Hu, Yi-Juan; Lee, Sang Hong; Liang, Liming; Lin, Dan-Yu; Min, Josine L.; Neale, Benjamin M.; Thorleifsson, Gudmar; Yang, Jian; Albrecht, Eva; Amin, Najaf; Bragg-Gresham, Jennifer L.; Cadby, Gemma; den Heijer, Martin; Eklund, Niina; Fischer, Krista; Goel, Anuj; Hottenga, Jouke-Jan; Huffman, Jennifer E.; Jarick, Ivonne; Johansson, Åsa; Johnson, Toby; Kanoni, Stavroula; Kleber, Marcus E.; König, Inke R.; Kristiansson, Kati; Kutalik, Zoltán; Lamina, Claudia; Lecoeur, Cecile; Li, Guo; Mangino, Massimo; McArdle, Wendy L.; Medina-Gomez, Carolina; Müller-Nurasyid, Martina; Ngwa, Julius S.; Nolte, Ilja M.; Paternoster, Lavinia; Pechlivanis, Sonali; Perola, Markus; Peters, Marjolein J.; Preuss, Michael; Rose, Lynda M.; Shi, Jianxin; Shungin, Dmitry; Smith, Albert Vernon; Strawbridge, Rona J.; Surakka, Ida; Teumer, Alexander; Trip, Mieke D.; Tyrer, Jonathan; Van Vliet-Ostaptchouk, Jana V.; Vandenput, Liesbeth; Waite, Lindsay L.; Zhao, Jing Hua; Absher, Devin; Asselbergs, Folkert W.; Atalay, Mustafa; Attwood, Antony P.; Balmforth, Anthony J.; Basart, Hanneke; Beilby, John; Bonnycastle, Lori L.; Brambilla, Paolo; Bruinenberg, Marcel; Campbell, Harry; Chasman, Daniel I.; Chines, Peter S.; Collins, Francis S.; Connell, John M.; Cookson, William; de Faire, Ulf; de Vegt, Femmie; Dei, Mariano; Dimitriou, Maria; Edkins, Sarah; Estrada, Karol; Evans, David M.; Farrall, Martin; Ferrario, Marco M.; Ferrières, Jean; Franke, Lude; Frau, Francesca; Gejman, Pablo V.; Grallert, Harald; Grönberg, Henrik; Gudnason, Vilmundur; Hall, Alistair S.; Hall, Per; Hartikainen, Anna-Liisa; Hayward, Caroline; Heard-Costa, Nancy L.; Heath, Andrew C.; Hebebrand, Johannes; Homuth, Georg; Hu, Frank B.; Hunt, Sarah E.; Hyppönen, Elina; Iribarren, Carlos; Jacobs, Kevin B.; Jansson, John-Olov; Jula, Antti; Kähönen, Mika; Kathiresan, Sekar; Kee, Frank; Khaw, Kay-Tee; Kivimaki, Mika; Koenig, Wolfgang; Kraja, Aldi T.; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Laitinen, Jaana H.; Lakka, Timo A.; Langenberg, Claudia; Launer, Lenore J.; Lind, Lars; Lindström, Jaana; Liu, Jianjun; Liuzzi, Antonio; Lokki, Marja-Liisa; Lorentzon, Mattias; Madden, Pamela A.; Magnusson, Patrik K.; Manunta, Paolo; Marek, Diana; März, Winfried; Leach, Irene Mateo; McKnight, Barbara; Medland, Sarah E.; Mihailov, Evelin; Milani, Lili; Montgomery, Grant W.; Mooser, Vincent; Mühleisen, Thomas W.; Munroe, Patricia B.; Musk, Arthur W.; Narisu, Narisu; Navis, Gerjan; Nicholson, George; Nohr, Ellen A.; Ong, Ken K.; Oostra, Ben A.; Palmer, Colin N.A.; Palotie, Aarno; Peden, John F.; Pedersen, Nancy; Peters, Annette; Polasek, Ozren; Pouta, Anneli; Pramstaller, Peter P.; Prokopenko, Inga; Pütter, Carolin; Radhakrishnan, Aparna; Raitakari, Olli; Rendon, Augusto; Rivadeneira, Fernando; Rudan, Igor; Saaristo, Timo E.; Sambrook, Jennifer G.; Sanders, Alan R.; Sanna, Serena; Saramies, Jouko; Schipf, Sabine; Schreiber, Stefan; Schunkert, Heribert; Shin, So-Youn; Signorini, Stefano; Sinisalo, Juha; Skrobek, Boris; Soranzo, Nicole; Stančáková, Alena; Stark, Klaus; Stephens, Jonathan C.; Stirrups, Kathleen; Stolk, Ronald P.; Stumvoll, Michael; Swift, Amy J.; Theodoraki, Eirini V.; Thorand, Barbara; Tregouet, David-Alexandre; Tremoli, Elena; Van der Klauw, Melanie M.; van Meurs, Joyce B.J.; Vermeulen, Sita H.; Viikari, Jorma; Virtamo, Jarmo; Vitart, Veronique; Waeber, Gérard; Wang, Zhaoming; Widén, Elisabeth; Wild, Sarah H.; Willemsen, Gonneke; Winkelmann, Bernhard R.; Witteman, Jacqueline C.M.; Wolffenbuttel, Bruce H.R.; Wong, Andrew; Wright, Alan F.; Zillikens, M. Carola; Amouyel, Philippe; Boehm, Bernhard O.; Boerwinkle, Eric; Boomsma, Dorret I.; Caulfield, Mark J.; Chanock, Stephen J.; Cupples, L. Adrienne; Cusi, Daniele; Dedoussis, George V.; Erdmann, Jeanette; Eriksson, Johan G.; Franks, Paul W.; Froguel, Philippe; Gieger, Christian; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B.; Hengstenberg, Christian; Hicks, Andrew A.; Hingorani, Aroon; Hinney, Anke; Hofman, Albert; Hovingh, Kees G.; Hveem, Kristian; Illig, Thomas; Jarvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Keinanen-Kiukaanniemi, Sirkka M.; Kiemeney, Lambertus A.; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Levinson, Douglas F.; Martin, Nicholas G.; Metspalu, Andres; Morris, Andrew D.; Nieminen, Markku S.; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Ouwehand, Willem H.; Palmer, Lyle J.; Penninx, Brenda; Power, Chris; Province, Michael A.; Psaty, Bruce M.; Qi, Lu; Rauramaa, Rainer; Ridker, Paul M.; Ripatti, Samuli; Salomaa, Veikko; Samani, Nilesh J.; Snieder, Harold; Sørensen, Thorkild I.A.; Spector, Timothy D.; Stefansson, Kari; Tönjes, Anke; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; van der Harst, Pim; Vollenweider, Peter; Wallaschofski, Henri; Wareham, Nicholas J.; Watkins, Hugh; Wichmann, H.-Erich; Wilson, James F.; Abecasis, Goncalo R.; Assimes, Themistocles L.; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; Fox, Caroline S.; Frayling, Timothy; Groop, Leif C.; Haritunian, Talin; Heid, Iris M.; Hunter, David; Kaplan, Robert C.; Karpe, Fredrik; Moffatt, Miriam; Mohlke, Karen L.; O’Connell, Jeffrey R.; Pawitan, Yudi; Schadt, Eric E.; Schlessinger, David; Steinthorsdottir, Valgerdur; Strachan, David P.; Thorsteinsdottir, Unnur; van Duijn, Cornelia M.; Visscher, Peter M.; Di Blasio, Anna Maria; Hirschhorn, Joel N.; Lindgren, Cecilia M.; Morris, Andrew P.; Meyre, David; Scherag, André; McCarthy, Mark I.; Speliotes, Elizabeth K.; North, Kari E.; Loos, Ruth J.F.; Ingelsson, Erik; Hirschhorn, Joel; North, Kari E.; Ingelsson, Erik; Lin, Dan-Yu

    2013-01-01

    Meta-analysis of genome-wide association studies (GWASs) has led to the discoveries of many common variants associated with complex human diseases. There is a growing recognition that identifying “causal” rare variants also requires large-scale meta-analysis. The fact that association tests with rare variants are performed at the gene level rather than at the variant level poses unprecedented challenges in the meta-analysis. First, different studies may adopt different gene-level tests, so the results are not compatible. Second, gene-level tests require multivariate statistics (i.e., components of the test statistic and their covariance matrix), which are difficult to obtain. To overcome these challenges, we propose to perform gene-level tests for rare variants by combining the results of single-variant analysis (i.e., p values of association tests and effect estimates) from participating studies. This simple strategy is possible because of an insight that multivariate statistics can be recovered from single-variant statistics, together with the correlation matrix of the single-variant test statistics, which can be estimated from one of the participating studies or from a publicly available database. We show both theoretically and numerically that the proposed meta-analysis approach provides accurate control of the type I error and is as powerful as joint analysis of individual participant data. This approach accommodates any disease phenotype and any study design and produces all commonly used gene-level tests. An application to the GWAS summary results of the Genetic Investigation of ANthropometric Traits (GIANT) consortium reveals rare and low-frequency variants associated with human height. The relevant software is freely available. PMID:23891470

  3. Meta-analysis of gene-level associations for rare variants based on single-variant statistics.

    PubMed

    Hu, Yi-Juan; Berndt, Sonja I; Gustafsson, Stefan; Ganna, Andrea; Hirschhorn, Joel; North, Kari E; Ingelsson, Erik; Lin, Dan-Yu

    2013-08-08

    Meta-analysis of genome-wide association studies (GWASs) has led to the discoveries of many common variants associated with complex human diseases. There is a growing recognition that identifying "causal" rare variants also requires large-scale meta-analysis. The fact that association tests with rare variants are performed at the gene level rather than at the variant level poses unprecedented challenges in the meta-analysis. First, different studies may adopt different gene-level tests, so the results are not compatible. Second, gene-level tests require multivariate statistics (i.e., components of the test statistic and their covariance matrix), which are difficult to obtain. To overcome these challenges, we propose to perform gene-level tests for rare variants by combining the results of single-variant analysis (i.e., p values of association tests and effect estimates) from participating studies. This simple strategy is possible because of an insight that multivariate statistics can be recovered from single-variant statistics, together with the correlation matrix of the single-variant test statistics, which can be estimated from one of the participating studies or from a publicly available database. We show both theoretically and numerically that the proposed meta-analysis approach provides accurate control of the type I error and is as powerful as joint analysis of individual participant data. This approach accommodates any disease phenotype and any study design and produces all commonly used gene-level tests. An application to the GWAS summary results of the Genetic Investigation of ANthropometric Traits (GIANT) consortium reveals rare and low-frequency variants associated with human height. The relevant software is freely available.

  4. The inertia of tunneling ionization and high-order harmonic shifting in the nonlinear single-atom response

    SciTech Connect

    Kim, A.V.; Vanin, E.V.; Sergeev, A.M.; Farina, D.; Lontano, M.; Downer, M.C.

    1996-05-01

    We demonstrate that the ionization-induced high-order harmonic emission mechanism can be affected by a new frequency-shifting effect which is present directly in the single-atom response at fixed laser frequency and monotonically varying laser intensity. By analyzing the motion of newly-born electrons we found that the phases of their collisions with {open_quote}{open_quote}parent{close_quote}{close_quote} ions are influenced by the dynamics of the driving field amplitude. At the leading edge of the laser pulse, where the field amplitude is increasing, the collisions at a given velocity occur periodically in time but are shifted monotonically in phase with each optical cycle, the sign of the shift depending on the delay time at which freed electrons are detached from the atoms after tunneling. The relationship between the dynamics of the {vert_bar}{Psi}{vert_bar}{sup 2} function and the possibility to produce a frequency shift in the presence of a monotonously varying amplitude pulse is discussed. {copyright} {ital 1996 American Institute of Physics.}

  5. Doubly differential cross sections and longitudinal momentum distributions in the single ionization of Ne by fast ion impact

    NASA Astrophysics Data System (ADS)

    McSherry, D. M.; O'Rourke, S. F. C.; Crothers, D. S. F.

    2000-10-01

    There are very few experimental data sets for doubly differential cross sections (DDCS) for targets heavier than helium due to the difficulties in collecting data with conventional spectrometers. However with the recent developments in efficient spectrometers combined with recoil momentum spectroscopy, experimental results for the single ionization of Ne by 3.6MeV/u Au^53+ impact were obtained[1]. At the conference we consider these results in the context of our theoretical results achieved using continuum-distorted-wave quantum mechanical models, in particular the CDW-EIS approximation, which has had much success in the non-perturbative regime[2]. Doubly differential cross sections for helium shall also be considered in comparision to Ne and longitudinal electron and recoil ion momentum distributions will be examined. [1]. R. Moshammer, P.D. Fainstein, M.Schulz, W.Schmitt, H.Kollmus, R.Mann, S.Hagmann and J.Ullrich, Phys. Rev. Lett. 83 (1999) 4721. [2]. S.F.C. O'Rourke, I.Shimamura and D.S.F. Crothers, Proc. R. Soc. Lond. A 452 (1996) 175.

  6. Investigation of the photoionization properties of pharmaceutically relevant substances by resonance-enhanced multiphoton ionization spectroscopy and single-photon ionization spectroscopy using synchrotron radiation.

    PubMed

    Kleeblatt, Juliane; Ehlert, Sven; Hölzer, Jasper; Sklorz, Martin; Rittgen, Jan; Baumgärtel, Peter; Schubert, Jochen K; Zimmermann, Ralf

    2013-08-01

    The photoionization properties of the pharmaceutically relevant substances amantadine, diazepam, dimethyltryptamine, etomidate, ketamine, mescaline, methadone, and propofol were determined. At beamline U125/2-10m-NIM of the BESSY II synchrotron facility (Berlin, Germany) vacuum ultraviolet (VUV) photoionization spectra were recorded in the energy range 7.1 to 11.9 eV (174.6 to 104.2 nm), showing the hitherto unknown ionization energies and fragmentation appearance energies of the compounds under investigation. Furthermore, (1+1)-resonance-enhanced multiphoton ionization (REMPI) spectra of selected compounds (amantadine, diazepam, etomidate, ketamine, and propofol) were recorded by a continuous scan in the energy range between 3.6 and 5.7 eV (345 to 218 nm) using a tunable optical parametric oscillator (spectral resolution: 0.1 nm) laser system. The resulting REMPI wavelength spectra of these compounds are discussed and put into context with already known UV absorption data. Time-of-flight mass spectrometry was used for ion detection in both experiments. Finally, the implications of the obtained physical-chemical results for potential analytical applications are discussed. In this context, fast detection approaches for the considered compounds from breath gas using photoionization mass spectrometry and a rapid pre-concentration step (e.g., needle trap device) are of interest.

  7. Ionization potentials of transparent conductive indium tin oxide films covered with a single layer of fluorine-doped tin oxide nanoparticles grown by spray pyrolysis deposition

    SciTech Connect

    Fukano, Tatsuo; Motohiro, Tomoyoshi; Ida, Takashi; Hashizume, Hiroo

    2005-04-15

    Indium tin oxide (ITO) films deposited with single layers of monodispersive fluorine-doped tin oxide (FTO) nanoparticles of several nanometers in size were grown on glass substrates by intermittent spray pyrolysis deposition using conventional atomizers. These films have significantly higher ionization potentials than the bare ITO and FTO films grown using the same technique. The ITO films covered with FTO particles of 7 nm in average size show an ionization potential of 5.01 eV, as compared with {approx}4.76 and {approx}4.64 eV in ITO and FTO films, respectively, which decreases as the FTO particle size increases. The ionization potentials are practically invariant against oxidation and reduction treatments, promising a wide application of the films to transparent conducting oxide electrodes in organic electroluminescent devices and light-emitting devices of high efficiencies.

  8. Charge enhancement of single-stranded DNA in negative electrospray ionization using the supercharging reagent meta-nitrobenzyl alcohol.

    PubMed

    Brahim, Bessem; Alves, Sandra; Cole, Richard B; Tabet, Jean-Claude

    2013-12-01

    Charge enhancement of single-stranded oligonucleotide ions in negative ESI mode is investigated. The employed reagent, meta-nitrobenzyl alcohol (m-NBA), was found to improve total signal intensity (Itot), increase the highest observed charge states (zhigh), and raise the average charge states (zavg) of all tested oligonucleotides analyzed in negative ESI. To quantify these increases, signal enhancement ratios (SER1%) and charge enhancement coefficients (CEC1%) were introduced. The SER1%, (defined as the quotient of total oligonucleotide ion abundances with 1% m-NBA divided by total oligonucleotide abundance without m-NBA) was found to be greater than unity for every oligonucleotide tested. The CEC1% values (defined as the average charge state in the presence of 1% m-NBA minus the average charge state in the absence of m-NBA) were found to be uniformly positive. Upon close inspection, the degree of charge enhancement for longer oligonucleotides was found to be dependent upon thymine density (i.e., the number and the location of phospho-thymidine units). A correlation between the charge enhancement induced by the presence of m-NBA and the apparent gas-phase acidity (largely determined by the sequence of thymine units but also by the presence of protons on other nucleobases) of multiply deprotonated oligonucleotide species, was thus established. Ammonium cations appeared to be directly involved in the m-NBA supercharging mechanism, and their role seems to be consistent with previously postulated ESI mechanisms describing desorption/ionization of single-stranded DNA into the gas phase.

  9. Charge Enhancement of Single-Stranded DNA in Negative Electrospray Ionization Using the Supercharging Reagent Meta-nitrobenzyl Alcohol

    NASA Astrophysics Data System (ADS)

    Brahim, Bessem; Alves, Sandra; Cole, Richard B.; Tabet, Jean-Claude

    2013-12-01

    Charge enhancement of single-stranded oligonucleotide ions in negative ESI mode is investigated. The employed reagent, meta-nitrobenzyl alcohol (m-NBA), was found to improve total signal intensity (Itot), increase the highest observed charge states (zhigh), and raise the average charge states (zavg) of all tested oligonucleotides analyzed in negative ESI. To quantify these increases, signal enhancement ratios (SER1%) and charge enhancement coefficients (CEC1%) were introduced. The SER1%, (defined as the quotient of total oligonucleotide ion abundances with 1 % m-NBA divided by total oligonucleotide abundance without m-NBA) was found to be greater than unity for every oligonucleotide tested. The CEC1% values (defined as the average charge state in the presence of 1 % m-NBA minus the average charge state in the absence of m-NBA) were found to be uniformly positive. Upon close inspection, the degree of charge enhancement for longer oligonucleotides was found to be dependent upon thymine density (i.e., the number and the location of phospho-thymidine units). A correlation between the charge enhancement induced by the presence of m-NBA and the apparent gas-phase acidity (largely determined by the sequence of thymine units but also by the presence of protons on other nucleobases) of multiply deprotonated oligonucleotide species, was thus established. Ammonium cations appeared to be directly involved in the m-NBA supercharging mechanism, and their role seems to be consistent with previously postulated ESI mechanisms describing desorption/ionization of single-stranded DNA into the gas phase.

  10. Multiple rare earth emissions in a multicore tellurite fiber with a single pump wavelength.

    PubMed

    Bookey, H T; Lousteau, J; Jha, A; Gayraud, N; Thomson, R R; Psaila, N D; Li, H; MacPherson, W N; Barton, J S; Kar, A K

    2007-12-24

    A three-core tellurite glass fiber having different combinations of rare earth oxide dopants in each core has been fabricated using shaped die-extrusion. Three cores, doped with Ho(3+)-Tm(3+)-Yb(3+), Er(3+)-Ce(3+), and Tm(3+)-Yb(3+) respectively, exhibited visible upconversion (blue, green and red) and infrared emissions at 1.4 microm, 1.5 microm, 1.9 microm and 2.05 microm when pumped at a wavelength of 980 nm. The prospects for multi-band amplifiers and lasers are discussed.

  11. Gas-phase synthesis of singly and multiply charged polyoxovanadate anions employing electrospray ionization and collision induced dissociation.

    PubMed

    Al Hasan, Naila M; Johnson, Grant E; Laskin, Julia

    2013-09-01

    Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy(n-) and VxOyCl(n-) ions (x = 1-14, y = 2-36, n = 1-3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N(+), tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCl(n-) and VxOyCl(L)((n-1)-) clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl((1-2)-) and VxOy ((1-2)-) anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top

  12. Gas-Phase Synthesis of Singly and Multiply Charged Polyoxovanadate Anions Employing Electrospray Ionization and Collision Induced Dissociation

    NASA Astrophysics Data System (ADS)

    Al Hasan, Naila M.; Johnson, Grant E.; Laskin, Julia

    2013-09-01

    Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy n- and VxOyCln- ions (x = 1-14, y = 2-36, n = 1-3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N+, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCln- and VxOyCl(L)(n-1)- clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl(1-2)- and VxOy (1-2)- anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a

  13. Above-threshold ionization of helium in the long-wavelength regime: Examining the single-active-electron approximation and the two-electron strong-field approximation

    NASA Astrophysics Data System (ADS)

    Yu, Chuan; Madsen, Lars Bojer

    2017-06-01

    We investigate high-order above-threshold ionization of model helium in the long-wavelength regime up to 2400 nm by solving the two-electron time-dependent Schrödinger equation in one dimension. To bypass the difficulty of solving the multielectron time-dependent Schrödinger equation with the long-wavelength laser interaction, we revisit and examine two typically used theoretical methods: the single-active-electron approximation and the strong-field approximation. For the description of the high-energy rescattered electrons in the ground-state ionic channel, the single-active-electron approximation performs better with increasing ponderomotive energy. Single ionization in the excited-state ionic channels, in general, has much weaker spectral intensity than that in the ground-state ionic channel. The above-threshold-ionization cutoffs in the excited-state ionic channels are clear signatures of two-electron dynamics, which cannot be explained within the single-active-electron approximation. By applying the two-electron strong-field approximation including rescattering and a saddle-point method analysis, we explain the channel-resolved cutoffs, and relate them to elastic and inelastic rescattering processes.

  14. Origin of “memory glass” effect in pressure-amorphized rare-earth molybdate single crystals

    SciTech Connect

    Willinger, Elena; Sinitsyn, Vitaly; Khasanov, Salavat; Redkin, Boris; Shmurak, Semeon; Ponyatovsky, Eugeny

    2015-02-15

    The memory glass effect (MGE) describes the ability of some materials to recover the initial structure and crystallographic orientation after pressure-induced amorphization (PIA). In spite of numerous studies the nature and underlying mechanisms of this phenomenon are still not clear. Here we report investigations of MGE in β′-Eu{sub 2}(MoO{sub 4}){sub 3} single crystal samples subjected to high pressure amorphization. Using the XRD and TEM techniques we carried out detailed analysis of the structural state of high pressure treated single crystal samples as well as structural transformations due to subsequent annealing at atmospheric pressure. The structure of the sample has been found to be complex, mainly amorphous, however, the amorphous medium contains evenly distributed nanosize inclusions of a paracrystalline phase. The inclusions are highly correlated in orientation and act as “memory units” in the MGE. - Graphical abstract: Schematic representation of pressure-induced amorphization and “memory glass” effect in rare-earth molybdate single crystals. The XRD and TEM measurements have revealed the presence of the residual identically oriented paracrystalline nanodomains in the pressure-amorphized state. These domains preserve the information about initial structure and orientation of the sample. They act as memory units and crystalline seeds during transformation of the amorphous phase back to the starting single crystalline one. - Highlights: • Pressure-amorphized Eu{sub 2}(MoO4){sub 3} single crystals were studied ex-situ by XRD and TEM. • Tiny residual crystalline inclusions were found in amorphous matrix of sample. • The inclusions keep in memory the parent crystal structure and orientation. • The inclusions account for “memory glass” effect in rare-earth molibdates.

  15. Rare combination and transcatheter treatment during single session in an infant: Patent ductus arteriosus and major aortopulmonary collateral artery concordance.

    PubMed

    Güvenç, Osman; Ödemiş, Ender; Saygı, Murat; Demir, İbrahim Halil

    2016-10-01

    Major aortopulmonary collateral arteries are abnormal vascular structures that may be seen in cyanotic diseases that progress with reduced pulmonary flow. They occur rather rarely in the absence of cyanotic congenital heart disease. Presently described is the case of an infant who underwent patent ductus arteriosus (PDA) and major aortopulmonary collateral artery occlusion in a single session, without presence of cyanotic congenital heart disease. To the best of our knowledge, this is the first case of congenital aortopulmonary collateral artery to be reported in a symptomatic infant with PDA.

  16. Single crystal growth and magnetic properties of RCu9Sn4 (R: rare earth metals)

    NASA Astrophysics Data System (ADS)

    Hirose, Yusuke; Tomaru, Shun; Satoh, Shoko; Ota, Shunpei; Kurahashi, Shuhei; Takeuchi, Tetsuya; Honda, Fuminori; Homma, Yoshiya; Li, Dexin; Aoki, Dai; Settai, Rikio

    2015-03-01

    We succeeded in growing single crystals of tetragonal RCu9Sn4 (R=La, Ce, Pr, and Eu) by the Sn-self-flux method for the first time, and studied the electrical and magnetic properties of these compounds. The magnetism of CeCu9Sn4 and PrCu9Sn4 indicates an Ising anisotropy with the magnetic easy axis parallel to the [001] direction. We revealed that EuCu9Sn4 shows an antiferromagnetic transition with an easy plane type magnetic anisotropy in the present single crystal study.

  17. Photoelectron circular dichroism in the multiphoton ionization by short laser pulses. I. Propagation of single-active-electron wave packets in chiral pseudo-potentials

    SciTech Connect

    Artemyev, Anton N.; Müller, Anne D.; Demekhin, Philipp V.; Hochstuhl, David

    2015-06-28

    A theoretical method to study the angle-resolved multiphoton ionization of polyatomic molecules is developed. It is based on the time-dependent formulation of the Single Center (TDSC) method and consists in the propagation of single-active-electron wave packets in the effective molecular potentials in the presence of intense laser pulses. For this purpose, the time-dependent Schrödinger equation for one electron, moving in a molecular field and interacting with an arbitrary laser pulse, is solved in spherical coordinates by an efficient numerical approach. As a test, the method is applied to the one- and two-photon ionizations of a model methane-like chiral system by circularly polarized short intense high-frequency laser pulses. Thereby, we analyze the photoelectron circular dichroism (PECD) in the momentum distribution. The considered model application illustrates the capability of the TDSC method to study multiphoton PECD in fixed-in-space and randomly oriented chiral molecules.

  18. Photoelectron circular dichroism in the multiphoton ionization by short laser pulses. I. Propagation of single-active-electron wave packets in chiral pseudo-potentials

    NASA Astrophysics Data System (ADS)

    Artemyev, Anton N.; Müller, Anne D.; Hochstuhl, David; Demekhin, Philipp V.

    2015-06-01

    A theoretical method to study the angle-resolved multiphoton ionization of polyatomic molecules is developed. It is based on the time-dependent formulation of the Single Center (TDSC) method and consists in the propagation of single-active-electron wave packets in the effective molecular potentials in the presence of intense laser pulses. For this purpose, the time-dependent Schrödinger equation for one electron, moving in a molecular field and interacting with an arbitrary laser pulse, is solved in spherical coordinates by an efficient numerical approach. As a test, the method is applied to the one- and two-photon ionizations of a model methane-like chiral system by circularly polarized short intense high-frequency laser pulses. Thereby, we analyze the photoelectron circular dichroism (PECD) in the momentum distribution. The considered model application illustrates the capability of the TDSC method to study multiphoton PECD in fixed-in-space and randomly oriented chiral molecules.

  19. Bilateral single system ectopic ureter with urolithiasis: a rare case entity.

    PubMed

    Bansal, Ankur; Kumar, Manoj; Sokhal, Ashok; Purkait, Bimalesh; Kanodia, Gautam

    2016-11-18

    ABSTRACTBilateral single system ureteral ectopia (BSSEU) is an uncommon entity. Ureteric calculi in BSSEU are never reported so far. We herein report a case of BSSEU with left lower urtereic calculi managed by bilateral ureteric tapering and reimplantation with stone removal.

  20. Evidence for interface superconductivity in rare-earth doped CaFe2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Lv, Bing; Deng, L. Z.; Wei, F. Y.; Xue, Y. Y.; Chu, C. W.

    2014-03-01

    To unravel to the mysterious non-bulk superconductivity up to 49K observed in rare-earth (R =La, Ce, Pr and Nd) doped CaFe2As2 single-crystals whose Tc is higher than that of any known compounds consisting of one or more of its constituent elements of R, Ca, Fe, and As at ambient or under pressures, systematic magnetic, compositional and structural have carried out on different rare-earth-doped (Ca1-xRx) Fe2As2 samples. We have detected extremely large magnetic anisotropy, doping-level independent Tc, unexpected superparamagnetic clusters associated with As vacancies and their close correlation with the superconducting volume fraction, the existence of mesoscopic-2D structures and Josephson-junction arrays in this system. These observations lead us to conjecture that the Tc enhancement may be associated with naturally occurring chemical interfaces and thus provided evidence for the possible interface-enhanced Tc in naturally-grown single crystals of Fe-based superconductors.

  1. Origin of "memory glass" effect in pressure-amorphized rare-earth molybdate single crystals

    NASA Astrophysics Data System (ADS)

    Willinger, Elena; Sinitsyn, Vitaly; Khasanov, Salavat; Redkin, Boris; Shmurak, Semeon; Ponyatovsky, Eugeny

    2015-02-01

    The memory glass effect (MGE) describes the ability of some materials to recover the initial structure and crystallographic orientation after pressure-induced amorphization (PIA). In spite of numerous studies the nature and underlying mechanisms of this phenomenon are still not clear. Here we report investigations of MGE in β‧-Eu2(MoO4)3 single crystal samples subjected to high pressure amorphization. Using the XRD and TEM techniques we carried out detailed analysis of the structural state of high pressure treated single crystal samples as well as structural transformations due to subsequent annealing at atmospheric pressure. The structure of the sample has been found to be complex, mainly amorphous, however, the amorphous medium contains evenly distributed nanosize inclusions of a paracrystalline phase. The inclusions are highly correlated in orientation and act as "memory units" in the MGE.

  2. Single molecule magnet behaviour in a rare trinuclear {Cr(III)Dy} methoxo-bridged complex.

    PubMed

    Car, Pierre-Emmanuel; Favre, Annaïck; Caneschi, Andrea; Sessoli, Roberta

    2015-09-28

    The reaction of the chromium(iii) chloride tetrahydrofuran complex with the dipivaloylmethane ligand, the lanthanide alcoholic salt DyCl3·CH3OH and the 1,1,1-tris(hydroxymethyl)-ethane ligand resulted in the formation of a new trinuclear chromium-dysprosium complex. Magnetic investigations revealed that the new 3d-4f complex exhibits single molecule magnet behaviour.

  3. Enhancement of single particle rare earth doped NaYF4: Yb, Er emission with a gold shell

    NASA Astrophysics Data System (ADS)

    Li, Ling; Green, Kory; Hallen, Hans; Lim, Shuang Fang

    2015-01-01

    Upconversion of infrared light to visible light has important implications for bioimaging. However, the small absorption cross-section of rare earth dopants has limited the efficiency of these anti-Stokes nanomaterials. We present enhanced excitation absorption and single particle fluorescent emission of sodium yttrium fluoride, NaYF4: Yb, Er based upconverting nanoparticles coated with a gold nanoshell through surface plasmon resonance. The single gold-shell coated nanoparticles show enhanced absorption in the near infrared, enhanced total emission intensity, and increased green relative to red emission. We also show differences in enhancement between single and aggregated gold shell nanoparticles. The surface plasmon resonance of the gold-shell coated nanoparticle is shown to be dependent on the shell thickness. In contrast to other reported results, our single particle experimental observations are corroborated by finite element calculations that show where the green/red emission enhancement occurs, and what portion of the enhancement is due to electromagnetic effects. We find that the excitation enhancement and green/red emission ratio enhancement occurs at the corners and edges of the doped emissive core.

  4. Synthesis and characterization of rare earth coordinated with thiourea single crystal

    NASA Astrophysics Data System (ADS)

    Singh, Harjinder; Slathia, Goldy; Bamzai, K. K.

    2017-05-01

    Single crystal of yttrium chloride coordinated with thiourea was successfully grown from aqueous solution by slow solvent evaporation technique at room temperature using deionized water as a solvent. The structure of the crystal belongs to orthorhombic system and crystallizes in non-centro-symmetric space group Pn21a. The thermal stability was analyzed by thermo gravimetric / differential thermo analytical (TG/DTA). FTIR studies confirmed the compound formation and presence of functional groups in the crystal. UV-Vis-NIR spectroscopic studies show that the crystals possess wide transmittance in the visible region and significant optical band gap of 4.2ev with cut off wavelength of 246 nm.

  5. Polycythemia as rare secondary direct manifestation of acromegaly: management and single-centre epidemiological data.

    PubMed

    Zoppoli, Gabriele; Bianchi, Federico; Bruzzone, Andrea; Calvia, Alessandro; Oneto, Caterina; Passalia, Caterina; Balleari, Enrico; Bedognetti, Davide; Ponomareva, Elena; Nazzari, Elena; Castelletti, Lara; Castellan, Lucio; Minuto, Francesco; Ghio, Riccardo; Ferone, Diego

    2012-06-01

    Polycythemia associated with acromegaly is usually caused by the systemic manifestations of the disease, such as sleep-apnea or concomitant erythropoietin-secreting kidney tumors. The recognition of underlying pathologies requires a thorough diagnostic process. We report a unique case of acromegaly with polycythemia, not caused by commonly described manifestations of the disease, and receding with octreotide therapy. The medical history of 141 acromegalic patients followed by the Endocrinology Unit of the San Martino University Hospital in Genoa has been also reviewed, together with the literature evidence for similar cases. The diagnostic workflow and 2-years follow-up of a 43-years old acromegalic, polycythemic man with a history of past smoking, moderate hypertension, and mental retardation are described. The hematological parameters of our cohort was retrospectively compared with those of a healthy, age/gender-related control group as well. Therapy with octreotide LAR, 20 mg i.m. q28d was begun soon after diagnosis of acromegaly in the polycythemic patient. Haematocrit level, hormonal setting, as well as pituitary tumor size and visual perimetry during treatment were recorded. Octreotide LAR treatment normalized hormonal alterations, as well as hematological parameters. Polycythemia has not recurred after 2 years of therapy. The median hemoglobin and hematocrit levels of the retrospectively analyzed cohort of acromegalic were significantly lower than normal ranges of a healthy, age/sex- related control population. In conclusions, polycythemia can be a direct, albeit rare, secondary manifestation of acromegaly, that must be considered during the diagnostic work-up of acromegalic patients presenting with such disorder.

  6. In Situ Probing of Cholesterol in Astrocytes at the Single Cell Level using Laser Desorption Ionization Mass Spectrometric Imaging with Colloidal Silver

    SciTech Connect

    Perdian, D.C.; Cha, Sangwon; Oh, Jisun; Sakaguchi, Donald S.; Yeung, Edward S.; and Lee, Young Jin

    2010-03-18

    Mass spectrometric imaging has been utilized to localize individual astrocytes and to obtain cholesterol populations at the single-cell level in laser desorption ionization (LDI) with colloidal silver. The silver ion adduct of membrane-bound cholesterol was monitored to detect individual cells. Good correlation between mass spectrometric and optical images at different cell densities indicates the ability to perform single-cell studies of cholesterol abundance. The feasibility of quantification is confirmed by the agreement between the LDI-MS ion signals and the results from a traditional enzymatic fluorometric assay. We propose that this approach could be an effective tool to study chemical populations at the cellular level.

  7. Single attosecond pulse generation in He{sup +} by controlling the instant ionization rate using attosecond pulse trains combined with an intense laser pulse

    SciTech Connect

    He Xinkui; Jia, T. Q.; Zhang, Jun; Suzuki, M.; Baba, M.; Kuroda, Hiroto; Ozaki, T.; Li Ruxin; Xu Zhizhan

    2007-08-15

    High-order harmonics and single attosecond pulse generation by using an infrared laser pulse combined with attosecond pulse trains (APT) interacting with He{sup +} have been investigated. We show that the ionization for different instant time intervals can be controlled by altering the time delay between the APT and the infrared pulse. Consequently, APT can be used as a tool to control the efficiency of high-order harmonics emitted at different times. By choosing appropriate APT and time delay, the driving pulse width for single attosecond pulse generation can be extended up to six optical cycles.

  8. In situ probing of cholesterol in astrocytes at the single-cell level using laser desorption ionization mass spectrometric imaging with colloidal silver.

    PubMed

    Perdian, D C; Cha, Sangwon; Oh, Jisun; Sakaguchi, Donald S; Yeung, Edward S; Lee, Young Jin

    2010-04-30

    Mass spectrometric imaging has been utilized to localize individual astrocytes and to obtain cholesterol populations at the single-cell level in laser desorption ionization (LDI) with colloidal silver. The silver ion adduct of membrane-bound cholesterol was monitored to detect individual cells. Good correlation between mass spectrometric and optical images at different cell densities indicates the ability to perform single-cell studies of cholesterol abundance. The feasibility of quantification is confirmed by the agreement between the LDI-MS ion signals and the results from a traditional enzymatic fluorometric assay. We propose that this approach could be an effective tool to study chemical populations at the cellular level.

  9. Evaluation of binding selectivity of a polyamide probe to single base-pair different DNA in A.T-rich region by electrospray ionization mass spectrometry.

    PubMed

    Li, Huihui; Yuan, Gu

    2006-12-01

    In this study, electrospray ionization mass spectrometry (ESI-MS) was used for the evaluation of the binding selectivity of a polyamide probe to single-base pair different DNA in an A.T-rich region. In this procedure, DeltaIr(dsn) was introduced as a parameter to compare the binding affinities of the polyamides with the duplex DNA. The results show that ESI-MS is a very useful tool for analysis of binding selectivity of a polyamide probe to single-base pair different DNA.

  10. Thermal effects on rare earth element and strontium isotope chemistry in single conodont elements

    NASA Astrophysics Data System (ADS)

    Armstrong, H. A.; Pearson, D. G.; Griselin, M.

    2001-02-01

    A low-blank, high sensitivity isotope dilution, ICP-MS analytical technique has been used to obtain REE abundance data from single conodont elements weighing as little as 5 μg. Sr isotopes can also be measured from the column eluants enabling Sr isotope ratios and REE abundance to be determined from the same dissolution. Results are comparable to published analyses comprising tens to hundreds of elements. To study the effects of thermal metamorphism on REE and strontium mobility in conodonts, samples were selected from a single bed adjacent to a basaltic dyke and from the internationally used colour alteration index (CAI) "standard set." Our analyses span the range of CAI 1 to 8. Homogeneous REE patterns, "bell-shaped" shale-normalised REE patterns are observed across the range of CAI 1 to 6 in both sample sets. This pattern is interpreted as the result of adsorption during early diagenesis and could reflect original seawater chemistry. Above CAI 6 REE patterns become less predictable and perturbations from the typical REE pattern are likely to be due to the onset of apatite recrystallisation. Samples outside the contact aureole of the dyke have a mean 87Sr/ 86Sr ratio of 0.708165, within the broad range of published mid-Carboniferous seawater values. Our analysis indicates conodonts up to CAI 6 record primary geochemical signals that may be a proxy for ancient seawater.

  11. Gas-Phase Synthesis of Singly and Multiply Charged Polyoxovanadate Anions Employing Electrospray Ionization and Collision Induced Dissociation

    SciTech Connect

    Al Hasan, Naila M.; Johnson, Grant E.; Laskin, Julia

    2013-07-02

    Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy n– and VxOyCln– ions (x = 1–14, y = 2–36, n = 1–3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N+, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCln– and VxOyCl(L)(n–1)– clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl(1–2)– and VxOy (1–2)– anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively

  12. Desorption/Ionization Fluence Thresholds and Improved Mass Spectral Consistency Measured Using a Flattop Laser Profile in the Bioaerosol Mass Spectrometry of Single Bacillus Endospores

    SciTech Connect

    Steele, P T; Srivastava, A; Pitesky, M E; Fergenson, D P; Tobias, H J; Gard, E E; Frank, M

    2004-11-30

    Bioaerosol mass spectrometry (BAMS) is being developed to analyze and identify biological aerosols in real-time. Mass spectra of individual Bacillus endospores were measured here with a bipolar aerosol time-of-flight mass spectrometer in which molecular desorption and ionization were produced using a single laser pulse from a Q-switched, frequency-quadrupled Nd:YAG laser that was modified to have an approximately flattop profile. The flattened laser profile allowed the minimum fluence required to desorb and ionize significant numbers of ions from single aerosol particles to be determined. For Bacillus spores this threshold had a mean value of approximately 1 nJ/{micro}m{sup 2} (0.1 J/cm{sup 2}). Thresholds for individual spores, however, could apparently deviate by 20% or more from the mean. Threshold distributions for clumps of MS2 bacteriophage and bovine serum albumin were subsequently determined. Finally, the flattened profile was observed to increase the reproducibility of single spore mass spectra. This is consistent with the general conclusions of our earlier paper on the fluence dependence of single spore mass spectra and is particularly significant because it is expected to enable more robust differentiation and identification of single bioaerosol particles.

  13. Estimation of cut-off wavelength of rare earth doped single-mode fibers

    NASA Astrophysics Data System (ADS)

    Kaur, Jagneet; Thyagarajan, K.; Pal, B. P.

    1999-11-01

    A new empirical relation is proposed describing spectral variation of mode-field radius (MFR) as inferred from measurements in the far-field of the fiber. It is shown that using this relation, it is possible to estimate the cut-off wavelength ( λc) of the fiber. The proposed technique is successfully tested through measurements made on two standard step index single-mode fibers, as well as on an erbium doped fiber (EDF) having λc falling within its strong absorption band around 980 nm. This empirical formula is more accurate than the widely used Marcuse's formula to describe spectral dependence of MFR determined through measurements made in the fiber's far-field. The proposed technique is especially suited for estimation of λc of doped fibers in which λc falls within an absorption band.

  14. Single photon ionization of hydrogen bonded clusters with a soft x-ray laser: (HCOOH)x and (HCOOH)y(H2O)z

    NASA Astrophysics Data System (ADS)

    Heinbuch, S.; Dong, F.; Rocca, J. J.; Bernstein, E. R.

    2007-06-01

    Pure, neutral formic acid (HCOOH)n+1 clusters and mixed (HCOOH)/(H2O) clusters are investigated employing time of flight mass spectroscopy and single photon ionization at 26.5eV using a very compact, capillary discharge, soft x-ray laser. During the ionization process, neutral clusters suffer little fragmentation because almost all excess energy above the vertical ionization energy is taken away by the photoelectron, leaving only a small part of the photon energy deposited into the (HCOOH)n +1+ cluster. The vertical ionization energy minus the adiabatic ionization energy is enough excess energy in the clusters to surmount the proton transfer energy barrier and induce the reaction (HCOOH)n +1+→(HCOOH)nH++HCOO making the protonated (HCOOH)nH+ series dominant in all data obtained. The distribution of pure (HCOOH)nH+ clusters is dependent on experimental conditions. Under certain conditions, a magic number is found at n =5. Metastable dissociation rate constants of (HCOOH)nH+ are measured in the range (0.1-0.8)×104s-1 for cluster sizes 4

  15. Nanomanipulation-Coupled Matrix-Assisted Laser Desorption/ Ionization-Direct Organelle Mass Spectrometry: A Technique for the Detailed Analysis of Single Organelles.

    PubMed

    Phelps, Mandy S; Sturtevant, Drew; Chapman, Kent D; Verbeck, Guido F

    2016-02-01

    We describe a novel technique combining precise organelle microextraction with deposition and matrix-assisted laser desorption/ionization (MALDI) for a rapid, minimally invasive mass spectrometry (MS) analysis of single organelles from living cells. A dual-positioner nanomanipulator workstation was utilized for both extraction of organelle content and precise co-deposition of analyte and matrix solution for MALDI-direct organelle mass spectrometry (DOMS) analysis. Here, the triacylglycerol (TAG) profiles of single lipid droplets from 3T3-L1 adipocytes were acquired and results validated with nanoelectrospray ionization (NSI) MS. The results demonstrate the utility of the MALDI-DOMS technique as it enabled longer mass analysis time, higher ionization efficiency, MS imaging of the co-deposited spot, and subsequent MS/MS capabilities of localized lipid content in comparison to NSI-DOMS. This method provides selective organellar resolution, which complements current biochemical analyses and prompts for subsequent subcellular studies to be performed where limited samples and analyte volume are of concern. Graphical Abstract ᅟ.

  16. Nanomanipulation-Coupled Matrix-Assisted Laser Desorption/ Ionization-Direct Organelle Mass Spectrometry: A Technique for the Detailed Analysis of Single Organelles

    NASA Astrophysics Data System (ADS)

    Phelps, Mandy S.; Sturtevant, Drew; Chapman, Kent D.; Verbeck, Guido F.

    2016-02-01

    We describe a novel technique combining precise organelle microextraction with deposition and matrix-assisted laser desorption/ionization (MALDI) for a rapid, minimally invasive mass spectrometry (MS) analysis of single organelles from living cells. A dual-positioner nanomanipulator workstation was utilized for both extraction of organelle content and precise co-deposition of analyte and matrix solution for MALDI-direct organelle mass spectrometry (DOMS) analysis. Here, the triacylglycerol (TAG) profiles of single lipid droplets from 3T3-L1 adipocytes were acquired and results validated with nanoelectrospray ionization (NSI) MS. The results demonstrate the utility of the MALDI-DOMS technique as it enabled longer mass analysis time, higher ionization efficiency, MS imaging of the co-deposited spot, and subsequent MS/MS capabilities of localized lipid content in comparison to NSI-DOMS. This method provides selective organellar resolution, which complements current biochemical analyses and prompts for subsequent subcellular studies to be performed where limited samples and analyte volume are of concern.

  17. Detection and Mapping of Cannabinoids in Single Hair Samples through Rapid Derivatization and Matrix-Assisted Laser Desorption Ionization Mass Spectrometry.

    PubMed

    Beasley, Emma; Francese, Simona; Bassindale, Tom

    2016-10-18

    The sample preparation method reported in this work has permitted for the first time the application of matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) profiling and imaging for the detection and mapping of cannabinoids in a single hair sample. MALDI-MS imaging analysis of hair samples has recently been suggested as an alternative technique to traditional methods of GC/MS and LC/MS due to simpler sample preparation, the ability to detect a narrower time frame of drug use, and a reduction in sample amount required. However, despite cannabis being the most commonly used illicit drug worldwide, a MALDI-MS method for the detection and mapping of cannabinoids in a single hair has not been reported. This is probably due to the poor ionization efficiency of the drug and its metabolites and low concentration incorporated into hair. This research showed that in situ derivatization of cannabinoids through addition of an N-methylpyridium group resulted in improved ionization efficiency, permitting both detection and mapping of Δ(9)-tetrahydrocannabinol (THC), cannabinol (CBN), cannabidiol (CBD), and the metabolites 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THC-COOH), 11-hydroxy-Δ(9)-tetrahydrocannabinol (11-OH-THC), and 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol glucuronide (THC-COO-glu). Additionally, for the first time an in-source rearrangement of THC was observed and characterized in this paper, thus contributing to new and accurate knowledge in the analysis of this drug by MALDI-MS.

  18. Rare earth element diffusion in a natural pyrope single crystal at 2.8 GPa

    NASA Astrophysics Data System (ADS)

    Van Orman, James; Grove, Timothy; Shimizu, Nobumichi; Layne, Graham

    Volume diffusion rates of Ce, Sm, Dy, and Yb have been measured in a natural pyrope-rich garnet single crystal (Py71Alm16Gr13) at a pressure of 2.8 GPa and temperatures of 1,200-1,450 °C. Pieces of a single gem-quality pyrope megacryst were polished, coated with a thin layer of polycrystalline REE oxide, then annealed in a piston cylinder device for times between 2.6 and 90 h. Diffusion profiles in the annealed samples were measured by SIMS depth profiling. The dependence of diffusion rates on temperature can be described by the following Arrhenius equations (diffusion coefficients in m2/s): log 10 D{ Yb} = ( - 7.73 +/- 0.97) - ( {343 +/- 30;kJ;mol{ - 1} /2.303RT} )} log 10 D{ Dy} = ( - 9.04 +/- 0.97) - ( {302 +/- 30;kJ;mol{ - 1} /2.303RT} )} log 10 D{ Sm} = ( - 9.21 +/- 0.97) - ( {300 +/- 30;kJ;mol{ - 1} /2.303RT} )} log 10 D{ Ce} = ( - 9.74 +/- 2.84) - ( {284 +/- 91;kJ;mol{ - 1} /2.303RT} )} . There is no significant influence of ionic radius on diffusion rates; at each temperature the diffusion coefficients for Ce, Sm, Dy, and Yb are indistinguishable from each other within the measurement uncertainty. However, comparison with other diffusion data suggests that there is a strong influence of ionic charge on diffusion rates in garnet, with REE3+ diffusion rates more than two orders of magnitude slower than divalent cation diffusion rates. This implies that the Sm-Nd isotopic chronometer may close at significantly higher temperatures than thermometers based on divalent cation exchange, such as the garnet-biotite thermometer. REE diffusion rates in pyrope are similar to Yb and Dy diffusion rates in diopside at temperatures near the solidus of garnet lherzolite ( 1,450 °C at 2.8 GPa), and are an order of magnitude faster than Nd, Ce, and La in high-Ca pyroxene at these conditions. At lower temperatures relevant to the lithospheric mantle and crust, REE diffusion rates in garnet are much faster than in high-Ca pyroxene, and closure temperatures for Nd isotopes in

  19. Single-shot carrier-envelope-phase-tagged ion-momentum imaging of nonsequential double ionization of argon in intense 4-fs laser fields

    SciTech Connect

    Johnson, Nora G.; Herrwerth, O.; Wirth, A.; De, S.; Ben-Itzhak, I.; Lezius, M.; Bergues, B.; Kling, M. F.; Senftleben, A.; Schroeter, C. D.; Moshammer, R.; Ullrich, J.; Betsch, K. J.; Jones, R. R.; Sayler, A. M.; Rathje, T.; Ruehle, K.; Mueller, W.; Paulus, G. G.

    2011-01-15

    Single-shot carrier-envelope-phase (CEP) tagging is combined with a reaction mircoscope (REMI) to investigate CEP-dependent processes in atoms. Excellent experimental stability and data acquisition longevity are achieved. Using this approach, we study the CEP effects for nonsequential double ionization of argon in 4-fs laser fields at 750 nm and an intensity of 1.6x10{sup 14} W/cm{sup 2}. The Ar{sup 2+} ionization yield shows a pronounced CEP dependence which compares well with recent theoretical predictions employing quantitative rescattering theory [S. Micheau et al., Phys. Rev. A 79, 013417 (2009)]. Furthermore, we find strong CEP influences on the Ar{sup 2+} momentum spectra along the laser polarization axis.

  20. A rare type of single coronary artery with right coronary artery originating from the left circumflex artery in a child

    PubMed Central

    Kim, Jong Min; Lee, Ok Jeong; Kang, I-Seok; Huh, June; Kim, Geena

    2015-01-01

    The presence of a single coronary artery is a rare congenital anomaly; such patients often present with severe myocardial ischemia. We experienced the case of a 13-year-old girl with the right coronary artery originating from the left circumflex artery. She visited our Emergency Department owing to severe chest pain; her cardiac enzyme levels were elevated, but her initial electrocardiogram (ECG) was normal. Echocardiography showed normal anatomy and normal regional wall motion. When she presented with recurrent chest pain on admission, the ECG showed significant ST-segment elevation in the left precordial leads and inferior leads with ST-segment depression in aVR lead, suggesting myocardial ischemia, and her cardiac enzyme levels were also elevated. We performed coronary angiography that showed a single right coronary artery originating from the left circumflex artery without stenosis. We confirmed the presence of a single coronary artery using coronary computed tomography. In addition, the treadmill test that was performed showed normal results. She was discharged from the hospital without any medications but with a recommendation of a regular follow-up. PMID:25729398

  1. Rare variants in single-minded 1 (SIM1) are associated with severe obesity

    PubMed Central

    Ramachandrappa, Shwetha; Raimondo, Anne; Cali, Anna M.G.; Keogh, Julia M.; Henning, Elana; Saeed, Sadia; Thompson, Amanda; Garg, Sumedha; Bochukova, Elena G.; Brage, Soren; Trowse, Victoria; Wheeler, Eleanor; Sullivan, Adrienne E.; Dattani, Mehul; Clayton, Peter E.; Datta, Vippan; Bruning, John B.; Wareham, Nick J.; O’Rahilly, Stephen; Peet, Daniel J.; Barroso, Ines; Whitelaw, Murray L.; Farooqi, I. Sadaf

    2013-01-01

    Single-minded 1 (SIM1) is a basic helix-loop-helix transcription factor involved in the development and function of the paraventricular nucleus of the hypothalamus. Obesity has been reported in Sim1 haploinsufficient mice and in a patient with a balanced translocation disrupting SIM1. We sequenced the coding region of SIM1 in 2,100 patients with severe, early onset obesity and in 1,680 controls. Thirteen different heterozygous variants in SIM1 were identified in 28 unrelated severely obese patients. Nine of the 13 variants significantly reduced the ability of SIM1 to activate a SIM1-responsive reporter gene when studied in stably transfected cells coexpressing the heterodimeric partners of SIM1 (ARNT or ARNT2). SIM1 variants with reduced activity cosegregated with obesity in extended family studies with variable penetrance. We studied the phenotype of patients carrying variants that exhibited reduced activity in vitro. Variant carriers exhibited increased ad libitum food intake at a test meal, normal basal metabolic rate, and evidence of autonomic dysfunction. Eleven of the 13 probands had evidence of a neurobehavioral phenotype. The phenotypic similarities between patients with SIM1 deficiency and melanocortin 4 receptor (MC4R) deficiency suggest that some of the effects of SIM1 deficiency on energy homeostasis are mediated by altered melanocortin signaling. PMID:23778139

  2. Oxidant Signaling in Cells Revealed by Single Rare-Earth Based Nanoparticle Imaging

    NASA Astrophysics Data System (ADS)

    Bouzigues, Cedric; Abdesselem, Mouna; Ramodiharilafy, Rivo; Gacoin, Thierry; Tharaux, Pierre-Louis; Alexandrou, Antigoni

    The spatio-temporal organization of signaling pathways controls the cell response. Reactive oxygen species (ROS) are second messengers involved in the control of numerous normal and pathological processes and their local concentration is thus tightly regulated. However, the dynamics of ROS production and organization is mostly unknown, due to the lack of efficient probes. We developed single ROS sensitive Eu3+-doped nanoparticle imaging to quantitatively probed the intracellular ROS response. We revealed specific temporal patterns of ROS production under different types of stimulation (PDGF and ET-1) and quantitatively identified mechanisms of transactivation, which notably control the dynamics of the cell response. By using a microfluidic system, we apply spatially controlled stimulations and displayed the maintenance of asymmetric ROS concentration in the cell under a PDGF gradient. We then developed a ratiometric method using a nanoparticle mix, to quantitatively detect ROS with a 500 ms temporal resolution. We thus elucidate molecular mechanisms responsible for the control of the oxidant production kinetics. Altogether, our results reveal regulation mechanisms controlling ROS spatio-temporal organization, which can be crucial for the buildup of the cell response.

  3. The unusually high Tc in rare-earth-doped single crystalline CaFe2As2

    NASA Astrophysics Data System (ADS)

    Wei, Fengyan; Lv, Bing; Deng, Liangzi; Meen, James K.; Xue, Yu-Yi; Chu, Ching-Wu

    2014-08-01

    In rare-earth-doped single crystalline CaFe2As2, the mysterious small volume fraction which superconducts up to 49 K, much higher than the bulk Tc ~ 30 s K, has prompted a long search for a hidden variable that could enhance the Tc by more than 30% in iron-based superconductors of the same structure. Here we report a chemical, structural and magnetic study of CaFe2As2 systematically doped with La, Ce, Pr and Nd. Coincident with the high Tc phase, we find extreme magnetic anisotropy, accompanied by an unexpected doping-independent Tc and equally unexpected superparamagnetic clusters associated with As vacancies. These observations lead us to conjecture that the tantalizing Tc enhancement may be associated with naturally occurring chemical interfaces and may thus provide a new paradigm in the search for superconductors with higher Tc.

  4. Comparison of single-marker and multi-marker tests in rare variant association studies of quantitative traits

    PubMed Central

    Yilmaz, Yildiz E.; Pischon, Tobias

    2017-01-01

    In genetic association studies of rare variants, low statistical power and potential violations of established estimator properties are among the main challenges of association tests. Multi-marker tests (MMTs) have been proposed to target these challenges, but any comparison with single-marker tests (SMTs) has to consider that their aim is to identify causal genomic regions instead of variants. Valid power comparisons have been performed for the analysis of binary traits indicating that MMTs have higher power, but there is a lack of conclusive studies for quantitative traits. The aim of our study was therefore to fairly compare SMTs and MMTs in their empirical power to identify the same causal loci associated with a quantitative trait. The results of extensive simulation studies indicate that previous results for binary traits cannot be generalized. First, we show that for the analysis of quantitative traits, conventional estimation methods and test statistics of single-marker approaches have valid properties yielding association tests with valid type I error, even when investigating singletons or doubletons. Furthermore, SMTs lead to more powerful association tests for identifying causal genes than MMTs when the effect sizes of causal variants are large, and less powerful tests when causal variants have small effect sizes. For moderate effect sizes, whether SMTs or MMTs have higher power depends on the sample size and percentage of causal SNVs. For a more complete picture, we also compare the power in studies of quantitative and binary traits, and the power to identify causal genes with the power to identify causal rare variants. In a genetic association analysis of systolic blood pressure in the Genetic Analysis Workshop 19 data, SMTs yielded smaller p-values compared to MMTs for most of the investigated blood pressure genes, and were least influenced by the definition of gene regions. PMID:28562689

  5. Comparison of single-marker and multi-marker tests in rare variant association studies of quantitative traits.

    PubMed

    Konigorski, Stefan; Yilmaz, Yildiz E; Pischon, Tobias

    2017-01-01

    In genetic association studies of rare variants, low statistical power and potential violations of established estimator properties are among the main challenges of association tests. Multi-marker tests (MMTs) have been proposed to target these challenges, but any comparison with single-marker tests (SMTs) has to consider that their aim is to identify causal genomic regions instead of variants. Valid power comparisons have been performed for the analysis of binary traits indicating that MMTs have higher power, but there is a lack of conclusive studies for quantitative traits. The aim of our study was therefore to fairly compare SMTs and MMTs in their empirical power to identify the same causal loci associated with a quantitative trait. The results of extensive simulation studies indicate that previous results for binary traits cannot be generalized. First, we show that for the analysis of quantitative traits, conventional estimation methods and test statistics of single-marker approaches have valid properties yielding association tests with valid type I error, even when investigating singletons or doubletons. Furthermore, SMTs lead to more powerful association tests for identifying causal genes than MMTs when the effect sizes of causal variants are large, and less powerful tests when causal variants have small effect sizes. For moderate effect sizes, whether SMTs or MMTs have higher power depends on the sample size and percentage of causal SNVs. For a more complete picture, we also compare the power in studies of quantitative and binary traits, and the power to identify causal genes with the power to identify causal rare variants. In a genetic association analysis of systolic blood pressure in the Genetic Analysis Workshop 19 data, SMTs yielded smaller p-values compared to MMTs for most of the investigated blood pressure genes, and were least influenced by the definition of gene regions.

  6. Single photon ionization (SPI) via incoherent VUV-excimer light: robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis.

    PubMed

    Mühlberger, F; Wieser, J; Ulrich, A; Zimmermann, R

    2002-08-01

    Fast on-line detection of organic compounds from complex mixtures, such as industrial process gas streams, require selective and sensitive analytical methods. One feasible approach for this purpose is the use of mass spectrometry (MS) with a selective and soft (fragment-free) ionization technique, such as chemical ionization (CI) or photo ionization (PI). Single photon ionization (SPI) with vacuum ultraviolet (VUV) light is a particularly sof tionization technique, well-suited for detection of both aromatic and aliphatic species. Problematic, however, is the generation of the VUV light. In general, the vacuum ultraviolet (VUV) light sources for SPI-MS are based either on lasers (e.g., 118-nm radiation generated by frequency-tripling of the third harmonic of a Nd:YAG laser) or on conventional VUV lamps, such as deuterium lamps. Althoughthe laser-based techniques are very sophisticated and expensive, the conventional lamps have serious drawbacks regarding their optical parameters, such as low-output power, low spectral power density, and broad emission bands. In this work, a novel excimer VUV light source, in which an electron beam is used to form rare gas excimer species, is used. The excimer VUV light sourceproduces brilliant and intense VUV light. The novel VUV light source was coupled to a compact and mobile time-of-flight mass spectrometer (TOFMS). A special interface design, including optical (VUV optics) as well as electronic measures (e.g., pulsed ion extraction) was realized. The use of the excimer VUV lamp for SPI will allow the realization of very compact, rugged, and sensitive SPI-TOFMS devices, which preferably will be adapted for process analytical application or monitoring issues (e.g., chemical warfare detection). The excimer VUV-lamp technology delivers VUV light with a good beam quality and high-output power at low costs. Furthermore, it allows changing the emitted wavelength as well as the bandwidth of the excimer VUV lamp in t he 100-200-nm region

  7. Rare earth element diffusion in a natural pyrope single crystal at 2.8 GPa

    NASA Astrophysics Data System (ADS)

    Van Orman, James; Grove, Timothy; Shimizu, Nobumichi; Layne, Graham

    2001-09-01

    Volume diffusion rates of Ce, Sm, Dy, and Yb have been measured in a natural pyrope-rich garnet single crystal (Py71Alm16Gr13) at a pressure of 2.8 GPa and temperatures of 1,200-1,450 °C. Pieces of a single gem-quality pyrope megacryst were polished, coated with a thin layer of polycrystalline REE oxide, then annealed in a piston cylinder device for times between 2.6 and 90 h. Diffusion profiles in the annealed samples were measured by SIMS depth profiling. The dependence of diffusion rates on temperature can be described by the following Arrhenius equations (diffusion coefficients in m2/s): % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfKttLearuavTnhis1MBaeXatLxBI9gBam % XvP5wqSXMqHnxAJn0BKvguHDwzZbqegm0B1jxALjhiov2DaeHbuLwB % Lnhiov2DGi1BTfMBaebbfv3ySLgzGueE0jxyaibaieYlf9irVeeu0d % Xdh9vqqj-hEeeu0xXdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9 % pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaaca % qabeaadaabauaaaOqaauaabeqaeeaaaaqaaiGbcYgaSjabc+gaVjab % cEgaNnaaBaaaleaacqaIXaqmcqaIWaamaeqaaOGaemiraq0aaSbaaS % qaaiabbMfazjabbkgaIbqabaGccqGH9aqpcqGGOaakcqGHsislcqaI % 3aWncqGGUaGlcqaI3aWncqaIZaWmcqGHXcqScqaIWaamcqGGUaGlcq % aI5aqocqaI3aWncqGGPaqkcqGHsisldaqadaqaaiabiodaZiabisda % 0iabiodaZiabgglaXkabiodaZiabicdaWiaaysW7cqqGRbWAcqqGkb % GscaaMe8UaeeyBa0Maee4Ba8MaeeiBaW2aaWbaaSqabeaacqqGTaql % cqqGXaqmaaGccqGGVaWlcqaIYaGmcqGGUaGlcqaIZaWmcqaIWaamcq % aIZaWmcqWGsbGucqWGubavaiaawIcacaGLPaaaaeaacyGGSbaBcqGG % VbWBcqGGNbWzdaWgaaWcbaGaeGymaeJaeGimaadabeaakiabdseaen % aaBaaaleaacqqGebarcqqG5bqEaeqaaOGaeyypa0JaeiikaGIaeyOe % I0IaeGyoaKJaeiOla4IaeGimaaJaeGinaqJaeyySaeRaeGimaaJaei % Ola4IaeGyoaKJaeG4naCJaeiykaKIaeyOeI0YaaeWaaeaacqaIZaWm % cqaIWaamcqaIYaGmcqGHXcqScqaIZaWmcqaIWaamcaaMe8Uaee4AaS % MaeeOsaOKaaGjbVlabb2gaTjabb+gaVjabbYgaSnaaCaaaleqabaGa % eeyla0IaeeymaedaaOGaei4la8IaeGOmaiJaeiOla4IaeG4mamJaeG % imaaJaeG4mamJaemOuaiLaemivaqfacaGLOaGaayzkaaaabaGagiiB % aWMaei4Ba8Maei4zaC2aaSbaaSqaaiabigdaXiabicdaWaqabaGccq % WGebardaWgaaWcbaGaee4uamLaeeyBa0gabeaakiabg2da9iabcIca % Oiabgk

  8. Investigation of thermal diffusivity dependence on temperature in a group of optical single crystals doped with rare earth ions

    NASA Astrophysics Data System (ADS)

    Trefon-Radziejewska, D.; Bodzenta, J.

    2015-07-01

    The group of YAG, YVO4 and GdCOB single crystals was examined to determine the thermal diffusivity as a function of temperature in range from 30 °C to 300 °C. Further investigations concerned on analysis of the influence of dopants on these dependencies. The experimental setup based on thermal wave method with mirage detection was used. The samples represented different crystallographic systems such as cubic (YAG) tetragonal (YVO4) and monoclinic (GdCOB). The anisotropy of thermal conductivity of investigated samples was taken into account in the investigations. The crystals were doped with calcium ions, rare earth ions such as ytterbium, neodymium, and thulium, and also with transition metal vanadium. The results confirmed that influence of doping on the thermal diffusivity of investigated materials strongly depends on temperature. In general the thermal diffusivity decreases with increasing of sample temperature from 30 °C to 300 °C, however the drop in thermal diffusivity is the highest for pure single crystals. Doping is another factor reducing the heat transport in single crystals. Introduction of dopant ions into a crystal lattice leads to a significant decrease in the thermal diffusivity at lower temperatures in comparison with pure crystals. However, the influence of dopants becomes less pronounced with increasing temperature, and in case of weakly doped crystals it becomes negligible at higher temperatures. The interpretation of thermal diffusivity dependence on temperature for single crystals was based on the Debye model of lattice thermal conductivity of solids. The results allowed to conclude that the decrease of thermal diffusivity with temperature and increasing concentration of impurities is caused by shortening of the phonons mean free path due to phonon-phonon and phonon-point defect scatterings.

  9. Total Ionizing Dose Influence on the Single Event Effect Sensitivity in Samsung 8Gb NAND Flash Memories

    NASA Astrophysics Data System (ADS)

    Edmonds, Larry D.; Irom, Farokh; Allen, Gregory R.

    2017-08-01

    A recent model provides risk estimates for the deprogramming of initially programmed floating gates via prompt charge loss produced by an ionizing radiation environment. The environment can be a mixture of electrons, protons, and heavy ions. The model requires several input parameters. This paper extends the model to include TID effects in the control circuitry by including one additional parameter. Parameters intended to produce conservative risk estimates for the Samsung 8 Gb SLC NAND flash memory are given, subject to some qualifications.

  10. Formation and distribution of neutral vanadium, niobium, and tantalum oxide clusters: single photon ionization at 26.5 eV.

    PubMed

    Dong, F; Heinbuch, S; He, S G; Xie, Y; Rocca, J J; Bernstein, E R

    2006-10-28

    Neutral vanadium, niobium, and tantalum oxide clusters are studied by single photon ionization employing a 26.5 eV/photon soft x-ray laser. During the ionization process the metal oxide clusters are almost free of fragmentation. The most stable neutral clusters of vanadium, niobium, and tantalum oxides are of the general form (MO2)0,1(M2O5)y. M2O5 is identified as a basic building unit for these three neutral metal oxide species. Each cluster family (Mm, m=1,...,9) displays at least one oxygen deficient and/or oxygen rich cluster stoichiometry in addition to the above most stable species. For tantalum and niobium families with even m, oxygen deficient clusters have the general formula (MO2)2(M2O5)y. For vanadium oxide clusters, oxygen deficient clusters are detected for all cluster families Vm (m=1,[ellipsis (horizontal)],9), with stable structures (VO2)x(V2O5)y. Oxygen rich metal oxide clusters with high ionization energies (IE>10.5 eV, 118 nm photon) are detected with general formulas expressed as (MO2)2 (M2O5)y O1,2,3. Oxygen rich clusters, in general, have up to three attached hydrogen atoms, such as VO3H1,2, V2O5H1,2, Nb2O5H1,2, etc.

  11. Laser ablation of ceramic Al{sub 2}O{sub 3} at 193 nm and 248 nm: The importance of single-photon ionization processes

    SciTech Connect

    Pelaez, R. J.; Afonso, C. N.; Bator, M.; Lippert, T.

    2013-06-14

    The aim of this work is to demonstrate that single-photon photoionization processes make a significant difference in the expansion and temperature of the plasma produced by laser ablation of ceramic Al{sub 2}O{sub 3} in vacuum as well as to show their consequences in the kinetic energy distribution of the species that eventually will impact on the film properties produced by pulsed laser deposition. This work compares results obtained by mass spectrometry and optical spectroscopy on the composition and features of the plasma produced by laser ablation at 193 nm and 248 nm, i.e., photon energies that are, respectively, above and below the ionization potential of Al, and for fluences between threshold for visible plasma and up to Almost-Equal-To 2 times higher. The results show that the ionic composition and excitation of the plasma as well as the ion kinetic energies are much higher at 193 nm than at 248 nm and, in the latter case, the population of excited ions is even negligible. The comparison of Maxwell-Boltzmann temperature, electron temperatures, and densities of the plasmas produced with the two laser wavelengths suggests that the expansion of the plasma produced at 248 nm is dominated by a single population. Instead, the one produced at 193 nm is consistent with the existence of two populations of cold and hot species, the latter associated to Al{sup +} ions that travel at the forefront and produced by single photon ionization as well as Al neutrals and double ionized ions produced by electron-ion impact. The results also show that the most energetic Al neutrals in the plasma produced at the two studied wavelengths are in the ground state.

  12. Ionization and electron-capture cross sections for single- and multiple-electron removal from H2O by Li3 + impact

    NASA Astrophysics Data System (ADS)

    Luna, H.; Wolff, W.; Montenegro, E. C.; Tavares, André C.; Lüdde, H. J.; Schenk, G.; Horbatsch, M.; Kirchner, T.

    2016-05-01

    In this work, we report experimental and theoretical ionization and electron-capture cross sections for single-, double- and triple-electron removal from H2O by Li3 + impact at energies ranging from 0.75 to 5.8 MeV. The experiment was carried out by selecting both the final charge state of the projectile and the ejected fragments in coincidence to obtain cross sections associated with ionization and electron-capture channels. The ionic fragments and the emitted electrons produced under single-collision conditions were collected by a time-of-flight spectrometer with single-hit (e.g., OH++H0 ) and double-hit events (e.g., OH++H+ ) properly discriminated. For the one- and two-electron removal cases, the calculations based on the basis generator method for orbital propagation agree well with the experiment for most of the collision channels studied. Auger-electron emission after vacancy production in the inner 2 a1 orbital of H2O is shown to have a substantial effect on the final charge-state distributions over the entire impact-energy interval.

  13. [Safety Evaluation of Rare Sugar Syrup: Single-dose Oral Toxicity in Rats, Reverse Mutation Assay, Chromosome Aberration Assay, and Acute Non-Effect Level for Diarrhea of a Single Dose in Humans].

    PubMed

    Yamada, Takako; Iida, Tetsuo; Takamine, Satoshi; Hayashi, Noriko; Okuma, Kazuhiro

    2015-01-01

    The safety of rare sugar syrup obtained from high-fructose corn syrup under slightly alkaline conditions was studied. Mutagenicity of rare sugar syrup was assessed by a reverse mutation assay using Salmonella typhimurium and Escherichia coli, and an in vitro chromosomal aberration assay using Chinese hamster lung cell line (CHL/IU). No mutagenicity of rare sugar syrup was detected under these experimental conditions. Oral administration of single dose (15,000 mg/kg) of rare sugar syrup to rats caused no abnormalities, suggesting no adverse effect of rare sugar syrup. In humans, the acute non-effect level of rare sugar syrup for causing diarrhea was estimated as 0.9 g/kg body weight as dry solid base in both males and females.

  14. Hemimegalencephaly: A rare cause of hemihypoperfusion on 99m technetium-ethyl cysteinate dimer brain perfusion single-photon emission computed tomography.

    PubMed

    Damle, Nishikant A; Singhal, Abhinav; Mukherjee, Anirban; Sahoo, Manas Kumar; Tripathi, Madhavi; Bal, Chandrasekhar

    2013-04-01

    Hemimegalencephaly is a rare congenital neuronal migration disorder that can presents with the equally rare finding of hemihypoperfusion on brain perfusion single-photon emission computed tomography (SPECT). It is an extremely rare cause of intractable epilepsy. Technetium-99m ethyl cysteinate dimer (ECD) brain perfusion SPECT is useful in excluding other foci of hypoperfusion in the contralateral since hemispherectomy has been suggested to be the treatment of choice. Furthermore, hemimegalencephaly may present with hyper as well as hypoperfusion on ECD SPECT. We present the case of an 11-year-old male child with intractable seizures who showed hemihypoperfusion in the hemimegalecephalic hemisphere.

  15. Hemimegalencephaly: A rare cause of hemihypoperfusion on 99m technetium-ethyl cysteinate dimer brain perfusion single-photon emission computed tomography

    PubMed Central

    Damle, Nishikant A; Singhal, Abhinav; Mukherjee, Anirban; Sahoo, Manas Kumar; Tripathi, Madhavi; Bal, Chandrasekhar

    2013-01-01

    Hemimegalencephaly is a rare congenital neuronal migration disorder that can presents with the equally rare finding of hemihypoperfusion on brain perfusion single-photon emission computed tomography (SPECT). It is an extremely rare cause of intractable epilepsy. Technetium-99m ethyl cysteinate dimer (ECD) brain perfusion SPECT is useful in excluding other foci of hypoperfusion in the contralateral since hemispherectomy has been suggested to be the treatment of choice. Furthermore, hemimegalencephaly may present with hyper as well as hypoperfusion on ECD SPECT. We present the case of an 11-year-old male child with intractable seizures who showed hemihypoperfusion in the hemimegalecephalic hemisphere. PMID:24163513

  16. Single photon ionization time-of-flight mass spectrometry with a pulsed electron beam pumped excimer VUV lamp for on-line gas analysis: setup and first results on cigarette smoke and human breath.

    PubMed

    Mühlberger, F; Streibel, T; Wieser, J; Ulrich, A; Zimmermann, R

    2005-11-15

    Single-photon ionization (SPI) using vacuum ultraviolet (VUV) light produced by an electron beam pumped rare gas excimer source has been coupled to a compact and mobile time-of-flight mass spectrometer (TOFMS). The novel device enables real-time on-line monitoring of organic trace substances in complex gaseous matrixes down to the ppb range. The pulsed VUV radiation of the light source is employed for SPI in the ion source of the TOFMS. Ion extraction is also carried out in a pulsed mode with a short time delay with respect to ionization. The experimental setup of the interface VUV light source/time-of-flight mass spectrometer is described, and the novel SPI-TOFMS system is characterized by means of standard calibration gases. Limits of detection down to 50 ppb for aliphatic and aromatic hydrocarbons were achieved. First on-line applications comprised real-time measurements of aromatic and aliphatic trace compounds in mainstream cigarette smoke, which represents a highly dynamic fluctuating gaseous matrix. Time resolution was sufficient to monitor the smoking process on a puff-by-puff resolved basis. Furthermore, human breath analysis has been carried out to detect differences in the breath of a smoker and a nonsmoker, respectively. Several well-known biomarkers for smoke could be identified in the smoker's breath. The possibility for even shorter measurement times while maintaining the achieved sensitivity makes this new device a promising tool for on-line analysis of organic trace compounds in process gases or biological systems.

  17. Single photon simultaneous K-shell ionization and K-shell excitation. II. Specificities of hollow nitrogen molecular ions

    SciTech Connect

    Carniato, S. Selles, P.; Andric, L.; Palaudoux, J.; Penent, F.; Lablanquie, P.; Žitnik, M.; Bučar, K.; Nakano, M.; Hikosaka, Y.; Ito, K.

    2015-01-07

    The formalism developed in the companion Paper I is used here for the interpretation of spectra obtained recently on the nitrogen molecule. Double core-hole ionization K{sup −2} and core ionization-core excitation K{sup −2}V processes have been observed by coincidence electron spectroscopy after ionization by synchrotron radiation at different photon energies. Theoretical and experimental cross sections reported on an absolute scale are in satisfactory agreement. The evolution with photon energy of the relative contribution of shake-up and conjugate shake-up processes is discussed. The first main resonance in the K{sup −2}V spectrum is assigned to a K{sup −2}π{sup ∗} state mainly populated by the 1s→ lowest unoccupied molecular orbital dipolar excitation, as it is in the K{sup −1}V NEXAFS (Near-Edge X-ray Absorption Fine Structure) signals. Closer to the K{sup −2} threshold Rydberg resonances have been also identified, and among them a K{sup −2}σ{sup ∗} resonance characterized by a large amount of 2s/2p hybridization, and double K{sup −2}(2σ{sup ∗}/1π/3σ){sup −1}1π{sup ∗2} shake-up states. These resonances correspond in NEXAFS spectra to, respectively, the well-known σ{sup ∗} shape resonance and double excitation K{sup −1}(2σ{sup ∗}/1π/3σ){sup −1}1π{sup ∗2} resonances, all being positioned above the threshold.

  18. A Critical Compilation of Energy Levels, Spectral Lines, and Transition Probabilities of Singly Ionized Silver, Ag II.

    PubMed

    Kramida, Alexander

    2013-01-01

    All available experimental measurements of the spectrum of the Ag(+) ion are critically reviewed. Systematic shifts are removed from the measured wavelengths. The compiled list of critically evaluated wavelengths is used to derive a comprehensive list of energy levels with well-defined uncertainties. Eigenvector compositions and level designations are found in two alternate coupling schemes. Some of the older work is found to be incorrect. A revised value of the ionization energy, 173283(7) cm(-1), equivalent to 21.4844(8) eV, is derived from the new energy levels. A set of critically evaluated transition probabilities is given.

  19. A Critical Compilation of Energy Levels, Spectral Lines, and Transition Probabilities of Singly Ionized Silver, Ag II

    PubMed Central

    Kramida, Alexander

    2013-01-01

    All available experimental measurements of the spectrum of the Ag+ ion are critically reviewed. Systematic shifts are removed from the measured wavelengths. The compiled list of critically evaluated wavelengths is used to derive a comprehensive list of energy levels with well-defined uncertainties. Eigenvector compositions and level designations are found in two alternate coupling schemes. Some of the older work is found to be incorrect. A revised value of the ionization energy, 173283(7) cm−1, equivalent to 21.4844(8) eV, is derived from the new energy levels. A set of critically evaluated transition probabilities is given. PMID:26401429

  20. Single and joint action toxicity of heavy metals on early developmental stages of Chinese rare minnow (Gobiocypris rarus).

    PubMed

    Zhu, Bin; Wu, Zong-Fan; Li, Jun; Wang, Gao-Xue

    2011-11-01

    In this work, acute toxicities of heavy metals (Cu, Zn and Cd) were evaluated singly or in mixtures on Chinese rare minnow (Gobiocypris rarus) in its early stages of development (embryos, larvae). Normal embryos not later than 3 h post-fertilization and newly hatched larvae were selected for the tests. The embryos were exposed to the metal solutions studied until developing to the stages of somite formation (15 h), tail detachment (25 h 10 min), heart-beat visible (34 h 10 min), pectoral fin bud appearance (47 h 40 min) and hatching (75 h), respectively. Exposures of the larvae were continued for 24 h. Results from the single toxicity tests revealed that the mortality of embryos increases obviously with increasing exposure duration. G. rarus appears to be more sensitive to heavy metal exposures at larval stage than at embryonic stage. The toxicity order of the tested metals was Cu>Cd>Zn for the embryos and Cu>Zn>Cd for the larvae with LC₅₀ as the toxicity criterion. These data suggest that the sensitivity of G. rarus to heavy metals (Cu, Zn and Cd) is different and it depends on the exposition duration and the stages of fish development. Among the metals tested, Cu is the one most toxic to G. rarus at its early development stages. In addition, results of the mixture experiments showed that binary combinations of Cu-Zn and Cu-Cd had strictly synergistic lethal effects on the larvae. The enhanced toxicity suggested inclusion of mixture considerations in the risk assessment of heavy metals might be recommended.

  1. Rare decay of the top quark t{yields}cll and single top quark production at the ILC

    SciTech Connect

    Frank, Mariana; Turan, Ismail

    2006-10-01

    We perform a complete and detailed analysis of the flavor changing neutral current rare top quark decays t{yields}cl{sup +}l{sup -} and t{yields}c{nu}{sub i}{nu}{sub i} at one-loop level in the standard model, two Higgs doublet models (I and II), and in minimal supersymmetric standard model (MSSM). The branching ratios are very small in all models, O(10{sup -14}), except for the case of the unconstrained MSSM, where they can reach O(10{sup -6}) for e{sup +}e{sup -}, {mu}{sup +}{mu}{sup -}, and {nu}{sub i}{nu}{sub i}, and O(10{sup -5}) for {tau}{sup +}{tau}{sup -}. This branching ratio is comparable to the ones for t{yields}cV, cH. We also study the production rates of single top and the forward-backward asymmetry in e{sup +}e{sup -}{yields}tc and comment on the observability of such a signal at the International Linear Collider.

  2. Evaluation of stability region for scandium-containing rare-earth garnet single crystals and their congruent-melting compositions

    NASA Astrophysics Data System (ADS)

    Kaurova, I. A.; Domoroshchina, E. N.; Kuz'micheva, G. M.; Rybakov, V. B.

    2017-06-01

    Single crystals of scandium-containing rare-earth garnets in system R-Sc-C-O (R3+=Y, Gd; C3+=Al, Ga) have been grown by the Czochralski technique. X-ray diffraction analysis has been used to refine crystal compositions. The fundamental difference between the melt compositions and compositions of grown crystals has been found (except for compositions of congruent-melting compounds, CMC). The specific features of garnet solid solution formation have been established and the ternary diagrams with real or hypothetical phases have been built. The dinamics of coordination polyhedra changes with the formation of substitutional solid solutions have been proposed based on the mathematical modeling and experimental data. Possible existence of CMC with garnet structure in different systems as well as limit content of Sc ions in dodecahedral and octahedral sites prior to their partial substitution of ions, located in other sites, have been evaluated. It was established that the redistribution of cations over crystallographic sites (antistructural point defects) due to system self-organization to maintain its stability may be accompanied by cation ordering and the symmetry change of individual polyhedrons and/or the whole crystal.

  3. A Rare Case of Single Coronary Artery with Atherosclerotic Lesions Arising from the Right Sinus of Valsalva

    PubMed Central

    Blaschke, Florian; Krackhardt, Florian; Kherad, Bherous; Pieske, Burkert; Haverkamp, Wilhelm; Rief, Matthias

    2016-01-01

    Context: Congenital coronary anomalies, including anomalous origin, distribution, intercoronary communications, and coronary fistulae occur at a rate of approximately 1% in the general population and are the most incidental findings. Case Report: A 49-year-old male patient presented to the emergency department with exercise-induced dyspnea and atypical angina pectoris. Coronary angiography (CAG) and contrast-enhanced 320-slice multidetector cardiac computed tomography with subsequent three-dimensional reconstructions revealed a single coronary artery (SCA) arising from the right sinus of Valsalva with a proximal branch giving rise to the left anterior descending coronary artery. The left anterior descending coronary artery shows severe atherosclerotic lesions and it is occluded afterwards. Adenosine stress perfusion cardiac magnetic resonance imaging (MRI) revealed a stress myocardial ischemia at the anterior wall without signs of fibrosis, scar, or necrosis. Conclusion: We present an extremely rare case of a SCA, with the solitary vessel arising from the right sinus of Valsalva. In our patient's case, the atherosclerotic lesions and occlusion in the branch supplying the anterior wall were considered eligible for neither percutaneous intervention nor bypass graft surgery. PMID:27042610

  4. Single differential electron impact ionization cross sections in the binary-encounter-Bethe approximation for the low binding energy regime

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Amaro, P.; Machado, J.; Santos, J. P.

    2015-09-01

    An analytical expression based on the binary-encounter-Bethe model for energy differential cross sections in the low binding energy regime is presented. Both the binary-encounter-Bethe model and its modified counterpart are extended to shells with very low binding energy by removing the constraints in the interference term of the Mott cross section, originally introduced by Kim et al. The influence of the ionic factor is also studied for such targets. All the binary-encounter-Bethe based models presented here are checked against experimental results of low binding energy targets, such as the total ionization cross sections of alkali metals. The energy differential cross sections for H and He, at several incident energies, are also compared to available experimental and theoretical values.

  5. Single photon ionization of van der Waals clusters with a soft x-ray laser: (CO2)n and (CO2)n(H2O)m

    NASA Astrophysics Data System (ADS)

    Heinbuch, S.; Dong, F.; Rocca, J. J.; Bernstein, E. R.

    2006-10-01

    Pure neutral (CO2)n clusters and mixed (CO2)n(H2O)m clusters are investigated employing time of flight mass spectroscopy and single photon ionization at 26.5eV. The distribution of pure (CO2)n clusters decreases roughly exponentially with increasing cluster size. During the ionization process, neutral clusters suffer little fragmentation because almost all excess cluster energy above the vertical ionization energy is taken away by the photoelectron and only a small part of the photon energy is deposited into the (CO2)n cluster. Metastable dissociation rate constants of (CO2)n+ are measured in the range of (0.2-1.5)×104s-1 for cluster sizes of 5⩽n⩽16. Mixed CO2-H2O clusters are studied under different generation conditions (5% and 20% CO2 partial pressures and high and low expansion pressures). At high CO2 concentration, predominant signals in the mass spectrum are the (CO2)n + cluster ions. The unprotonated cluster ion series (CO2)nH2O+ and (CO2)n(H2O)2+ are also observed under these conditions. At low CO2 concentration, protonated cluster ions (H2O)nH+ are the dominant signals, and the protonated CO2(H2O)nH+ and unprotonated (H2O)n+ and (CO2)(H2O)n+ cluster ion series are also observed. The mechanisms and dynamics of the formation of these neutral and ionic clusters are discussed.

  6. Matrix-assisted laser-desorption/ionization mass spectrometric imaging of olanzapine in a single hair using esculetin as a matrix.

    PubMed

    Wang, Hang; Wang, Ying; Wang, Ge; Hong, Lizhi

    2017-07-15

    Matrix-assisted laser desorption/ionization-mass spectrometric imaging (MALDI-MSI) for the analysis of intact hair is a powerful tool for monitoring changes in drug consumption. The embedding of a low drug concentration in the hydrophobic hair matrix makes it difficult to extract and detect, and requires an improved method to increase detection sensitivity. In this study, an MSI method using MALDI-Fourier transform ion cyclotron resonance was developed for direct identification and imaging of olanzapine in hair samples using the positive ion mode. Following decontamination, scalp hair samples from an olanzapine user were scraped from the proximal to the distal end three times, and 5mm hair sections were fixed onto an Indium-Tin-Oxide (ITO)-coated microscopic glass slide. Esculetin (6,7-dihydroxy-2H-chromen-2-one) was used as a new hydrophobic matrix to increase the affinity, extraction and ionization efficiency of olanzapine in the hair samples. The spatial distribution of olanzapine was observed using five single hairs from the same drug user. This matrix improves the affinity of olanzapine in hair for molecular imaging with mass spectrometry. This method may provide a detection power for olanzapine to the nanogram level per 5mm hair. Time course changes in the MSI results were also compared with quantitative HPLC-MS/MS for each 5mm segment of single hair shafts selected from the MALDI target. MALDI imaging intensities in single hairs showed good semi-quantitative correlation with the results from conventional HPLC-MS/MS. MALDI-MSI is suitable for monitoring drug intake with a high time resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The interplay of long-range magnetic order and single-ion anisotropy in rare earth nickel germanides

    SciTech Connect

    Islam, Z.

    1999-05-10

    This dissertation is concerned with the interplay of long-range order and anisotropy in the tetragonal RNi{sub 2}Ge{sub 2} (R = rare earth) family of compounds. Microscopic magnetic structures were studied using both neutron and x-ray resonant exchange scattering (XRES) techniques. The magnetic structures of Tb, Dy, Eu and Gd members have been determined using high-quality single-crystal samples. This work has correlated a strong Fermi surface nesting to the magnetic ordering in the RNi{sub 2}Ge{sub 2} compounds. Generalized susceptibility, {chi}{sub 0}(q), calculations found nesting to be responsible for both incommensurate ordering wave vector in GdNi{sub 2}Ge{sub 2}, and the commensurate structure in EuNi{sub 2}Ge{sub 2}. A continuous transition from incommensurate to commensurate magnetic structures via band filling is predicted. The surprisingly higher T{sub N} in EuNi{sub 2}Ge{sub 2} than that in GdNi{sub 2}Ge{sub 2} is also explained. Next, all the metamagnetic phases in TbNi{sub 2}Ge{sub 2} with an applied field along the c axis have been characterized with neutron diffraction measurements. A mixed phase model for the first metamagnetic structure consisting of fully-saturated as well as reduced-moment Tb ions is presented. The moment reduction may be due to moment instability which is possible if the exchange is comparable to the low-lying CEF level splitting and the ground state is a singlet. In such a case, certain Tb sites may experience a local field below the critical value needed to reach saturation.

  8. Rapid Identification and Quantification of Linear Olefin Isomers by Online Ozonolysis-Single Photon Ionization Time-of-Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Xie, Yuanyuan; Chen, Ping; Hua, Lei; Hou, Keyong; Wang, Yongchao; Wang, Haiyan; Li, Haiyang

    2016-01-01

    The specific locations of the double bonds in linear olefins can facilitate olefin catalytic synthetic reactions to improve the quality of target olefin products. We developed a simple and efficient approach based on single photon ionization time-of-flight mass spectrometry (SPI-TOFMS) combined with online ozonolysis to identify and quantify the linear olefin double bond positional isomers. The online ozonolysis cleaved the olefins at the double bond positions that led to formation of corresponding characteristic aldehydes. The aldehydes were then detected by SPI-TOFMS to achieve unique spectrometric "fingerprints" for each linear olefin to successfully identify the isomeric ones. To accurately quantify the isomeric components in olefin mixtures, an algorithm was proposed to quantify three isomeric olefin mixtures based on characteristic ion intensities and their equivalent ionization coefficients. The relative concentration errors for the olefin components were lower than 2.5% while the total analysis time was less than 2 min. These results demonstrate that the online ozonolysis SPI-TOFMS has the potential for real-time monitoring of catalytic olefin synthetic reactions.

  9. Following electron impact excitation of single (Sc, Ti, V, Cr, Mn, Fe, Co, Ni) atom L subshells ionization cross section calculations by using Lotz's equation

    NASA Astrophysics Data System (ADS)

    Aydinol, Mahmut

    2017-02-01

    L shell and Li subshells ionization cross sections[σL and σLi i = 1, 2, 3 following electron impact on (Sc, Ti, V, Cr, Mn, Fe, Co, Ni) atoms calculated. By using Lotz' equation for non-relativistic cases in Matlab σL and σLi cross section values obtained for ten electron impact(Eo) values in the range of ELiionization threshold energy), σL and σLi are increasing rapidly with Eo. For a fixed Eo value(≈3.ELi), while Z value increases from 21≤Z≤28 σL and σLi decrease. Results show that for smaller values of Eo(close to ELi), x-ray yields formation of Li(i =1,2,3) subshells decreases while competing other yields are increase. Results may help to understand similar findings which obtained from other electron impact excitation of L shell σL, Li subshells σLi studies for single atoms.

  10. Following electron impact excitation of single (N, O, F, Ne, Na, Mg, Al, Si) atom L subshells ionization cross section calculations by using Lotz's equation

    NASA Astrophysics Data System (ADS)

    Aydinol, Mahmut

    2017-02-01

    L shell and L subshells ionization cross sections σL and σLi (i = 1, 2, 3) following electron impact on (N,O, F, Ne, Na, Mg, Al, Si) atoms calculated. By using Lotz' equation for nonrelativistic cases in Matlab σL and σLi cross section values obtained for ten electron impact(Eo) values in the range of ELiionization threshold energy), σL and σLi are increasing rapidly with Eo. For a fixed Eo value(≈3.ELi), while Z value increases from 7≤Z≤14 σL and σLi decrease. Results show that for smaller values of Eo(close to ELi), x-ray yields formation of Li(i=1,2,3) subshells decreases while competing other yields are increase. Results may help to understand similar findings which obtained from other electron impact excitation of L shell σL and subshells σLi studies for single atoms.

  11. Compendium of Single-Event Latchup and Total Ionizing Dose Test Results of Commercial Analog to Digital Converters

    NASA Technical Reports Server (NTRS)

    Irom, Farokh; Agarwal, Shri G.

    2012-01-01

    This paper reports single-event latchup and total dose results for a variety of analog to digital converters targeted for possible use in NASA spacecraft's. The compendium covers devices tested over the last 15 years.

  12. Compendium of Single-Event Latchup and Total Ionizing Dose Test Results of Commercial Analog to Digital Converters

    NASA Technical Reports Server (NTRS)

    Irom, Farokh; Agarwal, Shri G.

    2012-01-01

    This paper reports single-event latchup and total dose results for a variety of analog to digital converters targeted for possible use in NASA spacecraft's. The compendium covers devices tested over the last 15 years.

  13. Rare-Earth Tri-Halide Methanol-Adduct Single-Crystal Scintillators for Gamma Ray and Neutron Detection - 8/17/09

    SciTech Connect

    Boatner, Lynn A; Wisniewski, D.; Neal, John S; Bell, Zane W; Ramey, Joanne Oxendine; Kolopus, James A; Chakoumakos, Bryan C; Custelcean, Radu; Wisniewska, Monika; Peña, K. E.

    2009-01-01

    Cerium activated rare-earth tri- halides represent a well-known family of high performance inorganic rare-earth scintillators - including the high-light-yield, high-energy-resolution scintillator, cerium-doped lanthanum tribromide. These hygroscopic inorganic rare-earth halides are currently grown as single crystals from the melt - either by the Bridgman or Czochralski techniques slow and expensive processes that are frequently characterized by severe cracking of the material due to anisotropic thermal stresses and cleavage effects. We have recently discovered a new family of cerium-activated rare-earth metal organic scintillators consisting of tri-halide methanol adducts of cerium and lanthanum namely CeCl3(CH3OH)4 and LaBr3(CH3OH)4:Ce. These methanol-adduct scintillator materials can be grown near room temperature from a methanol solution, and their high solubility is consistent with the application of the rapid solution growth methods that are currently used to grow very large single crystals of potassium dihydrogen phosphate. The structures of these new rare-earth metal-organic scintillating compounds were determined by single crystal x-ray refinements, and their scintillation response to both gamma rays and neutrons, as presented here, was characterized using different excitation sources. Tri-halide methanol-adduct crystals activated with trivalent cerium apparently represent the initial example of a solution-grown rare-earth metal-organic molecular scintillator that is applicable to gamma ray, x-ray, and fast neutron detection.

  14. Ionization satellites of the ArHe dimer

    SciTech Connect

    Miteva, Tsveta; Klaiman, Shachar; Gokhberg, Kirill; Gromov, Evgeniy V.

    2014-05-28

    Ionization satellites are key ingredients in the control of post ionization processes such as molecular dissociation and interatomic Coulombic decay. Here, using the high-level ab initio method of multi-reference configuration interaction up to triple excitations, we study the potential energy curves (PECs) of the ionization satellites of the ArHe dimer. With this model system, we demonstrate that the simple model used in alkaline earth metal and rare gas complexes to describe the satellites as a Rydberg electron moving on top of a dicationic core does not fully hold for the rare gas clusters. The more complex valence structure in the rare gas atom leads to the mixing of different electronic configurations of the dimer. This prevents one from assigning a single dicationic parent state to some of the ionization satellites. We further analyze the structure of the different PECs, demonstrating how the density of the Rydberg electron is reflected in the structure of the PEC wherever the simple model is applicable.

  15. Single electron ionization and electron capture cross sections for (C6+, H2O) interaction within the Classical Trajectory Monte Carlo (CTMC) approach

    NASA Astrophysics Data System (ADS)

    Tran, H. N.; Dao, D. D.; Incerti, S.; Bernal, M. A.; Karamitros, M.; Nhan Hao, T. V.; Dang, T. M.; Francis, Z.

    2016-01-01

    In this work, we present a derivation of cross sections for single ionization and electron capture processes within the Classical Trajectory Monte Carlo (CTMC) approach. Specifically, we have used a potential stemming from an ab initio calculation in Green et al.'s framework to describe the dynamics of the water molecule system. Proposing a modified version of the Classical Over-Barrier (COB) potential, we have found that a cut-off of roughly 28 a.u. on the initial distance of the projectile produced a reasonable accuracy. A global agreement has been obtained in our calculations compared to experimental and other theoretical results for C6+ ion energies ranging from 10 keV/u to 10 MeV/u.

  16. Precision treatment of single and double multiphoton ionization of He atoms by strong laser fields: Time-dependent generalized pseudospectral method in internal coordinates

    NASA Astrophysics Data System (ADS)

    Telnov, Dmitry A.; Heslar, John; Chu, Shih-I.

    2012-06-01

    We have developed a new computational method for accurate and efficient numerical solution of the time-dependent Schr"odinger equation for two-electron atoms. Our approach is full-dimensional and makes use of the internal coordinates of the electrons in the plane defined by the electrons and the nucleus (r1, r2, and θ12) as well as Euler angles which determine the orientation of the plane in space. The internal coordinates can be optimally discretized by means of the generalized pseudospectral method while the Euler angles appear through the basis set functions with the definite total angular momentum and its projections. The results of the single and double ionization of the helium atom by strong 800 nm laser fields will be presented. The accurate time-dependent electron density obtained can be used for testing and improvement of various approximate exchange-correlation functionals of the time-dependent density functional theory.

  17. Ionizing radiation

    USDA-ARS?s Scientific Manuscript database

    This chapter gives a comprehensive review on ionizing irradiation of fresh fruits and vegetables. Topics include principles of ionizing radiation, its effects on pathogenic and spoilage microorganisms, shelf-life, sensory quality, nutritional and phytochemical composition, as well as physiologic and...

  18. Ionisation cross sections of rare-gas atoms by electron impact

    NASA Technical Reports Server (NTRS)

    Krishnakumar, E.; Srivastava, S. K.

    1988-01-01

    A pulsed electron beam and ion extraction method is used to measure normalized values of partial ionization cross sections for rare gases from threshold to 1000 eV. Cross sections obtained for singly ionized species are used to calibrate the mass transmission efficiency of the ion extraction/analyzer/detection system by the relative flow technique, and this mass transmission curve is then used to determine the absolute cross sections of the multiply ionized species. Total ion cross sections are found by summation of the individual partial cross sections with proper weighting for charge.

  19. On the SIMS Ionization Probability of Organic Molecules

    NASA Astrophysics Data System (ADS)

    Popczun, Nicholas J.; Breuer, Lars; Wucher, Andreas; Winograd, Nicholas

    2017-06-01

    The prospect of improved secondary ion yields for secondary ion mass spectrometry (SIMS) experiments drives innovation of new primary ion sources, instrumentation, and post-ionization techniques. The largest factor affecting secondary ion efficiency is believed to be the poor ionization probability (α+) of sputtered material, a value rarely measured directly, but estimated to be in some cases as low as 10-5. Our lab has developed a method for the direct determination of α+ in a SIMS experiment using laser post-ionization (LPI) to detect neutral molecular species in the sputtered plume for an organic compound. Here, we apply this method to coronene (C24H12), a polyaromatic hydrocarbon that exhibits strong molecular signal during gas-phase photoionization. A two-dimensional spatial distribution of sputtered neutral molecules is measured and presented. It is shown that the ionization probability of molecular coronene desorbed from a clean film under bombardment with 40 keV C60 cluster projectiles is of the order of 10-3, with some remaining uncertainty arising from laser-induced fragmentation and possible differences in the emission velocity distributions of neutral and ionized molecules. In general, this work establishes a method to estimate the ionization efficiency of molecular species sputtered during a single bombardment event. [Figure not available: see fulltext.

  20. On the SIMS Ionization Probability of Organic Molecules

    NASA Astrophysics Data System (ADS)

    Popczun, Nicholas J.; Breuer, Lars; Wucher, Andreas; Winograd, Nicholas

    2017-03-01

    The prospect of improved secondary ion yields for secondary ion mass spectrometry (SIMS) experiments drives innovation of new primary ion sources, instrumentation, and post-ionization techniques. The largest factor affecting secondary ion efficiency is believed to be the poor ionization probability (α+) of sputtered material, a value rarely measured directly, but estimated to be in some cases as low as 10-5. Our lab has developed a method for the direct determination of α+ in a SIMS experiment using laser post-ionization (LPI) to detect neutral molecular species in the sputtered plume for an organic compound. Here, we apply this method to coronene (C24H12), a polyaromatic hydrocarbon that exhibits strong molecular signal during gas-phase photoionization. A two-dimensional spatial distribution of sputtered neutral molecules is measured and presented. It is shown that the ionization probability of molecular coronene desorbed from a clean film under bombardment with 40 keV C60 cluster projectiles is of the order of 10-3, with some remaining uncertainty arising from laser-induced fragmentation and possible differences in the emission velocity distributions of neutral and ionized molecules. In general, this work establishes a method to estimate the ionization efficiency of molecular species sputtered during a single bombardment event.

  1. On the SIMS Ionization Probability of Organic Molecules.

    PubMed

    Popczun, Nicholas J; Breuer, Lars; Wucher, Andreas; Winograd, Nicholas

    2017-03-06

    The prospect of improved secondary ion yields for secondary ion mass spectrometry (SIMS) experiments drives innovation of new primary ion sources, instrumentation, and post-ionization techniques. The largest factor affecting secondary ion efficiency is believed to be the poor ionization probability (α(+)) of sputtered material, a value rarely measured directly, but estimated to be in some cases as low as 10(-5). Our lab has developed a method for the direct determination of α(+) in a SIMS experiment using laser post-ionization (LPI) to detect neutral molecular species in the sputtered plume for an organic compound. Here, we apply this method to coronene (C24H12), a polyaromatic hydrocarbon that exhibits strong molecular signal during gas-phase photoionization. A two-dimensional spatial distribution of sputtered neutral molecules is measured and presented. It is shown that the ionization probability of molecular coronene desorbed from a clean film under bombardment with 40 keV C60 cluster projectiles is of the order of 10(-3), with some remaining uncertainty arising from laser-induced fragmentation and possible differences in the emission velocity distributions of neutral and ionized molecules. In general, this work establishes a method to estimate the ionization efficiency of molecular species sputtered during a single bombardment event. Graphical Abstract .

  2. Effect of rare-earth component of the RE/Ni catalyst on the formation and nanostructure of single-walled carbon nanotubes.

    PubMed

    Yao, Mingguang; Liu, Bingbing; Zou, Yonggang; Wang, Lin; Cui, Tian; Zou, Guangtian; Li, Jixue; Sundqvist, B

    2006-08-10

    A systematic experimental study has been carried out on the efficiency of bimetallic catalysts based on Ni and the rare-earth elements Y, La, Ce, Nd, Gd, Tb, Dy, Ho, Er, and Lu (group A) and Eu, Sm, Yb, and Tm (group B) in the synthesis of single-walled carbon nanotubes (SWNTs). The two groups give quite different results when analyzed by a combination of SEM/TEM and Raman and UV-NIR spectroscopies. The elements in group A have an obvious catalytic effect and increase the yield of SWNTs dramatically, whereas those in group B are not efficient catalysts. The diameter distribution of the synthesized SWNTs was also affected by the rare-earth element used. For group A metals, there is a tendency that the fraction of small-diameter tubes decreases with decreasing ionic radius of the rare-earth element used. EDX and X-ray analyses indicate that group A metals deposit on the cathode deposits and form rare-earth carbides, whereas no group B metals are found in cathode deposits, except for a small amount of Tm present in the form of thulium carbide. Further analysis indicates that there is a very strong correlation between the ability to form rare-earth carbides and the catalytic efficiency for the formation of SWNTs.

  3. Analysis of phase II methodologies for single-arm clinical trials with multiple endpoints in rare cancers: An example in Ewing's sarcoma.

    PubMed

    Dutton, P; Love, S B; Billingham, L; Hassan, A B

    2016-09-01

    Trials run in either rare diseases, such as rare cancers, or rare sub-populations of common diseases are challenging in terms of identifying, recruiting and treating sufficient patients in a sensible period. Treatments for rare diseases are often designed for other disease areas and then later proposed as possible treatments for the rare disease after initial phase I testing is complete. To ensure the trial is in the best interests of the patient participants, frequent interim analyses are needed to force the trial to stop promptly if the treatment is futile or toxic. These non-definitive phase II trials should also be stopped for efficacy to accelerate research progress if the treatment proves to be particularly promising. In this paper, we review frequentist and Bayesian methods that have been adapted to incorporate two binary endpoints and frequent interim analyses. The Eurosarc Trial of Linsitinib in advanced Ewing Sarcoma (LINES) is used as a motivating example and provides a suitable platform to compare these approaches. The Bayesian approach provides greater design flexibility, but does not provide additional value over the frequentist approaches in a single trial setting when the prior is non-informative. However, Bayesian designs are able to borrow from any previous experience, using prior information to improve efficiency.

  4. Single and multiple ionization of C{sub 60} fullerenes and collective effects in collisions with highly charged C, F, and Si ions with energy 3 MeV/u

    SciTech Connect

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Tribedi, L. C.; Gulyas, L.

    2010-10-15

    We have measured absolute cross sections for single, double, triple, and quadruple ionization of C{sub 60} in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR model predictions was found for all projectile charge states.

  5. Use of microextraction by packed sorbent directly coupled to an electron ionization single quadrupole mass spectrometer as an alternative for non-separative determinations.

    PubMed

    Casas Ferreira, Ana María; Moreno Cordero, Bernardo; Pérez Pavón, José Luis

    2017-02-01

    Sometimes it is not necessary to separate the individual compounds of a sample to resolve an analytical problem, it is enough to obtain a signal profile of the sample formed by all the components integrating it. Within this strategy, electronic noses based on the direct coupling of a headspace sampler with a mass spectrometer (HS-MS) have been proposed. Nevertheless, this coupling is not suitable for the analysis of non-volatile compounds. In order to propose an alternative to HS-MS determinations for non-volatile compounds, here we present the first 'proof of concept' use of the direct coupling of microextraction by packed sorbents (MEPS) to a mass spectrometer device using an electron ionization (EI) and a single quadrupole as ionization source and analyzer, respectively. As target compounds, a set of analytes with different physic-chemical properties were evaluated (2-ethyl-1-hexanol, styrene, 2-heptanone, among others). The use of MEPS extraction present many advantages, such as it is fast, simple, easy to automate and requires small volumes of sample and organic solvents. Moreover, MEPS cartridges are re-usable as samples can be extracted more than 100 times using the same syringe. In order to introduce into the system all the elution volume from the MEPS extraction, a programmable temperature vaporizer (PTV) is proposed as the injector device. Results obtained with the proposed methodology (MEPS-PTV/MS) were compared with the ones obtained based on the separative scheme, i.e. using gas chromatography separation (MEPS-PTV-GC/MS), and both methods provided similar results. Limits of detection were found to be between 3.26 and 146.6μgL(-1) in the non-separative scheme and between 0.02 and 1.72μgL(-1) when the separative methodology was used. Repeatability and reproducibility were evaluated with values below 17% in all cases.

  6. Single photon ionization of van der Waals clusters with a soft x-ray laser: (SO2)n and (SO2)n(H2O)m

    NASA Astrophysics Data System (ADS)

    Dong, F.; Heinbuch, S.; Rocca, J. J.; Bernstein, E. R.

    2006-10-01

    van der Waals cluster (SO2)n is investigated by using single photon ionization of a 26.5eV soft x-ray laser. During the ionization process, neutral clusters suffer a small fragmentation because almost all energy is taken away by the photoelectron and a small part of the photon energy is deposited into the (SO2)n cluster. The distribution of (SO2)n clusters decreases roughly exponentially with increasing cluster size. The photoionization dissociation fraction of I[(SO2)n-1SO+]/I[(SO2)n+] decreases with increasing cluster size due to the formation of cluster. The metastable dissociation rate constants of (SO2)n+ are measured in the range of (0.6-1.5)×104s-1 for cluster sizes 5⩽n⩽16. Mixed SO2-H2O clusters are studied at different experimental conditions. At the condition of high SO2 concentration (20% SO2 partial pressure), (SO2)n + cluster ions dominate the mass spectrum, and the unprotonated mixed cluster ions (SO2)nH2O+ (1⩽n⩽5) are observed. At the condition of low SO2 concentration (5% SO2 partial pressure) (H2O)nH+ cluster ions are the dominant signals, and protonated cluster ions (SO2)(H2O)nH+ are observed. The mixed clusters, containing only one SO2 or H2O molecule, SO2(H2O)nH+ and (SO2)nH2O+ are observed, respectively.

  7. Automated cell-by-cell tissue imaging and single-cell analysis for targeted morphologies by laser ablation electrospray ionization mass spectrometry.

    PubMed

    Li, Hang; Smith, Brian K; Shrestha, Bindesh; Márk, László; Vertes, Akos

    2015-01-01

    Mass spectrometry imaging (MSI) is an emerging technology for the mapping of molecular distributions in tissues. In most of the existing studies, imaging is performed by sampling on a predefined rectangular grid that does not reflect the natural cellular pattern of the tissue. Delivering laser pulses by a sharpened optical fiber in laser ablation electrospray ionization (LAESI) mass spectrometry (MS) has enabled the direct analysis of single cells and subcellular compartments. Cell-by-cell imaging had been demonstrated using LAESI-MS, where individual cells were manually selected to serve as natural pixels for tissue imaging. Here we describe a protocol for a novel cell-by-cell LAESI imaging approach that automates cell recognition and addressing for systematic ablation of individual cells. Cell types with particular morphologies can also be selected for analysis. First, the cells are recognized as objects in a microscope image. The coordinates of their centroids are used by a stage-control program to sequentially position the cells under the optical fiber tip for laser ablation. This approach increases the image acquisition efficiency and stability, and enables the investigation of extended or selected tissue areas. In the LAESI process, the ablation events result in mass spectra that represent the metabolite levels in the ablated cells. Peak intensities of selected ions are used to represent the metabolite distributions in the tissue with single-cell resolution.

  8. BaY{sub 2}F{sub 8} single crystals doped with rare-earth ions as promising up-conversion media for UV and VUV lasers

    SciTech Connect

    Pushkar', A A; Uvarova, T V; Molchanov, V N

    2008-04-30

    BaY{sub 2}F{sub 8} crystals are studied as promising active media for UV and VUV lasers. The up-conversion pumping of rare-earth activators is proposed to solve problems related to the solarisation of the medium and the selection of pump sources. The technology of growing oriented BaY{sub 2}F{sub 8} single crystals is developed and the influence of the crystal orientation on the growth rate and quality of single crystals is determined. (active media)

  9. Ionizing radiation from tobacco

    SciTech Connect

    Westin, J.B.

    1987-04-24

    Accidents at nuclear power facilities seem inevitably to bring in their wake a great deal of concern on the part of both the lay and medical communities. Relatively little attention, however, is given to what may be the largest single worldwide source of effectively carcinogenic ionizing radiation: tobacco. The risk of cancer deaths from the Chernobyl disaster are tobacco smoke is discussed.

  10. Following electron impact excitations of single Os, Pt, Hg, Pb and Po atom L subshells ionization cross section calculations by using Lotz’s equation

    SciTech Connect

    Aydinol, M.; Aydeniz, D.

    2016-03-25

    L shell ionization cross section and {sub Li} subshells ionization cross sections of Os, Pt, Hg, Pb, Po atoms calculated. For each atom, ten different electron impacty energy values E{sub oi} used. Calculations carried out by using nonrelativistic Lotz equation in Matlab. Ionization cross section values obtained for Eoi values in the energy range of E{sub Li} ≤E{sub oi}≤4E{sub Li} for each atom. Starting allmost from E{sub oi} = E{sub Li} (i = 1,2,3) values of the each subshell ionization threshold energy, ionization cross section are increasing rapidly with E{sub oi}. For a fixed E{sub oi} = 3. E{sub Li} values, while Z increases from Z = 76 to Z = 84, ionization cross section are decrease. These results help to understand some results which obtained from other electron-sigle atom impact studies on σ{sub Li} subshells.

  11. Following electron impact excitations of single Os, Pt, Hg, Pb and Po atom L subshells ionization cross section calculations by using Lotz's equation

    NASA Astrophysics Data System (ADS)

    Aydinol, M.; Aydeniz, D.

    2016-03-01

    L shell ionization cross section and Li subshells ionization cross sections of Os, Pt, Hg, Pb, Po atoms calculated. For each atom, ten different electron impacty energy values Eoi used. Calculations carried out by using nonrelativistic Lotz equation in Matlab. Ionization cross section values obtained for Eoi values in the energy range of ELi ≤Eoi≤4ELi for each atom. Starting allmost from Eoi = ELi (i = 1,2,3) values of the each subshell ionization threshold energy, ionization cross section are increasing rapidly with Eoi. For a fixed Eoi = 3. ELi values, while Z increases from Z = 76 to Z = 84, ionization cross section are decrease. These results help to understand some results which obtained from other electron-sigle atom impact studies on σLi subshells.

  12. Phototriggered formation and repair of DNA containing a site-specific single strand break of the type produced by ionizing radiation or AP lyase activity.

    PubMed

    Zhang, K; Taylor, J S

    2001-01-09

    DNA strand breaks are produced by a variety of agents and processes such as ionizing radiation, xenobiotics, oxidative metabolism, and enzymatic processing of DNA base damage. One of the major types of strand breaks produced by these processes is a single nucleotide gap terminating in 5'- and 3'-phosphates. Previously, we had developed a method for sequence-specifically producing such phosphate-terminated strand breaks in an oligodeoxynucleotide by way of two photochemically activated (caged) building blocks placed in tandem. We now report the design and synthesis of a single caged building block consisting of 1,3-(2-nitrophenyl)-1,3-propanediol, for producing phosphate-terminated strand breaks, and its use producing such a break at a specific site in a double-stranded circular DNA vector. To produce the site-specific break in a duplex vector, a primer containing the caged single strand break was extended opposite the single strand form of a circular DNA vector followed by enzymatic ligation and purification. The single strand break could then be formed in quantitative yield by irradiation of the vector with 365 nm light. In contrast to a previous study, it was found that the strand break can be repaired by Escherichia coli DNA polymerase I and E. coli DNA ligase alone, though less efficiently than in the presence of the 3'-phosphate processing enzyme E. coli endonuclease IV. Repair in the absence of endonuclease IV could be attributed to hydrolysis of the 3'-phosphate in the presence of dNTP and to a lesser extent to exonucleolytic removal of the 3'-phosphate-bearing terminal nucleotide by way of the 3' --> 5' exonuclease activity of polymerase I. This work demonstrates that specialized 3'-end processing enzymes such as endonuclease IV or exonuclease III are not absolutely required for repair of phosphate-terminated gaps. In addition to preparing single strand breaks, the caged building block described should also be useful for preparing double strand breaks and

  13. Electron ionization of acetylene.

    PubMed

    King, Simon J; Price, Stephen D

    2007-11-07

    Relative partial ionization cross sections and precursor specific relative partial ionization cross sections for fragment ions formed by electron ionization of C2H2 have been measured using time-of-flight mass spectrometry coupled with a 2D ion-ion coincidence technique. We report data for the formation of H+, H+2, C2+, C+/C2+ 2, CH+/C2H+2, CH+2, C+2, and C2H+ relative to the formation of C2H+2, as a function of ionizing electron energy from 30-200 eV. While excellent agreement is found between our data and one set of previously published absolute partial ionization cross sections, some discrepancies exist between the results presented here and two other recent determinations of these absolute partial ionization cross sections. We attribute these differences to the loss of some translationally energetic fragment ions in these earlier studies. Our relative precursor-specific partial ionization cross sections enable us, for the first time, to quantify the contribution to the yield of each fragment ion from single, double, and triple ionization. Analysis shows that at 50 eV double ionization contributes 2% to the total ion yield, increasing to over 10% at an ionizing energy of 100 eV. From our ion-ion coincidence data, we have derived branching ratios for charge separating dissociations of the acetylene dication. Comparison of our data to recent ab initio/RRKM calculations suggest that close to the double ionization potential C2H2+2 dissociates predominantly on the ground triplet potential energy surface (3Sigma*g) with a much smaller contribution from dissociation via the lowest singlet potential energy surface (1Delta g). Measurements of the kinetic energy released in the fragmentation reactions of C2H2+2 have been used to obtain precursor state energies for the formation of product ion pairs, and are shown to be in good agreement with available experimental data and with theory.

  14. Quantitation of triacylglycerols in edible oils by off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column.

    PubMed

    Wei, Fang; Hu, Na; Lv, Xin; Dong, Xu-Yan; Chen, Hong

    2015-07-24

    In this investigation, off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column has been applied for the identification and quantification of triacylglycerols in edible oils. A novel mixed-mode phenyl-hexyl chromatographic column was employed in this off-line two-dimensional separation system. The phenyl-hexyl column combined the features of traditional C18 and silver-ion columns, which could provide hydrophobic interactions with triacylglycerols under acetonitrile conditions and can offer π-π interactions with triacylglycerols under methanol conditions. When compared with traditional off-line comprehensive two-dimensional liquid chromatography employing two different chromatographic columns (C18 and silver-ion column) and using elution solvents comprised of two phases (reversed-phase/normal-phase) for triacylglycerols separation, the novel off-line comprehensive two-dimensional liquid chromatography using a single column can be achieved by simply altering the mobile phase between acetonitrile and methanol, which exhibited a much higher selectivity for the separation of triacylglycerols with great efficiency and rapid speed. In addition, an approach based on the use of response factor with atmospheric pressure chemical ionization mass spectrometry has been developed for triacylglycerols quantification. Due to the differences between saturated and unsaturated acyl chains, the use of response factors significantly improves the quantitation of triacylglycerols. This two-dimensional liquid chromatography-mass spectrometry system was successfully applied for the profiling of triacylglycerols in soybean oils, peanut oils and lord oils. A total of 68 triacylglycerols including 40 triacylglycerols in soybean oils, 50 triacylglycerols in peanut oils and 44 triacylglycerols in lord oils have been identified and quantified. The liquid chromatography-mass spectrometry data were analyzed

  15. High-quality single crystal growth and strongly correlated electronic states in rare earth and actinide compounds

    NASA Astrophysics Data System (ADS)

    Ōnuki, Yoshichika; Honda, Fuminori; Hirose, Yusuke; Settai, Rikio; Takeuchi, Tetsuya

    2016-11-01

    We review the nature of strongly correlated electronic states in rare earth and actinide compounds, focusing on localized versus itinerant electronic states in CeRhIn5, quantum critical phenomena in YbIr2Zn20, residual resistivity in CeCu6, metamagnetism in heavy fermion compounds, and unconventional superconductivity in CeIrSi3 without inversion symmetry in the crystal structure, emphasizing that sample quality is essentially important to clarify the characteristic features for the heavy fermion compounds.

  16. Investigation of the magnetic properties in double perovskite R2CoMnO6 single crystals (R  =  rare earth: La to Lu).

    PubMed

    Kim, M K; Moon, J Y; Choi, H Y; Oh, S H; Lee, N; Choi, Y J

    2015-10-28

    We have successfully synthesized the series of the double-perovskite R2CoMnO6 (R  =  rare earth: La to Lu) single crystals and have investigated their magnetic properties. The ferromagnetic order of Co(2+)/Mn(4+) spins emerges mainly along the c axis. Upon decreasing the size of rare earth ion, the magnetic transition temperature decreases linearly from 204 K for La2CoMnO6 to 48 K for Lu2CoMnO6, along with the enhancement of monoclinic distortion. The temperature and magnetic-field dependences of magnetization reveal the various magnetic characteristics such as the metamagnetic transition in R  =  Eu, the isotropic nature of rare earth moment in R  =  Gd, and the reversal of magnetic anisotropy in R  =  Tb and Dy. Our results offer comprehensive information for understanding the roles of mixed-valent magnetic ions and rare earth magnetic moments on the magnetic properties.

  17. The hydrogen molecule under the reaction microscope: single photon double ionization at maximum cross section and threshold (doubly differential cross sections)

    NASA Astrophysics Data System (ADS)

    Weber, Thorsten; Foucar, Lutz; Jahnke, Till; Schoeffler, Markus; Schmidt, Lothar; Prior, Michael; Doerner, Reinhard

    2017-08-01

    We studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kinetic energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Traces of a possible breakdown of the Born-Oppenheimer approximation are observed near threshold.

  18. An in-source stretched membrane inlet for on-line analysis of VOCs in water with single photon ionization TOFMS.

    PubMed

    Hou, Keyong; Li, Fanglong; Chen, Wendong; Chen, Ping; Xie, Yuanyuan; Zhao, Wuduo; Hua, Lei; Pei, Kemei; Li, Haiyang

    2013-10-07

    An in-source, stretched, hollow fiber membrane (HFM) inlet has been developed to improve the sensitivity of on-line time-of-flight mass spectrometry (TOFMS) with a vacuum ultraviolet (VUV) lamp based single photon ionization (SPI) source for the direct analysis of liquid samples. A 2-cm HFM was stretched to 8 cm in length, and placed in the ion source and directly under the VUV lamp window with a distance of 15 mm. Compared with the conventional flow-through configuration under the same experimental conditions, the signal intensities of selected volatile organic compounds (VOCs) of methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), benzene, toluene and p-xylene were increased over 5-fold in magnitude, and the response time was shortened to one-third. The limits of detection (LOD) of MTBE, ETBE, benzene, toluene and p-xylene ranged from 0.25 to 1.3 μg L(-1) with a measurement time of 60 s, and three orders of linear range were obtained with correlation coefficients of 0.9972-0.9992. The present results suggest that the in-source stretched HFM is a simple and effective way to increase the sensitivity and shorten response time of the membrane inlet, and we believe that it will also be beneficial to other types of on-line mass spectrometer for the on-line analysis of VOCs in water with a VUV lamp based SPI ion source.

  19. Irradiation damage in Gd{sub 2}Ti{sub 2}O{sub 7} single crystals: Ballistic versus ionization processes

    SciTech Connect

    Moll, S.; Thome, L.; Sattonnay, G.; Monnet, I.; Weber, W. J.

    2011-08-01

    The structural transformations induced in Gd{sub 2}Ti{sub 2}O{sub 7} single crystals irradiated at high energies (870-MeV Xe), where ionization processes (electronic stopping) dominate, and at low energies (4-MeV Au), where ballistic processes (nuclear stopping) dominate, have been studied via the combination of Rutherford backscattering spectrometry and channeling (RBS/C), Raman spectroscopy, and transmission electron microscopy (TEM) experiments. At high energy, amorphization occurs directly in individual ion tracks from the extreme electronic-energy deposition, and full amorphization results from the overlapping of these tracks as described by a direct impact model. The track diameters lie in the range 6-9 nm. At low energy, amorphization occurs via indirect processes, driven by ballistic nuclear energy deposition from the ions, that is accounted for in the framework of both direct-impact/defect-stimulated and multi-step damage accumulation models. The ion fluence for total amorphization of the irradiated layer is much higher at low energy (0.5 ion nm{sup -2}) than at high energy (0.05 ion nm{sup -2}), consistent with the nuclear stopping at low energy (5.2 keV/nm) compared to the electronic stopping at high energy (29 keV/nm).

  20. Ionizing radiation and life.

    PubMed

    Dartnell, Lewis R

    2011-01-01

    Ionizing radiation is a ubiquitous feature of the Cosmos, from exogenous cosmic rays (CR) to the intrinsic mineral radioactivity of a habitable world, and its influences on the emergence and persistence of life are wide-ranging and profound. Much attention has already been focused on the deleterious effects of ionizing radiation on organisms and the complex molecules of life, but ionizing radiation also performs many crucial functions in the generation of habitable planetary environments and the origins of life. This review surveys the role of CR and mineral radioactivity in star formation, generation of biogenic elements, and the synthesis of organic molecules and driving of prebiotic chemistry. Another major theme is the multiple layers of shielding of planetary surfaces from the flux of cosmic radiation and the various effects on a biosphere of violent but rare astrophysical events such as supernovae and gamma-ray bursts. The influences of CR can also be duplicitous, such as limiting the survival of surface life on Mars while potentially supporting a subsurface biosphere in the ocean of Europa. This review highlights the common thread that ionizing radiation forms between the disparate component disciplines of astrobiology. © Mary Ann Liebert, Inc.

  1. Recent developments in the growth, processing, and testing of rare earth doped YVO{sub 4} single crystals

    SciTech Connect

    Mizell, G.; Fay, W.R.; Alekel, T. III; Rytz, D.

    1994-12-31

    The production of the laser host material YVO{sub 4} via high temperature solution growth (HTSG) is described as a facile alternative for producing optical quality crystals for research. The effects of dopant concentration on optical absorption properties in 0.7% and 3% Nd:YVO{sub 4} crystals are discussed. The rare earths ions Ho{sup 3+} and Er{sup 3+} have been doped into YVO{sub 4} with the HTSG method, and inaugural optical properties of Ho{sub 0.04}Y{sub 0.96}VO{sub 4} are presented.

  2. Characterization of puff-by-puff resolved cigarette mainstream smoke by single photon ionization-time-of-flight mass spectrometry and principal component analysis.

    PubMed

    Adam, Thomas; Baker, Richard R; Zimmermann, Ralf

    2007-03-21

    Soft single photon ionization-time-of-flight mass spectrometry (SPI-TOFMS) and principal component analysis (PCA) were applied for the characterization and discrimination of the chemical patterns of all individual cigarette puffs from the 2R4F University of Kentucky research reference cigarette. The SPI-TOFMS was connected to a smoking machine, and 10 cigarettes were smoked under defined smoking conditions. A total of 41 detected mass signals could be clearly assigned to smoke constituents (e.g., unsaturated hydrocarbons, aromatic species, sulfurous compounds, and nitrogen-containing substances). For further analysis, the on-line recorded mass signals were added up for each cigarette puff resulting in a single summed mass spectrum for each puff. The so-achieved puff-by-puff resolved yields were additionally normalized by the corresponding total ion signal, which eliminated the influences of varying amounts of burnt tobacco. These values were incorporated into a PCA to find differences and similarities in the chemical patterns of the individual cigarette puffs. In addition, absolute (without normalization) and normalized puff resolved yields were used to clarify occurring trends. Thereby, it was shown that the chemical pattern of the first cigarette puff was very unique, whereby extraordinary high yields of unsaturated hydrocarbons are mainly responsible for this. Depending on the smoking procedure, the chemical pattern of the second puff can also be separated from the first and the third puff. In this case, nitrogen-containing substances play an important role. Puffs three to eight show only small but observable differences. These changes are greater influenced by oxygen-containing and sulfurous smoke constituents. The findings reveal that the overall chemical patterns of machine-smoked cigarette puffs vary quite a lot during the smoking process. This lets us assume that the burden of hazardous compounds for the human smoker also differs from puff to puff.

  3. Interfacing droplet microfluidics with matrix-assisted laser desorption/ionization mass spectrometry: label-free content analysis of single droplets.

    PubMed

    Küster, Simon K; Fagerer, Stephan R; Verboket, Pascal E; Eyer, Klaus; Jefimovs, Konstantins; Zenobi, Renato; Dittrich, Petra S

    2013-02-05

    Droplet-based microfluidic systems have become a very powerful tool to miniaturize chemical and biological reactions. However, droplet content analysis remains challenging and relies almost exclusively on optical methods such as fluorescence spectroscopy. Hence, labeling of the analyte is typically required which impedes a more universal applicability of microdroplets. Here we present a novel interface coupling droplet microfluidics and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for label-free content analysis of single droplets. Nanoliter aqueous droplets immersed in perfluorinated oil are created in a microfluidic T-junction, transferred into a capillary, and deposited on a high-density microarray MALDI plate mounted on a motorized xy-stage. The fully automated system is robust and reliable due to two unique features. First, a simple optical droplet detection system is used to synchronize stage movement and exit of droplets from the capillary. Second, the microarray plate contains an array of over 26,000 hydrophilic spots within a hydrophobic coating, each spot acting as a recipient to confine the droplets and to prevent cross-contamination. The MALDI matrix can also be applied using our system by spotting matrix droplets on the microarray in a separate run. To demonstrate the potential of our system, we studied the enzymatic cleavage of angiotensin I by angiotensin converting enzyme and monitored the increasing concentration of the product angiotensin II over time. The interface provides a robust and fully automated method for rapid label-free and information-rich content analysis of single droplets. With the high number of droplets per plate, this method is particularly suitable for high-throughput screening applications.

  4. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  5. Spectroscopic and neutron detection properties of rare earth and titanium doped LiAlO2 single crystals

    DOE PAGES

    Dickens, Peter T.; Marcial, Jose; McCloy, John; ...

    2017-05-17

    In this study, LiAlO2 crystals doped with rare-earth elements and Ti were produced by the CZ method and spectroscopic and neutron detection properties were investigated. Photoluminescence revealed no clear luminescent activation of LiAlO2 by the rare-earth dopants though some interesting luminescence was observed from secondary phases within the crystal. Gamma-ray pulse height spectra collected using a 137Cs source exhibited only a Compton edge for the crystals. Neutron modeling using Monte Carlo N-Particle Transport Code revealed most neutrons used in the detection setup are thermalized, and while using natural lithium in the crystal growth, which contains 7.6% 6Li, a 10 mmmore » Ø by 10 mm sample of LiAlO2 has a 70.7% intrinsic thermal neutron capture efficiency. Furthermore, the pulse height spectra collected using a 241Am-Be neutron source demonstrated a distinct neutron peak.« less

  6. Effusive molecular beam-sampled Knudsen flow reactor coupled to vacuum ultraviolet single photon ionization mass spectrometry using an external free radical source

    SciTech Connect

    Leplat, N.; Rossi, M. J.

    2013-11-15

    A new apparatus using vacuum ultraviolet single photon ionization mass spectrometry (VUV SPIMS) of an effusive molecular beam emanating from a Knudsen flow reactor is described. It was designed to study free radical-molecule kinetics over a significant temperature range (300–630 K). Its salient features are: (1) external free radical source, (2) counterpropagating molecular beam and diffuse VUV photon beam meeting in a crossed-beam ion source of a quadrupole mass spectrometer with perpendicular ion extraction, (3) analog detection of the photocurrent of the free radical molecular cation, and (4) possibility of detecting both free radicals and closed shell species in the same apparatus and under identical reaction conditions owing to the presence of photoelectrons generated by the photoelectric effect of the used VUV-photons. The measured thermal molecular beam-to-background ratio was 6.35 ± 0.39 for Ar and 10.86 ± 1.59 for i-C{sub 4}H{sub 10} at 300 K, a factor of 2.52 and 1.50 smaller, respectively, than predicted from basic gas-dynamic considerations. Operating parameters as well as the performance of key elements of the instrument are presented and discussed. Coupled to an external free radical source a steady-state specific exit flow of 1.6 × 10{sup 11} and 5.0 × 10{sup 11} molecule s{sup −1} cm{sup −3} of C{sub 2}H{sub 5}{sup •} (ethyl) and t-C{sub 4}H{sub 9}{sup •} (t-butyl) free radicals have been detected using VUV SPIMS at their molecular ion m/z 29 and 57, respectively, at 300 K.

  7. Effusive molecular beam-sampled Knudsen flow reactor coupled to vacuum ultraviolet single photon ionization mass spectrometry using an external free radical source.

    PubMed

    Leplat, N; Rossi, M J

    2013-11-01

    A new apparatus using vacuum ultraviolet single photon ionization mass spectrometry (VUV SPIMS) of an effusive molecular beam emanating from a Knudsen flow reactor is described. It was designed to study free radical-molecule kinetics over a significant temperature range (300-630 K). Its salient features are: (1) external free radical source, (2) counterpropagating molecular beam and diffuse VUV photon beam meeting in a crossed-beam ion source of a quadrupole mass spectrometer with perpendicular ion extraction, (3) analog detection of the photocurrent of the free radical molecular cation, and (4) possibility of detecting both free radicals and closed shell species in the same apparatus and under identical reaction conditions owing to the presence of photoelectrons generated by the photoelectric effect of the used VUV-photons. The measured thermal molecular beam-to-background ratio was 6.35 ± 0.39 for Ar and 10.86 ± 1.59 for i-C4H10 at 300 K, a factor of 2.52 and 1.50 smaller, respectively, than predicted from basic gas-dynamic considerations. Operating parameters as well as the performance of key elements of the instrument are presented and discussed. Coupled to an external free radical source a steady-state specific exit flow of 1.6 × 10(11) and 5.0 × 10(11) molecule s(-1) cm(-3) of C2H5(●) (ethyl) and t-C4H9(●) (t-butyl) free radicals have been detected using VUV SPIMS at their molecular ion m/z 29 and 57, respectively, at 300 K.

  8. Determination of residual 1,4-dioxane in surfactants and cleaning agents using headspace single-drop microextraction followed by gas chromatography-flame ionization detection.

    PubMed

    Saraji, M; Shirvani, N

    2017-02-01

    Polyethoxylated surfactants are widely used in the formulation of different cleaning agents such as shampoo, dish washing and hand washing products and lotion formulation. During the production of polyethoxylated surfactants, 1,4-dioxane as a toxic and carcinogenic by-product is formed. A simple low-cost method based on headspace single-drop microextraction combined with gas chromatography-flame ionization detection was developed for the determination of 1,4-dioxane in surfactants and cleaning agents. In this method, 1,4-dioxane was extracted from 8.0 mL sample solution into a microdrop of an organic solvent, and then, it was injected to gas chromatography. The effects of such parameters as the solvent type, salt addition, microdrop volume, stirring rate, equilibrium time, extraction time and the temperature of sample solution on the extraction performance were studied and optimized. An ethoxylated surfactant containing 1,4-dioxane was used as the sample for the optimization of the extraction parameters. The linear range, determination coefficient, limit of detection and relative standard deviation of the method were 0.5-100 μg g(-1) , 0.9977, 0.4 μg g(-1) and 7.2% (n = 5), respectively. Different real samples including sodium lauryl ether sulphate, sodium lauryl sulphate (SLS), four brands of shampoo, and hand washing and dish washing liquids were analysed by the method. 1,4-Dioxane was detected at the concentration range of 2.4-201 μg g(-1) in the samples, except dish washing liquid and SLS. A new method with the merits of simplicity, low cost, low organic solvent consumption, short analysis time, good repeatability and suitable detection limit was developed for the analysis of 1,4-dioxane in surfactants and cleaning agents. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  9. Online monitoring of trace chlorinated benzenes in flue gas of municipal solid waste incinerator by windowless VUV lamp single photon ionization TOFMS coupled with automatic enrichment system.

    PubMed

    Liu, Wei; Jiang, Jichun; Hou, Keyong; Wang, Weiguo; Qi, Yachen; Wang, Yan; Xie, Yuanyuan; Hua, Lei; Li, Haiyang

    2016-12-01

    Chlorinated benzenes are typical precursors and indicators for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) emissions from waste incinerators. Online and real-time monitoring of chlorobenzenes is a challenge due to their low concentration and complex nature of the flue gas. In this work, a continuous online monitoring system was built for detection of trace chlorinated benzenes based on a time-of-flight mass spectrometer (TOFMS). A single photon ionization (SPI) source based on a radiofrequency-excited windowless vacuum ultraviolet (VUV) lamp was developed for the first time to eliminate the signal attenuation resulting from the contamination of magnesium fluoride windows and to avoid the fragment ions. An automatic enrichment system including three parallel Tenax TA adsorption tubes was designed and coupled to the TOFMS to achieve the required ultrahigh sensitivity. The limits of quantitation at 7.65, 5.37 and 6.77pptv were obtained for monochlorobenzene (MCBz), dichlorobenzene (DCBz) and trichlorobenzene (TrCBz), respectively, within a 29-min analytical period. Moreover, this apparatus was applied to continuously online monitor the actual flue gas from a waste incinerator for three months. During this period, the concentrations of MCBz, DCBz and TrCBz detected in the flue gas were in the range of 100-1200, 50-800 and 50-300pptv, respectively. The relative standard deviation (RSD) of the sensitivity for the windowless VUV lamp ion source was 9.71% evaluated by the internal standard benzene over the 3-months flue gas monitoring. These results demonstrated the capability of this method in long-term analysis of the trace chlorinated benzenes in the flue gas.

  10. Detection and isolation of rare cells by 2-step enrichment high-speed flow cytometry/cell sorting and single cell LEAP laser ablation

    NASA Astrophysics Data System (ADS)

    Zordan, M. D.; Leary, James F.

    2011-02-01

    The clonal isolation of rare cells, especially cancer and stem cells, in a population is important to the development of improved medical treatment. We have demonstrated that the Laser-Enabled Analysis and Processing (LEAP, Cyntellect Inc., San Diego, CA) instrument can be used to efficiently produce single cell clones by photoablative dilution. Additionally, we have also shown that cells present at low frequencies can be cloned by photoablative dilution after they are pre-enriched by flow cytometry based cell sorting. Circulating tumor cells were modeled by spiking isolated peripheral blood cells with cells from the lung carcinoma cell line A549. Flow cytometry based cell sorting was used to perform an enrichment sort of A549 cells directly into a 384 well plate. Photoablative dilution was performed with the LEAPTM instrument to remove any contaminating cells, and clonally isolate 1 side population cell per well. We were able to isolate and grow single clones of side population cells using this method at greater than 90% efficiency. We have developed a 2 step method that is able to perform the clonal isolation of rare cells based on a medically relevant functional phenotype.

  11. Ethylene glycol poisoning: a rare but life-threatening cause of metabolic acidosis—a single-centre experience

    PubMed Central

    Kimmel, Martin; Alscher, Mark Dominik; Braun, Niko

    2012-01-01

    Background. Intoxication with ethylene glycol happen all around the world and without rapid recognition and early treatment, mortality from this is high. Methods. In our study, we retrospectively analysed six cases of ethylene glycol intoxication in our department. We measured ethylene glycol or glycolate levels, lactate levels and calculated the osmolal and anion gap. Results. Data from six patients admitted to the nephrology department between 1999 and 2011 with ethylene glycol poisoning are reported. All patients were men. The mean pH on admission was 7.15 ± 0.20 and the anion and osmolal gap were elevated in five of six patients. Four patients had an acute kidney injury and one patient had an acute-on-chronic kidney injury. All patients survived and after being discharged, two patients required chronic intermittent haemodialysis. Interestingly, at the time of admission, all patients had elevated lactate levels but there was no linear regression between toxic levels and lactate levels and no linear correlation was found between initial lactate levels and anion gap and osmolal gap. Conclusions. The initial diagnosis of ethylene glycol poisoning is difficult and poisoning with ethylene glycol is rare but life threatening and needs rapid recognition and early treatment. Therefore, intoxication with ethylene glycol should not be misdiagnosed as lactic acidosis in patients with metabolic acidosis and elevated lactate levels. PMID:25503773

  12. Carcinoid tumor of the duodenum: a rare tumor at an unusual site. Case series from a single institution.

    PubMed

    Waisberg, Jaques; Joppert-Netto, George; Vasconcellos, Cidia; Sartini, Gustavo Henrique; Miranda, Lucimar Sonja Villela de; Franco, Maria Isete Fares

    2013-01-01

    Duodenal carcinoids are extremely rare, and their characteristics and biological behavior have not been fully elucidated. To analyze the clinicopathological characteristics of patients with resected duodenal carcinoids. Twenty patients (12 females and 8 males) were investigated. Their average age was 66.4 ± 5.8 years old (43 to 88 years old). The data corresponding to the clinical picture, diagnosis, treatment, and prognosis of patients with duodenal carcinoid tumors subjected to resection over a period of 18 years (1993-2011) were analyzed. The most common symptoms were dyspepsia (50%) and epigastric pain (45%) followed by weight loss (10%) and vomiting (5%). Carcinoid syndrome was not observed in any patient. The lesion was located on the first part of the duodenum in 15 (75%) patients, the second part in 4 (20%) patients, and the third part in 1 (5%) patient. The diagnosis of a carcinoid tumor was established through an endoscopic excision biopsy in 19 (95%) patients and an histopathological examination of the surgical specimen in 1 (5%) patient. The average tumor size was 1.1 cm ± 0.4 cm (0.3 cm to 6.0 cm). Nineteen (95%) patients were initially treated by endoscopic resection of the duodenal lesion. One patient (5%), whose tumor was on the third part of the duodenum underwent a duodenectomy of the third and fourth duodenal parts and duodenojejunal anastomosis. The duodenal carcinoid resection margin was involved in four (20%) patients. Four (20%) patients were subjected to a partial gastrectomy to fully remove the lesion. The tumor was restricted to the submucosal layer in 16 (80%) cases, and it penetrated into the muscular layer in 4 (20%) cases. All patients exhibited positive chromogranin A, neuron-specific enolase, and/or synaptophysin immunostaining. The average duration of the follow-up period was 39.6 months (3 to 96 months). Twelve (60%) of the 20 cases in this series are alive without any evidence of active disease. Only one (5%) patient died due to

  13. Exchange field on the rare earth Sm3+ in a single crystal perovskite SmMnO3

    NASA Astrophysics Data System (ADS)

    Cheng, J.-G.; Zhou, J.-S.; Goodenough, J. B.; Su, Y. T.; Sui, Y.; Ren, Y.

    2011-09-01

    Single crystal SmMnO3 has been grown by the floating-zone method. We have measured the magnetization and specific heat in magnetic fields oriented along three principal crystal axes of precisely oriented single crystals. Below TN of the Mn3+-ion array, the magnetic moments of the Sm3+ ions are progressively oriented antiparellel to the weak canted-spin ferromagnetic moment of the antiferromagnetic (AF) Mn3+-ion array due to an internal exchange field Hin ∥ c. On cooling through a compensation temperature Tcomp ≈ 9 K, the dominant moment parallel to c changes from the canted-spin Mn3+ ions to the Sm3+ moments. A spin reversal in an Hc ≥ 1 T changes the magnetic field splitting of the Kramers doublet on the Sm3+ ions from Hin - Hc to Hin + Hc, where Hc is a field applied along the c axis. This change, monitored by the Schottky contribution to the specific heat, creates an abrupt change at Tt = Tcomp ± δ. We have found no evidence that the transition at Tt is first-order despite its abrupt nature.

  14. Ionization and dissociation dynamics of molecules in strong laser fields

    NASA Astrophysics Data System (ADS)

    Lai, Wei

    The fast advancement of ultrashort-pulsed high-intensity laser technology allows for generating an electric field equivalent to the Coulomb field inside an atom or a molecule (e.g., EC=5.14x109 V/cm at the 1s orbit radius a0=0.0529 nm of the hydrogen atom, which corresponds to an intensity of 3.54x1016 W/cm2). Atoms and molecules exposed in such a field will easily be ionized, as the external field is strong enough to remove the electrons from the core. This is usually referred to "strong field". Strong fields provide a new tool for studying the interaction of atoms and molecules with light in the nonlinear nonperturbative regime. During the past three decades, significant progress has been made in the strong field science. Today, most phenomena involving atoms in strong fields have been relatively well understood by the single-active-electron (SAE) approximation. However, the interpretation of these responses in molecules has encountered great difficulties. Not like atoms that only undergo excitation and ionization, various dissociation channels accompanying excitation and ionization can occur in molecules during the laser pulse interaction, which imparts further complexity to the study of molecules in strong fields. Previous studies have shown that molecules can behave significantly different from rare gas atoms in phenomena as simple as single and double ionization. Molecular dissociation following ionization also presents challenges in strong fields compared to what we have learned in the weak-field regime. This dissertation focuses on experimental studies on ionization and dissociation of some commonly-seen small molecules in strong laser fields. Previous work of molecules in strong fields will be briefly reviewed, particularly on some open questions about multiple dissociation channels, nonsequential double ionization, enhanced ionization and molecular alignment. The identification of various molecular dissociation channels by recent experimental technical

  15. A Single Point Mutation in the Gene Encoding Gb3/CD77 Synthase Causes a Rare Inherited Polyagglutination Syndrome*

    PubMed Central

    Suchanowska, Anna; Kaczmarek, Radoslaw; Duk, Maria; Lukasiewicz, Jolanta; Smolarek, Dorota; Majorczyk, Edyta; Jaskiewicz, Ewa; Laskowska, Anna; Wasniowska, Kazimiera; Grodecka, Magdalena; Lisowska, Elwira; Czerwinski, Marcin

    2012-01-01

    Rare polyagglutinable NOR erythrocytes contain three unique globoside (Gb4Cer) derivatives, NOR1, NORint, and NOR2, in which Gal(α1–4), GalNAc(β1–3)Gal(α1–4), and Gal(α1–4)GalNAc(β1–3)Gal(α1–4), respectively, are linked to the terminal GalNAc residue of Gb4Cer. NOR1 and NOR2, which both terminate with a Gal(α1–4)GalNAc- sequence, react with anti-NOR antibodies commonly present in human sera. While searching for an enzyme responsible for the biosynthesis of Gal(α1–4)GalNAc, we identified a mutation in the A4GALT gene encoding Gb3/CD77 synthase (α1,4-galactosyltransferase). Fourteen NOR-positive donors were heterozygous for the C>G mutation at position 631 of the open reading frame of the A4GALT gene, whereas 495 NOR-negative donors were homozygous for C at this position. The enzyme encoded by the mutated gene contains glutamic acid instead of glutamine at position 211 (substitution Q211E). To determine whether this mutation could change the enzyme specificity, we transfected a teratocarcinoma cell line (2102Ep) with vectors encoding the consensus Gb3/CD77 synthase and Gb3/CD77 synthase with Glu at position 211. The cellular glycolipids produced by these cells were analyzed by flow cytometry, high-performance thin-layer chromatography, enzymatic degradation, and MALDI-TOF mass spectrometry. Cells transfected with either vector expressed the P1 blood group antigen, which was absent from untransfected cells. Cells transfected with the vector encoding the Gb3/CD77 synthase with Glu at position 211 expressed both P1 and NOR antigens. Collectively, these results suggest that the C631G mutation alters the acceptor specificity of Gb3/CD77 synthase, rendering it able to catalyze synthesis of the Gal(α1–4)Gal and Gal(α1–4)GalNAc moieties. PMID:22965229

  16. Dissecting Biological Dark Matter: Single Cell Genetic Analysis of TM7, a Rare and Uncultivated Microbe from the Human Mouth

    SciTech Connect

    Fenner, Marsha W; Marcy, Yann; Ouverney, Cleber; Bik, Elisabeth M.; Losekann, Tina; Ivanova, Natalia; Martin, H. Garcia; Szeto, E.; Platt, Darren; Hugenholtz, Philip; Relman, David A.; Quake, Stephen R.

    2007-07-01

    We have developed a microfluidic device that allows the isolation and genome amplification of individual microbial cells, thereby enabling organism-level genomic analysis of complex microbial ecosystems without the need for culture. This device was used to perform a directed survey of the human subgingival crevice and to isolate bacteria having rod-like morphology. Several isolated microbes had a 16S rRNA sequence that placed them in candidate phylum TM7, which has no cultivated or sequenced members. Genome amplification from individual TM7 cells allowed us to sequence and assemble >1,000 genes, providing insight into the physiology of members of this phylum. This approach enables single-cell genetic analysis of any uncultivated minority member of a microbial community.

  17. Origin of the anisotropic upper critical fields in single crystals of superconducting rare-earth ternary borides

    SciTech Connect

    Shenoy, G.K.; Malik, S.K.

    1986-05-01

    Upper-critical-field (H/sub c/2(T)) measurements in single-crystal ErRh/sub 4/B/sub 4/ have revealed a large anisotropy. We show that this anisotropy is a consequence of the crystalline electric fields (CEF's) acting on the Er/sup 3 +/ ion which make the exchange field acting on the conduction electrons anisotropic. A full calculation based on Werthamer-Helfand-Hohenberg theory with the inclusion of CEF's completely explains the observed anisotropy in H/sub c/2(T) for ErRh/sub 4/B/sub 4/. In addition, the critical-field measurements in ErRh/sub 4/B/sub 4/ provide a means for the reliable determination of the magnitude and the sign of the exchange constant J/sub s/f.

  18. Rare-earth metal halogenide encapsulation-induced modifications in Raman spectra of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kharlamova, M. V.

    2015-01-01

    In the present work, a detailed Raman spectroscopy investigation on the single-walled carbon nanotubes (SWCNTs) filled with praseodymium chloride, terbium chloride and thulium chloride was performed. The salts were incorporated inside the SWCNTs by a capillary filling method using melts, and the high-resolution transmission electron microscopy data proved the high filling degree of the nanotube channels. A thorough analysis of the radial breathing mode and G-band of the Raman spectra of the pristine and filled SWCNTs showed that the encapsulated salts cause acceptor doping of the host nanotubes, and the doping efficiency depends on the compound. The incorporated thulium chloride has the strongest doping effect on the SWCNTs, whereas praseodymium chloride has the weakest effect. It was found that the encapsulated salts modify more significantly the electronic structure of metallic nanotubes than semiconducting SWCNTs.

  19. Single crystal growth and heat capacity measurements of triangular lattice R2Pt6Ga15 (R =rare earth)

    NASA Astrophysics Data System (ADS)

    Matsumoto, Y.; Ueda, T.; Ohara, S.

    2016-02-01

    We have succeeded in synthesizing the single crystal of R2Pt6Ga15 (R=La-Nd, Sm- Lu) with hexagonal Sc0.67Fe2Si5-type structure using Ga self flux method. The crystal structure was confirmed by the powder X-ray method. The unit-cell volume V of R2Pt6Ga15 follows the lanthanide concentration except R = Ce, Eu and Yb, indicating that the valences of R = La, Pr, Nd, Sm, Gd-Tm, and Lu ion are trivalent, whereas those of R = Ce, Eu and Yb ion are deviate from trivalent. We have measured the specific heat C(T) of R2Pt6Ga15. It is found that the magnetic order takes place in R2Pt6Ga15 (R=Pr, Nd, Sm-Tm). Moreover, the multiple phase transitions were observed in R2Pt6Ga15 (R = Nd, Eu, Gd and Ho).

  20. Rare-Earth Triangular Lattice Spin Liquid: A Single-Crystal Study of YbMgGaO4.

    PubMed

    Li, Yuesheng; Chen, Gang; Tong, Wei; Pi, Li; Liu, Juanjuan; Yang, Zhaorong; Wang, Xiaoqun; Zhang, Qingming

    2015-10-16

    YbMgGaO4, a structurally perfect two-dimensional triangular lattice with an odd number of electrons per unit cell and spin-orbit entangled effective spin-1/2 local moments for the Yb(3+) ions, is likely to experimentally realize the quantum spin liquid ground state. We report the first experimental characterization of single-crystal YbMgGaO4 samples. Because of the spin-orbit entanglement, the interaction between the neighboring Yb(3+) moments depends on the bond orientations and is highly anisotropic in the spin space. We carry out thermodynamic and the electron spin resonance measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively determine the couplings. Our result is a first step towards the theoretical understanding of the possible quantum spin liquid ground state in this system and sheds new light on the search for quantum spin liquids in strong spin-orbit coupled insulators.

  1. Ionizing radiation injuries and illnesses.

    PubMed

    Christensen, Doran M; Iddins, Carol J; Sugarman, Stephen L

    2014-02-01

    Although the spectrum of information related to diagnosis and management of radiation injuries and illnesses is vast and as radiation contamination incidents are rare, most emergency practitioners have had little to no practical experience with such cases. Exposures to ionizing radiation and internal contamination with radioactive materials can cause significant tissue damage and conditions. Emergency practitioners unaware of ionizing radiation as the cause of a condition may miss the diagnosis of radiation-induced injury or illness. This article reviews the pertinent terms, physics, radiobiology, and medical management of radiation injuries and illnesses that may confront the emergency practitioner. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Online profiling of triacylglycerols in plant oils by two-dimensional liquid chromatography using a single column coupled with atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Wei, Fang; Ji, Shu-Xian; Hu, Na; Lv, Xin; Dong, Xu-Yan; Feng, Yu-Qi; Chen, Hong

    2013-10-18

    The complexity of natural triacylglycerols (TAGs) in various edible oils is high because of the hundreds of TAG compositions, which makes the profiling of TAGs quite difficult. In this investigation, a rapid and high-throughput method for online profiling of TAGs in plant oils by two-dimensional (2D) liquid chromatography using a single column coupled with atmospheric pressure chemical ionization (APCI) mass spectrometry was reported. A novel mixed-mode 2D chromatographic column packed with silver-ion-modified octyl and sulfonic co-bonded silica was employed in this online 2D separation system. This novel 2D column combined the features of C8 column and silver-ion. In comparison with the traditional C18 column and silver-ion column, which are the two main columns used for the separation of complex TAGs in natural oil samples, this novel 2D column, could provide hydrophobic interactions as well as π-complexation interactions. It exhibited much higher selectivity for the separation of TAGs, and the separation was rapid. This online 2D separation system was successful in the separation of a large number of TAG solutes, and the TAG structures were evaluated by analyzing their APCI mass spectra information. This system was applied for the profiling of TAGs in peanut oils, corn oils, and soybean oils. 30 TAGs in peanut oils, 18 TAGs in corn oils, and 21 TAGs in soybean oils were determined and quantified. The highest relative content of TAGs was LLL, which was found in corn oil with the relative content up to 45.43 (%, w/w), and the lowest relative content of TAGs was LLS and OSS, which was found in soybean oil and corn oil respectively, with the relative content only 0.01 (%, w/w). In addition, the TAG data were analyzed by principal component analysis (PCA). Results of PCA enabled a clear identification of different plant oils. This method provided an efficient and convenient chromatographic technology for the fast characterization and quantification of complex TAGs

  3. Transport properties and anisotropy in rare-earth doped CaFe2As2 single crystals with Tc above 40 K

    NASA Astrophysics Data System (ADS)

    Qi, Yanpeng; Gao, Zhaoshun; Wang, Lei; Wang, Dongliang; Zhang, Xianping; Yao, Chao; Wang, Chunlei; Wang, Chengduo; Ma, Yanwei

    2012-04-01

    In this paper we report the superconductivity above 40 K in the electron doping single crystals Ca1-xRxFe2As2 (R = La, Ce, Pr). The x-ray diffraction patterns indicate high crystalline quality and c-axis orientation. The resistivity anomaly in the parent compound CaFe2As2 is completely suppressed by partial replacement of Ca with rare-earth elements and the superconducting transition reaches as high as 46 K, which is higher than the value in electron doping FeAs-122 compounds formed by substituting Fe ions with transition metal, and even surpasses the highest value observed in hole doping systems with a transition temperature up to 38 K. The upper critical fields have been determined with the magnetic field along the ab-plane and c-axis, yielding an anisotropy of 2-3. Hall effect measurements indicate that the conduction in this material is dominated by electron-like charge carriers. Our results confirm the feasibility of inducing superconductivity in Ca122 compounds via electron doping using aliovalent rare-earth substitution into the alkaline earth site, which should add more ingredients to the underlying physics of the iron-based superconductors.

  4. Type I error rates of rare single nucleotide variants are inflated in tests of association with non-normally distributed traits using simple linear regression methods.

    PubMed

    Schwantes-An, Tae-Hwi; Sung, Heejong; Sabourin, Jeremy A; Justice, Cristina M; Sorant, Alexa J M; Wilson, Alexander F

    2016-01-01

    In this study, the effects of (a) the minor allele frequency of the single nucleotide variant (SNV), (b) the degree of departure from normality of the trait, and (c) the position of the SNVs on type I error rates were investigated in the Genetic Analysis Workshop (GAW) 19 whole exome sequence data. To test the distribution of the type I error rate, 5 simulated traits were considered: standard normal and gamma distributed traits; 2 transformed versions of the gamma trait (log10 and rank-based inverse normal transformations); and trait Q1 provided by GAW 19. Each trait was tested with 313,340 SNVs. Tests of association were performed with simple linear regression and average type I error rates were determined for minor allele frequency classes. Rare SNVs (minor allele frequency < 0.05) showed inflated type I error rates for non-normally distributed traits that increased as the minor allele frequency decreased. The inflation of average type I error rates increased as the significance threshold decreased. Normally distributed traits did not show inflated type I error rates with respect to the minor allele frequency for rare SNVs. There was no consistent effect of transformation on the uniformity of the distribution of the location of SNVs with a type I error.

  5. Phase transitions and rare-earth magnetism in hexagonal and orthorhombic DyMnO(3) single crystals.

    PubMed

    Harikrishnan, S; Rößler, S; Naveen Kumar, C M; Bhat, H L; Rößler, U K; Wirth, S; Steglich, F; Elizabeth, Suja

    2009-03-04

    The floating-zone method with different growth ambiences has been used to selectively obtain hexagonal or orthorhombic DyMnO(3) single crystals. The crystals were characterized by x-ray powder diffraction of ground specimens and a structure refinement as well as electron diffraction. We report magnetic susceptibility, magnetization and specific heat studies of this multiferroic compound in both the hexagonal and the orthorhombic structure. The hexagonal DyMnO(3) shows magnetic ordering of Mn(3+) (S = 2) spins on a triangular Mn lattice at T(N)(Mn) = 57 K characterized by a cusp in the specific heat. This transition is not apparent in the magnetic susceptibility due to the frustration on the Mn triangular lattice and the dominating paramagnetic susceptibility of the Dy(3+) (S = 9/2) spins. At T(N)(Dy) = 3 K, a partial antiferromagnetic order of Dy moments has been observed. In comparison, the magnetic data for orthorhombic DyMnO(3) display three transitions. The data broadly agree with results from earlier neutron diffraction experiments, which allows for the following assignment: a transition from an incommensurate antiferromagnetic ordering of Mn(3+) spins at T(N)(Mn) = 39 K, a lock-in transition at T(lock-in) = 16 K and a second antiferromagnetic transition at T(N)(Dy) = 5 K due to the ordering of Dy moments. Both the hexagonal and the orthorhombic crystals show magnetic anisotropy and complex magnetic properties due to 4f-4f and 4f-3d couplings.

  6. Rare earth elements in synthetic zircon. 2. a single-crystal x-ray study of xenotime substitution.

    SciTech Connect

    Finch, R. J.; Hanchar, J. M.; Hoskin, P. W. O.; Burns, P. C.; Chemical Engineering; Australian National Univ.; Univ. of Notre Dame

    2001-05-01

    Zircon crystals synthesized in a Li-Mo oxide melt and doped with trivalent lanthanides and Y (REE), both with and without P, were examined by single-crystal X-ray diffraction (XRD). REE are incorporated into the Zr site in the zircon structure, and some Zr appears to be displaced to the Si site. Crystals doped with middle REE (MREE, Sm to Dy) and Y, plus P follow the xenotime substitution (REE{sup 3+} + P{sup 5+} = Zr{sup 4+} + Si{sup 4+}) rather closely, whereas crystals doped with heavy REE (HREE, Er to Lu) deviate from the xenotime substitution, having REE:P atomic ratios significantly greater than one. Xenotime substitution requires that P{sup 5+} replace Si{sup 4+}, but this substitution becomes limited by strain at the Si site in HREE-doped crystals. As Si sites become saturated with P{sup 5+}, additional charge balance in synthetic zircon crystals may be provided by Mo{sup 6+} and Li{sup +} from the flux entering interstitial sites, accounting for an additional 0.3 to 0.6 at% HREE beyond that balanced by P{sup 5+} ions. Heavy REE are more compatible in the zircon structure than are LREE and MREE, and HREE substitution is ultimately limited by the inability of the zircon structure to further accommodate charge-compensating elements. Thus the limit on REE concentrations in zircon is not a simple function of REE{sup 3+} ionic radii but depends in a complex way on structural strain at Zr and Si sites, which act together to limit REE and P incorporation. The mechanisms that limit the coupled xenotime substitution change from LREE to HREE. This change means that REE fractionation in zircon may vary according to the availability of charge-compensating elements. REE partition coefficients between zircon and melt must also depend in part on the availability of charge-compensating elements and their compatibility in the zircon structure.

  7. A 0.18 micrometer CMOS Thermopile Readout ASIC Immune to 50 MRAD Total Ionizing Dose (SI) and Single Event Latchup to 174MeV-cm(exp 2)/mg

    NASA Technical Reports Server (NTRS)

    Quilligan, Gerard T.; Aslam, Shahid; Lakew, Brook; DuMonthier, Jeffery J.; Katz, Richard B.; Kleyner, Igor

    2014-01-01

    Radiation hardened by design (RHBD) techniques allow commercial CMOS circuits to operate in high total ionizing dose and particle fluence environments. Our radiation hard multi-channel digitizer (MCD) ASIC (Figure 1) is a versatile analog system on a chip (SoC) fabricated in 180nm CMOS. It provides 18 chopper stabilized amplifier channels, a 16- bit sigma-delta analog-digital converter (SDADC) and an on-chip controller. The MCD was evaluated at Goddard Space Flight Center and Texas A&M University's radiation effects facilities and found to be immune to single event latchup (SEL) and total ionizing dose (TID) at 174 MeV-cm(exp 2)/mg and 50 Mrad (Si) respectively.

  8. Absolute cross sections for excitation of the 2s 2S-->2p 2P transition in B2+ and for electron-impact single ionization of B2+

    NASA Astrophysics Data System (ADS)

    Woitke, O.; Djurić, N.; Dunn, G. H.; Bannister, M. E.; Smith, A. C.; Wallbank, B.; Badnell, N. R.; Pindzola, M. S.

    1998-12-01

    Absolute cross sections for electron-impact excitation of the 2s 2S-->2p 2P transition of B2+ measured between 5.4 and 7.0 eV are presented. The results are in good agreement with the R-matrix-with-pseudostates (RMPS) calculation of Marchalant et al. [J. Phys. B 30, L435 (1997)]. Also presented are cross sections for electron-impact single ionization of B2+, including measurements between 25 and 200 eV and calculations using the RMPS and time-dependent close-coupling methods. The measured ionization cross sections are about 14% higher near the peak than previous measurements by Crandall et al. [Phys. Rev. A 34, 1757 (1986)], but agree well with experimental data of Hofmann et al. [Z. Phys. D 16, 113 (1990)] and with the present and other theoretical predictions.

  9. FATE OF TRACE METALS IN A ROTARY KILN INCINERATOR WITH A SINGLE-STAGE IONIZING WET SCRUBBER. VOLUME 1. TECHNICAL RESULTS.

    EPA Science Inventory

    A series of pilot-scale incineration tests was performed at EPA's Incineration Research Facility (IRF) in Jefferson, Arkansas, to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with an ionizing wet scrubber (IWS) for particulate and acid gas control. ...

  10. THE FATE OF TRACE METALS IN A ROTARY KILN INCINERATOR WITH A SINGLE-STAGE IONIZING WET SCRUBBER - VOLUME II: APPENDICES

    EPA Science Inventory

    A series of pilot-scale incineration tests was performed at EPA's Incineration Research Facility (IRF) in Jefferson, Arkansas, to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with an ionizing wet scrubber (IWS) for particulate and acid gas control. ...

  11. THE FATE OF TRACE METALS IN A ROTARY KILN INCINERATOR WITH A SINGLE-STAGE IONIZING WET SCRUBBER - VOLUME II: APPENDICES

    EPA Science Inventory

    A series of pilot-scale incineration tests was performed at EPA's Incineration Research Facility (IRF) in Jefferson, Arkansas, to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with an ionizing wet scrubber (IWS) for particulate and acid gas control. ...

  12. FATE OF TRACE METALS IN A ROTARY KILN INCINERATOR WITH A SINGLE-STAGE IONIZING WET SCRUBBER. VOLUME 1. TECHNICAL RESULTS.

    EPA Science Inventory

    A series of pilot-scale incineration tests was performed at EPA's Incineration Research Facility (IRF) in Jefferson, Arkansas, to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with an ionizing wet scrubber (IWS) for particulate and acid gas control. ...

  13. Polarization phenomena in multiphoton ionization of atoms.

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.

    1973-01-01

    The theory of multiphoton ionization for an atomic system of arbitrary complexity is developed using a density matrix formalism. An expression is obtained which determines the differential N-photon ionization cross section as a function of the polarization states of the target atom and the incident radiation. The parameters which characterize the photo-electron angular distribution are related to the general reduced matrix elements for the N-photon transition. Two-photon ionization of unpolarized atoms is treated as an illustration of the use of the theory. The dependence of the multiphoton ionization cross section on the polarization state of the incident radiation, which has been observed in two- and three-photon ionization of Cs, is accounted for by the theory. Finally, the photoelectron spin polarization produced by the multiphoton ionization of unpolarized atoms, like the analogous polarization resulting from single-photon ionization, is found to depend on the circular polarization of the incident radiation.

  14. Polarization phenomena in multiphoton ionization of atoms

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.

    1973-01-01

    The theory of multiphoton ionization for an atomic system of arbitrary complexity is developed using a density matrix formalism. An expression is obtained which determines the differential N-photon ionization cross section as a function of the polarization states of the target atom and the incident radiation. The parameters which characterize the photoelectron angular distribution are related to the general reduced matrix elements for the N-photon transition. Two-photon ionization of unpolarized atoms is treated as an illustration of the use of the theory. The dependence of the multiphoton ionization cross section on the polarization state of the incident radiation, which has been observed in two- and three-photon ionization of Cs, is accounted for by the theory. Finally, the photoelectron spin polarization produced by the multiphoton ionization of unpolarized atoms, like the analogous polarization resulting from single-photon ionization, is found to depend on the circular polarization of the incident radiation.

  15. Rare-Earth Free Self-Activated Graphene Quantum Dots and Copper-Cysteamine Phosphors for Enhanced White Light-Emitting-Diodes under Single Excitation.

    PubMed

    Dai, Wubin; Lei, Yifeng; Xu, Man; Zhao, Pei; Zhang, Zhanhui; Zhou, Jia

    2017-10-09

    Rare-earth (RE) based phosphors are attractive due to their potential applications. However, owing to the resource issue, these kinds of phosphors are expensive and costly. On the contrary, as for phosphor-convert white light-emitting-diodes (pc-WLEDs), a solution-processed tunable warm white emission LED composite is fabricated in this study under single excitation, with both RE free phosphors graphene quantum dots (GQDs) and Copper-Cysteamine (Cu-Cy). By using microwave-assisted wet-chemical method and with graphite as raw material, cold white fluorescence of the GQDs is obtained. Cu-Cy which shows intense photoluminescence in the red region has the structure where both the thio and amine groups connected with copper and forming cysteamine. Warm white light is achieved by mixing the two self-activated RE free phosphors at the weight ratio of 1: 1.7 under the excitation at 365 nm. The designed optimal LED device has the properties of CIE (x, y) = (0.341, 0.327), T = 4436 K, R = 87.9 EQE = 0.31%. The experimental results demonstrate that RE free phosphor(s) excited under a single chip can open up a new avenue to develop much lower device for warm WLEDs.

  16. Double-K-vacancy states in electron-impact single ionization of metastable two-electron N5+(1s2s 3S1) ions

    NASA Astrophysics Data System (ADS)

    Müller, A.; Borovik, A.; Huber, K.; Schippers, S.; Fursa, D. V.; Bray, I.

    2014-07-01

    The role of hollow states intermediately produced in electron-impact ionization of metastable He-like N5+(1s2s3S1) ions has been investigated in detail. A crossed-beam setup and suitable experimental techniques were employed for the measurement of accurate absolute cross sections and precise energy-scan data. Fine structures arising from K-shell excitations and associated resonances have been observed for this two-electron ion with less than ±0.5 eV uncertainty on the energy scale. Fine details, such as interference of the reaction pathways of direct ionization and excitation with capture of the incident electron followed by double-Auger decay, could be revealed. Ab initio calculations based on the convergent close coupling (CCC) approach are in good agreement with the experiment.

  17. In situ formation and characterisation of singly ionised atomic europium in rare gas matrices—Luminescence spectroscopy and MP2 calculations

    SciTech Connect

    Byrne, Owen; Davis, Barry; McCaffrey, John G.

    2015-02-07

    Irradiation of atomic europium isolated in the solid rare gases, with low intensity laser excitation of the y{sup 8}P←a{sup 8}S resonance transition at ca. 465 nm, is found to produce singly charged europium cations (Eu{sup +}) in large amounts in xenon and in smaller amounts in argon. Confirmation of the formation of matrix-isolated Eu{sup +} is obtained from characteristic absorption bands in the UV and in the visible spectral regions. The luminescence produced with excitation of the cation bands is presented in greatest detail for Eu/Xe and assigned. Excitation of the 4f{sup 7}({sup 8}S{sub 7/2})6p{sub 3/2} absorption bands of Eu{sup +} between 390 and 410 nm produces emission which is quite distinct from that resulting from excitation of the 4f{sup 7}({sup 8}S{sub 7/2})6p{sub 1/2} absorption (430 to 450 nm) features. The latter consists of narrow, resolved emission bands with Stokes shifts ten times smaller than the former. The observed spectral differences are discussed in relation to the different spatial symmetries of the p{sub 3/2} and p{sub 1/2} orbitals in these j-j coupled (7/2, 3/2){sub J} and the (7/2, 1/2){sub J} levels. Møller-Plesset calculations are conducted to obtain the molecular parameters of the neutral Eu-RG and cationic Eu{sup +}-RG diatomics (RG = Ar, Kr, Xe). From the short bond lengths and the strong binding energies obtained for the Eu{sup +}-RG species, these values suggest the isolation of the ion in small, possibly interstitial sites especially in xenon. In contrast, but consistent with previous work [O. Byrne and J. G. McCaffrey, J. Chem. Phys. 134, 124501 (2011)], the interaction potentials calculated herein for the Eu-RG diatomics suggest that the neutral Eu atom occupies tetra-vacancy (tv) and hexa-vacancy (hv) sites in the solid rare gas hosts. Possible reasons for the facile production of Eu{sup +} in the solid rare gases are discussed. The mechanism proposed is that atomic europium is also acting as an electron acceptor

  18. Application of single-particle laser desorption/ionization time-of-flight mass spectrometry for detection of polycyclic aromatic hydrocarbons from soot particles originating from an industrial combustion process.

    PubMed

    Zimmermann, R; Ferge, T; Gälli, M; Karlsson, R

    2003-01-01

    Combustion-related soot particles were sampled in situ from the stoker system of a 0.5 MW incineration pilot plant (feeding material was wood) at two different heights over the feed bed in the third air supply zone. The collected particles were re-aerosolized by a powder-dispersing unit and analyzed by a single-particle laser desorption/ionization (LDI) time-of-flight mass spectrometer (aerosol-time-of-flight mass spectrometry, ATOFMS). The ATOFMS instrument characterizes particles according to their aerodynamic size (laser velocimetry) and chemical composition (LDI mass spectrometry). Chemical species from the particles are laser desorbed/ionized by 266 nm Nd:YAG laser pulses. ATOFMS results on individual 'real world' particles in general give information on the bulk inorganic composition. Organic compounds, which are of much lower concentrations, commonly are not detectable. However, recent off-line laser microprobe mass spectrometric (LMMS) experiments on bulk soot aerosol samples have emphasized that organic compounds can be desorbed and ionized without fragmentation in LDI experiments from black carbonaceous matrices. This paper reports the successful transfer of the off-line results to on-line analysis of airborne soot particles by ATOFMS. The detection of polycyclic aromatic hydrocarbons from soot particles is addressed in detail. The results are interpreted in the context of the recent LMMS results. Furthermore, their relevance with respect to possible applications in on-line monitoring of combustion processes is discussed. Copyright 2003 John Wiley & Sons, Ltd.

  19. Following electron impact excitations of Rn, Ra, Th, U and Pu single atom L sub-shells ionization cross section calculations by using Lotz’s equation

    SciTech Connect

    Ayinol, M.; Aydeniz, D.

    2016-03-25

    L shell ionization cross section and L{sub i} subshells ionization cross sections of Rn, Ra, Th, U, Pu atoms calculated. For each of atoms, ten different electron impact energy values (E{sub o}) are used. Calculations carried out by using Lotz equation in Matlab. First, calculations done for non-relativistic case by using non-relativistic Lotz equation then repeated with relativistic Lotz equation. σ{sub L} total and σ{sub Li}(i = 1,2,3) subshells ionisation cross section values obtained for E{sub o} values in the energy range of E{sub Li} ionization threshold energy, σ{sub L} total and σ{sub Li} (i = 1,2,3) are increasing rapidly with E{sub o}. For a fixed E{sub o} = 3.E{sub Li}), while Z increases from 86

  20. Following electron impact excitations of Rn, Ra, Th, U and Pu single atom L sub-shells ionization cross section calculations by using Lotz's equation

    NASA Astrophysics Data System (ADS)

    Ayinol, M.; Aydeniz, D.

    2016-03-01

    L shell ionization cross section and Li subshells ionization cross sections of Rn, Ra, Th, U, Pu atoms calculated. For each of atoms, ten different electron impact energy values (Eo) are used. Calculations carried out by using Lotz equation in Matlab. First, calculations done for non-relativistic case by using non-relativistic Lotz equation then repeated with relativistic Lotz equation. σL total and σLi(i = 1,2,3) subshells ionisation cross section values obtained for Eo values in the energy range of ELi ionization threshold energy, σL total and σLi (i = 1,2,3) are increasing rapidly with Eo. For a fixed Eo = 3.ELi), while Z increases from 86

  1. Astatine and Yttrium Resonant Ionization Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Teigelhoefer, Andrea

    Providing intense, contamination-free beams of rare isotopes to experiments is a challenging task. At isotope separator on-line facilities such as ISAC at TRIUMF, the choice of production target and ion source are key to the successful beam delivery. Due to their element-selectivity, high efficiency and versatility, resonant ionization laser ion sources (RILIS) gain increasingly in importance. The spectroscopic data available are typically incomplete in the region of excited- and autoionizing atomic states. In order to find the most efficient ionization scheme for a particular element, further spectroscopy is often required. The development of efficient laser resonant ionization schemes for yttrium and astatine is presented in this thesis. For yttrium, two ionization schemes with comparable relative intensities were found. Since for astatine, only two transitions were known, the focus was to provide data on atomic energy levels using resonance ionization spectroscopy. Altogether 41 previously unknown astatine energy levels were found.

  2. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer.

    PubMed Central

    Frohman, M A; Dush, M K; Martin, G R

    1988-01-01

    We have devised a simple and efficient cDNA cloning strategy that overcomes many of the difficulties encountered in obtaining full-length cDNA clones of low-abundance mRNAs. In essence, cDNAs are generated by using the DNA polymerase chain reaction technique to amplify copies of the region between a single point in the transcript and the 3' or 5' end. The minimum information required for this amplification is a single short stretch of sequence within the mRNA to be cloned. Since the cDNAs can be produced in one day, examined by Southern blotting the next, and readily cloned, large numbers of full-length cDNA clones of rare transcripts can be rapidly produced. Moreover, separation of amplified cDNAs by gel electrophoresis allows precise selection by size prior to cloning and thus facilitates the isolation of cDNAs representing variant mRNAs, such as those produced by alternative splicing or by the use of alternative promoters. The efficacy of this method was demonstrated by isolating cDNA clones of mRNA from int-2, a mouse gene that expresses four different transcripts at low abundance, the longest of which is approximately 2.9 kilobases. After less than 0.05% of the cDNAs produced had been screened, 29 independent int-2 clones were isolated. Sequence analysis demonstrated that the 3' and 5' ends of all four int-2 mRNAs were accurately represented by these clones. Images PMID:2461560

  3. Practical limitations of single particle ICP-MS in the determination of nanoparticle size distributions and dissolution: case of rare earth oxides.

    PubMed

    Fréchette-Viens, Laurie; Hadioui, Madjid; Wilkinson, Kevin J

    2017-01-15

    The applicability of single particle ICP-MS (SP-ICP-MS) for the analysis of nanoparticle size distributions and the determination of particle numbers was evaluated using the rare earth oxide, La2O3, as a model particle. The composition of the storage containers, as well as the ICP-MS sample introduction system were found to significantly impact SP-ICP-MS analysis. While La2O3 nanoparticles (La2O3 NP) did not appear to interact strongly with sample containers, adsorptive losses of La(3+)(over 24h) were substantial (>72%) for fluorinated ethylene propylene bottles as opposed to polypropylene (<10%). Furthermore, each part of the sample introduction system (nebulizers made of perfluoroalkoxy alkane (PFA) or glass, PFA capillary tubing, and polyvinyl chloride (PVC) peristaltic pump tubing) contributed to La(3+) adsorptive losses. On the other hand, the presence of natural organic matter in the nanoparticle suspensions led to a decreased adsorptive loss in both the sample containers and the introduction system, suggesting that SP-ICP-MS may nonetheless be appropriate for NP analysis in environmental matrices. Coupling of an ion-exchange resin to the SP-ICP-MS led to more accurate determinations of the La2O3 NP size distributions. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Mitochondrial potential (ΔΨm) changes in single rat hepatocytes: the effect of orthovanadate nanoparticles doped with rare-earth elements.

    PubMed

    Kavok, Nataliya S; Averchenko, Katherine A; Klochkov, Vladimir K; Yefimova, Svetlana L; Malyukin, Yuri V

    2014-12-01

    Rare-earth-based nanoparticles (NPs) are widely used as fluorescent probes for imaging in vitro and in vivo. One of the challenges that restrain NPs applications in biomedical research is their effect on subcellular structures. In this paper, the ability of lanthanide NPs to affect the cellular oxidative balance and alter the mitochondrial function was analyzed. Since size and shape mutually affect the cellular internalization and intracellular distribution of NPs, the investigations were performed with NPs of spherical (GdYVO4:Eu(3+), spindle-(GdVO4: Eu(3+) and rod-like (LaVO4: Eu(3+) shapes. Quantitative microfluorimetry with JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide) as a mitochondrial probe was used for monitoring of the mitochondrial transmembrane potential (ΔΨ m) in single living cells. Changes in the ratio of the JC-1 probe fluorescence were used to analyze the NPs effect on ΔΨ(m). The fastest suppressive effect (within 1 hour) was found for spherical NPs. Gradual lowering of ΔΨ(m) was observed at the exposure of cells within 24 hours for all types of NPs. Exogenous thiols were required for ΔΨ(m) protection. The protective role of exogenous glutathione (GSH) proves that the increase of reactive oxygen species (ROS) formation with depletion of GSH can mediate NPs toxicity. The dynamics of the shape-dependent effect can be explained by the features of NPs transportation into cells.

  5. Single photon simultaneous K-shell ionization and K-shell excitation. I. Theoretical model applied to the interpretation of experimental results on H{sub 2}O

    SciTech Connect

    Carniato, S. Selles, P.; Andric, L.; Palaudoux, J.; Penent, F.; Lablanquie, P.; Žitnik, M.; Bučar, K.; Nakano, M.; Hikosaka, Y.; Ito, K.

    2015-01-07

    We present in detail a theoretical model that provides absolute cross sections for simultaneous core-ionization core-excitation (K{sup −2}V ) and compare its predictions with experimental results obtained on the water molecule after photoionization by synchrotron radiation. Two resonances of different symmetries are assigned in the main K{sup −2}V peak and comparable contributions from monopolar (direct shake-up) and dipolar (conjugate shake-up) core-valence excitations are identified. The main peak is observed with a much greater width than the total experimental resolution. This broadening is the signature of nuclear dynamics.

  6. Ionization Potentials for Isoelectronic Series.

    ERIC Educational Resources Information Center

    Agmon, Noam

    1988-01-01

    Presents a quantitative treatment of ionization potentials of isoelectronic atoms. By looking at the single-electron view of calculating the total energy of an atom, trends in the screening and effective quantum number parameters are examined. Approaches the question of determining electron affinities. (CW)

  7. Tunneling ionization time-resolved by backpropagation

    NASA Astrophysics Data System (ADS)

    Ni, Hongcheng; Saalmann, Ulf; Rost, Jan M.; Max-Planck-Institut für Physik komplexer Systeme Team

    2016-05-01

    We determine the ionization time in tunneling ionization by an elliptically polarized light pulse relative to its maximum. This is achieved by a full quantum propagation of the electron wave function forward in time, followed by a classical backpropagation to identify tunneling parameters, in particular the fraction of electrons that has tunneled out. We find, that the ionization time is close to zero for single active electrons in helium and in hydrogen if the fraction of tunneled electrons is large. We expect our analysis to be essential to quantify ionization times for correlated electron motion. This work was supported by Alexander von Humboldt Foundation.

  8. Vibrational spectroscopy of the mass-selected tetrahydrofurfuryl alcohol monomers and its dimers in gas phase using IR depletion and VUV single photon ionization.

    PubMed

    Wang, Pengchao; Hu, Yongjun; Zhan, Huaqi; Chen, Jiaxin; Jin, Shan; Song, Wentao; Li, Yujian

    2017-10-05

    Tetrahydrofurfuryl alcohol (THFA, C5H10O2) is a close chemical analog of the sugar rings present in the phosphate-deoxyribose backbone structure of the nucleic acids. In present report, the infrared (IR) spectra of the size-selected THFA monomer and its dimer have been investigated in a pulsed supersonic jet using infrared-vacuum ultraviolet (VUV) ionization. Herein, the laser light at 118nm wavelength served as the source of "soft" ionization in a time-of-flight mass spectrometer. The IR features for the monomers located at 3622cm(-1) can be assigned to the intramolecular hydrogen bonding stretch vibrations mainly referring to A and C conformers. Compared with the monomer, however, characteristic peaks for the dimer centered at 3415 and 3453cm(-1), red shifted 207 and 169cm(-1), respectively, were associated with the intermolecular hydrogen bonding stretch vibrations. Combined with the quantum-chemical calculations, the dimer in the gas phase preferred cyclic AC conformer stabled by forming two strong intermolecular hydrogen bonds, which shown the high hydrogen bond selectivity in the cluster. The conclusions drawn from the role played in the conformational flexibility by the hydroxyl and ether groups may be extended to other biomolecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Tunable single-photon ionization TOF mass spectrometry using laser-produced plasma as the table-top VUV light source.

    PubMed

    Di Palma, Tonia M; Prati, Maria V; Borghese, Antonio

    2009-12-01

    Here we report on a laser plasma-based tunable VUV photoionization time-of-flight (TOF) mass spectrometer conceived mainly to study complex gaseous mixtures. Ionizing photons at tunable vacuum UV (VUV) wavelengths are generated by a gas-target laser-produced plasma, spectrally dispersed in the range 100-160 nm and efficiently focused onto a sample molecular beam. As a test case, we studied the exhaust gas of a four-stroke moped, a typical example of a complex gaseous mixture. Due to the VUV "soft" ionization, the mass spectra are less congested and more easily interpretable. Substituted benzene derivatives are found to give the most intense signals. Several aliphatic hydrocarbons are also detected. The use of tunable VUV radiation allowed the investigation of the contribution of isomers in the mass spectrum from the onset and shape of the photoionization efficiency spectra. Semiquantitative analysis was performed using known literature data detailing the photoionization cross sections. Our findings suggest that using combined data on the mass/photoionization efficiency spectra may be very helpful for a comprehensive analysis of complex gaseous mixtures.

  10. Vibrational spectroscopy of the mass-selected tetrahydrofurfuryl alcohol monomers and its dimers in gas phase using IR depletion and VUV single photon ionization

    NASA Astrophysics Data System (ADS)

    Wang, Pengchao; Hu, Yongjun; Zhan, Huaqi; Chen, Jiaxin; Jin, Shan; Song, Wentao; Li, Yujian

    2017-10-01

    Tetrahydrofurfuryl alcohol (THFA, C5H10O2) is a close chemical analog of the sugar rings present in the phosphate-deoxyribose backbone structure of the nucleic acids. In present report, the infrared (IR) spectra of the size-selected THFA monomer and its dimer have been investigated in a pulsed supersonic jet using infrared-vacuum ultraviolet (VUV) ionization. Herein, the laser light at 118 nm wavelength served as the source of ;soft; ionization in a time-of-flight mass spectrometer. The IR features for the monomers located at 3622 cm- 1 can be assigned to the intramolecular hydrogen bonding stretch vibrations mainly referring to A and C conformers. Compared with the monomer, however, characteristic peaks for the dimer centered at 3415 and 3453 cm- 1, red shifted 207 and 169 cm- 1, respectively, were associated with the intermolecular hydrogen bonding stretch vibrations. Combined with the quantum-chemical calculations, the dimer in the gas phase preferred cyclic AC conformer stabled by forming two strong intermolecular hydrogen bonds, which shown the high hydrogen bond selectivity in the cluster. The conclusions drawn from the role played in the conformational flexibility by the hydroxyl and ether groups may be extended to other biomolecules.

  11. Successful aortic root replacement and shunt closure in a case with rare coexistence of congenital cardiac malformations: bicuspid aortic valve with annuloaortic ectasia, single coronary artery, and patent foramen ovale.

    PubMed

    Egashira, Toru; Shimizu, Hideyuki; Yamada, Yoshitake; Fukuda, Keiichi

    2014-10-01

    This is the first report of rare simultaneous complication of three cardiac malformations: bicuspid aortic valve with annuloaortic ectasia, single coronary artery, and patent foramen ovale. We successfully operated to replace the aortic valve and ascending aorta, and to close the patent foramen ovale.

  12. Synthesis, structure, and single-molecule magnetic properties of rare-earth sandwich complexes with mixed phthalocyanine and Schiff base ligands.

    PubMed

    Wang, Hailong; Cao, Wei; Liu, Tao; Duan, Chunying; Jiang, Jianzhuang

    2013-02-11

    Double- and quadruple-decker complexes of rare-earth metals with mixed phthalocyanine and Schiff base ligands have been synthesized and structurally and magnetically characterized. These complexes (see picture: Dy pink, Ca green, N blue, C black) extend the scope of sandwich-type tetrapyrrole-based rare-earth molecular materials.

  13. A rare 8q24 single nucleotide polymorphism (SNP) predisposes North American men to prostate cancer and possibly more aggressive disease.

    PubMed

    Grin, Boris; Loeb, Stacy; Roehl, Kim; Cooper, Phillip R; Catalona, William J; Helfand, Brian T

    2015-01-01

    To assess the frequency of a novel prostate cancer-associated single nucleotide polymorphism (SNP), rs188140481, in a North American population and to evaluate the clinical significance of this variant including annotated prostatectomy pathology. We examined the frequency of the minor allele at rs188140481 in 4299 North American men including 1979 men with prostate cancer and 2320 healthy volunteers. We compared the clinicopathological features of prostate cancer between carriers and non-carriers of the SNP. The rs188140481[A] SNP was present in 1.6% of the cohort; it was significantly more likely to be carried by men with prostate cancer than healthy controls (odds ratio 3.14; 95% confidence interval [CI] 1.85-5.35). After adjusting for age and PSA levels, carriers were found to be 6.73-fold (95% CI 1.69-26.76) more likely to develop prostate cancer than non-carriers. Age at diagnosis, frequency of a positive family history of prostate cancer, and biochemical recurrence rates were similar between SNP carriers and non-carriers. Patients with the SNP had a proportionately higher frequency of stage ≥T2c disease (29.5% vs 20.1%; P = 0.13), Gleason ≥8 tumours (13.3% vs 6.5%; P = 0.10), and extracapsular extension (28.9% vs 18.8%; P = 0.12) compared with non-carriers. rs188140481[A] is a rare SNP that confers greater risk of prostate cancer compared with SNPs identified by genome-wide association studies. Because of its low frequency, larger studies are needed to validate the prognostic significance of this locus, and associations with adverse pathology. © 2014 The Authors. BJU International © 2014 BJU International.

  14. Rare earths

    SciTech Connect

    Vijayan, S.; Melnyk, A.J.; Singh, R.D.; Nuttall, K.

    1989-01-01

    For conventional applications, there is limited demand for rare earth elements as well as yttrium and scandium. But the emergence of new high technology applications such as supermagnets, lasers, and superconductors should result in significant demand for some of these elements. This article examines the anticipated applications and demands for rare earth elements over the next decade. It also looks at the implications on the use of available resources. In the context of a growing demand, process methods are reviewed for the recovery of rare earth elements from conventional and unconventional resources. And the article also discusses the challenges facing the mining industry in meeting this opportunity.

  15. Quantum-mechanical predictions of DNA and RNA ionization by energetic proton beams.

    PubMed

    Galassi, M E; Champion, C; Weck, P F; Rivarola, R D; Fojón, O; Hanssen, J

    2012-04-07

    Among the numerous constituents of eukaryotic cells, the DNA macromolecule is considered as the most important critical target for radiation-induced damages. However, up to now ion-induced collisions on DNA components remain scarcely approached and theoretical support is still lacking for describing the main ionizing processes. In this context, we here report a theoretical description of the proton-induced ionization of the DNA and RNA bases as well as the sugar-phosphate backbone. Two different quantum-mechanical models are proposed: the first one based on a continuum distorted wave-eikonal initial state treatment and the second perturbative one developed within the first Born approximation with correct boundary conditions (CB1). Besides, the molecular structure information of the biological targets studied here was determined by ab initio calculations with the Gaussian 09 software at the restricted Hartree-Fock level of theory with geometry optimization. Doubly, singly differential and total ionization cross sections also provided by the two models were compared for a large range of incident and ejection energies and a very good agreement was observed for all the configurations investigated. Finally, in comparison with the rare experiment, we have noted a large underestimation of the total ionization cross sections of uracil impacted by 80 keV protons,whereas a very good agreement was shown with the recently reported ionization cross sections for protons on adenine, at both the differential and the total scale.

  16. Single-ion anisotropy in compounds of rare earths other than Sm: Importance of J-mixing in the room-temperature range

    NASA Astrophysics Data System (ADS)

    Kuz'min, M. D.

    2002-12-01

    Contrary to the established view, J-mixing is found to strongly affect the magnetic anisotropy of compounds of all light rare earths and also of terbium. The fractional contribution of J-mixing to second-order anisotropy constants in the room-temperature range is proportional to absolute temperature and depends on the rare earth element involved but not on the characteristics of the specific solid. For the light rare earths this contribution is given by 12(2J-1)-1kT/Δso, where Δso is the spin-orbit splitting between the centers of gravity of the ground and first excited multiplets, and amounts to 22% for Pr and Nd and to as much as 83% for Sm at T=400 K. For the heavy rare earths the corresponding expression is 12(2J+3)-1kT/Δso, which is 11% for Tb at T=400 K and significantly less for the rest of the rare earth series. Analytical expressions are obtained which allow for the J-mixing and are accurate in the room-temperature range for all rare earths with the possible exception of Sm.

  17. Size dependence of the polarizability and Haynes rule for an exciton bound to an ionized donor in a single spherical quantum dot

    SciTech Connect

    Feddi, E. Zouitine, A.; Oukerroum, A.; Zazoui, M.; Dujardin, F.; Assaid, E.

    2015-02-14

    We study the effect of an external electric field on an exciton bound to an ionized donor (D{sup +}, X) confined in a spherical quantum dot using a perturbative-variational method where the wave function and energy are developed in series of powers of the electric field strength. After testing this new approach in the determination of the band gap for some semiconductor materials, we generalize it to the case of (D{sup +}, X) in the presence of the electric field and for several materials ZnO, PbSe, and InAs, with significant values of the mass ratio. Three interesting results can be deduced: First, we show that the present method allows to determine the ground state energy in the presence of a weak electric field in a simple way (E = E{sub 0} − αf{sup 2}) using the energy without electric field E{sub 0} and the polarizability α. The second point is that our theoretical predictions show that the polarizability of (D{sup +}, X) varies proportionally to R{sup 3.5} and follows an ordering α{sub D{sup 0}}<α{sub X}<α{sub (D{sup +},X)}. The last point to highlight is that the Haynes rule remains valid even in the presence of a weak electric field.

  18. Fate of trace metals in a rotary-kiln incinerator with a single-stage ionizing wet scrubber. Volume 1. Technical results

    SciTech Connect

    Fournier, D.J.; Waterland, L.R.

    1991-07-01

    A series of pilot-scale incineration tests was performed at EPA's Incineration Research Facility (IRF) in Jefferson, Arkansas, to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with an ionizing wet scrubber (IWS) for particulate and acid gas control. Test variables were kiln temperature, ranging from 816 to 927 C (1500 to 1700 F); afterburner temperature, ranging from 982 to 1204 C (1800 to 2200 F); and feed chlorine content, ranging from 0 to 8 percent. The test program evaluated the fate of five hazardous constituent trace metals (arsenic, barium, cadmium, chromium, and lead) and four nonhazardous constituent trace metals (bismuth, copper, magnesium, and strontium). The test results indicate that cadmium and bismuth were relatively volatile, with an average of less than 40 percent discharged with the kiln ash. Arsenic, barium, chromium, copper, lead, magnesium, and strontium were relatively nonvolatile, with an average of greater than 80 percent discharged with the kiln ash. Observed relative metal volatilities generally agreed with the volatilities predicted based on vapor pressure/temperature relationships, with the exception of arsenic which was much less volatile than predicted. The volatility of cadmium, bismuth, and lead increased as kiln temperature was increased; the discharge distributions of the remaining metals were not significantly affected by changes in kiln temperature. Apparent scrubber collection efficiencies for the metals averaged 22 to 71 percent, and were generally higher for the less volatile metals. The overall average metal collection efficiency was 43 percent.

  19. Dielectric relaxation related to single-ionized oxygen vacancies in (Pb{sub 1-x}La{sub x})(Zr{sub 0.90}Ti{sub 0.10}){sub 1-x/4}O{sub 3} ceramics

    SciTech Connect

    Pelaiz-Barranco, A.; Guerra, J.D.S.

    2010-09-15

    The dielectric relaxation phenomenon has been studied in lanthanum modified lead zirconate titanate ceramics in the high temperature paraelectric phase. The high temperature dielectric response revealed an anomalous behavior, which is characterized by an increase of the real component of the dielectric permittivity with the increase of the temperature. At the same time, a similar behavior, with very high values, has been observed in the imaginary component of the dielectric permittivity, which can be associated with conduction effects related to the conductivity losses. The frequency and temperature behavior of the complex dielectric permittivity has been analyzed considering the semi-empirical complex Cole-Cole equation. The activation energy value, obtained from the Arrhenius' dependence for the relaxation time, was found to decreases with the increase of the lanthanum concentration and has been associated with single-ionized oxygen vacancies. The short-range hopping of oxygen vacancies is discussed as the main cause of the dielectric relaxation.

  20. Ionization potentials of seaborgium

    SciTech Connect

    Johnson, E.; Pershina, V.; Fricke, B.

    1999-10-21

    Multiconfiguration relativistic Dirac-Fock values were calculated for the first six ionization potentials of seaborgium and of the other group 6 elements. No experimental ionization potentials are available for seaborgium. Accurate experimental values are not available for all of the other ionization potentials. Ionic radii for the 4+ through 6+ ions of seaborgium are also presented. The ionization potentials and ionic radii obtained will be used to predict some physiochemical properties of seaborgium and its compounds.

  1. Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for quantitative parallel reaction monitoring of peptide abundance and single-shot proteomic analysis of a human cell line

    PubMed Central

    Sun, Liangliang; Zhu, Guijie; Mou, Si; Zhao, Yimeng; Champion, Matthew M.; Dovichi, Norman J .

    2014-01-01

    We coupled capillary zone electrophoresis (CZE) with an ultrasensitive electrokinetically pumped nanospray ionization source for tandem mass spectrometry (MS/MS) analysis of complex proteomes. We first used the system for the parallel reaction monitoring (PRM) analysis of angiotensin II spiked in 0.45 mg/mL of bovine serum albumin (BSA) digest. A calibration curve was generated between the loading amount of angiotensin II and intensity of angiotensin II fragment ions. CZE-PRM generated a linear calibration curve across over 4.5 orders of magnitude dynamic range corresponding to angiotensin II loading amount from 2 amole to 150 fmole. The relative standard deviations (RSDs) of migration time were <4% and the RSDs of fragment ion intensity were ~20% or less except 150 fmole angiotensin II loading amount data (~36% RSD). We further applied the system for the first bottom up proteomic analysis of a human cell line using CZE-MS/MS. We generated 283 protein identifications from a 1 hour long, single-shot CZE MS/MS analysis of the MCF7 breast cancer cell line digest, corresponding to ~80 ng loading amount. The MCF7 digest was fractionated using a C18 solid phase extraction column; single-shot analysis of a single fraction resulted in 468 protein identifications, which is by far the largest number of protein identifications reported for a mammalian proteomic sample using CZE. PMID:25082526

  2. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  3. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  4. Analysis of Antiretrovirals in Single Hair Strands for Evaluation of Drug Adherence with Infrared-Matrix-Assisted Laser Desorption Electrospray Ionization Mass Spectrometry Imaging.

    PubMed

    Rosen, Elias P; Thompson, Corbin G; Bokhart, Mark T; Prince, Heather M A; Sykes, Craig; Muddiman, David C; Kashuba, Angela D M

    2016-01-19

    Adherence to a drug regimen can be a strong predictor of health outcomes, and validated measures of adherence are necessary at all stages of therapy from drug development to prescription. Many of the existing metrics of drug adherence (e.g., self-report, pill counts, blood monitoring) have limitations, and analysis of hair strands has recently emerged as an objective alternative. Traditional methods of hair analysis based on LC-MS/MS (segmenting strands at ≥1 cm length) are not capable of preserving a temporal record of drug intake at higher resolution than approximately 1 month. Here, we evaluated the detectability of HIV antiretrovirals (ARVs) in hair from a range of drug classes using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry imaging (MSI) with 100 μm resolution. Infrared laser desorption of hair strands was shown to penetrate into the strand cortex, allowing direct measurement by MSI without analyte extraction. Using optimized desorption conditions, a linear correlation between IR-MALDESI ion abundance and LC-MS/MS response was observed for six common ARVs with estimated limits of detection less than or equal to 1.6 ng/mg hair. The distribution of efavirenz (EFV) was then monitored in a series of hair strands collected from HIV infected, virologically suppressed patients. Because of the role hair melanin plays in accumulation of basic drugs (like most ARVs), an MSI method to quantify the melanin biomarker pyrrole-2,3,5-tricarboxylic acid (PTCA) was evaluated as a means of normalizing drug response between patients to develop broadly applicable adherence criteria.

  5. Inner-orbital ionization of iodine

    NASA Astrophysics Data System (ADS)

    Gibson, George; Smith, Dale; Tagliamonti, Vincent; Dragan, James

    2016-05-01

    Many coincidence techniques exist to study multiple ionization of molecules by strong laser fields. However, the first ionization step is critical in many experiments, although it is more difficult to obtain information about this initial step. We studied the single electron ionization of I2, as it presents interesting opportunities in that it is heavy and does not expand significantly during the laser pulse. Moreover, there are several distinct low-lying valence orbitals from which the electron may be removed. Most importantly, the kinetic energy release of the I+ + I dissociation channel can be measured and should correspond to well-known valence levels and separated atom limits. As it turns out, we must invoke deep valence orbits, built from the 5s electrons, to explain our data. Ionization from deep orbitals may be possible, as they have a smaller critical internuclear separation for enhanced ionization. We would like to acknowledge support from the NSF under Grant No. PHY-1306845.

  6. Effect of ionizing radiation on dielectric characteristics of Cu2ZnSn(S x Se1- x )4 single crystals

    NASA Astrophysics Data System (ADS)

    Hurtavy, V. G.; Sheleg, A. U.

    2017-02-01

    The effect of electron irradiation on conductivity and dielectric permeability of Cu2ZnSnS4 and Cu2ZnSnSe4 single crystals and solid solutions based on them is studied. It is shown that values of dielectric permeability decrease with an increase in the irradiation dose while those of specific electric conductivity sharply increase.

  7. Rare earths

    USGS Publications Warehouse

    Gambogi, J.

    2013-01-01

    Global mine production of rare earths was estimated to have declined slightly in 2012 relative to 2011 (Fig. 1). Production in China was estimated to have decreased to 95 from 105 kt (104,700 from 115,700 st) in 2011, while new mine production in the United States and Australia increased.

  8. Atomic Transition Probabilities for Rare Earths

    NASA Astrophysics Data System (ADS)

    Curry, J. J.; Anderson, Heidi M.; den Hartog, E. A.; Wickliffe, M. E.; Lawler, J. E.

    1996-10-01

    Accurate absolute atomic transition probabilities for selected neutral and singly ionized rare earth elements including Tm, Dy, and Ho are being measured. The increasing use of rare earths in high intensity discharge lamps provides motivation; the data are needed for diagnosing and modeling the lamps. Radiative lifetimes, measured using time resolved laser induced fluorescence (LIF), are combined with branching fractions, measured using a large Fourier transform spectrometer (FTS), to determine accurate absolute atomic transition probabilities. More than 15,000 LIF decay curves from Tm and Dy atoms and ions in slow beams have been recorded and analyzed. Radiative lifetimes for 298 levels of TmI and TmII and for 450 levels of DyI and DyII are determined. Branching fractions are extracted from spectra recorded using the 1.0 m FTS at the National Solar Observatory. Branching fractions and absolute transition probabilities for 500 of the strongest TmI and TmII lines are complete. Representative lifetime and branching fraction data will be presented and discussed. Supported by Osram Sylvania Inc. and the NSF.

  9. Ultraviolet laser desorption/ionization mass spectrometry of single-core and multi-core polyaromatic hydrocarbons under variable conditions of collisional cooling: insights into the generation of molecular ions, fragments and oligomers.

    PubMed

    Gámez, Francisco; Hortal, Ana R; Martínez-Haya, Bruno; Soltwisch, Jens; Dreisewerd, Klaus

    2014-11-01

    The ultraviolet laser desorption/ionization of polyaromatic hydrocarbons (PAHs) has been investigated under different background pressures of an inert gas (up to 1.2 mbar of N2) in the ion source of a hybrid, orthogonal-extracting time-of-flight mass spectrometer (oTOF-MS). The study includes an ensemble of six model PAHs with isolated single polyaromatic cores and four ones with multiple cross-linked aromatic and polyaromatic cores. In combination with a weak ion extraction field, the variation of the buffer gas pressure allowed to control the degree of collisional cooling of the desorbed PAHs and, thus, to modulate their decomposition into fragments. The dominant fragmentation channels observed are related to dehydrogenation of the PAHs, in most cases through the cleavage of even numbers of C-H bonds. Breakage of C-C bonds leading to the fragmentation of rings, side chains and core linkages is also observed, in particular, at low buffer gas pressures. The precise patterns of the combined fragmentation processes vary significantly between the PAHs. The highest abundances of molecular PAH ions and cleanest mass spectra were consistently obtained at the highest buffer gas pressure of 1.2 mbar. The effective quenching of the fragmentation pathways at this elevated pressure improves the sensitivity and data interpretation for analytical applications, although the fragmentation of side chains and of bonds between (poly)aromatic cores is not completely suppressed in all cases. Moreover, these results suggest that the detected fragments are generated through thermal equilibrium processes rather than as a result of rapid photolysis. This assumption is further corroborated by a laser desorption/ionization post-source decay analysis using an axial time-of-flight MS. In line with these findings, covalent oligomers of the PAHs, which are presumably formed by association of two or more dehydrogenated fragments, are detected with higher abundances at the lower buffer gas

  10. The design and application of a field-transportable time- of-flight mass spectrometer (ATOFMS) and use of two-step laser desorption/ionization (L2MS) to determine PAH in single particles

    NASA Astrophysics Data System (ADS)

    Morrical, Bradley Douglas

    2000-11-01

    In order to improve the ability of aerosol time-of-flight mass spectrometry (ATOFMS) to achieve the complete chemical characterization of single particles, new refinements in instrumentation and techniques have been developed. This thesis describes the design and construction of two field transportable ATOFMS instruments that allows for real-time single particle aerosol measurements for the first time in remote locations. Additionally, this new ATOFMS instrument is capable of obtaining both positive and negative ion spectra simultaneously, enabling easier identification of chemical species on a particle. Improvements to the particle inlet interface, particle sizing, and integration of electronics were also realized by the new design. To demonstrate proof of concept, the field transportable ATOFMS instruments were used to make field measurements in September and October of 1996. From field data collected, heterogeneous chemical reactions were observed for two different types of chemical systems, namely the formation of NaNO3 in sea salt particles in Long Beach, CA and the formation of NH4NO 3 on particles in Riverside, CA. It was found that both chemical systems depended heavily on wind trajectories and the length of time an air parcel remained stagnated over urban areas. Quantitation of NH4 + and NO3- is achieved by calibrating ATOFMS counts and ion signal to measured NH4+ and NO3- concentrations from conventional sampling and analysis. The second part of this thesis describes the development of a new laser ionization technique, two step laser desorption/ionization (L2MS), in order to improve the chemical characterization of organic compounds on single particles. Using L2MS, identification of a large number of polycyclic aromatic hydrocarbons (PAH) is achieved with several common combustion sources. An attempt is made to use selected PAH as markers for different combustion sources. Method of sample collection is also explored to understand the bias that particle

  11. Development of gas chromatography-flame ionization detection system with a single column and liquid nitrogen-free for measuring atmospheric C2-C12 hydrocarbons.

    PubMed

    Liu, Chengtang; Mu, Yujing; Zhang, Chenglong; Zhang, Zhibo; Zhang, Yuanyuan; Liu, Junfeng; Sheng, Jiujiang; Quan, Jiannong

    2016-01-04

    A liquid nitrogen-free GC-FID system equipped with a single column has been developed for measuring atmospheric C2-C12 hydrocarbons. The system is consisted of a cooling unit, a sampling unit and a separation unit. The cooling unit is used to meet the temperature needs of the sampling unit and the separation unit. The sampling unit includes a dehydration tube and an enrichment tube. No breakthrough of the hydrocarbons was detected when the temperature of the enrichment tube was kept at -90 °C and sampling volume was 400 mL. The separation unit is a small round oven attached on the cooling column. A single capillary column (OV-1, 30 m × 0.32 mm I.D.) was used to separate the hydrocarbons. An optimal program temperature (-60 ∼ 170 °C) of the oven was achieved to efficiently separate C2-C12 hydrocarbons. There were good linear correlations (R(2)=0.993-0.999) between the signals of the hydrocarbons and the enrichment amount of hydrocarbons, and the relative standard deviation (RSD) was less than 5%, and the method detection limits (MDLs) for the hydrocarbons were in the range of 0.02-0.10 ppbv for sampling volume of 400 mL. Field measurements were also conducted and more than 50 hydrocarbons from C2 to C12 were detected in Beijing city. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Using ionization response maps for SET characterisation in UHF mixers

    NASA Astrophysics Data System (ADS)

    Savchenkov, D. V.; Kuznetsov, A. G.

    2016-10-01

    SEE sensitivity of integrated circuits is characterized by their SEE cross-section vs. linear energy transfer dependences- σ(LET) which are obtained through ion tests. Often those σ(LET) dependencies have such few data points that it's much trouble to approximate them correctly. In those cases σ(LET) can be complemented with SEE cross-section vs. laser energy σ(J) obtained from laser tests. At the same time, σ(J) rarely follow exactly the shape of σ(LET) due to the metallization non-uniformly over chip area. Nevertheless, σ(J) can be corrected against this non-uniformity by examining the ionization response maps ΔU(x, y). In this work we demonstrate that such corrected σ(J) correlates better with σ(LET) by the example of single event transients (SET) in two types of UHF mixers.

  13. Neurologic sequelae of methotrexate and ionizing radiation: a new classification

    SciTech Connect

    Bleyer, W.A.

    1981-01-01

    Therapy for prevention of central nervous system (CNS) leukemia has had a dramatic effect on disease-free survival in children with acute lymphoblastic leukemia (ALL). Now, a majority of children may be in complete remission indefinitely, having completed therapy years ago. Unfortunately, some of these long-term survivors have residual neurologic dysfunction, varying in severity from the not uncommon occurrence of mild intellectual deficit to the fortunately rare instance of debilitating leukoencephalopathy. To help identify inciting factors and ultimately render CNS prophylaxis less neurotoxic, this article attempts to categorize the types of neurotoxicities reported in patients treated with methotrexate (MTX) and ionizing radiation. A variety of clinical syndromes are described and related temporally to these treatment modalities. Analyzed in this way, combinations including CNS irradiation appear to be the most neurotoxic. The safest methods are the single modalities, of which high-dose iv MTX may be the least neurotoxic.

  14. Enrichment of rare variants in population isolates: single AICDA mutation responsible for hyper-IgM syndrome type 2 in Finland.

    PubMed

    Trotta, Luca; Hautala, Timo; Hämäläinen, Sari; Syrjänen, Jaana; Viskari, Hanna; Almusa, Henrikki; Lepisto, Maija; Kaustio, Meri; Porkka, Kimmo; Palotie, Aarno; Seppänen, Mikko; Saarela, Janna

    2016-10-01

    Antibody class-switch recombination and somatic hypermutation critically depend on the function of activation-induced cytidine deaminase (AID). Rare variants in its gene AICDA have been reported to cause autosomal recessive AID deficiency (autosomal recessive hyper-IgM syndrome type 2 (HIGM2)). Exome sequencing of a multicase Finnish family with an HIGM2 phenotype identified a rare, homozygous, variant (c.416T>C, p.(Met139Thr)) in the AICDA gene, found to be significantly enriched in the Finnish population compared with other populations of European origin (38.56-fold, P<0.001). The population history of Finland, characterized by a restricted number of founders, isolation and several population bottlenecks, has caused enrichment of certain rare disease-causing variants and losses of others, as part of a phenomenon called the Finnish Disease Heritage. Accordingly, rare founder mutations cause the majority of observed Finnish cases in these mostly autosomal recessive disorders that consequently are more frequent in Finland than elsewhere. Screening of all currently known Finnish patients with an HIGM2 phenotype showed them to be homozygous for p.(Met139Thr). All the Finnish p.(Met139Thr) carriers with available data on their geographic descent originated from the eastern and northeastern parts of Finland. They were observed to share more of their genome identity by descent (IBD) than Finns in general (P<0.001), and they all carried a 207.5-kb ancestral haplotype containing the variant. In conclusion, the identified p.(Met139Thr) variant is significantly enriched in Finns and explains all thus far found AID deficiencies in Finland.

  15. Enrichment of rare variants in population isolates: single AICDA mutation responsible for hyper-IgM syndrome type 2 in Finland

    PubMed Central

    Trotta, Luca; Hautala, Timo; Hämäläinen, Sari; Syrjänen, Jaana; Viskari, Hanna; Almusa, Henrikki; Lepisto, Maija; Kaustio, Meri; Porkka, Kimmo; Palotie, Aarno; Seppänen, Mikko; Saarela, Janna

    2016-01-01

    Antibody class-switch recombination and somatic hypermutation critically depend on the function of activation-induced cytidine deaminase (AID). Rare variants in its gene AICDA have been reported to cause autosomal recessive AID deficiency (autosomal recessive hyper-IgM syndrome type 2 (HIGM2)). Exome sequencing of a multicase Finnish family with an HIGM2 phenotype identified a rare, homozygous, variant (c.416T>C, p.(Met139Thr)) in the AICDA gene, found to be significantly enriched in the Finnish population compared with other populations of European origin (38.56-fold, P<0.001). The population history of Finland, characterized by a restricted number of founders, isolation and several population bottlenecks, has caused enrichment of certain rare disease-causing variants and losses of others, as part of a phenomenon called the Finnish Disease Heritage. Accordingly, rare founder mutations cause the majority of observed Finnish cases in these mostly autosomal recessive disorders that consequently are more frequent in Finland than elsewhere. Screening of all currently known Finnish patients with an HIGM2 phenotype showed them to be homozygous for p.(Met139Thr). All the Finnish p.(Met139Thr) carriers with available data on their geographic descent originated from the eastern and northeastern parts of Finland. They were observed to share more of their genome identity by descent (IBD) than Finns in general (P<0.001), and they all carried a 207.5-kb ancestral haplotype containing the variant. In conclusion, the identified p.(Met139Thr) variant is significantly enriched in Finns and explains all thus far found AID deficiencies in Finland. PMID:27142677

  16. Not so Rare, Rare Diseases

    ERIC Educational Resources Information Center

    Waldman, H. Barry; Perlman, Steven P.; Munter, Beverly L.; Chaudhry, Ramiz A.

    2008-01-01

    A rare disease or condition is defined by federal legislation such that it: (1) affects less than 200,000 persons in the U.S.; or (2) affects more than 200,000 persons in the U.S. but for which there is no reasonable expectation that the cost of developing and making available in the U.S. a drug for such disease or condition will be recovered from…

  17. Not so Rare, Rare Diseases

    ERIC Educational Resources Information Center

    Waldman, H. Barry; Perlman, Steven P.; Munter, Beverly L.; Chaudhry, Ramiz A.

    2008-01-01

    A rare disease or condition is defined by federal legislation such that it: (1) affects less than 200,000 persons in the U.S.; or (2) affects more than 200,000 persons in the U.S. but for which there is no reasonable expectation that the cost of developing and making available in the U.S. a drug for such disease or condition will be recovered from…

  18. Analytical instruments, ionization sources, and ionization methods

    DOEpatents

    Atkinson, David A.; Mottishaw, Paul

    2006-04-11

    Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.

  19. Resonant ionization spectroscopy of autoionizing Rydberg states in cobalt and redetermination of its ionization potential

    DOE PAGES

    Liu, Yuan; Gottwald, T.; Mattolat, C.; ...

    2017-03-20

    We obtained multi-step resonance ionization spectroscopy of cobalt using a hot-cavity laser ion source and three Ti:Sapphire lasers. Furthermore, the photoionization spectra revealed members of five new autoionizing Rydberg series that originate from three different lower levels of 3d74s5s h4F9/2, 3d74s4d f4G11/2, and 3d74s4d f4H13/2 and converge to the first four excited states of singly ionized Co. Our analyses of the Rydberg series yield 63564.689 0.036 cm-1 as the first ionization potential of Co, which is an order of magnitude more accurate than the previous estimation. Using a three-step resonance ionization scheme that employs an autoinizing Rydberg state in themore » last transition, we obtained an overall ionization efficiency of about 18% for Co.« less

  20. Resonant ionization spectroscopy of autoionizing Rydberg states in cobalt and redetermination of its ionization potential

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Gottwald, T.; Mattolat, C.; Wendt, K.

    2017-04-01

    Multi-step resonance ionization spectroscopy of cobalt has been performed using a hot-cavity laser ion source and three Ti:Sapphire lasers. The photoionization spectra revealed members of five new autoionizing Rydberg series that originate from three different lower levels of 3d 74s5s h 4F9/2, 3d 74s4d f 4G11/2, and 3d 74s4d f 4H13/2 and converge to the first four excited states of singly ionized Co. The analyses of the Rydberg series yield 63 564.689 ± 0.036 cm‑1 as the first ionization potential of Co, which is an order of magnitude more accurate than the previous estimation. Using a three-step resonance ionization scheme that employs an autoinizing Rydberg state in the last transition, we obtained an overall ionization efficiency of about 18% for Co. ).

  1. Resonant effects in above-threshold ionization

    NASA Astrophysics Data System (ADS)

    Hertlein, Marcus P.

    2000-09-01

    The ionization of noble gases in high intensity laser fields produces an electron spectrum with characteristic peaks corresponding to atomic levels of the atom. While many of the features in the low energy part of the spectrum have been explained qualitatively, current models are incomplete and are not able to account for the recurrence of ionization probability for higher energy electrons. In particular, one of the basic questions arising is the importance of multiple ionization in these spectra. While the light intensities are in the regime where multiple ionization is known to occur, it was not clear whether the higher energy (or plateau) electrons are a result of this, and whether multiple ionization even leaves a signature in the electron spectrum. In this dissertation, we use several experimental techniques to explore this problem in argon. Our results show that although multiple ionization occurs, electrons from this process do not appear in the observed electron spectrum. Furthermore, the appearance intensities of the peaks visible in the plateau region of the electron spectrum and of the resonance peaks in the well- understood low energy part show a strong correlation, suggestion a common origin of production. Accurate computer simulations of the process, using a single- active-electron model, reproduce all essential features of the experimental spectra. Our results support the conclusion that all high energy electrons observed in our experiments can be explained with single-electron effects.

  2. Quantitative method for analysis of monensin in soil, water, and urine by direct combination of single-drop microextraction with atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Sekar, Ramaiyan; Wu, Hui-Fen

    2006-09-15

    A simple and selective analytical method for the quantitative determination of low concentrations of monensin in soil, surface water, and human urine has been developed. Prior to atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI-MS) analysis, the samples were preconcentrated by using the single-drop microextraction (SDME) technique. Several factors that affect the analyte's extraction, including selection of solvent, microdrop volume, extraction time, and ionic strength, were investigated. Chloroform-toluene (1:1, v/v) was selected as the extraction solvent. Reliable results were obtained using dibenzo-30-crown-10-ether as an internal standard. The proposed method has been successfully applied for the determination of monensin in soil, surface water, and human urine spiked samples. Under the optimized conditions, the limits of quantification of the analyte in surface water, soil, and human urine were 6.7, 12.4 and 7.8 ng/mL, respectively. The intraday and interday precision variation and accuracy of the present method is within the acceptable ranges. The present method avoids the pre- and postderivatization of weak UV absorbing monensin determination using high performance liquid chromatography-ultraviolet detection (HPLC-UV). Furthermore, these techniques are time-consuming, nonreproducible at trace levels, and form undesirable products. The proposed SDME combined with AP-MALDI-MS is simple, fast, and selective for the determination of monensin in environmental and urine samples.

  3. Matrix-free UV-laser desorption/ionization (LDI) mass spectrometric imaging at the single-cell level: distribution of secondary metabolites of Arabidopsis thaliana and Hypericum species.

    PubMed

    Hölscher, Dirk; Shroff, Rohit; Knop, Katrin; Gottschaldt, Michael; Crecelius, Anna; Schneider, Bernd; Heckel, David G; Schubert, Ulrich S; Svatos, Ales

    2009-12-01

    The present paper describes matrix-free laser desorption/ionisation mass spectrometric imaging (LDI-MSI) of highly localized UV-absorbing secondary metabolites in plant tissues at single-cell resolution. The scope and limitations of the method are discussed with regard to plants of the genus Hypericum. Naphthodianthrones such as hypericin and pseudohypericin are traceable in dark glands on Hypericum leaves, placenta, stamens and styli; biflavonoids are also traceable in the pollen of this important phytomedical plant. The highest spatial resolution achieved, 10 microm, was much higher than that achieved by commonly used matrix-assisted laser desorption/ionization (MALDI) imaging protocols. The data from imaging experiments were supported by independent LDI-TOF/MS analysis of cryo-sectioned, laser-microdissected and freshly cut plant material. The results confirmed the suitability of combining laser microdissection (LMD) and LDI-TOF/MS or LDI-MSI to analyse localized plant secondary metabolites. Furthermore, Arabidopsis thaliana was analysed to demonstrate the feasibility of LDI-MSI for other commonly occurring compounds such as flavonoids. The organ-specific distribution of kaempferol, quercetin and isorhamnetin, and their glycosides, was imaged at the cellular level.

  4. Double ionization of helium by particle impact

    NASA Technical Reports Server (NTRS)

    Jacobsen, Finn M.

    1990-01-01

    Experimental results are reviewed of the ratio, R sq., of double to single ionization of He by proton, antiproton, electron and positron impact in the energy range from 0.15 to about 10 MeV/amu. At high velocities (greater than 1 to 2 MeV/amu) values of R sq. caused by electron impact merge with those for the proton with the antiproton, electron values being up to a factor of 2 greater than that for the p, positron. At these velocities the single ionization cross sections caused by impact of any of these four particles are indistinguishable.

  5. Helium Ionization in the Diffuse Ionized Gas Surrounding UCH ii Regions

    NASA Astrophysics Data System (ADS)

    Anish Roshi, D.; Churchwell, E.; Anderson, L. D.

    2017-04-01

    We present measurements of the singly ionized helium-to-hydrogen ratio ({n}{{He}+}/{n}{{{H}}+}) toward diffuse gas surrounding three ultracompact H ii (UCH ii) regions: G10.15-0.34, G23.46-0.20, and G29.96-0.02. We observe radio recombination lines of hydrogen and helium near 5 GHz using the GBT to measure the {n}{{He}+}/{n}{{{H}}+} ratio. The measurements are motivated by the low helium ionization observed in the warm ionized medium and in the inner Galaxy diffuse ionized regions. Our data indicate that the helium is not uniformly ionized in the three observed sources. Helium lines are not detected toward a few observed positions in sources G10.15-0.34 and G23.46-0.20, and the upper limits of the {n}{{He}+}/{n}{{{H}}+} ratio obtained are 0.03 and 0.05, respectively. The selected sources harbor stars of type O6 or hotter as indicated by helium line detection toward the bright radio continuum emission from the sources with mean {n}{{He}+}/{n}{{{H}}+} value 0.06 ± 0.02. Our data thus show that helium in diffuse gas located a few parsecs away from the young massive stars embedded in the observed regions is not fully ionized. We investigate the origin of the nonuniform helium ionization and rule out the possibilities (a) that the helium is doubly ionized in the observed regions and (b) that the low {n}{{He}+}/{n}{{{H}}+} values are due to additional hydrogen ionizing radiation produced by accreting low-mass stars. We find that selective absorption of ionizing photons by dust can result in low helium ionization but needs further investigation to develop a self-consistent model for dust in H ii regions.

  6. Helium Ionization in the Diffuse Ionized Gas Surrounding UCH ii Regions

    NASA Astrophysics Data System (ADS)

    Roshi, D. Anish; Churchwell, E.; Anderson, L. D.

    2017-04-01

    We present measurements of the singly ionized helium-to-hydrogen ratio ({n}{{He}+}/{n}{{{H}}+}) toward diffuse gas surrounding three ultracompact H ii (UCH ii) regions: G10.15-0.34, G23.46-0.20, and G29.96-0.02. We observe radio recombination lines of hydrogen and helium near 5 GHz using the GBT to measure the {n}{{He}+}/{n}{{{H}}+} ratio. The measurements are motivated by the low helium ionization observed in the warm ionized medium and in the inner Galaxy diffuse ionized regions. Our data indicate that the helium is not uniformly ionized in the three observed sources. Helium lines are not detected toward a few observed positions in sources G10.15-0.34 and G23.46-0.20, and the upper limits of the {n}{{He}+}/{n}{{{H}}+} ratio obtained are 0.03 and 0.05, respectively. The selected sources harbor stars of type O6 or hotter as indicated by helium line detection toward the bright radio continuum emission from the sources with mean {n}{{He}+}/{n}{{{H}}+} value 0.06 ± 0.02. Our data thus show that helium in diffuse gas located a few parsecs away from the young massive stars embedded in the observed regions is not fully ionized. We investigate the origin of the nonuniform helium ionization and rule out the possibilities (a) that the helium is doubly ionized in the observed regions and (b) that the low {n}{{He}+}/{n}{{{H}}+} values are due to additional hydrogen ionizing radiation produced by accreting low-mass stars. We find that selective absorption of ionizing photons by dust can result in low helium ionization but needs further investigation to develop a self-consistent model for dust in H ii regions.

  7. A rare case of single right coronary artery with congenital absence of left coronary artery in an adult: a case report.

    PubMed

    Fu, Fengli; Jin, Hongfeng; Feng, Yue

    2015-04-21

    Single right coronary artery with congenital absence of left coronary artery is one of the rarest coronary artery anomalies. Most coronary anomalies are asymptomatic and incidental findings. We report a case of single right coronary artery with congenital absence of left coronary artery detected by coronary CT angiography. Physical examination revealed a well-nourished female with a blood pressure of 130/75 mmHg and a pulse rate of 56 beats per minute. The myocardial enzymes and blood lipid levels showed normal findings. The dynamic electrocardiogram revealed frequent ventricular premature beats. Dual-source CT angiography was performed for evaluation of coronary artery. The imaging showed a very large single coronary artery arising from the right coronary sinus of Valsalva, and demonstrated absence of the left coronary artery. Meanwhile, the findings were confirmed by coronary angiography.

  8. A Combination of Two Rare Coronary Anomalies Makes It Even Rarer: Right Sided Single Coronary Artery with Dual Left Anterior Descending Artery

    PubMed Central

    Addai, Theodore; Kola, Monahar; Raqeem, Muhammad Wajih; Barsamyan, Sergey; Mirrakhimov, Aibek E.

    2016-01-01

    An 82-year-old female with history of hyperlipidemia and hypertension presented to the clinic with chief complaint of nonradiating chest tightness accompanied by exertional dyspnea. Cardiac catheterization showed the absence of left coronary system; the entire coronary system originated from the right aortic sinus as a common trunk which then gave off the right coronary artery and the left main coronary artery. Cardiac catheterization demonstrated also another rare coronary anomaly: dual left anterior descending artery. Patient underwent percutaneous coronary intervention and subsequent multidetector computed tomography angiography confirmed the above angiography findings. Patient was subsequently discharged home on double antiplatelet therapy with aspirin and clopidogrel and has been asymptomatic since then. PMID:27293909

  9. A single-center case series of eight patients with the rare plasma cell dyscrasia of acquired Fanconi syndrome secondary to monoclonal gammopathy.

    PubMed

    Liu, Yang; Zhu, Tienan; Xu, Lingling; Qin, Yan; Zhuang, Junling

    2015-01-01

    Acquired Fanconi syndrome (FS) is a rare presentation of monoclonal gammopathy. We retrospectively summarized the cases of eight patients with FS secondary to monoclonal gammopathy at Peking Union Medical College Hospital (PUMCH) from January 2007 to April 2014. All patients had generalized or partial impairment of proximal renal tubular function. Six patients were diagnosed with monoclonal gammopathy of undetermined significance (MGUS), and two were diagnosed with multiple myeloma (MM). Although chemotherapy was administered to the two patients with MM and to one patient with MGUS, decreased paraprotein levels did not lead to improvements in metabolic abnormalities. All patients received continuous supplementation with deficient nutrients, leading to marked remission of bone pain and improved quality of life. Although renal function in most patients gradually declined, none of the patients developed end-stage renal disease (ESRD) during an average follow-up time of 31 months, and no case of MGUS has yet transformed into MM.

  10. Pediatric providers and radiology examinations: knowledge and comfort levels regarding ionizing radiation and potential complications of imaging.

    PubMed

    Wildman-Tobriner, Benjamin; Parente, Victoria M; Maxfield, Charles M

    2017-08-29

    Pediatric providers should understand the basic risks of the diagnostic imaging tests they order and comfortably discuss those risks with parents. Appreciating providers' level of understanding is important to guide discussions and enhance relationships between radiologists and pediatric referrers. To assess pediatric provider knowledge of diagnostic imaging modalities that use ionizing radiation and to understand provider concerns about risks of imaging. A 6-question survey was sent via email to 390 pediatric providers (faculty, trainees and midlevel providers) from a single academic institution. A knowledge-based question asked providers to identify which radiology modalities use ionizing radiation. Subjective questions asked providers about discussions with parents, consultations with radiologists, and complications of imaging studies. One hundred sixty-nine pediatric providers (43.3% response rate) completed the survey. Greater than 90% of responding providers correctly identified computed tomography (CT), fluoroscopy and radiography as modalities that use ionizing radiation, and ultrasound and magnetic resonance imaging (MRI) as modalities that do not. Fewer (66.9% correct, P<0.001) knew that nuclear medicine utilizes ionizing radiation. A majority of providers (82.2%) believed that discussions with radiologists regarding ionizing radiation were helpful, but 39.6% said they rarely had time to do so. Providers were more concerned with complications of sedation and cost than they were with radiation-induced cancer, renal failure or anaphylaxis. Providers at our academic referral center have a high level of basic knowledge regarding modalities that use ionizing radiation, but they are less aware of ionizing radiation use in nuclear medicine studies. They find discussions with radiologists helpful and are concerned about complications of sedation and cost.

  11. Conceptual basis of resonance ionization spectroscopy

    SciTech Connect

    Payne, M.G.

    1984-04-01

    Resonance Ionization Spectroscopy (RIS) can b defined as a state-selective detection process in which tunable lasers are used to promote transitions from the selected state of the atoms or molecules in question to higher states, one of which will be ionized by the absorption of another photon. At least one resonance step is used in the stepwise ionization process, and it has been shown that the ionization probability of the spectroscopically selected species can nearly always be made close to unity. Since measurements of the number of photoelectrons or ions can be made very precisely and even one electron (or under vacuum conditions, one ion) can be detected, the technique can be used to make quantitative measurements of very small populations of the state-selected species. Counting of individual atoms has special meaning for detection of rare events. The ability to make saturated RIS measurements opens up a wide variety of applications to both basic and applied research. We view RIS as a specific type of multi-photon ionization in which the goal is to make quantitative measurements of quantum-selected populations in atomic or molecular systems. 16 references.

  12. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments Database

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  13. Electron Impact Ionization and Dissociative Ionization of C2H2

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K.

    1995-01-01

    By utilizing a crossed electron beam collision geometry, a combination of time-of-flight (TOF) and quadrupole mass spectrometers, and the relative flow technique1 normalized values of cross sections and appearance energies (AP) were obtained for the formation of singly and multiply ionized species resulting from the ionization and dissociation of C2H2. Details ont he apparatus and technique have been published previously.2,3.

  14. Multiple-ionization of xenon atoms by positron impact

    NASA Technical Reports Server (NTRS)

    Kruse, Georg; Quermann, Andreas; Raith, Wilhelm; Sinapius, Guenther

    1990-01-01

    Previously the cross sections were measured for positronium formation and single ionization by positron impact for He and H2. With the same apparatus, slightly modified, the single and multiple ionization of xenon is now investigated. The principle of the method is the detection of ion and positron in time correlation which allows the discrimination of positronium formation (whereby the positron vanishes) and the destinction of single, double and triple impact ionization (which lead to different ion flight times from the gas target to the ion detector). By using secondary electrons from the positron moderator, similar measurements were performed on electron impact ionization. By comparing with literature values for electron multiple ionization cross sections, the detection-probability ratios were determined for the differently charged ions.

  15. Measured oscillator strengths in singly ionized molybdenum

    NASA Astrophysics Data System (ADS)

    Mayo-García, R.; Aragón, C.; Aguilera, J. A.; Ortiz, M.

    2015-11-01

    In this article, 112 oscillator strengths from Mo II have been measured, 79 of which for the first time. The radiative parameters have been obtained by laser-induced breakdown spectroscopy (LIBS). The plasma is produced from a fused glass sample prepared from molybdenum oxide with a Mo atomic concentration of 0.1%. The plasma evolved in air at atmospheric pressure, and measurements were carried out with the following plasma parameters: an electron density of (2.5+/- 0.1)\\cdot {10}17 cm-3 and an electron temperature of 14,400+/- 200 K. In these conditions, a local thermodynamic equilibrium environment and an optically thin plasma were confirmed for the measurements. The relative intensities were placed on an absolute scale by combining branching fractions with the measured lifetimes and by comparing well-known lines using the plasma temperature. Comparisons were made to previously obtained experimental and theoretical values wherever possible.

  16. Partial Fourier-transform approach to tunnel ionization: Atomic systems

    SciTech Connect

    Murray, Ryan; Liu, Wing-Ki; Ivanov, Misha Yu.

    2010-02-15

    We present physically transparent and computationally simple method for calculating tunnel ionization rates for arbitrary bound states and arbitrary potentials in three dimensions. Here, we verify applicability of the method analytically by demonstrating that it reproduces all known analytical results for tunnel ionization from arbitrary atomic states in a single-center Coulomb potential in the presence of a constant electric field.

  17. Single drop microextraction as a concentrating probe for rapid screening of low molecular weight drugs from human urine in atmospheric-pressure matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Shrivas, Kamlesh; Wu, Hui-Fen

    2007-01-01

    The present work reports the development of a new analytical procedure for simple and rapid screening of low molecular weight drugs (<500 Da) from human urine samples by atmospheric-pressure matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI-MS) combined with single drop microextraction (SDME). The success of the proposed method is due to the use of methyltrioctylammonium chloride (MTOAC) as additive to avoid the noise arising from the matrix ions (alpha-cyano-4-hydroxycinnamic acid (CHCA)). SDME also aided in alleviating the interferences arising from other matrix ions present in the urine samples prior to AP-MALDI-MS analysis. Factors affecting the extraction efficiency of drugs, such as selection of solvent, stirring speed, extraction time, exposure volume of extraction phase and salt addition, have been optimized. The optimum molar ratio of CHCA/MTOAC that gave the minimum background noise of CHCA ions was 700:1. The limit of detection (LOD) and relative standard deviation (RSD) of the method were in the ranges 0.3-1.6 microM and 7.8-11.4%, respectively. The SDME method was compared with liquid-liquid extraction (LLE) and hollow fiber liquid-phase microextraction (HF-LPME) to evaluate the compatibility of the present method in the extraction of drugs from urine samples. The role of MTOAC as matrix ion signal suppressor and SDME as analyte-separating device in the rapid screening of low molecular weight drugs from human urine samples using AP-MALDI/MS has been reported. Copyright (c) 2007 John Wiley & Sons, Ltd.

  18. A rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for single-plasmid tracking in an outbreak of carbapenem-resistant Enterobacteriaceae.

    PubMed

    Lau, Anna F; Wang, Honghui; Weingarten, Rebecca A; Drake, Steven K; Suffredini, Anthony F; Garfield, Mark K; Chen, Yong; Gucek, Marjan; Youn, Jung-Ho; Stock, Frida; Tso, Hanna; DeLeo, Jim; Cimino, James J; Frank, Karen M; Dekker, John P

    2014-08-01

    Carbapenem-resistant Enterobacteriaceae (CRE) have spread globally and represent a serious and growing threat to public health. Rapid methods for tracking plasmids carrying carbapenemase genes could greatly benefit infection control efforts. Here, we demonstrate that real-time, direct tracking of a single plasmid in a bacterial strain responsible for an outbreak is possible using a commercial matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system. In this case, we retrospectively tracked the bla(KPC) carbapenemase gene-bearing pKpQIL plasmid responsible for a CRE outbreak that occurred at the NIH Clinical Center in 2011. An ∼ 11,109-Da MS peak corresponding to a gene product of the bla(KPC) pKpQIL plasmid was identified and characterized using a combination of proteomics and molecular techniques. This plasmid peak was present in spectra from retrospectively analyzed K. pneumoniae outbreak isolates, concordant with results from whole-genome sequencing, and absent from a diverse control set of bla(KPC)-negative clinical Enterobacteriaceae isolates. Notably, the gene characterized here is located adjacent to the bla(KPC) Tn4401 transposon on the pKpQIL plasmid. Sequence analysis demonstrates the presence of this gene in other bla(KPC) Tn4401-containing plasmids and suggests that this signature MS peak may be useful in tracking other plasmids conferring carbapenem resistance. Plasmid identification using this MALDI-TOF MS method was accomplished in as little as 10 min from isolated colonies and 30 min from positive (spiked) blood cultures, demonstrating the potential clinical utility for real-time plasmid tracking in an outbreak. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Multiple rare variants as a cause of a common phenotype: several different lactase persistence associated alleles in a single ethnic group.

    PubMed

    Ingram, Catherine J E; Raga, Tamiru Oljira; Tarekegn, Ayele; Browning, Sarah L; Elamin, Mohamed F; Bekele, Endashaw; Thomas, Mark G; Weale, Michael E; Bradman, Neil; Swallow, Dallas M

    2009-12-01

    Persistence of intestinal lactase into adulthood allows humans to use milk from other mammals as a source of food and water. This genetic trait has arisen by convergent evolution and the derived alleles of at least three different single nucleotide polymorphisms (-13910C>T, -13915T>G, -14010G>C) are associated with lactase persistence in different populations. Each allele occurs on an extended haplotype, consistent with positive directional selection. The SNPs are located in an 'enhancer' sequence in an intron of a neighboring gene (MCM6) and modulate lactase transcription in vitro. However, a number of lactase persistent individuals carry none of these alleles, but other low-frequency single nucleotide polymorphisms have been observed in the same region. Here we examine a cohort of 107 milk-drinking Somali camel-herders from Ethiopia. Eight polymorphic sites are identified in the enhancer. -13915*G and -13907*G (a previously reported candidate) are each significantly associated with lactase persistence. A new allele, -14009*G, has borderline association with lactase persistence, but loses significance after correction for multiple testing. Sequence diversity of the enhancer is significantly higher in the lactase persistent members of this and a second cohort compared with non-persistent members of the two groups (P = 7.7 x 10(-9) and 1.0 x 10(-3)). By comparing other loci, we show that this difference is not due to population sub-structure, demonstrating that increased diversity can accompany selection. This contrasts with the well-documented observation that positive selection decreases diversity by driving up the frequency of a single advantageous allele, and has implications for association studies.

  20. Combining two redox active rare earth elements for oxygen storage - electrical properties and defect chemistry of ceria-praseodymia single crystals.

    PubMed

    Michel, Kathrin; Eufinger, Jens-Peter; Ulbrich, Gregor; Lerch, Martin; Janek, Juergen; Elm, Matthias T

    2017-07-21

    Solid solutions of ceria and praseodymia are highly relevant for electrochemical applications as the incorporation of praseodymium into the ceria lattice shifts the range of mixed ionic electronic conductivity to higher oxygen partial pressures. To better understand the influence of praseodymium substitution on the transport processes and oxygen storage capacity in ceria, single crystals of ceria substituted with 14 mol% praseodymium have been investigated, obtaining the bulk properties without the influence of grain boundaries. Beside the characterization of structural changes caused by the substitution using XRD and Raman spectroscopy, the electrochemical transport properties of ceria-praseodymia single crystals are reported. Measurements of the total electrical conductivity, the ionic transference number and the non-stoichiometry of Ce0.85Pr0.14Zr0.01O2-δ were performed in an oxygen partial pressure range of -25 < lg[p(O2)/bar] < 0 at 700 °C. With praseodymium being redox active itself, higher values of oxygen deficiency and electrical conductivity than in pure ceria have been observed in the high oxygen partial pressure region, while no significant structural changes occur due to the similar ionic radii of both cations. From measurements of the impedance at different temperatures, the migration enthalpy for the electronic charge carriers has been determined. By analysing the non-stoichiometry at 700 °C using a defect chemical model it was also possible to determine the equilibrium constants of Pr and Ce reduction in Ce0.85Pr0.14Zr0.01O2-δ single crystals.

  1. Is there a difference in van der Waals interactions between rare gas atoms adsorbed on metallic and semiconducting single-walled carbon nanotubes?

    PubMed

    Chen, De-Li; Mandeltort, Lynn; Saidi, Wissam A; Yates, John T; Cole, Milton W; Johnson, J Karl

    2013-03-29

    The differences in the polarizabilities of metallic (M) and semiconducting (S) single-walled carbon nanotubes (SWNTs) might give rise to differences in adsorption potentials. We show from experiments and van der Waals--corrected density functional theory that the binding energies of Xe adsorbed on M- and S-SWNTs are nearly identical. Temperature programed desorption experiments of Xe on purified M- and S-SWNTs give similar peak temperatures, indicating that desorption kinetics and binding energies are independent of the type of SWNT. Binding energies computed from vdW-corrected density functional theory are in good agreement with experiments.

  2. Ambient Large-Scale Template-Mediated Synthesis of High-Aspect Ratio Single-Crystalline, Chemically Doped Rare-Earth Phosphate Nanowires for Bioimaging

    SciTech Connect

    Zhang, F.; Wong, S.

    2009-12-30

    A simple and effective template-mediated protocol has been developed for the large-scale, room-temperature preparation of high-aspect-ratio, single-crystalline Tb-doped CePO{sub 4} nanowires, measuring {approx}12 nm in diameter and over 10 {mu}m in length. Moreover, we also isolated sheaf-like bundles of nanostructures. The synthesis mechanism likely involved a crystal splitting step. The resulting nanowires demonstrated an intense redox-sensitive green photoluminescence, which was exploited, in addition to their inherently high biocompatibility and low toxicity, for potential applications in biological imaging and labeling of cells.

  3. Is there a Difference in Van Der Waals Interactions between Rare Gas Atoms Adsorbed on Metallic and Semiconducting Single-Walled Carbon Nanotubes?

    SciTech Connect

    Chen, De-Li; Mandeltort, Lynn; Saidi, Wissam A.; Yates, John T.; Cole, Milton W.; Johnson, J. Karl

    2013-03-01

    Differences in polarizabilities of metallic (M) and semiconducting (S) single-walled carbon nanotubes (SWNTs) might give rise to differences in adsorption potentials. We show from experiments and van der Waals-corrected density functional theory (DFT) that binding energies of Xe adsorbed on M- and S-SWNTs are nearly identical. Temperature programmed desorption of Xe on purified M- and S-SWNTs give similar peak temperatures, indicating that desorption kinetics and binding energies are independent of the type of SWNT. Binding energies computed from vdW-corrected DFT are in good agreement with experiments.

  4. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  5. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  6. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  7. β-SiH-containing tris(silazido) rare-earth complexes as homogeneous and grafted single-site catalyst precursors for hydroamination

    DOE PAGES

    Eedugurala, Naresh; Wang, Zhuoran; Yan, KaKing; ...

    2017-01-25

    A series of homoleptic rare-earth silazido compounds and their silica-grafted derivatives were prepared to compare spectroscopic and catalytic features under homogeneous and interfacial conditions. Trivalent tris(silazido) compounds Ln{N(SiHMe2)tBu}3 (Ln = Sc (1), Y (2), Lu (3)) are prepared in high yield by salt metathesis reactions. Solution-phase and solid-state characterization of 1–3 by NMR and IR spectroscopy and X-ray diffraction reveals Ln←H–Si interactions. These features are retained in solvent-coordinated 2·Et2O, 2·THF, and 3·THF. The change in spectroscopic features characterizing the secondary interactions (νSiH, 1JSiH) from the unactivated SiH in the silazane HN(SiHMe2)tBu follows the trend 3 > 2 > 1 ≈more » 2·Et2O > 2·THF ≈ 3·THF. Ligand lability follows the same pattern, with Et2O readily dissociating from 2·Et2O while THF is displaced only during surface grafting reactions. 1 and 2·THF graft onto mesoporous silica nanoparticles (MSN) to give Ln{N(SiHMe2)tBu}n@MSN (Ln = Sc (1@MSN), Y (2@MSN)) along with THF and protonated silazido as HN(SiHMe2)tBu and H2NtBu. The surface species are characterized by multinuclear and multidimensional solid-state (SS) NMR spectroscopic techniques, as well as diffuse reflectance FTIR, elemental analysis, and reaction stoichiometry. A key 1JSiH SSNMR measurement reveals that the grafted sites most closely resemble Ln·THF adducts, suggesting that siloxane coordination occurs in grafted compounds. These species catalyze the hydroamination/bicyclization of aminodialkenes, and both solution-phase and interfacial conditions provide the bicyclized product with equivalent cis:trans ratios. As a result, similar diastereoselectivities mediated by catalytic sites under the two conditions suggest similar effective environments.« less

  8. Dissecting biological "dark matter" with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth.

    PubMed

    Marcy, Yann; Ouverney, Cleber; Bik, Elisabeth M; Lösekann, Tina; Ivanova, Natalia; Martin, Hector Garcia; Szeto, Ernest; Platt, Darren; Hugenholtz, Philip; Relman, David A; Quake, Stephen R

    2007-07-17

    We have developed a microfluidic device that allows the isolation and genome amplification of individual microbial cells, thereby enabling organism-level genomic analysis of complex microbial ecosystems without the need for culture. This device was used to perform a directed survey of the human subgingival crevice and to isolate bacteria having rod-like morphology. Several isolated microbes had a 16S rRNA sequence that placed them in candidate phylum TM7, which has no cultivated or sequenced members. Genome amplification from individual TM7 cells allowed us to sequence and assemble >1,000 genes, providing insight into the physiology of members of this phylum. This approach enables single-cell genetic analysis of any uncultivated minority member of a microbial community.

  9. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth

    PubMed Central

    Marcy, Yann; Ouverney, Cleber; Bik, Elisabeth M.; Lösekann, Tina; Ivanova, Natalia; Martin, Hector Garcia; Szeto, Ernest; Platt, Darren; Hugenholtz, Philip; Relman, David A.; Quake, Stephen R.

    2007-01-01

    We have developed a microfluidic device that allows the isolation and genome amplification of individual microbial cells, thereby enabling organism-level genomic analysis of complex microbial ecosystems without the need for culture. This device was used to perform a directed survey of the human subgingival crevice and to isolate bacteria having rod-like morphology. Several isolated microbes had a 16S rRNA sequence that placed them in candidate phylum TM7, which has no cultivated or sequenced members. Genome amplification from individual TM7 cells allowed us to sequence and assemble >1,000 genes, providing insight into the physiology of members of this phylum. This approach enables single-cell genetic analysis of any uncultivated minority member of a microbial community. PMID:17620602

  10. Vidi, vini, vinci: External ophthalmomyiasis infection that occurred, and was diagnosed and treated in a single day: A rare case report

    PubMed Central

    Thakur, Kamlesh; Singh, Gagandeep; Chauhan, Smriti; Sood, Anuradha

    2009-01-01

    Ophthalmomyiasis is an infestation of eye with larvae or maggots of certain flies. Oestrus ovis (sheep nasal botfly) belonging to family Oestridae is the most common cause of human myiasis. We describe here an acute presentation of a case of external ophthalmomyiasis, i.e., infestation of conjunctiva due to first instar larvae of Oestrus ovis. In this case report the occurrence, diagnosis and treatment all took place in the setting of a single day. Prompt treatment by removal of larvae mechanically followed by instillation of antibiotic and steroid eye drops helped to prevent serious complications. The taxonomic identification of fly is also important as some fly species are capable of penetrating deeper tissues of eyes, which is sight threatening. PMID:20927210

  11. Fuel cell with ionization membrane

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  12. A chemical-spectrochemical method for the determination of rare earth elements and thorium in cerium minerals

    USGS Publications Warehouse

    Rose, H.J.; Murata, K.J.; Carron, M.K.

    1954-01-01

    In a combined chemical-spectrochemical procedure for quantitatively determining rare earth elements in cerium minerals, cerium is determined volumetrically, a total rare earths plus thoria precipitate is separated chemically, the ceria content of the precipitate is raised to 80??0 percent by adding pure ceria, and the resulting mixture is analyzed for lanthanum, praseodymium, neodymium, samarium, gadolinium, yttrium, and thorium spectrochemically by means of the d.c. carbon arc. Spectral lines of singly ionized cerium are used as internal standard lines in the spectrochemical determination which is patterned after Fassel's procedure [1]. Results of testing the method with synthetic mixtures of rare earths and with samples of chemically analyzed cerium minerals show that the coefficient of variation for a quadruplicate determination of any element does not exceed 5??0 (excepting yttrium at concentrations less than 1 percent) and that the method is free of serious systematic error. ?? 1954.

  13. Resonance ionization mass spectrometry for isotopic abundance measurements

    NASA Technical Reports Server (NTRS)

    Miller, C. M.

    1986-01-01

    Resonance ionization mass spectrometry (RIMS) is a relatively new laser-based technique for the determination of isotopic abundances. The resonance ionization process depends upon the stepwise absorption of photons from the laser, promoting atoms of the element of interest through progressively higher electronic states until an ion is formed. Sensitivity arises from the efficiency of the resonant absorption process when coupled with the power available from commercial laser sources. Selectivity derives naturally from the distinct electronic structure of different elements. This isobaric discrimination has provided the major impetus for development of the technique. Resonance ionization mass spectrometry was used for analysis of the isotopic abundances of the rare earth lutetium. Isobaric interferences from ytterbium severely effect the ability to measure small amounts of the neutron-deficient Lu isotopes by conventional mass spectrometric techniques. Resonance ionization for lutetium is performed using a continuous-wave laser operating at 452 nm, through a sequential two-photon process, with one photon exciting the intermediate resonance and the second photon causing ionization. Ion yields for microgram-sized quantities of lutetium lie between 10(6) and 10(7) ions per second, at overall ionization efficiencies approaching 10(-4). Discrimination factors against ytterbium greater than 10(6) have been measured. Resonance ionization for technetium is also being explored, again in response to an isobaric interference, molybdenum. Because of the relatively high ionization potential for Tc, three-photon, two-color RIMS processes are being developed.

  14. Magnetic structures and interplay between rare-earth Ce and Fe magnetism in single-crystal CeFeAsO

    SciTech Connect

    Zhang, Qiang; Tian, Wei; Li, Haifeng; Kim, Jong-Woo; Yan, Jiaqiang; McCallum, Robert William; Lograsso, Thomas A.; Zarestky, Jerel L.; Budko, Sergey L.; McQueeney, Robert J.; Vaknin, David

    2013-11-27

    Neutron and synchrotron resonant x-ray magnetic scattering (RXMS) complemented by heat capacity and resistivity measurements reveal the evolution of the magnetic structures of Fe and Ce sublattices in a CeFeAsO single crystal. The RXMS of magnetic reflections at the Ce LII edge shows a magnetic transition that is specific to the Ce antiferromagnetic long-range ordering at TCe≈ 4 K with short-range Ce ordering above TCe, whereas neutron diffraction measurements of a few magnetic reflections indicate a transition at T*≈ 12 K with an unusual order parameter. Detailed order-parameter measurements on several magnetic reflections by neutrons show a weak anomaly at 4 K that we associate with the Ce ordering. The successive transitions at TCe and T* can also be clearly identified by two anomalies in heat capacity and resistivity measurements. The higher transition temperature at T*≈ 12 K is mainly ascribed to Fe spin reorientation transition, below which Fe spins rotate uniformly and gradually in the ab plane. The Fe spin reorientation transition and short-range Ce ordering above TCe reflect the strong Fe-Ce couplings prior to long-range ordering of the Ce. The evolution of the intricate magnetic structures in CeFeAsO going through T* and TCe is proposed.

  15. Isotope Effect in Tunneling Ionization of Neutral Hydrogen Molecules

    NASA Astrophysics Data System (ADS)

    Wang, X.; Xu, H.; Atia-Tul-Noor, A.; Hu, B. T.; Kielpinski, D.; Sang, R. T.; Litvinyuk, I. V.

    2016-08-01

    It has been recently predicted theoretically that due to nuclear motion light and heavy hydrogen molecules exposed to strong electric field should exhibit substantially different tunneling ionization rates [O. I. Tolstikhin, H. J. Worner, and T. Morishita, Phys. Rev. A 87, 041401(R) (2013)]. We studied that isotope effect experimentally by measuring relative ionization yields for each species in a mixed H2/D2 gas jet interacting with intense femtosecond laser pulses. In a reaction microscope apparatus, we detected ionic fragments from all contributing channels (single ionization, dissociation, and sequential double ionization) and determined the ratio of total single ionization yields for H2 and D2 . The measured ratio agrees quantitatively with the prediction of the generalized weak-field asymptotic theory in an apparent failure of the frozen-nuclei approximation.

  16. Atmospheric Ionization Measurements

    NASA Astrophysics Data System (ADS)

    Slack, Thomas; Mayes, Riley

    2015-04-01

    The measurement of atmospheric ionization is a largely unexplored science that potentially holds the key to better understanding many different geophysical phenomena through this new and valuable source of data. Through the LaACES program, which is funded by NASA through the Louisiana Space Consortium, students at Loyola University New Orleans have pursued the goal of measuring high altitude ionization for nearly three years, and were the first to successfully collect ionization data at altitudes over 30,000 feet using a scientific weather balloon flown from the NASA Columbia Scientific Ballooning Facility in Palestine, TX. In order to measure atmospheric ionization, the science team uses a lightweight and highly customized sensor known as a Gerdien condenser. Among other branches of science the data is already being used for, such as the study of aerosol pollution levels in the atmosphere, the data may also be useful in meteorology and seismology. Ionization data might provide another variable with which to predict weather or seismic activity more accurately and further in advance. Thomas Slack and Riley Mayes have served as project managers for the experiment, and have extensive knowledge of the experiment from the ground up. LaSPACE Louisiana Space Consortium.

  17. Fast quantitative ROS detection based on dual-color single rare-earth nanoparticle imaging reveals signaling pathway kinetics in living cells.

    PubMed

    Abdesselem, M; Ramodiharilafy, R; Devys, L; Gacoin, T; Alexandrou, A; Bouzigues, C I

    2017-01-05

    Reactive oxygen species (ROS), and notably hydrogen peroxide H2O2, are cellular second messengers that are known to control a variety of signaling processes. They can finely regulate the dynamics of signal transduction, cell response and ultimately tissue function. However, there are very few local, quantitative and time-resolved descriptions of their cellular organization at the scale of molecular reactions, due to the lack of efficient sensors. We thus developed a novel nanoprobe-based ROS detection system using the simultaneous imaging of single lanthanide nanoparticles (YAG:Ce and chemically reduced Gd0.6Eu0.4VO4). We reveal that both particle luminescence signals are controlled by their H2O2 local environment. By simultaneously tracking their luminescence, we devised a new approach providing a quantitative (0.5 μM accuracy in the 1-10 μM range) H2O2 measurement with a 500 ms time resolution, surpassing all existing methods by two orders of magnitude, and revealing previously inaccessible molecular events controlling ROS concentration. We used this nanoprobe in living cells to track fast signaling pathways, by measuring the dynamics of H2O2 intracellular concentrations, induced by endothelin-1 (ET-1) stimulation. We thus revealed the mechanisms controlling ROS production, notably the activity modulation of the ROS-producing enzyme NADPH oxidase by fast (<10 s) EGFR transactivation, and measured quantitatively their kinetic parameters through a minimal analytical model. Altogether, these results illustrate how lanthanide nanoparticle-based sensors are a powerful tool to dynamically probe molecular mechanisms shaping the oxidative cell response.

  18. Dynamics of cluster dissociation following multiphoton ionization

    SciTech Connect

    Castleman, A.W.

    1986-01-01

    A major advance in the study of unimolecular dissociation and the spectroscopy of clusters has become available through the use of multiphoton ionization coupled with a reflectron introduced into the drift region of a time-of-flight mass spectrometer. Using single and two-color tunable pulsed lasers, the excess energy introduced into a cluster can be well controlled. The power of this method is demonstrated by the results of recent investigations of hydrogen-bonded clusters which, following ionization, lead to an internal ion-molecule reaction, and cluster fragmentation. The role of dissociation and the influence of the thermochemical stability of cluster ions in effecting the appearance of magic numbers in certain cluster distributions is discussed. The application of this method in determining ionization potentials of probe molecules following successive clustering with a solvent species is also presented.

  19. Extensive Diversity of Ionizing-Radiation-Resistant Bacteria Recovered from Sonoran Desert Soil and Description of Nine New Species of the Genus Deinococcus Obtained from a Single Soil Sample†

    PubMed Central

    Rainey, Fred A.; Ray, Keren; Ferreira, Margarida; Gatz, Bridget Z.; Nobre, M. Fernanda; Bagaley, Danielle; Rash, Brian A.; Park, Mie-Jung; Earl, Ashlee M.; Shank, Nicole C.; Small, Alanna M.; Henk, Margaret C.; Battista, John R.; Kämpfer, Peter; da Costa, Milton S.

    2005-01-01

    The ionizing-radiation-resistant fractions of two soil bacterial communities were investigated by exposing an arid soil from the Sonoran Desert and a nonarid soil from a Louisiana forest to various doses of ionizing radiation using a 60Co source. The numbers of surviving bacteria decreased as the dose of gamma radiation to which the soils were exposed increased. Bacterial isolates surviving doses of 30 kGy were recovered from the Sonoran Desert soil, while no isolates were recovered from the nonarid forest soil after exposure to doses greater than 13 kGy. The phylogenetic diversities of the surviving culturable bacteria were compared for the two soils using 16S rRNA gene sequence analysis. In addition to a bacterial population that was more resistant to higher doses of ionizing radiation, the diversity of the isolates was greater in the arid soil. The taxonomic diversity of the isolates recovered was found to decrease as the level of ionizing-radiation exposure increased. Bacterial isolates of the genera Deinococcus, Geodermatophilus, and Hymenobacter were still recovered from the arid soil after exposure to doses of 17 to 30 kGy. The recovery of large numbers of extremely ionizing-radiation-resistant bacteria from an arid soil and not from a nonarid soil provides further ecological support for the hypothesis that the ionizing-radiation resistance phenotype is a consequence of the evolution of other DNA repair systems that protect cells against commonly encountered environmental stressors, such as desiccation. The diverse group of bacterial strains isolated from the arid soil sample included 60 Deinococcus strains, the characterization of which revealed nine novel species of this genus. PMID:16151108

  20. Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample.

    PubMed

    Rainey, Fred A; Ray, Keren; Ferreira, Margarida; Gatz, Bridget Z; Nobre, M Fernanda; Bagaley, Danielle; Rash, Brian A; Park, Mie-Jung; Earl, Ashlee M; Shank, Nicole C; Small, Alanna M; Henk, Margaret C; Battista, John R; Kämpfer, Peter; da Costa, Milton S

    2005-09-01

    The ionizing-radiation-resistant fractions of two soil bacterial communities were investigated by exposing an arid soil from the Sonoran Desert and a nonarid soil from a Louisiana forest to various doses of ionizing radiation using a (60)Co source. The numbers of surviving bacteria decreased as the dose of gamma radiation to which the soils were exposed increased. Bacterial isolates surviving doses of 30 kGy were recovered from the Sonoran Desert soil, while no isolates were recovered from the nonarid forest soil after exposure to doses greater than 13 kGy. The phylogenetic diversities of the surviving culturable bacteria were compared for the two soils using 16S rRNA gene sequence analysis. In addition to a bacterial population that was more resistant to higher doses of ionizing radiation, the diversity of the isolates was greater in the arid soil. The taxonomic diversity of the isolates recovered was found to decrease as the level of ionizing-radiation exposure increased. Bacterial isolates of the genera Deinococcus, Geodermatophilus, and Hymenobacter were still recovered from the arid soil after exposure to doses of 17 to 30 kGy. The recovery of large numbers of extremely ionizing-radiation-resistant bacteria from an arid soil and not from a nonarid soil provides further ecological support for the hypothesis that the ionizing-radiation resistance phenotype is a consequence of the evolution of other DNA repair systems that protect cells against commonly encountered environmental stressors, such as desiccation. The diverse group of bacterial strains isolated from the arid soil sample included 60 Deinococcus strains, the characterization of which revealed nine novel species of this genus.

  1. Multiphoton ionization and third-harmonic generation in atoms and molecules

    SciTech Connect

    Miller, J.C.; Compton, R.N.

    1982-01-01

    We will discuss recent experiments on multiphoton ionization and third-harmonic generation in rare gases and small molecules using focused laser power densities of 10/sup 9/ to 10/sup 11/ W/cm/sup 2/. Also, some elementary experiments using vacuum ultraviolet light generated by frequency tripling in xenon and krypton will be described. These experiments include absorption and ionization studies using vacuum ultraviolet radiation as well as two-photon ionization using one vacuum ultraviolet photon and one laser photon.

  2. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  3. NMR Metabolomics in Ionizing Radiation

    SciTech Connect

    Hu, Jian Z.; Xiao, Xiongjie; Hu, Mary Y.

    2016-09-08

    Ionizing radiation is an invisible threat that cannot be seen, touched or smelled and exist either as particles or waves. Particle radiation can take the form of alpha, beta or neutrons, as well as high energy space particle radiation such as high energy iron, carbon and proton radiation, etc. (1) Non-particle radiation includes gamma- and x-rays. Publically, there is a growing concern about the adverse health effects due to ionizing radiation mainly because of the following facts. (a) The X-ray diagnostic images are taken routinely on patients. Even though the overall dosage from a single X-ray image such as a chest X-ray scan or a CT scan, also called X-ray computed tomography (X-ray CT), is low, repeated usage can cause serious health consequences, in particular with the possibility of developing cancer (2, 3). (b) Human space exploration has gone beyond moon and is planning to send human to the orbit of Mars by the mid-2030s. And a landing on Mars will follow.

  4. Dynamical core polarization in strong-field ionization

    NASA Astrophysics Data System (ADS)

    Zhao, Zengxiu; Zhang, Bin; Yuan, Jianmin

    2014-05-01

    Core polarization plays an important role in both ionization and high harmonic generation processes of molecules driven by strong laser fields. With our recently developed three-dimensional time-dependent Hartree-Fock method, we investigate the orientation-dependent ionization of CO molecules. It is found that the full ionization results are in good agreement with the recent experiment. The comparisons between the full method and the single-active-orbital method show that although the core electrons are generally more tightly bound and contribute little to the total ionization yields, their dynamics cannot be ignored, which effectively modifies the behavior of electrons in the HOMO. By incorporating it into the SAO method, we identify that the dynamic core polarization plays an important role in the tunneling ionization of CO molecules, which is helpful for the future development of the tunneling ionization theory beyond the single active electron approximation. In order to further verify the role of core polarization, exact calculations are performed for the ionization of two-electron model systems by strong laser fields. The limitations of HF and the SAE are quantified and the tunneling ionization rate is shown improved with the core-polarization induced correction.

  5. UV-visible Faraday rotators based on rare-earth fluoride single crystals: LiREF4 (RE = Tb, Dy, Ho, Er and Yb), PrF3 and CeF3.

    PubMed

    Vasyliev, Valentyn; Villora, Encarnacíon G; Nakamura, Masaru; Sugahara, Yoshiyuki; Shimamura, Kiyoshi

    2012-06-18

    High optical quality LiREF(4) (RE = Tb(3+), Dy(3+), Ho(3+), Er(3+) and Yb(3+)), PrF(3) and CeF(3) single crystals have been grown by the Czochralski technique. Their magneto-optical properties have been measured and analyzed in detail in the ultraviolet-visible wavelength region, and their figures of merit as Faraday rotators have been determined. CeF(3) presents superior properties above 300 nm, showing a figure of merit higher than that of the reference material, terbium-gallium-garnet, which is nowadays used in the visible-near infrared. PrF(3) is the best rotator for the 220-300 nm range. Towards shorter wavelength and in the vacuum ultraviolet, it is shown that the LiREF(4) crystals are unique rotators. Overall, the rare-earth fluoride single crystals studied here exhibit better properties than other materials considered so far, and therefore they have potential to cover the increasing demand for new and improved Faraday rotators in the ultraviolet-visible wavelength region.

  6. Oxo-functionalization and reduction of the uranyl ion through lanthanide-element bond homolysis: synthetic, structural, and bonding analysis of a series of singly reduced uranyl-rare earth 5f1-4f(n) complexes.

    PubMed

    Arnold, Polly L; Hollis, Emmalina; Nichol, Gary S; Love, Jason B; Griveau, Jean-Christophe; Caciuffo, Roberto; Magnani, Nicola; Maron, Laurent; Castro, Ludovic; Yahia, Ahmed; Odoh, Samuel O; Schreckenbach, Georg

    2013-03-13

    The heterobimetallic complexes [{UO2Ln(py)2(L)}2], combining a singly reduced uranyl cation and a rare-earth trication in a binucleating polypyrrole Schiff-base macrocycle (Pacman) and bridged through a uranyl oxo-group, have been prepared for Ln = Sc, Y, Ce, Sm, Eu, Gd, Dy, Er, Yb, and Lu. These compounds are formed by the single-electron reduction of the Pacman uranyl complex [UO2(py)(H2L)] by the rare-earth complexes Ln(III)(A)3 (A = N(SiMe3)2, OC6H3Bu(t)2-2,6) via homolysis of a Ln-A bond. The complexes are dimeric through mutual uranyl exo-oxo coordination but can be cleaved to form the trimetallic, monouranyl "ate" complexes [(py)3LiOUO(μ-X)Ln(py)(L)] by the addition of lithium halides. X-ray crystallographic structural characterization of many examples reveals very similar features for monomeric and dimeric series, the dimers containing an asymmetric U2O2 diamond core with shorter uranyl U═O distances than in the monomeric complexes. The synthesis by Ln(III)-A homolysis allows [5f(1)-4f(n)]2 and Li[5f(1)-4f(n)] complexes with oxo-bridged metal cations to be made for all possible 4f(n) configurations. Variable-temperature SQUID magnetometry and IR, NIR, and EPR spectroscopies on the complexes are utilized to provide a basis for the better understanding of the electronic structure of f-block complexes and their f-electron exchange interactions. Furthermore, the structures, calculated by restricted-core or all-electron methods, are compared along with the proposed mechanism of formation of the complexes. A strong antiferromagnetic coupling between the metal centers, mediated by the oxo groups, exists in the U(V)Sm(III) monomer, whereas the dimeric U(V)Dy(III) complex was found to show magnetic bistability at 3 K, a property required for the development of single-molecule magnets.

  7. Microchip sonic spray ionization.

    PubMed

    Pól, Jaroslav; Kauppila, Tiina J; Haapala, Markus; Saarela, Ville; Franssila, Sami; Ketola, Raimo A; Kotiaho, Tapio; Kostiainen, Risto

    2007-05-01

    The first microchip version of sonic spray ionization (SSI) as an atmospheric pressure ionization source for mass spectrometry (MS) is presented. The microchip used for SSI has recently been developed in our laboratory, and it has been used before as an atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) source. Now the ionization is achieved simply by applying high (sonic) speed nebulizer gas, without heat, corona discharge, or high voltage. The microchip SSI was applied to the analysis of tetra-N-butylammonium, verapamil, testosterone, angiotensin I, and ibuprofen. The limits of detection were in the range of 15 nM to 4 microM. The technique was found to be highly dependent on the position of the chip toward the mass spectrometer inlet, and on the gas and the sample solution flow rates. The microchip SSI provided dynamic linearity following a pattern similar to that used with electrospray, good quantitative repeatability (RSD=16%), and long-term signal stability.

  8. Alkali ionization detector

    DOEpatents

    Hrizo, John; Bauerle, James E.; Witkowski, Robert E.

    1982-01-01

    A calibration filament containing a sodium-bearing compound is included in combination with the sensing filament and ion collector plate of a sodium ionization detector to permit periodic generation of sodium atoms for the in-situ calibration of the detector.

  9. A mechanism for ionization of nonvolatile compounds in mass spectrometry: considerations from MALDI and inlet ionization.

    PubMed

    Trimpin, Sarah; Wang, Beixi; Inutan, Ellen D; Li, Jing; Lietz, Christopher B; Harron, Andrew; Pagnotti, Vincent S; Sardelis, Diana; McEwen, Charles N

    2012-10-01

    Mechanistic arguments relative to matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) address observations that predominately singly charged ions are detected. However, recently a matrix assisted laser ablation method, laserspray ionization (LSI), was introduced that can use the same sample preparation and laser as MALDI, but produce highly charged ions from proteins. In MALDI, ions are generated from neutral molecules by the photon energy provided to a matrix, while in LSI ions are produced inside a heated inlet tube linking atmospheric pressure and the first vacuum region of the mass spectrometer. Some LSI matrices also produce highly charged ions with MALDI ion sources operated at intermediate pressure or high vacuum. The operational similarity of LSI to MALDI, and the large difference in charge states observed by these methods, provides information of fundamental importance to proposed ionization mechanisms for LSI and MALDI. Here, we present data suggesting that the prompt and delayed ionization reported for vacuum MALDI are both fast processes relative to producing highly charged ions by LSI. The energy supplied to produce these charged clusters/droplets as well as their size and time available for desolvation are determining factors in the charge states of the ions observed. Further, charged droplets/clusters may be a common link for ionization of nonvolatile compounds by a variety of MS ionization methods, including MALDI and LSI.

  10. Benchmarking Ionizing Space Environment Models

    NASA Astrophysics Data System (ADS)

    Bourdarie, S.; Inguimbert, C.; Standarovski, D.; Vaillé, J.-R.; Sicard-Piet, A.; Falguere, D.; Ecoffet, R.; Poivey, C.; Lorfèvre, E.

    2017-08-01

    In-flight feedback data are collected, such as displacement damage doses, ionizing doses, and cumulated Single Event upset (SEU) on board various space vehicles and are compared to predictions performed with: 1) proton measurements performed with spectrometers data on board the same spacecraft if any and 2) protons spectrum predicted by the legacy AP8min model and the AP9 and Onera Proton Altitude Low models. When an accurate representation of the 3-D spacecraft shielding as well as appropriate ground calibrations are considered in the calculations, such comparisons provide powerful metrics to investigate engineering model accuracy. To describe >30 MeV trapped protons fluxes, the AP8 min model is found to provide closer predictions to observations than AP9 V1.30.001 (mean and perturbed mean).

  11. Rare Earth Polyoxometalates.

    PubMed

    Boskovic, Colette

    2017-09-05

    Longstanding and important applications make use of the chemical and physical properties of both rare earth metals and polyoxometalates of early transition metals. The catalytic, optical, and magnetic features of rare earth metal ions are well-known, as are the reversible multielectron redox and photoredox capabilities of polyoxomolybdates and polyoxotungstates. The combination of rare earth ions and polyoxometalates in discrete molecules and coordination polymers is of interest for the unique combination of chemical and physical properties that can arise. This Account surveys our efforts to synthesize and investigate compounds with rare earth ions and polyoxometalates (RE-POMs), sometimes with carboxylate-based organic coligands. Our general synthetic approach is "bottom-up", which affords well-defined nanoscale molecules, typically in crystalline form and amenable to single-crystal X-ray diffraction for structure determination. Our particular focus is on elucidation of the physical properties conferred by the different structural components with a view to ultimately being able to tune these properties chemically. For this purpose, we employ a variety of spectroscopic, magnetochemical, electrochemical, and scattering techniques in concert with theoretical modeling and computation. Studies of RE-POM single-molecule magnets (SMMs) have utilized magnetic susceptibility, inelastic neutron scattering, and ab initio calculations. These investigations have allowed characterization of the crystal field splitting of the rare earth(III) ions that is responsible for the SMM properties of slow magnetic relaxation and magnetization quantum tunneling. Such SMMs are promising for applications in quantum computing and molecular spintronics. Photophysical measurements of a family of hybrid RE-POMs with organic ligands have afforded insights into sensitization of Tb(III) and Eu(III) emission through both organic and polyoxometalate chromophores in the same molecule. Detailed

  12. Modulated voltage metastable ionization detector

    NASA Technical Reports Server (NTRS)

    Carle, G. C.; Kojiro, D. R.; Humphrey, D. E. (Inventor)

    1985-01-01

    The output current from a metastable ionization detector (MID) is applied to a modulation voltage circuit. An adjustment is made to balance out the background current, and an output current, above background, is applied to an input of a strip chart recorder. For low level concentrations, i.e., low detected output current, the ionization potential will be at a maximum and the metastable ionization detector will operate at its most sensitive level. When the detected current from the metastable ionization detector increases above a predetermined threshold level, a voltage control circuit is activated which turns on a high voltage transistor which acts to reduce the ionization potential. The ionization potential applied to the metastable ionization detector is then varied so as to maintain the detected signal level constant. The variation in ionization potential is now related to the concentration of the constituent and a representative amplitude is applied to another input of said strip chart recorder.

  13. Multiple ionization in the earlier stages of water radiolysis.

    PubMed

    Olivera, G H; Caraby, C; Jardin, P; Cassimi, A; Adoui, L; Gervais, B

    1998-08-01

    We have studied the fragmentation of water vapour molecules induced by collision with a Xe44+ beam at 6.7 MeV/u. From the measurement of the fragment time of flight, we show that the amount of fragmentation due to multiple ionization is very large. In the case of single ionization, we are able to reproduce accurately the experimental cross sections by calculating for each molecular level the single-ionization cross section in the framework of the CDW-EIS theory and with a diagram of dissociation modified with respect to the diagram obtained in the case of dipolar ionization. By using qualitative arguments based on the ability of the medium to neutralize a charged species, we tentatively extend our result to liquid water. From our analysis, we show that ionizations involving three or more ejected electrons could enhance the oxygen production. For the physicochemical phase we estimate that the rate of oxygen production by multiple ionization represents approximately 18% of the OH rate produced by single ionization.

  14. Dispersal of molecular clouds by ionizing radiation

    NASA Astrophysics Data System (ADS)

    Walch, S. K.; Whitworth, A. P.; Bisbas, T.; Wünsch, R.; Hubber, D.

    2012-11-01

    Feedback from massive stars is believed to be a key element in the evolution of molecular clouds. We use high-resolution 3D smoothed particle hydrodynamics simulations to explore the dynamical effects of a single O7 star-emitting ionizing photons at 1049 s-1 and located at the centre of a molecular cloud with mass 104 M⊙ and radius 6.4 pc; we also perform comparison simulations in which the ionizing star is removed. The initial internal structure of the cloud is characterized by its fractal dimension, which we vary between D=2.0 and 2.8, and the standard deviation of the approximately log-normal initial densityPDF, which is σ10 = 0.38 for all clouds. (i) As regards star formation, in the short term ionizing feedback is positive, in the sense that star formation occurs much more quickly (than in the comparison simulations), in gas that is compressed by the high pressure of the ionized gas. However, in the long term ionizing feedback is negative, in the sense that most of the cloud is dispersed with an outflow rate of up to ˜10-2 M⊙yr-1, on a time-scale comparable with the sound-crossing time for the ionized gas (˜1-2 Myr ), and triggered star formation is therefore limited to a few per cent of the cloud's mass. We will describe in greater detail the statistics of the triggered star formation in a companion paper. (ii) As regards the morphology of the ionization fronts (IFs) bounding the H II region and the systematics of outflowing gas, we distinguish two regimes. For low D≲2.2, the initial cloud is dominated by large-scale structures, so the neutral gas tends to be swept up into a few extended coherent shells, and the ionized gas blows out through a few large holes between these shells; we term these H II regions shell dominated. Conversely, for high D≳2.6, the initial cloud is dominated by small-scale structures, and these are quickly overrun by the advancing IF, thereby producing neutral pillars protruding into the H II region, whilst the ionized gas

  15. Multiphoton ionization of uranium hexafluoride

    NASA Astrophysics Data System (ADS)

    Armstrong, D. P.; Harkins, D. A.; Compton, R. N.; Ding, D.

    1994-01-01

    Multiphoton ionization (MPI) time-of-flight mass spectroscopy (TOFMS) and photoelectron spectroscopy (PES) studies of UF6 are reported using focused light from the Nd:YAG laser fundamental (λ=1064 nm) and its harmonics (λ=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF+x fragment ions, even at the lowest laser power densities at which signal could be detected. In general, the doubly charged uranium ion (U2+) intensity is much greater than that of the singly charged uranium ion (U+). For the case of the tunable dye laser experiments, the Un+ (n=1-4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The MPI-PES studies reveal only very slow electrons (≤0.5 eV) for all wavelengths investigated. The dominance of the U2+ ion, the absence or very small intensities of UF+x (x=1-3) fragments, the unstructured wavelength dependence, and the preponderance of slow electrons all indicate that mechanisms may exist other than ionization of bare U atoms following the stepwise photodissociation of F atoms from the parent molecule. The data also argue against stepwise photodissociation of UF+x (x=5,6) ions. Neither of the traditional MPI mechanisms (``neutral ladder'' or the ``ionic ladder'') are believed to adequately describe the ionization phenomena observed. We propose that the multiphoton excitation of UF6 under these experimental conditions results in a highly excited molecule, superexcited UF6**. The excitation of highly excited UF6** is proposed to be facilitated by the well known ``giant resonance,'' whose energy level lies in the range of 12-14 eV above that of ground state UF6. The highly excited molecule then primarily dissociates, via multiple channels, into Un+, UF+x, fluorine atoms, and ``slow'' electrons, although dissociation

  16. Comments on ionization cooling channels

    DOE PAGES

    Neuffer, David

    2017-09-25

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the linear ionization cooling theory developed previously. In this study, we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  17. Comments on ionization cooling channels

    NASA Astrophysics Data System (ADS)

    Neuffer, D.

    2017-09-01

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the linear ionization cooling theory developed previously. In this paper we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  18. Optical Imaging of Ionizing Radiation from Clinical Sources.

    PubMed

    Shaffer, Travis M; Drain, Charles Michael; Grimm, Jan

    2016-11-01

    Nuclear medicine uses ionizing radiation for both in vivo diagnosis and therapy. Ionizing radiation comes from a variety of sources, including x-rays, beam therapy, brachytherapy, and various injected radionuclides. Although PET and SPECT remain clinical mainstays, optical readouts of ionizing radiation offer numerous benefits and complement these standard techniques. Furthermore, for ionizing radiation sources that cannot be imaged using these standard techniques, optical imaging offers a unique imaging alternative. This article reviews optical imaging of both radionuclide- and beam-based ionizing radiation from high-energy photons and charged particles through mechanisms including radioluminescence, Cerenkov luminescence, and scintillation. Therapeutically, these visible photons have been combined with photodynamic therapeutic agents preclinically for increasing therapeutic response at depths difficult to reach with external light sources. Last, new microscopy methods that allow single-cell optical imaging of radionuclides are reviewed. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  19. Optical Imaging of Ionizing Radiation from Clinical Sources

    PubMed Central

    Shaffer, Travis M.; Drain, Charles Michael

    2016-01-01

    Nuclear medicine uses ionizing radiation for both in vivo diagnosis and therapy. Ionizing radiation comes from a variety of sources, including x-rays, beam therapy, brachytherapy, and various injected radionuclides. Although PET and SPECT remain clinical mainstays, optical readouts of ionizing radiation offer numerous benefits and complement these standard techniques. Furthermore, for ionizing radiation sources that cannot be imaged using these standard techniques, optical imaging offers a unique imaging alternative. This article reviews optical imaging of both radionuclide- and beam-based ionizing radiation from high-energy photons and charged particles through mechanisms including radioluminescence, Cerenkov luminescence, and scintillation. Therapeutically, these visible photons have been combined with photodynamic therapeutic agents preclinically for increasing therapeutic response at depths difficult to reach with external light sources. Last, new microscopy methods that allow single-cell optical imaging of radionuclides are reviewed. PMID:27688469

  20. Angiomatous Hamartoma - A Rare Presentation

    PubMed Central

    Wadhera, Raman; Kaintura, Madhuri; Bhukar, Sandeep; Pillai, Dheeraj Shashikumar

    2016-01-01

    Eccrine Angiomatous Hamartoma (EAH) is a benign rare skin neoplasm characterised histologically by abnormal proliferation of sweat glands and surrounding capillaries and other dermal elements like fatty lobules and hair. It usually presents at birth or in early childhood in the form of solitary nodules mostly affecting the extremities. Here, we report a case of angiomatous hamartoma over the face which presented as a cystic swelling in preauricular region in a 55-year-old man. The late onset and a rare site for presentation of EAH prompted us to report the case. There is not even a single case of EAH arising in the “preauricular” region, reported. PMID:27790478

  1. Desorption/ionization on silicon nanowires.

    PubMed

    Go, E P; Apon, J V; Luo, G; Saghatelian, A; Daniels, R H; Sahi, V; Dubrow, R; Cravatt, B F; Vertes, A; Siuzdak, G

    2005-03-15

    Dense arrays of single-crystal silicon nanowires (SiNWs) have been used as a platform for laser desorption/ionization mass spectrometry of small molecules, peptides, protein digests, and endogenous and xenobiotic metabolites in biofluids. Sensitivity down to the attomole level has been achieved on the nanowire surfaces by optimizing laser energy, surface chemistry, nanowire diameter, length, and growth orientation. An interesting feature of the nanowire surface is that it requires lower laser energy as compared to porous silicon and MALDI to desorb/ionize small molecules, therefore reducing background ion interference. Taking advantage of their high surface area and fluid wicking capabilities, SiNWs were used to perform chromatographic separation followed by mass analysis of the separated molecules providing a unique platform that can integrate separation and mass spectrometric detection on a single surface.

  2. Gridded electron reversal ionizer

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor)

    1993-01-01

    A gridded electron reversal ionizer forms a three dimensional cloud of zero or near-zero energy electrons in a cavity within a filament structure surrounding a central electrode having holes through which the sample gas, at reduced pressure, enters an elongated reversal volume. The resultant negative ion stream is applied to a mass analyzer. The reduced electron and ion space-charge limitations of this configuration enhances detection sensitivity for material to be detected by electron attachment, such as narcotic and explosive vapors. Positive ions may be generated by generating electrons having a higher energy, sufficient to ionize the target gas and pulsing the grid negative to stop the electron flow and pulsing the extraction aperture positive to draw out the positive ions.

  3. Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  4. Hysteresis of ionization waves

    SciTech Connect

    Dinklage, A.; Bruhn, B.; Testrich, H.; Wilke, C.

    2008-06-15

    A quasi-logistic, nonlinear model for ionization wave modes is introduced. Modes are due to finite size of the discharge and current feedback. The model consists of competing coupled modes and it incorporates spatial wave amplitude saturation. The hysteresis of wave mode transitions under current variation is reproduced. Sidebands are predicted by the model and found in experimental data. The ad hoc model is equivalent to a general--so-called universal--approach from bifurcation theory.

  5. The MICE Demonstration of Ionization Cooling

    SciTech Connect

    Pasternak, J.; Blackmore, V.; Hunt, C.; Lagrange, J-B.; Long, K.; Collomb, N.; Snopok, P.

    2015-05-01

    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions at energies of up to several TeV at the Muon Collider. The International Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization cooling channel, the muon beam passes through a material (the absorber) in which it loses energy. The energy lost is then replaced using RF cavities. The combined effect of energy loss and re-acceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised project plan, which has received the formal endorsement of the international MICE Project Board and the international MICE Funding Agency Committee, will deliver a demonstration of ionization cooling by September 2017. In the revised configuration a central lithium-hydride absorber provides the cooling effect. The magnetic lattice is provided by the two superconducting focus coils and acceleration is provided by two 201 MHz single-cavity modules. The phase space of the muons entering and leaving the cooling cell will be measured by two solenoidal spectrometers. All the superconducting magnets for the ionization cooling demonstration are available at the Rutherford Appleton Laboratory and the first single-cavity prototype is under test in the MuCool Test Area at Fermilab. The design of the cooling demonstration experiment will be described together with a summary of the performance of each of its components. The cooling performance of the revised configuration will also be presented.

  6. STORAGE RING CROSS SECTION MEASUREMENTS FOR ELECTRON IMPACT IONIZATION OF Fe{sup 12+} FORMING Fe{sup 13+} AND Fe{sup 14+}

    SciTech Connect

    Hahn, M.; Novotny, O.; Savin, D. W.; Grieser, M.; Krantz, C.; Repnow, R.; Wolf, A.; Lestinsky, M.; Mueller, A.; Schippers, S.

    2011-07-10

    We report electron impact ionization cross section measurements for electron impact single ionization of Fe{sup 12+} forming Fe{sup 13+} and electron impact double ionization of Fe{sup 12+} forming Fe{sup 14+}. These are the first electron impact ionization data for any Si-like ion uncontaminated by an unknown metastable fraction. Recent distorted wave calculations agree with our single ionization results to within {approx}15%. Double ionization is dominated by inner shell ionization of a 2l electron resulting in autoionization of a second electron as the inner shell hole is filled.

  7. An EPR study of rare-earth impurities in single crystals of the zircon-structure orthophosphates ScPO4, YPO4, and LuPO4 a)

    NASA Astrophysics Data System (ADS)

    Abraham, M. M.; Boatner, L. A.; Ramey, J. O.; Rappaz, M.

    1983-01-01

    Ceramic materials based on the lanthanide orthophosphate series of compounds are known to be highly stable both chemically and physically. These characteristics have recently led to an extensive evaluation of these substances as potential primary containment media for the disposal of high-level radioactive wastes. Since one important class of high-level nuclear waste (i.e., reprocessed light water reactor spent fuel) contains a relatively high concentration of various lanthanides, the solid state chemical properties of the mixed rare-earth and actinide-doped orthophosphates are of considerable practical interest. The Kramers' ions Ce3+, Nd3+, Dy3+, Er3+, Yb3+, and U3+ have been incorporated in single crystals of the tetragonal symmetry hosts ScPO4, YPO4, and LuPO4, and EPR spectroscopy has been used to verify the substitutional behavior of these ions and to investigate their electronic ground state properties. Principal axial spectroscopic splitting factors and hyperfine parameters were determined. These results are compared to those obtained for the same paramagnetic ions in other hosts characterized by crystal fields with tetragonal symmetry at the impurity-ion site.

  8. Axisymmetric model of the ionized gas in the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Rubin, R. H.; Simpson, J. P.; Haas, M. R.; Erickson, E. F.

    1991-01-01

    New ionization and thermal equilibrium models for the ionized gas in the Orion Nebula with an axisymmetric two-dimensional 'blister' geometry/density distribution are presented. The HII region is represented more realistically than in previous models, while the physical detail of the microphysics and radiative transfer of the earlier spherical modeling is maintained. The predicted surface brightnesses are compared with observations for a large set of lines at different positions to determine the best-fitting physical parameters. The model explains the strong singly ionized line emission along the lines of sight near the Trapezium.

  9. Axisymmetric model of the ionized gas in the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Rubin, R. H.; Simpson, J. P.; Haas, M. R.; Erickson, E. F.

    1991-01-01

    New ionization and thermal equilibrium models for the ionized gas in the Orion Nebula with an axisymmetric two-dimensional 'blister' geometry/density distribution are presented. The HII region is represented more realistically than in previous models, while the physical detail of the microphysics and radiative transfer of the earlier spherical modeling is maintained. The predicted surface brightnesses are compared with observations for a large set of lines at different positions to determine the best-fitting physical parameters. The model explains the strong singly ionized line emission along the lines of sight near the Trapezium.

  10. Signatures of bound-state-assisted nonsequential double ionization

    SciTech Connect

    Sukiasyan, Suren; McDonald, Chris; Van Vlack, Cole; Destefani, Carlos; Fennel, Thomas; Brabec, Thomas; Ivanov, Misha

    2009-07-15

    The time-dependent multiconfiguration Hartree method is optimized for intense laser dynamics and applied to nonsequential double ionization in a two-electron diatomic model molecule with two dimensions per electron. The efficiency of our method brings these calculations from the realm of large scale computation facilities to single processor machines. The resulting two-electron spectrum exhibits pronounced signatures from which the ionic bound states involved in nonsequential double ionization are retrieved with the help of a semiclassical model. A mechanism for the ionization dynamics is suggested.

  11. Electron-impact ionization of W25+

    NASA Astrophysics Data System (ADS)

    Kynienė, A.; Pakalka, S.; Masys, Š.; Jonauskas, V.

    2016-09-01

    Electron-impact ionization cross sections for the ground level of the W25+ ion have been investigated by performing level-to-level calculations and using the Dirac-Fock-Slater method in the single-configuration approach. The main attention has been focused on the influence of the increasing principal and orbital quantum numbers on the excitation-autoionization (EA) process and its contribution to the total ionization cross sections. The obtained results demonstrate that excitations to the high-nl shells (n≥slant 9) increase cross sections of the indirect ionization process by about 60% compared to the excitations to the lower shells (n≤slant 8). It was established that excitations to the shells with the orbital quantum number l = 4 give the greatest contribution to EA. Maxwellian rate coefficients derived from the cross sections for the ground state are compared with the previously obtained values from the configuration-average distorted-wave (CADW) approximation. The rate coefficients for direct ionization (DI) are smaller than the corresponding CADW values, while the EA rate coefficients are larger than the ones from the CADW calculations. The total DI+EA rate coefficients are about 20% larger than the CADW rate coefficients.

  12. Prediction and identification of multiple-photon resonant ionization processes

    SciTech Connect

    Smith, D.H.; McKown, H.S.; Young, J.P.; Shaw, R.W.; Donohue, D.L.

    1988-08-01

    Many single-color, multiple-photon transitions leading to ionization are observed for lanthanide and actinide elements in experiments using resonance ionization mass spectrometry (RIMS). It is desirable both to identify the energy levels involved in observed transitions and to be able to predict in advance their location. A computer code, ETRANS, has been written to perform these functions. Examples of both types of operation are given.

  13. Interference oscillations in the angular distribution of laser-ionized electrons near ionization threshold.

    PubMed

    Arbó, D G; Yoshida, S; Persson, E; Dimitriou, K I; Burgdörfer, J

    2006-04-14

    We analyze the two-dimensional momentum distribution of electrons ionized by few-cycle laser pulses in the transition regime from multiphoton absorption to tunneling by solving the time-dependent Schrödinger equation and by a classical-trajectory Monte-Carlo simulation with tunneling (CTMC-T). We find a complex two-dimensional interference pattern that resembles above threshold ionization (ATI) rings at higher energies and displays Ramsauer-Townsend-type diffraction oscillations in the angular distribution near threshold. CTMC-T calculations provide a semiclassical explanation for the dominance of selected partial waves. While the present calculation pertains to hydrogen, we find surprising qualitative agreement with recent experimental data for rare gases [A. Rudenko, J. Phys. B 37, L407 (2004)].

  14. Calcium: total or ionized?

    PubMed

    Schenck, Patricia A; Chew, Dennis J

    2008-05-01

    Measurement of serum total calcium (tCa) has been relied on for assessment of calcium status, despite the fact that it is the ionized calcium (iCa) fraction that has biologic activity. Serum tCa does not accurately predict iCa status in many clinical conditions. For accurate assessment of iCa status, iCa should be directly measured. Anaerobic measurement of serum iCa under controlled conditions provides the most reliable assessment of calcium status; aerobic measurement of iCa with species-specific pH correction is highly correlated with anaerobic measurements.

  15. Rare Disorders and Diseases

    ERIC Educational Resources Information Center

    Umlauf, Mary; Monaco, Jana; FitzZaland, Mary; FitzZaland, Richard; Novitsky, Scott

    2008-01-01

    According to the National Organization for Rare Disorders (NORD), a rare or "orphan" disease affects fewer than 200,000 people in the United States. There are more than 6,000 rare disorders that, taken together, affect approximately 25 million Americans. "Exceptional Parent" ("EP") recognizes that when a disorder affects a child or adult, it…

  16. Rare Disorders and Diseases

    ERIC Educational Resources Information Center

    Umlauf, Mary; Monaco, Jana; FitzZaland, Mary; FitzZaland, Richard; Novitsky, Scott

    2008-01-01

    According to the National Organization for Rare Disorders (NORD), a rare or "orphan" disease affects fewer than 200,000 people in the United States. There are more than 6,000 rare disorders that, taken together, affect approximately 25 million Americans. "Exceptional Parent" ("EP") recognizes that when a disorder affects a child or adult, it…

  17. Plasma Production via Field Ionization

    SciTech Connect

    O'Connell, C.L.; Barnes, C.D.; Decker, F.; Hogan, M.J.; Iverson, R.; Krejcik, P.; Siemann, R.; Walz, D.R.; Clayton, C.E.; Huang, C.; Johnson, D.K.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.; Zhou, M.; Deng, S.; Katsouleas, T.; Muggli, P.; Oz, E.; /Southern California U.

    2007-01-02

    Plasma production via field ionization occurs when an incoming particle beam is sufficiently dense that the electric field associated with the beam ionizes a neutral vapor or gas. Experiments conducted at the Stanford Linear Accelerator Center explore the threshold conditions necessary to induce field ionization by an electron beam in a neutral lithium vapor. By independently varying the transverse beam size, number of electrons per bunch or bunch length, the radial component of the electric field is controlled to be above or below the threshold for field ionization. Additional experiments ionized neutral xenon and neutral nitric oxide by varying the incoming beam's bunch length. A self-ionized plasma is an essential step for the viability of plasma-based accelerators for future high-energy experiments.

  18. Venturi easy ambient sonic-spray ionization.

    PubMed

    Santos, Vanessa G; Regiani, Thaís; Dias, Fernanda F G; Romão, Wanderson; Jara, Jose Luis Paz; Klitzke, Clécio F; Coelho, Fernando; Eberlin, Marcos N

    2011-02-15

    The development and illustrative applications of an ambient ionization technique termed Venturi easy ambient sonic-spray ionization (V-EASI) is described. Its dual mode of operation with Venturi self-pumping makes V-EASI applicable to the direct mass spectrometric analysis of both liquid (V(L)-EASI) and solid (V(S)-EASI) samples. V-EASI is simple and easy to assemble, operating solely via the assistance of a sonic stream of nitrogen or air. The sonic gas stream causes two beneficial and integrated effects: (a) the self-pumping of solutions via the Venturi effect and (b) sonic-spray ionization (SSI) of analytes either in solution or resting on solid surfaces. In its liquid mode, V(L)-EASI is applicable to analytes in solution, forming negatively and/or positively charged intact molecular species in a soft fashion with little or no fragmentation. In its solid mode, V(S)-EASI relies on Venturi self-pumping of a proper SSI solvent solution in combination with SSI to form a stream of bipolar charged droplets that bombard the sample surface, causing desorption and ionization of the analyte molecules. As for its precursor technique (EASI), V-EASI generates bipolar droplets with considerably lower average charging, which increases selectivity for ionization with high signal-to-noise ratios and clean spectra dominated by single molecular species with minimal solvent ions. V-EASI also operates in a voltage-, heat-, and radiation-free fashion and is therefore free of thermal, electrical, or discharge interferences.

  19. The multiphoton ionization of uranium hexafluoride

    SciTech Connect

    Armstrong, D.P. . UEO Enrichment Technical Operations Div.)

    1992-05-01

    Multiphoton ionization (MPI) time-of-flight mass spectroscopy and photoelectron spectroscopy studies of UF{sub 6} have been conducted using focused light from the Nd:YAG laser fundamental ({lambda}=1064 nm) and its harmonics ({lambda}=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF{sub x}{sup +} fragment ions even at the lowest laser power densities at which signal could be detected. The laser power dependence of U{sup n+} ions signals indicates that saturation can occur for many of the steps required for their ionization. In general, the doubly-charged uranium ion (U{sup 2+}) intensity is much greater than that of the singly-charged uranium ion (U{sup +}). For the case of the tunable dye laser experiments, the U{sup n+} (n = 1- 4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The dominance of the U{sup 2+} ion and the absence or very small intensities of UF{sub x}{sup +} fragments, along with the unsaturated wavelength dependence, indicate that mechanisms may exist other than ionization of bare U atoms after the stepwise photodissociation of F atoms from the parent molecule.

  20. Strong-field ionization of lithium

    SciTech Connect

    Schuricke, Michael; Zhu Ganjun; Steinmann, Jochen; Simeonidis, Konstantinos; Dorn, Alexander; Ullrich, Joachim; Ivanov, Igor; Kheifets, Anatoli; Grum-Grzhimailo, Alexei N.; Bartschat, Klaus

    2011-02-15

    We report photoelectron energy spectra, momentum, and angular distributions for the strong-field single ionization of lithium by 30-fs laser pulses. For peak intensities between 10{sup 11} and 10{sup 14} W/cm{sup 2} at a central wavelength of 785 nm, the classical over-the-barrier intensity was reached well inside the multiphoton regime. The complete vector momenta of the ionization fragments were recorded by a reaction microscope with a magneto-optically trapped target (MOTREMI). On the theoretical side, the time-dependent Schroedinger equation was solved by two independent methods seeking the solution directly on a radial grid. Distinct differences between the results of both calculations and also in comparison with experiment point to a high sensitivity of this reaction with respect to small details, particularly in the description of the Li{sup +} core.

  1. Phenotypic heterogeneity in metabolic traits among single cells of a rare bacterial species in its natural environment quantified with a combination of flow cell sorting and NanoSIMS

    PubMed Central

    Zimmermann, Matthias; Escrig, Stéphane; Hübschmann, Thomas; Kirf, Mathias K.; Brand, Andreas; Inglis, R. Fredrik; Musat, Niculina; Müller, Susann; Meibom, Anders; Ackermann, Martin; Schreiber, Frank

    2015-01-01

    Populations of genetically identical microorganisms residing in the same environment can display marked variability in their phenotypic traits; this phenomenon is termed phenotypic heterogeneity. The relevance of such heterogeneity in natural habitats is unknown, because phenotypic characterization of a sufficient number of single cells of the same species in complex microbial communities is technically difficult. We report a procedure that allows to measure phenotypic heterogeneity in bacterial populations from natural environments, and use it to analyze N2 and CO2 fixation of single cells of the green sulfur bacterium Chlorobium phaeobacteroides from the meromictic lake Lago di Cadagno. We incubated lake water with 15N2 and 13CO2 under in situ conditions with and without NH4+. Subsequently, we used flow cell sorting with auto-fluorescence gating based on a pure culture isolate to concentrate C. phaeobacteroides from its natural abundance of 0.2% to now 26.5% of total bacteria. C. phaeobacteroides cells were identified using catalyzed-reporter deposition fluorescence in situ hybridization (CARD-FISH) targeting the 16S rRNA in the sorted population with a species-specific probe. In a last step, we used nanometer-scale secondary ion mass spectrometry to measure the incorporation 15N and 13C stable isotopes in more than 252 cells. We found that C. phaeobacteroides fixes N2 in the absence of NH4+, but not in the presence of NH4+ as has previously been suggested. N2 and CO2 fixation were heterogeneous among cells and positively correlated indicating that N2 and CO2 fixation activity interact and positively facilitate each other in individual cells. However, because CARD-FISH identification cannot detect genetic variability among cells of the same species, we cannot exclude genetic variability as a source for phenotypic heterogeneity in this natural population. Our study demonstrates the technical feasibility of measuring phenotypic heterogeneity in a rare bacterial

  2. Phenotypic heterogeneity in metabolic traits among single cells of a rare bacterial species in its natural environment quantified with a combination of flow cell sorting and NanoSIMS.

    PubMed

    Zimmermann, Matthias; Escrig, Stéphane; Hübschmann, Thomas; Kirf, Mathias K; Brand, Andreas; Inglis, R Fredrik; Musat, Niculina; Müller, Susann; Meibom, Anders; Ackermann, Martin; Schreiber, Frank

    2015-01-01

    Populations of genetically identical microorganisms residing in the same environment can display marked variability in their phenotypic traits; this phenomenon is termed phenotypic heterogeneity. The relevance of such heterogeneity in natural habitats is unknown, because phenotypic characterization of a sufficient number of single cells of the same species in complex microbial communities is technically difficult. We report a procedure that allows to measure phenotypic heterogeneity in bacterial populations from natural environments, and use it to analyze N2 and CO2 fixation of single cells of the green sulfur bacterium Chlorobium phaeobacteroides from the meromictic lake Lago di Cadagno. We incubated lake water with (15)N2 and (13)CO2 under in situ conditions with and without NH4 (+). Subsequently, we used flow cell sorting with auto-fluorescence gating based on a pure culture isolate to concentrate C. phaeobacteroides from its natural abundance of 0.2% to now 26.5% of total bacteria. C. phaeobacteroides cells were identified using catalyzed-reporter deposition fluorescence in situ hybridization (CARD-FISH) targeting the 16S rRNA in the sorted population with a species-specific probe. In a last step, we used nanometer-scale secondary ion mass spectrometry to measure the incorporation (15)N and (13)C stable isotopes in more than 252 cells. We found that C. phaeobacteroides fixes N2 in the absence of NH4 (+), but not in the presence of NH4 (+) as has previously been suggested. N2 and CO2 fixation were heterogeneous among cells and positively correlated indicating that N2 and CO2 fixation activity interact and positively facilitate each other in individual cells. However, because CARD-FISH identification cannot detect genetic variability among cells of the same species, we cannot exclude genetic variability as a source for phenotypic heterogeneity in this natural population. Our study demonstrates the technical feasibility of measuring phenotypic heterogeneity in a

  3. [Ionizing and non-ionizing radiation (comparative risk estimations)].

    PubMed

    Grigor'ev, Iu G

    2012-01-01

    The population has widely used mobile communication for already more than 15 years. It is important to note that the use of mobile communication has sharply changed the conditions of daily exposure of the population to EME We expose our brain daily for the first time in the entire civilization. The mobile phone is an open and uncontrollable source of electromagnetic radiation. The comparative risk estimation for the population of ionizing and non-ionizing radiation was carried out taking into account the real conditions of influence. Comparison of risks for the population of ionizing and non-ionizing radiation leads us to a conclusion that EMF RF exposure in conditions of wide use of mobile communication is potentially more harmful than ionizing radiation influence.

  4. Human responses to the threat of or exposure to ionizing radiation at Three Mile Island, Pennsylvania, and Goiania, Brazil.

    PubMed

    Collins, Daniel L

    2002-02-01

    The psychological stressors and their aftereffects associated with the Three Mile Island accident, the Goiania, Brazil, cesium-137 accident, and the Abadia, Brazil, storage location are summarized and compared. Cross-cultural comparisons of human responses to ionizing radiation are rare. A multidisciplinary methodological approach to examining the psychological responses to ionizing radiation is even more rare. The psychological, behavioral, neuroendocrine, and cardiovascular results are summarized for Three Mile Island, Goiania, and Abadia.

  5. Ionized cluster beam deposition

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.

    1983-01-01

    Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.

  6. Ionizing radiation detector

    DOEpatents

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  7. Multiphoton ionization of Uracil

    NASA Astrophysics Data System (ADS)

    Prieto, Eladio; Martinez, Denhi; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2016-05-01

    Multiphoton ionization and dissociation of Uracil using a Reflectron time of flight spectrometer was performed along with radiation from the second harmonic of a Nd:YAG laser. Uracil is one of the four nitrogen bases that belong to RNA. The last years special interest has been concentrated on the study of the effects under UV radiation in nucleic acids1 and also in the role that this molecule could have played in the origin and development of life on our planet.2 The MPI mass spectra show that the presence and intensity of the resulting ions strongly depend on the density power. The identification of the ions in the mass spectra is presented. The results are compared with those obtained in other laboratories under different experimental conditions and some of them show partial agreement.3 The present work was supported by CONACYT-Mexico Grant 165410 and DGAPA UNAM Grant IN101215 and IN102613.

  8. Ionization spectra of highly Stark-shifted rubidium Rydberg states

    NASA Astrophysics Data System (ADS)

    Grimmel, Jens; Stecker, Markus; Kaiser, Manuel; Karlewski, Florian; Torralbo-Campo, Lara; Günther, Andreas; Fortágh, József

    2017-07-01

    We report on the observation and numerical calculation of ionization spectra of highly Stark-shifted Rydberg states of rubidium beyond the classical ionization threshold. In the numerical calculations, a complex absorbing potential (CAP) allows us to predict the energy levels and ionization rates of Rydberg states in this regime. Our approach of adjusting the CAP to the external electric field reduces the number of free parameters from one per resonance to a single one. Furthermore, we have measured the ionization spectra of magneto-optically trapped rubidium atoms which are excited to principal quantum numbers of 43 and 70 at various electric fields. The emerging ions are detected using an ion optics. We find good agreement between the numerically and experimentally obtained spectra.

  9. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  10. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  11. Ionization detection system for aerosols

    DOEpatents

    Jacobs, Martin E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.

  12. Rare earth lasers

    SciTech Connect

    Weber, M.J.

    1985-01-01

    In this brief survey, some of the key spectroscopic properties of rare earths are reviewed that account for their versatility, examine recent research trends and developments, and comment upon future projects for rare earth lasers. For gaseous and liquid lasers, other elements and molecules have thus far demonstrated lasing properties more attractive than those available using rare earths. Therefore, remarks shall be limited to solid state lasers.

  13. Highly informative multiclass profiling of lipids by ultra-high performance liquid chromatography - Low resolution (quadrupole) mass spectrometry by using electrospray ionization and atmospheric pressure chemical ionization interfaces.

    PubMed

    Beccaria, Marco; Inferrera, Veronica; Rigano, Francesca; Gorynski, Krzysztof; Purcaro, Giorgia; Pawliszyn, Janusz; Dugo, Paola; Mondello, Luigi

    2017-08-04

    A simple, fast, and versatile method, using an ultra-high performance liquid chromatography system coupled with a low resolution (single quadrupole) mass spectrometer was optimized to perform multiclass lipid profiling of human plasma. Particular attention was made to develop a method suitable for both electrospray ionization and atmospheric pressure chemical ionization interfaces (sequentially in positive- and negative-ion mode), without any modification of the chromatographic conditions (mobile phase, flow-rate, gradient, etc.). Emphasis was given to the extrapolation of the structural information based on the fragmentation pattern obtained using atmospheric pressure chemical ionization interface, under each different ionization condition, highlighting the complementary information obtained using the electrospray ionization interface, of support for related molecule ions identification. Furthermore, mass spectra of phosphatidylserine and phosphatidylinositol obtained using the atmospheric pressure chemical ionization interface are reported and discussed for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Single-Frequency Narrow Linewidth 2 Micron Fiber Laser

    NASA Technical Reports Server (NTRS)

    Jiang, Shibin (Inventor); Spiegelberg, Christine (Inventor); Luo, Tao (Inventor)

    2006-01-01

    A compact single frequency, single-mode 2 .mu.m fiber laser with narrow linewidth, <100 kHz and preferably <100 kHz, is formed with a low phonon energy glass doped with triply ionized rare-earth thulium and/or holmium oxide and fiber gratings formed in sections of passive silica fiber and fused thereto. Formation of the gratings in passive silica fiber both facilitates splicing to other optical components and reduces noise thus improving linewidth. An increased doping concentration of 0.5 to 15 wt. % for thulium, holmium or mixtures thereof produces adequate gain, hence output power levels for fiber lengths less than 5 cm and preferably less than 3 cm to enable single-frequency operation.

  15. Electron-impact ionization and dissociative ionization of biomolecules

    NASA Astrophysics Data System (ADS)

    Huo, Winifred

    2006-05-01

    Oxidative damages by ionizing radiation are the source of radiation-induced damages to human health. It is recognized that secondary electrons play a role in the damage process, particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. The damage can be direct, by creating a DNA lesion, or indirect, by producing radicals that attack the DNA. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. This investigation focuses on ionization and dissociative ionization (DI) of DNA fragments by electron-impact. For ionization we use the improved binary-encounter dipole (iBED) model [W.M. Huo, Phys. Rev. A64, 042719-1 (2001)]. For DI it is assumed that electron motion is much faster than nuclear motion, allowing DI to be treated as a two-step process and the DI cross section given by the product of the ionization cross section and dissociation probability. The ionization study covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3'- and C5'-deoxyribose-phospate cross sections, differing by less than 5%. The result implies that certain properties of the DNA, like the total ionization cross section, are localized properties and an additivity principle may apply. This allows us to obtain properties of a larger molecular system built up from the results of smaller subsystem fragments. The DI of guanine and cytosine has been studied. For guanine, a proton is produced from the channel where the ionized electron originates from a molecular orbital with significant charge density along the N(1)-H bond. The interaction of the proton with cytosine was also studied.

  16. Inner-shell and double ionization potentials of aminophenol isomers.

    SciTech Connect

    Kryzhevoi, N. V.; Santra, R.; Cederbaum, L. S.

    2011-01-01

    A comprehensive study of single and double core ionization potentials of the aminophenol molecule is reported. The role of relaxation, correlation, relativistic, and basis set effects in these potentials is clarified. Special attention is paid to the isomer dependence of the single and double core ionization potentials. Some of them are also compared with the respective values of the phenol and aniline molecules. It is shown that the core level single ionization potentials of the para-, meta-, and ortho-aminophenol molecules differ only slightly from each other, rendering these structural isomers challenging to distinguish for conventional x-ray photoelectron spectroscopy. In contrast, the energy needed to remove two core electrons from different atoms depends noticeably on the mutual arrangement and even on the relative orientations of the hydroxyl and amine groups. Together with the electrostatic repulsion between the two core holes, relaxation effects accompanying double core ionization play a crucial role here. The pronounced sensitivity of the double ionization potentials, therefore, enables a spectroscopic characterization of the electronic structure of aminophenol isomers by means of x-ray two-photon photoelectron spectroscopy.

  17. Ectopic testis: a rare case.

    PubMed

    Ebrahimi, Ali

    2010-01-01

    Congenital undescending testis is a common anomaly of testis, but we had a rare case of ectopic testis. A 15-month-old infant was operated emergently because of left incarcerate inguinal hernia. Intraoperative exploration of hernial sac revealed two ectopic testes with one spermatic cord proximally but in the middle divided to two spermatic cords in a 8 shape. There was an important point about vas deferens as it was single proximal to the chord, but divided into two in the middle of the chord. Vessels showed a similar condition about. We released both testes and brought down both of them into scrotum. This is a rare case of ectopic testis transectopia with partially common vas and vessels.

  18. Mechanisms of Strong-Field Double Ionization of Xe

    NASA Astrophysics Data System (ADS)

    Sun, Xufei; Li, Min; Ye, Difa; Xin, Guoguo; Fu, Libin; Xie, Xiguo; Deng, Yongkai; Wu, Chengyin; Liu, Jie; Gong, Qihuang; Liu, Yunquan

    2014-09-01

    We perform a fully differential measurement on strong-field double ionization of Xe by 25 fs, 790 nm laser pulses in intensity region (0.4-3)×1014 W/cm2. We observe that the two-dimensional correlation momentum spectra along the laser polarization direction show a nonstructured distribution for double ionization of Xe when decreasing the laser intensity from 3×1014 to 4×1013 W /cm2. The electron correlation behavior is remarkably different with the low-Z rare gases, i.e., He, Ne, and Ar. We find that the electron energy cutoffs increase from 2.9Up to 7.8Up when decreasing the laser intensities from the sequential double ionization to the nonsequential double ionization regime. The experimental observation indicates that multiple rescatterings play an important role for the generation of high energy photoelectrons. We have further studied the shielding effect on the strong-field double ionization of high-Z atoms.

  19. A possible common origin for the rare gases on Venus, earth, and Mars

    NASA Technical Reports Server (NTRS)

    Hostetler, C. J.

    1982-01-01

    The rare gas concentrations in the terrestrial planets and the carbonaceous chondrites could have been derived from a single source an early solar wind. The fractionation processes responsible for the varying concentration patterns in this model are differential ionization and the relative separation of neutrals from ions due to interaction with the solar magnetic field. If species dependent effects are small relative to radius dependent effects, this process can explain in detail both the relative and absolute abundances in the terrestrial planets and carbonaceous chondrites. The electron temperatures predicted by the data are consistent with astrophysical constraints previously derived for the solar nebula, and the timeline of events necessary for this model is consistent with accretion in a gas free environment. If species dependent fractionations are small, or approximately cancel each other, the earth is found to be outgassed by an order of magnitude more efficiently than Venus or Mars.

  20. Two-phase emission detectors in search for rare events with low energy depositions

    NASA Astrophysics Data System (ADS)

    Bolozdynya, A. I.

    2017-01-01

    This paper reviews applications of two-phase emission detectors using xenon as working media. This kind of detectors invented at MEPhI is extremely sensitive to ionization (down to single electrons) and can be very massive (in ton scale) in order to provide high count rate for quite rare events and organize an active shielding from natural radioactivity in the wallles configuration of readout system. The emission detectors found their unique application in the most sensitive at the moment experiments searching for cold dark matter in the form of weakly interacting massive particles (WIMPs). The RED-100 detector recently constructed at NRNU MEPhI can be used for the first observation of the elastic coherent neutrino scattering off xenon nuclei when the detector is installed practically on the Earth’s surface.