Sample records for singular green operators

  1. Integrated Multiscale Modeling of Molecular Computing Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory Beylkin

    2012-03-23

    Significant advances were made on all objectives of the research program. We have developed fast multiresolution methods for performing electronic structure calculations with emphasis on constructing efficient representations of functions and operators. We extended our approach to problems of scattering in solids, i.e. constructing fast algorithms for computing above the Fermi energy level. Part of the work was done in collaboration with Robert Harrison and George Fann at ORNL. Specific results (in part supported by this grant) are listed here and are described in greater detail. (1) We have implemented a fast algorithm to apply the Green's function for themore » free space (oscillatory) Helmholtz kernel. The algorithm maintains its speed and accuracy when the kernel is applied to functions with singularities. (2) We have developed a fast algorithm for applying periodic and quasi-periodic, oscillatory Green's functions and those with boundary conditions on simple domains. Importantly, the algorithm maintains its speed and accuracy when applied to functions with singularities. (3) We have developed a fast algorithm for obtaining and applying multiresolution representations of periodic and quasi-periodic Green's functions and Green's functions with boundary conditions on simple domains. (4) We have implemented modifications to improve the speed of adaptive multiresolution algorithms for applying operators which are represented via a Gaussian expansion. (5) We have constructed new nearly optimal quadratures for the sphere that are invariant under the icosahedral rotation group. (6) We obtained new results on approximation of functions by exponential sums and/or rational functions, one of the key methods that allows us to construct separated representations for Green's functions. (7) We developed a new fast and accurate reduction algorithm for obtaining optimal approximation of functions by exponential sums and/or their rational representations.« less

  2. Computation of Incompressible Potential Flow over an Airfoil Using a High Order Aerodynamic Panel Method Based on Circular Arc Panels.

    DTIC Science & Technology

    1982-08-01

    Vortex Sheet Figure 4 - Properties of Singularity Sheets they may be used to model different types of flow. Transfer of boundary... Vortex Sheet Equivalence Singularity Behavior Using Green’s theorem it is clear that the problem of potential flow over a body can be modeled using ...that source, doublet, or vortex singularities can be used to model potential flow problems, and that the doublet and vortex singularities are

  3. Treatment of charge singularities in implicit solvent models.

    PubMed

    Geng, Weihua; Yu, Sining; Wei, Guowei

    2007-09-21

    This paper presents a novel method for solving the Poisson-Boltzmann (PB) equation based on a rigorous treatment of geometric singularities of the dielectric interface and a Green's function formulation of charge singularities. Geometric singularities, such as cusps and self-intersecting surfaces, in the dielectric interfaces are bottleneck in developing highly accurate PB solvers. Based on an advanced mathematical technique, the matched interface and boundary (MIB) method, we have recently developed a PB solver by rigorously enforcing the flux continuity conditions at the solvent-molecule interface where geometric singularities may occur. The resulting PB solver, denoted as MIBPB-II, is able to deliver second order accuracy for the molecular surfaces of proteins. However, when the mesh size approaches half of the van der Waals radius, the MIBPB-II cannot maintain its accuracy because the grid points that carry the interface information overlap with those that carry distributed singular charges. In the present Green's function formalism, the charge singularities are transformed into interface flux jump conditions, which are treated on an equal footing as the geometric singularities in our MIB framework. The resulting method, denoted as MIBPB-III, is able to provide highly accurate electrostatic potentials at a mesh as coarse as 1.2 A for proteins. Consequently, at a given level of accuracy, the MIBPB-III is about three times faster than the APBS, a recent multigrid PB solver. The MIBPB-III has been extensively validated by using analytically solvable problems, molecular surfaces of polyatomic systems, and 24 proteins. It provides reliable benchmark numerical solutions for the PB equation.

  4. Treatment of charge singularities in implicit solvent models

    NASA Astrophysics Data System (ADS)

    Geng, Weihua; Yu, Sining; Wei, Guowei

    2007-09-01

    This paper presents a novel method for solving the Poisson-Boltzmann (PB) equation based on a rigorous treatment of geometric singularities of the dielectric interface and a Green's function formulation of charge singularities. Geometric singularities, such as cusps and self-intersecting surfaces, in the dielectric interfaces are bottleneck in developing highly accurate PB solvers. Based on an advanced mathematical technique, the matched interface and boundary (MIB) method, we have recently developed a PB solver by rigorously enforcing the flux continuity conditions at the solvent-molecule interface where geometric singularities may occur. The resulting PB solver, denoted as MIBPB-II, is able to deliver second order accuracy for the molecular surfaces of proteins. However, when the mesh size approaches half of the van der Waals radius, the MIBPB-II cannot maintain its accuracy because the grid points that carry the interface information overlap with those that carry distributed singular charges. In the present Green's function formalism, the charge singularities are transformed into interface flux jump conditions, which are treated on an equal footing as the geometric singularities in our MIB framework. The resulting method, denoted as MIBPB-III, is able to provide highly accurate electrostatic potentials at a mesh as coarse as 1.2Å for proteins. Consequently, at a given level of accuracy, the MIBPB-III is about three times faster than the APBS, a recent multigrid PB solver. The MIBPB-III has been extensively validated by using analytically solvable problems, molecular surfaces of polyatomic systems, and 24 proteins. It provides reliable benchmark numerical solutions for the PB equation.

  5. On singular and highly oscillatory properties of the Green function for ship motions

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Bo; Xiong Wu, Guo

    2001-10-01

    The Green function used for analysing ship motions in waves is the velocity potential due to a point source pulsating and advancing at a uniform forward speed. The behaviour of this function is investigated, in particular for the case when the source is located at or close to the free surface. In the far field, the Green function is represented by a single integral along one closed dispersion curve and two open dispersion curves. The single integral along the open dispersion curves is analysed based on the asymptotic expansion of a complex error function. The singular and highly oscillatory behaviour of the Green function is captured, which shows that the Green function oscillates with indefinitely increasing amplitude and indefinitely decreasing wavelength, when a field point approaches the track of the source point at the free surface. This sheds some light on the nature of the difficulties in the numerical methods used for predicting the motion of a ship advancing in waves.

  6. Comparison of two SVD-based color image compression schemes.

    PubMed

    Li, Ying; Wei, Musheng; Zhang, Fengxia; Zhao, Jianli

    2017-01-01

    Color image compression is a commonly used process to represent image data as few bits as possible, which removes redundancy in the data while maintaining an appropriate level of quality for the user. Color image compression algorithms based on quaternion are very common in recent years. In this paper, we propose a color image compression scheme, based on the real SVD, named real compression scheme. First, we form a new real rectangular matrix C according to the red, green and blue components of the original color image and perform the real SVD for C. Then we select several largest singular values and the corresponding vectors in the left and right unitary matrices to compress the color image. We compare the real compression scheme with quaternion compression scheme by performing quaternion SVD using the real structure-preserving algorithm. We compare the two schemes in terms of operation amount, assignment number, operation speed, PSNR and CR. The experimental results show that with the same numbers of selected singular values, the real compression scheme offers higher CR, much less operation time, but a little bit smaller PSNR than the quaternion compression scheme. When these two schemes have the same CR, the real compression scheme shows more prominent advantages both on the operation time and PSNR.

  7. Comparison of two SVD-based color image compression schemes

    PubMed Central

    Li, Ying; Wei, Musheng; Zhang, Fengxia; Zhao, Jianli

    2017-01-01

    Color image compression is a commonly used process to represent image data as few bits as possible, which removes redundancy in the data while maintaining an appropriate level of quality for the user. Color image compression algorithms based on quaternion are very common in recent years. In this paper, we propose a color image compression scheme, based on the real SVD, named real compression scheme. First, we form a new real rectangular matrix C according to the red, green and blue components of the original color image and perform the real SVD for C. Then we select several largest singular values and the corresponding vectors in the left and right unitary matrices to compress the color image. We compare the real compression scheme with quaternion compression scheme by performing quaternion SVD using the real structure-preserving algorithm. We compare the two schemes in terms of operation amount, assignment number, operation speed, PSNR and CR. The experimental results show that with the same numbers of selected singular values, the real compression scheme offers higher CR, much less operation time, but a little bit smaller PSNR than the quaternion compression scheme. When these two schemes have the same CR, the real compression scheme shows more prominent advantages both on the operation time and PSNR. PMID:28257451

  8. Nonnormal operators in physics, a singular-vectors approach: illustration in polarization optics.

    PubMed

    Tudor, Tiberiu

    2016-04-20

    The singular-vectors analysis of a general nonnormal operator defined on a finite-dimensional complex vector space is given in the frame of a pure operatorial ("nonmatrix," "coordinate-free") approach, performed in a Dirac language. The general results are applied in the field of polarization optics, where the nonnormal operators are widespread as operators of various polarization devices. Two nonnormal polarization devices representative for the class of nonnormal and even pathological operators-the standard two-layer elliptical ideal polarizer (singular operator) and the three-layer ambidextrous ideal polarizer (singular and defective operator)-are analyzed in detail. It is pointed out that the unitary polar component of the operator exists and preserves, in such pathological case too, its role of converting the input singular basis of the operator in its output singular basis. It is shown that for any nonnormal ideal polarizer a complementary one exists, so that the tandem of their operators uniquely determines their (common) unitary polar component.

  9. Sharp bounds for singular values of fractional integral operators

    NASA Astrophysics Data System (ADS)

    Burman, Prabir

    2007-03-01

    From the results of Dostanic [M.R. Dostanic, Asymptotic behavior of the singular values of fractional integral operators, J. Math. Anal. Appl. 175 (1993) 380-391] and Vu and Gorenflo [Kim Tuan Vu, R. Gorenflo, Singular values of fractional and Volterra integral operators, in: Inverse Problems and Applications to Geophysics, Industry, Medicine and Technology, Ho Chi Minh City, 1995, Ho Chi Minh City Math. Soc., Ho Chi Minh City, 1995, pp. 174-185] it is known that the jth singular value of the fractional integral operator of order [alpha]>0 is approximately ([pi]j)-[alpha] for all large j. In this note we refine this result by obtaining sharp bounds for the singular values and use these bounds to show that the jth singular value is ([pi]j)-[alpha][1+O(j-1)].

  10. Ideal evolution of magnetohydrodynamic turbulence when imposing Taylor-Green symmetries.

    PubMed

    Brachet, M E; Bustamante, M D; Krstulovic, G; Mininni, P D; Pouquet, A; Rosenberg, D

    2013-01-01

    We investigate the ideal and incompressible magnetohydrodynamic (MHD) equations in three space dimensions for the development of potentially singular structures. The methodology consists in implementing the fourfold symmetries of the Taylor-Green vortex generalized to MHD, leading to substantial computer time and memory savings at a given resolution; we also use a regridding method that allows for lower-resolution runs at early times, with no loss of spectral accuracy. One magnetic configuration is examined at an equivalent resolution of 6144(3) points and three different configurations on grids of 4096(3) points. At the highest resolution, two different current and vorticity sheet systems are found to collide, producing two successive accelerations in the development of small scales. At the latest time, a convergence of magnetic field lines to the location of maximum current is probably leading locally to a strong bending and directional variability of such lines. A novel analytical method, based on sharp analysis inequalities, is used to assess the validity of the finite-time singularity scenario. This method allows one to rule out spurious singularities by evaluating the rate at which the logarithmic decrement of the analyticity-strip method goes to zero. The result is that the finite-time singularity scenario cannot be ruled out, and the singularity time could be somewhere between t=2.33 and t=2.70. More robust conclusions will require higher resolution runs and grid-point interpolation measurements of maximum current and vorticity.

  11. Compactness and robustness: Applications in the solution of integral equations for chemical kinetics and electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Zhou, Yajun

    This thesis employs the topological concept of compactness to deduce robust solutions to two integral equations arising from chemistry and physics: the inverse Laplace problem in chemical kinetics and the vector wave scattering problem in dielectric optics. The inverse Laplace problem occurs in the quantitative understanding of biological processes that exhibit complex kinetic behavior: different subpopulations of transition events from the "reactant" state to the "product" state follow distinct reaction rate constants, which results in a weighted superposition of exponential decay modes. Reconstruction of the rate constant distribution from kinetic data is often critical for mechanistic understandings of chemical reactions related to biological macromolecules. We devise a "phase function approach" to recover the probability distribution of rate constants from decay data in the time domain. The robustness (numerical stability) of this reconstruction algorithm builds upon the continuity of the transformations connecting the relevant function spaces that are compact metric spaces. The robust "phase function approach" not only is useful for the analysis of heterogeneous subpopulations of exponential decays within a single transition step, but also is generalizable to the kinetic analysis of complex chemical reactions that involve multiple intermediate steps. A quantitative characterization of the light scattering is central to many meteoro-logical, optical, and medical applications. We give a rigorous treatment to electromagnetic scattering on arbitrarily shaped dielectric media via the Born equation: an integral equation with a strongly singular convolution kernel that corresponds to a non-compact Green operator. By constructing a quadratic polynomial of the Green operator that cancels out the kernel singularity and satisfies the compactness criterion, we reveal the universality of a real resonance mode in dielectric optics. Meanwhile, exploiting the properties of compact operators, we outline the geometric and physical conditions that guarantee a robust solution to the light scattering problem, and devise an asymptotic solution to the Born equation of electromagnetic scattering for arbitrarily shaped dielectric in a non-perturbative manner.

  12. Green's functions for dislocations in bonded strips and related crack problems

    NASA Technical Reports Server (NTRS)

    Ballarini, R.; Luo, H. A.

    1990-01-01

    Green's functions are derived for the plane elastostatics problem of a dislocation in a bimaterial strip. Using these fundamental solutions as kernels, various problems involving cracks in a bimaterial strip are analyzed using singular integral equations. For each problem considered, stress intensity factors are calculated for several combinations of the parameters which describe loading, geometry and material mismatch.

  13. A singular K-space model for fast reconstruction of magnetic resonance images from undersampled data.

    PubMed

    Luo, Jianhua; Mou, Zhiying; Qin, Binjie; Li, Wanqing; Ogunbona, Philip; Robini, Marc C; Zhu, Yuemin

    2018-07-01

    Reconstructing magnetic resonance images from undersampled k-space data is a challenging problem. This paper introduces a novel method of image reconstruction from undersampled k-space data based on the concept of singularizing operators and a novel singular k-space model. Exploring the sparsity of an image in the k-space, the singular k-space model (SKM) is proposed in terms of the k-space functions of a singularizing operator. The singularizing operator is constructed by combining basic difference operators. An algorithm is developed to reliably estimate the model parameters from undersampled k-space data. The estimated parameters are then used to recover the missing k-space data through the model, subsequently achieving high-quality reconstruction of the image using inverse Fourier transform. Experiments on physical phantom and real brain MR images have shown that the proposed SKM method constantly outperforms the popular total variation (TV) and the classical zero-filling (ZF) methods regardless of the undersampling rates, the noise levels, and the image structures. For the same objective quality of the reconstructed images, the proposed method requires much less k-space data than the TV method. The SKM method is an effective method for fast MRI reconstruction from the undersampled k-space data. Graphical abstract Two Real Images and their sparsified images by singularizing operator.

  14. Nature's optics and our understanding of light

    NASA Astrophysics Data System (ADS)

    Berry, M. V.

    2015-01-01

    Optical phenomena visible to everyone have been central to the development of, and abundantly illustrate, important concepts in science and mathematics. The phenomena considered from this viewpoint are rainbows, sparkling reflections on water, mirages, green flashes, earthlight on the moon, glories, daylight, crystals and the squint moon. And the concepts involved include refraction, caustics (focal singularities of ray optics), wave interference, numerical experiments, mathematical asymptotics, dispersion, complex angular momentum (Regge poles), polarisation singularities, Hamilton's conical intersections of eigenvalues ('Dirac points'), geometric phases and visual illusions.

  15. Enhancing reproducibility in scientific computing: Metrics and registry for Singularity containers.

    PubMed

    Sochat, Vanessa V; Prybol, Cameron J; Kurtzer, Gregory M

    2017-01-01

    Here we present Singularity Hub, a framework to build and deploy Singularity containers for mobility of compute, and the singularity-python software with novel metrics for assessing reproducibility of such containers. Singularity containers make it possible for scientists and developers to package reproducible software, and Singularity Hub adds automation to this workflow by building, capturing metadata for, visualizing, and serving containers programmatically. Our novel metrics, based on custom filters of content hashes of container contents, allow for comparison of an entire container, including operating system, custom software, and metadata. First we will review Singularity Hub's primary use cases and how the infrastructure has been designed to support modern, common workflows. Next, we conduct three analyses to demonstrate build consistency, reproducibility metric and performance and interpretability, and potential for discovery. This is the first effort to demonstrate a rigorous assessment of measurable similarity between containers and operating systems. We provide these capabilities within Singularity Hub, as well as the source software singularity-python that provides the underlying functionality. Singularity Hub is available at https://singularity-hub.org, and we are excited to provide it as an openly available platform for building, and deploying scientific containers.

  16. Enhancing reproducibility in scientific computing: Metrics and registry for Singularity containers

    PubMed Central

    Prybol, Cameron J.; Kurtzer, Gregory M.

    2017-01-01

    Here we present Singularity Hub, a framework to build and deploy Singularity containers for mobility of compute, and the singularity-python software with novel metrics for assessing reproducibility of such containers. Singularity containers make it possible for scientists and developers to package reproducible software, and Singularity Hub adds automation to this workflow by building, capturing metadata for, visualizing, and serving containers programmatically. Our novel metrics, based on custom filters of content hashes of container contents, allow for comparison of an entire container, including operating system, custom software, and metadata. First we will review Singularity Hub’s primary use cases and how the infrastructure has been designed to support modern, common workflows. Next, we conduct three analyses to demonstrate build consistency, reproducibility metric and performance and interpretability, and potential for discovery. This is the first effort to demonstrate a rigorous assessment of measurable similarity between containers and operating systems. We provide these capabilities within Singularity Hub, as well as the source software singularity-python that provides the underlying functionality. Singularity Hub is available at https://singularity-hub.org, and we are excited to provide it as an openly available platform for building, and deploying scientific containers. PMID:29186161

  17. Received Signal Strength Recovery in Green WLAN Indoor Positioning System Using Singular Value Thresholding

    PubMed Central

    Ma, Lin; Xu, Yubin

    2015-01-01

    Green WLAN is a promising technique for accessing future indoor Internet services. It is designed not only for high-speed data communication purposes but also for energy efficiency. The basic strategy of green WLAN is that all the access points are not always powered on, but rather work on-demand. Though powering off idle access points does not affect data communication, a serious asymmetric matching problem will arise in a WLAN indoor positioning system due to the fact the received signal strength (RSS) readings from the available access points are different in their offline and online phases. This asymmetry problem will no doubt invalidate the fingerprint algorithm used to estimate the mobile device location. Therefore, in this paper we propose a green WLAN indoor positioning system, which can recover RSS readings and achieve good localization performance based on singular value thresholding (SVT) theory. By solving the nuclear norm minimization problem, SVT recovers not only the radio map, but also online RSS readings from a sparse matrix by sensing only a fraction of the RSS readings. We have implemented the method in our lab and evaluated its performances. The experimental results indicate the proposed system could recover the RSS readings and achieve good localization performance. PMID:25587977

  18. Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies.

    PubMed

    Mostafazadeh, Ali

    2009-06-05

    Spectral singularities are spectral points that spoil the completeness of the eigenfunctions of certain non-Hermitian Hamiltonian operators. We identify spectral singularities of complex scattering potentials with the real energies at which the reflection and transmission coefficients tend to infinity, i.e., they correspond to resonances having a zero width. We show that a waveguide modeled using such a potential operates like a resonator at the frequencies of spectral singularities. As a concrete example, we explore the spectral singularities of an imaginary PT-symmetric barrier potential and demonstrate the above resonance phenomenon for a certain electromagnetic waveguide.

  19. Spectral Singularities of Complex Scattering Potentials and Infinite Reflection and Transmission Coefficients at Real Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafazadeh, Ali

    2009-06-05

    Spectral singularities are spectral points that spoil the completeness of the eigenfunctions of certain non-Hermitian Hamiltonian operators. We identify spectral singularities of complex scattering potentials with the real energies at which the reflection and transmission coefficients tend to infinity, i.e., they correspond to resonances having a zero width. We show that a waveguide modeled using such a potential operates like a resonator at the frequencies of spectral singularities. As a concrete example, we explore the spectral singularities of an imaginary PT-symmetric barrier potential and demonstrate the above resonance phenomenon for a certain electromagnetic waveguide.

  20. Recovery of singularities from a backscattering Born approximation for a biharmonic operator in 3D

    NASA Astrophysics Data System (ADS)

    Tyni, Teemu

    2018-04-01

    We consider a backscattering Born approximation for a perturbed biharmonic operator in three space dimensions. Previous results on this approach for biharmonic operator use the fact that the coefficients are real-valued to obtain the reconstruction of singularities in the coefficients. In this text we drop the assumption about real-valued coefficients and also establish the recovery of singularities for complex coefficients. The proof uses mapping properties of the Radon transform.

  1. Kinematic rate control of simulated robot hand at or near wrist singularity

    NASA Technical Reports Server (NTRS)

    Barker, K.; Houck, J. A.; Carzoo, S. W.

    1985-01-01

    A robot hand should obey movement commands from an operator on a computer program as closely as possible. However, when two of the three rotational axes of the robot wrist are colinear, the wrist loses a degree of freedom, and the usual resolved rate equations (used to move the hand in response to an operator's inputs) are indeterminant. Furthermore, rate limiting occurs in close vicinity to this singularity. An analysis shows that rate limiting occurs not only in the vicinity of this singularity but also substantially away from it, even when the operator commands rotational rates of the robot hand that are only a small percentage of the operational joint rate limits. Therefore, joint angle rates are scaled when they exceed operational limits in a real time simulation of a robot arm. Simulation results show that a small dead band avoids the wrist singularity in the resolved rate equations but can introduce a high frequency oscillation close to the singularity. However, when a coordinated wrist movement is used in conjunction with the resolved rate equations, the high frequency oscillation disappears.

  2. Looking for a bulk point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maldacena, Juan; Simmons-Duffin, David; Zhiboedov, Alexander

    Here, we consider Lorentzian correlators of local operators. In perturbation theory, singularities occur when we can draw a position-space Landau diagram with null lines. In theories with gravity duals, we can also draw Landau diagrams in the bulk. We also argue that certain singularities can arise only from bulk diagrams, not from boundary diagrams. As has been previously observed, these singularities are a clear diagnostic of bulk locality. We analyze some properties of these perturbative singularities and discuss their relation to the OPE and the dimensions of double-trace operators. In the exact nonperturbative theory, we expect no singularity at thesemore » locations. Finally, we prove this statement in 1+1 dimensions by CFT methods.« less

  3. Looking for a bulk point

    DOE PAGES

    Maldacena, Juan; Simmons-Duffin, David; Zhiboedov, Alexander

    2017-01-03

    Here, we consider Lorentzian correlators of local operators. In perturbation theory, singularities occur when we can draw a position-space Landau diagram with null lines. In theories with gravity duals, we can also draw Landau diagrams in the bulk. We also argue that certain singularities can arise only from bulk diagrams, not from boundary diagrams. As has been previously observed, these singularities are a clear diagnostic of bulk locality. We analyze some properties of these perturbative singularities and discuss their relation to the OPE and the dimensions of double-trace operators. In the exact nonperturbative theory, we expect no singularity at thesemore » locations. Finally, we prove this statement in 1+1 dimensions by CFT methods.« less

  4. Estimates of green tensors for certain boundary value problems

    NASA Technical Reports Server (NTRS)

    Solonnikov, V.

    1988-01-01

    Consider the first boundary value problem for a stationary Navier-Stokes system in a bounded three-dimensional region Omega with the boundary S: delta v = grad p+f, div v=0, v/s=0. Odqvist (1930) developed the potential theory and formulated the Green tensor for the above problem. The basic singular solution used by Odqvist to express the Green tensor is given. A theorem generalizing his results is presented along with four associated theorems. A specific problem associated with the study of the differential properties of the solution of stationary problems of magnetohydrodynamics is examined.

  5. On singular cases in the design derivative of Green's functional

    NASA Technical Reports Server (NTRS)

    Reiss, Robert

    1987-01-01

    The author's prior development of a general abstract representation for the design sensitivities of Green's functional for linear structural systems is extended to the case where the structural stiffness vanishes at an internal location. This situation often occurs in the optimal design of structures. Most optimality criteria require that optimally designed beams be statically determinate. For clamped-pinned beams, for example, this is possible only if the flexural stiffness vanishes at some intermediate location. The Green's function for such structures depends upon the stiffness and the location where it vanishes. A precise representation for Green's function's sensitivity to the location of vanishing stiffness is presented for beams and axisymmetric plates.

  6. Spontaneous emission in the presence of a realistically sized cylindrical waveguide

    NASA Astrophysics Data System (ADS)

    Dung, Ho Trung

    2016-02-01

    Various quantities characterizing the spontaneous emission process of a dipole emitter including the emission rate and the emission pattern can be expressed in terms of the Green tensor of the surrounding environment. By expanding the Green tensor around some analytically known background one as a Born series, and truncating it under appropriate conditions, complicated boundaries can be tackled with ease. However, when the emitter is embedded in the medium, even the calculation of the first-order term in the Born series is problematic because of the presence of a singularity. We show how to eliminate this singularity for a medium of arbitrary size and shape by expanding around the bulk medium rather than vacuum. In the highly symmetric configuration of an emitter located on the axis of a realistically sized cylinder, it is shown that the singularity can be removed by changing the integral variables and then the order of integration. Using both methods, we investigate the spontaneous emission rate of an initially excited two-level dipole emitter, embedded in a realistically sized cylinder, which can be a common optical fiber in the long-length limit and a disk in the short-length limit. The spatial distribution of the emitted light is calculated using the Born-expansion approach, and local-field corrections to the spontaneous emission rate are briefly discussed.

  7. Surface Green's function of a piezoelectric half-space.

    PubMed

    Laude, Vincent; Jerez-Hanckes, Carlos F; Ballandras, Sylvain

    2006-02-01

    The computation of the two-dimensional harmonic spatial-domain Green's function at the surface of a piezoelectric half-space is discussed. Starting from the known form of the Green's function expressed in the spectral domain, the singular contributions are isolated and treated separately. It is found that the surface acoustic wave contributions (i.e., poles in the spectral Green's function) give rise to an anisotropic generalization of the Hankel function H0(2), the spatial Green's function for the scalar two-dimensional wave equation. The asymptotic behavior at infinity and at the origin (for the electrostatic contribution) also are explicitly treated. The remaining nonsingular part of the spectral Green's function is obtained numerically by a combination of fast Fourier transform and quadrature. Illustrations are given in the case of a substrate of Y-cut lithium niobate.

  8. Resolution of quantum singularities

    NASA Astrophysics Data System (ADS)

    Konkowski, Deborah; Helliwell, Thomas

    2017-01-01

    A review of quantum singularities in static and conformally static spacetimes is given. A spacetime is said to be quantum mechanically non-singular if a quantum wave packet does not feel, in some sense, the presence of a singularity; mathematically, this means that the wave operator is essentially self-adjoint on the space of square integrable functions. Spacetimes with classical mild singularities (quasiregular ones) to spacetimes with classical strong curvature singularities have been tested. Here we discuss the similarities and differences between classical singularities that are healed quantum mechanically and those that are not. Possible extensions of the mathematical technique to more physically realistic spacetimes are discussed.

  9. Self-force calculations with matched expansions and quasinormal mode sums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casals, Marc; Dolan, Sam; Ottewill, Adrian C.

    2009-06-15

    Accurate modeling of gravitational wave emission by extreme-mass ratio inspirals is essential for their detection by the LISA mission. A leading perturbative approach involves the calculation of the self-force acting upon the smaller orbital body. In this work, we present the first application of the Poisson-Wiseman-Anderson method of 'matched expansions' to compute the self-force acting on a point particle moving in a curved spacetime. The method employs two expansions for the Green function, which are, respectively, valid in the 'quasilocal' and 'distant past' regimes, and which may be matched together within the normal neighborhood. We perform our calculation in amore » static region of the spherically symmetric Nariai spacetime (dS{sub 2}xS{sup 2}), in which scalar-field perturbations are governed by a radial equation with a Poeschl-Teller potential (frequently used as an approximation to the Schwarzschild radial potential) whose solutions are known in closed form. The key new ingredients in our study are (i) very high order quasilocal expansions and (ii) expansion of the distant past Green function in quasinormal modes. In combination, these tools enable a detailed study of the properties of the scalar-field Green function. We demonstrate that the Green function is singular whenever x and x{sup '} are connected by a null geodesic, and apply asymptotic methods to determine the structure of the Green function near the null wave front. We show that the singular part of the Green function undergoes a transition each time the null wave front passes through a caustic point, following a repeating fourfold sequence {delta}({sigma}), 1/{pi}{sigma}, -{delta}({sigma}), -1/{pi}{sigma}, etc., where {sigma} is Synge's world function. The matched-expansion method provides insight into the nonlocal properties of the self-force. We show that the self-force generated by the segment of the worldline lying outside the normal neighborhood is not negligible. We apply the matched-expansion method to compute the scalar self-force acting on a static particle on the Nariai spacetime, and validate against an alternative method, obtaining agreement to six decimal places. We conclude with a discussion of the implications for wave propagation and self-force calculations. On black hole spacetimes, any expansion of the Green function in quasinormal modes must be augmented by a branch-cut integral. Nevertheless, we expect the Green function in Schwarzschild spacetime to inherit certain key features, such as a fourfold singular structure manifesting itself through the asymptotic behavior of quasinormal modes. In this way, the Nariai spacetime provides a fertile testing ground for developing insight into the nonlocal part of the self-force on black hole spacetimes.« less

  10. Electromagnetic radiation due to naked singularity formation in self-similar gravitational collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitsuda, Eiji; Yoshino, Hirotaka; Tomimatsu, Akira

    Dynamical evolution of test fields in background geometry with a naked singularity is an important problem relevant to the Cauchy horizon instability and the observational signatures different from black hole formation. In this paper we study electromagnetic perturbations generated by a given current distribution in collapsing matter under a spherically symmetric self-similar background. Using the Green's function method, we construct the formula to evaluate the outgoing energy flux observed at the future null infinity. The contributions from 'quasinormal' modes of the self-similar system as well as 'high-frequency' waves are clarified. We find a characteristic power-law time evolution of the outgoingmore » energy flux which appears just before naked singularity formation and give the criteria as to whether or not the outgoing energy flux diverges at the future Cauchy horizon.« less

  11. Overcoming Robot-Arm Joint Singularities

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Houck, J. A.

    1986-01-01

    Kinematic equations allow arm to pass smoothly through singular region. Report discusses mathematical singularities in equations of robotarm control. Operator commands robot arm to move in direction relative to its own axis system by specifying velocity in that direction. Velocity command then resolved into individual-joint rotational velocities in robot arm to effect motion. However, usual resolved-rate equations become singular when robot arm is straightened.

  12. Asymptotic Behaviour of the Ground State of Singularly Perturbed Elliptic Equations

    NASA Astrophysics Data System (ADS)

    Piatnitski, Andrey L.

    The ground state of a singularly perturbed nonselfadjoint elliptic operator defined on a smooth compact Riemannian manifold with metric aij(x)=(aij(x))-1, is studied. We investigate the limiting behaviour of the first eigenvalue of this operator as μ goes to zero, and find the logarithmic asymptotics of the first eigenfunction everywhere on the manifold. The results are formulated in terms of auxiliary variational problems on the manifold. This approach also allows to study the general singularly perturbed second order elliptic operator on a bounded domain in Rn.

  13. Singular vectors for the WN algebras

    NASA Astrophysics Data System (ADS)

    Ridout, David; Siu, Steve; Wood, Simon

    2018-03-01

    In this paper, we use free field realisations of the A-type principal, or Casimir, WN algebras to derive explicit formulae for singular vectors in Fock modules. These singular vectors are constructed by applying screening operators to Fock module highest weight vectors. The action of the screening operators is then explicitly evaluated in terms of Jack symmetric functions and their skew analogues. The resulting formulae depend on sequences of pairs of integers that completely determine the Fock module as well as the Jack symmetric functions.

  14. Interaction between a circular inclusion and an arbitrarily oriented crack

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Gupta, G. D.; Ratwani, M.

    1975-01-01

    The plane interaction problem for a circular elastic inclusion embedded in an elastic matrix which contains an arbitrarily oriented crack is considered. Using the existing solutions for the edge dislocations as Green's functions, first the general problem of a through crack in the form of an arbitrary smooth arc located in the matrix in the vicinity of the inclusion is formulated. The integral equations for the line crack are then obtained as a system of singular integral equations with simple Cauchy kernels. The singular behavior of the stresses around the crack tips is examined and the expressions for the stress-intensity factors representing the strength of the stress singularities are obtained in terms of the asymptotic values of the density functions of the integral equations. The problem is solved for various typical crack orientations and the corresponding stress-intensity factors are given.

  15. FAST TRACK COMMUNICATION: SUSY transformations with complex factorization constants: application to spectral singularities

    NASA Astrophysics Data System (ADS)

    Samsonov, Boris F.

    2010-10-01

    Supersymmetric (SUSY) transformation operators with complex factorization constants are analyzed as operators acting in the Hilbert space of functions square integrable on the positive semiaxis. The obtained results are applied to Hamiltonians possessing spectral singularities which are non-Hermitian SUSY partners of self-adjoint operators. A new regularization procedure for the resolution of the identity operator in terms of a continuous biorthonormal set of the non-Hermitian Hamiltonian eigenfunctions is proposed. It is also argued that if the binorm of continuous spectrum eigenfunctions is interpreted in the same way as the norm of similar functions in the usual Hermitian case, then one can state that the function corresponding to a spectral singularity has zero binorm.

  16. Transition operators in acoustic-wave diffraction theory. I - General theory. II - Short-wavelength behavior, dominant singularities of Zk0 and Zk0 exp -1

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.

    1991-01-01

    A formal theory of the scattering of time-harmonic acoustic scalar waves from impenetrable, immobile obstacles is established. The time-independent formal scattering theory of nonrelativistic quantum mechanics, in particular the theory of the complete Green's function and the transition (T) operator, provides the model. The quantum-mechanical approach is modified to allow the treatment of acoustic-wave scattering with imposed boundary conditions of impedance type on the surface (delta-Omega) of an impenetrable obstacle. With k0 as the free-space wavenumber of the signal, a simplified expression is obtained for the k0-dependent T operator for a general case of homogeneous impedance boundary conditions for the acoustic wave on delta-Omega. All the nonelementary operators entering the expression for the T operator are formally simple rational algebraic functions of a certain invertible linear radiation impedance operator which maps any sufficiently well-behaved complex-valued function on delta-Omega into another such function on delta-Omega. In the subsequent study, the short-wavelength and the long-wavelength behavior of the radiation impedance operator and its inverse (the 'radiation admittance' operator) as two-point kernels on a smooth delta-Omega are studied for pairs of points that are close together.

  17. Stability effects of singularities in force-controlled robotic assist devices

    NASA Astrophysics Data System (ADS)

    Luecke, Greg R.

    2002-02-01

    Force feedback is being used as an interface between humans and material handling equipment to provide an intuitive method to control large and bulky payloads. Powered actuation in the lift assist device compensates for the inertial characteristics of the manipulator and the payload to provide effortless control and handling of manufacturing parts, components, and assemblies. The use of these Intelligent Assist Devices (IAD) is being explored to prevent worker injury, enhance material handling performance, and increase productivity in the workplace. The IAD also provides the capability to shape and control motion in the workspace during routine operations. Virtual barriers can be developed to protect fixed objects in the workspace, and regions can be programmed that attract the work piece to a certain position and orientation. However, the robot is still under complete control of the human operator, with the trajectory being determined and commanded using the judgment of the operator to complete a given task. In many cases, the IAD is built in a configuration that may have singular points inside the workspace. These singularities can cause problems when the unstructured trajectory commands from the human cause interaction between the IAD and the virtual walls and fixtures at positions close to these singularities. The research presented here explores the stability effects of the interactions between the powered manipulator and the virtual surfaces when controlled by the operator. Because of the flexible nature of the human decisions determining the real time work piece paths, manipulator singularities that occur in conjunction with the virtual surfaces raise stability issues in the performance around these singularities. We examine these stability issues in the context of a particular IAD configuration, and present analytic results for the performance and stability of these systems in response to the real-time trajectory modification of the human operator.

  18. Oscillatory singular integrals and harmonic analysis on nilpotent groups

    PubMed Central

    Ricci, F.; Stein, E. M.

    1986-01-01

    Several related classes of operators on nilpotent Lie groups are considered. These operators involve the following features: (i) oscillatory factors that are exponentials of imaginary polynomials, (ii) convolutions with singular kernels supported on lower-dimensional submanifolds, (iii) validity in the general context not requiring the existence of dilations that are automorphisms. PMID:16593640

  19. Optical spectral singularities as threshold resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafazadeh, Ali

    2011-04-15

    Spectral singularities are among generic mathematical features of complex scattering potentials. Physically they correspond to scattering states that behave like zero-width resonances. For a simple optical system, we show that a spectral singularity appears whenever the gain coefficient coincides with its threshold value and other parameters of the system are selected properly. We explore a concrete realization of spectral singularities for a typical semiconductor gain medium and propose a method of constructing a tunable laser that operates at threshold gain.

  20. An adaptive grid scheme using the boundary element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munipalli, R.; Anderson, D.A.

    1996-09-01

    A technique to solve the Poisson grid generation equations by Green`s function related methods has been proposed, with the source terms being purely position dependent. The use of distributed singularities in the flow domain coupled with the boundary element method (BEM) formulation is presented in this paper as a natural extension of the Green`s function method. This scheme greatly simplifies the adaption process. The BEM reduces the dimensionality of the given problem by one. Internal grid-point placement can be achieved for a given boundary distribution by adding continuous and discrete source terms in the BEM formulation. A distribution of vortexmore » doublets is suggested as a means of controlling grid-point placement and grid-line orientation. Examples for sample adaption problems are presented and discussed. 15 refs., 20 figs.« less

  1. Hermitian Hamiltonian equivalent to a given non-Hermitian one: manifestation of spectral singularity.

    PubMed

    Samsonov, Boris F

    2013-04-28

    One of the simplest non-Hermitian Hamiltonians, first proposed by Schwartz in 1960, that may possess a spectral singularity is analysed from the point of view of the non-Hermitian generalization of quantum mechanics. It is shown that the η operator, being a second-order differential operator, has supersymmetric structure. Asymptotic behaviour of the eigenfunctions of a Hermitian Hamiltonian equivalent to the given non-Hermitian one is found. As a result, the corresponding scattering matrix and cross section are given explicitly. It is demonstrated that the possible presence of a spectral singularity in the spectrum of the non-Hermitian Hamiltonian may be detected as a resonance in the scattering cross section of its Hermitian counterpart. Nevertheless, just at the singular point, the equivalent Hermitian Hamiltonian becomes undetermined.

  2. On the Singularity Structure of WKB Solution of the Boosted Whittaker Equation: its Relevance to Resurgent Functions with Essential Singularities

    NASA Astrophysics Data System (ADS)

    Kamimoto, Shingo; Kawai, Takahiro; Koike, Tatsuya

    2016-12-01

    Inspired by the symbol calculus of linear differential operators of infinite order applied to the Borel transformed WKB solutions of simple-pole type equation [Kamimoto et al. (RIMS Kôkyûroku Bessatsu B 52:127-146, 2014)], which is summarized in Section 1, we introduce in Section 2 the space of simple resurgent functions depending on a parameter with an infra-exponential type growth order, and then we define the assigning operator A which acts on the space and produces resurgent functions with essential singularities. In Section 3, we apply the operator A to the Borel transforms of the Voros coefficient and its exponentiation for the Whittaker equation with a large parameter so that we may find the Borel transforms of the Voros coefficient and its exponentiation for the boosted Whittaker equation with a large parameter. In Section 4, we use these results to find the explicit form of the alien derivatives of the Borel transformed WKB solutions of the boosted Whittaker equation with a large parameter. The results in this paper manifest the importance of resurgent functions with essential singularities in developing the exact WKB analysis, the WKB analysis based on the resurgent function theory. It is also worth emphasizing that the concrete form of essential singularities we encounter is expressed by the linear differential operators of infinite order.

  3. Simple and Efficient Numerical Evaluation of Near-Hypersingular Integrals

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.; Wilton, Donald R.; Khayat, Michael A.

    2007-01-01

    Recently, significant progress has been made in the handling of singular and nearly-singular potential integrals that commonly arise in the Boundary Element Method (BEM). To facilitate object-oriented programming and handling of higher order basis functions, cancellation techniques are favored over techniques involving singularity subtraction. However, gradients of the Newton-type potentials, which produce hypersingular kernels, are also frequently required in BEM formulations. As is the case with the potentials, treatment of the near-hypersingular integrals has proven more challenging than treating the limiting case in which the observation point approaches the surface. Historically, numerical evaluation of these near-hypersingularities has often involved a two-step procedure: a singularity subtraction to reduce the order of the singularity, followed by a boundary contour integral evaluation of the extracted part. Since this evaluation necessarily links basis function, Green s function, and the integration domain (element shape), the approach ill fits object-oriented programming concepts. Thus, there is a need for cancellation-type techniques for efficient numerical evaluation of the gradient of the potential. Progress in the development of efficient cancellation-type procedures for the gradient potentials was recently presented. To the extent possible, a change of variables is chosen such that the Jacobian of the transformation cancels the singularity. However, since the gradient kernel involves singularities of different orders, we also require that the transformation leaves remaining terms that are analytic. The terms "normal" and "tangential" are used herein with reference to the source element. Also, since computational formulations often involve the numerical evaluation of both potentials and their gradients, it is highly desirable that a single integration procedure efficiently handles both.

  4. The nature of spherical collapse and a study of black hole dynamics

    NASA Astrophysics Data System (ADS)

    Nampalliwar, Sourabh

    Gravitational waves and singularities are two of the most significant predictions of General Relativity. Binary systems are the most promising sources of gravitational waves that are expected to be detected with the current ground-based and upcoming space-based gravitational wave detectors. During the merger of binary compact objects, an important stage is the plunge. A small part of the gravitational waveform, it marks the end of early inspiral and determines the quasinormal ringing (QNR) of the final product of the merger. It is also the part of the waveform where most of the gravitational energy is released. But, unlike early inspiral and late ringdown, it is poorly understood in terms of phenomenology. This thesis introduces a novel approach combining the Fourier domain Green's function in the particle perturbation approximation and a simple model to understand this crucial stage. The resulting understanding is successful in explaining QNR for a Schwarzschild black hole and opens a new approach to understanding binary inspiral. It holds the promise of a much improved understanding, and improved efficiency in making astrophysical estimates of gravitational wave source strength. Singularities are known to be the ultimate fate of all massive stars undergoing gravitational collapse. The cosmic censorship hypothesis predicts that all these singularities are generically covered by event horizons, i.e., all collapsing stars, if they result in a singularity, end up as black holes. Although several theoretical examples of non-hidden (naked) singularities have been found, the question of the genericity of naked singularities is far from settled. This thesis presents a study of the causal structure of spherically symmetric models of dust collapse and its perturbations to investigate the genericity of naked singularities.

  5. Nonlinear spectral singularities for confined nonlinearities.

    PubMed

    Mostafazadeh, Ali

    2013-06-28

    We introduce a notion of spectral singularity that applies for a general class of nonlinear Schrödinger operators involving a confined nonlinearity. The presence of the nonlinearity does not break the parity-reflection symmetry of spectral singularities but makes them amplitude dependent. Nonlinear spectral singularities are, therefore, associated with a resonance effect that produces amplified waves with a specific amplitude-wavelength profile. We explore the consequences of this phenomenon for a complex δ-function potential that is subject to a general confined nonlinearity.

  6. Variation and oscillation for the multilinear singular integrals satisfying Hörmander type conditions.

    PubMed

    Xia, Yinhong

    2018-01-01

    Suppose that the kernel K satisfies a certain Hörmander type condition. Let b be a function satisfying [Formula: see text] for [Formula: see text], and let [Formula: see text] be a family of multilinear singular integral operators, i.e., [Formula: see text] The main purpose of this paper is to establish the weighted [Formula: see text]-boundedness of the variation operator and the oscillation operator for [Formula: see text].

  7. 27 CFR 46.163 - Meaning of terms.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... singular, words in the singular form shall include the plural, and words importing the masculine gender... warehouse with respect to the operation of such warehouse. Package. The container in which tobacco products...

  8. 27 CFR 46.163 - Meaning of terms.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... singular, words in the singular form shall include the plural, and words importing the masculine gender... warehouse with respect to the operation of such warehouse. Package. The container in which tobacco products...

  9. 27 CFR 46.163 - Meaning of terms.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... singular, words in the singular form shall include the plural, and words importing the masculine gender... warehouse with respect to the operation of such warehouse. Package. The container in which tobacco products...

  10. 27 CFR 46.163 - Meaning of terms.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... singular, words in the singular form shall include the plural, and words importing the masculine gender... warehouse with respect to the operation of such warehouse. Package. The container in which tobacco products...

  11. 27 CFR 46.163 - Meaning of terms.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... singular, words in the singular form shall include the plural, and words importing the masculine gender... warehouse with respect to the operation of such warehouse. Package. The container in which tobacco products...

  12. Decomposition of the Multistatic Response Matrix and Target Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambers, D H

    2008-02-14

    Decomposition of the time-reversal operator for an array, or equivalently the singular value decomposition of the multistatic response matrix, has been used to improve imaging and localization of targets in complicated media. Typically, each singular value is associated with one scatterer even though it has been shown in several cases that a single scatterer can generate several singular values. In this paper we review the analysis of the time-reversal operator (TRO), or equivalently the multistatic response matrix (MRM), of an array system and a small target. We begin with two-dimensional scattering from a small cylinder then show the results formore » a small non-spherical target in three dimensions. We show that the number and magnitudes of the singular values contain information about target composition, shape, and orientation.« less

  13. Analysis on singular spaces: Lie manifolds and operator algebras

    NASA Astrophysics Data System (ADS)

    Nistor, Victor

    2016-07-01

    We discuss and develop some connections between analysis on singular spaces and operator algebras, as presented in my sequence of four lectures at the conference Noncommutative geometry and applications, Frascati, Italy, June 16-21, 2014. Therefore this paper is mostly a survey paper, but the presentation is new, and there are included some new results as well. In particular, Sections 3 and 4 provide a complete short introduction to analysis on noncompact manifolds that is geared towards a class of manifolds-called ;Lie manifolds; -that often appears in practice. Our interest in Lie manifolds is due to the fact that they provide the link between analysis on singular spaces and operator algebras. The groupoids integrating Lie manifolds play an important background role in establishing this link because they provide operator algebras whose structure is often well understood. The initial motivation for the work surveyed here-work that spans over close to two decades-was to develop the index theory of stratified singular spaces. Meanwhile, several other applications have emerged as well, including applications to Partial Differential Equations and Numerical Methods. These will be mentioned only briefly, however, due to the lack of space. Instead, we shall concentrate on the applications to Index theory.

  14. A single-sided homogeneous Green's function representation for holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval

    NASA Astrophysics Data System (ADS)

    Wapenaar, Kees; Thorbecke, Jan; van der Neut, Joost

    2016-04-01

    Green's theorem plays a fundamental role in a diverse range of wavefield imaging applications, such as holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval. In many of those applications, the homogeneous Green's function (i.e. the Green's function of the wave equation without a singularity on the right-hand side) is represented by a closed boundary integral. In practical applications, sources and/or receivers are usually present only on an open surface, which implies that a significant part of the closed boundary integral is by necessity ignored. Here we derive a homogeneous Green's function representation for the common situation that sources and/or receivers are present on an open surface only. We modify the integrand in such a way that it vanishes on the part of the boundary where no sources and receivers are present. As a consequence, the remaining integral along the open surface is an accurate single-sided representation of the homogeneous Green's function. This single-sided representation accounts for all orders of multiple scattering. The new representation significantly improves the aforementioned wavefield imaging applications, particularly in situations where the first-order scattering approximation breaks down.

  15. Vectorial model for guided-mode resonance gratings

    NASA Astrophysics Data System (ADS)

    Fehrembach, A.-L.; Gralak, B.; Sentenac, A.

    2018-04-01

    We propose a self-consistent vectorial method, based on a Green's function technique, to describe the resonances that appear in guided-mode resonance gratings. The model provides intuitive expressions of the reflectivity and transmittivity matrices of the structure, involving coupling integrals between the modes of a planar reference structure and radiative modes. When one mode is excited, the diffracted field for a suitable polarization can be written as the sum of a resonant and a nonresonant term, thus extending the intuitive approach used to explain the Fano shape of the resonance in scalar configurations. When two modes are excited, we derive a physical analysis in a configuration which requires a vectorial approach. We provide numerical validations of our model. From a technical point of view, we show how the Green's tensor of our planar reference structure can be expressed as two scalar Green's functions, and how to deal with the singularity of the Green's tensor.

  16. Signature of phase singularities in diffusive regimes in disordered waveguide lattices: interplay and qualitative analysis

    NASA Astrophysics Data System (ADS)

    Ghosh, Somnath

    2018-05-01

    Co-existence and interplay between mesoscopic light dynamics with singular optics in spatially random but temporally coherent disordered waveguide lattices is reported. Two CW light beams of 1.55 micron operating wavelength are launched as inputs to 1D waveguide lattices with controllable weak disorder in refractive index profile. Direct observation of phase singularities in the speckle pattern along the length is numerically demonstrated. Quantitative analysis of onset of such singular behavior and diffusive wave propagation is analyzed for the first time.

  17. Improvements in surface singularity analysis and design methods. [applicable to airfoils

    NASA Technical Reports Server (NTRS)

    Bristow, D. R.

    1979-01-01

    The coupling of the combined source vortex distribution of Green's potential flow function with contemporary numerical techniques is shown to provide accurate, efficient, and stable solutions to subsonic inviscid analysis and design problems for multi-element airfoils. The analysis problem is solved by direct calculation of the surface singularity distribution required to satisfy the flow tangency boundary condition. The design or inverse problem is solved by an iteration process. In this process, the geometry and the associated pressure distribution are iterated until the pressure distribution most nearly corresponding to the prescribed design distribution is obtained. Typically, five iteration cycles are required for convergence. A description of the analysis and design method is presented, along with supporting examples.

  18. A study of non-local holography in the AdS/CFT correspondence

    NASA Astrophysics Data System (ADS)

    Hamilton, Alex

    This thesis is broadly composed of three topics. After giving a brief overview of the origins of the AdS/CFT duality, we describe a way of representing local bulk fields as quasi-local CFT operators. We show how these smeared boundary operators encode the holographic radial-scale duality, and how this can lead to degrees of freedom consistent with Bekenstein's entropy. We also gain insight into the BTZ black hole, with the horizon, singularity, and thermality arising naturally via these operators. As another aspect of AdS/CFT, we will be interested in the fate of giant gravitons under a marginal deformation. We review the construction and fluctuation spectrum of giants, and then proceed to evaluate them in two different Penrose limits of Lunin and Maldacena's gamma deformed geometry. We find only one to be stable, and describe how the degeneracy of the spectrum is partially broken. Finally, we make a first step towards cosmological particle production in string theory by introducing a first quantized alternative approach to the standard method of calculation. We show how the same calculation can be done with Green's Functions---objects which are well defined in a first quantized setting (such as string theory).

  19. Signature of phase singularities in diffusive regimes in disordered waveguide lattices: interplay and qualitative analysis.

    PubMed

    Ghosh, Somnath

    2018-05-10

    Coexistence and interplay between mesoscopic light dynamics with singular optics in spatially disordered waveguide lattices are reported. Two CW light beams of a 1.55 μm operating wavelength are launched as inputs to 1D waveguide lattices with controllable weak disorder in a complex refractive index profile. Direct observation of phase singularities in the speckle pattern along the length is numerically demonstrated. Quantitative analysis of the onset of such singular behavior and diffusive wave propagation is analyzed for the first time, to the best of our knowledge.

  20. On the singular perturbations for fractional differential equation.

    PubMed

    Atangana, Abdon

    2014-01-01

    The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method.

  1. Quantum probe of Hořava-Lifshitz gravity

    NASA Astrophysics Data System (ADS)

    Gurtug, O.; Mangut, M.

    2018-04-01

    Particle probe analysis of the Kehagias-Sfetsos black hole spacetime of Hořava-Lifshitz gravity is extended to wave probe analysis within the framework of quantum mechanics. The time-like naked singularity that develops when ωM2 < 1/2 is probed with quantum fields obeying Klein-Gordon and Chandrasekhar-Dirac equations. The quantum field probe of the naked singularity has revealed that both the spatial part of the wave and the Hamiltonian operators of Klein-Gordon and Chandrasekhar-Dirac equations are essentially self-adjoint, and thus, the naked singularity in the Kehagias-Sfetsos spacetime becomes quantum mechanically non-singular.

  2. The gravitational potential of axially symmetric bodies from a regularized green kernel

    NASA Astrophysics Data System (ADS)

    Trova, A.; Huré, J.-M.; Hersant, F.

    2011-12-01

    The determination of the gravitational potential inside celestial bodies (rotating stars, discs, planets, asteroids) is a common challenge in numerical Astrophysics. Under axial symmetry, the potential is classically found from a two-dimensional integral over the body's meridional cross-section. Because it involves an improper integral, high accuracy is generally difficult to reach. We have discovered that, for homogeneous bodies, the singular Green kernel can be converted into a regular kernel by direct analytical integration. This new kernel, easily managed with standard techniques, opens interesting horizons, not only for numerical calculus but also to generate approximations, in particular for geometrically thin discs and rings.

  3. Object detection with a multistatic array using singular value decomposition

    DOEpatents

    Hallquist, Aaron T.; Chambers, David H.

    2014-07-01

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across a surface and that travels down the surface. The detection system converts the return signals from a time domain to a frequency domain, resulting in frequency return signals. The detection system then performs a singular value decomposition for each frequency to identify singular values for each frequency. The detection system then detects the presence of a subsurface object based on a comparison of the identified singular values to expected singular values when no subsurface object is present.

  4. A robust watermarking scheme using lifting wavelet transform and singular value decomposition

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anuj; Verma, Deval; Verma, Vivek Singh

    2017-01-01

    The present paper proposes a robust image watermarking scheme using lifting wavelet transform (LWT) and singular value decomposition (SVD). Second level LWT is applied on host/cover image to decompose into different subbands. SVD is used to obtain singular values of watermark image and then these singular values are updated with the singular values of LH2 subband. The algorithm is tested on a number of benchmark images and it is found that the present algorithm is robust against different geometric and image processing operations. A comparison of the proposed scheme is performed with other existing schemes and observed that the present scheme is better not only in terms of robustness but also in terms of imperceptibility.

  5. Building blocks for subleading helicity operators

    DOE PAGES

    Kolodrubetz, Daniel W.; Moult, Ian; Stewart, Iain W.

    2016-05-24

    On-shell helicity methods provide powerful tools for determining scattering amplitudes, which have a one-to-one correspondence with leading power helicity operators in the Soft-Collinear Effective Theory (SCET) away from singular regions of phase space. We show that helicity based operators are also useful for enumerating power suppressed SCET operators, which encode subleading amplitude information about singular limits. In particular, we present a complete set of scalar helicity building blocks that are valid for constructing operators at any order in the SCET power expansion. In conclusion, we also describe an interesting angular momentum selection rule that restricts how these building blocks canmore » be assembled.« less

  6. Application of singular value decomposition to structural dynamics systems with constraints

    NASA Technical Reports Server (NTRS)

    Juang, J.-N.; Pinson, L. D.

    1985-01-01

    Singular value decomposition is used to construct a coordinate transformation for a linear dynamic system subject to linear, homogeneous constraint equations. The method is compared with two commonly used methods, namely classical Gaussian elimination and Walton-Steeves approach. Although the classical method requires fewer numerical operations, the singular value decomposition method is more accurate and convenient in eliminating the dependent coordinates. Numerical examples are presented to demonstrate the application of the method.

  7. Application of matrix singular value properties for evaluating gain and phase margins of multiloop systems. [stability margins for wing flutter suppression and drone lateral attitude control

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.; Newsom, J. R.

    1982-01-01

    A stability margin evaluation method in terms of simultaneous gain and phase changes in all loops of a multiloop system is presented. A universal gain-phase margin evaluation diagram is constructed by generalizing an existing method using matrix singular value properties. Using this diagram and computing the minimum singular value of the system return difference matrix over the operating frequency range, regions of guaranteed stability margins can be obtained. Singular values are computed for a wing flutter suppression and a drone lateral attitude control problem. The numerical results indicate that this method predicts quite conservative stability margins. In the second example if the eigenvalue magnitude is used instead of the singular value, as a measure of nearness to singularity, more realistic stability margins are obtained. However, this relaxed measure generally cannot guarantee global stability.

  8. Trotter's limit formula for the Schrödinger equation with singular potential

    NASA Astrophysics Data System (ADS)

    Nathanson, Ekaterina S.; Jørgensen, Palle E. T.

    2017-12-01

    We discuss the Schrödinger equation with singular potentials. Our focus is non-relativistic Schrödinger operators H with scalar potentials V defined on R d, hence covering such quantum systems as atoms, molecules, and subatomic particles whether free, bound, or localized. By a "singular potential" V, we refer to the case when the corresponding Schrödinger operators H, with their natural minimal domain in L2(R d), are not essentially self-adjoint. Since V is assumed real valued, the corresponding Hermitian symmetric operator H commutes with the conjugation in L2(R d), and so (by von Neumann's theorem), H has deficiency indices (n, n). The case of singular potentials V refers to when n > 0. Hence, by von Neumann's theory, we know the full variety of all the self-adjoint extensions. Since the Trotter formula is restricted to the case when n = 0, and here n > 0, two questions arise: (i) existence of the Trotter limit and (ii) the nature of this limit. We answer (i) affirmatively. Our answer to (ii) is that when n > 0, the Trotter limit is a strongly continuous contraction semigroup; so it is not time-reversible.

  9. On the Singular Perturbations for Fractional Differential Equation

    PubMed Central

    Atangana, Abdon

    2014-01-01

    The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method. PMID:24683357

  10. Holographic signatures of cosmological singularities.

    PubMed

    Engelhardt, Netta; Hertog, Thomas; Horowitz, Gary T

    2014-09-19

    To gain insight into the quantum nature of cosmological singularities, we study anisotropic Kasner solutions in gauge-gravity duality. The dual description of the bulk evolution towards the singularity involves N=4 super Yang-Mills theory on the expanding branch of deformed de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlators show a strong signature of the singularity around horizon scales and decay at large boundary separation at different rates in different directions. More generally, the boundary evolution exhibits a process of particle creation similar to that in inflation. This leads us to conjecture that information on the quantum nature of cosmological singularities is encoded in long-wavelength features of the boundary wave function.

  11. Classification of subsurface objects using singular values derived from signal frames

    DOEpatents

    Chambers, David H; Paglieroni, David W

    2014-05-06

    The classification system represents a detected object with a feature vector derived from the return signals acquired by an array of N transceivers operating in multistatic mode. The classification system generates the feature vector by transforming the real-valued return signals into complex-valued spectra, using, for example, a Fast Fourier Transform. The classification system then generates a feature vector of singular values for each user-designated spectral sub-band by applying a singular value decomposition (SVD) to the N.times.N square complex-valued matrix formed from sub-band samples associated with all possible transmitter-receiver pairs. The resulting feature vector of singular values may be transformed into a feature vector of singular value likelihoods and then subjected to a multi-category linear or neural network classifier for object classification.

  12. Towards timelike singularity via AdS dual

    NASA Astrophysics Data System (ADS)

    Bhowmick, Samrat; Chatterjee, Soumyabrata

    2017-07-01

    It is well known that Kasner geometry with spacelike singularity can be extended to bulk AdS-like geometry, furthermore, one can study field theory on this Kasner space via its gravity dual. In this paper, we show that there exists a Kasner-like geometry with timelike singularity for which one can construct a dual gravity description. We then study various extremal surfaces including spacelike geodesics in the dual gravity description. Finally, we compute correlators of highly massive operators in the boundary field theory with a geodesic approximation.

  13. Nuevas tecnicas basadas en redes neuronales para el diseno de filtros de microondas multicapa apantallados

    NASA Astrophysics Data System (ADS)

    Pascual Garcia, Juan

    In this PhD thesis one method of shielded multilayer circuit neural network based analysis has been developed. One of the most successful analysis procedures of these kind of structures is the Integral Equation technique (IE) solved by the Method of Moments (MoM). In order to solve the IE, in the version which uses the media relevant potentials, it is necessary to have a formulation of the Green's functions associated to the mentioned potentials. The main computational burden in the IE resolution lies on the numerical evaluation of the Green's functions. In this work, the circuit analysis has been drastically accelerated thanks to the approximation of the Green's functions by means of neural networks. Once trained, the neural networks substitute the Green's functions in the IE. Two different types of neural networks have been used: the Radial basis function neural networks (RBFNN) and the Chebyshev neural networks. Thanks mainly to two distinct operations the correct approximation of the Green's functions has been possible. On the one hand, a very effective input space division has been developed. On the other hand, the elimination of the singularity makes feasible the approximation of slow variation functions. Two different singularity elimination strategies have been developed. The first one is based on the multiplication by the source-observation points distance (rho). The second one outperforms the first one. It consists of the extraction of two layers of spatial images from the whole summation of images. With regard to the Chebyshev neural networks, the OLS training algorithm has been applied in a novel fashion. This method allows the optimum design in this kind of neural networks. In this way, the performance of these neural networks outperforms greatly the RBFNNs one. In both networks, the time gain reached makes the neural method profitable. The time invested in the input space division and in the neural training is negligible with only few circuit analysis. To show, in a practical way, the ability of the neural based analysis method, two new design procedures have been developed. The first method uses the Genetic Algorithms to optimize an initial filter which does not fulfill the established specifications. A new fitness function, specially well suited to design filters, has been defined in order to assure the correct convergence of the optimization process. This new function measures the fulfillment of the specifications and it also prevents the appearance of the premature convergence problem. The second method is found on the approximation, by means of neural networks, of the relations between the electrical parameters, which defined the circuit response, and the physical dimensions that synthesize the aforementioned parameters. The neural networks trained with these data can be used in the design of many circuits in a given structure. Both methods had been show their ability in the design of practical filters.

  14. Some Results on Proper Eigenvalues and Eigenvectors with Applications to Scaling.

    ERIC Educational Resources Information Center

    McDonald, Roderick P.; And Others

    1979-01-01

    Problems in avoiding the singularity problem in analyzing matrices for optimal scaling are addressed. Conditions are given under which the stationary points and values of a ratio of quadratic forms in two singular matrices can be obtained by a series of simple matrix operations. (Author/JKS)

  15. Employment of a Dual Status Commander in a Multi-State Disaster Operation

    DTIC Science & Technology

    2016-06-10

    propagates parallel commands among affected states without a singular organization to synchronize and prioritize efforts. Thus, the central research ...without a singular organization to synchronize and prioritize efforts. Thus, the central research question is: How can laws be changed to support the...1 The Research Question

  16. Kondo Effect in Dirac Systems

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Takashi

    2015-07-01

    We investigate the Kondo effect in Dirac systems, where Dirac electrons interact with the localized spin via the s-d exchange coupling. The Dirac electron in solid state has the linear dispersion and is described typically by the Hamiltonian such as Hk = vk · σ for the wave number k where σj are Pauli matrices. We derived the formula of the Kondo temperature TK by means of the Green's function theory for small J. The TK is determined from a singularity of Green's functions in the form TK ≃ bar{D}exp ( - const./ρ |J|) when the exchange coupling |J| is small where bar{D} = D/√{1 + D2/(2μ )2} for a cutoff D and ρ is the density of states at the Fermi surface. When |μ| ≪ D, TK is proportional to |μ|: TK ≃ |μ| exp(-const./ρ|J|). The Kondo screening will, however, disappear when the Fermi surface shrinks to a point called the Dirac point, that is, TK vanishes when the chemical potential μ is just at the Dirac point. The resistivity and the specific heat exhibit a log-T singularity in the range TK < T ≪ |μ|/kB. Instead, for T ˜ O(|μ|) or T > |μ|, they never show log-T.

  17. iQIST v0.7: An open source continuous-time quantum Monte Carlo impurity solver toolkit

    NASA Astrophysics Data System (ADS)

    Huang, Li

    2017-12-01

    In this paper, we present a new version of the iQIST software package, which is capable of solving various quantum impurity models by using the hybridization expansion (or strong coupling expansion) continuous-time quantum Monte Carlo algorithm. In the revised version, the software architecture is completely redesigned. New basis (intermediate representation or singular value decomposition representation) for the single-particle and two-particle Green's functions is introduced. A lot of useful physical observables are added, such as the charge susceptibility, fidelity susceptibility, Binder cumulant, and autocorrelation time. Especially, we optimize measurement for the two-particle Green's functions. Both the particle-hole and particle-particle channels are supported. In addition, the block structure of the two-particle Green's functions is exploited to accelerate the calculation. Finally, we fix some known bugs and limitations. The computational efficiency of the code is greatly enhanced.

  18. Light-cone expansion of the Dirac sea in the presence of chiral and scalar potentials

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    2000-10-01

    We study the Dirac sea in the presence of external chiral and scalar/pseudoscalar potentials. In preparation, a method is developed for calculating the advanced and retarded Green's functions in an expansion around the light cone. For this, we first expand all Feynman diagrams and then explicitly sum up the perturbation series. The light-cone expansion expresses the Green's functions as an infinite sum of line integrals over the external potential and its partial derivatives. The Dirac sea is decomposed into a causal and a noncausal contribution. The causal contribution has a light-cone expansion which is closely related to the light-cone expansion of the Green's functions; it describes the singular behavior of the Dirac sea in terms of nested line integrals along the light cone. The noncausal contribution, on the other hand, is, to every order in perturbation theory, a smooth function in position space.

  19. Workshop on Condition Based Maintenance Held in Atlantic Beach, North Carolina on November 15 - 17, 1993

    DTIC Science & Technology

    1993-11-17

    pounds of Torque Over Three Minutes Continuous Operation IYMCO1A 14 DMAE Corporation C-130 Engine Gearbox January 19925 Stress Wave Analysis - I in’. I...FaUi.O The CBM needs associated with surface initiated failure mechanisms can be divided into I singular defects and low (h/a) operation. Singular defec-t...These include nicks, scratches, corrosion pits and dents caused by third’ body particles (hard or soft). These defects cause local stress risers

  20. A fast and well-conditioned spectral method for singular integral equations

    NASA Astrophysics Data System (ADS)

    Slevinsky, Richard Mikael; Olver, Sheehan

    2017-03-01

    We develop a spectral method for solving univariate singular integral equations over unions of intervals by utilizing Chebyshev and ultraspherical polynomials to reformulate the equations as almost-banded infinite-dimensional systems. This is accomplished by utilizing low rank approximations for sparse representations of the bivariate kernels. The resulting system can be solved in O (m2 n) operations using an adaptive QR factorization, where m is the bandwidth and n is the optimal number of unknowns needed to resolve the true solution. The complexity is reduced to O (mn) operations by pre-caching the QR factorization when the same operator is used for multiple right-hand sides. Stability is proved by showing that the resulting linear operator can be diagonally preconditioned to be a compact perturbation of the identity. Applications considered include the Faraday cage, and acoustic scattering for the Helmholtz and gravity Helmholtz equations, including spectrally accurate numerical evaluation of the far- and near-field solution. The JULIA software package SingularIntegralEquations.jl implements our method with a convenient, user-friendly interface.

  1. Operational modal analysis using SVD of power spectral density transmissibility matrices

    NASA Astrophysics Data System (ADS)

    Araújo, Iván Gómez; Laier, Jose Elias

    2014-05-01

    This paper proposes the singular value decomposition of power spectrum density transmissibility matrices with different references, (PSDTM-SVD), as an identification method of natural frequencies and mode shapes of a dynamic system subjected to excitations under operational conditions. At the system poles, the rows of the proposed transmissibility matrix converge to the same ratio of amplitudes of vibration modes. As a result, the matrices are linearly dependent on the columns, and their singular values converge to zero. Singular values are used to determine the natural frequencies, and the first left singular vectors are used to estimate mode shapes. A numerical example of the finite element model of a beam subjected to colored noise excitation is analyzed to illustrate the accuracy of the proposed method. Results of the PSDTM-SVD method in the numerical example are compared with obtained using frequency domain decomposition (FDD) and power spectrum density transmissibility (PSDT). It is demonstrated that the proposed method does not depend on the excitation characteristics contrary to the FDD method that assumes white noise excitation, and further reduces the risk to identify extra non-physical poles in comparison to the PSDT method. Furthermore, a case study is performed using data from an operational vibration test of a bridge with a simply supported beam system. The real application of a full-sized bridge has shown that the proposed PSDTM-SVD method is able to identify the operational modal parameter. Operational modal parameters identified by the PSDTM-SVD in the real application agree well those identified by the FDD and PSDT methods.

  2. Soliton structure versus singularity analysis: Third-order completely intergrable nonlinear differential equations in 1 + 1-dimensions

    NASA Astrophysics Data System (ADS)

    Fuchssteiner, Benno; Carillo, Sandra

    1989-01-01

    Bäcklund transformations between all known completely integrable third-order differential equations in (1 + 1)-dimensions are established and the corresponding transformations formulas for their hereditary operators and Hamiltonian formulations are exhibited. Some of these Bäcklund transformations are not injective; therefore additional non-commutative symmetry groups are found for some equations. These non-commutative symmetry groups are classified as having a semisimple part isomorphic to the affine algebra A(1)1. New completely integrable third-order integro-differential equations, some depending explicitly on x, are given. These new equations give rise to nonin equation. Connections between the singularity equations (from the Painlevé analysis) and the nonlinear equations for interacting solitons are established. A common approach to singularity analysis and soliton structure is introduced. The Painlevé analysis is modified in such a sense that it carries over directly and without difficulty to the time evolution of singularity manifolds of equations like the sine-Gordon and nonlinear Schrödinger equation. A method to recover the Painlevé series from its constant level term is exhibit. The soliton-singularity transform is recognized to be connected to the Möbius group. This gives rise to a Darboux-like result for the spectral properties of the recursion operator. These connections are used in order to explain why poles of soliton equations move like trajectories of interacting solitons. Furthermore it is explicitly computed how solitons of singularity equations behave under the effect of this soliton-singularity transform. This then leads to the result that only for scaling degrees α = -1 and α = -2 the usual Painlevé analysis can be carried out. A new invariance principle, connected to kernels of differential operators is discovered. This new invariance, for example, connects the explicit solutions of the Liouville equation with the Miura transform. Simple methods are exhibited which allow to compute out of N-soliton solutions of the KdV (Bargman potentials) explicit solutions of equations like the Harry Dym equation. Certain solutions are plotted.

  3. Singular perturbations with boundary conditions and the Casimir effect in the half space

    NASA Astrophysics Data System (ADS)

    Albeverio, S.; Cognola, G.; Spreafico, M.; Zerbini, S.

    2010-06-01

    We study the self-adjoint extensions of a class of nonmaximal multiplication operators with boundary conditions. We show that these extensions correspond to singular rank 1 perturbations (in the sense of Albeverio and Kurasov [Singular Perturbations of Differential Operaters (Cambridge University Press, Cambridge, 2000)]) of the Laplace operator, namely, the formal Laplacian with a singular delta potential, on the half space. This construction is the appropriate setting to describe the Casimir effect related to a massless scalar field in the flat space-time with an infinite conducting plate and in the presence of a pointlike "impurity." We use the relative zeta determinant (as defined in the works of Müller ["Relative zeta functions, relative determinants and scattering theory," Commun. Math. Phys. 192, 309 (1998)] and Spreafico and Zerbini ["Finite temperature quantum field theory on noncompact domains and application to delta interactions," Rep. Math. Phys. 63, 163 (2009)]) in order to regularize the partition function of this model. We study the analytic extension of the associated relative zeta function, and we present explicit results for the partition function and for the Casimir force.

  4. Optical Manifestations of the Electron-Electron Interaction

    NASA Astrophysics Data System (ADS)

    Portengen, Taco

    1995-01-01

    In this thesis, two optical manifestations of the electron-electron interaction are studied: the Fermi -edge singularity in doped quantum wells and quantum wires, and second-harmonic generation in mixed-valent compounds. First, we construct a theory of the Fermi-edge singularity that can systematically account for the finite mass of a hole created in the valence subband of a quantum well or quantum wire. The dynamical response for finite hole mass depends crucially on the dimensionality of the Fermi sea. Whereas in three dimensions the infrared divergence is suppressed, in two dimensions a one-over-square-root singularity survives, while in one dimension the spectrum is even more singular with recoil than without recoil. This explains the large optical singularities observed in quantum wires. Correlations change the prefactor, but not the exponent of the threshold behaviour in two and in three dimensions, while in one dimension, they affect neither the prefactor nor the exponent. Second, we apply our theory to the Frohlich polaron, a manifestation of the electron-phonon rather than the electron-electron interaction. The new method of calculating the Green's function removes unphysical features of the conventional cumulant expansion that had remained unnoticed in the literature up to now. Third, in an effort to investigate the impact of coherence on optical properties, we calculate the linear and nonlinear optical characteristics of mixed-valent compounds. Second -harmonic generation can only occur for solutions of the theoretical Falicov-Kimball model that have a built-in coherence between the itinerant d-electrons and localized f-holes. By contrast, second-harmonic generation cannot occur for solutions with f-site occupation as a good quantum number. The interaction between optically created quasiparticles leads to a threshold singularity in the absorption spectrum, and greatly enhances the second-harmonic conversion efficiency at half the gap frequency. As an experimental test of coherence we propose the measurement of the second-harmonic susceptibility of SmB_6..

  5. On the efficiency of treating singularities in triatomic variational vibrational computations. The vibrational states of H(+)3 up to dissociation.

    PubMed

    Szidarovszky, Tamás; Császár, Attila G; Czakó, Gábor

    2010-08-01

    Several techniques of varying efficiency are investigated, which treat all singularities present in the triatomic vibrational kinetic energy operator given in orthogonal internal coordinates of the two distances-one angle type. The strategies are based on the use of a direct-product basis built from one-dimensional discrete variable representation (DVR) bases corresponding to the two distances and orthogonal Legendre polynomials, or the corresponding Legendre-DVR basis, corresponding to the angle. The use of Legendre functions ensures the efficient treatment of the angular singularity. Matrix elements of the singular radial operators are calculated employing DVRs using the quadrature approximation as well as special DVRs satisfying the boundary conditions and thus allowing for the use of exact DVR expressions. Potential optimized (PO) radial DVRs, based on one-dimensional Hamiltonians with potentials obtained by fixing or relaxing the two non-active coordinates, are also studied. The numerical calculations employed Hermite-DVR, spherical-oscillator-DVR, and Bessel-DVR bases as the primitive radial functions. A new analytical formula is given for the determination of the matrix elements of the singular radial operator using the Bessel-DVR basis. The usually claimed failure of the quadrature approximation in certain singular integrals is revisited in one and three dimensions. It is shown that as long as no potential optimization is carried out the quadrature approximation works almost as well as the exact DVR expressions. If wave functions with finite amplitude at the boundary are to be computed, the basis sets need to meet the required boundary conditions. The present numerical results also confirm that PO-DVRs should be constructed employing relaxed potentials and PO-DVRs can be useful for optimizing quadrature points for calculations applying large coordinate intervals and describing large-amplitude motions. The utility and efficiency of the different algorithms is demonstrated by the computation of converged near-dissociation vibrational energy levels for the H molecular ion.

  6. Translational control of a graphically simulated robot arm by kinematic rate equations that overcome elbow joint singularity

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Houck, J. A.; Carzoo, S. W.

    1984-01-01

    An operator commands a robot hand to move in a certain direction relative to its own axis system by specifying a velocity in that direction. This velocity command is then resolved into individual joint rotational velocities in the robot arm to effect the motion. However, the usual resolved-rate equations become singular when the robot arm is straightened. To overcome this elbow joint singularity, equations were developed which allow continued translational control of the robot hand even though the robot arm is (or is nearly) fully extended. A feature of the equations near full arm extension is that an operator simply extends and retracts the robot arm to reverse the direction of the elbow bend (difficult maneuver for the usual resolved-rate equations). Results show successful movement of a graphically simulated robot arm.

  7. A two-component Matched Interface and Boundary (MIB) regularization for charge singularity in implicit solvation

    NASA Astrophysics Data System (ADS)

    Geng, Weihua; Zhao, Shan

    2017-12-01

    We present a new Matched Interface and Boundary (MIB) regularization method for treating charge singularity in solvated biomolecules whose electrostatics are described by the Poisson-Boltzmann (PB) equation. In a regularization method, by decomposing the potential function into two or three components, the singular component can be analytically represented by the Green's function, while other components possess a higher regularity. Our new regularization combines the efficiency of two-component schemes with the accuracy of the three-component schemes. Based on this regularization, a new MIB finite difference algorithm is developed for solving both linear and nonlinear PB equations, where the nonlinearity is handled by using the inexact-Newton's method. Compared with the existing MIB PB solver based on a three-component regularization, the present algorithm is simpler to implement by circumventing the work to solve a boundary value Poisson equation inside the molecular interface and to compute related interface jump conditions numerically. Moreover, the new MIB algorithm becomes computationally less expensive, while maintains the same second order accuracy. This is numerically verified by calculating the electrostatic potential and solvation energy on the Kirkwood sphere on which the analytical solutions are available and on a series of proteins with various sizes.

  8. The privileged spectrum of cnoidal ion holes and its extension by imperfect ion trapping

    NASA Astrophysics Data System (ADS)

    Schamel, Hans; Das, Nilakshi; Borah, Prathana

    2018-01-01

    The fundamental properties of nonlinear ion hole modes propagating in current-driven collisionless plasmas are derived. Making use of Schamel's alternative method their spatial structure ϕ (x) and phase velocities u0 are analyzed and found to depend crucially on the used trapped ion distribution fit. A regular fit represents a continuous spectrum, which is called privileged or perfect since it yields a definite u0 and appears most realistic. A singular fit, on the other hand, involving jumps and moderate slope singularities at the separatrix, does reveal further classes of hole equilibria at the cost, however, of a well-defined u0. This explains why Bernstein, Greene, Kruskal (BGK)-solutions of the Vlasov-Poisson system, exhibiting a strong slope singularity of their derived trapped particle distribution, can principally not provide definite u0 s. The nonlinear dispersion relation (or u0) of privileged ion holes, on the other hand, is equivalent with that of cnoidal electron holes, i.e. in addition to the ordinary ion acoustic branch there exists a correspondence to the "Langmuir" branch and to the multiple "slow electron acoustic" branches, reflecting different trapping scenarios.

  9. A single-sided representation for the homogeneous Green's function of a unified scalar wave equation.

    PubMed

    Wapenaar, Kees

    2017-06-01

    A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.

  10. Second-order relativistic corrections for the S(L=0) states in one- and two-electron atomic systems

    NASA Astrophysics Data System (ADS)

    Frolov, A. M.; Mitelut, C. C.; Zhong, Z.

    2005-01-01

    An analytical approach is developed to compute the first- (similar to alpha(2)) and second-order (similar to alpha(4)) relativistic corrections in one- and two-electron atomic systems. The approach is based on the reduction of all operators to divergent (singular) and nondivergent (regular) parts. Then, we show that all the divergent parts from the differentmatrix elements cancel each other. The remaining expression contains only regular operators and its expectation value can be easily computed. Analysis of the S(L = 0) states in such systems is of specific interest since the corresponding operators for these states contain a large number of singularities. For one-electron systems the computed relativistic corrections coincide exactly with the appropriate result that follows from the Taylor expansion of the relativistic (i.e., Dirac) energy. We also discuss an alternative approach that allows one to cancel all singularities by using the so-called operator-compensation technique. This second approach is found to be very effective in applications of more complex systems, such as helium-like atoms and ions, H-2(+)-like ions, and some exotic three-body systems.

  11. The singularity structure of scale-invariant rank-2 Coulomb branches

    NASA Astrophysics Data System (ADS)

    Argyres, Philip C.; Long, Cody; Martone, Mario

    2018-05-01

    We compute the spectrum of scaling dimensions of Coulomb branch operators in 4d rank-2 N=2 superconformal field theories. Only a finite rational set of scaling dimensions is allowed. It is determined by using information about the global topology of the locus of metric singularities on the Coulomb branch, the special Kähler geometry near those singularities, and electric-magnetic duality monodromies along orbits of the U(1) R symmetry. A set of novel topological and geometric results are developed which promise to be useful for the study and classification of Coulomb branch geometries at all ranks.

  12. Wavefront reconstruction from non-modulated pyramid wavefront sensor data using a singular value type expansion

    NASA Astrophysics Data System (ADS)

    Hutterer, Victoria; Ramlau, Ronny

    2018-03-01

    The new generation of extremely large telescopes includes adaptive optics systems to correct for atmospheric blurring. In this paper, we present a new method of wavefront reconstruction from non-modulated pyramid wavefront sensor data. The approach is based on a simplified sensor model represented as the finite Hilbert transform of the incoming phase. Due to the non-compactness of the finite Hilbert transform operator the classical theory for singular systems is not applicable. Nevertheless, we can express the Moore-Penrose inverse as a singular value type expansion with weighted Chebychev polynomials.

  13. Treatment of the polar coordinate singularity in axisymmetric wave propagation using high-order summation-by-parts operators on a staggered grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prochnow, Bo; O'Reilly, Ossian; Dunham, Eric M.

    In this paper, we develop a high-order finite difference scheme for axisymmetric wave propagation in a cylindrical conduit filled with a viscous fluid. The scheme is provably stable, and overcomes the difficulty of the polar coordinate singularity in the radial component of the diffusion operator. The finite difference approximation satisfies the principle of summation-by-parts (SBP), which is used to establish stability using the energy method. To treat the coordinate singularity without losing the SBP property of the scheme, a staggered grid is introduced and quadrature rules with weights set to zero at the endpoints are considered. Finally, the accuracy ofmore » the scheme is studied both for a model problem with periodic boundary conditions at the ends of the conduit and its practical utility is demonstrated by modeling acoustic-gravity waves in a magmatic conduit.« less

  14. Quantum space and quantum completeness

    NASA Astrophysics Data System (ADS)

    Jurić, Tajron

    2018-05-01

    Motivated by the question whether quantum gravity can "smear out" the classical singularity we analyze a certain quantum space and its quantum-mechanical completeness. Classical singularity is understood as a geodesic incompleteness, while quantum completeness requires a unique unitary time evolution for test fields propagating on an underlying background. Here the crucial point is that quantum completeness renders the Hamiltonian (or spatial part of the wave operator) to be essentially self-adjoint in order to generate a unique time evolution. We examine a model of quantum space which consists of a noncommutative BTZ black hole probed by a test scalar field. We show that the quantum gravity (noncommutative) effect is to enlarge the domain of BTZ parameters for which the relevant wave operator is essentially self-adjoint. This means that the corresponding quantum space is quantum complete for a larger range of BTZ parameters rendering the conclusion that in the quantum space one observes the effect of "smearing out" the singularity.

  15. Improving robot arm control for safe and robust haptic cooperation in orthopaedic procedures.

    PubMed

    Cruces, R A Castillo; Wahrburg, J

    2007-12-01

    This paper presents the ongoing results of an effort to achieve the integration of a navigated cooperative robotic arm into computer-assisted orthopaedic surgery. A seamless integration requires the system acting in direct cooperation with the surgeon instead of replacing him. Two technical issues are discussed to improve the haptic operating modes for interactive robot guidance. The concept of virtual fixtures is used to restrict the range of motion of the robot according to pre-operatively defined constraints, and methodologies to assure a robust and accurate motion through singular arm configurations are investigated. A new method for handling singularities is proposed, which is superior to the commonly used damped-least-squares method. It produces no deviations of the end-effector in relation to the virtually constrained path. A solution to assure a good performance of a hands-on robotic arm at singularity configurations is proposed. (c) 2007 John Wiley & Sons, Ltd.

  16. Treatment of the polar coordinate singularity in axisymmetric wave propagation using high-order summation-by-parts operators on a staggered grid

    DOE PAGES

    Prochnow, Bo; O'Reilly, Ossian; Dunham, Eric M.; ...

    2017-03-16

    In this paper, we develop a high-order finite difference scheme for axisymmetric wave propagation in a cylindrical conduit filled with a viscous fluid. The scheme is provably stable, and overcomes the difficulty of the polar coordinate singularity in the radial component of the diffusion operator. The finite difference approximation satisfies the principle of summation-by-parts (SBP), which is used to establish stability using the energy method. To treat the coordinate singularity without losing the SBP property of the scheme, a staggered grid is introduced and quadrature rules with weights set to zero at the endpoints are considered. Finally, the accuracy ofmore » the scheme is studied both for a model problem with periodic boundary conditions at the ends of the conduit and its practical utility is demonstrated by modeling acoustic-gravity waves in a magmatic conduit.« less

  17. Mathematical analysis of the 1D model and reconstruction schemes for magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Erb, W.; Weinmann, A.; Ahlborg, M.; Brandt, C.; Bringout, G.; Buzug, T. M.; Frikel, J.; Kaethner, C.; Knopp, T.; März, T.; Möddel, M.; Storath, M.; Weber, A.

    2018-05-01

    Magnetic particle imaging (MPI) is a promising new in vivo medical imaging modality in which distributions of super-paramagnetic nanoparticles are tracked based on their response in an applied magnetic field. In this paper we provide a mathematical analysis of the modeled MPI operator in the univariate situation. We provide a Hilbert space setup, in which the MPI operator is decomposed into simple building blocks and in which these building blocks are analyzed with respect to their mathematical properties. In turn, we obtain an analysis of the MPI forward operator and, in particular, of its ill-posedness properties. We further get that the singular values of the MPI core operator decrease exponentially. We complement our analytic results by some numerical studies which, in particular, suggest a rapid decay of the singular values of the MPI operator.

  18. Stochastic local operations and classical communication (SLOCC) and local unitary operations (LU) classifications of n qubits via ranks and singular values of the spin-flipping matrices

    NASA Astrophysics Data System (ADS)

    Li, Dafa

    2018-06-01

    We construct ℓ -spin-flipping matrices from the coefficient matrices of pure states of n qubits and show that the ℓ -spin-flipping matrices are congruent and unitary congruent whenever two pure states of n qubits are SLOCC and LU equivalent, respectively. The congruence implies the invariance of ranks of the ℓ -spin-flipping matrices under SLOCC and then permits a reduction of SLOCC classification of n qubits to calculation of ranks of the ℓ -spin-flipping matrices. The unitary congruence implies the invariance of singular values of the ℓ -spin-flipping matrices under LU and then permits a reduction of LU classification of n qubits to calculation of singular values of the ℓ -spin-flipping matrices. Furthermore, we show that the invariance of singular values of the ℓ -spin-flipping matrices Ω 1^{(n)} implies the invariance of the concurrence for even n qubits and the invariance of the n-tangle for odd n qubits. Thus, the concurrence and the n-tangle can be used for LU classification and computing the concurrence and the n-tangle only performs additions and multiplications of coefficients of states.

  19. Root finding in the complex plane for seismo-acoustic propagation scenarios with Green's function solutions.

    PubMed

    McCollom, Brittany A; Collis, Jon M

    2014-09-01

    A normal mode solution to the ocean acoustic problem of the Pekeris waveguide with an elastic bottom using a Green's function formulation for a compressional wave point source is considered. Analytic solutions to these types of waveguide propagation problems are strongly dependent on the eigenvalues of the problem; these eigenvalues represent horizontal wavenumbers, corresponding to propagating modes of energy. The eigenvalues arise as singularities in the inverse Hankel transform integral and are specified by roots to a characteristic equation. These roots manifest themselves as poles in the inverse transform integral and can be both subtle and difficult to determine. Following methods previously developed [S. Ivansson et al., J. Sound Vib. 161 (1993)], a root finding routine has been implemented using the argument principle. Using the roots to the characteristic equation in the Green's function formulation, full-field solutions are calculated for scenarios where an acoustic source lies in either the water column or elastic half space. Solutions are benchmarked against laboratory data and existing numerical solutions.

  20. Conformal Galilei algebras, symmetric polynomials and singular vectors

    NASA Astrophysics Data System (ADS)

    Křižka, Libor; Somberg, Petr

    2018-01-01

    We classify and explicitly describe homomorphisms of Verma modules for conformal Galilei algebras cga_ℓ (d,C) with d=1 for any integer value ℓ \\in N. The homomorphisms are uniquely determined by singular vectors as solutions of certain differential operators of flag type and identified with specific polynomials arising as coefficients in the expansion of a parametric family of symmetric polynomials into power sum symmetric polynomials.

  1. New Book Recounts Exciting, Colorful History Of Radio Astronomy in Green Bank, West Virginia

    NASA Astrophysics Data System (ADS)

    2007-07-01

    A new book published by the National Radio Astronomy Observatory (NRAO) tells the story of the founding and early years of the Observatory at Green Bank, West Virginia. But it was Fun: the first forty years of radio astronomy at Green Bank, is not a formal history, but rather a scrapbook of early memos, recollections, anecdotes and reports. But it was Fun... is liberally illustrated with archival photographs. It includes historical and scientific papers from symposia held in 1987 and 1995 to celebrate the birthdays of two of the radio telescopes at the Observatory. Book cover The National Radio Astronomy Observatory was formed in 1956 after the National Science Foundation decided to establish an observatory in the eastern United States for the study of faint radio signals from distant objects in the Universe. But it was Fun... reprints early memos from the group of scientists who searched the mountains for a suitable site -- an area free from radio transmitters and other sources of radio interference -- "in a valley surrounded by as many ranges of high mountains in as many directions as possible," which was "at least 50 miles distant from any city or other concentration of people." The committee settled on Green Bank, a small village in West Virginia, and the book documents the struggles that followed to create a world-class scientific facility in an isolated area more accustomed to cows than computers. Groundbreaking at the Observatory, then a patchwork of farms and fields, took place in October 1957, only a few days after the launch of Sputnik by the Soviet Union. A year later, Green Bank's first telescope was dedicated, and the book contains a transcription of speeches given at that ceremony, when the Cold War, the space race and America's scientific stature were issues of the hour. The centerpiece of the new Observatory was to be a highly-precise radio telescope 140 feet in diameter, but it was expected that it would soon be surpassed by dishes of much greater size. The book reprints internal memos, reports, and recollections of astronomers who were there, as the initial elation turned to frustration when the 140 Foot Telescope project became mired in technical difficulties, plans for larger dishes were put on hold, and the scientific staff of the fledgling Observatory struggled to create a National Observatory with inadequate equipment in a very remote location. Articles by David Heeschen and John Findlay tell the story of the creation of the 300 Foot Telescope, at that time the largest in the world, which went from initial concept to full operation in only 23 months, and began a rich life of research that put the NRAO on the world scientific map. The 300 Foot Telescope was originally intended to be an interim instrument, but as documented in the book, demand for its use was so high that it was kept in operation long after its initial planned retirement, with regular upgrades and new generations of electronics. The sudden collapse of the 300 Foot Telescope on a calm evening after 26 years of operation shocked the astronomical community. But it was Fun... features dramatic first-hand accounts by the people who were there that night: the telescope operator who found himself under a falling structure; the Observatory staff who at first could not believe what happened, and those who worked during the night and into the next day to secure the area, preserve information on what happened, and deal with the rush of publicity. The book includes extensive photographs and the Executive Summary Report of the panel which was commissioned to investigate the collapse and its implication for the design of other large radio telescopes. But it was Fun... will appeal to a variety of audiences. Historians of science will be interested in the articles by David Heeschen, Gerald Tape, and Hugh van Horn, on the evolution of the concept of a National Observatory, and the difficulties of putting the concepts into practice in Green Bank. Those interested in astronomical discovery will find fascinating and highly personal accounts by Peter Mezger on observations of radio recombination lines, by Lewis Snyder and Barry Turner on the early days of astrochemistry, by Don Backer and David Nice on observations of pulsars, and by David Shaffer, James Moran, Ken Kellermann and Barry Clark on aspects of the development of long baseline interferometric techniques. Today's generation of scientists will find interesting reminiscences by Patrick Palmer, Thomas Wilson, and Nobel Laureate Joseph Taylor on their experiences as graduate students doing thesis research at Green Bank, and from Sebastian von Hoerner and Jaap Baars on their work in telescope development. The volume also relates the entry of computers into radio astronomy, and reprints the one-page memo from 1960 which laid out the protocol for use of the new "single roll of magnetic tape" just acquired by the Observatory. A major portion of the book describes some singular events associated with this singular place: the first search for radio signals from extraterrestrial civilizations -- Project Ozma -- conducted by Dr. Frank Drake in 1960. But it was Fun... documents how this routine project thrust the NRAO into the national spotlight to the discomfort of its director, a distinguished astronomer of the old school. The book also recounts a few episodes in the amazing life of Grote Reber, the engineer who built the first-ever radio dish in his backyard and was a regular visitor to Green Bank. The NRAO Green Bank Observatory is an international center for research, and in two unique and frequently hilarious articles, Ken Kellermann and Barry Clark tell their stories of the first cooperative radio astronomical projects between the Soviet Union and the U.S., which involved transporting an atomic clock from Green Bank to a Soviet Observatory on the Black Sea at a time when international tensions were high, and it was impossible to make a phone call from the USSR to Green Bank. But it was Fun... includes a historical introduction which summarizes the early development of radio astronomy and events at the NRAO in Green Bank, a list of science highlights from the 300 Foot and 140 Foot Telescope research programs, chronologies of technical developments and lists of the early users. But it was Fun: the first 40 years of radio astronomy at Green Bank is a unique book which offers insight on the workings of a major scientific institution and the "overabundance of interesting people" who have populated it. The book is available from the NRAO. For information on ordering, see: http://www.gb.nrao.edu/epo/itwasfun.html The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  2. Robust, nonlinear, high angle-of-attack control design for a supermaneuverable vehicle

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.

    1993-01-01

    High angle-of-attack flight control laws are developed for a supermaneuverable fighter aircraft. The methods of dynamic inversion and structured singular value synthesis are combined into an approach which addresses both the nonlinearity and robustness problems of flight at extreme operating conditions. The primary purpose of the dynamic inversion control elements is to linearize the vehicle response across the flight envelope. Structured singular value synthesis is used to design a dynamic controller which provides robust tracking to pilot commands. The resulting control system achieves desired flying qualities and guarantees a large margin of robustness to uncertainties for high angle-of-attack flight conditions. The results of linear simulation and structured singular value stability analysis are presented to demonstrate satisfaction of the design criteria. High fidelity nonlinear simulation results show that the combined dynamics inversion/structured singular value synthesis control law achieves a high level of performance in a realistic environment.

  3. EFAB Report: Green Infrastructure Operations and Maintenance Finance

    EPA Pesticide Factsheets

    In this report, EFAB defines green infrastructure, outlines the benefits of green infrastructure, introduces green infrastructure operations and maintenance costs, and identifies and evaluates diverse ways to fund/finance green infrastructure O&M costs.

  4. Generic absence of strong singularities in loop quantum Bianchi-IX spacetimes

    NASA Astrophysics Data System (ADS)

    Saini, Sahil; Singh, Parampreet

    2018-03-01

    We study the generic resolution of strong singularities in loop quantized effective Bianchi-IX spacetime in two different quantizations—the connection operator based ‘A’ quantization and the extrinsic curvature based ‘K’ quantization. We show that in the effective spacetime description with arbitrary matter content, it is necessary to include inverse triad corrections to resolve all the strong singularities in the ‘A’ quantization. Whereas in the ‘K’ quantization these results can be obtained without including inverse triad corrections. Under these conditions, the energy density, expansion and shear scalars for both of the quantization prescriptions are bounded. Notably, both the quantizations can result in potentially curvature divergent events if matter content allows divergences in the partial derivatives of the energy density with respect to the triad variables at a finite energy density. Such events are found to be weak curvature singularities beyond which geodesics can be extended in the effective spacetime. Our results show that all potential strong curvature singularities of the classical theory are forbidden in Bianchi-IX spacetime in loop quantum cosmology and geodesic evolution never breaks down for such events.

  5. Singular boundary value problem for the integrodifferential equation in an insurance model with stochastic premiums: Analysis and numerical solution

    NASA Astrophysics Data System (ADS)

    Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V.

    2012-10-01

    A singular boundary value problem for a second-order linear integrodifferential equation with Volterra and non-Volterra integral operators is formulated and analyzed. The equation is defined on ℝ+, has a weak singularity at zero and a strong singularity at infinity, and depends on several positive parameters. Under natural constraints on the coefficients of the equation, existence and uniqueness theorems for this problem with given limit boundary conditions at singular points are proved, asymptotic representations of the solution are given, and an algorithm for its numerical determination is described. Numerical computations are performed and their interpretation is given. The problem arises in the study of the survival probability of an insurance company over infinite time (as a function of its initial surplus) in a dynamic insurance model that is a modification of the classical Cramer-Lundberg model with a stochastic process rate of premium under a certain investment strategy in the financial market. A comparative analysis of the results with those produced by the model with deterministic premiums is given.

  6. Reduction by symmetries in singular quantum-mechanical problems: General scheme and application to Aharonov-Bohm model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, A. G., E-mail: smirnov@lpi.ru

    2015-12-15

    We develop a general technique for finding self-adjoint extensions of a symmetric operator that respects a given set of its symmetries. Problems of this type naturally arise when considering two- and three-dimensional Schrödinger operators with singular potentials. The approach is based on constructing a unitary transformation diagonalizing the symmetries and reducing the initial operator to the direct integral of a suitable family of partial operators. We prove that symmetry preserving self-adjoint extensions of the initial operator are in a one-to-one correspondence with measurable families of self-adjoint extensions of partial operators obtained by reduction. The general scheme is applied to themore » three-dimensional Aharonov-Bohm Hamiltonian describing the electron in the magnetic field of an infinitely thin solenoid. We construct all self-adjoint extensions of this Hamiltonian, invariant under translations along the solenoid and rotations around it, and explicitly find their eigenfunction expansions.« less

  7. Giant enhancement in Goos-Hänchen shift at the singular phase of a nanophotonic cavity

    NASA Astrophysics Data System (ADS)

    Sreekanth, Kandammathe Valiyaveedu; Ouyang, Qingling; Han, Song; Yong, Ken-Tye; Singh, Ranjan

    2018-04-01

    In this letter, we experimentally demonstrate thirtyfold enhancement in Goos-Hänchen shift at the Brewster angle of a nanophotonic cavity that operates at the wavelength of 632.8 nm. In particular, the point-of-darkness and the singular phase are achieved using a four-layered metal-dielectric-dielectric-metal asymmetric Fabry-Perot cavity. A highly absorbing ultra-thin layer of germanium in the stack gives rise to the singular phase and the enhanced Goos-Hänchen shift at the point-of-darkness. The obtained giant Goos-Hänchen shift in the lithography-free nanophotonic cavity could enable many intriguing applications including cost-effective label-free biosensors.

  8. Segmentation of discrete vector fields.

    PubMed

    Li, Hongyu; Chen, Wenbin; Shen, I-Fan

    2006-01-01

    In this paper, we propose an approach for 2D discrete vector field segmentation based on the Green function and normalized cut. The method is inspired by discrete Hodge Decomposition such that a discrete vector field can be broken down into three simpler components, namely, curl-free, divergence-free, and harmonic components. We show that the Green Function Method (GFM) can be used to approximate the curl-free and the divergence-free components to achieve our goal of the vector field segmentation. The final segmentation curves that represent the boundaries of the influence region of singularities are obtained from the optimal vector field segmentations. These curves are composed of piecewise smooth contours or streamlines. Our method is applicable to both linear and nonlinear discrete vector fields. Experiments show that the segmentations obtained using our approach essentially agree with human perceptual judgement.

  9. Asymmetric color image encryption based on singular value decomposition

    NASA Astrophysics Data System (ADS)

    Yao, Lili; Yuan, Caojin; Qiang, Junjie; Feng, Shaotong; Nie, Shouping

    2017-02-01

    A novel asymmetric color image encryption approach by using singular value decomposition (SVD) is proposed. The original color image is encrypted into a ciphertext shown as an indexed image by using the proposed method. The red, green and blue components of the color image are subsequently encoded into a complex function which is then separated into U, S and V parts by SVD. The data matrix of the ciphertext is obtained by multiplying orthogonal matrices U and V while implementing phase-truncation. Diagonal entries of the three diagonal matrices of the SVD results are abstracted and scrambling combined to construct the colormap of the ciphertext. Thus, the encrypted indexed image covers less space than the original image. For decryption, the original color image cannot be recovered without private keys which are obtained from phase-truncation and the orthogonality of V. Computer simulations are presented to evaluate the performance of the proposed algorithm. We also analyze the security of the proposed system.

  10. Plastic zone size and crack tip opening displacement of a Dugdale crack interacting with a coated circular inclusion

    NASA Astrophysics Data System (ADS)

    Hoh, H. J.; Xiao, Z. M.; Luo, J.

    2010-09-01

    An analytical investigation on the plastic zone size of a crack near a coated circular inclusion under three different loading conditions of uniaxial tension, uniform tension and pure shear was carried out. Both the crack and coated circular inclusion are embedded in an infinite matrix, with the crack oriented along the radial direction of the inclusion. In the solution procedure, the crack is simulated as a continuous distribution of edge dislocations. With the Dugdale model of small-scale yielding [J. Mech. Phys. Solids 8 (1960) p. 100], two thin strips of yielded plastic zones are introduced at both crack tips. Using the solution for a coated circular inclusion interacting with a single dislocation as the Green's function, the physical problem is formulated into a set of singular integral equations. Using the method of Erdogan and Gupta [Q. J. Appl. Math. 29 (1972) p. 525] and iterative numerical procedures, the singular integral equations are solved numerically for the plastic zone sizes and crack tip opening displacement.

  11. A General Theory of Unsteady Compressible Potential Aerodynamics

    NASA Technical Reports Server (NTRS)

    Morino, L.

    1974-01-01

    The general theory of potential aerodynamic flow around a lifting body having arbitrary shape and motion is presented. By using the Green function method, an integral representation for the potential is obtained for both supersonic and subsonic flow. Under small perturbation assumption, the potential at any point, P, in the field depends only upon the values of the potential and its normal derivative on the surface, sigma, of the body. Hence, if the point P approaches the surface of the body, the representation reduces to an integro-differential equation relating the potential and its normal derivative (which is known from the boundary conditions) on the surface sigma. For the important practical case of small harmonic oscillation around a rest position, the equation reduces to a two-dimensional Fredholm integral equation of second-type. It is shown that this equation reduces properly to the lifting surface theories as well as other classical mathematical formulas. The question of uniqueness is examined and it is shown that, for thin wings, the operator becomes singular as the thickness approaches zero. This fact may yield numerical problems for very thin wings.

  12. [Algorithms, machine intelligence, big data : general considerations].

    PubMed

    Radermacher, F J

    2015-08-01

    We are experiencing astonishing developments in the areas of big data and artificial intelligence. They follow a pattern that we have now been observing for decades: according to Moore's Law,the performance and efficiency in the area of elementary arithmetic operations increases a thousand-fold every 20 years. Although we have not achieved the status where in the singular sense machines have become as "intelligent" as people, machines are becoming increasingly better. The Internet of Things has again helped to massively increase the efficiency of machines. Big data and suitable analytics do the same. If we let these processes simply continue, our civilization may be endangerd in many instances. If the "containment" of these processes succeeds in the context of a reasonable political global governance, a worldwide eco-social market economy, andan economy of green and inclusive markets, many desirable developments that are advantageous for our future may result. Then, at some point in time, the constant need for more and faster innovation may even stop. However, this is anything but certain. We are facing huge challenges.

  13. Issues and Methods Concerning the Evaluation of Hypersingular and Near-Hypersingular Integrals in BEM Formulations

    NASA Technical Reports Server (NTRS)

    Fink, P. W.; Khayat, M. A.; Wilton, D. R.

    2005-01-01

    It is known that higher order modeling of the sources and the geometry in Boundary Element Modeling (BEM) formulations is essential to highly efficient computational electromagnetics. However, in order to achieve the benefits of hIgher order basis and geometry modeling, the singular and near-singular terms arising in BEM formulations must be integrated accurately. In particular, the accurate integration of near-singular terms, which occur when observation points are near but not on source regions of the scattering object, has been considered one of the remaining limitations on the computational efficiency of integral equation methods. The method of singularity subtraction has been used extensively for the evaluation of singular and near-singular terms. Piecewise integration of the source terms in this manner, while manageable for bases of constant and linear orders, becomes unwieldy and prone to error for bases of higher order. Furthermore, we find that the singularity subtraction method is not conducive to object-oriented programming practices, particularly in the context of multiple operators. To extend the capabilities, accuracy, and maintainability of general-purpose codes, the subtraction method is being replaced in favor of the purely numerical quadrature schemes. These schemes employ singularity cancellation methods in which a change of variables is chosen such that the Jacobian of the transformation cancels the singularity. An example of the sin,oularity cancellation approach is the Duffy method, which has two major drawbacks: 1) In the resulting integrand, it produces an angular variation about the singular point that becomes nearly-singular for observation points close to an edge of the parent element, and 2) it appears not to work well when applied to nearly-singular integrals. Recently, the authors have introduced the transformation u(x(prime))= sinh (exp -1) x(prime)/Square root of ((y prime (exp 2))+ z(exp 2) for integrating functions of the form I = Integral of (lambda(r(prime))((e(exp -jkR))/(4 pi R) d D where A (r (prime)) is a vector or scalar basis function and R = Square root of( (x(prime)(exp2) + (y(prime)(exp2) + z(exp 2)) is the distance between source and observation points. This scheme has all of the advantages of the Duffy method while avoiding the disadvantages listed above. In this presentation we will survey similar approaches for handling singular and near-singular terms for kernels with 1/R(exp 2) type behavior, addressing potential pitfalls and offering techniques to efficiently handle special cases.

  14. 40 CFR 112.1 - General applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the singular also include the plural and words in the masculine gender also include the feminine and... does not apply to: (1) The owner or operator of any facility, equipment, or operation that is not.... (ii) Any equipment, or operation of a vessel or transportation-related onshore or offshore facility...

  15. A high-order boundary integral method for surface diffusions on elastically stressed axisymmetric rods.

    PubMed

    Li, Xiaofan; Nie, Qing

    2009-07-01

    Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratures along with an extrapolation technique, leading to an arbitrarily high-order quadrature; in addition, a high-order (temporal) integration factor method, based on explicit representation of the mean curvature, is used to reduce the stability constraint on time-step. To apply this method to a periodic (in axial direction) and axi-symmetric elastically stressed cylinder, we also present a fast and accurate summation method for the periodic Green's functions of isotropic elasticity. Using the high-order boundary integral method, we demonstrate that in absence of elasticity the cylinder surface pinches in finite time at the axis of the symmetry and the universal cone angle of the pinching is found to be consistent with the previous studies based on a self-similar assumption. In the presence of elastic stress, we show that a finite time, geometrical singularity occurs well before the cylindrical solid collapses onto the axis of symmetry, and the angle of the corner singularity on the cylinder surface is also estimated.

  16. Study of the 3D Euler equations using Clebsch potentials: dual mechanisms for geometric depletion

    NASA Astrophysics Data System (ADS)

    Ohkitani, Koji

    2018-02-01

    After surveying analyses of the 3D Euler equations using the Clebsch potentials scattered over the literature, we report some preliminary new results. 1. Assuming that flow fields are free from nulls of the impulse and the vorticity fields, we study how constraints imposed by the Clebsch potentials lead to a degenerate geometrical structure, typically in the form of depletion of nonlinearity. We consider a vorticity surface spanned by \\boldsymbol ω and another material vector \\boldsymbol {W} such that \\boldsymbol γ=\\boldsymbol ω× \\boldsymbol {W}, where \\boldsymbol γ is the impulse variable in geometric gauge. We identify dual mechanism for geometric depletion and show that at least of one them is acting if \\boldsymbol {W} does not develop a null. This suggests that formation of singularity in flows endowed with Clebsch potentials is less likely to happen than in more general flows. Some arguments are given towards exclusion of ‘type I’ blowup. A mathematical challenge remains to rule out singularity formation for flows which have Clebsch potentials everywhere. 2. We exploit classical differential geometry kinematically to write down the Gauss-Weingarten equations for the vorticity surface of the Clebsch potential in terms of fluid dynamical variables, as are the first, second and third fundamental forms. In particular, we derive a constraint on the size of the Gaussian curvature near the point of a possible singularity. On the other hand, an application of the Gauss-Bonnet theorem reveals that the tangential curvature of the surface becomes large in the neighborhood of near-singularity. 3. Using spatially-periodic flows with highly-symmetry, i.e. initial conditions of the Taylor-Green vortex and the Kida-Pelz flow, we present explicit formulas of the Clebsch potentials with exceptional singular surfaces where the Clebsch potentials are undefined. This is done by connecting the known expressions with the solenoidal impulse variable (i.e. the incompressible velocity) using suitable canonical transforms. By a simple argument we show that they keep forming material separatrices under the time evolution of the 3D Euler equations. We argue on this basis that a singularity, if developed, will be associated with these exceptional material surfaces. The difficulty of having Clebsch potentials globally on all of space have been with us for a long time. The proposal rather seeks to turn the difficulty into an advantage by using their absence to identify and locate possible singularities.

  17. Dynamical insurance models with investment: Constrained singular problems for integrodifferential equations

    NASA Astrophysics Data System (ADS)

    Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V.

    2016-01-01

    Previous and new results are used to compare two mathematical insurance models with identical insurance company strategies in a financial market, namely, when the entire current surplus or its constant fraction is invested in risky assets (stocks), while the rest of the surplus is invested in a risk-free asset (bank account). Model I is the classical Cramér-Lundberg risk model with an exponential claim size distribution. Model II is a modification of the classical risk model (risk process with stochastic premiums) with exponential distributions of claim and premium sizes. For the survival probability of an insurance company over infinite time (as a function of its initial surplus), there arise singular problems for second-order linear integrodifferential equations (IDEs) defined on a semiinfinite interval and having nonintegrable singularities at zero: model I leads to a singular constrained initial value problem for an IDE with a Volterra integral operator, while II model leads to a more complicated nonlocal constrained problem for an IDE with a non-Volterra integral operator. A brief overview of previous results for these two problems depending on several positive parameters is given, and new results are presented. Additional results are concerned with the formulation, analysis, and numerical study of "degenerate" problems for both models, i.e., problems in which some of the IDE parameters vanish; moreover, passages to the limit with respect to the parameters through which we proceed from the original problems to the degenerate ones are singular for small and/or large argument values. Such problems are of mathematical and practical interest in themselves. Along with insurance models without investment, they describe the case of surplus completely invested in risk-free assets, as well as some noninsurance models of surplus dynamics, for example, charity-type models.

  18. On understanding the relationship between structure in the potential surface and observables in classical dynamics: A functional sensitivity analysis approach

    NASA Astrophysics Data System (ADS)

    Judson, Richard S.; Rabitz, Herschel

    1987-04-01

    The relationship between structure in the potential surface and classical mechanical observables is examined by means of functional sensitivity analysis. Functional sensitivities provide maps of the potential surface, highlighting those regions that play the greatest role in determining the behavior of observables. A set of differential equations for the sensitivities of the trajectory components are derived. These are then solved using a Green's function method. It is found that the sensitivities become singular at the trajectory turning points with the singularities going as η-3/2, with η being the distance from the nearest turning point. The sensitivities are zero outside of the energetically and dynamically allowed region of phase space. A second set of equations is derived from which the sensitivities of observables can be directly calculated. An adjoint Green's function technique is employed, providing an efficient method for numerically calculating these quantities. Sensitivity maps are presented for a simple collinear atom-diatom inelastic scattering problem and for two Henon-Heiles type Hamiltonians modeling intramolecular processes. It is found that the positions of the trajectory caustics in the bound state problem determine regions of the highest potential surface sensitivities. In the scattering problem (which is impulsive, so that ``sticky'' collisions did not occur), the positions of the turning points of the individual trajectory components determine the regions of high sensitivity. In both cases, these lines of singularities are superimposed on a rich background structure. Most interesting is the appearance of classical interference effects. The interference features in the sensitivity maps occur most noticeably where two or more lines of turning points cross. The important practical motivation for calculating the sensitivities derives from the fact that the potential is a function, implying that any direct attempt to understand how local potential regions affect the behavior of the observables by repeatedly and systematically altering the potential will be prohibitively expensive. The functional sensitivity method enables one to perform this analysis at a fraction of the computational labor required for the direct method.

  19. Analytically solvable model of an electronic Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Ngo Dinh, Stéphane; Bagrets, Dmitry A.; Mirlin, Alexander D.

    2013-05-01

    We consider a class of models of nonequilibrium electronic Mach-Zehnder interferometers built on integer quantum Hall edges states. The models are characterized by the electron-electron interaction being restricted to the inner part of the interferometer and transmission coefficients of the quantum quantum point contacts, defining the interferometer, which may take arbitrary values from zero to one. We establish an exact solution of these models in terms of single-particle quantities, determinants and resolvents of Fredholm integral operators. In the general situation, the results can be obtained numerically. In the case of strong charging interaction, the operators acquire the block Toeplitz form. Analyzing the corresponding Riemann-Hilbert problem, we reduce the result to certain singular single-channel determinants (which are a generalization of Toeplitz determinants with Fisher-Hartwig singularities) and obtain an analytic result for the interference current (and, in particular, for the visibility of Aharonov-Bohm oscillations). Our results, which are in good agreement with experimental observations, show an intimate connection between the observed “lobe” structure in the visibility of Aharonov-Bohm oscillations and multiple branches in the asymptotics of singular integral determinants.

  20. Fluctuation removal around spectral and temporal constancy limits via use of an extended space expectation value weight function for singular quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalay, Berfin; Demiralp, Metin

    2015-03-10

    This work is a new extension to our a very recent work whose paper will appear in the proceedings of a very recent international conference. What we have done in the previous work is the use of a weight operator to suppress the singularities causing nonexistence of some of temporal Maclaurin expansion coefficients. The weight operator has been constructed in such a way that certain number of expectation values of position operator’s first positive integer powers with and without the chosen weight operator match. Therein this match has not been considered for the momentum operator’s corresponding power expectation values andmore » a finite linear combination of the spatial variable’s first reciprocal powers has been used in the construction of the weight operator. Here, that approach is extended to the case where matches for both position and momentum operators are considered and the weight operator involves finite linear combinations of the spatial variable’s both positive integer powers and their reciprocals.« less

  1. Purely Singular Continuous Spectrum for CMV Operators Generated by Subshifts

    NASA Astrophysics Data System (ADS)

    Ong, Darren C.

    2014-03-01

    We prove uniform absence of point spectrum for CMV operators corresponding to the period doubling subshift. We also prove almost sure absence of point spectrum for CMV operators corresponding to a class of Sturmian subshifts. Lastly, we prove almost sure absence of point spectrum for CMV operators corresponding to some subshifts generated by a coding of a rotation.

  2. An accurate boundary element method for the exterior elastic scattering problem in two dimensions

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Xu, Liwei; Yin, Tao

    2017-11-01

    This paper is concerned with a Galerkin boundary element method solving the two dimensional exterior elastic wave scattering problem. The original problem is first reduced to the so-called Burton-Miller [1] boundary integral formulation, and essential mathematical features of its variational form are discussed. In numerical implementations, a newly-derived and analytically accurate regularization formula [2] is employed for the numerical evaluation of hyper-singular boundary integral operator. A new computational approach is employed based on the series expansions of Hankel functions for the computation of weakly-singular boundary integral operators during the reduction of corresponding Galerkin equations into a discrete linear system. The effectiveness of proposed numerical methods is demonstrated using several numerical examples.

  3. Custodial Operations: Green & Sustainable

    ERIC Educational Resources Information Center

    Campbell, J. Kirk

    2008-01-01

    Custodial Operations can have a significant impact on institutional green and sustainable goals if given the proper support and challenge. This article describes the green and sustainable custodial operations in place at Carleton College in Northfield, Minnesota. The article reviews the college's sustainable efforts on biodegradables, packaging,…

  4. On the continuity of the stationary state distribution of DPCM

    NASA Astrophysics Data System (ADS)

    Naraghi-Pour, Morteza; Neuhoff, David L.

    1990-03-01

    Continuity and singularity properties of the stationary state distribution of differential pulse code modulation (DPCM) are explored. Two-level DPCM (i.e., delta modulation) operating on a first-order autoregressive source is considered, and it is shown that, when the magnitude of the DPCM prediciton coefficient is between zero and one-half, the stationary state distribution is singularly continuous; i.e., it is not discrete but concentrates on an uncountable set with a Lebesgue measure of zero. Consequently, it cannot be represented with a probability density function. For prediction coefficients with magnitude greater than or equal to one-half, the distribution is pure, i.e., either absolutely continuous and representable with a density function, or singular. This problem is compared to the well-known and still substantially unsolved problem of symmetric Bernoulli convolutions.

  5. Unitary Operators on the Document Space.

    ERIC Educational Resources Information Center

    Hoenkamp, Eduard

    2003-01-01

    Discusses latent semantic indexing (LSI) that would allow search engines to reduce the dimension of the document space by mapping it into a space spanned by conceptual indices. Topics include vector space models; singular value decomposition (SVD); unitary operators; the Haar transform; and new algorithms. (Author/LRW)

  6. Green operators for low regularity spacetimes

    NASA Astrophysics Data System (ADS)

    Sanchez Sanchez, Yafet; Vickers, James

    2018-02-01

    In this paper we define and construct advanced and retarded Green operators for the wave operator on spacetimes with low regularity. In order to do so we require that the spacetime satisfies the condition of generalised hyperbolicity which is equivalent to well-posedness of the classical inhomogeneous problem with zero initial data where weak solutions are properly supported. Moreover, we provide an explicit formula for the kernel of the Green operators in terms of an arbitrary eigenbasis of H 1 and a suitable Green matrix that solves a system of second order ODEs.

  7. Impurity-induced anisotropic semiconductor-semimetal transition in monolayer biased black phosphorus

    NASA Astrophysics Data System (ADS)

    Bui, D. H.; Yarmohammadi, Mohsen

    2018-07-01

    Taking into account the electron-impurity interaction within the continuum approximation of tight-binding model, the Born approximation, and the Green's function method, the main features of anisotropic electronic phase transition are investigated in monolayer biased black phosphorus (BP). To this end, we concentrated on the disordered electronic density of states (DOS), which gives useful information for electro-optical devices. Increasing the impurity concentration in both unbiased and biased impurity-infected single-layer BP, in addition to the decrease of the band gap, independent of the direction, leads to the midgap states and an extra Van Hove singularity inside and outside of the band gap, respectively. Furthermore, strong impurity scattering potentials lead to a semiconductor-semimetal transition and one more Van Hove singularity in x-direction of unbiased BP and surprisingly, this transition does not occur in biased BP. We found that there is no phase transition in y-direction. Since real applications require structures with modulated band gaps, we have studied the influence of different bias voltages on the disordered DOS in both directions, resulting in the increase of the band gap.

  8. Multi-domain boundary element method for axi-symmetric layered linear acoustic systems

    NASA Astrophysics Data System (ADS)

    Reiter, Paul; Ziegelwanger, Harald

    2017-12-01

    Homogeneous porous materials like rock wool or synthetic foam are the main tool for acoustic absorption. The conventional absorbing structure for sound-proofing consists of one or multiple absorbers placed in front of a rigid wall, with or without air-gaps in between. Various models exist to describe these so called multi-layered acoustic systems mathematically for incoming plane waves. However, there is no efficient method to calculate the sound field in a half space above a multi layered acoustic system for an incoming spherical wave. In this work, an axi-symmetric multi-domain boundary element method (BEM) for absorbing multi layered acoustic systems and incoming spherical waves is introduced. In the proposed BEM formulation, a complex wave number is used to model absorbing materials as a fluid and a coordinate transformation is introduced which simplifies singular integrals of the conventional BEM to non-singular radial and angular integrals. The radial and angular part are integrated analytically and numerically, respectively. The output of the method can be interpreted as a numerical half space Green's function for grounds consisting of layered materials.

  9. 'Part of the solution': Developing sustainable energy through co-operatives and learning

    NASA Astrophysics Data System (ADS)

    Duguid, Fiona C. B.

    After five years of development, WindShare Co-operative in Toronto, Ontario became the first urban wind turbine in North America and the first co-operatively owned and operated wind turbine in Canada. The development of WindShare Co-operative has spurred the growth of a green energy co-operative sector in Ontario. This study, which included 27 interviews and a focus group with members of WindShare Co-operative, focuses on the roles of community-based green energy co-operatives in advancing sustainable energy development and energy literacy. Sustainable energy development is firmly rooted in the triple bottom line of environmental, social and economic success, and green energy co-operatives can be a way to help achieve those successes. Green energy co-operatives are structures for providing renewable energy generation or energy conservation practices, both of which have important environmental impacts regarding climate change and pollution levels. Co-operative structures are supported by processes that include local ownership, democracy, participation, community organizing, learning and social change. These processes have a significant social impact by creating a venue for people to be directly involved in the energy industry, by involving learning through participation in a community-based organization, and by advancing energy literacy within the membership and the general public. In regards to the economic impacts, green energy co-operatives foster a local economy and local investment opportunities, which have repercussions regarding building expertise within Ontario's green energy and co-operative development future, and more generally, captures members' interest because they have a direct stake in the co-operative. This thesis shows that green energy co-operatives, like WindShare, play an important role in advancing sustainable energy development, energy literacy and the triple bottom line. Members of WindShare expressed resounding feelings of pride, efficacy and understanding of WindShare's role in sustainable energy. WindShare Co-operative provided the structure whereby members felt a part of the solution in terms of sustainable energy development. Policies and practices at all levels of government should encourage the advancement of green energy co-operatives to support Canada's efforts at public involvement in combating climate change and pollution.

  10. 27 CFR 447.11 - Meaning of terms.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... singular, and vice versa, and words imparting the masculine gender shall include the feminine. The terms..., operation, overhaul, repair, maintenance, modification, or reconstruction of defense articles, whether in...

  11. 27 CFR 447.11 - Meaning of terms.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... singular, and vice versa, and words imparting the masculine gender shall include the feminine. The terms..., operation, overhaul, repair, maintenance, modification, or reconstruction of defense articles, whether in...

  12. 27 CFR 447.11 - Meaning of terms.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... singular, and vice versa, and words imparting the masculine gender shall include the feminine. The terms..., operation, overhaul, repair, maintenance, modification, or reconstruction of defense articles, whether in...

  13. 27 CFR 447.11 - Meaning of terms.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... singular, and vice versa, and words imparting the masculine gender shall include the feminine. The terms..., operation, overhaul, repair, maintenance, modification, or reconstruction of defense articles, whether in...

  14. 27 CFR 447.11 - Meaning of terms.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... singular, and vice versa, and words imparting the masculine gender shall include the feminine. The terms..., operation, overhaul, repair, maintenance, modification, or reconstruction of defense articles, whether in...

  15. Interpretative Guidelines and Possible Indications for Indocyanine Green Fluorescence Imaging in Robot-Assisted Sphincter-Saving Operations.

    PubMed

    Kim, Jin Cheon; Lee, Jong Lyul; Park, Seong Ho

    2017-04-01

    Since the introduction of indocyanine green angiography more than 25 years ago, few studies have presented interpretative guidelines for indocyanine green fluorescent imaging. We aimed to provide interpretative guidelines for indocyanine green fluorescent imaging through quantitative analysis and to suggest possible indications for indocyanine green fluorescent imaging during robot-assisted sphincter-saving operations. This is a retrospective observational study. This study was conducted at a single center. A cohort of 657 patients with rectal cancer who consecutively underwent curative robot-assisted sphincter-saving operations was enrolled between 2010 and 2016, including 310 patients with indocyanine green imaging (indocyanine green fluorescent imaging+ group) and 347 patients without indocyanine green imaging (indocyanine green fluorescent imaging- group). We tried to quantitatively define the indocyanine green fluorescent imaging findings based on perfusion (mesocolic and colic) time and perfusion intensity (5 grades) to provide probable indications. The anastomotic leakage rate was significantly lower in the indocyanine green fluorescent imaging+ group than in the indocyanine green fluorescent imaging- group (0.6% vs 5.2%) (OR, 0.123; 95% CI, 0.028-0.544; p = 0.006). Anastomotic stricture was closely correlated with anastomotic leakage (p = 0.002) and a short descending mesocolon (p = 0.003). Delayed perfusion (>60 s) and low perfusion intensity (1-2) were more frequently detected in patients with anastomotic stricture and marginal artery defects than in those without these factors (p ≤ 0.001). In addition, perfusion times greater than the mean were more frequently observed in patients aged >58 years, whereas low perfusion intensity was seen more in patients with short descending mesocolon and high ASA classes (≥3). The 300 patients in the indocyanine green fluorescent imaging- group underwent operations 3 years before indocyanine green fluorescent imaging. Quantitative analysis of indocyanine green fluorescent imaging may help prevent anastomotic complications during robot-assisted sphincter-saving operations, and may be of particular value in high-class ASA patients, older patients, and patients with a short descending mesocolon.

  16. The detection of flaws in austenitic welds using the decomposition of the time-reversal operator

    NASA Astrophysics Data System (ADS)

    Cunningham, Laura J.; Mulholland, Anthony J.; Tant, Katherine M. M.; Gachagan, Anthony; Harvey, Gerry; Bird, Colin

    2016-04-01

    The non-destructive testing of austenitic welds using ultrasound plays an important role in the assessment of the structural integrity of safety critical structures. The internal microstructure of these welds is highly scattering and can lead to the obscuration of defects when investigated by traditional imaging algorithms. This paper proposes an alternative objective method for the detection of flaws embedded in austenitic welds based on the singular value decomposition of the time-frequency domain response matrices. The distribution of the singular values is examined in the cases where a flaw exists and where there is no flaw present. A lower threshold on the singular values, specific to austenitic welds, is derived which, when exceeded, indicates the presence of a flaw. The detection criterion is successfully implemented on both synthetic and experimental data. The datasets arising from welds containing a flaw are further interrogated using the decomposition of the time-reversal operator (DORT) method and the total focusing method (TFM), and it is shown that images constructed via the DORT algorithm typically exhibit a higher signal-to-noise ratio than those constructed by the TFM algorithm.

  17. Conditional symmetries in axisymmetric quantum cosmologies with scalar fields and the fate of the classical singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zampeli, Adamantia; Pailas, Theodoros; Terzis, Petros A.

    2016-05-01

    In this paper, the classical and quantum solutions of some axisymmetric cosmologies coupled to a massless scalar field are studied in the context of minisuperspace approximation. In these models, the singular nature of the Lagrangians entails a search for possible conditional symmetries. These have been proven to be the simultaneous conformal symmetries of the supermetric and the superpotential. The quantization is performed by adopting the Dirac proposal for constrained systems, i.e. promoting the first-class constraints to operators annihilating the wave function. To further enrich the approach, we follow [1] and impose the operators related to the classical conditional symmetries onmore » the wave function. These additional equations select particular solutions of the Wheeler-DeWitt equation. In order to gain some physical insight from the quantization of these cosmological systems, we perform a semiclassical analysis following the Bohmian approach to quantum theory. The generic result is that, in all but one model, one can find appropriate ranges of the parameters, so that the emerging semiclassical geometries are non-singular. An attempt for physical interpretation involves the study of the effective energy-momentum tensor which corresponds to an imperfect fluid.« less

  18. Singularity analysis based on wavelet transform of fractal measures for identifying geochemical anomaly in mineral exploration

    NASA Astrophysics Data System (ADS)

    Chen, Guoxiong; Cheng, Qiuming

    2016-02-01

    Multi-resolution and scale-invariance have been increasingly recognized as two closely related intrinsic properties endowed in geofields such as geochemical and geophysical anomalies, and they are commonly investigated by using multiscale- and scaling-analysis methods. In this paper, the wavelet-based multiscale decomposition (WMD) method was proposed to investigate the multiscale natures of geochemical pattern from large scale to small scale. In the light of the wavelet transformation of fractal measures, we demonstrated that the wavelet approximation operator provides a generalization of box-counting method for scaling analysis of geochemical patterns. Specifically, the approximation coefficient acts as the generalized density-value in density-area fractal modeling of singular geochemical distributions. Accordingly, we presented a novel local singularity analysis (LSA) using the WMD algorithm which extends the conventional moving averaging to a kernel-based operator for implementing LSA. Finally, the novel LSA was validated using a case study dealing with geochemical data (Fe2O3) in stream sediments for mineral exploration in Inner Mongolia, China. In comparison with the LSA implemented using the moving averaging method the novel LSA using WMD identified improved weak geochemical anomalies associated with mineralization in covered area.

  19. The detection of flaws in austenitic welds using the decomposition of the time-reversal operator

    PubMed Central

    Cunningham, Laura J.; Mulholland, Anthony J.; Gachagan, Anthony; Harvey, Gerry; Bird, Colin

    2016-01-01

    The non-destructive testing of austenitic welds using ultrasound plays an important role in the assessment of the structural integrity of safety critical structures. The internal microstructure of these welds is highly scattering and can lead to the obscuration of defects when investigated by traditional imaging algorithms. This paper proposes an alternative objective method for the detection of flaws embedded in austenitic welds based on the singular value decomposition of the time-frequency domain response matrices. The distribution of the singular values is examined in the cases where a flaw exists and where there is no flaw present. A lower threshold on the singular values, specific to austenitic welds, is derived which, when exceeded, indicates the presence of a flaw. The detection criterion is successfully implemented on both synthetic and experimental data. The datasets arising from welds containing a flaw are further interrogated using the decomposition of the time-reversal operator (DORT) method and the total focusing method (TFM), and it is shown that images constructed via the DORT algorithm typically exhibit a higher signal-to-noise ratio than those constructed by the TFM algorithm. PMID:27274683

  20. An extension of the QZ algorithm for solving the generalized matrix eigenvalue problem

    NASA Technical Reports Server (NTRS)

    Ward, R. C.

    1973-01-01

    This algorithm is an extension of Moler and Stewart's QZ algorithm with some added features for saving time and operations. Also, some additional properties of the QR algorithm which were not practical to implement in the QZ algorithm can be generalized with the combination shift QZ algorithm. Numerous test cases are presented to give practical application tests for algorithm. Based on results, this algorithm should be preferred over existing algorithms which attempt to solve the class of generalized eigenproblems where both matrices are singular or nearly singular.

  1. 27 CFR 45.11 - Meaning of terms.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the singular, and vice versa, and words indicating the masculine gender shall include the feminine... with respect to the operation of such warehouse. Package. The immediate container in which tobacco...

  2. 78 FR 56607 - Drawbridge Operation Regulation; Hudson River, Troy and Green Island, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ...-AA09 Drawbridge Operation Regulation; Hudson River, Troy and Green Island, NY AGENCY: Coast Guard, DHS... operation of the highway bridge across the Hudson River, mile 152.7, between Troy and Green Island, New York... Street Bridge, mile 155.4, between Troy and Cohoes which has been converted to a fixed bridge. It is...

  3. 78 FR 21839 - Drawbridge Operation Regulation; Green River, Small-house, KY and Black River, Jonesboro, LA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2013-0041] RIN 1625-AA09 Drawbridge Operation Regulation; Green River, Small-house, KY and Black River, Jonesboro, LA... drawbridge operation regulation for the drawbridges across Green River, mile 79.6, Small- house, KY and Black...

  4. Green Infrastructure & Sustainable Urban Land Use Decision Analysis Workshop

    EPA Science Inventory

    Introduce green infrastructure, concepts and land use alternatives, to City of Cleveland operations staff. Discuss potential of green alternatives to impact daily operations and routine maintenance activities. Tie in sustainability concepts to long-term City planning and discu...

  5. 27 CFR 45.11 - Meaning of terms.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the singular, and vice versa, and words indicating the masculine gender shall include the feminine... warehouse with respect to the operation of such warehouse. Package. The immediate container in which tobacco...

  6. 27 CFR 45.11 - Meaning of terms.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the singular, and vice versa, and words indicating the masculine gender shall include the feminine... warehouse with respect to the operation of such warehouse. Package. The immediate container in which tobacco...

  7. 27 CFR 45.11 - Meaning of terms.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the singular, and vice versa, and words indicating the masculine gender shall include the feminine... warehouse with respect to the operation of such warehouse. Package. The immediate container in which tobacco...

  8. 27 CFR 45.11 - Meaning of terms.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the singular, and vice versa, and words indicating the masculine gender shall include the feminine... warehouse with respect to the operation of such warehouse. Package. The immediate container in which tobacco...

  9. 40 CFR 60.543 - Performance test and compliance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operator of each tread end cementing operation and each green tire spraying operation using only water... conducting a monthly performance test, the owner or operator of each tread end cementing operation and each green tire spraying operation shall submit formulation data or the results of Method 24 analysis...

  10. 40 CFR 60.543 - Performance test and compliance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operator of each tread end cementing operation and each green tire spraying operation using only water... conducting a monthly performance test, the owner or operator of each tread end cementing operation and each green tire spraying operation shall submit formulation data or the results of Method 24 analysis...

  11. 27 CFR 44.11 - Meaning of terms.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... singular, and vice versa, and words indicating the masculine gender shall include the feminine. The terms... warehouse with respect to the operation of such warehouse. Package. The immediate container in which tobacco...

  12. 27 CFR 44.11 - Meaning of terms.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... singular, and vice versa, and words indicating the masculine gender shall include the feminine. The terms... warehouse with respect to the operation of such warehouse. Package. The immediate container in which tobacco...

  13. 27 CFR 44.11 - Meaning of terms.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... singular, and vice versa, and words indicating the masculine gender shall include the feminine. The terms... warehouse with respect to the operation of such warehouse. Package. The immediate container in which tobacco...

  14. Typical event horizons in AdS/CFT

    NASA Astrophysics Data System (ADS)

    Avery, Steven G.; Lowe, David A.

    2016-01-01

    We consider the construction of local bulk operators in a black hole background dual to a pure state in conformal field theory. The properties of these operators in a microcanonical ensemble are studied. It has been argued in the literature that typical states in such an ensemble contain firewalls, or otherwise singular horizons. We argue this conclusion can be avoided with a proper definition of the interior operators.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callias, C.J.

    It has been known for a long time that the spectrum of the Sturm-Liouville operator {minus}{partial_derivative}{sub x}{sup 2}+ v(x) on a finite interval does not uniquely determine the potential v(x). In fact there are infinite-dimensional isospectral classes of potentials [PT]. Highly singular problems have been addressed as well, notably the question of the isospectral classes of the harmonic oscillator on the real line [McK-T], and, more recently, of the singular Sturm-Liouville operator {minus}{partial_derivative}{sub x}{sup 2} + {ell}({ell}+1)/x{sup 2} + v(x) on [0,1][GR]. In this paper we examine the question of whether the structure of isolated singularities in the potential ismore » spectrally determined. As an example of the fruits of our efforts we were able to prove the following result for the Dirichlet problem: Suppose that v(x) {epsilon} C{sup {infinity}}([-1,1]/(0)) is real-valued and v{sup (k)}(1) for all k. Suppose that xv(x) is infinitely differentiable at x = 0 from the right and from the left and lim{sub x}{r_arrow}0+ (d/{sub dx}){sup K}xv(x) = (-1){sup k+1}lim{sub x{r_arrow}0}-(d/dx){sup k}xv(x), so that v(x) {approximately} {Sigma}{sub k}{sup {infinity}}=-1{sup vk}{center_dot}{vert_bar}x{vert_bar}{sup k} as x {r_arrow} 0, for some constants v{sub k}. Suppose that v{sub {minus}1}{ne}0. Then the spectrum of the Sturm-Liousville operator with periodic boundary conditions at {plus_minus}1 and Dirichlet conditions at x = 0 uniquely determines the sequence of asymptotic coefficients v{sub {minus}1}, v{sub 0}, v{sub 1},...Potentials with the 1/x singularity arise in the wave equation for a vibrating rod of variable cross-section, when the cross-sectional area of the rod vanishes quadratically (as a function of the distance from the end of the rod) at one point. The main reason why we look at this problem is as a model that will give us an idea of what can be expected when one attempts to get information about singularities from the spectrum.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loef, P.A.; Smed, T.; Andersson, G.

    The minimum singular value of the power flow Jacobian matrix has been used as a static voltage stability index, indicating the distance between the studied operating point and the steady state voltage stability limit. In this paper a fast method to calculate the minimum singular value and the corresponding (left and right) singular vectors is presented. The main advantages of the developed algorithm are the small amount of computation time needed, and that it only requires information available from an ordinary program for power flow calculations. Furthermore, the proposed method fully utilizes the sparsity of the power flow Jacobian matrixmore » and hence the memory requirements for the computation are low. These advantages are preserved when applied to various submatrices of the Jacobian matrix, which can be useful in constructing special voltage stability indices. The developed algorithm was applied to small test systems as well as to a large (real size) system with over 1000 nodes, with satisfactory results.« less

  17. Aerodynamic interference effects on tilting proprotor aircraft. [using the Green function method

    NASA Technical Reports Server (NTRS)

    Soohoo, P.; Morino, L.; Noll, R. B.; Ham, N. D.

    1977-01-01

    The Green's function method was used to study tilting proprotor aircraft aerodynamics with particular application to the problem of the mutual interference of the wing-fuselage-tail-rotor wake configuration. While the formulation is valid for fully unsteady rotor aerodynamics, attention was directed to steady state aerodynamics, which was achieved by replacing the rotor with the actuator disk approximation. The use of an actuator disk analysis introduced a mathematical singularity into the formulation; this problem was studied and resolved. The pressure distribution, lift, and pitching moment were obtained for an XV-15 wing-fuselage-tail rotor configuration at various flight conditions. For the flight configurations explored, the effects of the rotor wake interference on the XV-15 tilt rotor aircraft yielded a reduction in the total lift and an increase in the nose-down pitching moment. This method provides an analytical capability that is simple to apply and can be used to investigate fuselage-tail rotor wake interference as well as to explore other rotor design problem areas.

  18. Effects of high-color-discrimination capability spectra on color-deficient vision.

    PubMed

    Perales, Esther; Linhares, João Manuel Maciel; Masuda, Osamu; Martínez-Verdú, Francisco M; Nascimento, Sérgio Miguel Cardoso

    2013-09-01

    Light sources with three spectral bands in specific spectral positions are known to have high-color-discrimination capability. W. A. Thornton hypothesized that they may also enhance color discrimination for color-deficient observers. This hypothesis was tested here by comparing the Rösch-MacAdam color volume for color-deficient observers rendered by three of these singular spectra, two reported previously and one derived in this paper by maximization of the Rösch-MacAdam color solid. It was found that all illuminants tested enhance discriminability for deuteranomalous observers, but their impact on other congenital deficiencies was variable. The best illuminant was the one derived here, as it was clearly advantageous for the two red-green anomalies and for tritanopes and almost neutral for red-green dichromats. We conclude that three-band spectra with high-color-discrimination capability for normal observers do not necessarily produce comparable enhancements for color-deficient observers, but suitable spectral optimization clearly enhances the vision of the color deficient.

  19. 27 CFR 44.11 - Meaning of terms.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... singular, and vice versa, and words indicating the masculine gender shall include the feminine. The terms... respect to the operation of such warehouse. (2) The term “Manufacturer of tobacco products” includes any...

  20. Extension of the KLI approximation toward the exact optimized effective potential.

    PubMed

    Iafrate, G J; Krieger, J B

    2013-03-07

    The integral equation for the optimized effective potential (OEP) is utilized in a compact form from which an accurate OEP solution for the spin-unrestricted exchange-correlation potential, Vxcσ, is obtained for any assumed orbital-dependent exchange-correlation energy functional. The method extends beyond the Krieger-Li-Iafrate (KLI) approximation toward the exact OEP result. The compact nature of the OEP equation arises by replacing the integrals involving the Green's function terms in the traditional OEP equation by an equivalent first-order perturbation theory wavefunction often referred to as the "orbital shift" function. Significant progress is then obtained by solving the equation for the first order perturbation theory wavefunction by use of Dalgarno functions which are determined from well known methods of partial differential equations. The use of Dalgarno functions circumvents the need to explicitly address the Green's functions and the associated problems with "sum over states" numerics; as well, the Dalgarno functions provide ease in dealing with inherent singularities arising from the origin and the zeros of the occupied orbital wavefunctions. The Dalgarno approach for finding a solution to the OEP equation is described herein, and a detailed illustrative example is presented for the special case of a spherically symmetric exchange-correlation potential. For the case of spherical symmetry, the relevant Dalgarno function is derived by direct integration of the appropriate radial equation while utilizing a user friendly method which explicitly treats the singular behavior at the origin and at the nodal singularities arising from the zeros of the occupied states. The derived Dalgarno function is shown to be an explicit integral functional of the exact OEP Vxcσ, thus allowing for the reduction of the OEP equation to a self-consistent integral equation for the exact exchange-correlation potential; the exact solution to this integral equation can be determined by iteration with the natural zeroth order correction given by the KLI exchange-correlation potential. Explicit analytic results are provided to illustrate the first order iterative correction beyond the KLI approximation. The derived correction term to the KLI potential explicitly involves spatially weighted products of occupied orbital densities in any assumed orbital-dependent exchange-correlation energy functional; as well, the correction term is obtained with no adjustable parameters. Moreover, if the equation for the exact optimized effective potential is further iterated, one can obtain the OEP as accurately as desired.

  1. Extension of the KLI approximation toward the exact optimized effective potential

    NASA Astrophysics Data System (ADS)

    Iafrate, G. J.; Krieger, J. B.

    2013-03-01

    The integral equation for the optimized effective potential (OEP) is utilized in a compact form from which an accurate OEP solution for the spin-unrestricted exchange-correlation potential, Vxcσ, is obtained for any assumed orbital-dependent exchange-correlation energy functional. The method extends beyond the Krieger-Li-Iafrate (KLI) approximation toward the exact OEP result. The compact nature of the OEP equation arises by replacing the integrals involving the Green's function terms in the traditional OEP equation by an equivalent first-order perturbation theory wavefunction often referred to as the "orbital shift" function. Significant progress is then obtained by solving the equation for the first order perturbation theory wavefunction by use of Dalgarno functions which are determined from well known methods of partial differential equations. The use of Dalgarno functions circumvents the need to explicitly address the Green's functions and the associated problems with "sum over states" numerics; as well, the Dalgarno functions provide ease in dealing with inherent singularities arising from the origin and the zeros of the occupied orbital wavefunctions. The Dalgarno approach for finding a solution to the OEP equation is described herein, and a detailed illustrative example is presented for the special case of a spherically symmetric exchange-correlation potential. For the case of spherical symmetry, the relevant Dalgarno function is derived by direct integration of the appropriate radial equation while utilizing a user friendly method which explicitly treats the singular behavior at the origin and at the nodal singularities arising from the zeros of the occupied states. The derived Dalgarno function is shown to be an explicit integral functional of the exact OEP Vxcσ, thus allowing for the reduction of the OEP equation to a self-consistent integral equation for the exact exchange-correlation potential; the exact solution to this integral equation can be determined by iteration with the natural zeroth order correction given by the KLI exchange-correlation potential. Explicit analytic results are provided to illustrate the first order iterative correction beyond the KLI approximation. The derived correction term to the KLI potential explicitly involves spatially weighted products of occupied orbital densities in any assumed orbital-dependent exchange-correlation energy functional; as well, the correction term is obtained with no adjustable parameters. Moreover, if the equation for the exact optimized effective potential is further iterated, one can obtain the OEP as accurately as desired.

  2. Spectral simplicity of apparent complexity. I. The nondiagonalizable metadynamics of prediction

    NASA Astrophysics Data System (ADS)

    Riechers, Paul M.; Crutchfield, James P.

    2018-03-01

    Virtually all questions that one can ask about the behavioral and structural complexity of a stochastic process reduce to a linear algebraic framing of a time evolution governed by an appropriate hidden-Markov process generator. Each type of question—correlation, predictability, predictive cost, observer synchronization, and the like—induces a distinct generator class. Answers are then functions of the class-appropriate transition dynamic. Unfortunately, these dynamics are generically nonnormal, nondiagonalizable, singular, and so on. Tractably analyzing these dynamics relies on adapting the recently introduced meromorphic functional calculus, which specifies the spectral decomposition of functions of nondiagonalizable linear operators, even when the function poles and zeros coincide with the operator's spectrum. Along the way, we establish special properties of the spectral projection operators that demonstrate how they capture the organization of subprocesses within a complex system. Circumventing the spurious infinities of alternative calculi, this leads in the sequel, Part II [P. M. Riechers and J. P. Crutchfield, Chaos 28, 033116 (2018)], to the first closed-form expressions for complexity measures, couched either in terms of the Drazin inverse (negative-one power of a singular operator) or the eigenvalues and projection operators of the appropriate transition dynamic.

  3. Cosmology of the closed string tachyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, Ian

    2008-09-15

    The spacetime physics of bulk closed string tachyon condensation is studied at the level of a two-derivative effective action. We derive the unique perturbative tachyon potential consistent with a full class of linearized tachyonic deformations of supercritical string theory. The solutions of interest deform a general linear dilaton background by the insertion of purely exponential tachyon vertex operators. In spacetime, the evolution of the tachyon drives an accelerated contraction of the universe and, absent higher-order corrections, the theory collapses to a cosmological singularity in finite time, at arbitrarily weak string coupling. When the tachyon exhibits a null symmetry, the worldsheetmore » dynamics is known to be exact and well defined at tree level. We prove that if the two-derivative effective action is free of nongravitational singularities, higher-order corrections always resolve the spacetime curvature singularity of the null tachyon. The resulting theory provides an explicit mechanism by which tachyon condensation can generate or terminate the flow of cosmological time in string theory. Additional particular solutions can resolve an initial singularity with a tachyonic phase at weak coupling, or yield solitonic configurations that localize the universe along spatial directions.« less

  4. A novel image watermarking method based on singular value decomposition and digital holography

    NASA Astrophysics Data System (ADS)

    Cai, Zhishan

    2016-10-01

    According to the information optics theory, a novel watermarking method based on Fourier-transformed digital holography and singular value decomposition (SVD) is proposed in this paper. First of all, a watermark image is converted to a digital hologram using the Fourier transform. After that, the original image is divided into many non-overlapping blocks. All the blocks and the hologram are decomposed using SVD. The singular value components of the hologram are then embedded into the singular value components of each block using an addition principle. Finally, SVD inverse transformation is carried out on the blocks and hologram to generate the watermarked image. The watermark information embedded in each block is extracted at first when the watermark is extracted. After that, an averaging operation is carried out on the extracted information to generate the final watermark information. Finally, the algorithm is simulated. Furthermore, to test the encrypted image's resistance performance against attacks, various attack tests are carried out. The results show that the proposed algorithm has very good robustness against noise interference, image cut, compression, brightness stretching, etc. In particular, when the image is rotated by a large angle, the watermark information can still be extracted correctly.

  5. Quantum propagation across cosmological singularities

    NASA Astrophysics Data System (ADS)

    Gielen, Steffen; Turok, Neil

    2017-05-01

    The initial singularity is the most troubling feature of the standard cosmology, which quantum effects are hoped to resolve. In this paper, we study quantum cosmology with conformal (Weyl) invariant matter. We show that it is natural to extend the scale factor to negative values, allowing a large, collapsing universe to evolve across a quantum "bounce" into an expanding universe like ours. We compute the Feynman propagator for Friedmann-Robertson-Walker backgrounds exactly, identifying curious pathologies in the case of curved (open or closed) universes. We then include anisotropies, fixing the operator ordering of the quantum Hamiltonian by imposing covariance under field redefinitions and again finding exact solutions. We show how complex classical solutions allow one to circumvent the singularity while maintaining the validity of the semiclassical approximation. The simplest isotropic universes sit on a critical boundary, beyond which there is qualitatively different behavior, with potential for instability. Additional scalars improve the theory's stability. Finally, we study the semiclassical propagation of inhomogeneous perturbations about the flat, isotropic case, at linear and nonlinear order, showing that, at least at this level, there is no particle production across the bounce. These results form the basis for a promising new approach to quantum cosmology and the resolution of the big bang singularity.

  6. A NEW GUI FOR GLOBAL ORBIT CORRECTION AT THE ALS USING MATLAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pachikara, J.; Portmann, G.

    2007-01-01

    Orbit correction is a vital procedure at particle accelerators around the world. The orbit correction routine currently used at the Advanced Light Source (ALS) is a bit cumbersome and a new Graphical User Interface (GUI) has been developed using MATLAB. The correction algorithm uses a singular value decomposition method for calculating the required corrector magnet changes for correcting the orbit. The application has been successfully tested at the ALS. The GUI display provided important information regarding the orbit including the orbit errors before and after correction, the amount of corrector magnet strength change, and the standard deviation of the orbitmore » error with respect to the number of singular values used. The use of more singular values resulted in better correction of the orbit error but at the expense of enormous corrector magnet strength changes. The results showed an inverse relationship between the peak-to-peak values of the orbit error and the number of singular values used. The GUI interface helps the ALS physicists and operators understand the specifi c behavior of the orbit. The application is convenient to use and is a substantial improvement over the previous orbit correction routine in terms of user friendliness and compactness.« less

  7. Single-hole spectral function and spin-charge separation in the t-J model

    NASA Astrophysics Data System (ADS)

    Mishchenko, A. S.; Prokof'ev, N. V.; Svistunov, B. V.

    2001-07-01

    Worm algorithm Monte Carlo simulations of the hole Green function with subsequent spectral analysis were performed for 0.1<=J/t<=0.4 on lattices with up to L×L=32×32 sites at a temperature as low as T=J/40, and present, apparently, the hole spectral function in the thermodynamic limit. Spectral analysis reveals a δ-function-sharp quasiparticle peak at the lower edge of the spectrum that is incompatible with the power-law singularity and thus rules out the possibility of spin-charge separation in this parameter range. Spectral continuum features two peaks separated by a gap ~4÷5 t.

  8. Solutions of the Helmholtz equation with boundary conditions for force-free magnetic fields

    NASA Technical Reports Server (NTRS)

    Rasband, S. N.; Turner, L.

    1981-01-01

    It is shown that the solution, with one ignorable coordinate, for the Taylor minimum energy state (resulting in a force-free magnetic field) in either a straight cylindrical or a toroidal geometry with arbitrary cross section can be reduced to the solution of either an inhomogeneous Helmholtz equation or a Grad-Shafranov equation with simple boundary conditions. Standard Green's function theory is, therefore, applicable. Detailed solutions are presented for the Taylor state in toroidal and cylindrical domains having a rectangular cross section. The focus is on solutions corresponding to the continuous eigenvalue spectra. Singular behavior at 90 deg corners is explored in detail.

  9. Recollection is a continuous process: Evidence from plurality memory receiver operating characteristics.

    PubMed

    Slotnick, Scott D; Jeye, Brittany M; Dodson, Chad S

    2016-01-01

    Is recollection a continuous/graded process or a threshold/all-or-none process? Receiver operating characteristic (ROC) analysis can answer this question as the continuous model and the threshold model predict curved and linear recollection ROCs, respectively. As memory for plurality, an item's previous singular or plural form, is assumed to rely on recollection, the nature of recollection can be investigated by evaluating plurality memory ROCs. The present study consisted of four experiments. During encoding, words (singular or plural) or objects (single/singular or duplicate/plural) were presented. During retrieval, old items with the same plurality or different plurality were presented. For each item, participants made a confidence rating ranging from "very sure old", which was correct for same plurality items, to "very sure new", which was correct for different plurality items. Each plurality memory ROC was the proportion of same versus different plurality items classified as "old" (i.e., hits versus false alarms). Chi-squared analysis revealed that all of the plurality memory ROCs were adequately fit by the continuous unequal variance model, whereas none of the ROCs were adequately fit by the two-high threshold model. These plurality memory ROC results indicate recollection is a continuous process, which complements previous source memory and associative memory ROC findings.

  10. Multiscale Resilience of Complex Systems

    NASA Astrophysics Data System (ADS)

    Tchiguirinskaia, I.; Schertzer, D. J. M.; Giangola-Murzyn, A.; Hoang Cong, T.

    2014-12-01

    We first argue the need for well defined resilience metrics to better evaluate the resilience of complex systems such as (peri-)urban flood management systems. We review both the successes and limitations of resilience metrics in the framework of dynamical systems and their generalization in the framework of the viability theory. We then point out that the most important step to achieve is to define resilience across scales instead of doing it at a given scale. Our preliminary, critical analysis of the series of attempts to define an operational resilience metrics led us to consider a scale invariant metrics based on the scale independent codimension of extreme singularities. Multifractal downscaling of climate scenarios can be considered as a first illustration. We focussed on a flood scenario evaluation method with the help of two singularities γ_s and γ_Max, corresponding respectively to an effective and a probable maximum singularity, that yield an innovative framework to address the issues of flood resilience systems in a scale independent manner. Indeed, the stationarity of the universal multifractal parameters would result into a rather stable value of probable maximum singularity γ_s. By fixing the limit of acceptability for a maximum flood water depth at a given scale, with a corresponding singularity, we effectively fix the threshold of the probable maximum singularity γ_s as a criterion of the flood resilience we accept. Then various scenarios of flood resilient measures could be simulated with the help of Multi-Hydro under upcoming climat scenarios. The scenarios that result in estimates of either γ_Max or γ_s below the pre-selected γ_s value will assure the effective flood resilience of the whole modeled system across scales. The research for this work was supported, in part, by the EU FP7 SMARTesT and INTERREG IVB RainGain projects.

  11. Typical event horizons in AdS/CFT

    DOE PAGES

    Avery, Steven G.; Lowe, David A.

    2016-01-14

    We consider the construction of local bulk operators in a black hole background dual to a pure state in conformal field theory. The properties of these operators in a microcanonical ensemble are studied. It has been argued in the literature that typical states in such an ensemble contain firewalls, or otherwise singular horizons. Here, we argue this conclusion can be avoided with a proper definition of the interior operators.

  12. Green Tunnel Construction Technology and Application

    NASA Astrophysics Data System (ADS)

    Zhang, J. L.; Shi, P. X.; Huang, J.; Li, H. G.; Zhou, X. Q.

    2018-05-01

    With the dramatic growth of urban tunnels in recent years, energy saving and environmental protection have received intensive attention in tunnel construction and operation. As reference to the concept of green buildings, this paper proposes the concept of green tunnels. Combining with the key issues of tunnel design, construction, operation and maintenance, the major aspects of green tunnels including prefabricated construction, noise control, ventilation & lighting energy saving, and digital intelligent maintenance are discussed and the future development of green tunnels is outlined with the economic and social benefits as indicators.

  13. Analytic properties for the honeycomb lattice Green function at the origin

    NASA Astrophysics Data System (ADS)

    Joyce, G. S.

    2018-05-01

    The analytic properties of the honeycomb lattice Green function are investigated, where is a complex variable which lies in a plane. This double integral defines a single-valued analytic function provided that a cut is made along the real axis from w  =  ‑3 to . In order to analyse the behaviour of along the edges of the cut it is convenient to define the limit function where . It is shown that and can be evaluated exactly for all in terms of various hypergeometric functions, where the argument function is always real-valued and rational. The second-order linear Fuchsian differential equation satisfied by is also used to derive series expansions for and which are valid in the neighbourhood of the regular singular points and . Integral representations are established for and , where with . In particular, it is proved that where J 0(z) and Y 0(z) denote Bessel functions of the first and second kind, respectively. The results derived in the paper are utilized to evaluate the associated logarithmic integral where w lies in the cut plane. A new set of orthogonal polynomials which are connected with the honeycomb lattice Green function are also briefly discussed. Finally, a link between and the theory of Pearson random walks in a plane is established.

  14. Precision PEP-II optics measurement with an SVD-enhanced Least-Square fitting

    NASA Astrophysics Data System (ADS)

    Yan, Y. T.; Cai, Y.

    2006-03-01

    A singular value decomposition (SVD)-enhanced Least-Square fitting technique is discussed. By automatic identifying, ordering, and selecting dominant SVD modes of the derivative matrix that responds to the variations of the variables, the converging process of the Least-Square fitting is significantly enhanced. Thus the fitting speed can be fast enough for a fairly large system. This technique has been successfully applied to precision PEP-II optics measurement in which we determine all quadrupole strengths (both normal and skew components) and sextupole feed-downs as well as all BPM gains and BPM cross-plane couplings through Least-Square fitting of the phase advances and the Local Green's functions as well as the coupling ellipses among BPMs. The local Green's functions are specified by 4 local transfer matrix components R12, R34, R32, R14. These measurable quantities (the Green's functions, the phase advances and the coupling ellipse tilt angles and axis ratios) are obtained by analyzing turn-by-turn Beam Position Monitor (BPM) data with a high-resolution model-independent analysis (MIA). Once all of the quadrupoles and sextupole feed-downs are determined, we obtain a computer virtual accelerator which matches the real accelerator in linear optics. Thus, beta functions, linear coupling parameters, and interaction point (IP) optics characteristics can be measured and displayed.

  15. Green Streets, Green Jobs, Green Towns (G3) Guides and Publications

    EPA Pesticide Factsheets

    This page provides links to guides and resources for: policy, regulations, and incentives; planning and design; construction, operation, and maintenance; financing and economic benefits; and, green jobs and training.

  16. Development of surgical skill with singular neurectomy using human cadaveric temporal bones.

    PubMed

    Feigl, Georg; Kos, Izabel; Anderhuber, Friedrich; Guyot, Jean Phillippe; Fasel, Jean

    2008-01-01

    Profound anatomical knowledge and surgical experience are essential for safe otological surgery. The surgeon's learning curve is evaluated in performing Gacek's singular neurectomy on cadaveric specimens. One otological surgeon performed Gacek's approach on 96 halves of human heads embalmed according to Thiel's method, divided into four groups (24 halves per group) and evaluated them concurrent to the evaluation of an anatomist after a first surgical attempt. Successful operations were subdivided into "direct hits" of the osseous canal of the posterior ampullary nerve also known as the singular nerve and "indirect hits" with access to the posterior ampullary recess. Unsuccessful operations showed "no hit" of the nerve without lesion of the membranous labyrinth. "Indirect" or "no hits" were reinvestigated in a second attempt to evaluate possible reclassifications due to a learning process of the surgeon. The order of dissection, the rate of success and the changes of results in correlation with the numbers of dissected specimens were documented. The success rate significantly increased from 54.2% direct hits after the first group to 87.36% in the fourth group after the first attempt. Successful operations were performed in 86.5% after completion of the first attempt and 97.9% after the second attempt. The number of new allocations decreased from 11 cases in the first group of dissected specimens to zero in the fourth group. This paper strengthens the value of cadaveric training for surgeons and the crucial role of dissection of a large number of specimens in improvement of the surgeon's experience and success rate.

  17. Stochastic theory of log-periodic patterns

    NASA Astrophysics Data System (ADS)

    Canessa, Enrique

    2000-12-01

    We introduce an analytical model based on birth-death clustering processes to help in understanding the empirical log-periodic corrections to power law scaling and the finite-time singularity as reported in several domains including rupture, earthquakes, world population and financial systems. In our stochastic theory log-periodicities are a consequence of transient clusters induced by an entropy-like term that may reflect the amount of co-operative information carried by the state of a large system of different species. The clustering completion rates for the system are assumed to be given by a simple linear death process. The singularity at t0 is derived in terms of birth-death clustering coefficients.

  18. Integrals and integral equations in linearized wing theory

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Heaslet, Max A; Fuller, Franklyn B

    1951-01-01

    The formulas of subsonic and supersonic wing theory for source, doublet, and vortex distributions are reviewed and a systematic presentation is provided which relates these distributions to the pressure and to the vertical induced velocity in the plane of the wing. It is shown that care must be used in treating the singularities involved in the analysis and that the order of integration is not always reversible. Concepts suggested by the irreversibility of order of integration are shown to be useful in the inversion of singular integral equations when operational techniques are used. A number of examples are given to illustrate the methods presented, attention being directed to supersonic flight speed.

  19. Weighted low-rank sparse model via nuclear norm minimization for bearing fault detection

    NASA Astrophysics Data System (ADS)

    Du, Zhaohui; Chen, Xuefeng; Zhang, Han; Yang, Boyuan; Zhai, Zhi; Yan, Ruqiang

    2017-07-01

    It is a fundamental task in the machine fault diagnosis community to detect impulsive signatures generated by the localized faults of bearings. The main goal of this paper is to exploit the low-rank physical structure of periodic impulsive features and further establish a weighted low-rank sparse model for bearing fault detection. The proposed model mainly consists of three basic components: an adaptive partition window, a nuclear norm regularization and a weighted sequence. Firstly, due to the periodic repetition mechanism of impulsive feature, an adaptive partition window could be designed to transform the impulsive feature into a data matrix. The highlight of partition window is to accumulate all local feature information and align them. Then, all columns of the data matrix share similar waveforms and a core physical phenomenon arises, i.e., these singular values of the data matrix demonstrates a sparse distribution pattern. Therefore, a nuclear norm regularization is enforced to capture that sparse prior. However, the nuclear norm regularization treats all singular values equally and thus ignores one basic fact that larger singular values have more information volume of impulsive features and should be preserved as much as possible. Therefore, a weighted sequence with adaptively tuning weights inversely proportional to singular amplitude is adopted to guarantee the distribution consistence of large singular values. On the other hand, the proposed model is difficult to solve due to its non-convexity and thus a new algorithm is developed to search one satisfying stationary solution through alternatively implementing one proximal operator operation and least-square fitting. Moreover, the sensitivity analysis and selection principles of algorithmic parameters are comprehensively investigated through a set of numerical experiments, which shows that the proposed method is robust and only has a few adjustable parameters. Lastly, the proposed model is applied to the wind turbine (WT) bearing fault detection and its effectiveness is sufficiently verified. Compared with the current popular bearing fault diagnosis techniques, wavelet analysis and spectral kurtosis, our model achieves a higher diagnostic accuracy.

  20. Singular value description of a digital radiographic detector: Theory and measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyprianou, Iacovos S.; Badano, Aldo; Gallas, Brandon D.

    The H operator represents the deterministic performance of any imaging system. For a linear, digital imaging system, this system operator can be written in terms of a matrix, H, that describes the deterministic response of the system to a set of point objects. A singular value decomposition of this matrix results in a set of orthogonal functions (singular vectors) that form the system basis. A linear combination of these vectors completely describes the transfer of objects through the linear system, where the respective singular values associated with each singular vector describe the magnitude with which that contribution to the objectmore » is transferred through the system. This paper is focused on the measurement, analysis, and interpretation of the H matrix for digital x-ray detectors. A key ingredient in the measurement of the H matrix is the detector response to a single x ray (or infinitestimal x-ray beam). The authors have developed a method to estimate the 2D detector shift-variant, asymmetric ray response function (RRF) from multiple measured line response functions (LRFs) using a modified edge technique. The RRF measurements cover a range of x-ray incident angles from 0 deg. (equivalent location at the detector center) to 30 deg. (equivalent location at the detector edge) for a standard radiographic or cone-beam CT geometric setup. To demonstrate the method, three beam qualities were tested using the inherent, Lu/Er, and Yb beam filtration. The authors show that measures using the LRF, derived from an edge measurement, underestimate the system's performance when compared with the H matrix derived using the RRF. Furthermore, the authors show that edge measurements must be performed at multiple directions in order to capture rotational asymmetries of the RRF. The authors interpret the results of the H matrix SVD and provide correlations with the familiar MTF methodology. Discussion is made about the benefits of the H matrix technique with regards to signal detection theory, and the characterization of shift-variant imaging systems.« less

  1. 78 FR 31454 - Drawbridge Operation Regulation; Hudson River, Troy and Green Island, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ...-AA09 Drawbridge Operation Regulation; Hudson River, Troy and Green Island, NY AGENCY: Coast Guard, DHS... that governs the highway bridge (Troy Green Island) across the Hudson River, mile 152.7, between Troy... the regulations for the 112th Street Bridge, mile 155.4, between Troy and Cohoes which has been...

  2. Resistive MHD Stability Analysis in Near Real-time

    NASA Astrophysics Data System (ADS)

    Glasser, Alexander; Kolemen, Egemen

    2017-10-01

    We discuss the feasibility of a near real-time calculation of the tokamak Δ' matrix, which summarizes MHD stability to resistive modes, such as tearing and interchange modes. As the operational phase of ITER approaches, solutions for active feedback tokamak stability control are needed. It has been previously demonstrated that an ideal MHD stability analysis is achievable on a sub- O (1 s) timescale, as is required to control phenomena comparable with the MHD-evolution timescale of ITER. In the present work, we broaden this result to incorporate the effects of resistive MHD modes. Such modes satisfy ideal MHD equations in regions outside narrow resistive layers that form at singular surfaces. We demonstrate that the use of asymptotic expansions at the singular surfaces, as well as the application of state transition matrices, enable a fast, parallelized solution to the singular outer layer boundary value problem, and thereby rapidly compute Δ'. Sponsored by US DOE under DE-SC0015878 and DE-FC02-04ER54698.

  3. Automatic computer procedure for generating exact and analytical kinetic energy operators based on the polyspherical approach: General formulation and removal of singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ndong, Mamadou; Lauvergnat, David; Nauts, André

    2013-11-28

    We present new techniques for an automatic computation of the kinetic energy operator in analytical form. These techniques are based on the use of the polyspherical approach and are extended to take into account Cartesian coordinates as well. An automatic procedure is developed where analytical expressions are obtained by symbolic calculations. This procedure is a full generalization of the one presented in Ndong et al., [J. Chem. Phys. 136, 034107 (2012)]. The correctness of the new implementation is analyzed by comparison with results obtained from the TNUM program. We give several illustrations that could be useful for users of themore » code. In particular, we discuss some cyclic compounds which are important in photochemistry. Among others, we show that choosing a well-adapted parameterization and decomposition into subsystems can allow one to avoid singularities in the kinetic energy operator. We also discuss a relation between polyspherical and Z-matrix coordinates: this comparison could be helpful for building an interface between the new code and a quantum chemistry package.« less

  4. Tensor calculus in polar coordinates using Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Vasil, Geoffrey M.; Burns, Keaton J.; Lecoanet, Daniel; Olver, Sheehan; Brown, Benjamin P.; Oishi, Jeffrey S.

    2016-11-01

    Spectral methods are an efficient way to solve partial differential equations on domains possessing certain symmetries. The utility of a method depends strongly on the choice of spectral basis. In this paper we describe a set of bases built out of Jacobi polynomials, and associated operators for solving scalar, vector, and tensor partial differential equations in polar coordinates on a unit disk. By construction, the bases satisfy regularity conditions at r = 0 for any tensorial field. The coordinate singularity in a disk is a prototypical case for many coordinate singularities. The work presented here extends to other geometries. The operators represent covariant derivatives, multiplication by azimuthally symmetric functions, and the tensorial relationship between fields. These arise naturally from relations between classical orthogonal polynomials, and form a Heisenberg algebra. Other past work uses more specific polynomial bases for solving equations in polar coordinates. The main innovation in this paper is to use a larger set of possible bases to achieve maximum bandedness of linear operations. We provide a series of applications of the methods, illustrating their ease-of-use and accuracy.

  5. A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamba, Irene M.; ICES, The University of Texas at Austin, 201 E. 24th St., Stop C0200, Austin, TX 78712; Haack, Jeffrey R.

    2014-08-01

    We present the formulation of a conservative spectral method for the Boltzmann collision operator with anisotropic scattering cross-sections. The method is an extension of the conservative spectral method of Gamba and Tharkabhushanam [17,18], which uses the weak form of the collision operator to represent the collisional term as a weighted convolution in Fourier space. The method is tested by computing the collision operator with a suitably cut-off angular cross section and comparing the results with the solution of the Landau equation. We analytically study the convergence rate of the Fourier transformed Boltzmann collision operator in the grazing collisions limit tomore » the Fourier transformed Landau collision operator under the assumption of some regularity and decay conditions of the solution to the Boltzmann equation. Our results show that the angular singularity which corresponds to the Rutherford scattering cross section is the critical singularity for which a grazing collision limit exists for the Boltzmann operator. Additionally, we numerically study the differences between homogeneous solutions of the Boltzmann equation with the Rutherford scattering cross section and an artificial cross section, which give convergence to solutions of the Landau equation at different asymptotic rates. We numerically show the rate of the approximation as well as the consequences for the rate of entropy decay for homogeneous solutions of the Boltzmann equation and Landau equation.« less

  6. The Road to a Green District

    ERIC Educational Resources Information Center

    Gutter, Rachel; Knupp, Emily

    2011-01-01

    Green design, green construction, and green operations for new buildings are rapidly becoming the norm for school districts throughout the country. Today, increased availability of green products and technology coupled with cost savings that are realized through an integrated design process mean that schools like Arabia Mountain High School in…

  7. The Road to a Green District

    ERIC Educational Resources Information Center

    Gutter, Rachel; Knupp, Emily

    2010-01-01

    Green design, green construction and green operations for new buildings are rapidly becoming the norm for school districts throughout the country. Today, increased availability of green products and technology coupled with cost savings that are realized through an integrated design process mean that schools like Arabia Mountain High School can be…

  8. Predictability of a Coupled Model of ENSO Using Singular Vector Analysis: Optimal Growth and Forecast Skill.

    NASA Astrophysics Data System (ADS)

    Xue, Yan

    The optimal growth and its relationship with the forecast skill of the Zebiak and Cane model are studied using a simple statistical model best fit to the original nonlinear model and local linear tangent models about idealized climatic states (the mean background and ENSO cycles in a long model run), and the actual forecast states, including two sets of runs using two different initialization procedures. The seasonally varying Markov model best fit to a suite of 3-year forecasts in a reduced EOF space (18 EOFs) fits the original nonlinear model reasonably well and has comparable or better forecast skill. The initial error growth in a linear evolution operator A is governed by the eigenvalues of A^{T}A, and the square roots of eigenvalues and eigenvectors of A^{T}A are named singular values and singular vectors. One dominant growing singular vector is found, and the optimal 6 month growth rate is largest for a (boreal) spring start and smallest for a fall start. Most of the variation in the optimal growth rate of the two forecasts is seasonal, attributable to the seasonal variations in the mean background, except that in the cold events it is substantially suppressed. It is found that the mean background (zero anomaly) is the most unstable state, and the "forecast IC states" are more unstable than the "coupled model states". One dominant growing singular vector is found, characterized by north-south and east -west dipoles, convergent winds on the equator in the eastern Pacific and a deepened thermocline in the whole equatorial belt. This singular vector is insensitive to initial time and optimization time, but its final pattern is a strong function of initial states. The ENSO system is inherently unpredictable for the dominant singular vector can amplify 5-fold to 24-fold in 6 months and evolve into the large scales characteristic of ENSO. However, the inherent ENSO predictability is only a secondary factor, while the mismatches between the model and data is a primary factor controlling the current forecast skill.

  9. 3D Higher Order Modeling in the BEM/FEM Hybrid Formulation

    NASA Technical Reports Server (NTRS)

    Fink, P. W.; Wilton, D. R.

    2000-01-01

    Higher order divergence- and curl-conforming bases have been shown to provide significant benefits, in both convergence rate and accuracy, in the 2D hybrid finite element/boundary element formulation (P. Fink and D. Wilton, National Radio Science Meeting, Boulder, CO, Jan. 2000). A critical issue in achieving the potential for accuracy of the approach is the accurate evaluation of all matrix elements. These involve products of high order polynomials and, in some instances, singular Green's functions. In the 2D formulation, the use of a generalized Gaussian quadrature method was found to greatly facilitate the computation and to improve the accuracy of the boundary integral equation self-terms. In this paper, a 3D, hybrid electric field formulation employing higher order bases and higher order elements is presented. The improvements in convergence rate and accuracy, compared to those resulting from lower order modeling, are established. Techniques developed to facilitate the computation of the boundary integral self-terms are also shown to improve the accuracy of these terms. Finally, simple preconditioning techniques are used in conjunction with iterative solution procedures to solve the resulting linear system efficiently. In order to handle the boundary integral singularities in the 3D formulation, the parent element- either a triangle or rectangle-is subdivided into a set of sub-triangles with a common vertex at the singularity. The contribution to the integral from each of the sub-triangles is computed using the Duffy transformation to remove the singularity. This method is shown to greatly facilitate t'pe self-term computation when the bases are of higher order. In addition, the sub-triangles can be further divided to achieve near arbitrary accuracy in the self-term computation. An efficient method for subdividing the parent element is presented. The accuracy obtained using higher order bases is compared to that obtained using lower order bases when the number of unknowns is approximately equal. Also, convergence rates obtained using higher order bases are compared to those obtained with lower order bases for selected sample

  10. Design and control strategy for a hybrid green energy system for mobile telecommunication sites

    NASA Astrophysics Data System (ADS)

    Okundamiya, Michael S.; Emagbetere, Joy O.; Ogujor, Emmanuel A.

    2014-07-01

    The rising energy costs and carbon footprint of operating mobile telecommunication sites in the emerging world have increased research interests in green technology. The intermittent nature of most green energy sources creates the problem of designing the optimum configuration for a given location. This study presents the design analysis and control strategy for a cost effective and reliable operation of the hybrid green energy system (HGES) for GSM base transceiver station (BTS) sites in isolated regions. The design constrains the generation and distribution of power to reliably satisfy the energy demand while ensuring safe operation of the system. The overall process control applies the genetic algorithm-based technique for optimal techno-economic sizing of system's components. The process simulation utilized meteorological data for 3 locations (Abuja, Benin City and Sokoto) with varying climatic conditions in Nigeria. Simulation results presented for green GSM BTS sites are discussed and compared with existing approaches.

  11. Functional renormalization group approach to the Yang-Lee edge singularity

    DOE PAGES

    An, X.; Mesterházy, D.; Stephanov, M. A.

    2016-07-08

    Here, we determine the scaling properties of the Yang-Lee edge singularity as described by a one-component scalar field theory with imaginary cubic coupling, using the nonperturbative functional renormalization group in 3 ≤ d ≤ 6 Euclidean dimensions. We find very good agreement with high-temperature series data in d = 3 dimensions and compare our results to recent estimates of critical exponents obtained with the four-loop ϵ = 6 - d expansion and the conformal bootstrap. The relevance of operator insertions at the corresponding fixed point of the RG β functions is discussed and we estimate the error associated with O(∂more » 4) truncations of the scale-dependent effective action.« less

  12. Functional renormalization group approach to the Yang-Lee edge singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, X.; Mesterházy, D.; Stephanov, M. A.

    Here, we determine the scaling properties of the Yang-Lee edge singularity as described by a one-component scalar field theory with imaginary cubic coupling, using the nonperturbative functional renormalization group in 3 ≤ d ≤ 6 Euclidean dimensions. We find very good agreement with high-temperature series data in d = 3 dimensions and compare our results to recent estimates of critical exponents obtained with the four-loop ϵ = 6 - d expansion and the conformal bootstrap. The relevance of operator insertions at the corresponding fixed point of the RG β functions is discussed and we estimate the error associated with O(∂more » 4) truncations of the scale-dependent effective action.« less

  13. Composite operators in the hopping parameter expansion in the free quark model

    NASA Astrophysics Data System (ADS)

    Kunszt, Z.

    1983-11-01

    I have calculated hopping parameter series of meson and baryon propagators up to O(K32) in the Wilson formulation of the free quark model. The position of branch point singularities has been found with the help of Padé approximants. The values of the position of the singularities in K agreed with the exact values within 1-2% in case of mesons and 4-5% in case of baryons. It is argued that in QCD at the cross-over region the systematic errors of the method must be even smaller. Part of this work has been done while the author was visiting the Rutherford and Appleton Laboratories, UK.

  14. Vibrating Systems with Singular Mass-Inertia Matrices

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1996-01-01

    Vibrating systems with singular mass-inertia matrices arise in recent continuum models of Smart Structures (beams with PZT strips) in assessing the damping attainable with rate feedback. While they do not quite yield 'distributed' controls, we show that they can provide a fixed nonzero lower bound for the damping coefficient at all mode frequencies. The mathematical machinery for modelling the motion involves the theory of Semigroups of Operators. We consider a Timoshenko model for torsion only, a 'smart string,' where the damping coefficient turns out to be a constant at all frequencies. We also observe that the damping increases initially with the feedback gain but decreases to zero eventually as the gain increases without limit.

  15. Refined Weyl Law for Homogeneous Perturbations of the Harmonic Oscillator

    NASA Astrophysics Data System (ADS)

    Doll, Moritz; Gannot, Oran; Wunsch, Jared

    2018-02-01

    Let H denote the harmonic oscillator Hamiltonian on R}^d,} perturbed by an isotropic pseudodifferential operator of order 1. We consider the Schrödinger propagator {U(t)=e^{-itH},} and find that while sing-supp Tr U(t) \\subset 2 π Z as in the unperturbed case, there exists a large class of perturbations in dimensions {d ≥ 2 for which the singularities of {Tr U(t)} at nonzero multiples of {2 π} are weaker than the singularity at t = 0. The remainder term in the Weyl law is of order {o(λ^{d-1})} , improving in these cases the {o(λ^{d-1})} remainder previously established by Helffer-Robert.

  16. Spectra of random operators with absolutely continuous integrated density of states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rio, Rafael del, E-mail: delrio@iimas.unam.mx, E-mail: delriomagia@gmail.com

    2014-04-15

    The structure of the spectrum of random operators is studied. It is shown that if the density of states measure of some subsets of the spectrum is zero, then these subsets are empty. In particular follows that absolute continuity of the integrated density of states implies singular spectra of ergodic operators is either empty or of positive measure. Our results apply to Anderson and alloy type models, perturbed Landau Hamiltonians, almost periodic potentials, and models which are not ergodic.

  17. A Facilities Manager's Guide to Green Building Design.

    ERIC Educational Resources Information Center

    Simpson, Walter

    2001-01-01

    Explains how the "green building" approach to educational facilities design creates healthy, naturally lit, attractive buildings with lower operating and life cycle costs. Tips on getting started on a green design and overcoming the barriers to the green design concept are discussed. (GR)

  18. It's Not Easy Building Green.

    ERIC Educational Resources Information Center

    Higgins, Joseph

    2003-01-01

    Discusses green buildings, facilities designed, constructed, and operated in an environmentally friendly and resource-efficient way. Discusses reasons for campuses to "go green," the "shades of green" or variations in environmental-friendliness, certification through the Leadership in Energy and Environmental Design (LEED) rating system, financial…

  19. 75 FR 30299 - Drawbridge Operation Regulations; Fox River, Green Bay, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2010-0374] Drawbridge Operation Regulations; Fox River, Green Bay, WI AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... from the regulation governing the operation of the Main Street Bridge at Mile 1.21 over the Fox River...

  20. WE-AB-207A-04: Random Undersampled Cone Beam CT: Theoretical Analysis and a Novel Reconstruction Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, C; Chen, L; Jia, X

    2016-06-15

    Purpose: Reducing x-ray exposure and speeding up data acquisition motived studies on projection data undersampling. It is an important question that for a given undersampling ratio, what the optimal undersampling approach is. In this study, we propose a new undersampling scheme: random-ray undersampling. We will mathematically analyze its projection matrix properties and demonstrate its advantages. We will also propose a new reconstruction method that simultaneously performs CT image reconstruction and projection domain data restoration. Methods: By representing projection operator under the basis of singular vectors of full projection operator, matrix representations for an undersampling case can be generated and numericalmore » singular value decomposition can be performed. We compared properties of matrices among three undersampling approaches: regular-view undersampling, regular-ray undersampling, and the proposed random-ray undersampling. To accomplish CT reconstruction for random undersampling, we developed a novel method that iteratively performs CT reconstruction and missing projection data restoration via regularization approaches. Results: For a given undersampling ratio, random-ray undersampling preserved mathematical properties of full projection operator better than the other two approaches. This translates to advantages of reconstructing CT images at lower errors. Different types of image artifacts were observed depending on undersampling strategies, which were ascribed to the unique singular vectors of the sampling operators in the image domain. We tested the proposed reconstruction algorithm on a Forbid phantom with only 30% of the projection data randomly acquired. Reconstructed image error was reduced from 9.4% in a TV method to 7.6% in the proposed method. Conclusion: The proposed random-ray undersampling is mathematically advantageous over other typical undersampling approaches. It may permit better image reconstruction at the same undersampling ratio. The novel algorithm suitable for this random-ray undersampling was able to reconstruct high-quality images.« less

  1. Nutrient leaching from extensive green roofs with different substrate compositions: a laboratory study.

    PubMed

    Zhang, Wei; Zhong, Xing; Che, Wu

    2018-02-01

    To investigate nutrient leaching from extensive green roofs, green roof platforms were established to investigate the effluent quantity and quality during artificial rainfall. When the influent volume reached three times the empty bed volume, for which the cumulative rainfall was around 300 mm, the effluent TP and COD concentrations of green roof platforms filled with peat soil did not tend to stabilize. For a long-term operation, the substrate depths had little significant influence on TN, TP and COD concentrations of the green roof effluents. A normalized cumulative emission process method was proposed to discuss the difference in various pollutant leaching processes. Obvious differences in the leaching process of different contaminants for green roof platforms filled with various substrates were observed. For the green roof filled with modified substrates, the nitrogen and phosphorus pollutant leaching rates were relatively high in the initial stage of green roof operation and the phosphorus leaching rate was higher than that of nitrogen. The green roof is a sink for TN, but not for TP and COD in this study. The outcomes are critical for the selection of green roof substrates and also contribute to green roof maintenance.

  2. Spectral Characteristics of the Unitary Critical Almost-Mathieu Operator

    NASA Astrophysics Data System (ADS)

    Fillman, Jake; Ong, Darren C.; Zhang, Zhenghe

    2017-04-01

    We discuss spectral characteristics of a one-dimensional quantum walk whose coins are distributed quasi-periodically. The unitary update rule of this quantum walk shares many spectral characteristics with the critical Almost-Mathieu Operator; however, it possesses a feature not present in the Almost-Mathieu Operator, namely singularity of the associated cocycles (this feature is, however, present in the so-called Extended Harper's Model). We show that this operator has empty absolutely continuous spectrum and that the Lyapunov exponent vanishes on the spectrum; hence, this model exhibits Cantor spectrum of zero Lebesgue measure for all irrational frequencies and arbitrary phase, which in physics is known as Hofstadter's butterfly. In fact, we will show something stronger, namely, that all spectral parameters in the spectrum are of critical type, in the language of Avila's global theory of analytic quasiperiodic cocycles. We further prove that it has empty point spectrum for each irrational frequency and away from a frequency-dependent set of phases having Lebesgue measure zero. The key ingredients in our proofs are an adaptation of Avila's Global Theory to the present setting, self-duality via the Fourier transform, and a Johnson-type theorem for singular dynamically defined CMV matrices which characterizes their spectra as the set of spectral parameters at which the associated cocycles fail to admit a dominated splitting.

  3. Extended space expectation values of position related operators for hydrogen-like quantum system evolutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalay, Berfin; Demiralp, Metin

    2014-10-06

    The expectation value definitions over an extended space from the considered Hilbert space of the system under consideration is given in another paper of the second author in this symposium. There, in that paper, the conceptuality rather than specification is emphasized on. This work uses that conceptuality to investigate the time evolutions of the position related operators' expectation values not in its standard meaning but rather in a new version of the definition over not the original Hilbert space but in the space obtained by extensions via introducing the images of the given initial wave packet under the positive integermore » powers of the system Hamiltonian. These images may not be residing in the same space of the initial wave packet when certain singularities appear in the structure of the system Hamiltonian. This may break down the existence of the integrals in the definitions of the expectation values. The cure is the use of basis functions in the abovementioned extended space and the sandwiching of the target operator whose expectation value is under questioning by an appropriately chosen operator guaranteeing the existence of the relevant integrals. Work specifically focuses on the hydrogen-like quantum systems whose Hamiltonians contain a polar singularity at the origin.« less

  4. A robust method of computing finite difference coefficients based on Vandermonde matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Yijie; Gao, Jinghuai; Peng, Jigen; Han, Weimin

    2018-05-01

    When the finite difference (FD) method is employed to simulate the wave propagation, high-order FD method is preferred in order to achieve better accuracy. However, if the order of FD scheme is high enough, the coefficient matrix of the formula for calculating finite difference coefficients is close to be singular. In this case, when the FD coefficients are computed by matrix inverse operator of MATLAB, inaccuracy can be produced. In order to overcome this problem, we have suggested an algorithm based on Vandermonde matrix in this paper. After specified mathematical transformation, the coefficient matrix is transformed into a Vandermonde matrix. Then the FD coefficients of high-order FD method can be computed by the algorithm of Vandermonde matrix, which prevents the inverse of the singular matrix. The dispersion analysis and numerical results of a homogeneous elastic model and a geophysical model of oil and gas reservoir demonstrate that the algorithm based on Vandermonde matrix has better accuracy compared with matrix inverse operator of MATLAB.

  5. Raman q-plates for Singular Atom Optics

    NASA Astrophysics Data System (ADS)

    Schultz, Justin T.; Hansen, Azure; Murphree, Joseph D.; Jayaseelan, Maitreyi; Bigelow, Nicholas P.

    2016-05-01

    We use a coherent two-photon Raman interaction as the atom-optic equivalent of a birefringent optical q-plate to facilitate spin-to-orbital angular momentum conversion in a pseudo-spin-1/2 BEC. A q-plate is a waveplate with a fixed retardance but a spatially varying fast axis orientation angle. We derive the time evolution operator for the system and compare it to a Jones matrix for an optical waveplate to show that in our Raman q-plate, the equivalent orientation of the fast axis is described by the relative phase of the Raman beams and the retardance is determined by the pulse area. The charge of the Raman q-plate is determined by the orbital angular momentum of the Raman beams, and the beams contain umbilic C-point polarization singularities which are imprinted into the condensate as spin singularities: lemons, stars, spirals, and saddles. By tuning the optical beam parameters, we can create a full-Bloch BEC, which is a coreless vortex that contains every possible superposition of two spin states, that is, it covers the Bloch sphere.

  6. Total variation regularization of the 3-D gravity inverse problem using a randomized generalized singular value decomposition

    NASA Astrophysics Data System (ADS)

    Vatankhah, Saeed; Renaut, Rosemary A.; Ardestani, Vahid E.

    2018-04-01

    We present a fast algorithm for the total variation regularization of the 3-D gravity inverse problem. Through imposition of the total variation regularization, subsurface structures presenting with sharp discontinuities are preserved better than when using a conventional minimum-structure inversion. The associated problem formulation for the regularization is nonlinear but can be solved using an iteratively reweighted least-squares algorithm. For small-scale problems the regularized least-squares problem at each iteration can be solved using the generalized singular value decomposition. This is not feasible for large-scale, or even moderate-scale, problems. Instead we introduce the use of a randomized generalized singular value decomposition in order to reduce the dimensions of the problem and provide an effective and efficient solution technique. For further efficiency an alternating direction algorithm is used to implement the total variation weighting operator within the iteratively reweighted least-squares algorithm. Presented results for synthetic examples demonstrate that the novel randomized decomposition provides good accuracy for reduced computational and memory demands as compared to use of classical approaches.

  7. The Semantics of Plurals: A Defense of Singularism

    ERIC Educational Resources Information Center

    Florio, Salvatore

    2010-01-01

    In this dissertation, I defend "semantic singularism", which is the view that syntactically plural terms, such as "they" or "Russell and Whitehead", are semantically singular. A semantically singular term is a term that denotes a single entity. Semantic singularism is to be distinguished from "syntactic singularism", according to which…

  8. "Green" School Programs. Research Brief

    ERIC Educational Resources Information Center

    Johnston, J. Howard

    2009-01-01

    What are "Green School" programs and how do they benefit students, teachers and the community? Green School programs seek to weave concepts of sustainability and environmental awareness into the social and academic culture of the school community. Green schools are high performance facilities that have been designed, built, renovated operated or…

  9. Dissociating Interference-Control Processes between Memory and Response

    ERIC Educational Resources Information Center

    Bissett, Patrick G.; Nee, Derek Evan; Jonides, John

    2009-01-01

    The ability to mitigate interference is of central importance to cognition. Previous research has provided conflicting accounts about whether operations that resolve interference are singular in character or form a family of functions. Here, the authors examined the relationship between interference-resolution processes acting on working memory…

  10. Evaluating the green practice of food service supply chain management based on fuzzy DEMATEL-ANP model

    NASA Astrophysics Data System (ADS)

    Li, Xiaoying; Zhu, Qinghua

    2017-01-01

    The question on how to evaluate a company's green practice has recently become a key strategic consideration for the food service supply chain management. This paper proposed a novel hybrid model that combines a fuzzy Decision Making Trial And Evaluation Laboratory(DEMATEL) and Analysis Network Process(ANP) methods, which developed the green restaurant criteria and demonstrated the complicated relations among various criteria to help the food service operation to better analyze the real-world situation and determine the different weight value of the criteria .The analysis of the evaluation of green practices will help the food service operation to be clear about the key measures of green practice to improve supply chain management.

  11. High-order integral equation methods for problems of scattering by bumps and cavities on half-planes.

    PubMed

    Pérez-Arancibia, Carlos; Bruno, Oscar P

    2014-08-01

    This paper presents high-order integral equation methods for the evaluation of electromagnetic wave scattering by dielectric bumps and dielectric cavities on perfectly conducting or dielectric half-planes. In detail, the algorithms introduced in this paper apply to eight classical scattering problems, namely, scattering by a dielectric bump on a perfectly conducting or a dielectric half-plane, and scattering by a filled, overfilled, or void dielectric cavity on a perfectly conducting or a dielectric half-plane. In all cases field representations based on single-layer potentials for appropriately chosen Green functions are used. The numerical far fields and near fields exhibit excellent convergence as discretizations are refined-even at and around points where singular fields and infinite currents exist.

  12. Scattering on two Aharonov-Bohm vortices

    NASA Astrophysics Data System (ADS)

    Bogomolny, E.

    2016-12-01

    The problem of two Aharonov-Bohm (AB) vortices for the Helmholtz equation is examined in detail. It is demonstrated that the method proposed by Myers (1963 J. Math. Phys. 6 1839) for slit diffraction can be generalised to obtain an explicit solution for AB vortices. Due to the singular nature of AB interaction the Green function and scattering amplitude for two AB vortices obey a series of partial differential equations. Coefficients entering these equations, fulfil ordinary non-linear differential equations whose solutions can be obtained by solving the Painlevé III equation. The asymptotics of necessary functions for very large and very small vortex separations are calculated explicitly. Taken together, this means that the problem of two AB vortices is exactly solvable.

  13. Diffuse Waves and Energy Densities Near Boundaries

    NASA Astrophysics Data System (ADS)

    Sanchez-Sesma, F. J.; Rodriguez-Castellanos, A.; Campillo, M.; Perton, M.; Luzon, F.; Perez-Ruiz, J. A.

    2007-12-01

    Green function can be retrieved from averaging cross correlations of motions within a diffuse field. In fact, it has been shown that for an elastic inhomogeneous, anisotropic medium under equipartitioned, isotropic illumination, the average cross correlations are proportional to the imaginary part of Green function. For instance coda waves are due to multiple scattering and their intensities follow diffusive regimes. Coda waves and the noise sample the medium and effectively carry information along their paths. In this work we explore the consequences of assuming both source and receiver at the same point. From the observable side, the autocorrelation is proportional to the energy density at a given point. On the other hand, the imaginary part of the Green function at the source itself is finite because the singularity of Green function is restricted to the real part. The energy density at a point is proportional with the trace of the imaginary part of Green function tensor at the source itself. The Green function availability may allow establishing the theoretical energy density of a seismic diffuse field generated by a background equipartitioned excitation. We study an elastic layer with free surface and overlaying a half space and compute the imaginary part of the Green function for various depths. We show that the resulting spectrum is indeed closely related to the layer dynamic response and the corresponding resonant frequencies are revealed. One implication of present findings lies in the fact that spatial variations may be useful in detecting the presence of a target by its signature in the distribution of diffuse energy. These results may be useful in assessing the seismic response of a given site if strong ground motions are scarce. It suffices having a reasonable illumination from micro earthquakes and noise. We consider that the imaginary part of Green function at the source is a spectral signature of the site. The relative importance of the peaks of this energy spectrum, ruling out non linear effects, may influence the seismic response for future earthquakes. Partial supports from DGAPA-UNAM, Project IN114706, Mexico; from Proyect MCyT CGL2005-05500-C02/BTE, Spain; from project DyETI of INSU-CNRS, France, and from the Instituto Mexicano del Petróleo are greatly appreciated.

  14. Feedback control for fuel-optimal descents using singular perturbation techniques

    NASA Technical Reports Server (NTRS)

    Price, D. B.

    1984-01-01

    In response to rising fuel costs and reduced profit margins for the airline companies, the optimization of the paths flown by transport aircraft has been considered. It was found that application of optimal control theory to the considered problem can result in savings in fuel, time, and direct operating costs. The best solution to the aircraft trajectory problem is an onboard real-time feedback control law. The present paper presents a technique which shows promise of becoming a part of a complete solution. The application of singular perturbation techniques to the problem is discussed, taking into account the benefits and some problems associated with them. A different technique for handling the descent part of a trajectory is also discussed.

  15. Scale-invariant streamline equations and strings of singular vorticity for perturbed anisotropic solutions of the Navier-Stokes equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libin, A., E-mail: a_libin@netvision.net.il

    2012-12-15

    A linear combination of a pair of dual anisotropic decaying Beltrami flows with spatially constant amplitudes (the Trkal solutions) with the same eigenvalue of the curl operator and of a constant velocity orthogonal vector to the Beltrami pair yields a triplet solution of the force-free Navier-Stokes equation. The amplitudes slightly variable in space (large scale perturbations) yield the emergence of a time-dependent phase between the dual Beltrami flows and of the upward velocity, which are unstable at large values of the Reynolds number. They also lead to the formation of large-scale curved prisms of streamlines with edges being the stringsmore » of singular vorticity.« less

  16. Forecasting Wind and Solar Generation: Improving System Operations, Greening the Grid (Spanish Version)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Tian; Chernyakhovskiy, Ilya; Brancucci Martinez-Anido, Carlo

    This document is the Spanish version of 'Greening the Grid- Forecasting Wind and Solar Generation Improving System Operations'. It discusses improving system operations with forecasting with and solar generation. By integrating variable renewable energy (VRE) forecasts into system operations, power system operators can anticipate up- and down-ramps in VRE generation in order to cost-effectively balance load and generation in intra-day and day-ahead scheduling. This leads to reduced fuel costs, improved system reliability, and maximum use of renewable resources.

  17. Hybrid normed ideal perturbations of n-tuples of operators I

    NASA Astrophysics Data System (ADS)

    Voiculescu, Dan-Virgil

    2018-06-01

    In hybrid normed ideal perturbations of n-tuples of operators, the normed ideal is allowed to vary with the component operators. We begin extending to this setting the machinery we developed for normed ideal perturbations based on the modulus of quasicentral approximation and an adaptation of our non-commutative generalization of the Weyl-von Neumann theorem. For commuting n-tuples of hermitian operators, the modulus of quasicentral approximation remains essentially the same when Cn- is replaced by a hybrid n-tuple Cp1,…- , … , Cpn- , p1-1 + ⋯ + pn-1 = 1. The proof involves singular integrals of mixed homogeneity.

  18. Singularities in Optimal Structural Design

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Guptill, J. D.; Berke, L.

    1992-01-01

    Singularity conditions that arise during structural optimization can seriously degrade the performance of the optimizer. The singularities are intrinsic to the formulation of the structural optimization problem and are not associated with the method of analysis. Certain conditions that give rise to singularities have been identified in earlier papers, encompassing the entire structure. Further examination revealed more complex sets of conditions in which singularities occur. Some of these singularities are local in nature, being associated with only a segment of the structure. Moreover, the likelihood that one of these local singularities may arise during an optimization procedure can be much greater than that of the global singularity identified earlier. Examples are provided of these additional forms of singularities. A framework is also given in which these singularities can be recognized. In particular, the singularities can be identified by examination of the stress displacement relations along with the compatibility conditions and/or the displacement stress relations derived in the integrated force method of structural analysis.

  19. Singularities in optimal structural design

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Guptill, J. D.; Berke, L.

    1992-01-01

    Singularity conditions that arise during structural optimization can seriously degrade the performance of the optimizer. The singularities are intrinsic to the formulation of the structural optimization problem and are not associated with the method of analysis. Certain conditions that give rise to singularities have been identified in earlier papers, encompassing the entire structure. Further examination revealed more complex sets of conditions in which singularities occur. Some of these singularities are local in nature, being associated with only a segment of the structure. Moreover, the likelihood that one of these local singularities may arise during an optimization procedure can be much greater than that of the global singularity identified earlier. Examples are provided of these additional forms of singularities. A framework is also given in which these singularities can be recognized. In particular, the singularities can be identified by examination of the stress displacement relations along with the compatibility conditions and/or the displacement stress relations derived in the integrated force method of structural analysis.

  20. Naked singularity resolution in cylindrical collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurita, Yasunari; Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502; Nakao, Ken-ichi

    In this paper, we study the gravitational collapse of null dust in cylindrically symmetric spacetime. The naked singularity necessarily forms at the symmetry axis. We consider the situation in which null dust is emitted again from the naked singularity formed by the collapsed null dust and investigate the backreaction by this emission for the naked singularity. We show a very peculiar but physically important case in which the same amount of null dust as that of the collapsed one is emitted from the naked singularity as soon as the ingoing null dust hits the symmetry axis and forms the nakedmore » singularity. In this case, although this naked singularity satisfies the strong curvature condition by Krolak (limiting focusing condition), geodesics which hit the singularity can be extended uniquely across the singularity. Therefore, we may say that the collapsing null dust passes through the singularity formed by itself and then leaves for infinity. Finally, the singularity completely disappears and the flat spacetime remains.« less

  1. The Greening Role of Tour Operators

    NASA Astrophysics Data System (ADS)

    Lozano, Javier; Arbulú, Italo; Rey-Maquieira, Javier

    2016-01-01

    This paper shows that the tour operators (TOs) can play a coordinating role in the adoption of environmental management upstream the tourism supply chain. This is done using a dynamic model to analyze the environmental management adoption by hotels in a tourism destination induced by a TO. The TO can create incentives to greening hotels' management through the sharing of an environmental price premium. We show that the extent of green management adoption depends on interest rate, the willingness to pay for environmental quality, and hotels' organizational inertia. We also show how the financial yields from green management are shared between TOs and hotels. Finally, we consider a destination manager that subsidizes hotels' green management. If the destination manager does not take the greening role of TOs into account, she could mistake the true trade-off that she faces between the destination's economic and environmental outcomes for the win-win setting that characterizes the general problem.

  2. The Greening Role of Tour Operators.

    PubMed

    Lozano, Javier; Arbulú, Italo; Rey-Maquieira, Javier

    2016-01-01

    This paper shows that the tour operators (TOs) can play a coordinating role in the adoption of environmental management upstream the tourism supply chain. This is done using a dynamic model to analyze the environmental management adoption by hotels in a tourism destination induced by a TO. The TO can create incentives to greening hotels' management through the sharing of an environmental price premium. We show that the extent of green management adoption depends on interest rate, the willingness to pay for environmental quality, and hotels' organizational inertia. We also show how the financial yields from green management are shared between TOs and hotels. Finally, we consider a destination manager that subsidizes hotels' green management. If the destination manager does not take the greening role of TOs into account, she could mistake the true trade-off that she faces between the destination's economic and environmental outcomes for the win-win setting that characterizes the general problem.

  3. A new numerical algorithm for the analytic continuation of Green`s functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natoli, V.D.; Cohen, M.H.; Fornberg, B.

    1996-06-01

    The need to calculate the spectral properties of a Hermitian operation H frequently arises in the technical sciences. A common approach to its solution involves the construction of the Green`s function operator G(z) = [z - H]{sup -1} in the complex z plane. For example, the energy spectrum and other physical properties of condensed matter systems can often be elegantly and naturally expressed in terms of the Kohn-Sham Green`s functions. However, the nonanalyticity of resolvents on the real axis makes them difficult to compute and manipulate. The Herglotz property of a Green`s function allows one to calculate it along anmore » arc with a small but finite imaginary part, i.e., G(x + iy), and then to continue it to the real axis to determine quantities of physical interest. In the past, finite-difference techniques have been used for this continuation. We present here a fundamentally new algorithm based on the fast Fourier transform which is both simpler and more effective. 14 refs., 9 figs.« less

  4. Indocyanine green fluorescence-guided parathyroidectomy for primary hyperparathyroidism.

    PubMed

    DeLong, Jonathan C; Ward, Erin P; Lwin, Thinzar M; Brumund, Kevin T; Kelly, Kaitlyn J; Horgan, Santiago; Bouvet, Michael

    2018-02-01

    Our aim was to evaluate the ease and utility of using indocyanine green fluorescence angiography for intraoperative localization of the parathyroid glands. Indocyanine green fluorescence angiography was performed during 60 parathyroidectomies for primary hyperparathyroidism during a 22-month period. Indocyanine green was administered intravenously to guide operative navigation using a commercially available fluorescence imaging system. Video files were graded by 3 independent surgeons for strength of enhancement using an adapted numeric scoring system. There were 46 (77%) female patients and 14 (23%) male patients whose ages ranged from 17 to 87 (average 60) years old. Of the 60 patients, 43 (71.6%) showed strong enhancement, 13 (21.7%) demonstrated mild to moderate vascular enhancement, and 4 (6.7%) exhibited little or no vascular enhancement. Of the 54 patients who had a preoperative sestamibi scan, a parathyroid adenoma was identified in 36, while 18 failed to localize. Of the 18 patients who failed to localize, all 18 patients (100%) had an adenoma that fluoresced on indocyanine green imaging. The operations were performed safely with minimal blood loss and short operative times. Indocyanine green angiography has the potential to assist surgeons in identifying parathyroid glands rapidly with minimal risk. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Matrix Approach of Seismic Wave Imaging: Application to Erebus Volcano

    NASA Astrophysics Data System (ADS)

    Blondel, T.; Chaput, J.; Derode, A.; Campillo, M.; Aubry, A.

    2017-12-01

    This work aims at extending to seismic imaging a matrix approach of wave propagation in heterogeneous media, previously developed in acoustics and optics. More specifically, we will apply this approach to the imaging of the Erebus volcano in Antarctica. Volcanoes are actually among the most challenging media to explore seismically in light of highly localized and abrupt variations in density and wave velocity, extreme topography, extensive fractures, and the presence of magma. In this strongly scattering regime, conventional imaging methods suffer from the multiple scattering of waves. Our approach experimentally relies on the measurement of a reflection matrix associated with an array of geophones located at the surface of the volcano. Although these sensors are purely passive, a set of Green's functions can be measured between all pairs of geophones from ice-quake coda cross-correlations (1-10 Hz) and forms the reflection matrix. A set of matrix operations can then be applied for imaging purposes. First, the reflection matrix is projected, at each time of flight, in the ballistic focal plane by applying adaptive focusing at emission and reception. It yields a response matrix associated with an array of virtual geophones located at the ballistic depth. This basis allows us to get rid of most of the multiple scattering contribution by applying a confocal filter to seismic data. Iterative time reversal is then applied to detect and image the strongest scatterers. Mathematically, it consists in performing a singular value decomposition of the reflection matrix. The presence of a potential target is assessed from a statistical analysis of the singular values, while the corresponding eigenvectors yield the corresponding target images. When stacked, the results obtained at each depth give a three-dimensional image of the volcano. While conventional imaging methods lead to a speckle image with no connection to the actual medium's reflectivity, our method enables to highlight a chimney-shaped structure inside Erebus volcano with true positive rates ranging from 80% to 95%. Although computed independently, the results at each depth are spatially consistent, substantiating their physical reliability. The identified structure is therefore likely to describe accurately the internal structure of the Erebus volcano.

  6. The spectral function of a singular differential operator of order 2m

    NASA Astrophysics Data System (ADS)

    Kozko, Artem I.; Pechentsov, Alexander S.

    2010-12-01

    We study the spectral function of a self-adjoint semibounded below differential operator on a Hilbert space L_2 \\lbrack 0,\\infty) and obtain the formulae for the spectral function of the operator (-1)^{m}y^{(2m)}(x) with general boundary conditions at the zero. In particular, for the boundary conditions y(0)=y'(0)=\\dots=y^{(m-1)}(0)=0 we find the explicit form of the spectral function \\Theta_{mB'}(x,x,\\lambda) on the diagonal x=y for \\lambda \\ge 0.

  7. Miniature solid-state lasers for pointing, illumination, and warning devices

    NASA Astrophysics Data System (ADS)

    Brown, D. C.; Singley, J. M.; Yager, E.; Kowalewski, K.; Lotito, B.; Guelzow, J.; Hildreth, J.; Kuper, J. W.

    2008-04-01

    In this paper we review the current status of and progress towards higher power and more wavelength diverse diode-pumped solid-state miniature lasers. Snake Creek Lasers now offers unprecedented continuous wave (CW) output power from 9.0 mm and 5.6 mm TO type packages, including the smallest green laser in the world, the MicroGreen TM laser, and the highest density green laser in the world, the MiniGreen TM laser. In addition we offer an infrared laser, the MiniIR TM, operating at 1064 nm, and have just introduced a blue Mini laser operating at 473 nm in a 9.0 mm package. Recently we demonstrated over 1 W of output power at 1064 nm from a 12 mm TO type package, and green output power from 300-500 mW from the same 12 mm package. In addition, the company is developing a number of other innovative new miniature CW solid-state lasers operating at 750 nm, 820 nm, 458 nm, and an eye-safe Q-switched laser operating at 1550 nm. We also review recently demonstrated combining volume Bragg grating (VBG) technology has been combined with automatic power control (APC) to produce high power MiniGreen TM lasers whose output is constant to +/- 10 % over a wide temperature range, without the use of a thermoelectric cooler (TEC). This technology is expected to find widespread application in military and commercial applications where wide temperature operation is particularly important. It has immediate applications in laser pointers, illuminators, and laser flashlights, and displays.

  8. Cycle of phase, coherence and polarization singularities in Young's three-pinhole experiment.

    PubMed

    Pang, Xiaoyan; Gbur, Greg; Visser, Taco D

    2015-12-28

    It is now well-established that a variety of singularities can be characterized and observed in optical wavefields. It is also known that these phase singularities, polarization singularities and coherence singularities are physically related, but the exact nature of their relationship is still somewhat unclear. We show how a Young-type three-pinhole interference experiment can be used to create a continuous cycle of transformations between classes of singularities, often accompanied by topological reactions in which different singularities are created and annihilated. This arrangement serves to clarify the relationships between the different singularity types, and provides a simple tool for further exploration.

  9. Numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity

    NASA Astrophysics Data System (ADS)

    Korepanov, V. V.; Matveenko, V. P.; Fedorov, A. Yu.; Shardakov, I. N.

    2013-07-01

    An algorithm for the numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity is considered. The algorithm is based on separation of a power-law dependence from the finite-element solution in a neighborhood of singular points in the domain under study, where singular solutions are possible. The obtained power-law dependencies allow one to conclude whether the stresses have singularities and what the character of these singularities is. The algorithm was tested for problems of classical elasticity by comparing the stress singularity exponents obtained by the proposed method and from known analytic solutions. Problems with various cases of singular points, namely, body surface points at which either the smoothness of the surface is violated, or the type of boundary conditions is changed, or distinct materials are in contact, are considered as applications. The stress singularity exponents obtained by using the models of classical and asymmetric elasticity are compared. It is shown that, in the case of cracks, the stress singularity exponents are the same for the elasticity models under study, but for other cases of singular points, the stress singularity exponents obtained on the basis of asymmetric elasticity have insignificant quantitative distinctions from the solutions of the classical elasticity.

  10. Operational analysis of shared lane markings and green bike lanes on roadways with speeds greater than 35 mph : [summary].

    DOT National Transportation Integrated Search

    2014-01-01

    In this project, University of North Florida : researchers analyzed how shared lane markings : (sharrows), wide curb lanes, standard and : buffered bike lanes, and green bike lanes affected : operations of bicycle facilities. Three measures : of effe...

  11. Operational analysis of shared lane markings and green bike lanes on roadways with speeds greater than 35 mph.

    DOT National Transportation Integrated Search

    2014-01-01

    This study analyzed the effectiveness of shared lane markings (sharrows), wide curb lanes, standard and buffered : bike lanes, and green bike lanes on improving operations of bicycle facilities. Three measures of effectiveness : were used in this stu...

  12. On important precursor of singular optics (tutorial)

    NASA Astrophysics Data System (ADS)

    Polyanskii, Peter V.; Felde, Christina V.; Bogatyryova, Halina V.; Konovchuk, Alexey V.

    2018-01-01

    The rise of singular optics is usually associated with the seminal paper by J. F. Nye and M. V. Berry [Proc. R. Soc. Lond. A, 336, 165-189 (1974)]. Intense development of this area of modern photonics has started since the early eighties of the XX century due to invention of the interfrence technique for detection and diagnostics of phase singularities, such as optical vortices in complex speckle-structured light fields. The next powerful incentive for formation of singular optics into separate area of the science on light was connectected with discovering of very practical technique for creation of singular optical beams of various kinds on the base of computer-generated holograms. In the eghties and ninetieth of the XX century, singular optics evolved, almost entirely, under the approximation of complete coherency of light field. Only at the threshold of the XXI century, it has been comprehended that the singular-optics approaches can be fruitfully expanded onto partially spatially coherent, partially polarized and polychromatic light fields supporting singularities of new kinds, that has been resulted in establishing of correlation singular optics. Here we show that correlation singular optics has much deeper roots, ascending to "pre-singular" and even pre-laser epoch and associated with the concept of partial coherence and polarization. It is remarcable that correlation singular optics in its present interpretation has forestalled the standard coherent singular optics. This paper is timed to the sixtieth anniversary of the most profound precursor of modern correlation singular optics [J. Opt. Soc. Am., 47, 895-902 (1957)].

  13. E3 Success Story - Whirlpool Trains Staff on Lean and Green Advantage

    EPA Pesticide Factsheets

    Whirlpool Corporation invited Green Suppliers Network representatives to its Monterrey facility to provide training on the Lean and Green Advantage. The project sought to expand E3 initiatives to every part of the company's operations.

  14. Renormalization of composite operators in Yang-Mills theories using a general covariant gauge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, J.C.; Scalise, R.J.

    Essential to QCD applications of the operator product expansion, etc., is a knowledge of those operators that mix with gauge-invariant operators. A standard theorem asserts that the renormalization matrix is triangular: Gauge-invariant operators have alien'' gauge-variant operators among their counterterms, but, with a suitably chosen basis, the necessary alien operators have only themselves as counterterms. Moreover, the alien operators are supposed to vanish in physical matrix elements. A recent calculation by Hamberg and van Neerven apparently contradicts these results. By explicit calculations with the energy-momentum tensor, we show that the problems arise because of subtle infrared singularities that appear whenmore » gluonic matrix elements are taken on shell at zero momentum transfer.« less

  15. Evolution of singularities in a partially coherent vortex beam.

    PubMed

    van Dijk, Thomas; Visser, Taco D

    2009-04-01

    We study the evolution of phase singularities and coherence singularities in a Laguerre-Gauss beam that is rendered partially coherent by letting it pass through a spatial light modulator. The original beam has an on-axis minumum of intensity--a phase singularity--that transforms into a maximum of the far-field intensity. In contrast, although the original beam has no coherence singularities, such singularities are found to develop as the beam propagates. This disappearance of one kind of singularity and the gradual appearance of another is illustrated with numerical examples.

  16. Green School Checklist: Environmental Actions for Schools To Consider.

    ERIC Educational Resources Information Center

    Illinois Environmental Protection Agency, Springfield.

    This checklist offers tips and resources to help schools identify opportunities to "green" their buildings and operations, focusing on common-sense improvements that schools can make in their daily operations to minimize or stop potential health and environmental problems before they start. The first section discusses the benefits of a…

  17. Green Infrastructure 101

    EPA Science Inventory

    Green Infrastructure 101 • What is it? What does it do? What doesn’t it do? • Green Infrastructure as a stormwater and combined sewer control • GI Controls and Best Management Practices that make sense for Yonkers o (Include operations and maintenance requirements for each)

  18. Naked singularity, firewall, and Hawking radiation.

    PubMed

    Zhang, Hongsheng

    2017-06-21

    Spacetime singularity has always been of interest since the proof of the Penrose-Hawking singularity theorem. Naked singularity naturally emerges from reasonable initial conditions in the collapsing process. A recent interesting approach in black hole information problem implies that we need a firewall to break the surplus entanglements among the Hawking photons. Classically, the firewall becomes a naked singularity. We find some vacuum analytical solutions in R n -gravity of the firewall-type and use these solutions as concrete models to study the naked singularities. By using standard quantum theory, we investigate the Hawking radiation emitted from the black holes with naked singularities. Here we show that the singularity itself does not destroy information. A unitary quantum theory works well around a firewall-type singularity. We discuss the validity of our result in general relativity. Further our result demonstrates that the temperature of the Hawking radiation still can be expressed in the form of the surface gravity divided by 2π. This indicates that a naked singularity may not compromise the Hakwing evaporation process.

  19. On the Weyl curvature hypothesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoica, Ovidiu Cristinel, E-mail: holotronix@gmail.com

    2013-11-15

    The Weyl curvature hypothesis of Penrose attempts to explain the high homogeneity and isotropy, and the very low entropy of the early universe, by conjecturing the vanishing of the Weyl tensor at the Big-Bang singularity. In previous papers it has been proposed an equivalent form of Einstein’s equation, which extends it and remains valid at an important class of singularities (including in particular the Schwarzschild, FLRW, and isotropic singularities). Here it is shown that if the Big-Bang singularity is from this class, it also satisfies the Weyl curvature hypothesis. As an application, we study a very general example of cosmologicalmore » models, which generalizes the FLRW model by dropping the isotropy and homogeneity constraints. This model also generalizes isotropic singularities, and a class of singularities occurring in Bianchi cosmologies. We show that the Big-Bang singularity of this model is of the type under consideration, and satisfies therefore the Weyl curvature hypothesis. -- Highlights: •The singularities we introduce are described by finite geometric/physical objects. •Our singularities have smooth Riemann and Weyl curvatures. •We show they satisfy Penrose’s Weyl curvature hypothesis (Weyl=0 at singularities). •Examples: FLRW, isotropic singularities, an extension of Schwarzschild’s metric. •Example: a large class of singularities which may be anisotropic and inhomogeneous.« less

  20. Using EIGER for Antenna Design and Analysis

    NASA Technical Reports Server (NTRS)

    Champagne, Nathan J.; Khayat, Michael; Kennedy, Timothy F.; Fink, Patrick W.

    2007-01-01

    EIGER (Electromagnetic Interactions GenERalized) is a frequency-domain electromagnetics software package that is built upon a flexible framework, designed using object-oriented techniques. The analysis methods used include moment method solutions of integral equations, finite element solutions of partial differential equations, and combinations thereof. The framework design permits new analysis techniques (boundary conditions, Green#s functions, etc.) to be added to the software suite with a sensible effort. The code has been designed to execute (in serial or parallel) on a wide variety of platforms from Intel-based PCs and Unix-based workstations. Recently, new potential integration scheme s that avoid singularity extraction techniques have been added for integral equation analysis. These new integration schemes are required for facilitating the use of higher-order elements and basis functions. Higher-order elements are better able to model geometrical curvature using fewer elements than when using linear elements. Higher-order basis functions are beneficial for simulating structures with rapidly varying fields or currents. Results presented here will demonstrate curren t and future capabilities of EIGER with respect to analysis of installed antenna system performance in support of NASA#s mission of exploration. Examples include antenna coupling within an enclosed environment and antenna analysis on electrically large manned space vehicles.

  1. Schwarzschild black hole encircled by a rotating thin disc: Properties of perturbative solution

    NASA Astrophysics Data System (ADS)

    Kotlařík, P.; Semerák, O.; Čížek, P.

    2018-04-01

    Will [Astrophys. J. 191, 521 (1974), 10.1086/152992] solved the perturbation of a Schwarzschild black hole due to a slowly rotating light concentric thin ring, using Green's functions expressed as infinite-sum expansions in multipoles and in the small mass and rotational parameters. In a previous paper [P. Čížek and O. Semerák, Astrophys. J. Suppl. Ser. 232, 14 (2017), 10.3847/1538-4365/aa876b], we expressed the Green functions in closed form containing elliptic integrals, leaving just summation over the mass expansion. Such a form is more practical for numerical evaluation, but mainly for generalizing the problem to extended sources where the Green functions have to be integrated over the source. We exemplified the method by computing explicitly the first-order perturbation due to a slowly rotating thin disc lying between two finite radii. After finding basic parameters of the system—mass and angular momentum of the black hole and of the disc—we now add further properties, namely those which reveal how the disc gravity influences geometry of the black-hole horizon and those of circular equatorial geodesics (specifically, radii of the photon, marginally bound and marginally stable orbits). We also realize that, in the linear order, no ergosphere occurs and the central singularity remains pointlike, and check the implications of natural physical requirements (energy conditions and subluminal restriction on orbital speed) for the single-stream as well as counter-rotating double-stream interpretations of the disc.

  2. Investigating the Usefulness of Operator Aids for Autonomous Unmanned Ground Vehicles Performing Reconnaissance Tasks

    DTIC Science & Technology

    2013-09-01

    generated using data from the ANS about the path that the automation attempted to follow. The STP operator aid was displayed as a translucent green...intended route of the UGV projected for the next several seconds. Similarly, the LTP operator aid was displayed as a translucent blue line overlaid on...route of the UGV projected for the next several minutes or more. The combination of STP and LTP operator aids simply displayed both translucent green

  3. Learning curves and perioperative outcomes after endoscopic enucleation of the prostate: a comparison between GreenLight 532-nm and holmium lasers.

    PubMed

    Peyronnet, Benoit; Robert, Grégoire; Comat, Vincent; Rouprêt, Morgan; Gomez-Sancha, Fernando; Cornu, Jean-Nicolas; Misrai, Vincent

    2017-06-01

    To compare the learning curves, perioperative and early functional outcomes after HoLEP and GreenLEP. Data from the first 100 consecutive cases treated by GreenLEP and HoLEP by two surgeons were prospectively collected from dedicated databases and analysed retrospectively. En-bloc GreenLEP and two-lobar HoLEP enucleations were conducted using the GreenLight HPS™ 2090 laser and Lumenis™ holmium laser. Patients' characteristics, perioperative outcomes and functional outcomes after 1, 3 and 6 months were compared between groups. Total energy delivered and operative times were significantly shorter for GreenLEP (58 vs. 110 kJ, p < 0.0001; 60 vs. 90 min, p < 0.0001). Operative time reached a plateau after 30 procedures in each group. Length of catheterization and hospital stay were significantly shorter in the HoLEP group (2 vs. 1 day, p < 0.0001; 2 vs. 1 day, p < 0.0001). Postoperative complications were comparable between GreenLEP and HoLEP (19 vs. 25 %; p = 0.13). There was a greater increase of Q max at 3 months and a greater IPSS decrease at 1 month for GreenLEP, whereas decreases in IPSS and IPSS-Q8 at 6 months were greater for HoLEP. Transient stress urinary incontinence was comparable between both groups (6 vs. 9 % at 3 months; p = 0.42). Pentafecta was achieved in four consecutive patients after the 18th and the 40th procedure in the GreenLEP and HoLEP group, respectively. Learning curves ranged from 14 to 30 cases for GreenLEP and 22 to 40 cases for HoLEP. Learning curves of GreenLEP and HoLEP provided roughly similar peri-operative and short-term functional outcomes.

  4. The geometry of singularities and the black hole information paradox

    NASA Astrophysics Data System (ADS)

    Stoica, O. C.

    2015-07-01

    The information loss occurs in an evaporating black hole only if the time evolution ends at the singularity. But as we shall see, the black hole solutions admit analytical extensions beyond the singularities, to globally hyperbolic solutions. The method used is similar to that for the apparent singularity at the event horizon, but at the singularity, the resulting metric is degenerate. When the metric is degenerate, the covariant derivative, the curvature, and the Einstein equation become singular. However, recent advances in the geometry of spacetimes with singular metric show that there are ways to extend analytically the Einstein equation and other field equations beyond such singularities. This means that the information can get out of the singularity. In the case of charged black holes, the obtained solutions have nonsingular electromagnetic field. As a bonus, if particles are such black holes, spacetime undergoes dimensional reduction effects like those required by some approaches to perturbative Quantum Gravity.

  5. Big bounce with finite-time singularity: The F(R) gravity description

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    An alternative to the Big Bang cosmologies is obtained by the Big Bounce cosmologies. In this paper, we study a bounce cosmology with a Type IV singularity occurring at the bouncing point in the context of F(R) modified gravity. We investigate the evolution of the Hubble radius and we examine the issue of primordial cosmological perturbations in detail. As we demonstrate, for the singular bounce, the primordial perturbations originating from the cosmological era near the bounce do not produce a scale-invariant spectrum and also the short wavelength modes after these exit the horizon, do not freeze, but grow linearly with time. After presenting the cosmological perturbations study, we discuss the viability of the singular bounce model, and our results indicate that the singular bounce must be combined with another cosmological scenario, or should be modified appropriately, in order that it leads to a viable cosmology. The study of the slow-roll parameters leads to the same result indicating that the singular bounce theory is unstable at the singularity point for certain values of the parameters. We also conformally transform the Jordan frame singular bounce, and as we demonstrate, the Einstein frame metric leads to a Big Rip singularity. Therefore, the Type IV singularity in the Jordan frame becomes a Big Rip singularity in the Einstein frame. Finally, we briefly study a generalized singular cosmological model, which contains two Type IV singularities, with quite appealing features.

  6. Adaptive governance to promote ecosystem services in urban green spaces

    EPA Science Inventory

    Managing urban green space as part of an ongoing social-ecological transformationposes novel governance issues, particularly in post-industrial settings. Urban green spaces operate as small-scale nodes in larger networks of ecological reserves that provide and maintain key ecosys...

  7. Exact solutions to model surface and volume charge distributions

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Majumdar, N.; Bhattacharya, P.; Jash, A.; Bhattacharya, D. S.

    2016-10-01

    Many important problems in several branches of science and technology deal with charges distributed along a line, over a surface and within a volume. Recently, we have made use of new exact analytic solutions of surface charge distributions to develop the nearly exact Boundary Element Method (neBEM) toolkit. This 3D solver has been successful in removing some of the major drawbacks of the otherwise elegant Green's function approach and has been found to be very accurate throughout the computational domain, including near- and far-field regions. Use of truly distributed singularities (in contrast to nodally concentrated ones) on rectangular and right-triangular elements used for discretizing any three-dimensional geometry has essentially removed many of the numerical and physical singularities associated with the conventional BEM. In this work, we will present this toolkit and the development of several numerical models of space charge based on exact closed-form expressions. In one of the models, Particles on Surface (ParSur), the space charge inside a small elemental volume of any arbitrary shape is represented as being smeared on several surfaces representing the volume. From the studies, it can be concluded that the ParSur model is successful in getting the estimates close to those obtained using the first-principles, especially close to and within the cell. In the paper, we will show initial applications of ParSur and other models in problems related to high energy physics.

  8. A Proposed System of "Project Management" for Study Items.

    ERIC Educational Resources Information Center

    Worcester Public Schools, MA.

    The purposes of the proposed system are to provide a standard operating procedure for a systematic and effective handling of project-type study items as differentiated from informational-type items; to assign definite singular responsibility for projects; to suggest specific sequential steps to be taken in the preparation of the project report;…

  9. Characterization of an elastic target in a shallow water waveguide by decomposition of the time-reversal operator.

    PubMed

    Philippe, Franck D; Prada, Claire; de Rosny, Julien; Clorennec, Dominique; Minonzio, Jean-Gabriel; Fink, Mathias

    2008-08-01

    This paper reports the results of an investigation into extracting of the backscattered frequency signature of a target in a waveguide. Retrieving the target signature is difficult because it is blurred by waveguide reflections and modal interference. It is shown that the decomposition of the time-reversal operator method provides a solution to this problem. Using a modal theory, this paper shows that the first singular value associated with a target is proportional to the backscattering form function. It is linked to the waveguide geometry through a factor that weakly depends on frequency as long as the target is far from the boundaries. Using the same approach, the second singular value is shown to be proportional to the second derivative of the angular form function which is a relevant parameter for target identification. Within this framework the coupling between two targets is considered. Small scale experimental studies are performed in the 3.5 MHz frequency range for 3 mm spheres in a 28 mm deep and 570 mm long waveguide and confirm the theoretical results.

  10. Improved control of the betatron coupling in the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Persson, T.; Tomás, R.

    2014-05-01

    The control of the betatron coupling is of importance for safe beam operation in the LHC. In this article we show recent advancements in methods and algorithms to measure and correct coupling. The benefit of using a more precise formula relating the resonance driving term f1001 to the ΔQmin is presented. The quality of the coupling measurements is increased, with about a factor 3, by selecting beam position monitor (BPM) pairs with phase advances close to π/2 and through data cleaning using singular value decomposition with an optimal number of singular values. These improvements are beneficial for the implemented automatic coupling correction, which is based on injection oscillations, presented in the article. Furthermore, a proposed coupling feedback for the LHC is presented. The system will rely on the measurements from BPMs equipped with a new type of high resolution electronics, diode orbit and oscillation, which will be operational when the LHC restarts in 2015. The feedback will combine the coupling measurements from the available BPMs in order to calculate the best correction.

  11. Infrared singularities of scattering amplitudes in perturbative QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becher, Thomas; Neubert, Matthias

    2013-11-01

    An exact formula is derived for the infrared singularities of dimensionally regularized scattering amplitudes in massless QCD with an arbitrary number of legs, valid at any number of loops. It is based on the conjecture that the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory contains only a single non-trivial color structure, whose coefficient is the cusp anomalous dimension of Wilson loops with light-like segments. Its color-diagonal part is characterized by two anomalous dimensions, which are extracted to three-loop order from known perturbative results for the quark and gluon form factors. This allows us to predict the three-loop coefficientsmore » of all 1/epsilon^k poles for an arbitrary n-parton scattering amplitudes, generalizing existing two-loop results.« less

  12. Singular values behaviour optimization in the diagnosis of feed misalignments in radioastronomical reflectors

    NASA Astrophysics Data System (ADS)

    Capozzoli, Amedeo; Curcio, Claudio; Liseno, Angelo; Savarese, Salvatore; Schipani, Pietro

    2016-07-01

    The communication presents an innovative method for the diagnosis of reflector antennas in radio astronomical applications. The approach is based on the optimization of the number and the distribution of the far field sampling points exploited to retrieve the antenna status in terms of feed misalignments, this to drastically reduce the time length of the measurement process and minimize the effects of variable environmental conditions and simplifying the tracking process of the source. The feed misplacement is modeled in terms of an aberration function of the aperture field. The relationship between the unknowns and the far field pattern samples is linearized thanks to a Principal Component Analysis. The number and the position of the field samples are then determined by optimizing the Singular Values behaviour of the relevant operator.

  13. Singular value decomposition for the truncated Hilbert transform

    NASA Astrophysics Data System (ADS)

    Katsevich, A.

    2010-11-01

    Starting from a breakthrough result by Gelfand and Graev, inversion of the Hilbert transform became a very important tool for image reconstruction in tomography. In particular, their result is useful when the tomographic data are truncated and one deals with an interior problem. As was established recently, the interior problem admits a stable and unique solution when some a priori information about the object being scanned is available. The most common approach to solving the interior problem is based on converting it to the Hilbert transform and performing analytic continuation. Depending on what type of tomographic data are available, one gets different Hilbert inversion problems. In this paper, we consider two such problems and establish singular value decomposition for the operators involved. We also propose algorithms for performing analytic continuation.

  14. Research on green supply chain coordination strategy for uncertain market demand.

    PubMed

    Cao, Jian; Chen, Yangyang; Lu, Bo; Tong, Chenlu; Zhou, Gengui

    2015-03-01

    Based on the status that the green market began to develop (e.g. pharmaceutical industry) in Mainland China, the paper mainly discusses how members of the green supply chain (GSC) cooperate effectively in the process of the supply chain operations. For the uncertainties existing in the market demand of the green products, the GSC coordination strategy is put forward based on the Stackelberg game that the manufacturer is the leader and distributors are the followers. The relationship between the proposed coordination strategy and several factors including the distributor's amount, the distributor's risk aversion and the uncertainties of market demand are analyzed. It indicates that, when there are uncertainties existing in the market demand of the green product, the revenue of each enterprise, the overall revenue and the customer's welfare all decrease; while the increase in the number of distributors and low risk aversion of them are beneficial to the entire GSC and the customer. The conclusions have good guidance for the operational decisions of the green supply chain when the green market is in its initial formation.

  15. Singularity in structural optimization

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Guptill, J. D.; Berke, L.

    1993-01-01

    The conditions under which global and local singularities may arise in structural optimization are examined. Examples of these singularities are presented, and a framework is given within which the singularities can be recognized. It is shown, in particular, that singularities can be identified through the analysis of stress-displacement relations together with compatibility conditions or the displacement-stress relations derived by the integrated force method of structural analysis. Methods of eliminating the effects of singularities are suggested and illustrated numerically.

  16. An Improved Transformation and Optimized Sampling Scheme for the Numerical Evaluation of Singular and Near-Singular Potentials

    NASA Technical Reports Server (NTRS)

    Khayat, Michael A.; Wilton, Donald R.; Fink, Patrick W.

    2007-01-01

    Simple and efficient numerical procedures using singularity cancellation methods are presented for evaluating singular and near-singular potential integrals. Four different transformations are compared and the advantages of the Radial-angular transform are demonstrated. A method is then described for optimizing this integration scheme.

  17. Topological dynamics of optical singularities in speckle-fields induced by photorefractive scattering in a LiNbO{sub 3} : Fe crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasil'ev, Vasilii I; Soskin, M S

    2013-02-28

    A natural singular dynamics of elliptically polarised speckle-fields induced by the 'optical damage' effect in a photorefractive crystal of lithium niobate by a passing beam of a helium - neon laser is studied by the developed methods of singular optics. For the polarisation singularities (C points), a new class of chain reactions, namely, singular chain reactions are discovered and studied. It is shown that they obey the topological charge and sum Poincare index conservation laws. In addition, they exist for all the time of crystal irradiation. They consist of a series of interlocking chains, where singularity pairs arising in amore » chain annihilate with singularities from neighbouring independently created chains. Less often singular 'loop' reactions are observed where arising pairs of singularities annihilate after reversible transformations in within the boundaries of a single speckle. The type of a singular reaction is determined by a topology and dynamics of the speckles, in which the reactions are developing. (laser optics 2012)« less

  18. Greening Operations Management: An Online Sustainable Procurement Course for Practitioners

    ERIC Educational Resources Information Center

    Walker, Helen L.; Gough, Stephen; Bakker, Elmer F.; Knight, Louise A.; McBain, Darian

    2009-01-01

    In the Operations Management field, sustainable procurement has emerged as a way to green the purchasing and supply process. This paper explores issues in sustainable procurement training. The authors formed an interdisciplinary team to design, deliver and evaluate a training programme to promote and develop sustainable procurement in the United…

  19. Engine Operating Conditions and Fuel Properties on Pre-Spark Heat Release and SPI Promotion in SI Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Splitter, Derek A; Kaul, Brian C; Szybist, James P

    This work explores the dependence of fuel ignition delay on stochastic pre-ignition (SPI). Findings are based on bulk gas thermodynamic state, where the effects of kinetically controlled bulk gas pre-spark heat release (PSHR) are correlated to SPI tendency and magnitude. Specifically, residual gas and low temperature PSHR chemistry effects and observations are explored, which are found to be indicative of bulk gas conditions required for strong SPI events. Analyzed events range from non-knocking SPI to knocking SPI and even detonation SPI events in excess of 325 bar peak cylinder pressure. The work illustrates that singular SPI event count and magnitudemore » are found to be proportional to PSHR of the bulk gas mixture and residual gas fraction. Cycle-to-cycle variability in trapped residual mass and temperature are found to impose variability in singular SPI event count and magnitude. However, clusters and short lived bursts of multiple SPI events are found to better correlate with fuel-wall interaction. The results highlight the interplay of bulk gas thermodynamics and SPI ignition source, on SPI event magnitude and cluster tendency. Moreover, the results highlight fundamental fuel reactivity and associated hypersensitivity to operating conditions at SPI prone operating conditions.« less

  20. A singular-value method for reconstruction of nonradial and lossy objects.

    PubMed

    Jiang, Wei; Astheimer, Jeffrey; Waag, Robert

    2012-03-01

    Efficient inverse scattering algorithms for nonradial lossy objects are presented using singular-value decomposition to form reduced-rank representations of the scattering operator. These algorithms extend eigenfunction methods that are not applicable to nonradial lossy scattering objects because the scattering operators for these objects do not have orthonormal eigenfunction decompositions. A method of local reconstruction by segregation of scattering contributions from different local regions is also presented. Scattering from each region is isolated by forming a reduced-rank representation of the scattering operator that has domain and range spaces comprised of far-field patterns with retransmitted fields that focus on the local region. Methods for the estimation of the boundary, average sound speed, and average attenuation slope of the scattering object are also given. These methods yielded approximations of scattering objects that were sufficiently accurate to allow residual variations to be reconstructed in a single iteration. Calculated scattering from a lossy elliptical object with a random background, internal features, and white noise is used to evaluate the proposed methods. Local reconstruction yielded images with spatial resolution that is finer than a half wavelength of the center frequency and reproduces sound speed and attenuation slope with relative root-mean-square errors of 1.09% and 11.45%, respectively.

  1. Intelligent Diagnosis Method for Rotating Machinery Using Dictionary Learning and Singular Value Decomposition.

    PubMed

    Han, Te; Jiang, Dongxiang; Zhang, Xiaochen; Sun, Yankui

    2017-03-27

    Rotating machinery is widely used in industrial applications. With the trend towards more precise and more critical operating conditions, mechanical failures may easily occur. Condition monitoring and fault diagnosis (CMFD) technology is an effective tool to enhance the reliability and security of rotating machinery. In this paper, an intelligent fault diagnosis method based on dictionary learning and singular value decomposition (SVD) is proposed. First, the dictionary learning scheme is capable of generating an adaptive dictionary whose atoms reveal the underlying structure of raw signals. Essentially, dictionary learning is employed as an adaptive feature extraction method regardless of any prior knowledge. Second, the singular value sequence of learned dictionary matrix is served to extract feature vector. Generally, since the vector is of high dimensionality, a simple and practical principal component analysis (PCA) is applied to reduce dimensionality. Finally, the K -nearest neighbor (KNN) algorithm is adopted for identification and classification of fault patterns automatically. Two experimental case studies are investigated to corroborate the effectiveness of the proposed method in intelligent diagnosis of rotating machinery faults. The comparison analysis validates that the dictionary learning-based matrix construction approach outperforms the mode decomposition-based methods in terms of capacity and adaptability for feature extraction.

  2. A Proof of Factorization Theorem of Drell-Yan Process at Operator Level

    NASA Astrophysics Data System (ADS)

    Zhou, Gao-Liang

    2016-02-01

    An alternative proof of factorization theorem for Drell-Yan process that works at operator level is presented in this paper. Contributions of interactions after the hard collision for such inclusive processes are proved to be canceled at operator level according to the unitarity of time evolution operator. After this cancellation, there are no longer leading pinch singular surface in Glauber region in the time evolution of electromagnetic currents. Effects of soft gluons are absorbed into Wilson lines of scalar-polarized gluons. Cancelation of soft gluons is attribute to unitarity of time evolution operator and such Wilson lines. Supported by the National Natural Science Foundation of China under Grant No. 11275242

  3. Can accretion disk properties observationally distinguish black holes from naked singularities?

    NASA Astrophysics Data System (ADS)

    Kovács, Z.; Harko, T.

    2010-12-01

    Naked singularities are hypothetical astrophysical objects, characterized by a gravitational singularity without an event horizon. Penrose has proposed a conjecture, according to which there exists a cosmic censor who forbids the occurrence of naked singularities. Distinguishing between astrophysical black holes and naked singularities is a major challenge for present day observational astronomy. In the context of stationary and axially symmetrical geometries, a possibility of differentiating naked singularities from black holes is through the comparative study of thin accretion disks properties around rotating naked singularities and Kerr-type black holes, respectively. In the present paper, we consider accretion disks around axially-symmetric rotating naked singularities, obtained as solutions of the field equations in the Einstein-massless scalar field theory. A first major difference between rotating naked singularities and Kerr black holes is in the frame dragging effect, the angular velocity of a rotating naked singularity being inversely proportional to its spin parameter. Because of the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution and equilibrium radiation spectrum) are different for these two classes of compact objects, consequently giving clear observational signatures that could discriminate between black holes and naked singularities. For specific values of the spin parameter and of the scalar charge, the energy flux from the disk around a rotating naked singularity can exceed by several orders of magnitude the flux from the disk of a Kerr black hole. In addition to this, it is also shown that the conversion efficiency of the accreting mass into radiation by rotating naked singularities is always higher than the conversion efficiency for black holes, i.e., naked singularities provide a much more efficient mechanism for converting mass into radiation than black holes. Thus, these observational signatures may provide the necessary tools from clearly distinguishing rotating naked singularities from Kerr-type black holes.

  4. Are Singularities Integral to General Theory of Relativity?

    NASA Astrophysics Data System (ADS)

    Krori, K.; Dutta, S.

    2011-11-01

    Since the 1960s the general relativists have been deeply obsessed with the possibilities of GTR singularities - blackhole as well as cosmological singularities. Senovilla, for the first time, followed by others, showed that there are cylindrically symmetric cosmological space-times which are free of singularities. On the other hand, Krori et al. have presently shown that spherically symmetric cosmological space-times - which later reduce to FRW space-times may also be free of singularities. Besides, Mitra has in the mean-time come forward with some realistic calculations which seem to rule out the possibility of a blackhole singularity. So whether singularities are integral to GTR seems to come under a shadow.

  5. Porter Takes Reins of the FNL Green Team | Poster

    Cancer.gov

    Courtesy of the FNL Green Team Melissa Porter, who recently joined the staff of Craig Reynolds, Ph.D., director, Office of Scientific Operations, as administrative manager, has stepped forward to lead the Frederick National Laboratory for Cancer Research (FNL) Green Team in its efforts to promote a “green” work environment. “I am excited to lead the FNL Green Team and have been impressed by the enthusiasm and commitment of the FNL Green Team,” Porter said.

  6. Astronaut activity in weightlessness and unsupported space

    NASA Technical Reports Server (NTRS)

    Ivanov, Y. A.; Popov, V. A.; Kachaturyants, L. S.

    1975-01-01

    For the purpose of study of the performance ability of a human operator in prolonged weightless conditions was studied by the following methods: (1) psychophysiological analysis of certain operations; (2) the dynamic characteristics of a man, included in a model control system, with direct and delayed feedback; (3) evaluation of the singularities of analysis and quality of the working memory, in working with outlines of patterned and random lines; and (4) biomechanical analysis of spatial orientation and motor activity in unsupported space.

  7. Early Operational Art: Nathanael Green’s Carolina Campaign 1780-1781

    DTIC Science & Technology

    1993-05-13

    he asserts that simultaneous and succesive operations are, in fact, the heart of operational art and that this idea was alien to the Napoleonic...predecessors and his British opponents. Greene’s lack of formal training and open mindedness enabled him to think the situation 39 through, weigh the...Boston: Northwestern University Press, 1983. Shy, John. A People Numerous and Armed. New York: Oxford University Press, 1976. Weigley, Russell F. The

  8. Balancing Area Coordination: Efficiently Integrating Renewable Energy Into the Grid, Greening the Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, Jessica; Denholm, Paul; Cochran, Jaquelin

    2015-06-01

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. Coordinating balancing area operation can promote more cost and resource efficient integration of variable renewable energy, such as wind and solar, into power systems. This efficiency is achieved by sharing or coordinating balancing resources and operating reserves across larger geographic boundaries.

  9. On the dynamic singularities in the control of free-floating space manipulators

    NASA Technical Reports Server (NTRS)

    Papadopoulos, E.; Dubowsky, S.

    1989-01-01

    It is shown that free-floating space manipulator systems have configurations which are dynamically singular. At a dynamically singular position, the manipulator is unable to move its end effector in some direction. This problem appears in any free-floating space manipulator system that permits the vehicle to move in response to manipulator motion without correction from the vehicle's attitude control system. Dynamic singularities are functions of the dynamic properties of the system; their existence and locations cannot be predicted solely from the kinematic structure of the manipulator, unlike the singularities for fixed base manipulators. It is also shown that the location of these dynamic singularities in the workplace is dependent upon the path taken by the manipulator in reaching them. Dynamic singularities must be considered in the control, planning and design of free-floating space manipulator systems. A method for calculating these dynamic singularities is presented, and it is shown that the system parameters can be selected to reduce the effect of dynamic singularities on a system's performance.

  10. Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies (Spanish Version)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This is the Spanish version of 'Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies'. Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid.

  11. Green Dot Public Schools. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2018

    2018-01-01

    "Green Dot Public Schools" is a nonprofit organization that operates more than 20 public charter middle and high schools in California, Tennessee, and Washington. The "Green Dot Public Schools" model emphasizes high quality teaching, strong school leadership, a curriculum that prepares students for college, and partnerships…

  12. Quantum walks with an anisotropic coin I: spectral theory

    NASA Astrophysics Data System (ADS)

    Richard, S.; Suzuki, A.; Tiedra de Aldecoa, R.

    2018-02-01

    We perform the spectral analysis of the evolution operator U of quantum walks with an anisotropic coin, which include one-defect models, two-phase quantum walks, and topological phase quantum walks as special cases. In particular, we determine the essential spectrum of U, we show the existence of locally U-smooth operators, we prove the discreteness of the eigenvalues of U outside the thresholds, and we prove the absence of singular continuous spectrum for U. Our analysis is based on new commutator methods for unitary operators in a two-Hilbert spaces setting, which are of independent interest.

  13. Porter Takes Reins of the FNL Green Team | Poster

    Cancer.gov

    Courtesy of the FNL Green Team Melissa Porter, who recently joined the staff of Craig Reynolds, Ph.D., director, Office of Scientific Operations, as administrative manager, has stepped forward to lead the Frederick National Laboratory for Cancer Research (FNL) Green Team in its efforts to promote a “green” work environment. “I am excited to lead the FNL Green Team and have

  14. Harvard University: Green Loan Fund. Green Revolving Funds in Action: Case Study Series

    ERIC Educational Resources Information Center

    Foley, Robert

    2011-01-01

    The Green Loan Fund at Harvard University has been an active source of capital for energy efficiency and waste reduction projects for almost a decade. This case study examines the revolving fund's history from its inception as a pilot project in the 1990s to its regeneration in the early 2000s to its current operations today. The green revolving…

  15. Evaluation of green building rating tools based on existing green building achievement in Indonesia using Life Cycle Assessment Method

    NASA Astrophysics Data System (ADS)

    Basten, Van; Latief, Yusuf; Berawi, Mohammed Ali; Budiman, Rachmat; Riswanto

    2017-03-01

    Total completed building construction value in Indonesia increased 116% during 2009 to 2011. That's followed by increasing 11% energy consumption in Indonesia in the last three years with 70% energy met to the electricity needs of commercial building. In addition, a few application of green building concept in Indonesia made the greenhouse gas emissions or CO2 amount increased by 25%. Construction, operation, and maintain of building cost consider relatively high. The evaluation in this research is used to improve the building performance with some of green concept alternatives. The research methodology is conducted by combination of qualitative and quantitative approaches through interview and case study. Assessing the successful of optimization functions in the existing green building is based on the operational and maintenance phase with the Life Cycle Assessment (LCA) Method. The result of optimization that is the largest efficiency and effective of building life cycle.

  16. Finite element techniques applied to cracks interacting with selected singularities

    NASA Technical Reports Server (NTRS)

    Conway, J. C.

    1975-01-01

    The finite-element method for computing the extensional stress-intensity factor for cracks approaching selected singularities of varied geometry is described. Stress-intensity factors are generated using both displacement and J-integral techniques, and numerical results are compared to those obtained experimentally in a photoelastic investigation. The selected singularities considered are a colinear crack, a circular penetration, and a notched circular penetration. Results indicate that singularities greatly influence the crack-tip stress-intensity factor as the crack approaches the singularity. In addition, the degree of influence can be regulated by varying the overall geometry of the singularity. Local changes in singularity geometry have little effect on the stress-intensity factor for the cases investigated.

  17. Correlation singularities in a partially coherent electromagnetic beam with initially radial polarization.

    PubMed

    Zhang, Yongtao; Cui, Yan; Wang, Fei; Cai, Yangjian

    2015-05-04

    We have investigated the correlation singularities, coherence vortices of two-point correlation function in a partially coherent vector beam with initially radial polarization, i.e., partially coherent radially polarized (PCRP) beam. It is found that these singularities generally occur during free space propagation. Analytical formulae for characterizing the dynamics of the correlation singularities on propagation are derived. The influence of the spatial coherence length of the beam on the evolution properties of the correlation singularities and the conditions for creation and annihilation of the correlation singularities during propagation have been studied in detail based on the derived formulae. Some interesting results are illustrated. These correlation singularities have implication for interference experiments with a PCRP beam.

  18. The effect of spherical aberration on the phase singularities of focused dark-hollow Gaussian beams

    NASA Astrophysics Data System (ADS)

    Luo, Yamei; Lü, Baida

    2009-06-01

    The phase singularities of focused dark-hollow Gaussian beams in the presence of spherical aberration are studied. It is shown that the evolution behavior of phase singularities of focused dark-hollow Gaussian beams in the focal region depends not only on the truncation parameter and beam order, but also on the spherical aberration. The spherical aberration leads to an asymmetric spatial distribution of singularities outside the focal plane and to a shift of singularities near the focal plane. The reorganization process of singularities and spatial distribution of singularities are additionally dependent on the sign of the spherical aberration. The results are illustrated by numerical examples.

  19. Unidirectional spectral singularities.

    PubMed

    Ramezani, Hamidreza; Li, Hao-Kun; Wang, Yuan; Zhang, Xiang

    2014-12-31

    We propose a class of spectral singularities emerging from the coincidence of two independent singularities with highly directional responses. These spectral singularities result from resonance trapping induced by the interplay between parity-time symmetry and Fano resonances. At these singularities, while the system is reciprocal in terms of a finite transmission, a simultaneous infinite reflection from one side and zero reflection from the opposite side can be realized.

  20. Understanding Singular Vectors

    ERIC Educational Resources Information Center

    James, David; Botteron, Cynthia

    2013-01-01

    matrix yields a surprisingly simple, heuristical approximation to its singular vectors. There are correspondingly good approximations to the singular values. Such rules of thumb provide an intuitive interpretation of the singular vectors that helps explain why the SVD is so…

  1. Lighting Demands in Green Schools

    ERIC Educational Resources Information Center

    Danis, Jim; Thurnquist, Annmarie

    2011-01-01

    Growing up in a more eco-conscious world, incoming students are more savvy about "greening" the world around them. A decade ago, green college campuses were those that offered recycling bins in residence halls. Now education institutions are integrating sustainability efforts into as many aspects of their campus operations as possible. And that…

  2. Implicit-shifted Symmetric QR Singular Value Decomposition of 3x3 Matrices

    DTIC Science & Technology

    2016-04-01

    Graph 33, 4, 138:1– 138:11. TREFETHEN, L. N., AND BAU III, D. 1997. Numerical linear algebra , vol. 50. Siam. XU, H., SIN, F., ZHU, Y., AND BARBIČ, J...matrices with minimal branching and elementary floating point operations. Tech. rep., University of Wisconsin- Madison. SAITO, S., ZHOU, Z.-Y., AND

  3. The research of automatic speed control algorithm based on Green CBTC

    NASA Astrophysics Data System (ADS)

    Lin, Ying; Xiong, Hui; Wang, Xiaoliang; Wu, Youyou; Zhang, Chuanqi

    2017-06-01

    Automatic speed control algorithm is one of the core technologies of train operation control system. It’s a typical multi-objective optimization control algorithm, which achieve the train speed control for timing, comfort, energy-saving and precise parking. At present, the train speed automatic control technology is widely used in metro and inter-city railways. It has been found that the automatic speed control technology can effectively reduce the driver’s intensity, and improve the operation quality. However, the current used algorithm is poor at energy-saving, even not as good as manual driving. In order to solve the problem of energy-saving, this paper proposes an automatic speed control algorithm based on Green CBTC system. Based on the Green CBTC system, the algorithm can adjust the operation status of the train to improve the efficient using rate of regenerative braking feedback energy while ensuring the timing, comfort and precise parking targets. Due to the reason, the energy-using of Green CBTC system is lower than traditional CBTC system. The simulation results show that the algorithm based on Green CBTC system can effectively reduce the energy-using due to the improvement of the using rate of regenerative braking feedback energy.

  4. Tachyon field in loop quantum cosmology: An example of traversable singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Lifang; Zhu Jianyang

    2009-06-15

    Loop quantum cosmology (LQC) predicts a nonsingular evolution of the universe through a bounce in the high energy region. But LQC has an ambiguity about the quantization scheme. Recently, the authors in [Phys. Rev. D 77, 124008 (2008)] proposed a new quantization scheme. Similar to others, this new quantization scheme also replaces the big bang singularity with the quantum bounce. More interestingly, it introduces a quantum singularity, which is traversable. We investigate this novel dynamics quantitatively with a tachyon scalar field, which gives us a concrete example. Our result shows that our universe can evolve through the quantum singularity regularly,more » which is different from the classical big bang singularity. So this singularity is only a weak singularity.« less

  5. Wave-function functionals

    NASA Astrophysics Data System (ADS)

    Pan, Xiao-Yin; Slamet, Marlina; Sahni, Viraht

    2010-04-01

    We extend our prior work on the construction of variational wave functions ψ that are functionals of functions χ:ψ=ψ[χ] rather than simply being functions. In this manner, the space of variations is expanded over those of traditional variational wave functions. In this article we perform the constrained search over the functions χ chosen such that the functional ψ[χ] satisfies simultaneously the constraints of normalization and the exact expectation value of an arbitrary single- or two-particle Hermitian operator, while also leading to a rigorous upper bound to the energy. As such the wave function functional is accurate not only in the region of space in which the principal contributions to the energy arise but also in the other region of the space represented by the Hermitian operator. To demonstrate the efficacy of these ideas, we apply such a constrained search to the ground state of the negative ion of atomic hydrogen H-, the helium atom He, and its positive ions Li+ and Be2+. The operators W whose expectations are obtained exactly are the sum of the single-particle operators W=∑irin,n=-2,-1,1,2, W=∑iδ(ri), W=-(1)/(2)∑i∇i2, and the two-particle operators W=∑nun,n=-2,-1,1,2, where u=|ri-rj|. Comparisons with the method of Lagrangian multipliers and of other constructions of wave-function functionals are made. Finally, we present further insights into the construction of wave-function functionals by studying a previously proposed construction of functionals ψ[χ] that lead to the exact expectation of arbitrary Hermitian operators. We discover that analogous to the solutions of the Schrödinger equation, there exist ψ[χ] that are unphysical in that they lead to singular values for the expectations. We also explain the origin of the singularity.

  6. Singularities in loop quantum cosmology.

    PubMed

    Cailleteau, Thomas; Cardoso, Antonio; Vandersloot, Kevin; Wands, David

    2008-12-19

    We show that simple scalar field models can give rise to curvature singularities in the effective Friedmann dynamics of loop quantum cosmology (LQC). We find singular solutions for spatially flat Friedmann-Robertson-Walker cosmologies with a canonical scalar field and a negative exponential potential, or with a phantom scalar field and a positive potential. While LQC avoids big bang or big rip type singularities, we find sudden singularities where the Hubble rate is bounded, but the Ricci curvature scalar diverges. We conclude that the effective equations of LQC are not in themselves sufficient to avoid the occurrence of curvature singularities.

  7. Numerical quadrature methods for integrals of singular periodic functions and their application to singular and weakly singular integral equations

    NASA Technical Reports Server (NTRS)

    Sidi, A.; Israeli, M.

    1986-01-01

    High accuracy numerical quadrature methods for integrals of singular periodic functions are proposed. These methods are based on the appropriate Euler-Maclaurin expansions of trapezoidal rule approximations and their extrapolations. They are used to obtain accurate quadrature methods for the solution of singular and weakly singular Fredholm integral equations. Such periodic equations are used in the solution of planar elliptic boundary value problems, elasticity, potential theory, conformal mapping, boundary element methods, free surface flows, etc. The use of the quadrature methods is demonstrated with numerical examples.

  8. Construction Performance Optimization toward Green Building Premium Cost Based on Greenship Rating Tools Assessment with Value Engineering Method

    NASA Astrophysics Data System (ADS)

    Latief, Yusuf; Berawi, Mohammed Ali; Basten, Van; Riswanto; Budiman, Rachmat

    2017-07-01

    Green building concept becomes important in current building life cycle to mitigate environment issues. The purpose of this paper is to optimize building construction performance towards green building premium cost, achieving green building rating tools with optimizing life cycle cost. Therefore, this study helps building stakeholder determining building fixture to achieve green building certification target. Empirically the paper collects data of green building in the Indonesian construction industry such as green building fixture, initial cost, operational and maintenance cost, and certification score achievement. After that, using value engineering method optimized green building fixture based on building function and cost aspects. Findings indicate that construction performance optimization affected green building achievement with increasing energy and water efficiency factors and life cycle cost effectively especially chosen green building fixture.

  9. A pilot study of lymph node mapping with indocyanine green in robotic gastrectomy for gastric cancer.

    PubMed

    Lan, Yuan-Tzu; Huang, Kuo-Hung; Chen, Ping-Hsien; Liu, Chien-An; Lo, Su-Shun; Wu, Chew-Wun; Shyr, Yi-Ming; Fang, Wen-Liang

    2017-01-01

    Robotic gastrectomy has become increasingly popular in the treatment of gastric cancer, especially in Asian countries. The use of indocyanine green fluorescence has been reported in lymphatic mapping for gastric cancer in laparoscopic gastrectomy; however, there have been few reports regarding the use of indocyanine green in robotic gastrectomy. From January 2011 to March 2016, a total of 79 patients underwent robotic gastrectomy for gastric cancer. Among them, intraoperative subserosal injection (n = 9) or preoperative submucosal injection (n = 5) of indocyanine green with near-infrared imaging was performed in 14 patients, and the other 65 patients underwent robotic gastrectomy without the use of indocyanine green. There was no significant difference in the operative time, total number of retrieved lymph nodes, operative blood loss, and postoperative hospital stay between the patients who underwent robotic gastrectomy with or without indocyanine green fluorescence. For each lymph node station, there was significantly more number of retrieved lymph nodes in the indocyanine green group than in the no-indocyanine green group at the greater curvature side of the low body (#4d) to the infrapyloric region (#6) of the stomach. Five of the 14 patients who received an indocyanine green injection for lymphatic mapping had lymph node metastasis, and metastatic lymph nodes were located in the lymph node stations as detected by indocyanine green fluorescence during surgery. Indocyanine green fluorescence with near-infrared imaging is feasible and is a promising method of lymphatic mapping in robotic gastrectomy for gastric cancer. In future studies, larger patient numbers and long-term follow-up are required.

  10. 40 CFR 63.2241 - What are the work practice requirements and how must I meet them?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Products Compliance Options, Operating Requirements, and Work Practice Requirements § 63.2241 What are the...) If you have a dry rotary dryer, you may choose to designate your dry rotary dryer as a green rotary dryer and meet the more stringent compliance options and operating requirements in § 63.2240 for green...

  11. Towards a systematic construction of realistic D-brane models on a del Pezzo singularity

    NASA Astrophysics Data System (ADS)

    Dolan, Matthew J.; Krippendorf, Sven; Quevedo, Fernando

    2011-10-01

    A systematic approach is followed in order to identify realistic D-brane models at toric del Pezzo singularities. Requiring quark and lepton spectrum and Yukawas from D3 branes and massless hypercharge, we are led to Pati-Salam extensions of the Standard Model. Hierarchies of masses, flavour mixings and control of couplings select higher order del Pezzo singularities, minimising the Higgs sector prefers toric del Pezzos with dP 3 providing the most successful compromise. Then a supersymmetric local string model is presented with the following properties at low energies: (i) the MSSM spectrum plus a local B - L gauge field or additional Higgs fields depending on the breaking pattern, (ii) a realistic hierarchy of quark and lepton masses and (iii) realistic flavour mixing between quark and lepton families with computable CKM and PMNS matrices, and CP violation consistent with observations. In this construction, kinetic terms are diagonal and under calculational control suppressing standard FCNC contributions. Proton decay operators of dimension 4, 5, 6 are suppressed, and gauge couplings can unify depending on the breaking scales from string scales at energies in the range 1012-1016 GeV, consistent with TeV soft-masses from moduli mediated supersymmetry breaking. The GUT scale model corresponds to D3 branes at dP 3 with two copies of the Pati-Salam gauge symmetry SU(4) × SU(2) R × SU(2) L . D-brane instantons generate a non-vanishing μ-term. Right handed sneutrinos can break the B - L symmetry and induce a see-saw mechanism of neutrino masses and R-parity violating operators with observable low-energy implications.

  12. Singularity analysis: theory and further developments

    NASA Astrophysics Data System (ADS)

    Cheng, Qiuming

    2015-04-01

    Since the concept of singularity and local singularity analysis method (LSA) were originally proposed by the author for characterizing the nonlinear property of hydrothermal mineralization processes, the local singularity analysis technique has been successfully applied for identification of geochemical and geophysical anomalies related to various types of mineral deposits. It has also been shown that the singularity is the generic property of singular geo-processes which result in anomalous amounts of energy release or material accumulation within a narrow spatial-temporal interval. In the current paper we introduce several new developments about singularity analysis. First is a new concept of 'fractal density' which describes the singularity of complex phenomena of fractal nature. While the ordinary density possesses a unit of ratio of mass and volume (e.g. g/cm3, kg/m3) or ratio of energy over volume or time (e.g. J/cm3, w/L3, w/s), the fractal density has a unit of ratio of mass over fractal set or energy over fractal set (e.g. g/cmα, kg/mα, J/ mα, w/Lα, where α can be a non-integer). For the matter with fractal density (a non-integer α), the ordinary density of the phenomena (mass or energy) no longer exists and depicts singularity. We demonstrate that most of extreme geo-processes occurred in the earth crust originated from cascade earth dynamics (mental convection, plate tectonics, orogeny and weathering etc) may cause fractal density of mass accumulation or energy release. The examples to be used to demonstrate the concepts of fractal density and singularity are earthquakes, floods, volcanos, hurricanes, heat flow over oceanic ridge, hydrothermal mineralization in orogenic belt, and anomalies in regolith over mine caused by ore and toxic elements vertical migration. Other developments of singularity theory and methodologies including singular Kriging and singularity weights of evidence model for information integration will also be introduced.

  13. A Generalized Method of Image Analysis from an Intercorrelation Matrix which May Be Singular.

    ERIC Educational Resources Information Center

    Yanai, Haruo; Mukherjee, Bishwa Nath

    1987-01-01

    This generalized image analysis method is applicable to singular and non-singular correlation matrices (CMs). Using the orthogonal projector and a weaker generalized inverse matrix, image and anti-image covariance matrices can be derived from a singular CM. (SLD)

  14. Field singularities at lossless metal-dielectric arbitrary-angle edges and their ramifications to the numerical modeling of gratings.

    PubMed

    Li, Lifeng

    2012-04-01

    I extend a previous work [J. Opt. Soc. Am. A, 738 (2011)] on field singularities at lossless metal-dielectric right-angle edges and their ramifications to the numerical modeling of gratings to the case of arbitrary metallic wedge angles. Simple criteria are given that allow one knowing the lossless permittivities and the arbitrary wedge angles to determine if the electric field at the edges is nonsingular, can be regularly singular, or can be irregularly singular without calculating the singularity exponent. Furthermore, the knowledge of the singularity type enables one to predict immediately if a numerical method that uses Fourier expansions of the transverse electric field components at the edges will converge or not without making any numerical tests. All conclusions of the previous work about the general relationships between field singularities, Fourier representation of singular fields, and convergence of numerical methods for modeling lossless metal-dielectric gratings have been reconfirmed.

  15. Elasticity solutions for a class of composite laminate problems with stress singularities

    NASA Technical Reports Server (NTRS)

    Wang, S. S.

    1983-01-01

    A study on the fundamental mechanics of fiber-reinforced composite laminates with stress singularities is presented. Based on the theory of anisotropic elasticity and Lekhnitskii's complex-variable stress potentials, a system of coupled governing partial differential equations are established. An eigenfunction expansion method is introduced to determine the orders of stress singularities in composite laminates with various geometric configurations and material systems. Complete elasticity solutions are obtained for this class of singular composite laminate mechanics problems. Homogeneous solutions in eigenfunction series and particular solutions in polynomials are presented for several cases of interest. Three examples are given to illustrate the method of approach and the basic nature of the singular laminate elasticity solutions. The first problem is the well-known laminate free-edge stress problem, which has a rather weak stress singularity. The second problem is the important composite delamination problem, which has a strong crack-tip stress singularity. The third problem is the commonly encountered bonded composite joints, which has a complex solution structure with moderate orders of stress singularities.

  16. Future singularity avoidance in phantom dark energy models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro, Jaume de, E-mail: jaime.haro@upc.edu

    2012-07-01

    Different approaches to quantum cosmology are studied in order to deal with the future singularity avoidance problem. Our results show that these future singularities will persist but could take different forms. As an example we have studied the big rip which appear when one considers the state equation P = ωρ with ω < −1, showing that it does not disappear in modified gravity. On the other hand, it is well-known that quantum geometric effects (holonomy corrections) in loop quantum cosmology introduce a quadratic modification, namely proportional to ρ{sup 2}, in Friedmann's equation that replace the big rip by amore » non-singular bounce. However this modified Friedmann equation could have been obtained in an inconsistent way, what means that the obtained results from this equation, in particular singularity avoidance, would be incorrect. In fact, we will show that instead of a non-singular bounce, the big rip singularity would be replaced, in loop quantum cosmology, by other kind of singularity.« less

  17. Loop quantum cosmology and singularities.

    PubMed

    Struyve, Ward

    2017-08-15

    Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.

  18. New singularities in unexpected places

    NASA Astrophysics Data System (ADS)

    Barrow, John D.; Graham, Alexander A. H.

    2015-09-01

    Spacetime singularities have been discovered which are physically much weaker than those predicted by the classical singularity theorems. Geodesics evolve through them and they only display infinities in the derivatives of their curvature invariants. So far, these singularities have appeared to require rather exotic and unphysical matter for their occurrence. Here, we show that a large class of singularities of this form can be found in a simple Friedmann cosmology containing only a scalar-field with a power-law self-interaction potential. Their existence challenges several preconceived ideas about the nature of spacetime singularities and has an impact upon the end of inflation in the early universe.

  19. Exotic singularities and spatially curved loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Parampreet; Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5; Vidotto, Francesca

    2011-03-15

    We investigate the occurrence of various exotic spacelike singularities in the past and the future evolution of k={+-}1 Friedmann-Robertson-Walker model and loop quantum cosmology using a sufficiently general phenomenological model for the equation of state. We highlight the nontrivial role played by the intrinsic curvature for these singularities and the new physics which emerges at the Planck scale. We show that quantum gravity effects generically resolve all strong curvature singularities including big rip and big freeze singularities. The weak singularities, which include sudden and big brake singularities, are ignored by quantum gravity when spatial curvature is negative, as was previouslymore » found for the spatially flat model. Interestingly, for the spatially closed model there exist cases where weak singularities may be resolved when they occur in the past evolution. The spatially closed model exhibits another novel feature. For a particular class of equation of state, this model also exhibits an additional physical branch in loop quantum cosmology, a baby universe separated from the parent branch. Our analysis generalizes previous results obtained on the resolution of strong curvature singularities in flat models to isotropic spacetimes with nonzero spatial curvature.« less

  20. Singular spectrum and singular entropy used in signal processing of NC table

    NASA Astrophysics Data System (ADS)

    Wang, Linhong; He, Yiwen

    2011-12-01

    NC (numerical control) table is a complex dynamic system. The dynamic characteristics caused by backlash, friction and elastic deformation among each component are so complex that they have become the bottleneck of enhancing the positioning accuracy, tracking accuracy and dynamic behavior of NC table. This paper collects vibration acceleration signals from NC table, analyzes the signals with SVD (singular value decomposition) method, acquires the singular spectrum and calculates the singular entropy of the signals. The signal characteristics and their regulations of NC table are revealed via the characteristic quantities such as singular spectrum, singular entropy etc. The steep degrees of singular spectrums can be used to discriminate complex degrees of signals. The results show that the signals in direction of driving axes are the simplest and the signals in perpendicular direction are the most complex. The singular entropy values can be used to study the indetermination of signals. The results show that the signals of NC table are not simple signal nor white noise, the entropy values in direction of driving axe are lower, the entropy values increase along with the increment of driving speed and the entropy values at the abnormal working conditions such as resonance or creeping etc decrease obviously.

  1. Continuations of the nonlinear Schrödinger equation beyond the singularity

    NASA Astrophysics Data System (ADS)

    Fibich, G.; Klein, M.

    2011-07-01

    We present four continuations of the critical nonlinear Schrödinger equation (NLS) beyond the singularity: (1) a sub-threshold power continuation, (2) a shrinking-hole continuation for ring-type solutions, (3) a vanishing nonlinear-damping continuation and (4) a complex Ginzburg-Landau (CGL) continuation. Using asymptotic analysis, we explicitly calculate the limiting solutions beyond the singularity. These calculations show that for generic initial data that lead to a loglog collapse, the sub-threshold power limit is a Bourgain-Wang solution, both before and after the singularity, and the vanishing nonlinear-damping and CGL limits are a loglog solution before the singularity, and have an infinite-velocity expanding core after the singularity. Our results suggest that all NLS continuations share the universal feature that after the singularity time Tc, the phase of the singular core is only determined up to multiplication by eiθ. As a result, interactions between post-collapse beams (filaments) become chaotic. We also show that when the continuation model leads to a point singularity and preserves the NLS invariance under the transformation t → -t and ψ → ψ*, the singular core of the weak solution is symmetric with respect to Tc. Therefore, the sub-threshold power and the shrinking-hole continuations are symmetric with respect to Tc, but continuations which are based on perturbations of the NLS equation are generically asymmetric.

  2. Dynamical singularities for complex initial conditions and the motion at a real separatrix.

    PubMed

    Shnerb, Tamar; Kay, K G

    2006-04-01

    This work investigates singularities occurring at finite real times in the classical dynamics of one-dimensional double-well systems with complex initial conditions. The objective is to understand the relationship between these singularities and the behavior of the systems for real initial conditions. An analytical treatment establishes that the dynamics of a quartic double well system possesses a doubly infinite sequence of singularities. These are associated with initial conditions that converge to those for the real separatrix as the singularity time becomes infinite. This confluence of singularities is shown to lead to the unstable behavior that characterizes the real motion at the separatrix. Numerical calculations confirm the existence of a large number of singularities converging to the separatrix for this and two additional double-well systems. The approach of singularities to the real axis is of particular interest since such behavior has been related to the formation of chaos in nonintegrable systems. The properties of the singular trajectories which cause this convergence to the separatrix are identified. The hyperbolic fixed point corresponding to the potential energy maximum, responsible for the characteristic motion at a separatrix, also plays a critical role in the formation of the complex singularities by delaying trajectories and then deflecting them into asymptotic regions of space from where they are directly repelled to infinity in a finite time.

  3. Topological resolution of gauge theory singularities

    NASA Astrophysics Data System (ADS)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-01

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  4. Orbit Maintenance and Navigation of Human Spacecraft at Cislunar Near Rectilinear Halo Orbits

    NASA Technical Reports Server (NTRS)

    Davis, Diane; Bhatt, Sagar; Howell, Kathleen; Jang, Jiann-Woei; Whitley, Ryan; Clark, Fred; Guzzetti, Davide; Zimovan, Emily; Barton, Gregg

    2017-01-01

    Multiple studies have concluded that Earth-Moon libration point orbits are attractive candidates for staging operations. The Near Rectilinear Halo Orbit (NRHO), a member of the Earth-Moon halo orbit family, has been singularly demonstrated to meet multi-mission architectural constraints. In this paper, the challenges associated with operating human spacecraft in the NRHO are evaluated. Navigation accuracies and human vehicle process noise effects are applied to various station keeping strategies in order to obtain a reliable orbit maintenance algorithm. Additionally, the ability to absorb missed burns, construct phasing maneuvers to avoid eclipses and conduct rendezvous and proximity operations are examined.

  5. Spectral and entropic characterizations of Wigner functions: applications to model vibrational systems.

    PubMed

    Luzanov, A V

    2008-09-07

    The Wigner function for the pure quantum states is used as an integral kernel of the non-Hermitian operator K, to which the standard singular value decomposition (SVD) is applied. It provides a set of the squared singular values treated as probabilities of the individual phase-space processes, the latter being described by eigenfunctions of KK(+) (for coordinate variables) and K(+)K (for momentum variables). Such a SVD representation is employed to obviate the well-known difficulties in the definition of the phase-space entropy measures in terms of the Wigner function that usually allows negative values. In particular, the new measures of nonclassicality are constructed in the form that automatically satisfies additivity for systems composed of noninteracting parts. Furthermore, the emphasis is given on the geometrical interpretation of the full entropy measure as the effective phase-space volume in the Wigner picture of quantum mechanics. The approach is exemplified by considering some generic vibrational systems. Specifically, for eigenstates of the harmonic oscillator and a superposition of coherent states, the singular value spectrum is evaluated analytically. Numerical computations are given for the nonlinear problems (the Morse and double well oscillators, and the Henon-Heiles system). We also discuss the difficulties in implementation of a similar technique for electronic problems.

  6. Intelligent Diagnosis Method for Rotating Machinery Using Dictionary Learning and Singular Value Decomposition

    PubMed Central

    Han, Te; Jiang, Dongxiang; Zhang, Xiaochen; Sun, Yankui

    2017-01-01

    Rotating machinery is widely used in industrial applications. With the trend towards more precise and more critical operating conditions, mechanical failures may easily occur. Condition monitoring and fault diagnosis (CMFD) technology is an effective tool to enhance the reliability and security of rotating machinery. In this paper, an intelligent fault diagnosis method based on dictionary learning and singular value decomposition (SVD) is proposed. First, the dictionary learning scheme is capable of generating an adaptive dictionary whose atoms reveal the underlying structure of raw signals. Essentially, dictionary learning is employed as an adaptive feature extraction method regardless of any prior knowledge. Second, the singular value sequence of learned dictionary matrix is served to extract feature vector. Generally, since the vector is of high dimensionality, a simple and practical principal component analysis (PCA) is applied to reduce dimensionality. Finally, the K-nearest neighbor (KNN) algorithm is adopted for identification and classification of fault patterns automatically. Two experimental case studies are investigated to corroborate the effectiveness of the proposed method in intelligent diagnosis of rotating machinery faults. The comparison analysis validates that the dictionary learning-based matrix construction approach outperforms the mode decomposition-based methods in terms of capacity and adaptability for feature extraction. PMID:28346385

  7. 7 CFR 46.1 - Words in singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Words in singular form. 46.1 Section 46.1 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Words in singular form. Words in this part in the singular form shall be deemed to import the plural...

  8. 7 CFR 61.1 - Words in singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Words in singular form. 61.1 Section 61.1 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Words in singular form. Words used in the regulations in this subpart in the singular form shall be...

  9. The singular values of the imbedding operators of some classes of analytic functions of several variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parfenov, O.G.

    1994-12-25

    We discuss three results. The first exhibits the order of decrease of the s-values as a function of the CR-dimension of a compact set on which we approximate the class of analytic functions being studied. The second is an asymptotic formula for the case when the domain of analyticity and the compact set are Reinhart domains. The third is the computation of the s-values of a special operator that is of interest for approximation theory on one-dimensional manifolds.

  10. Does national scale economic and environmental indicators spur logistics performance? Evidence from UK.

    PubMed

    Khan, Syed Abdul Rehman; Qianli, Dong

    2017-12-01

    The aim of this study is to examine the association between national economic and environmental indicators with green logistics performance in a time series data of UK since 1981 to 2016. The research used autoregressive distributed lag method to understand the long-run and short-run relationships of national scale economic (foreign direct investment (FDI) inflows, per capita income) and environmental indicators (total greenhouse gases, fossil fuel, and renewable energy) on green logistics. In the short run, the research findings indicate that the green logistics and renewable energy have positive relationship, while fossil fuel is negatively correlated with green logistics operations. On the other hand, in the long run, the results show that FDI inflows, renewable energy sources, and per capita income have statistically significant and positive association with green logistics activities, while foreign investments attracted by environmental friendly policies and practices adopted in global logistics operations, which not only increase the environmental sustainability but also enhance economic activities with greater export opportunities in the region.

  11. Multiple sublethal chemicals negatively affect tadpoles of the green frog, Rana clamitans

    USGS Publications Warehouse

    Boone, Michelle D.; Bridges, Christine M.; Fairchild, James F.; Little, Edward E.

    2005-01-01

    Many habitats may be exposed to multiple chemical contaminants, particularly in agricultural areas where fertilizer and pesticide use are common; however, the singular and interactive effects of contaminants are not well understood. The objective of our study was to examine how realistic, sublethal environmental levels of ammonium nitrate fertilizer (0, 10, 20 mg/L and ammonium chloride control) and the common insecticide carbaryl (0 or 2.5 mg/L) individually and interactively affect the development, size, and survival of green frog (Rana clamitans) tadpoles. We reared tadpoles for 95 d in outdoor 1,000-L polyethylene ponds. We found that the combination of carbaryl and nitrate had a negative effect on development and mass of tadpoles compared to the positive effect that either contaminant had alone. Presence of carbaryl was generally associated with short-term increases in algal resources, including ponds exposed to both carbaryl and nitrate. However, with exposure to nitrate and carbaryl, tadpole mass and development were not positively affected as with one chemical stressor alone. The combination of these sublethal contaminants may reduce the ability of amphibians to benefit from food-rich environments or have metabolic costs. Our study demonstrates the importance of considering multiple stressors when evaluating population-level responses.

  12. Presidential Green Chemistry Challenge: 1999 Greener Reaction Conditions Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 1999 award winner, Nalco Chemical Co., developed homogeneous dispersion polymerization with water as the solvent to make polymers to treat water in industrial and municipal operations.

  13. Going Green Online: Distance Learning Prepares Students for Success in Green-Collar Job Markets

    ERIC Educational Resources Information Center

    Githens, Rod; Sauer, Timothy

    2010-01-01

    President Barack Obama has touted the development of a new green economy as a tool to rebuild the American economy while creating new jobs. This new economy requires entrepreneurs and innovators to create new businesses and invent new technologies. It also requires technicians with specialized skills to build wind farms, operate renewable fuels…

  14. The Friedmann-Lemaître-Robertson-Walker Big Bang Singularities are Well Behaved

    NASA Astrophysics Data System (ADS)

    Stoica, Ovidiu Cristinel

    2016-01-01

    We show that the Big Bang singularity of the Friedmann-Lemaître-Robertson-Walker model does not raise major problems to General Relativity. We prove a theorem showing that the Einstein equation can be written in a non-singular form, which allows the extension of the spacetime before the Big Bang. The physical interpretation of the fields used is discussed. These results follow from our research on singular semi-Riemannian geometry and singular General Relativity.

  15. Personalized Vehicle Energy Efficiency & Range Predictor/MyGreenCar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SAXENA, SAMVEG

    MyGreenCar provides users with the ability to predict the range capabilities, fuel economy, and operating costs for any vehicle for their individual driving patterns. Users launce the MyGreeCar mobile app on their smartphones to collect their driving patterns over any duration (e.g. serval days, weeks, months, etc) using a phones's locational capabilities. Using vehicle powertrain models for any user-specified vehicle type, MyGreenCar, calculates the component-level energy and power interactions for the chosen vehicle to predict several important quantities, including: 1. For Evs: Alleviating range anxiety 2. Comparing fuel economy, operating costs, and payback time across models and types.

  16. Treatment of singularities in a middle-crack tension specimen

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Raju, I. S.

    1990-01-01

    A three-dimensional finite-element analysis of a middle-crack tension specimen subjected to mode I loading was performed to study the stress singularity along the crack front. The specimen was modeled using 20-node isoparametric elements with collapsed nonsingular elements at the crack front. The displacements and stresses from the analysis were used to estimate the power of singularities, by a log-log regression analysis, along the crack front. Analyses showed that finite-sized cracked bodies have two singular stress fields. Because of two singular stress fields near the free surface and the classical square root singularity elsewhere, the strain energy release rate appears to be an appropriate parameter all along the crack front.

  17. Semiclassical analysis of spectral singularities and their applications in optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafazadeh, Ali

    2011-08-15

    Motivated by possible applications of spectral singularities in optics, we develop a semiclassical method of computing spectral singularities. We use this method to examine the spectral singularities of a planar slab gain medium whose gain coefficient varies due to the exponential decay of the intensity of the pumping beam inside the medium. For both singly and doublypumped samples, we obtain universal upper bounds on the decay constant beyond which no lasing occurs. Furthermore, we show that the dependence of the wavelength of the spectral singularities on the value of the decay constant is extremely mild. This is an indication ofmore » the stability of optical spectral singularities.« less

  18. Cusp singularities in f(R) gravity: pros and cons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin; Yeom, Dong-han

    We investigate cusp singularities in f(R) gravity, especially for Starobinsky and Hu-Sawicki dark energy models. We illustrate that, by using double-null numerical simulations, a cusp singularity can be triggered by gravitational collapses. This singularity can be cured by adding a quadratic term, but this causes a Ricci scalar bump that can be observed by an observer outside the event horizon. Comparing with cosmological parameters, it seems that it would be difficult to see super-Planckian effects by astrophysical experiments. On the other hand, at once there exists a cusp singularity, it can be a mechanism to realize a horizon scale curvaturemore » singularity that can be interpreted by a firewall.« less

  19. Propagation of the Lissajous singularity dipole emergent from non-paraxial polychromatic beams

    NASA Astrophysics Data System (ADS)

    Haitao, Chen; Gao, Zenghui; Wang, Wanqing

    2017-06-01

    The propagation of the Lissajous singularity dipole (LSD) emergent from the non-paraxial polychromatic beams is studied. It is found that the handedness reversal of Lissajous singularities, the change in the shape of Lissajous figures, as well as the creation and annihilation of the LSD may take place by varying the propagation distance, off-axis parameter, wavelength, or amplitude factor. Comparing with the LSD emergent from paraxial polychromatic beams, the output field of non-paraxial polychromatic beams is more complicated, which results in some richer dynamic behaviors of Lissajous singularities, such as more Lissajous singularities and no vanishing of a single Lissajous singularity at the plane z>0.

  20. Entangled singularity patterns of photons in Ince-Gauss modes

    NASA Astrophysics Data System (ADS)

    Krenn, Mario; Fickler, Robert; Huber, Marcus; Lapkiewicz, Radek; Plick, William; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Photons with complex spatial mode structures open up possibilities for new fundamental high-dimensional quantum experiments and for novel quantum information tasks. Here we show entanglement of photons with complex vortex and singularity patterns called Ince-Gauss modes. In these modes, the position and number of singularities vary depending on the mode parameters. We verify two-dimensional and three-dimensional entanglement of Ince-Gauss modes. By measuring one photon and thereby defining its singularity pattern, we nonlocally steer the singularity structure of its entangled partner, while the initial singularity structure of the photons is undefined. In addition we measure an Ince-Gauss specific quantum-correlation function with possible use in future quantum communication protocols.

  1. Classical and quantum Big Brake cosmology for scalar field and tachyonic models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamenshchik, A. Yu.; Manti, S.

    We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bangmore » and Big Crunch singularities are not traversable.« less

  2. Quantum healing of spacetime singularities: A review

    NASA Astrophysics Data System (ADS)

    Konkowski, D. A.; Helliwell, T. M.

    2018-02-01

    Singularities are commonplace in general relativistic spacetimes. It is natural to hope that they might be “healed” (or resolved) by the inclusion of quantum mechanics, either in the theory itself (quantum gravity) or, more modestly, in the description of the spacetime geodesic paths used to define them. We focus here on the latter, mainly using a procedure proposed by Horowitz and Marolf to test whether singularities in broad classes of spacetimes can be resolved by replacing geodesic paths with quantum wave packets. We list the spacetime singularities that various authors have studied in this context, and distinguish those which are healed quantum mechanically (QM) from those which remain singular. Finally, we mention some alternative approaches to healing singularities.

  3. Green Infrastructure Opportunities that Arise During Municipal Operations

    EPA Pesticide Factsheets

    This document provides approaches that local government officials and municipal program managers in small to midsize communities can use to incorporate green infrastructure components into work they are doing in public spaces.

  4. 40 CFR 63.5982 - What parts of my facility does this subpart cover?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; bead cementing operations; tire building operations; green tire spray operations; extruding, to the... operations; other tire building operations, to the extent that cements and solvents are used; and balance pad...

  5. Singularities in water waves and Rayleigh-Taylor instability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1991-01-01

    Singularities in inviscid two-dimensional finite-amplitude water waves and inviscid Rayleigh-Taylor instability are discussed. For the deep water gravity waves of permanent form, through a combination of analytical and numerical methods, results describing the precise form, number, and location of singularities in the unphysical domain as the wave height is increased are presented. It is shown how the information on the singularity in the unphysical region has the same form as for deep water waves. However, associated with such a singularity is a series of image singularities at increasing distances from the physical plane with possibly different behavior. Furthermore, for the Rayleigh-Taylor problem of motion of fluid over a vacuum and for the unsteady water wave problem, integro-differential equations valid in the unphysical region are derived, and how these equations can give information on the nature of singularities for arbitrary initial conditions is shown.

  6. Topological resolution of gauge theory singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-21

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit themore » singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.« less

  7. Genericity Distinctions and the Interpretation of Determiners in Second Language Acquisition

    ERIC Educational Resources Information Center

    Ionin, Tania; Montrul, Silvina; Kim, Ji-Hye; Philippov, Vadim

    2011-01-01

    English uses three types of generic NPs: bare plurals ("Lions are dangerous"), definite singulars ("The lion is dangerous"), and indefinite singulars ("A lion is dangerous"). These three NP types are not interchangeable: definite singulars and bare plurals can have generic reference at the NP-level, while indefinite singulars are compatible only…

  8. 7 CFR 900.36 - Words in the singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.36 Section 900.36 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Marketing Orders § 900.36 Words in the singular form. Words in this subpart in the singular form shall be...

  9. 7 CFR 900.100 - Words in the singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.100 Section 900.100 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Words in the singular form. Words in this subpart in the singular form shall be deemed to import the...

  10. 7 CFR 900.1 - Words in the singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.1 Section 900.1 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Words in the singular form. Words in this subpart in the singular form shall be deemed to import the...

  11. 7 CFR 900.50 - Words in the singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.50 Section 900.50 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Words in the singular form. Words in this subpart in the singular form shall be deemed to import the...

  12. 7 CFR 900.20 - Words in the singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.20 Section 900.20 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... § 900.20 Words in the singular form. Words in this subpart in the singular form shall be deemed to...

  13. 7 CFR 1200.50 - Words in the singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Words in the singular form. 1200.50 Section 1200.50 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING....50 Words in the singular form. Words in this subpart in the singular form shall be deemed to import...

  14. Singularities in the classical Rayleigh-Taylor flow - Formation and subsequent motion

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1993-01-01

    The creation and subsequent motion of singularities of solution to classical Rayleigh-Taylor flow (two dimensional inviscid, incompressible fluid over a vacuum) are discussed. For a specific set of initial conditions, we give analytical evidence to suggest the instantaneous formation of one or more singularities at specific points in the unphysical plane, whose locations depend sensitively on small changes in initial conditions in the physical domain. One-half power singularities are created in accordance with an earlier conjecture; however, depending on initial conditions, other forms of singularities are also possible. For a specific initial condition, we follow a numerical procedure in the unphysical plane to compute the motion of a one-half singularity. This computation confirms our previous conjecture that the approach of a one-half singularity towards the physical domain corresponds to the development of a spike at the physical interface. Under some assumptions that appear to be consistent with numerical calculations, we present analytical evidence to suggest that a singularity of the one-half type cannot impinge the physical domain in finite time.

  15. Singularities in the classical Rayleigh-Taylor flow: Formation and subsequent motion

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1992-01-01

    The creation and subsequent motion of singularities of solution to classical Rayleigh-Taylor flow (two dimensional inviscid, incompressible fluid over a vacuum) are discussed. For a specific set of initial conditions, we give analytical evidence to suggest the instantaneous formation of one or more singularities at specific points in the unphysical plane, whose locations depend sensitively on small changes in initial conditions in the physical domain. One-half power singularities are created in accordance with an earlier conjecture; however, depending on initial conditions, other forms of singularities are also possible. For a specific initial condition, we follow a numerical procedure in the unphysical plane to compute the motion of a one-half singularity. This computation confirms our previous conjecture that the approach of a one-half singularity towards the physical domain corresponds to the development of a spike at the physical interface. Under some assumptions that appear to be consistent with numerical calculations, we present analytical evidence to suggest that a singularity of the one-half type cannot impinge the physical domain in finite time.

  16. {lambda} elements for one-dimensional singular problems with known strength of singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, K.K.; Surana, K.S.

    1996-10-01

    This paper presents a new and general procedure for designing special elements called {lambda} elements for one dimensional singular problems where the strength of the singularity is know. The {lambda} elements presented here are of type C{sup 0}. These elements also provide inter-element C{sup 0} continuity with p-version elements. The {lambda} elements do not require a precise knowledge of the extent of singular zone, i.e., their use may be extended beyond the singular zone. When {lambda} elements are used at the singularity, a singular problem behaves like a smooth problem thereby eliminating the need for h, p-adaptive processes all together.more » One dimensional steady state radial flow of an upper convected Maxwell fluid is considered as a sample problem. Least squares approach (or least squares finite element formulation: LSFEF) is used to construct the integral form (error functional I) from the differential equations. Numerical results presented for radially inward flow with inner radius r{sub i} = 0.1, 0.01, 0.001, 0.0001, 0.00001, and Deborah number of 2 (De = 2) demonstrate the accuracy, faster convergence of the iterative solution procedure, faster convergence rate of the error functional and mesh independent characteristics of the {lambda} elements regardless of the severity of the singularity.« less

  17. Tangled nonlinear driven chain reactions of all optical singularities

    NASA Astrophysics Data System (ADS)

    Vasil'ev, V. I.; Soskin, M. S.

    2012-03-01

    Dynamics of polarization optical singularities chain reactions in generic elliptically polarized speckle fields created in photorefractive crystal LiNbO3 was investigated in details Induced speckle field develops in the tens of minutes scale due to photorefractive 'optical damage effect' induced by incident beam of He-Ne laser. It was shown that polarization singularities develop through topological chain reactions of developing speckle fields driven by photorefractive nonlinearities induced by incident laser beam. All optical singularities (C points, optical vortices, optical diabolos,) are defined by instantaneous topological structure of the output wavefront and are tangled by singular optics lows. Therefore, they have develop in tangled way by six topological chain reactions driven by nonlinear processes in used nonlinear medium (photorefractive LiNbO3:Fe in our case): C-points and optical diabolos for right (left) polarized components domains with orthogonally left (right) polarized optical vortices underlying them. All elements of chain reactions consist from loop and chain links when nucleated singularities annihilated directly or with alien singularities in 1:9 ratio. The topological reason of statistics was established by low probability of far enough separation of born singularities pair from existing neighbor singularities during loop trajectories. Topology of developing speckle field was measured and analyzed by dynamic stokes polarimetry with few seconds' resolution. The hierarchy of singularities govern scenario of tangled chain reactions was defined. The useful space-time data about peculiarities of optical damage evolution were obtained from existence and parameters of 'islands of stability' in developing speckle fields.

  18. Locating the quantum critical point of the Bose-Hubbard model through singularities of simple observables.

    PubMed

    Łącki, Mateusz; Damski, Bogdan; Zakrzewski, Jakub

    2016-12-02

    We show that the critical point of the two-dimensional Bose-Hubbard model can be easily found through studies of either on-site atom number fluctuations or the nearest-neighbor two-point correlation function (the expectation value of the tunnelling operator). Our strategy to locate the critical point is based on the observation that the derivatives of these observables with respect to the parameter that drives the superfluid-Mott insulator transition are singular at the critical point in the thermodynamic limit. Performing the quantum Monte Carlo simulations of the two-dimensional Bose-Hubbard model, we show that this technique leads to the accurate determination of the position of its critical point. Our results can be easily extended to the three-dimensional Bose-Hubbard model and different Hubbard-like models. They provide a simple experimentally-relevant way of locating critical points in various cold atomic lattice systems.

  19. Collective Surfing of Chemically Active Particles

    NASA Astrophysics Data System (ADS)

    Masoud, Hassan; Shelley, Michael J.

    2014-03-01

    We study theoretically the collective dynamics of immotile particles bound to a 2D surface atop a 3D fluid layer. These particles are chemically active and produce a chemical concentration field that creates surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the particles, possibly concentrating them. For a 3D diffusion-dominated concentration field and Stokesian fluid we show that the surface dynamics of active particle density can be determined using nonlocal 2D surface operators. Remarkably, we also show that for both deep or shallow fluid layers this surface dynamics reduces to the 2D Keller-Segel model for the collective chemotactic aggregation of slime mold colonies. Mathematical analysis has established that the Keller-Segel model can yield finite-time, finite-mass concentration singularities. We show that such singular behavior occurs in our finite-depth system, and study the associated 3D flow structures.

  20. Embarked electrical network robust control based on singular perturbation model.

    PubMed

    Abdeljalil Belhaj, Lamya; Ait-Ahmed, Mourad; Benkhoris, Mohamed Fouad

    2014-07-01

    This paper deals with an approach of modelling in view of control for embarked networks which can be described as strongly coupled multi-sources, multi-loads systems with nonlinear and badly known characteristics. This model has to be representative of the system behaviour and easy to handle for easy regulators synthesis. As a first step, each alternator is modelled and linearized around an operating point and then it is subdivided into two lower order systems according to the singular perturbation theory. RST regulators are designed for each subsystem and tested by means of a software test-bench which allows predicting network behaviour in both steady and transient states. Finally, the designed controllers are implanted on an experimental benchmark constituted by two alternators supplying loads in order to test the dynamic performances in realistic conditions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Non-homogeneous harmonic analysis: 16 years of development

    NASA Astrophysics Data System (ADS)

    Volberg, A. L.; Èiderman, V. Ya

    2013-12-01

    This survey contains results and methods in the theory of singular integrals, a theory which has been developing dramatically in the last 15-20 years. The central (although not the only) topic of the paper is the connection between the analytic properties of integrals and operators with Calderón-Zygmund kernels and the geometric properties of the measures. The history is traced of the classical Painlevé problem of describing removable singularities of bounded analytic functions, which has provided a strong incentive for the development of this branch of harmonic analysis. The progress of recent decades has largely been based on the creation of an apparatus for dealing with non-homogeneous measures, and much attention is devoted to this apparatus here. Several open questions are stated, first and foremost in the multidimensional case, where the method of curvature of a measure is not available. Bibliography: 128 titles.

  2. Metric dimensional reduction at singularities with implications to Quantum Gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoica, Ovidiu Cristinel, E-mail: holotronix@gmail.com

    2014-08-15

    A series of old and recent theoretical observations suggests that the quantization of gravity would be feasible, and some problems of Quantum Field Theory would go away if, somehow, the spacetime would undergo a dimensional reduction at high energy scales. But an identification of the deep mechanism causing this dimensional reduction would still be desirable. The main contribution of this article is to show that dimensional reduction effects are due to General Relativity at singularities, and do not need to be postulated ad-hoc. Recent advances in understanding the geometry of singularities do not require modification of General Relativity, being justmore » non-singular extensions of its mathematics to the limit cases. They turn out to work fine for some known types of cosmological singularities (black holes and FLRW Big-Bang), allowing a choice of the fundamental geometric invariants and physical quantities which remain regular. The resulting equations are equivalent to the standard ones outside the singularities. One consequence of this mathematical approach to the singularities in General Relativity is a special, (geo)metric type of dimensional reduction: at singularities, the metric tensor becomes degenerate in certain spacetime directions, and some properties of the fields become independent of those directions. Effectively, it is like one or more dimensions of spacetime just vanish at singularities. This suggests that it is worth exploring the possibility that the geometry of singularities leads naturally to the spontaneous dimensional reduction needed by Quantum Gravity. - Highlights: • The singularities we introduce are described by finite geometric/physical objects. • Our singularities are accompanied by dimensional reduction effects. • They affect the metric, the measure, the topology, the gravitational DOF (Weyl = 0). • Effects proposed in other approaches to Quantum Gravity are obtained naturally. • The geometric dimensional reduction obtained opens new ways for Quantum Gravity.« less

  3. 75 FR 2129 - Lock+TM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ..., proposing to study the feasibility of Project Green Dream (Project No. 13625), to be located at the New... Dam are owned and operated by the U.S. Army Corps of Engineers. Project Green Dream would include new...

  4. Developing a Global Green Freight Action Plan

    EPA Pesticide Factsheets

    This Climate and Clean Air Coalition (CCAC) presentation gives an overview of the Global Green Freight Action Plan to improve the energy efficiency and environmental performance of freight operations worldwide along with developing an action plan.

  5. Green Chemistry Challenge: 2017 Small Business Award

    EPA Pesticide Factsheets

    Green Chemistry Challenge 2017 award winner, UniEnergy,improved a vanadium redox flow battery to double the energy density, have a broader operating temperature range, a smaller footprint, reduced chemical usage, and very little capacity degradation.

  6. Review and Assessment of the Health and Productivity Benefits of Green Schools: An Interim Report

    ERIC Educational Resources Information Center

    National Academies Press, 2006

    2006-01-01

    Some educational professionals have suggested that so-called green schools would result in superior performance and increased health for students and teachers. While there is no commonly accepted definition of a green school, there are a number of attributes that such schools appear to have: low cost operations, security, healthy and comfortable,…

  7. The Uniform Convergence of Eigenfunction Expansions of Schrödinger Operator in the Nikolskii Classes {H}_{p}^{\\alpha }(\\bar{\\Omega })

    NASA Astrophysics Data System (ADS)

    Jamaludin, N. A.; Ahmedov, A.

    2017-09-01

    Many boundary value problems in the theory of partial differential equations can be solved by separation methods of partial differential equations. When Schrödinger operator is considered then the influence of the singularity of potential on the solution of the partial differential equation is interest of researchers. In this paper the problems of the uniform convergence of the eigenfunction expansions of the functions from corresponding to the Schrödinger operator with the potential from classes of Sobolev are investigated. The spectral function corresponding to the Schrödinger operator is estimated in closed domain. The isomorphism of the Nikolskii classes is applied to prove uniform convergence of eigenfunction expansions of Schrödinger operator in closed domain.

  8. Spectral singularities and Bragg scattering in complex crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhi, S.

    2010-02-15

    Spectral singularities that spoil the completeness of Bloch-Floquet states may occur in non-Hermitian Hamiltonians with complex periodic potentials. Here an equivalence is established between spectral singularities in complex crystals and secularities that arise in Bragg diffraction patterns. Signatures of spectral singularities in a scattering process with wave packets are elucidated for a PT-symmetric complex crystal.

  9. On the splash and splat singularities for the one-phase inhomogeneous Muskat Problem

    NASA Astrophysics Data System (ADS)

    Córdoba, Diego; Pernas-Castaño, Tania

    2017-10-01

    In this paper, we study finite time splash and splat singularities formation for the interface of one fluid in a porous media with two different permeabilities. We prove that the smoothness of the interface breaks down in finite time into a splash singularity but this is not going to happen into a splat singularity.

  10. Classical stability of sudden and big rip singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrow, John D.; Lip, Sean Z. W.

    2009-08-15

    We introduce a general characterization of sudden cosmological singularities and investigate the classical stability of homogeneous and isotropic cosmological solutions of all curvatures containing these singularities to small scalar, vector, and tensor perturbations using gauge-invariant perturbation theory. We establish that sudden singularities at which the scale factor, expansion rate, and density are finite are stable except for a set of special parameter values. We also apply our analysis to the stability of Big Rip singularities and find the conditions for their stability against small scalar, vector, and tensor perturbations.

  11. Singularity embedding method in potential flow calculations

    NASA Technical Reports Server (NTRS)

    Jou, W. H.; Huynh, H.

    1982-01-01

    The so-called H-type mesh is used in a finite-element (or finite-volume) calculation of the potential flow past an airfoil. Due to coordinate singularity at the leading edge, a special singular trial function is used for the elements neighboring the leading edge. The results using the special singular elements are compared to those using the regular elements. It is found that the unreasonable pressure distribution obtained by the latter is removed by the embedding of the singular element. Suggestions to extend the present method to transonic cases are given.

  12. Naked singularities are not singular in distorted gravity

    NASA Astrophysics Data System (ADS)

    Garattini, Remo; Majumder, Barun

    2014-07-01

    We compute the Zero Point Energy (ZPE) induced by a naked singularity with the help of a reformulation of the Wheele-DeWitt equation. A variational approach is used for the calculation with Gaussian Trial Wave Functionals. The one loop contribution of the graviton to the ZPE is extracted keeping under control the UltraViolet divergences by means of a distorted gravitational field. Two examples of distortion are taken under consideration: Gravity's Rainbow and Noncommutative Geometry. Surprisingly, we find that the ZPE is no more singular when we approach the singularity.

  13. Contracting singular horseshoe

    NASA Astrophysics Data System (ADS)

    Morales, C. A.; San Martín, B.

    2017-11-01

    We suggest a notion of hyperbolicity adapted to the geometric Rovella attractor (Robinson 2012 An Introduction to Dynamical Systems—Continuous and Discrete (Pure and Applied Undergraduate Texts vol 19) 2nd edn (Providence, RI: American Mathematical Society)) . More precisely, we call a partially hyperbolic set asymptotically sectional-hyperbolic if its singularities are hyperbolic and if its central subbundle is asymptotically sectional expanding outside the stable manifolds of the singularities. We prove that there are highly chaotic flows with Rovella-like singularities exhibiting this kind of hyperbolicity. We shall call them contracting singular horseshoes.

  14. Null cosmological singularities and free strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, K.

    2010-03-15

    We continue exploring free strings in the background of null Kasner-like cosmological singularities, following K. Narayan, arXiv:0904.4532. We study the free string Schrodinger wave functional along the lines of K. Narayan, arXiv:0807.1517. We find the wave functional to be nonsingular in the vicinity of singularities whose Kasner exponents satisfy certain relations. We compare this with the description in other variables. We then study certain regulated versions of these singularities where the singular region is replaced by a substringy but nonsingular region and study the string spectra in these backgrounds. The string modes can again be solved for exactly, giving somemore » insight into how string oscillator states get excited near the singularity.« less

  15. Probing the degenerate states of V-point singularities.

    PubMed

    Ram, B S Bhargava; Sharma, Anurag; Senthilkumaran, Paramasivam

    2017-09-15

    V-points are polarization singularities in spatially varying linearly polarized optical fields and are characterized by the Poincare-Hopf index η. Each V-point singularity is a superposition of two oppositely signed orbital angular momentum states in two orthogonal spin angular momentum states. Hence, a V-point singularity has zero net angular momentum. V-points with given |η| have the same (amplitude) intensity distribution but have four degenerate polarization distributions. Each of these four degenerate states also produce identical diffraction patterns. Hence to distinguish these degenerate states experimentally, we present in this Letter a method involving a combination of polarization transformation and diffraction. This method also shows the possibility of using polarization singularities in place of phase singularities in optical communication and quantum information processing.

  16. Phase singularities of the transverse field component of high numerical aperture dark-hollow Gaussian beams in the focal region

    NASA Astrophysics Data System (ADS)

    Liu, Pusheng; Lü, Baida

    2007-04-01

    By using the vectorial Debye diffraction theory, phase singularities of high numerical aperture (NA) dark-hollow Gaussian beams in the focal region are studied. The dependence of phase singularities on the truncation parameter δ and semi-aperture angle α (or equally, NA) is illustrated numerically. A comparison of phase singularities of high NA dark-hollow Gaussian beams with those of scalar paraxial Gaussian beams and high NA Gaussian beams is made. For high NA dark-hollow Gaussian beams the beam order n additionally affects the spatial distribution of phase singularities, and there exist phase singularities outside the focal plane, which may be created or annihilated by variation of the semi-aperture angle in a certain region.

  17. Singularity: Scientific containers for mobility of compute.

    PubMed

    Kurtzer, Gregory M; Sochat, Vanessa; Bauer, Michael W

    2017-01-01

    Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science.

  18. Singularity: Scientific containers for mobility of compute

    PubMed Central

    Kurtzer, Gregory M.; Bauer, Michael W.

    2017-01-01

    Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science. PMID:28494014

  19. Managing focal fields of vector beams with multiple polarization singularities.

    PubMed

    Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Gan, Xuetao; Zhao, Jianlin

    2016-11-10

    We explore the tight focusing behavior of vector beams with multiple polarization singularities, and analyze the influences of the number, position, and topological charge of the singularities on the focal fields. It is found that the ellipticity of the local polarization states at the focal plane could be determined by the spatial distribution of the polarization singularities of the vector beam. When the spatial location and topological charge of singularities have even-fold rotation symmetry, the transverse fields at the focal plane are locally linearly polarized. Otherwise, the polarization state becomes a locally hybrid one. By appropriately arranging the distribution of the polarization singularities in the vector beam, the polarization distributions of the focal fields could be altered while the intensity maintains unchanged.

  20. Image restoration consequences of the lack of a two variable fundamental theorem of algebra

    NASA Technical Reports Server (NTRS)

    Kreznar, J. E.

    1977-01-01

    It has been shown that, at least for one pair of otherwise attractive spaces of images and operators, singular convolution operators do not necessarily have nonsingular neighbors. This result is a nuisance in image restoration. It is suggested that this difficulty might be overcome if the following three conditions are satisfied: (1) a weaker constraint than absolute summability can be identified for useful operators: (2) if the z-transform of an operator has at most a finite number of zeros on the unit torus, then the inverse z-transform formula yields an inverse operator meeting the weaker constraint: and (3) operators whose z-transforms are zero in a set of real, closed curves on the unit torus have neighbors which are zero in only a finite set of points on the unit torus.

  1. Multifractality as a Measure of Complexity in Solar Flare Activity

    NASA Astrophysics Data System (ADS)

    Sen, Asok K.

    2007-03-01

    In this paper we use the notion of multifractality to describe the complexity in H α flare activity during the solar cycles 21, 22, and 23. Both northern and southern hemisphere flare indices are analyzed. Multifractal behavior of the flare activity is characterized by calculating the singularity spectrum of the daily flare index time series in terms of the Hölder exponent. The broadness of the singularity spectrum gives a measure of the degree of multifractality or complexity in the flare index data. The broader the spectrum, the richer and more complex is the structure with a higher degree of multifractality. Using this broadness measure, complexity in the flare index data is compared between the northern and southern hemispheres in each of the three cycles, and among the three cycles in each of the two hemispheres. Other parameters of the singularity spectrum can also provide information about the fractal properties of the flare index data. For instance, an asymmetry to the left or right in the singularity spectrum indicates a dominance of high or low fractal exponents, respectively, reflecting a relative abundance of large or small fluctuations in the total energy emitted by the flares. Our results reveal that in the even (22nd) cycle the singularity spectra are very similar for the northern and southern hemispheres, whereas in the odd cycles (21st and 23rd) they differ significantly. In particular, we find that in cycle 21, the northern hemisphere flare index data have higher complexity than its southern counterpart, with an opposite pattern prevailing in cycle 23. Furthermore, small-scale fluctuations in the flare index time series are predominant in the northern hemisphere in the 21st cycle and are predominant in the southern hemisphere in the 23rd cycle. Based on these findings one might suggest that, from cycle to cycle, there exists a smooth switching between the northern and southern hemispheres in the multifractality of the flaring process. This new observational result may bring an insight into the mechanisms of the solar dynamo operation and may also be useful for forecasting solar cycles.

  2. Green Supercomputing at Argonne

    ScienceCinema

    Pete Beckman

    2017-12-09

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputing—everything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently.

  3. Singular perturbation and time scale approaches in discrete control systems

    NASA Technical Reports Server (NTRS)

    Naidu, D. S.; Price, D. B.

    1988-01-01

    After considering a singularly perturbed discrete control system, a singular perturbation approach is used to obtain outer and correction subsystems. A time scale approach is then applied via block diagonalization transformations to decouple the system into slow and fast subsystems. To a zeroth-order approximation, the singular perturbation and time-scale approaches are found to yield equivalent results.

  4. 7 CFR 900.80 - Words in the singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.80 Section 900.80....C. 608b(b) and 7 U.S.C. 608e Covering Fruits, Vegetables, and Nuts § 900.80 Words in the singular form. Words in this subpart in the singular form shall be deemed to import the plural, and vice versa...

  5. The mechanics of delamination in fiber-reinforced composite materials. Part 1: Stress singularities and solution structure

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1983-01-01

    The fundamental mechanics of delamination in fiber composite laminates is studied. Mathematical formulation of the problem is based on laminate anisotropic elasticity theory and interlaminar fracture mechanics concepts. Stress singularities and complete solution structures associated with general composite delaminations are determined. For a fully open delamination with traction-free surfaces, oscillatory stress singularities always appear, leading to physically inadmissible field solutions. A refined model is introduced by considering a partially closed delamination with crack surfaces in finite-length contact. Stress singularities associated with a partially closed delamination having frictional crack-surface contact are determined, and are found to be diferent from the inverse square-root one of the frictionless-contact case. In the case of a delamination with very small area of crack closure, a simplified model having a square-root stress singularity is employed by taking the limit of the partially closed delamination. The possible presence of logarithmic-type stress singularity is examined; no logarithmic singularity of any kind is found in the composite delamination problem. Numerical examples of dominant stress singularities are shown for delaminations having crack-tip closure with different frictional coefficients between general (1) and (2) graphite-epoxy composites.

  6. Singular trajectories: space-time domain topology of developing speckle fields

    NASA Astrophysics Data System (ADS)

    Vasil'ev, Vasiliy; Soskin, Marat S.

    2010-02-01

    It is shown the space-time dynamics of optical singularities is fully described by singularities trajectories in space-time domain, or evolution of transverse coordinates(x, y) in some fixed plane z0. The dynamics of generic developing speckle fields was realized experimentally by laser induced scattering in LiNbO3:Fe photorefractive crystal. The space-time trajectories of singularities can be divided topologically on two classes with essentially different scenario and duration. Some of them (direct topological reactions) consist from nucleation of singularities pair at some (x, y, z0, t) point, their movement and annihilation. They possess form of closed loops with relatively short time of existence. Another much more probable class of trajectories are chain topological reactions. Each of them consists from sequence of links, i.e. of singularities nucleation in various points (xi yi, ti) and following annihilation of both singularities in other space-time points with alien singularities of opposite topological indices. Their topology and properties are established. Chain topological reactions can stop on the borders of a developing speckle field or go to infinity. Examples of measured both types of topological reactions for optical vortices (polarization C points) in scalar (elliptically polarized) natural developing speckle fields are presented.

  7. New classification methods on singularity of mechanism

    NASA Astrophysics Data System (ADS)

    Luo, Jianguo; Han, Jianyou

    2010-07-01

    Based on the analysis of base and methods of singularity of mechanism, four methods obtained according to the factors of moving states of mechanism and cause of singularity and property of linear complex of singularity and methods in studying singularity, these bases and methods can't reflect the direct property and systematic property and controllable property of the structure of mechanism in macro, thus can't play an excellent role in guiding to evade the configuration before the appearance of singularity. In view of the shortcomings of forementioned four bases and methods, six new methods combined with the structure and exterior phenomena and motion control of mechanism directly and closely, classfication carried out based on the factors of moving base and joint component and executor and branch and acutating source and input parameters, these factors display the systemic property in macro, excellent guiding performance can be expected in singularity evasion and machine design and machine control based on these new bases and methods.

  8. Steering Law Design for Redundant Single Gimbal Control Moment Gyro Systems. M.S. Thesis - Massachusetts Inst. of Technology.

    NASA Technical Reports Server (NTRS)

    Bedrossian, Nazareth Sarkis

    1987-01-01

    The correspondence between robotic manipulators and single gimbal Control Moment Gyro (CMG) systems was exploited to aid in the understanding and design of single gimbal CMG Steering laws. A test for null motion near a singular CMG configuration was derived which is able to distinguish between escapable and unescapable singular states. Detailed analysis of the Jacobian matrix null-space was performed and results were used to develop and test a variety of single gimbal CMG steering laws. Computer simulations showed that all existing singularity avoidance methods are unable to avoid Elliptic internal singularities. A new null motion algorithm using the Moore-Penrose pseudoinverse, however, was shown by simulation to avoid Elliptic type singularities under certain conditions. The SR-inverse, with appropriate null motion was proposed as a general approach to singularity avoidance, because of its ability to avoid singularities through limited introduction of torque error. Simulation results confirmed the superior performance of this method compared to the other available and proposed pseudoinverse-based Steering laws.

  9. Infinite derivative gravity: non-singular cosmology & blackhole solutions

    NASA Astrophysics Data System (ADS)

    Mazumdar, A.

    Both Einstein’s theory of General Relativity and Newton’s theory of gravity possess a short distance and small time scale catastrophe. The blackhole singularity and cosmological Big Bang singularity problems highlight that current theories of gravity are incomplete description at early times and small distances. I will discuss how one can potentially resolve these fundamental problems at a classical level and quantum level. In particular, I will discuss infinite derivative theories of gravity, where gravitational interactions become weaker in the ultraviolet, and therefore resolving some of the classical singularities, such as Big Bang and Schwarzschild singularity for compact non-singular objects with mass up to 1025 grams. In this lecture, I will discuss quantum aspects of infinite derivative gravity and discuss few aspects which can make the theory asymptotically free in the UV.

  10. Three dimensional canonical singularity and five dimensional N = 1 SCFT

    NASA Astrophysics Data System (ADS)

    Xie, Dan; Yau, Shing-Tung

    2017-06-01

    We conjecture that every three dimensional canonical singularity defines a five dimensional N = 1 SCFT. Flavor symmetry can be found from singularity structure: non-abelian flavor symmetry is read from the singularity type over one dimensional singular locus. The dimension of Coulomb branch is given by the number of compact crepant divisors from a crepant resolution of singularity. The detailed structure of Coulomb branch is described as follows: a) a chamber of Coulomb branch is described by a crepant resolution, and this chamber is given by its Nef cone and the prepotential is computed from triple intersection numbers; b) Crepant resolution is not unique and different resolutions are related by flops; Nef cones from crepant resolutions form a fan which is claimed to be the full Coulomb branch.

  11. Close up view of switchboard panel operator's station #1; panel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of switchboard panel operator's station #1; panel contains 1200 push-pull button switches which control poer to red, green, and white indicating lights on the model board; white lights indicate that power is off; green lights indicate that equipment (switch breaker or transformer) is off; red lights indicate that equipment is on - Thirtieth Street Station, Power Director Center, Thirtieth & Market Streets in Amtrak Railroad Station, Philadelphia, Philadelphia County, PA

  12. Diffraction of V-point singularities through triangular apertures.

    PubMed

    Ram, B S Bhargava; Sharma, Anurag; Senthilkumaran, P

    2017-05-01

    In this paper we present experimental studies on diffraction of V-point singularities through equilateral and isosceles right triangular apertures. When V-point index, also called Poincare-Hopf index (η), of the optical field is +1, the diffraction disintegrates it into two monstars/lemons. When V-point index η is -1, diffraction produces two stars. The diffraction pattern, unlike phase singularity, is insensitive to polarity of the polarization singularity and the intensity pattern remains invariant. Higher order V-point singularities are generated using Sagnac interferometer and it is observed that the diffraction disintegrates them into lower order C-points.

  13. Cautious but committed: moving toward adaptive planning and operation strategies for renewable energy's wildlife implications.

    PubMed

    Köppel, Johann; Dahmen, Marie; Helfrich, Jennifer; Schuster, Eva; Bulling, Lea

    2014-10-01

    Wildlife planning for renewable energy must cope with the uncertainties of potential wildlife impacts. Unfortunately, the environmental policies which instigate renewable energy and those which protect wildlife are not coherently aligned-creating a green versus green dilemma. Thus, climate mitigation efforts trigger renewable energy development, but then face substantial barriers from biodiversity protection instruments and practices. This article briefly reviews wind energy and wildlife interactions, highlighting the lively debated effects on bats. Today, planning and siting of renewable energy are guided by the precautionary principle in an attempt to carefully address wildlife challenges. However, this planning attitude creates limitations as it struggles to negotiate the aforementioned green versus green dilemma. More adaptive planning and management strategies and practices hold the potential to reconcile these discrepancies to some degree. This adaptive approach is discussed using facets of case studies from policy, planning, siting, and operational stages of wind energy in Germany and the United States, with one case showing adaptive planning in action for solar energy as well. This article attempts to highlight the benefits of more adaptive approaches as well as the possible shortcomings, such as reduced planning security for renewable energy developers. In conclusion, these studies show that adaptive planning and operation strategies can be designed to supplement and enhance the precautionary principle in wildlife planning for green energy.

  14. Anaerobic digestion of municipal solid wastes containing variable proportions of waste types.

    PubMed

    Akunna, J C; Abdullahi, Y A; Stewart, N A

    2007-01-01

    In many parts of the world there are significant seasonal variations in the production of the main organic wastes, food and green wastes. These waste types display significant differences in their biodegradation rates. This study investigated the options for ensuring process stability during the start up and operation of thermophilic high-solids anaerobic digestion of feedstock composed of varying proportions of food and green wastes. The results show that high seed sludge to feedstock ratio (or low waste loading rate) is necessary for ensuring process pH stability without chemical addition. It was also found that the proportion of green wastes in the feedstock can be used to regulate process pH, particularly when operating at high waste loading rates (or low seed sludge to feedstock ratios). The need for chemical pH correction during start-up and digestion operation decreased with increase in green wastes content of the feedstock. Food wastes were found to be more readily biodegradable leading to higher solids reduction while green wastes brought about pH stability and higher digestate solid content. Combining both waste types in various proportions brought about feedstock with varying buffering capacity and digestion performance. Thus, careful selection of feedstock composition can minimise the need for chemical pH regulation as well as reducing the cost for digestate dewatering for final disposal.

  15. Cautious but Committed: Moving Toward Adaptive Planning and Operation Strategies for Renewable Energy's Wildlife Implications

    NASA Astrophysics Data System (ADS)

    Köppel, Johann; Dahmen, Marie; Helfrich, Jennifer; Schuster, Eva; Bulling, Lea

    2014-10-01

    Wildlife planning for renewable energy must cope with the uncertainties of potential wildlife impacts. Unfortunately, the environmental policies which instigate renewable energy and those which protect wildlife are not coherently aligned—creating a green versus green dilemma. Thus, climate mitigation efforts trigger renewable energy development, but then face substantial barriers from biodiversity protection instruments and practices. This article briefly reviews wind energy and wildlife interactions, highlighting the lively debated effects on bats. Today, planning and siting of renewable energy are guided by the precautionary principle in an attempt to carefully address wildlife challenges. However, this planning attitude creates limitations as it struggles to negotiate the aforementioned green versus green dilemma. More adaptive planning and management strategies and practices hold the potential to reconcile these discrepancies to some degree. This adaptive approach is discussed using facets of case studies from policy, planning, siting, and operational stages of wind energy in Germany and the United States, with one case showing adaptive planning in action for solar energy as well. This article attempts to highlight the benefits of more adaptive approaches as well as the possible shortcomings, such as reduced planning security for renewable energy developers. In conclusion, these studies show that adaptive planning and operation strategies can be designed to supplement and enhance the precautionary principle in wildlife planning for green energy.

  16. Oregon Green Light CVO evaluation : final report : executive summary

    DOT National Transportation Integrated Search

    2001-04-01

    This report summarizes the findings of all of the Detailed Test Plans conducted for the evaluation of the Oregon Green Light Commercial Vehicle Operations (CVO) project. This project was responsible for the installation of 21 systems containing weigh...

  17. Excitation of propagating magnetization waves by microstrip antennas

    NASA Astrophysics Data System (ADS)

    Dmitriev, V. F.; Kalinikos, B. A.

    1988-11-01

    We discuss the self-consistent theory of excitation of dipole-exchange magnetization waves by microstrip antennas in a metal-dielectric-ferrite-dielectric-metal stratified structure, magnetized under an arbitrary angle to the surface. Spin-wave Green's functions are derived, describing the response of the spin-system to a spatially inhomogeneous varying magnetic field. The radiative resistance of microstrip antenna is calculated. In this case the distribution of surface current density in the antenna is found on the basis of the analytic solution of a singular integral equation. The nature of the effect of metallic screens and redistributed surface current densities in the antenna on the frequency dependence of the resistive radiation is investigated. Approximate relations are obtained, convenient for practical calculations of radiative resistance of microstrip antennas both in a free and in a screened ferromagnetic film. The theoretical calculations are verified by data of experiments carried out on monocrystalline films of iron-yttrium garnet.

  18. Actively addressed single pixel full-colour plasmonic display

    NASA Astrophysics Data System (ADS)

    Franklin, Daniel; Frank, Russell; Wu, Shin-Tson; Chanda, Debashis

    2017-05-01

    Dynamic, colour-changing surfaces have many applications including displays, wearables and active camouflage. Plasmonic nanostructures can fill this role by having the advantages of ultra-small pixels, high reflectivity and post-fabrication tuning through control of the surrounding media. However, previous reports of post-fabrication tuning have yet to cover a full red-green-blue (RGB) colour basis set with a single nanostructure of singular dimensions. Here, we report a method which greatly advances this tuning and demonstrates a liquid crystal-plasmonic system that covers the full RGB colour basis set, only as a function of voltage. This is accomplished through a surface morphology-induced, polarization-dependent plasmonic resonance and a combination of bulk and surface liquid crystal effects that manifest at different voltages. We further demonstrate the system's compatibility with existing LCD technology by integrating it with a commercially available thin-film-transistor array. The imprinted surface interfaces readily with computers to display images as well as video.

  19. 40 CFR 60.546 - Reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cementing operation, each sidewall cementing operation, each green tire spraying operation where organic solvent-based sprays are used, each Michelin-A operation, each Michelin-B operation, and each Michelin-C...) is applicable) to be employed. (b) Each owner or operator subject to the provisions of this subpart...

  20. Singularity-sensitive gauge-based radar rainfall adjustment methods for urban hydrological applications

    NASA Astrophysics Data System (ADS)

    Wang, L.-P.; Ochoa-Rodríguez, S.; Onof, C.; Willems, P.

    2015-09-01

    Gauge-based radar rainfall adjustment techniques have been widely used to improve the applicability of radar rainfall estimates to large-scale hydrological modelling. However, their use for urban hydrological applications is limited as they were mostly developed based upon Gaussian approximations and therefore tend to smooth off so-called "singularities" (features of a non-Gaussian field) that can be observed in the fine-scale rainfall structure. Overlooking the singularities could be critical, given that their distribution is highly consistent with that of local extreme magnitudes. This deficiency may cause large errors in the subsequent urban hydrological modelling. To address this limitation and improve the applicability of adjustment techniques at urban scales, a method is proposed herein which incorporates a local singularity analysis into existing adjustment techniques and allows the preservation of the singularity structures throughout the adjustment process. In this paper the proposed singularity analysis is incorporated into the Bayesian merging technique and the performance of the resulting singularity-sensitive method is compared with that of the original Bayesian (non singularity-sensitive) technique and the commonly used mean field bias adjustment. This test is conducted using as case study four storm events observed in the Portobello catchment (53 km2) (Edinburgh, UK) during 2011 and for which radar estimates, dense rain gauge and sewer flow records, as well as a recently calibrated urban drainage model were available. The results suggest that, in general, the proposed singularity-sensitive method can effectively preserve the non-normality in local rainfall structure, while retaining the ability of the original adjustment techniques to generate nearly unbiased estimates. Moreover, the ability of the singularity-sensitive technique to preserve the non-normality in rainfall estimates often leads to better reproduction of the urban drainage system's dynamics, particularly of peak runoff flows.

  1. Boundary Element Method in a Self-Gravitating Elastic Half-Space and Its Application to Deformation Induced by Magma Chambers

    NASA Astrophysics Data System (ADS)

    Fang, M.; Hager, B. H.

    2014-12-01

    In geophysical applications the boundary element method (BEM) often carries the essential physics in addition to being an efficient numerical scheme. For use of the BEM in a self-gravitating uniform half-space, we made extra effort and succeeded in deriving the fundamental solution analytically in closed-form. A problem that goes deep into the heart of the classic BEM is encountered when we try to apply the new fundamental solution in BEM for deformation field induced by a magma chamber or a fluid-filled reservoir. The central issue of the BEM is the singular integral arising from determination of the boundary values. A widely employed technique is to rescale the singular boundary point into a small finite volume and then shrink it to extract the limits. This operation boils down to the calculation of the so-called C-matrix. Authors in the past take the liberty of either adding or subtracting a small volume. By subtracting a small volume, the C-matrix is (1/2)I on a smooth surface, where I is the identity matrix; by adding a small volume, we arrive at the same C-matrix in the form of I - (1/2)I. This evenness is a result of the spherical symmetry of Kelvin's fundamental solution employed. When the spherical symmetry is broken by gravity, the C-matrix is polarized. And we face the choice between right and wrong, for adding and subtracting a small volume yield different C-matrices. Close examination reveals that both derivations, addition and subtraction of a small volume, are ad hoc. To resolve the issue we revisit the Somigliana identity with a new derivation and careful step-by-step anatomy. The result proves that even though both adding and subtracting a small volume appear to twist the original boundary, only addition essentially modifies the original boundary and consequently modifies the physics of the original problem in a subtle way. The correct procedure is subtraction. We complete a new BEM theory by introducing in full analytical form what we call the singular stress tensor for the fundamental solution. We partition the stress tensor of the fundamental solution into a singular part and a regular part. In this way all singular integrals systematically shift into the easy singular stress tensor. Applications of this new BEM to deformation and gravitational perturbation induced by magma chambers of finite volume will be presented.

  2. An operational modal analysis method in frequency and spatial domain

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Zhang, Lingmi; Tamura, Yukio

    2005-12-01

    A frequency and spatial domain decomposition method (FSDD) for operational modal analysis (OMA) is presented in this paper, which is an extension of the complex mode indicator function (CMIF) method for experimental modal analysis (EMA). The theoretical background of the FSDD method is clarified. Singular value decomposition is adopted to separate the signal space from the noise space. Finally, an enhanced power spectrum density (PSD) is proposed to obtain more accurate modal parameters by curve fitting in the frequency domain. Moreover, a simulation case and an application case are used to validate this method.

  3. Naked shell singularities on the brane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seahra, Sanjeev S.

    By utilizing nonstandard slicings of 5-dimensional Schwarzschild and Schwarzschild-AdS manifolds based on isotropic coordinates, we generate static and spherically-symmetric braneworld spacetimes containing shell-like naked null singularities. For planar slicings, we find that the brane-matter sourcing the solution is a perfect fluid with an exotic equation of state and a pressure singularity where the brane crosses the bulk horizon. From a relativistic point of view, such a singularity is required to maintain matter infinitesimally above the surface of a black hole. From the point of view of the AdS/CFT conjecture, the singular horizon can be seen as one possible quantum correctionmore » to a classical black hole geometry. Various generalizations of planar slicings are also considered for a Ricci-flat bulk, and we find that singular horizons and exotic matter distributions are common features.« less

  4. Experimental verification of free-space singular boundary conditions in an invisibility cloak

    NASA Astrophysics Data System (ADS)

    Wu, Qiannan; Gao, Fei; Song, Zhengyong; Lin, Xiao; Zhang, Youming; Chen, Huanyang; Zhang, Baile

    2016-04-01

    A major issue in invisibility cloaking, which caused intense mathematical discussions in the past few years but still remains physically elusive, is the plausible singular boundary conditions associated with the singular metamaterials at the inner boundary of an invisibility cloak. The perfect cloaking phenomenon, as originally proposed by Pendry et al for electromagnetic waves, cannot be treated as physical before a realistic inner boundary of a cloak is demonstrated. Although a recent demonstration has been done in a waveguide environment, the exotic singular boundary conditions should apply to a general environment as in free space. Here we fabricate a metamaterial surface that exhibits the singular boundary conditions and demonstrate its performance in free space. Particularly, the phase information of waves reflected from this metamaterial surface is explicitly measured, confirming the singular responses of boundary conditions for an invisibility cloak.

  5. Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi.

    PubMed

    Michielsen, K; De Raedt, H; Stavenga, D G

    2010-05-06

    We present a comparison of the computer simulation data of gyroid nanostructures with optical measurements (reflectivity spectra and scattering diagrams) of ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi. We demonstrate that the omnidirectional green colour arises from the gyroid cuticular structure grown in the domains of different orientation. We also show that this three-dimensional structure, operating as a biophotonic crystal, gives rise to various polarization effects. We briefly discuss the possible biological utility of the green coloration and polarization effects.

  6. New method for detecting singularities in experimental incompressible flows

    NASA Astrophysics Data System (ADS)

    Kuzzay, Denis; Saw, Ewe-Wei; Martins, Fabio J. W. A.; Faranda, Davide; Foucaut, Jean-Marc; Daviaud, François; Dubrulle, Bérengère

    2017-06-01

    We introduce two new criteria based on the work of Duchon and Robert (2000 Nonlinearity 13 249) and Eyink (2006 Phys. Rev. E 74 066302), which allow for the local detection of Navier-Stokes singularities in experimental flows. We discuss the difference between non-dissipative or dissipative Euler quasi-singularities and genuine Navier-Stokes dissipative singularites, and classify them with respect to their Hölder exponent h. We show that our criteria allow us to detect areas in a flow where the velocity field is no more regular than Hölder continuous with some Hölder exponent h ≤slant 1/2 . We illustrate our discussion using classical tomographic particle image velocimetry (TPIV) measurements obtained inside a high Reynolds number flow generated in the boundary layer of a wind tunnel. Our study shows that, in order to detect singularities or quasi-singularities, one does not need to have access to the whole velocity field inside a volume, but can instead look for them from stereoscopic PIV data on a plane. We also provide a discussion about the link between areas detected by our criteria and areas corresponding to large vorticity. We argue that this link might provide either a clue about the genesis of these quasi-singularities or a way to discriminate dissipative Euler quasi-singularities and genuine Navier-Stokes singularities.

  7. The mechanics of delamination in fiber-reinforced composite materials. I - Stress singularities and solution structure

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1983-01-01

    The fundamental mechanics of delamination in fiber composite laminates is studied. Mathematical formulation of the problem is based on laminate anisotropic elasticity theory and interlaminar fracture mechanics concepts. Stress singularities and complete solution structures associated with general composite delaminations are determined. For a fully open delamination with traction-free surfaces, oscillatory stress singularities always appear, leading to physically inadmissible field solutions. A refined model is introduced by considering a partially closed delamination with crack surfaces in finite-length contact. Stress singularities associated with a partially closed delamination having frictional crack-surface contact are determined, and are found to be different from the inverse square-root one of the frictionless-contact case. In the case of a delamination with very small area of crack closure, a simplified model having a square-root stress singularity is employed by taking the limit of the partially closed delamination. The possible presence of logarithmic-type stress singularity is examined; no logarithmic singularity of any kind is found in the composite delamination problem. Numerical examples of dominant stress singularities are shown for delaminations having crack-tip closure with different frictional coefficients between general (1) and (2) graphite-epoxy composites. Previously announced in STAR as N84-13221

  8. Singularities, swallowtails and Dirac points. An analysis for families of Hamiltonians and applications to wire networks, especially the Gyroid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufmann, Ralph M., E-mail: rkaufman@math.purdue.edu; Khlebnikov, Sergei, E-mail: skhleb@physics.purdue.edu; Wehefritz-Kaufmann, Birgit, E-mail: ebkaufma@math.purdue.edu

    2012-11-15

    Motivated by the Double Gyroid nanowire network we develop methods to detect Dirac points and classify level crossings, aka. singularities in the spectrum of a family of Hamiltonians. The approach we use is singularity theory. Using this language, we obtain a characterization of Dirac points and also show that the branching behavior of the level crossings is given by an unfolding of A{sub n} type singularities. Which type of singularity occurs can be read off a characteristic region inside the miniversal unfolding of an A{sub k} singularity. We then apply these methods in the setting of families of graph Hamiltonians,more » such as those for wire networks. In the particular case of the Double Gyroid we analytically classify its singularities and show that it has Dirac points. This indicates that nanowire systems of this type should have very special physical properties. - Highlights: Black-Right-Pointing-Pointer New method for analytically finding Dirac points. Black-Right-Pointing-Pointer Novel relation of level crossings to singularity theory. Black-Right-Pointing-Pointer More precise version of the von-Neumann-Wigner theorem for arbitrary smooth families of Hamiltonians of fixed size. Black-Right-Pointing-Pointer Analytical proof of the existence of Dirac points for the Gyroid wire network.« less

  9. Harmonic analysis of electric locomotive and traction power system based on wavelet singular entropy

    NASA Astrophysics Data System (ADS)

    Dun, Xiaohong

    2018-05-01

    With the rapid development of high-speed railway and heavy-haul transport, the locomotive and traction power system has become the main harmonic source of China's power grid. In response to this phenomenon, the system's power quality issues need timely monitoring, assessment and governance. Wavelet singular entropy is an organic combination of wavelet transform, singular value decomposition and information entropy theory, which combines the unique advantages of the three in signal processing: the time-frequency local characteristics of wavelet transform, singular value decomposition explores the basic modal characteristics of data, and information entropy quantifies the feature data. Based on the theory of singular value decomposition, the wavelet coefficient matrix after wavelet transform is decomposed into a series of singular values that can reflect the basic characteristics of the original coefficient matrix. Then the statistical properties of information entropy are used to analyze the uncertainty of the singular value set, so as to give a definite measurement of the complexity of the original signal. It can be said that wavelet entropy has a good application prospect in fault detection, classification and protection. The mat lab simulation shows that the use of wavelet singular entropy on the locomotive and traction power system harmonic analysis is effective.

  10. THE GREEN DORM: A SUSTAINABLE RESIDENCE AND LIVING LABORATORY FOR STANFORD UNIVERSITY

    EPA Science Inventory

    The Lotus Living Laboratory at Stanford University is exploring sustainable building technologies and sustainable living habits through the design, construction and operation of The Green Dorm, an innovative facility containing residential, laboratory and commons space. Both ...

  11. Noise test-resilient wheels Massachusetts Bay Transportation Authority green line

    DOT National Transportation Integrated Search

    1982-11-30

    This document presents the results of noise and ground-borne vibration measurements made for three rail transit vehicles operating on the Green Line of the Massachusetts Bay Transportation Authority (MBTA). The purpose of these measurements was to as...

  12. Elements of Green.

    ERIC Educational Resources Information Center

    Turckes, Steven; Engelbrecht, Kathie

    2002-01-01

    Discusses incorporating green design into school construction, asserting that schools can improve their impact on the environment and reduce their operating costs while educating people about the value of sustainable design. Addresses energy reduction (including daylighting), site design for low environmental impact, flexible design, indoor air…

  13. Dyadic Green function for the electromagnetic field in mutilayered isotropic media - An operator approach

    NASA Astrophysics Data System (ADS)

    Sphicopoulos, T.; Teodoridis, V.; Gardiol, F. E.

    1985-08-01

    The dyadic Green functions of electric and magnetic type for multilayered isotropic media are discussed, and a tractable form is obtained by an operator method, which does not involve infinite sums of Hansen functions. The formulation considers a TE-TM decomposition and the use of propagation matrices. Special attention is given to the application of these functions to the analysis of problems in the field of nondestructive measurement of materials.

  14. Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oshemkov, Andrey A

    2010-10-06

    A complete invariant is constructed that is a solution of the problem of semilocal classification of saddle singularities of integrable Hamiltonian systems. Namely, a certain combinatorial object (an f{sub n}-graph) is associated with every nondegenerate saddle singularity of rank zero; as a result, the problem of semilocal classification of saddle singularities of rank zero is reduced to the problem of enumeration of the f{sub n}-graphs. This enables us to describe a simple algorithm for obtaining the lists of saddle singularities of rank zero for a given number of degrees of freedom and a given complexity. Bibliography: 24 titles.

  15. Boundary-layer effects in composite laminates: Free-edge stress singularities, part 6

    NASA Technical Reports Server (NTRS)

    Wanag, S. S.; Choi, I.

    1981-01-01

    A rigorous mathematical model was obtained for the boundary-layer free-edge stress singularity in angleplied and crossplied fiber composite laminates. The solution was obtained using a method consisting of complex-variable stress function potentials and eigenfunction expansions. The required order of the boundary-layer stress singularity is determined by solving the transcendental characteristic equation obtained from the homogeneous solution of the partial differential equations. Numerical results obtained show that the boundary-layer stress singularity depends only upon material elastic constants and fiber orientation of the adjacent plies. For angleplied and crossplied laminates the order of the singularity is weak in general.

  16. Constellation of phase singularities in a speckle-like pattern for optical vortex metrology applied to biological kinematic analysis.

    PubMed

    Wang, Wei; Qiao, Yu; Ishijima, Reika; Yokozeki, Tomoaki; Honda, Daigo; Matsuda, Akihiro; Hanson, Steen G; Takeda, Mitsuo

    2008-09-01

    A novel technique for biological kinematic analysis is proposed that makes use of the pseudophase singularities in a complex signal generated from a speckle-like pattern. In addition to the information about the locations and the anisotropic core structures of the pseudophase singularities, we also detect the spatial structures of a cluster of phase singularities, which serves as a unique constellation characterizing the mutual position relation between the individual pseudophase singularities. Experimental results of in vivo measurements for a swimming fish along with its kinematic analysis are presented, which demonstrate the validity of the proposed technique.

  17. Elasto-plastic flow in cracked bodies using a new finite element model. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Karabin, M. E., Jr.

    1977-01-01

    Cracked geometries were studied by finite element techniques with the aid of a new special element embedded at the crack tip. This model seeked to accurately represent the singular stresses and strains associated with the elasto-plastic flow process. The present model was not restricted to a material type and did not predetermine a singularity. Rather the singularity was treated as an unknown. For each step of the incremental process the nodal degrees of freedom and the unknown singularity were found through minimization of an energy-like functional. The singularity and nodal degrees of freedom were determined by means of an iterative process.

  18. An Efficient and Robust Singular Value Method for Star Pattern Recognition and Attitude Determination

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Kim, Hye-Young; Junkins, John L.

    2003-01-01

    A new star pattern recognition method is developed using singular value decomposition of a measured unit column vector matrix in a measurement frame and the corresponding cataloged vector matrix in a reference frame. It is shown that singular values and right singular vectors are invariant with respect to coordinate transformation and robust under uncertainty. One advantage of singular value comparison is that a pairing process for individual measured and cataloged stars is not necessary, and the attitude estimation and pattern recognition process are not separated. An associated method for mission catalog design is introduced and simulation results are presented.

  19. Selecting appropriate singular values of transmission matrix to improve precision of incident wavefront retrieval

    NASA Astrophysics Data System (ADS)

    Fang, Longjie; Zhang, Xicheng; Zuo, Haoyi; Pang, Lin; Yang, Zuogang; Du, Jinglei

    2018-06-01

    A method of selecting appropriate singular values of the transmission matrix to improve the precision of incident wavefront retrieval in focusing light through scattering media is proposed. The optimal singular values selected by this method can reduce the degree of ill-conditionedness of the transmission matrix effectively, which indicates that the incident wavefront retrieved from the optimal set of singular values is more accurate than the incident wavefront retrieved from other sets of singular values. The validity of this method is verified by numerical simulation and actual measurements of the incident wavefront of coherent light through ground glass.

  20. Singular spectrum analysis of sleep EEG in insomnia.

    PubMed

    Aydın, Serap; Saraoǧlu, Hamdi Melih; Kara, Sadık

    2011-08-01

    In the present study, the Singular Spectrum Analysis (SSA) is applied to sleep EEG segments collected from healthy volunteers and patients diagnosed by either psycho physiological insomnia or paradoxical insomnia. Then, the resulting singular spectra computed for both C3 and C4 recordings are assigned as the features to the Artificial Neural Network (ANN) architectures for EEG classification in diagnose. In tests, singular spectrum of particular sleep stages such as awake, REM, stage1 and stage2, are considered. Three clinical groups are successfully classified by using one hidden layer ANN architecture with respect to their singular spectra. The results show that the SSA can be applied to sleep EEG series to support the clinical findings in insomnia if ten trials are available for the specific sleep stages. In conclusion, the SSA can detect the oscillatory variations on sleep EEG. Therefore, different sleep stages meet different singular spectra. In addition, different healthy conditions generate different singular spectra for each sleep stage. In summary, the SSA can be proposed for EEG discrimination to support the clinical findings for psycho-psychological disorders.

  1. The strong energy condition and the S-brane singularity problem

    NASA Astrophysics Data System (ADS)

    McInnes, Brett

    2003-06-01

    Recently it has been argued that, because tachyonic matter satisfies the Strong Energy Condition [SEC], there is little hope of avoiding the singularities which plague S-Brane spacetimes. Meanwhile, however, Townsend and Wohlfarth have suggested an ingenious way of circumventing the SEC in such situations, and other suggestions for actually violating it in the S-Brane context have recently been proposed. Of course, the natural context for discussions of [effective or actual] violations of the SEC is the theory of asymptotically deSitter spacetimes, which tend to be less singular than ordinary FRW spacetimes. However, while violating or circumventing the SEC is necessary if singularities are to be avoided, it is not at all clear that it is sufficient. That is, we can ask: would an asymptotically deSitter S-brane spacetime be non-singular? We show that this is difficult to achieve; this result is in the spirit of the recently proved "S-brane singularity theorem". Essentially our results suggest that circumventing or violating the SEC may not suffice to solve the S-Brane singularity problem, though we do propose two ways of avoiding this conclusion.

  2. Dynamic Singularity Spectrum Distribution of Sea Clutter

    NASA Astrophysics Data System (ADS)

    Xiong, Gang; Yu, Wenxian; Zhang, Shuning

    2015-12-01

    The fractal and multifractal theory have provided new approaches for radar signal processing and target-detecting under the background of ocean. However, the related research mainly focuses on fractal dimension or multifractal spectrum (MFS) of sea clutter. In this paper, a new dynamic singularity analysis method of sea clutter using MFS distribution is developed, based on moving detrending analysis (DMA-MFSD). Theoretically, we introduce the time information by using cyclic auto-correlation of sea clutter. For transient correlation series, the instantaneous singularity spectrum based on multifractal detrending moving analysis (MF-DMA) algorithm is calculated, and the dynamic singularity spectrum distribution of sea clutter is acquired. In addition, we analyze the time-varying singularity exponent ranges and maximum position function in DMA-MFSD of sea clutter. For the real sea clutter data, we analyze the dynamic singularity spectrum distribution of real sea clutter in level III sea state, and conclude that the radar sea clutter has the non-stationary and time-varying scale characteristic and represents the time-varying singularity spectrum distribution based on the proposed DMA-MFSD method. The DMA-MFSD will also provide reference for nonlinear dynamics and multifractal signal processing.

  3. Optimisation of a green gas supply chain--a review.

    PubMed

    Bekkering, J; Broekhuis, A A; van Gemert, W J T

    2010-01-01

    In this review the knowledge status of and future research options on a green gas supply based on biogas production by co-digestion is explored. Applications and developments of the (bio)gas supply in The Netherlands have been considered, whereafter literature research has been done into the several stages from production of dairy cattle manure and biomass to green gas injection into the gas grid. An overview of a green gas supply chain has not been made before. In this study it is concluded that on installation level (micro-level) much practical knowledge is available and on macro-level knowledge about availability of biomass. But on meso-level (operations level of a green gas supply) very little research has been done until now. Future research should include the modeling of a green gas supply chain on an operations level, i.e. questions must be answered as where to build digesters based on availability of biomass. Such a model should also advise on technology of upgrading depending on scale factors. Future research might also give insight in the usability of mixing (partly upgraded) biogas with natural gas. The preconditions for mixing would depend on composition of the gas, the ratio of gases to be mixed and the requirements on the mixture.

  4. Post detonation nuclear forensics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Jay

    2014-05-09

    The problem of working backwards from the debris of a nuclear explosion to attempt to attribute the event to a particular actor is singularly difficult technically. However, moving from physical information of any certainty through the political steps that would lead to national action presents daunting policy questions as well. This monograph will outline the operational and physical components of this problem and suggest the difficulty of the policy questions that remain.

  5. Stable, high-order computation of impedance-impedance operators for three-dimensional layered medium simulations.

    PubMed

    Nicholls, David P

    2018-04-01

    The faithful modelling of the propagation of linear waves in a layered, periodic structure is of paramount importance in many branches of the applied sciences. In this paper, we present a novel numerical algorithm for the simulation of such problems which is free of the artificial singularities present in related approaches. We advocate for a surface integral formulation which is phrased in terms of impedance-impedance operators that are immune to the Dirichlet eigenvalues which plague the Dirichlet-Neumann operators that appear in classical formulations. We demonstrate a high-order spectral algorithm to simulate these latter operators based upon a high-order perturbation of surfaces methodology which is rapid, robust and highly accurate. We demonstrate the validity and utility of our approach with a sequence of numerical simulations.

  6. Stable, high-order computation of impedance-impedance operators for three-dimensional layered medium simulations

    NASA Astrophysics Data System (ADS)

    Nicholls, David P.

    2018-04-01

    The faithful modelling of the propagation of linear waves in a layered, periodic structure is of paramount importance in many branches of the applied sciences. In this paper, we present a novel numerical algorithm for the simulation of such problems which is free of the artificial singularities present in related approaches. We advocate for a surface integral formulation which is phrased in terms of impedance-impedance operators that are immune to the Dirichlet eigenvalues which plague the Dirichlet-Neumann operators that appear in classical formulations. We demonstrate a high-order spectral algorithm to simulate these latter operators based upon a high-order perturbation of surfaces methodology which is rapid, robust and highly accurate. We demonstrate the validity and utility of our approach with a sequence of numerical simulations.

  7. Singularity computations. [finite element methods for elastoplastic flow

    NASA Technical Reports Server (NTRS)

    Swedlow, J. L.

    1978-01-01

    Direct descriptions of the structure of a singularity would describe the radial and angular distributions of the field quantities as explicitly as practicable along with some measure of the intensity of the singularity. This paper discusses such an approach based on recent development of numerical methods for elastoplastic flow. Attention is restricted to problems where one variable or set of variables is finite at the origin of the singularity but a second set is not.

  8. Transmutation of planar media singularities in a conformal cloak.

    PubMed

    Liu, Yichao; Mukhtar, Musawwadah; Ma, Yungui; Ong, C K

    2013-11-01

    Invisibility cloaking based on optical transformation involves materials singularity at the branch cut points. Many interesting optical devices, such as the Eaton lens, also require planar media index singularities in their implementation. We show a method to transmute two singularities simultaneously into harmless topological defects formed by anisotropic permittivity and permeability tensors. Numerical simulation is performed to verify the functionality of the transmuted conformal cloak consisting of two kissing Maxwell fish eyes.

  9. Computing singularities of perturbation series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kvaal, Simen; Jarlebring, Elias; Michiels, Wim

    2011-03-15

    Many properties of current ab initio approaches to the quantum many-body problem, both perturbational and otherwise, are related to the singularity structure of the Rayleigh-Schroedinger perturbation series. A numerical procedure is presented that in principle computes the complete set of singularities, including the dominant singularity which limits the radius of convergence. The method approximates the singularities as eigenvalues of a certain generalized eigenvalue equation which is solved using iterative techniques. It relies on computation of the action of the Hamiltonian matrix on a vector and does not rely on the terms in the perturbation series. The method can be usefulmore » for studying perturbation series of typical systems of moderate size, for fundamental development of resummation schemes, and for understanding the structure of singularities for typical systems. Some illustrative model problems are studied, including a helium-like model with {delta}-function interactions for which Moeller-Plesset perturbation theory is considered and the radius of convergence found.« less

  10. Tailoring Eigenmodes at Spectral Singularities in Graphene-based PT Systems.

    PubMed

    Zhang, Weixuan; Wu, Tong; Zhang, Xiangdong

    2017-09-12

    The spectral singularity existing in PT-synthetic plasmonic system has been widely investigated. Only lasing-mode can be excited resulting from the passive characteristic of metallic materials. Here, we investigated the spectral singularity in the hybrid structure composed of the photoexcited graphene and one-dimensional PT-diffractive grating. In this system, both lasing- and absorption-modes can be excited with the surface conductivity of photoexcited graphene being loss and gain, respectively. Remarkably, the spectral singularity will disappear with the optically pumped graphene to be lossless. In particular, we find that spectral singularities can exhibit symmetry-modes, when the loss and gain of the grating is unbalanced. Meanwhile, by tuning the loss (gain) of graphene and non-PT diffraction grating, lasing- and absorption-modes can also be excited. We hope that tunable optical modes at spectral singularities can have some applications in designing novel surface-enhanced spectroscopies and plasmon lasers.

  11. Stress singularities at the vertex of a cylindrically anisotropic wedge

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Boduroglu, H.

    1980-01-01

    The plane elasticity problem for a cylindrically anisotropic solid is formulated. The form of the solution for an infinite wedge shaped domain with various homogeneous boundary conditions is derived and the nature of the stress singularity at the vertex of the wedge is studied. The characteristic equations giving the stress singularity and the angular distribution of the stresses around the vertex of the wedge are obtained for three standard homogeneous boundary conditions. The numerical examples show that the singular behavior of the stresses around the vertex of an anisotropic wedge may be significantly different from that of the isotropic material. Some of the results which may be of practical importance are that for a half plane the stress state at r = 0 may be singular and for a crack the power of stress singularity may be greater or less than 1/2.

  12. Stanley Corrsin Award Talk: The role of singularities in hydrodynamics

    NASA Astrophysics Data System (ADS)

    Eggers, Jens

    2017-11-01

    If a tap is opened slowly, a drop will form. The separation of the drop is described by a singularity of the Navier-Stokes equation with a free surface. Shock waves are singular solutions of the equations of ideal, compressible hydrodynamics. These examples show that singularities are characteristic for the tendency of the hydrodynamic equations to develop small scale features spontaneously, starting from smooth initial conditions. As a result, new structures are created, which form the building blocks of more complicated flows. The mathematical structure of singularities is self-similar, and their characteristics are fixed by universal properties. This will be illustrated by physical examples, as well as by applications to engineering problems such as printing, coating, or air entrainment. Finally, more recent developments will be discussed: the increasing complexity underlying the self-similar behavior of some singularities, and the spatial structure of shock waves.

  13. Particle creation by naked singularities in higher dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, Umpei; Nemoto, Hiroya; Shimano, Masahiro

    Recently, the possibility was pointed out by one of the present authors and his collaborators that an effective naked singularity referred to as ''a visible border of spacetime'' is generated by high-energy particle collision in the context of large extra dimensions or TeV-scale gravity. In this paper, we investigate the particle creation by a naked singularity in general dimensions, while adopting a model in which a marginally naked singularity forms in the collapse of a homothetic lightlike pressureless fluid. We find that the spectrum deviates from that of Hawking radiation due to scattering near the singularity but can be recastmore » in quasithermal form. The temperature is always higher than that of Hawking radiation of a same-mass black hole, and can be arbitrarily high depending on a parameter in the model. This implies that, in principle, the naked singularity may be distinguished from a black hole in collider experiments.« less

  14. Energy budget for an energywood harvesting system

    Treesearch

    W.F. Watson; D.E. Miller; B.J. Stokes; M.L. Broussard

    1987-01-01

    The fuel and energy requirements for alternative energywood harvesting operations were determined from field operations. Comparisons were made among the total energy requirements including transportation for conventional operation and one- and two-pass energywood operations. The two-pass energywood operation requlred more energy per green ton than the other operations...

  15. MIBPB: a software package for electrostatic analysis.

    PubMed

    Chen, Duan; Chen, Zhan; Chen, Changjun; Geng, Weihua; Wei, Guo-Wei

    2011-03-01

    The Poisson-Boltzmann equation (PBE) is an established model for the electrostatic analysis of biomolecules. The development of advanced computational techniques for the solution of the PBE has been an important topic in the past two decades. This article presents a matched interface and boundary (MIB)-based PBE software package, the MIBPB solver, for electrostatic analysis. The MIBPB has a unique feature that it is the first interface technique-based PBE solver that rigorously enforces the solution and flux continuity conditions at the dielectric interface between the biomolecule and the solvent. For protein molecular surfaces, which may possess troublesome geometrical singularities, the MIB scheme makes the MIBPB by far the only existing PBE solver that is able to deliver the second-order convergence, that is, the accuracy increases four times when the mesh size is halved. The MIBPB method is also equipped with a Dirichlet-to-Neumann mapping technique that builds a Green's function approach to analytically resolve the singular charge distribution in biomolecules in order to obtain reliable solutions at meshes as coarse as 1 Å--whereas it usually takes other traditional PB solvers 0.25 Å to reach similar level of reliability. This work further accelerates the rate of convergence of linear equation systems resulting from the MIBPB by using the Krylov subspace (KS) techniques. Condition numbers of the MIBPB matrices are significantly reduced by using appropriate KS solver and preconditioner combinations. Both linear and nonlinear PBE solvers in the MIBPB package are tested by protein-solvent solvation energy calculations and analysis of salt effects on protein-protein binding energies, respectively. Copyright © 2010 Wiley Periodicals, Inc.

  16. MIBPB: A software package for electrostatic analysis

    PubMed Central

    Chen, Duan; Chen, Zhan; Chen, Changjun; Geng, Weihua; Wei, Guo-Wei

    2010-01-01

    The Poisson-Boltzmann equation (PBE) is an established model for the electrostatic analysis of biomolecules. The development of advanced computational techniques for the solution of the PBE has been an important topic in the past two decades. This paper presents a matched interface and boundary (MIB) based PBE software package, the MIBPB solver, for electrostatic analysis. The MIBPB has a unique feature that it is the first interface technique based PBE solver that rigorously enforces the solution and flux continuity conditions at the dielectric interface between the biomolecule and the solvent. For protein molecular surfaces which may possess troublesome geometrical singularities, the MIB scheme makes the MIBPB by far the only existing PBE solver that is able to deliver the second order convergence, i.e., the accuracy increases four times when the mesh size is halved. The MIBPB method is also equipped with a Dirichlet-to-Neumann mapping (DNM) technique, that builds a Green's function approach to analytically resolve the singular charge distribution in biomolecules in order to obtain reliable solutions at meshes as coarse as 1Å — while it usually takes other traditional PB solvers 0.25Å to reach similar level of reliability. The present work further accelerates the rate of convergence of linear equation systems resulting from the MIBPB by utilizing the Krylov subspace (KS) techniques. Condition numbers of the MIBPB matrices are significantly reduced by using appropriate Krylov subspace solver and preconditioner combinations. Both linear and nonlinear PBE solvers in the MIBPB package are tested by protein-solvent solvation energy calculations and analysis of salt effects on protein-protein binding energies, respectively. PMID:20845420

  17. On the self-force in Bopp-Podolsky electrodynamics

    NASA Astrophysics Data System (ADS)

    Gratus, Jonathan; Perlick, Volker; Tucker, Robin W.

    2015-10-01

    In the classical vacuum Maxwell-Lorentz theory the self-force of a charged point particle is infinite. This makes classical mass renormalization necessary and, in the special relativistic domain, leads to the Abraham-Lorentz-Dirac equation of motion possessing unphysical run-away and pre-acceleration solutions. In this paper we investigate whether the higher-order modification of classical vacuum electrodynamics suggested by Bopp, Landé, Thomas and Podolsky in the 1940s, can provide a solution to this problem. Since the theory is linear, Green-function techniques enable one to write the field of a charged point particle on Minkowski spacetime as an integral over the particle’s history. By introducing the notion of timelike worldlines that are ‘bounded away from the backward light-cone’ we are able to prescribe criteria for the convergence of such integrals. We also exhibit a timelike worldline yielding singular fields on a lightlike hyperplane in spacetime. In this case the field is mildly singular at the event where the particle crosses the hyperplane. Even in the case when the Bopp-Podolsky field is bounded, it exhibits a directional discontinuity as one approaches the point particle. We describe a procedure for assigning a value to the field on the particle worldline which enables one to define a finite Lorentz self-force. This is explicitly derived leading to an integro-differential equation for the motion of the particle in an external electromagnetic field. We conclude that any worldline solutions to this equation belonging to the categories discussed in the paper have continuous four-velocities.

  18. A perspective study on green cleaning for Malaysian public hospital

    NASA Astrophysics Data System (ADS)

    Ramli, N. A.; Zawawi, E. M.; Arif, N. R. M.; Mahbob, N. S.; Sulaiman, Z.; Zainol, N. N.

    2018-02-01

    Cleaning being a major contributor to the operations and maintenance expenditure and also Indoor Environmental Quality (IEQ) issues. Improper and ineffective cleaning can harm the environment and poses greatest risk to health. The use of traditional cleaning products presents a variety of human health and ecological concerns; and may contribute to poor IEQ. As an effort to reduce the issue of operations and maintenance costs and IEQ issues in a building, it is important to establish a green cleaning programme to ensure that the buildings are cleaned in a green way. Numbers of scholars has pointed out the factors which had prevented the green cleaning implementation in hospital buildings. Nonetheless, the significance of these factors has yet to be practically explored in the Malaysian context. Hence, the aim of the paper is to identify the most critical factor that prevents the implementation of green cleaning in Malaysian hospital building. A questionnaire survey and personal communication (i.e. interview) was conducted which involved two groups of respondents. They are the hospital maintenance staff (Cleansing Service Department) and cleaning contractors. Frequency and criticality index calculations have been used to rank these factors according to the level of importance. The result showed that an “unclear components and requirements of green cleaning” indicated as the most critical factor that prevent the implementation of green cleaning in Malaysian hospital building. In the concern for a successful implementation of green cleaning, it is hope that the findings of these studies can be enlightenment to the cleaning contractors as well as the hospital maintenance management team in Malaysia.

  19. Village Green Design, Operations, and Maintenance Document

    EPA Science Inventory

    The Village Green Project is a community-based activity to demonstrate the capabilities of new real-time monitoring technology for residents and citizen scientists to learn about local air quality. The goal of the project is to provide the public and communities with information ...

  20. The Production of FRW Universe and Decay to Particles in Multiverse

    NASA Astrophysics Data System (ADS)

    Ghaffary, Tooraj

    2017-09-01

    In this study, first, it will be shown that as the Hubble parameter, " H", increases the production cross section for closed and flat Universes increases rapidly at smaller values of " H" and becomes constant for higher values of " H". However in the case of open Universe, the production cross section has been encountered a singularity. Before this singularity, as the H parameter increases, the cross section increases, for smaller H, ( H < 2.5), exhibits a turn-over at moderate values of H, (2.5 < H < 3.5), decreases for larger amount of H After that and for a special value of H, the cross section has been encountered with a singularity. Although the cross section cannot be defined at this singularity but before and after this point, it is certainly equal to zero. After this singularity, the cross section increases rapidly, when H increases. It is shown that if the production cross section of Universe happens before this singularity, it can't achieve to higher values of Hubble parameter after singularity. More over if the production cross section of Universe situates after the singularity, it won't get access to values of Hubble parameter less than the singularity. After that the thermal distribution for particles inside the FRW Universes are obtained. It is found that a large amount of particles are produced near apparent horizon due to their variety in their energy and their probabilities. Finally, comparing the particle production cross sections for flat, closed and open Universes, it is concluded that as the value of k increases, the cross section decreases.

  1. Constraints on Stress Components at the Internal Singular Point of an Elastic Compound Structure

    NASA Astrophysics Data System (ADS)

    Pestrenin, V. M.; Pestrenina, I. V.

    2017-03-01

    The classical analytical and numerical methods for investigating the stress-strain state (SSS) in the vicinity of a singular point consider the point as a mathematical one (having no linear dimensions). The reliability of the solution obtained by such methods is valid only outside a small vicinity of the singular point, because the macroscopic equations become incorrect and microscopic ones have to be used to describe the SSS in this vicinity. Also, it is impossible to set constraint or to formulate solutions in stress-strain terms for a mathematical point. These problems do not arise if the singular point is identified with the representative volume of material of the structure studied. In authors' opinion, this approach is consistent with the postulates of continuum mechanics. In this case, the formulation of constraints at a singular point and their investigation becomes an independent problem of mechanics for bodies with singularities. This method was used to explore constraints at an internal singular point (representative volume) of a compound wedge and a compound rib. It is shown that, in addition to the constraints given in the classical approach, there are also constraints depending on the macroscopic parameters of constituent materials. These constraints turn the problems of deformable bodies with an internal singular point into nonclassical ones. Combinations of material parameters determine the number of additional constraints and the critical stress state at the singular point. Results of this research can be used in the mechanics of composite materials and fracture mechanics and in studying stress concentrations in composite structural elements.

  2. The catalytic oxidation of malachite green by the microwave-Fenton processes.

    PubMed

    Zheng, Huaili; Zhang, Huiqin; Sun, Xiaonan; Zhang, Peng; Tshukudu, Tiroyaone; Zhu, Guocheng

    2010-01-01

    Catalytic oxidation of malachite green using the microwave-Fenton process was investigated. 0% of malachite green de-colorization using the microwave process and 23.5% of malachite green de-colorization using the Fenton process were observed within 5 minutes. In contrast 95.4% of malachite green de-colorization using the microwave-Fenton was observed in 5 minutes. During the microwave-Fenton process, the optimum operating conditions for malachite green de-colorization were found to be 3.40 of initial pH, 0.08 mmol/L of Fe2+ concentration and 12.5 mmol/L of H2O2 concentration. Confirmatory tests were carried out under the optimum conditions and the COD removal rate of 82.0% and the de-colorization rate of 99.0% were observed in 5 minutes. The apparent kinetics equation of -dC/dt=0.0337 [malachite green]0.9860[Fe2+)]0.8234[H2O2]0.1663 for malachite green de-colorization was calculated, which implied that malachite green was the dominant factor in determining the removal efficiency of malachite green based on microwave-Fenton process.

  3. Modeling the leadership attributes of top management in green innovation implementation

    NASA Astrophysics Data System (ADS)

    Ishak, Noormaizatul Akmar; Ramli, Mohammad Fadzli

    2015-05-01

    The implementation of green innovation in the companies is the interest of the governments all over the world. This has been the main focus of the Copenhagen Protocol and Kyoto Protocol that require all governments to preserve the nature through green initiatives. This paper proposes a mathematical model on the leadership attributes of the top management in ensuring green innovation implementation in their companies' strategies to reduce operational cost. With green innovation implementation in the Government-Linked Companies (GLCs), we identify the leadership attributes are tied up to the leadership style of the top managers in the companies. Through this model we have proved that green type leadership always contributes better in cost saving, therefore it is a more efficient leadership attribute for the GLCs especially.

  4. Satellite imagery in the fight against Malaria, the case for Genetic Programming

    NASA Astrophysics Data System (ADS)

    Ssentongo, J. S.; Hines, E. L.

    The analysis of multi-temporal data is a critical issue in the field of remote sensing and presents a constant challenge The approach used here relies primarily on utilising a method commonly used in statistics and signal processing Empirical Orthogonal Function EOF analysis Normalized Difference Vegetation Index NDVI and Rainfall Estimate RFE satellite images pertaining to the Sub-Saharan Africa region were obtained The images are derived from the Advanced Very High Resolution Radiometer AVHRR on the United States National Oceanic and Atmospheric Administration NOAA polar orbiting satellites spanning from January 2000 to December 2002 The region of interest was narrowed down to the Limpopo Province Northern Province of South Africa EOF analyses of the space-time-intensity series of dekadal mean NDVI values was been performed They reveal that NDVI can be accurately approximated by its principal component time series and contains a near sinusoidal oscillation pattern Peak greenness essentially what NDVI measures seasons last approximately 8 weeks This oscillation period is very similar to that of Malaria cases reported in the same period but lags behind by 4 dekads about 40 days Singular Value Decomposition SVD of Coupled Fields is performed on the spacetime-intensity series of dekadal mean NDVI and RFE values Correlation analyses indicate that both Malaria and greenness appear to be dependant on rainfall the onset of their seasonal highs always following an arrival of rain There is a greater

  5. Infrared dynamics of cold atoms on hot graphene membranes

    NASA Astrophysics Data System (ADS)

    Sengupta, Sanghita; Kotov, Valeri N.; Clougherty, Dennis P.

    2016-06-01

    We study the infrared dynamics of low-energy atoms interacting with a sample of suspended graphene at finite temperature. The dynamics exhibits severe infrared divergences order by order in perturbation theory as a result of the singular nature of low-energy flexural phonon emission. Our model can be viewed as a two-channel generalization of the independent boson model with asymmetric atom-phonon coupling. This allows us to take advantage of the exact nonperturbative solution of the independent boson model in the stronger channel while treating the weaker one perturbatively. In the low-energy limit, the exact solution can be viewed as a resummation (exponentiation) of the most divergent diagrams in the perturbative expansion. As a result of this procedure, we obtain the atom's Green function which we use to calculate the atom damping rate, a quantity equal to the quantum sticking rate. A characteristic feature of our results is that the Green's function retains a weak, infrared cutoff dependence that reflects the reduced dimensionality of the problem. As a consequence, we predict a measurable dependence of the sticking rate on graphene sample size. We provide detailed predictions for the sticking rate of atomic hydrogen as a function of temperature and sample size. The resummation yields an enhanced sticking rate relative to the conventional Fermi golden rule result (equivalent to the one-loop atom self-energy), as higher-order processes increase damping at finite temperature.

  6. Working With the Wave Equation in Aeroacoustics: The Pleasures of Generalized Functions

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.; Dunn, mark H.

    2007-01-01

    The theme of this paper is the applications of generalized function (GF) theory to the wave equation in aeroacoustics. We start with a tutorial on GFs with particular emphasis on viewing functions as continuous linear functionals. We next define operations on GFs. The operation of interest to us in this paper is generalized differentiation. We give many applications of generalized differentiation, particularly for the wave equation. We discuss the use of GFs in finding Green s function and some subtleties that only GF theory can clarify without ambiguities. We show how the knowledge of the Green s function of an operator L in a given domain D can allow us to solve a whole range of problems with operator L for domains situated within D by the imbedding method. We will show how we can use the imbedding method to find the Kirchhoff formulas for stationary and moving surfaces with ease and elegance without the use of the four-dimensional Green s theorem, which is commonly done. Other subjects covered are why the derivatives in conservation laws should be viewed as generalized derivatives and what are the consequences of doing this. In particular we show how we can imbed a problem in a larger domain for the identical differential equation for which the Green s function is known. The primary purpose of this paper is to convince the readers that GF theory is absolutely essential in aeroacoustics because of its powerful operational properties. Furthermore, learning the subject and using it can be fun.

  7. Redundant single gimbal control moment gyroscope singularity analysis

    NASA Technical Reports Server (NTRS)

    Bedrossian, Nazareth S.; Paradiso, Joseph; Bergmann, Edward V.; Rowell, Derek

    1990-01-01

    The robotic manipulator is proposed as the mechanical analog to single gimbal control moment gyroscope systems, and it is shown that both systems share similar difficulties with singular configurations. This analogy is used to group gimbal angles corresponding to any momentum state into different families. The singularity problem associated with these systems is examined in detail. In particular, a method is presented to test for the possibility of nontorque-producing gimbal motion at a singular configuration, as well as to determine the admissible motions in the case when this is possible. Sufficient conditions are derived for instances where the singular system can be reconfigured into a nonsingular state by these nontorque-producing motions.

  8. Analytical solutions for two-dimensional Stokes flow singularities in a no-slip wedge of arbitrary angle

    PubMed Central

    Brzezicki, Samuel J.

    2017-01-01

    An analytical method to find the flow generated by the basic singularities of Stokes flow in a wedge of arbitrary angle is presented. Specifically, we solve a biharmonic equation for the stream function of the flow generated by a point stresslet singularity and satisfying no-slip boundary conditions on the two walls of the wedge. The method, which is readily adapted to any other singularity type, takes full account of any transcendental singularities arising at the corner of the wedge. The approach is also applicable to problems of plane strain/stress of an elastic solid where the biharmonic equation also governs the Airy stress function. PMID:28690412

  9. Analytical solutions for two-dimensional Stokes flow singularities in a no-slip wedge of arbitrary angle.

    PubMed

    Crowdy, Darren G; Brzezicki, Samuel J

    2017-06-01

    An analytical method to find the flow generated by the basic singularities of Stokes flow in a wedge of arbitrary angle is presented. Specifically, we solve a biharmonic equation for the stream function of the flow generated by a point stresslet singularity and satisfying no-slip boundary conditions on the two walls of the wedge. The method, which is readily adapted to any other singularity type, takes full account of any transcendental singularities arising at the corner of the wedge. The approach is also applicable to problems of plane strain/stress of an elastic solid where the biharmonic equation also governs the Airy stress function.

  10. Steering law design for redundant single-gimbal control moment gyroscopes. [for spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    Bedrossian, Nazareth S.; Paradiso, Joseph; Bergmann, Edward V.; Rowell, Derek

    1990-01-01

    Two steering laws are presented for single-gimbal control moment gyroscopes. An approach using the Moore-Penrose pseudoinverse with a nondirectional null-motion algorithm is shown by example to avoid internal singularities for unidirectional torque commands, for which existing algorithms fail. Because this is still a tangent-based approach, however, singularity avoidance cannot be guaranteed. The singularity robust inverse is introduced as an alternative to the pseudoinverse for computing torque-producing gimbal rates near singular states. This approach, coupled with the nondirectional null algorithm, is shown by example to provide better steering law performance by allowing torque errors to be produced in the vicinity of singular states.

  11. On the Aharonov-Bohm Operators with Varying Poles: The Boundary Behavior of Eigenvalues

    NASA Astrophysics Data System (ADS)

    Noris, Benedetta; Nys, Manon; Terracini, Susanna

    2015-11-01

    We consider a magnetic Schrödinger operator with magnetic field concentrated at one point (the pole) of a domain and half integer circulation, and we focus on the behavior of Dirichlet eigenvalues as functions of the pole. Although the magnetic field vanishes almost everywhere, it is well known that it affects the operator at the spectral level (the Aharonov-Bohm effect, Phys Rev (2) 115:485-491, 1959). Moreover, the numerical computations performed in (Bonnaillie-Noël et al., Anal PDE 7(6):1365-1395, 2014; Noris and Terracini, Indiana Univ Math J 59(4):1361-1403, 2010) show a rather complex behavior of the eigenvalues as the pole varies in a planar domain. In this paper, in continuation of the analysis started in (Bonnaillie-Noël et al., Anal PDE 7(6):1365-1395, 2014; Noris and Terracini, Indiana Univ Math J 59(4):1361-1403, 2010), we analyze the relation between the variation of the eigenvalue and the nodal structure of the associated eigenfunctions. We deal with planar domains with Dirichlet boundary conditions and we focus on the case when the singular pole approaches the boundary of the domain: then, the operator loses its singular character and the k-th magnetic eigenvalue converges to that of the standard Laplacian. We can predict both the rate of convergence and whether the convergence happens from above or from below, in relation with the number of nodal lines of the k-th eigenfunction of the Laplacian. The proof relies on the variational characterization of eigenvalues, together with a detailed asymptotic analysis of the eigenfunctions, based on an Almgren-type frequency formula for magnetic eigenfunctions and on the blow-up technique.

  12. Observer-dependent sign inversions of polarization singularities.

    PubMed

    Freund, Isaac

    2014-10-15

    We describe observer-dependent sign inversions of the topological charges of vector field polarization singularities: C points (points of circular polarization), L points (points of linear polarization), and two virtually unknown singularities we call γ(C) and α(L) points. In all cases, the sign of the charge seen by an observer can change as she changes the direction from which she views the singularity. Analytic formulas are given for all C and all L point sign inversions.

  13. w-cosmological singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez-Jambrina, L.

    2010-12-15

    In this paper we characterize barotropic index singularities of homogeneous isotropic cosmological models [M. P. Dabrowski and T. Denkiewicz, Phys. Rev. D 79, 063521 (2009).]. They are shown to appear in cosmologies for which the scale factor is analytical with a Taylor series in which the linear and quadratic terms are absent. Though the barotropic index of the perfect fluid is singular, the singularities are weak, as it happens for other models for which the density and the pressure are regular.

  14. Segmentation of singularity maps in the context of soil porosity

    NASA Astrophysics Data System (ADS)

    Martin-Sotoca, Juan J.; Saa-Requejo, Antonio; Grau, Juan; Tarquis, Ana M.

    2016-04-01

    Geochemical exploration have found with increasingly interests and benefits of using fractal (power-law) models to characterize geochemical distribution, including concentration-area (C-A) model (Cheng et al., 1994; Cheng, 2012) and concentration-volume (C-V) model (Afzal et al., 2011) just to name a few examples. These methods are based on the singularity maps of a measure that at each point define areas with self-similar properties that are shown in power-law relationships in Concentration-Area plots (C-A method). The C-A method together with the singularity map ("Singularity-CA" method) define thresholds that can be applied to segment the map. Recently, the "Singularity-CA" method has been applied to binarize 2D grayscale Computed Tomography (CT) soil images (Martin-Sotoca et al, 2015). Unlike image segmentation based on global thresholding methods, the "Singularity-CA" method allows to quantify the local scaling property of the grayscale value map in the space domain and determinate the intensity of local singularities. It can be used as a high-pass-filter technique to enhance high frequency patterns usually regarded as anomalies when applied to maps. In this work we will put special attention on how to select the singularity thresholds in the C-A plot to segment the image. We will compare two methods: 1) cross point of linear regressions and 2) Wavelets Transform Modulus Maxima (WTMM) singularity function detection. REFERENCES Cheng, Q., Agterberg, F. P. and Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109-130. Cheng, Q. (2012). Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Afzal, P., Fadakar Alghalandis, Y., Khakzad, A., Moarefvand, P. and Rashidnejad Omran, N. (2011) Delineation of mineralization zones in porphyry Cu deposits by fractal concentration-volume modeling. Journal of Geochemical Exploration, 108, 220-232. Martín-Sotoca, J. J., Tarquis, A. M., Saa-Requejo, A. and Grau, J. B. (2015). Pore detection in Computed Tomography (CT) soil images through singularity map analysis. Oral Presentation in PedoFract VIII Congress (June, La Coruña - Spain).

  15. A Sustainable Approach

    ERIC Educational Resources Information Center

    del Monte, Betsy

    2006-01-01

    Many school districts and education institutions are making green facilities a greater priority. Green buildings, also called sustainable or high-performance buildings, can provide many advantages for schools and the people who use them. They cost less to operate, last longer and provide a better learning environment. Constructing sustainable…

  16. Green farming systems for the Southeast USA using manure-to-energy conversion platforms

    USDA-ARS?s Scientific Manuscript database

    Livestock operations in the Southeastern USA are faced with implementing holistic solutions to address effective manure treatment through efficient energy management and safeguarding of supporting natural resources. By integrating waste-to-energy conversion platforms, future green farming systems ca...

  17. Green Propellant Landing Demonstration at U.S. Range

    NASA Technical Reports Server (NTRS)

    Mulkey, Henry W.; Miller, Joseph T.; Bacha, Caitlin E.

    2016-01-01

    The Green Propellant Loading Demonstration (GPLD) was conducted December 2015 at Wallops Flight Facility (WFF), leveraging work performed over recent years to bring lower toxicity hydrazine replacement green propellants to flight missions. The objective of this collaboration between NASA Goddard Space Flight Center (GSFC), WFF, the Swedish National Space Board (SNSB), and Ecological Advanced Propulsion Systems (ECAPS) was to successfully accept LMP-103S propellant at a U.S. Range, store the propellant, and perform a simulated flight vehicle propellant loading. NASA GSFC Propulsion (Code 597) managed all aspects of the operation, handling logistics, preparing the procedures, and implementing the demonstration. In addition to the partnership described above, Moog Inc. developed an LMP-103S propellant-compatible titanium rolling diaphragm flight development tank and loaned it to GSFC to act as the GPLD flight vessel. The flight development tank offered the GPLD an additional level of flight-like propellant handling process and procedures. Moog Inc. also provided a compatible latching isolation valve for remote propellant expulsion. The GPLD operation, in concert with Moog Inc. executed a flight development tank expulsion efficiency performance test using LMP-103S propellant. As part of the demonstration work, GSFC and WFF documented Range safety analyses and practices including all elements of shipping, storage, handling, operations, decontamination, and disposal. LMP-103S has not been previously handled at a U.S. Launch Range. Requisite for this activity was an LMP-103S Risk Analysis Report and Ground Safety Plan. GSFC and WFF safety offices jointly developed safety documentation for application into the GPLD operation. The GPLD along with the GSFC Propulsion historical hydrazine loading experiences offer direct comparison between handling green propellant versus safety intensive, highly toxic hydrazine propellant. These described motives initiated the GPLD operation in order to investigate the handling and process safety variances in project resources between LMP-103S and typical in-space propellants. The GPLD risk reduction operation proved successful for many reasons including handling the green propellant at a U.S. Range, loading and pressurizing a flight-like tank, expelling the propellant, measuring the tank expulsion efficiency, and most significantly, GSFC propulsion personnel's new insight into the LMP-103S propellant handling details.

  18. Green Propellant Loading Demonstration at U.S. Range

    NASA Technical Reports Server (NTRS)

    Mulkey, Henry W.; Miller, Joseph T.; Bacha, Caitlin E.

    2016-01-01

    The Green Propellant Loading Demonstration (GPLD) was conducted December 2015 at Wallops Flight Facility (WFF), leveraging work performed over recent years to bring lower toxicity hydrazine replacement green propellants to flight missions. The objective of this collaboration between NASA Goddard Space Flight Center (GSFC), WFF, the Swedish National Space Board (SNSB), and Ecological Advanced Propulsion Systems (ECAPS) was to successfully accept LMP-103S propellant at a U.S. Range, store the propellant, and perform a simulated flight vehicle propellant loading. NASA GSFC Propulsion (Code 597) managed all aspects of the operation, handling logistics, preparing the procedures, and implementing the demonstration. In addition to the partnership described above, Moog Inc. developed an LMP-103S propellant-compatible titanium rolling diaphragm flight development tank and loaned it to GSFC to act as the GPLD flight vessel. The flight development tank offered the GPLD an additional level of flight-like propellant handling process and procedures. Moog Inc. also provided a compatible latching isolation valve for remote propellant expulsion. The GPLD operation, in concert with Moog Inc. executed a flight development tank expulsion efficiency performance test using LMP-103S propellant. As part of the demonstration work, GSFC and WFF documented Range safety analyses and practices including all elements of shipping, storage, handling, operations, decontamination, and disposal. LMP-103S has not been previously handled at a U.S. Launch Range. Requisite for this activity was an LMP-103S Risk Analysis Report and Ground Safety Plan. GSFC and WFF safety offices jointly developed safety documentation for application into the GPLD operation. The GPLD along with the GSFC Propulsion historical hydrazine loading experiences offer direct comparison between handling green propellant versus safety intensive, highly toxic hydrazine propellant. These described motives initiated the GPLD operation in order to investigate the handling and process safety variances in project resources between LMP-103S and typical in-space propellants. The GPLD risk reduction operation proved successful for many reasons including handling the green propellant at a U.S. Range, loading and pressurizing a flight-like tank, expelling the propellant, measuring the tank expulsion efficiency, and most significantly, GSFC propulsion personnel's new insight into the LMP-103S propellant handling details.

  19. Green's function and image system for the Laplace operator in the prolate spheroidal geometry

    NASA Astrophysics Data System (ADS)

    Xue, Changfeng; Deng, Shaozhong

    2017-01-01

    In the present paper, electrostatic image theory is studied for Green's function for the Laplace operator in the case where the fundamental domain is either the exterior or the interior of a prolate spheroid. In either case, an image system is developed to consist of a point image inside the complement of the fundamental domain and an additional symmetric continuous surface image over a confocal prolate spheroid outside the fundamental domain, although the process of calculating such an image system is easier for the exterior than for the interior Green's function. The total charge of the surface image is zero and its centroid is at the origin of the prolate spheroid. In addition, if the source is on the focal axis outside the prolate spheroid, then the image system of the exterior Green's function consists of a point image on the focal axis and a line image on the line segment between the two focal points.

  20. Premium cost optimization of operational and maintenance of green building in Indonesia using life cycle assessment method

    NASA Astrophysics Data System (ADS)

    Latief, Yusuf; Berawi, Mohammed Ali; Basten, Van; Budiman, Rachmat; Riswanto

    2017-06-01

    Building has a big impact on the environmental developments. There are three general motives in building, namely the economy, society, and environment. Total completed building construction in Indonesia increased by 116% during 2009 to 2011. It made the energy consumption increased by 11% within the last three years. In fact, 70% of energy consumption is used for electricity needs on commercial buildings which leads to an increase of greenhouse gas emissions by 25%. Green Building cycle costs is known as highly building upfront cost in Indonesia. The purpose of optimization in this research improves building performance with some of green concept alternatives. Research methodology is mixed method of qualitative and quantitative approaches through questionnaire surveys and case study. Assessing the successful of optimization functions in the existing green building is based on the operational and maintenance phase with the Life Cycle Assessment Method. Choosing optimization results were based on the largest efficiency of building life cycle and the most effective cost to refund.

  1. Singularity-free dislocation dynamics with strain gradient elasticity

    NASA Astrophysics Data System (ADS)

    Po, Giacomo; Lazar, Markus; Seif, Dariush; Ghoniem, Nasr

    2014-08-01

    The singular nature of the elastic fields produced by dislocations presents conceptual challenges and computational difficulties in the implementation of discrete dislocation-based models of plasticity. In the context of classical elasticity, attempts to regularize the elastic fields of discrete dislocations encounter intrinsic difficulties. On the other hand, in gradient elasticity, the issue of singularity can be removed at the outset and smooth elastic fields of dislocations are available. In this work we consider theoretical and numerical aspects of the non-singular theory of discrete dislocation loops in gradient elasticity of Helmholtz type, with interest in its applications to three dimensional dislocation dynamics (DD) simulations. The gradient solution is developed and compared to its singular and non-singular counterparts in classical elasticity using the unified framework of eigenstrain theory. The fundamental equations of curved dislocation theory are given as non-singular line integrals suitable for numerical implementation using fast one-dimensional quadrature. These include expressions for the interaction energy between two dislocation loops and the line integral form of the generalized solid angle associated with dislocations having a spread core. The single characteristic length scale of Helmholtz elasticity is determined from independent molecular statics (MS) calculations. The gradient solution is implemented numerically within our variational formulation of DD, with several examples illustrating the viability of the non-singular solution. The displacement field around a dislocation loop is shown to be smooth, and the loop self-energy non-divergent, as expected from atomic configurations of crystalline materials. The loop nucleation energy barrier and its dependence on the applied shear stress are computed and shown to be in good agreement with atomistic calculations. DD simulations of Lome-Cottrell junctions in Al show that the strength of the junction and its configuration are easily obtained, without ad-hoc regularization of the singular fields. Numerical convergence studies related to the implementation of the non-singular theory in DD are presented.

  2. Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi

    PubMed Central

    Michielsen, K.; De Raedt, H.; Stavenga, D. G.

    2010-01-01

    We present a comparison of the computer simulation data of gyroid nanostructures with optical measurements (reflectivity spectra and scattering diagrams) of ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi. We demonstrate that the omnidirectional green colour arises from the gyroid cuticular structure grown in the domains of different orientation. We also show that this three-dimensional structure, operating as a biophotonic crystal, gives rise to various polarization effects. We briefly discuss the possible biological utility of the green coloration and polarization effects. PMID:19828506

  3. The double universal joint wrist on a manipulator: Solution of inverse position kinematics and singularity analysis

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., III

    1992-01-01

    This paper presents three methods to solve the inverse position kinematics position problem of the double universal joint attached to a manipulator: (1) an analytical solution for two specific cases; (2) an approximate closed form solution based on ignoring the wrist offset; and (3) an iterative method which repeats closed form position and orientation calculations until the solution is achieved. Several manipulators are used to demonstrate the solution methods: cartesian, cylindrical, spherical, and an anthropomorphic articulated arm, based on the Flight Telerobotic Servicer (FTS) arm. A singularity analysis is presented for the double universal joint wrist attached to the above manipulator arms. While the double universal joint wrist standing alone is singularity-free in orientation, the singularity analysis indicates the presence of coupled position/orientation singularities of the spherical and articulated manipulators with the wrist. The cartesian and cylindrical manipulators with the double universal joint wrist were found to be singularity-free. The methods of this paper can be implemented in a real-time controller for manipulators with the double universal joint wrist. Such mechanically dextrous systems could be used in telerobotic and industrial applications, but further work is required to avoid the singularities.

  4. Quantum singularities in (2+1) dimensional matter coupled black hole spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unver, O.; Gurtug, O.

    2010-10-15

    Quantum singularities considered in the 3D Banados-Teitelboim-Zanelli (BTZ) spacetime by Pitelli and Letelier [Phys. Rev. D 77, 124030 (2008)] is extended to charged BTZ and 3D Einstein-Maxwell-dilaton gravity spacetimes. The occurrence of naked singularities in the Einstein-Maxwell extension of the BTZ spacetime both in linear and nonlinear electrodynamics as well as in the Einstein-Maxwell-dilaton gravity spacetimes are analyzed with the quantum test fields obeying the Klein-Gordon and Dirac equations. We show that with the inclusion of the matter fields, the conical geometry near r=0 is removed and restricted classes of solutions are admitted for the Klein-Gordon and Dirac equations. Hence,more » the classical central singularity at r=0 turns out to be quantum mechanically singular for quantum particles obeying the Klein-Gordon equation but nonsingular for fermions obeying the Dirac equation. Explicit calculations reveal that the occurrence of the timelike naked singularities in the considered spacetimes does not violate the cosmic censorship hypothesis as far as the Dirac fields are concerned. The role of horizons that clothes the singularity in the black hole cases is replaced by repulsive potential barrier against the propagation of Dirac fields.« less

  5. Multivalued classical mechanics arising from singularity loops in complex time

    NASA Astrophysics Data System (ADS)

    Koch, Werner; Tannor, David J.

    2018-02-01

    Complex-valued classical trajectories in complex time encounter singular times at which the momentum diverges. A closed time contour around such a singular time may result in final values for q and p that differ from their initial values. In this work, we develop a calculus for determining the exponent and prefactor of the asymptotic time dependence of p from the singularities of the potential as the singularity time is approached. We identify this exponent with the number of singularity loops giving distinct solutions to Hamilton's equations of motion. The theory is illustrated for the Eckart, Coulomb, Morse, and quartic potentials. Collectively, these potentials illustrate a wide variety of situations: poles and essential singularities at finite and infinite coordinate values. We demonstrate quantitative agreement between analytical and numerical exponents and prefactors, as well as the connection between the exponent and the time circuit count. This work provides the theoretical underpinnings for the choice of time contours described in the studies of Doll et al. [J. Chem. Phys. 58(4), 1343-1351 (1973)] and Petersen and Kay [J. Chem. Phys. 141(5), 054114 (2014)]. It also has implications for wavepacket reconstruction from complex classical trajectories when multiple branches of trajectories are involved.

  6. Exact solutions, finite time singularities and non-singular universe models from a variety of Λ(t) cosmologies

    NASA Astrophysics Data System (ADS)

    Pan, Supriya

    2018-01-01

    Cosmological models with time-dependent Λ (read as Λ(t)) have been investigated widely in the literature. Models that solve background dynamics analytically are of special interest. Additionally, the allowance of past or future singularities at finite cosmic time in a specific model signals for a generic test on its viabilities with the current observations. Following these, in this work we consider a variety of Λ(t) models focusing on their evolutions and singular behavior. We found that a series of models in this class can be exactly solved when the background universe is described by a spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) line element. The solutions in terms of the scale factor of the FLRW universe offer different universe models, such as power-law expansion, oscillating, and the singularity free universe. However, we also noticed that a large number of the models in this series permit past or future cosmological singularities at finite cosmic time. At last we close the work with a note that the avoidance of future singularities is possible for certain models under some specific restrictions.

  7. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate.

    PubMed

    Kotlyar, Victor V; Almazov, Anton A; Khonina, Svetlana N; Soifer, Victor A; Elfstrom, Henna; Turunen, Jari

    2005-05-01

    We deduce and study an analytical expression for Fresnel diffraction of a plane wave by a spiral phase plate (SPP) that imparts an arbitrary-order phase singularity on the light field. Estimates for the optical vortex radius that depends on the singularity's integer order n (also termed topological charge, or order of the dislocation) have been derived. The near-zero vortex intensity is shown to be proportional to rho2n, where p is the radial coordinate. Also, an analytical expression for Fresnel diffraction of the Gaussian beam by a SPP with nth-order singularity is analyzed. The far-field intensity distribution is derived. The radius of maximal intensity is shown to depend on the singularity number. The behavior of the Gaussian beam intensity after a SPP with second-order singularity (n = 2) is studied in more detail. The parameters of the light beams generated numerically with the Fresnel transform and via analytical formulas are in good agreement. In addition, the light fields with first- and second-order singularities were generated by a 32-level SPP fabricated on the resist by use of the electron-beam lithography technique.

  8. Observational constraints on cosmological future singularities

    NASA Astrophysics Data System (ADS)

    Beltrán Jiménez, Jose; Lazkoz, Ruth; Sáez-Gómez, Diego; Salzano, Vincenzo

    2016-11-01

    In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such a kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolution regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H( z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behavior of the Hubble factor). We show that, for our family of parameterizations, the lower bound for the singularity time cannot be smaller than about 1.2 times the age of the universe, what roughly speaking means {˜ }2.8 Gyrs from the present time.

  9. Design and development of green roof substrate to improve runoff water quality: plant growth experiments and adsorption.

    PubMed

    Vijayaraghavan, K; Raja, Franklin D

    2014-10-15

    Many studies worldwide have investigated the potential benefits achievable by transforming brown roofs of buildings to green roofs. However, little literature examined the runoff quality/sorption ability of green roofs. As the green roof substrate is the main component to alter the quality of runoff, this investigation raises the possibility of using a mixture of low-cost inorganic materials to develop a green roof substrate. The tested materials include exfoliated vermiculite, expanded perlite, crushed brick and sand along with organic component (coco-peat). Detailed physical and chemical analyses revealed that each of these materials possesses different characteristics and hence a mix of these materials was desirable to develop an optimal green roof substrate. Using factorial design, 18 different substrate mixes were prepared and detailed examination indicated that mix-12 exhibited desirable characteristics of green roof substrate with low bulk density (431 kg/m(3)), high water holding capacity (39.4%), air filled porosity (19.5%), and hydraulic conductivity (4570 mm/h). The substrate mix also provided maximum support to Portulaca grandiflora (380% total biomass increment) over one month of growth. To explore the leaching characteristics and sorption capacity of developed green roof substrate, a down-flow packed column arrangement was employed. High conductivity and total dissolved solids along with light metal ions (Na, K, Ca and Mg) were observed in the leachates during initial stages of column operation; however the concentration of ions ceased during the final stages of operation (600 min). Experiments with metal-spiked deionized water revealed that green roof substrate possess high sorption capacity towards various heavy metal ions (Al, Fe, Cr, Cu, Ni, Pb, Zn and Cd). Thus the developed growth substrate possesses desirable characteristics for green roofs along with high sorption capacity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. MUFACT: An Algorithm for Multiple Factor Analyses of Singular and Nonsingular Data with Orthogonal and Oblique Transformation Solutions

    ERIC Educational Resources Information Center

    Hofmann, Richard J.

    1978-01-01

    A general factor analysis computer algorithm is briefly discussed. The algorithm is highly transportable with minimum limitations on the number of observations. Both singular and non-singular data can be analyzed. (Author/JKS)

  11. Simulation of generation and dynamics of polarization singularities with circular Airy beams.

    PubMed

    Ye, Dong; Peng, Xinyu; Zhou, Muchun; Xin, Yu; Song, Minmin

    2017-11-01

    The generation and dynamics of polarization singularities have been underresearched for years, while the focusing property of the topological configuration has not been explored much. In this paper, we simulated the generation of low-order polarization singularities with a circular Airy beam and explored the focusing property of the synthetic light field during propagation due to the autofocusing of the component. Our work researched the focusing properties of the polarization singularity configuration, which may help to develop its application prospect.

  12. Wave-front singularities for two-dimensional anisotropic elastic waves.

    NASA Technical Reports Server (NTRS)

    Payton, R. G.

    1972-01-01

    Wavefront singularities for the displacement functions, associated with the radiation of linear elastic waves from a point source embedded in a finitely strained two-dimensional elastic solid, are examined in detail. It is found that generally the singularities are of order d to the -1/2 power, where d measures distance away from the front. However, in certain exceptional cases singularities of order d to the -n power, where n = 1/4, 2/3, 3/4, may be encountered.

  13. Teleman localization of Hochschild homology in a singular setting

    NASA Astrophysics Data System (ADS)

    Brasselet, J.-P.; Legrand, A.

    2009-09-01

    The aim of this paper is to generalize the Hochschild-Kostant-Rosenberg theorem to the case of singular varieties, more precisely, to manifolds with boundary and to varieties with isolated singularities. In these situations, we define suitable algebras of functions and study the localization of the corresponding Hochschild homology. The tool we use is the Teleman localization process. In the case of isolated singularities, the closed Hochschild homology corresponds to the intersection complex which relates the objects defined here to intersection homology.

  14. Naked singularities in higher dimensional Vaidya space-times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S. G.; Dadhich, Naresh

    We investigate the end state of the gravitational collapse of a null fluid in higher-dimensional space-times. Both naked singularities and black holes are shown to be developing as the final outcome of the collapse. The naked singularity spectrum in a collapsing Vaidya region (4D) gets covered with the increase in dimensions and hence higher dimensions favor a black hole in comparison to a naked singularity. The cosmic censorship conjecture will be fully respected for a space of infinite dimension.

  15. Gas Dynamics of a Recessed Nozzle in Its Displacement in the Radial Direction

    NASA Astrophysics Data System (ADS)

    Volkov, K. N.; Denisikhin, S. V.; Emel'yanov, V. N.

    2017-07-01

    Numerical simulation of gasdynamic processes accompanying the operation of the recessed nozzle of a solid-propellant rocket motor in its linear displacement is carried out. Reynolds-averaged Navier-Stokes equations closed using the equations of a k-ɛ turbulence model are used for calculations. The calculations are done for different rates of flow of the gas in the main channel and in the over-nozzle gap, and also for different displacements of the nozzle from an axisymmetric position. The asymmetry of geometry gives rise to a complicated spatial flow pattern characterized by the presence of singular points of spreading and by substantially inhomogeneous velocity and pressure distributions. The vortex flow pattern resulting from the linear displacement of the nozzle from an axisymmetric position is compared with the data of experimental visualization. The change in the vortex pattern of the flow and in the position of the singular points as a function of the flow coefficient and the displacement of the nozzle from the symmetry axis is discussed.

  16. Sliding window denoising K-Singular Value Decomposition and its application on rolling bearing impact fault diagnosis

    NASA Astrophysics Data System (ADS)

    Yang, Honggang; Lin, Huibin; Ding, Kang

    2018-05-01

    The performance of sparse features extraction by commonly used K-Singular Value Decomposition (K-SVD) method depends largely on the signal segment selected in rolling bearing diagnosis, furthermore, the calculating speed is relatively slow and the dictionary becomes so redundant when the fault signal is relatively long. A new sliding window denoising K-SVD (SWD-KSVD) method is proposed, which uses only one small segment of time domain signal containing impacts to perform sliding window dictionary learning and select an optimal pattern with oscillating information of the rolling bearing fault according to a maximum variance principle. An inner product operation between the optimal pattern and the whole fault signal is performed to enhance the characteristic of the impacts' occurrence moments. Lastly, the signal is reconstructed at peak points of the inner product to realize the extraction of the rolling bearing fault features. Both simulation and experiments verify that the method could extract the fault features effectively.

  17. First steps towards a constructal Microbial Fuel Cell.

    PubMed

    Lepage, Guillaume; Perrier, Gérard; Ramousse, Julien; Merlin, Gérard

    2014-06-01

    In order to reach real operating conditions with consequent organic charge flow, a multi-channel reactor for Microbial Fuel Cells is designed. The feed-through double chamber reactor is a two-dimensional system with four parallel channels and Reticulated Vitreous Carbon as electrodes. Based on thermodynamical calculations, the constructal-inspired distributor is optimized with the aim to reduce entropy generation along the distributing path. In the case of negligible singular pressure drops, the Hess-Murray law links the lengths and the hydraulic diameters of the successive reducing ducts leading to one given working channel. The determination of generated entropy in the channels of our constructal MFC is based on the global hydraulic resistance caused by both regular and singular pressure drops. Polarization, power and Electrochemical Impedance Spectroscopy show the robustness and the efficiency of the cell, and therefore the potential of the constructal approach. Routes towards improvements are suggested in terms of design evolutions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Decision support for green supply chain operations by integrating dynamic simulation and LCA indicators: diaper case study.

    PubMed

    Adhitya, Arief; Halim, Iskandar; Srinivasan, Rajagopalan

    2011-12-01

    As the issue of environmental sustainability is becoming an important business factor, companies are now looking for decision support tools to assess the fuller picture of the environmental impacts associated with their manufacturing operations and supply chain (SC) activities. Lifecycle assessment (LCA) is widely used to measure the environmental consequences assignable to a product. However, it is usually limited to a high-level snapshot of the environmental implications over the product value chain without consideration of the dynamics arising from the multitiered structure and the interactions along the SC. This paper proposes a framework for green supply chain management by integrating a SC dynamic simulation and LCA indicators to evaluate both the economic and environmental impacts of various SC decisions such as inventories, distribution network configuration, and ordering policy. The advantages of this framework are demonstrated through an industrially motivated case study involving diaper production. Three distinct scenarios are evaluated to highlight how the proposed approach enables integrated decision support for green SC design and operation.

  19. All orders results for self-crossing Wilson loops mimicking double parton scattering

    DOE PAGES

    Dixon, Lance J.; Esterlis, Ilya

    2016-07-21

    Loop-level scattering amplitudes for massless particles have singularities in regions where tree amplitudes are perfectly smooth. For example, a 2 → 4 gluon scattering process has a singularity in which each incoming gluon splits into a pair of gluons, followed by a pair of 2 → 2 collisions between the gluon pairs. This singularity mimics double parton scattering because it occurs when the transverse momentum of a pair of outgoing gluons vanishes. The singularity is logarithmic at fixed order in perturbation theory. We exploit the duality between scattering amplitudes and polygonal Wilson loops to study six-point amplitudes in this limitmore » to high loop order in planar N = 4 super-Yang-Mills theory. The singular configuration corresponds to the limit in which a hexagonal Wilson loop develops a self-crossing. The singular terms are governed by an evolution equation, in which the hexagon mixes into a pair of boxes; the mixing back is suppressed in the planar (large N c) limit. Because the kinematic dependence of the box Wilson loops is dictated by (dual) conformal invariance, the complete kinematic dependence of the singular terms for the self-crossing hexagon on the one nonsingular variable is determined to all loop orders. The complete logarithmic dependence on the singular variable can be obtained through nine loops, up to a couple of constants, using a correspondence with the multi-Regge limit. As a byproduct, we obtain a simple formula for the leading logs to all loop orders. Furthermore, we also show that, although the MHV six-gluon amplitude is singular, remarkably, the transcendental functions entering the non-MHV amplitude are finite in the same limit, at least through four loops.« less

  20. Does loop quantum cosmology replace the big rip singularity by a non-singular bounce?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro, Jaume de, E-mail: jaime.haro@upc.edu

    It is stated that holonomy corrections in loop quantum cosmology introduce a modification in Friedmann's equation which prevent the big rip singularity. Recently in [1] it has been proved that this modified Friedmann equation is obtained in an inconsistent way, what means that the results deduced from it, in particular the big rip singularity avoidance, are not justified. The problem is that holonomy corrections modify the gravitational part of the Hamiltonian of the system leading, after Legendre's transformation, to a non covariant Lagrangian which is in contradiction with one of the main principles of General Relativity. A more consistent waymore » to deal with the big rip singularity avoidance is to disregard modification in the gravitational part of the Hamiltonian, and only consider inverse volume effects [2]. In this case we will see that, not like the big bang singularity, the big rip singularity survives in loop quantum cosmology. Another way to deal with the big rip avoidance is to take into account geometric quantum effects given by the the Wheeler-De Witt equation. In that case, even though the wave packets spread, the expectation values satisfy the same equations as their classical analogues. Then, following the viewpoint adopted in loop quantum cosmology, one can conclude that the big rip singularity survives when one takes into account these quantum effects. However, the spreading of the wave packets prevents the recover of the semiclassical time, and thus, one might conclude that the classical evolution of the universe come to and end before the big rip is reached. This is not conclusive because. as we will see, it always exists other external times that allows us to define the classical and quantum evolution of the universe up to the big rip singularity.« less

  1. All orders results for self-crossing Wilson loops mimicking double parton scattering

    NASA Astrophysics Data System (ADS)

    Dixon, Lance J.; Esterlis, Ilya

    2016-07-01

    Loop-level scattering amplitudes for massless particles have singularities in regions where tree amplitudes are perfectly smooth. For example, a 2 → 4 gluon scattering process has a singularity in which each incoming gluon splits into a pair of gluons, followed by a pair of 2 → 2 collisions between the gluon pairs. This singularity mimics double parton scattering because it occurs when the transverse momentum of a pair of outgoing gluons vanishes. The singularity is logarithmic at fixed order in perturbation theory. We exploit the duality between scattering amplitudes and polygonal Wilson loops to study six-point amplitudes in this limit to high loop order in planar {N} = 4 super-Yang-Mills theory. The singular configuration corresponds to the limit in which a hexagonal Wilson loop develops a self-crossing. The singular terms are governed by an evolution equation, in which the hexagon mixes into a pair of boxes; the mixing back is suppressed in the planar (large N c) limit. Because the kinematic dependence of the box Wilson loops is dictated by (dual) conformal invariance, the complete kinematic dependence of the singular terms for the self-crossing hexagon on the one nonsingular variable is determined to all loop orders. The complete logarithmic dependence on the singular variable can be obtained through nine loops, up to a couple of constants, using a correspondence with the multi-Regge limit. As a byproduct, we obtain a simple formula for the leading logs to all loop orders. We also show that, although the MHV six-gluon amplitude is singular, remarkably, the transcendental functions entering the non-MHV amplitude are finite in the same limit, at least through four loops.

  2. Kinematic equations for resolved-rate control of an industrial robot arm

    NASA Technical Reports Server (NTRS)

    Barker, L. K.

    1983-01-01

    An operator can use kinematic, resolved-rate equations to dynamically control a robot arm by watching its response to commanded inputs. Known resolved-rate equations for the control of a particular six-degree-of-freedom industrial robot arm and proceeds to simplify the equations for faster computations are derived. Methods for controlling the robot arm in regions which normally cause mathematical singularities in the resolved-rate equations are discussed.

  3. Transformations between Jordan and Einstein frames: Bounces, antigravity, and crossing singularities

    NASA Astrophysics Data System (ADS)

    Kamenshchik, Alexander Yu.; Pozdeeva, Ekaterina O.; Vernov, Sergey Yu.; Tronconi, Alessandro; Venturi, Giovanni

    2016-09-01

    We study the relation between the Jordan-Einstein frame transition and the possible description of the crossing of singularities in flat Friedmann universes, using the fact that the regular evolution in one frame can correspond to crossing singularities in the other frame. We show that some interesting effects arise in simple models such as one with a massless scalar field or another wherein the potential is constant in the Einstein frame. The dynamics in these models and in their conformally coupled counterparts are described in detail, and a method for the continuation of such cosmological evolutions beyond the singularity is developed. We compare our approach with some other, recently developed, approaches to the problem of the crossing of singularities.

  4. Flight-determined stability analysis of multiple-input-multiple-output control systems

    NASA Technical Reports Server (NTRS)

    Burken, John J.

    1992-01-01

    Singular value analysis can give conservative stability margin results. Applying structure to the uncertainty can reduce this conservatism. This paper presents flight-determined stability margins for the X-29A lateral-directional, multiloop control system. These margins are compared with the predicted unscaled singular values and scaled structured singular values. The algorithm was further evaluated with flight data by changing the roll-rate-to-aileron command-feedback gain by +/- 20 percent. Minimum eigenvalues of the return difference matrix which bound the singular values are also presented. Extracting multiloop singular values from flight data and analyzing the feedback gain variations validates this technique as a measure of robustness. This analysis can be used for near-real-time flight monitoring and safety testing.

  5. Flight-determined stability analysis of multiple-input-multiple-output control systems

    NASA Technical Reports Server (NTRS)

    Burken, John J.

    1992-01-01

    Singular value analysis can give conservative stability margin results. Applying structure to the uncertainty can reduce this conservatism. This paper presents flight-determined stability margins for the X-29A lateral-directional, multiloop control system. These margins are compared with the predicted unscaled singular values and scaled structured singular values. The algorithm was further evaluated with flight data by changing the roll-rate-to-aileron-command-feedback gain by +/- 20 percent. Also presented are the minimum eigenvalues of the return difference matrix which bound the singular values. Extracting multiloop singular values from flight data and analyzing the feedback gain variations validates this technique as a measure of robustness. This analysis can be used for near-real-time flight monitoring and safety testing.

  6. "Greening up" the Suzuki Reaction

    ERIC Educational Resources Information Center

    Aktoudianakis, Evangelos; Chan, Elton; Edward, Amanda R.; Jarosz, Isabel; Lee, Vicki; Mui, Leo; Thatipamala, Sonya S.; Dicks, Andrew P.

    2008-01-01

    This article describes the rapid, green synthesis of a biaryl compound (4-phenylphenol) via a Pd(0)-catalyzed Suzuki cross-coupling reaction in water. Mild reaction conditions and operational simplicity makes this experiment especially amenable to both mid- and upper-level undergraduates. The methodology exposes students to purely aqueous…

  7. BIODIESEL EDUCATION: GREEN-COLLAR RECRUITING AND ENVIRONMENTAL EDUCATION FOR THE NEXT-GENERATION (BE: GREEN)

    EPA Science Inventory

    Many high schools and high school teachers are eager to involve relevant, hands-on, project-based materials into their curricula, which address timely climate issues. Incorporating fuel production into the existing curricula and operations of a high school, however, present...

  8. Integrating Environmental Education

    ERIC Educational Resources Information Center

    Paterson, Jim

    2009-01-01

    Thinking green is normal for the current generation of high school students, who have always had recycling bins in their classrooms and green themes in their assemblies, their lessons, and their television shows. It follows that sophisticated, multidisciplinary programs are now operating in schools throughout the country to educate students about…

  9. Recovery of catechin compounds from Korean tea by solvent extraction.

    PubMed

    Row, Kyung Ho; Jin, Yinzhe

    2006-03-01

    Catechin compounds from Korean green tea as potential sources of anticancer and antioxidant components were target materials in this work. The methodologies of solvent extraction and partition were utilized to recover catechin compounds from green tea. The optimum experimental condition was obtained by optimizing operating factors, such as, the extraction solvent, extraction time and operating temperature. After extracting the green tea with water at 80 degrees C for 40 min, the extract was partitioned with water/chloroform, which was best suited to remove caffeine impurity from the extract. Further, the resulting extract was partitioned water/ethyl acetate to deeply purify the catechin compounds of EGC, EC, EGCG and ECG. The experimental result in this work could be extended to preparative HPLC to obtain EGCG on commercial scale.

  10. Study on a kind of ϕ-Laplacian Liénard equation with attractive and repulsive singularities.

    PubMed

    Xin, Yun; Cheng, Zhibo

    2017-01-01

    In this paper, by application of the Manasevich-Mawhin continuation theorem, we investigate the existence of a positive periodic solution for a kind of ϕ -Laplacian singular Liénard equation with attractive and repulsive singularities.

  11. Locality and Unitarity of Scattering Amplitudes from Singularities and Gauge Invariance

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, Nima; Rodina, Laurentiu; Trnka, Jaroslav

    2018-06-01

    We conjecture that the leading two-derivative tree-level amplitudes for gluons and gravitons can be derived from gauge invariance together with mild assumptions on their singularity structure. Assuming locality (that the singularities are associated with the poles of cubic graphs), we prove that gauge invariance in just n -1 particles together with minimal power counting uniquely fixes the amplitude. Unitarity in the form of factorization then follows from locality and gauge invariance. We also give evidence for a stronger conjecture: assuming only that singularities occur when the sum of a subset of external momenta go on shell, we show in nontrivial examples that gauge invariance and power counting demand a graph structure for singularities. Thus, both locality and unitarity emerge from singularities and gauge invariance. Similar statements hold for theories of Goldstone bosons like the nonlinear sigma model and Dirac-Born-Infeld by replacing the condition of gauge invariance with an appropriate degree of vanishing in soft limits.

  12. Singularity Analysis: a powerful image processing tool in remote sensing of the oceans

    NASA Astrophysics Data System (ADS)

    Turiel, A.; Umbert, M.; Hoareau, N.; Ballabrera-Poy, J.; Portabella, M.

    2012-04-01

    The study of fully developed turbulence has given rise to the development of new methods to describe real data of scalars submitted to the action of a turbulent flow. The application of this brand of methodologies (known as Microcanonical Multifractal Formalism, MMF) on remote sensing ocean maps open new ways to exploit those data for oceanographic purposes. The main technique in MMF is that of Singularity Analysis (SA). By means of SA a singularity exponents is assigned to each point of a given image. The singularity exponent of a given point is a dimensionless measure of the regularity or irregularity of the scalar at that point. Singularity exponents arrange in singularity lines, which accurately track the flow streamlines from any scalar, as we have verified with remote sensing and simulated data. Applications of SA include quality assessment of different products, the estimation of surface velocities, the development of fusion techniques for different types of scalars, comparison with measures of ocean mixing, and improvement in assimilation schemes.

  13. Spacetime Singularities in Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Minassian, Eric A.

    2000-04-01

    Recent advances in 2+1 dimensional quantum gravity have provided tools to study the effects of quantization of spacetime on black hole and big bang/big crunch type singularities. I investigate effects of quantization of spacetime on singularities of the 2+1 dimensional BTZ black hole and the 2+1 dimensional torus universe. Hosoya has considered the BTZ black hole, and using a "quantum generalized affine parameter" (QGAP), has shown that, for some specific paths, quantum effects "smear" the singularities. Using gaussian wave functions as generic wave functions, I found that, for both BTZ black hole and the torus universe, there are families of paths that still reach the singularities with a finite QGAP, suggesting that singularities persist in quantum gravity. More realistic calculations, using modular invariant wave functions of Carlip and Nelson for the torus universe, offer further support for this conclusion. Currently work is in progress to study more realistic quantum gravity effects for BTZ black holes and other spacetime models.

  14. Generalized teleparallel cosmology and initial singularity crossing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awad, Adel; Nashed, Gamal, E-mail: Adel.Awad@bue.edu.eg, E-mail: gglnashed@sci.asu.edu.eg

    We present a class of cosmological solutions for a generalized teleparallel gravity with f ( T )= T +α̃ (− T ) {sup n} , where α̃ is some parameter and n is an integer or half-integer. Choosing α̃ ∼ G {sup n} {sup −1}, where G is the gravitational constant, and working with an equation of state p = w ρ, one obtains a cosmological solution with multiple branches. The dynamics of the solution describes standard cosmology at late times, but the higher-torsion correction changes the nature of the initial singularity from big bang to a sudden singularity. Themore » milder behavior of the sudden singularity enables us to extend timelike or lightlike curves, through joining two disconnected branches of solution at the singularity, leaving the singularity traversable. We show that this extension is consistent with the field equations through checking the known junction conditions for generalized teleparallel gravity. This suggests that these solutions describe a contracting phase a prior to the expanding phase of the universe.« less

  15. Short-time quantum dynamics of sharp boundaries potentials

    NASA Astrophysics Data System (ADS)

    Granot, Er'el; Marchewka, Avi

    2015-02-01

    Despite the high prevalence of singular potential in general, and rectangular potentials in particular, in applied scattering models, to date little is known about their short time effects. The reason is that singular potentials cause a mixture of complicated local as well as non-local effects. The object of this work is to derive a generic method to calculate analytically the short-time impact of any singular potential. In this paper it is shown that the scattering of a smooth wavefunction on a singular potential is totally equivalent, in the short-time regime, to the free propagation of a singular wavefunction. However, the latter problem was totally addressed analytically in Ref. [7]. Therefore, this equivalency can be utilized in solving analytically the short time dynamics of any smooth wavefunction at the presence of a singular potentials. In particular, with this method the short-time dynamics of any problem where a sharp boundaries potential (e.g., a rectangular barrier) is turned on instantaneously can easily be solved analytically.

  16. Power blue and green laser diodes and their applications

    NASA Astrophysics Data System (ADS)

    Hager, Thomas; Strauß, Uwe; Eichler, Christoph; Vierheilig, Clemens; Tautz, Sönke; Brüderl, Georg; Stojetz, Bernhard; Wurm, Teresa; Avramescu, Adrian; Somers, André; Ristic, Jelena; Gerhard, Sven; Lell, Alfred; Morgott, Stefan; Mehl, Oliver

    2013-03-01

    InGaN based green laser diodes with output powers up to 50mW are now well established for variety of applications ranging from leveling to special lighting effects and mobile projection of 12lm brightness. In future the highest market potential for visible single mode profile lasers might be laser projection of 20lm. Therefore direct green single-mode laser diodes with higher power are required. We found that self heating was the limiting factor for higher current operation. We present power-current characteristics of improved R and D samples with up to 200mW in cw-operation. An optical output power of 100mW is reached at 215mA, a current level which is suitable for long term operation. Blue InGaN laser diodes are also the ideal source for phosphor based generation of green light sources of high luminance. We present a light engine based on LARP (Laser Activated Remote Phosphor) which can be used in business projectors of several thousand lumens on screen. We discuss the advantages of a laser based systems in comparison with LED light engines. LARP requires highly efficient blue power laser diodes with output power above 1W. Future market penetration of LARP will require lower costs. Therefore we studied new designs for higher powers levels. R and D chips with power-current characteristics up to 4W in continuous wave operation on C-mount at 25°C are presented.

  17. A Random Algorithm for Low-Rank Decomposition of Large-Scale Matrices With Missing Entries.

    PubMed

    Liu, Yiguang; Lei, Yinjie; Li, Chunguang; Xu, Wenzheng; Pu, Yifei

    2015-11-01

    A random submatrix method (RSM) is proposed to calculate the low-rank decomposition U(m×r)V(n×r)(T) (r < m, n) of the matrix Y∈R(m×n) (assuming m > n generally) with known entry percentage 0 < ρ ≤ 1. RSM is very fast as only O(mr(2)ρ(r)) or O(n(3)ρ(3r)) floating-point operations (flops) are required, compared favorably with O(mnr+r(2)(m+n)) flops required by the state-of-the-art algorithms. Meanwhile, RSM has the advantage of a small memory requirement as only max(n(2),mr+nr) real values need to be saved. With the assumption that known entries are uniformly distributed in Y, submatrices formed by known entries are randomly selected from Y with statistical size k×nρ(k) or mρ(l)×l , where k or l takes r+1 usually. We propose and prove a theorem, under random noises the probability that the subspace associated with a smaller singular value will turn into the space associated to anyone of the r largest singular values is smaller. Based on the theorem, the nρ(k)-k null vectors or the l-r right singular vectors associated with the minor singular values are calculated for each submatrix. The vectors ought to be the null vectors of the submatrix formed by the chosen nρ(k) or l columns of the ground truth of V(T). If enough submatrices are randomly chosen, V and U can be estimated accordingly. The experimental results on random synthetic matrices with sizes such as 13 1072 ×10(24) and on real data sets such as dinosaur indicate that RSM is 4.30 ∼ 197.95 times faster than the state-of-the-art algorithms. It, meanwhile, has considerable high precision achieving or approximating to the best.

  18. Green Supercomputing at Argonne

    ScienceCinema

    Beckman, Pete

    2018-02-07

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputing—everything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently. Argonne was recognized for green computing in the 2009 HPCwire Readers Choice Awards. More at http://www.anl.gov/Media_Center/News/2009/news091117.html Read more about the Argonne Leadership Computing Facility at http://www.alcf.anl.gov/

  19. Boundary singularities produced by the motion of soap films.

    PubMed

    Goldstein, Raymond E; McTavish, James; Moffatt, H Keith; Pesci, Adriana I

    2014-06-10

    Recent work has shown that a Möbius strip soap film rendered unstable by deforming its frame changes topology to that of a disk through a "neck-pinching" boundary singularity. This behavior is unlike that of the catenoid, which transitions to two disks through a bulk singularity. It is not yet understood whether the type of singularity is generally a consequence of the surface topology, nor how this dependence could arise from an equation of motion for the surface. To address these questions we investigate experimentally, computationally, and theoretically the route to singularities of soap films with different topologies, including a family of punctured Klein bottles. We show that the location of singularities (bulk or boundary) may depend on the path of the boundary deformation. In the unstable regime the driving force for soap-film motion is the mean curvature. Thus, the narrowest part of the neck, associated with the shortest nontrivial closed geodesic of the surface, has the highest curvature and is the fastest moving. Just before onset of the instability there exists on the stable surface the shortest closed geodesic, which is the initial condition for evolution of the neck's geodesics, all of which have the same topological relationship to the frame. We make the plausible conjectures that if the initial geodesic is linked to the boundary, then the singularity will occur at the boundary, whereas if the two are unlinked initially, then the singularity will occur in the bulk. Numerical study of mean curvature flows and experiments support these conjectures.

  20. Assessing the relationships between phylogenetic and functional singularities in sharks (Chondrichthyes).

    PubMed

    Cachera, Marie; Le Loc'h, François

    2017-08-01

    The relationships between diversity and ecosystem functioning have become a major focus of science. A crucial issue is to estimate functional diversity, as it is intended to impact ecosystem dynamics and stability. However, depending on the ecosystem, it may be challenging or even impossible to directly measure ecological functions and thus functional diversity. Phylogenetic diversity was recently under consideration as a proxy for functional diversity. Phylogenetic diversity is indeed supposed to match functional diversity if functions are conservative traits along evolution. However, in case of adaptive radiation and/or evolutive convergence, a mismatch may appear between species phylogenetic and functional singularities. Using highly threatened taxa, sharks, this study aimed to explore the relationships between phylogenetic and functional diversities and singularities. Different statistical computations were used in order to test both methodological issue (phylogenetic reconstruction) and overall a theoretical questioning: the predictive power of phylogeny for function diversity. Despite these several methodological approaches, a mismatch between phylogeny and function was highlighted. This mismatch revealed that (i) functions are apparently nonconservative in shark species, and (ii) phylogenetic singularity is not a proxy for functional singularity. Functions appeared to be not conservative along the evolution of sharks, raising the conservational challenge to identify and protect both phylogenetic and functional singular species. Facing the current rate of species loss, it is indeed of major importance to target phylogenetically singular species to protect genetic diversity and also functionally singular species in order to maintain particular functions within ecosystem.

  1. Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virbhadra, K. S.; Keeton, C. R.; Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854

    We model the massive dark object at the center of the Galaxy as a Schwarzschild black hole as well as Janis-Newman-Winicour naked singularities, characterized by the mass and scalar charge parameters, and study gravitational lensing (particularly time delay, magnification centroid, and total magnification) by them. We find that the lensing features are qualitatively similar (though quantitatively different) for Schwarzschild black holes, weakly naked, and marginally strongly naked singularities. However, the lensing characteristics of strongly naked singularities are qualitatively very different from those due to Schwarzschild black holes. The images produced by Schwarzschild black hole lenses and weakly naked and marginallymore » strongly naked singularity lenses always have positive time delays. On the other hand, strongly naked singularity lenses can give rise to images with positive, zero, or negative time delays. In particular, for a large angular source position the direct image (the outermost image on the same side as the source) due to strongly naked singularity lensing always has a negative time delay. We also found that the scalar field decreases the time delay and increases the total magnification of images; this result could have important implications for cosmology. As the Janis-Newman-Winicour metric also describes the exterior gravitational field of a scalar star, naked singularities as well as scalar star lenses, if these exist in nature, will serve as more efficient cosmic telescopes than regular gravitational lenses.« less

  2. Some efficient methods for obtaining infinite series solutions of n-th order linear ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Allen, G.

    1972-01-01

    The use of the theta-operator method and generalized hypergeometric functions in obtaining solutions to nth-order linear ordinary differential equations is explained. For completeness, the analysis of the differential equation to determine whether the point of expansion is an ordinary point or a regular singular point is included. The superiority of the two methods shown over the standard method is demonstrated by using all three of the methods to work out several examples. Also included is a compendium of formulae and properties of the theta operator and generalized hypergeometric functions which is complete enough to make the report self-contained.

  3. Inhibited-coupling HC-PCF based beam-delivery-system for high power green industrial lasers

    NASA Astrophysics Data System (ADS)

    Chafer, M.; Gorse, A.; Beaudou, B.; Lekiefs, Q.; Maurel, M.; Debord, B.; Gérôme, F.; Benabid, F.

    2018-02-01

    We report on an ultra-low loss Hollow-Core Photonic Crystal Fiber (HC-PCF) beam delivery system (GLO-GreenBDS) for high power ultra-short pulse lasers operating in the green spectral range (including 515 nm and 532 nm). The GLOBDS- Green combines ease-of-use, high laser-coupling efficiency, robustness and industrial compatible cabling. It comprises a pre-aligned laser-injection head, a sheath-cable protected HC-PCF and a modular fiber-output head. It enables fiber-core gas loading and evacuation in a hermetic fashion. A 5 m long GLO-BDS were demonstrated for a green short pulse laser with a transmission coefficient larger than 80%, and a laser output profile close to single-mode (M2 <1.3).

  4. Frequency doubled high-power disk lasers in pulsed and continuous-wave operation

    NASA Astrophysics Data System (ADS)

    Weiler, Sascha; Hangst, Alexander; Stolzenburg, Christian; Zawischa, Ivo; Sutter, Dirk; Killi, Alexander; Kalfhues, Steffen; Kriegshaeuser, Uwe; Holzer, Marco; Havrilla, David

    2012-03-01

    The disk laser with multi-kW output power in infrared cw operation is widely used in today's manufacturing, primarily in the automotive industry. The disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency and high reliability with low investment and operating costs. Additionally, the disk laser is ideally suited for frequency conversion due to its polarized output with negligible depolarization losses. Laser light in the green spectral range (~515 nm) can be created with a nonlinear crystal. Pulsed disk lasers with green output of well above 50 W (extracavity doubling) in the ps regime and several hundreds of Watts in the ns regime with intracavity doubling are already commercially available whereas intracavity doubled disk lasers in continuous wave operation with greater than 250 W output are in test phase. In both operating modes (pulsed and cw) the frequency doubled disk laser offers advantages in existing and new applications. Copper welding for example is said to show much higher process reliability with green laser light due to its higher absorption in comparison to the infrared. This improvement has the potential to be very beneficial for the automotive industry's move to electrical vehicles which requires reliable high-volume welding of copper as a major task for electro motors, batteries, etc.

  5. Classification of almost toric singularities of Lagrangian foliations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izosimov, Anton M

    2011-07-31

    The topological classification is given of almost toric singularities of integrable Hamiltonian systems with a large number of degrees of freedom, that is, of nondegenerate singularities without hyperbolic components. A descriptive geometric model is constructed, which makes it possible to perform effective calculations. Bibliography: 10 titles.

  6. 75 FR 2844 - Green Mountam National Forest; Vermont; Deerfield Wind Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Green Mountam National Forest; Vermont; Deerfield Wind... authorization from Deerfield Wind, LLC for the installation and operation of wind turbines on National Forest... original notice of intent to prepare the Deerfield Wind Project EIS was published in the Federal Register...

  7. Analyzing Key Success Factors of Green Brands for Enterprises in Taiwan

    ERIC Educational Resources Information Center

    Tu, Jui-Che; Tu, Ya-Wen; Jhangr, Yun-Sian

    2016-01-01

    During the last decade, environmental issues have become a global concern. According to a report by the Taiwan Environmental Protection Administration, more than 95% of consumers prioritize purchasing green products. Therefore, enterprises should consider environmental concerns in their operational strategies. This study identified how enterprises…

  8. Successful Strategies for Planning a Green Building.

    ERIC Educational Resources Information Center

    Browning, William D.

    2003-01-01

    Presents several strategies for successful green building on campus: develop a set of clear environmental performance goals (buildings as pedagogical tools, climate-neutral operations, maximized human performance), use Leadership in Energy and Environmental Design (LEED) as a gauge of performance, and use the project to reform the campus building…

  9. Integrating Environmental Education

    ERIC Educational Resources Information Center

    Paterson, Jim

    2010-01-01

    Thinking green is normal for the current generation of high school students, who have always had recycling bins in their classrooms and green themes in their assemblies, lessons, and in many of the television shows they watch. They have been well schooled in environmental messages. It follows that multidisciplinary programs now operate in schools…

  10. The Development of Performance Evaluation for Green Schools in Taiwan

    ERIC Educational Resources Information Center

    Wang, Shun-Mei

    2009-01-01

    The purpose of this research is to develop a performance evaluation instrument for green schools in Taiwan. The instrument is designed according to three sets of criteria: participation and partnership, reflection and learning, and ecological consideration. It also covers three operational dimensions: learning context, administration, and…

  11. A problem with inverse time for a singularly perturbed integro-differential equation with diagonal degeneration of the kernel of high order

    NASA Astrophysics Data System (ADS)

    Bobodzhanov, A. A.; Safonov, V. F.

    2016-04-01

    We consider an algorithm for constructing asymptotic solutions regularized in the sense of Lomov (see [1], [2]). We show that such problems can be reduced to integro-differential equations with inverse time. But in contrast to known papers devoted to this topic (see, for example, [3]), in this paper we study a fundamentally new case, which is characterized by the absence, in the differential part, of a linear operator that isolates, in the asymptotics of the solution, constituents described by boundary functions and by the fact that the integral operator has kernel with diagonal degeneration of high order. Furthermore, the spectrum of the regularization operator A(t) (see below) may contain purely imaginary eigenvalues, which causes difficulties in the application of the methods of construction of asymptotic solutions proposed in the monograph [3]. Based on an analysis of the principal term of the asymptotics, we isolate a class of inhomogeneities and initial data for which the exact solution of the original problem tends to the limit solution (as \\varepsilon\\to+0) on the entire time interval under consideration, also including a boundary-layer zone (that is, we solve the so-called initialization problem). The paper is of a theoretical nature and is designed to lead to a greater understanding of the problems in the theory of singular perturbations. There may be applications in various applied areas where models described by integro-differential equations are used (for example, in elasticity theory, the theory of electrical circuits, and so on).

  12. Advancements of in-flight mass moment of inertia and structural deflection algorithms for satellite attitude simulators

    NASA Astrophysics Data System (ADS)

    Wright, Jonathan W.

    Experimental satellite attitude simulators have long been used to test and analyze control algorithms in order to drive down risk before implementation on an operational satellite. Ideally, the dynamic response of a terrestrial-based experimental satellite attitude simulator would be similar to that of an on-orbit satellite. Unfortunately, gravitational disturbance torques and poorly characterized moments of inertia introduce uncertainty into the system dynamics leading to questionable attitude control algorithm experimental results. This research consists of three distinct, but related contributions to the field of developing robust satellite attitude simulators. In the first part of this research, existing approaches to estimate mass moments and products of inertia are evaluated followed by a proposition and evaluation of a new approach that increases both the accuracy and precision of these estimates using typical on-board satellite sensors. Next, in order to better simulate the micro-torque environment of space, a new approach to mass balancing satellite attitude simulator is presented, experimentally evaluated, and verified. Finally, in the third area of research, we capitalize on the platform improvements to analyze a control moment gyroscope (CMG) singularity avoidance steering law. Several successful experiments were conducted with the CMG array at near-singular configurations. An evaluation process was implemented to verify that the platform remained near the desired test momentum, showing that the first two components of this research were effective in allowing us to conduct singularity avoidance experiments in a representative space-like test environment.

  13. Singularity-free next-to-leading order ΔS = 1 renormalization group evolution and ɛ K ' /ɛK in the Standard Model and beyond

    NASA Astrophysics Data System (ADS)

    Kitahara, Teppei; Nierste, Ulrich; Tremper, Paul

    2016-12-01

    The standard analytic solution of the renormalization group (RG) evolution for the Δ S = 1 Wilson coefficients involves several singularities, which complicate analytic solutions. In this paper we derive a singularity-free solution of the next-to-leading order (NLO) RG equations, which greatly facilitates the calculation of ɛ K ' , the measure of direct CP violation in K → ππ decays. Using our new RG evolution and the latest lattice results for the hadronic matrix elements, we calculate the ratio ɛ K ' /ɛ K (with ɛ K quantifying indirect CP violation) in the Standard Model (SM) at NLO to ɛ K ' /ɛ K = (1.06 ± 5.07) × 10- 4, which is 2 .8 σ below the experimental value. We also present the evolution matrix in the high-energy regime for calculations of new physics contributions and derive easy-to-use approximate formulae. We find that the RG amplification of new-physics contributions to Wilson coefficients of the electroweak penguin operators is further enhanced by the NLO corrections: if the new contribution is generated at the scale of 1-10 TeV, the RG evolution between the new-physics scale and the electroweak scale enhances these coefficients by 50-100%. Our solution contains a term of order α EM 2 / α s 2 , which is numerically unimportant for the SM case but should be included in studies of high-scale new-physics.

  14. On D-brane -anti D-brane effective actions and their all order bulk singularity structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatefi, Ehsan; Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, A-1040 Vienna

    All four point functions of brane anti brane system including their correct all order α{sup ′} corrections have been addressed. All five point functions of one closed string Ramond-Ramond (RR), two real tachyons and either one gauge field or the scalar field in both symmetric and asymmetric pictures have also been explored. The entire analysis of is carried out. Not only does it fix the vertex operator of RR in asymmetric picture and in higher point functions of string theory amplitudes but also it confirms the fact that there is no issue of picture dependence of the mixed closed RR,more » gauge fields, tachyons and fermion fields in all symmetric or anti symmetric ones. We compute S-matrix in the presence of a transverse scalar field, two real tachyons and that reveals two different kinds of bulk singularity structures, involving an infinite number of u-channel gauge field and (u+s{sup ′}+t{sup ′})-channel scalar bulk poles. In order to produce all those bulk singularity structures, we define various couplings at the level of the effective field theory that involve the mixing term of Chern-Simons coupling (with C-potential field) and a covariant derivative of the scalar field that comes from the pull-back of brane. Eventually we explore their all order α{sup ′} corrections in the presence of brane anti brane system where various remarks will be also pointed out.« less

  15. A novel fusion framework of visible light and infrared images based on singular value decomposition and adaptive DUAL-PCNN in NSST domain

    NASA Astrophysics Data System (ADS)

    Cheng, Boyang; Jin, Longxu; Li, Guoning

    2018-06-01

    Visible light and infrared images fusion has been a significant subject in imaging science. As a new contribution to this field, a novel fusion framework of visible light and infrared images based on adaptive dual-channel unit-linking pulse coupled neural networks with singular value decomposition (ADS-PCNN) in non-subsampled shearlet transform (NSST) domain is present in this paper. First, the source images are decomposed into multi-direction and multi-scale sub-images by NSST. Furthermore, an improved novel sum modified-Laplacian (INSML) of low-pass sub-image and an improved average gradient (IAVG) of high-pass sub-images are input to stimulate the ADS-PCNN, respectively. To address the large spectral difference between infrared and visible light and the occurrence of black artifacts in fused images, a local structure information operator (LSI), which comes from local area singular value decomposition in each source image, is regarded as the adaptive linking strength that enhances fusion accuracy. Compared with PCNN models in other studies, the proposed method simplifies certain peripheral parameters, and the time matrix is utilized to decide the iteration number adaptively. A series of images from diverse scenes are used for fusion experiments and the fusion results are evaluated subjectively and objectively. The results of the subjective and objective evaluation show that our algorithm exhibits superior fusion performance and is more effective than the existing typical fusion techniques.

  16. Assessment of incomplete clipping of aneurysms intraoperatively by a near-infrared indocyanine green-video angiography (Niicg-Va) integrated microscope.

    PubMed

    Imizu, S; Kato, Y; Sangli, A; Oguri, D; Sano, H

    2008-08-01

    The objective of this article was to assess the clinical use and the completeness of clipping with total occlusion of the aneurysmal lumen, real-time assessment of vascular patency in the parent, branching and perforating vessels, intraoperative assessment of blood flow, image quality, spatial resolution and clinical value in difficult aneurysms using near infrared indocyanine green video angiography integrated on to an operative Pentero neurosurgical microscope (Carl Zeiss, Oberkochen Germany). Thirteen patients with aneurysms were operated upon. An infrared camera with near infrared technology was adapted on to the OPMI Pentero microscope with a special filter and infrared excitation light to illuminate the operating field which was designed to allow passage of the near infrared light required for excitation of indocyanine green (ICG) which was used as the intravascular marker. The intravascular fluorescence was imaged with a video camera attached to the microscope. ICG fluorescence (700-850 nm) from a modified microscope light source on to the surgical field and passage of ICG fluorescence (780-950 nm) from the surgical field, back into the optical path of the microscope was used to detect the completeness of aneurysmal clipping Incomplete clipping in three patients (1 female and 2 males) with unruptured complicated aneurysms was detected using indocyanine green video angiography. There were no adverse effects after injection of indocyanine green. The completeness of clipping was inadequately detected by Doppler ultrasound miniprobe and rigid endoscopy and was thus complemented by indocyanine green video angiography. The operative microscope-integrated ICG video angiography as a new intraoperative method for detecting vascular flow, was found to be quick, reliable, cost-effective and possibly a substitute or adjunct for Doppler ultrasonography or intraoperative DSA, which is presently the gold standard. The simplicity of the method, the speed with which the investigation can be performed, the quality of the images, and the outcome of surgical procedures have all reduced the need for angiography. This technique may be useful during routine aneurysm surgery as an independent form of angiography and/or as an adjunct to intraoperative or postoperative DSA.

  17. Experimental observation of the effect of generic singularities in polychromatic dark hollow beams.

    PubMed

    Yadav, Bharat Kumar; Joshi, Stuti; Kandpal, Hem Chandra

    2014-08-15

    This Letter presents the essence of our recent experimental study on generic singularities carrying spatially partially coherent, polychromatic dark hollow beams (PDHBs). To the best of our knowledge, this is the first experimental demonstration of generic singularities-induced wavefront tearing in focused polychromatic beams.

  18. Sign-singular measures - Fast magnetic dynamos, and high-Reynolds-number fluid turbulence

    NASA Astrophysics Data System (ADS)

    Ott, Edward; Du, Yunson; Sreenivasan, K. R.; Juneja, A.; Suri, A. K.

    1992-11-01

    It is shown that sign-singular measures with nontrivial cancellation exponents occur in dynamos and fluid turbulence. A cancellation exponent is introduced to characterize such measures quantitatively. Examples from kinematic magnetic dynamos and fluid turbulence are used to illlustrate this kind of singular behavior.

  19. Degenerate SDEs with singular drift and applications to Heisenberg groups

    NASA Astrophysics Data System (ADS)

    Huang, Xing; Wang, Feng-Yu

    2018-09-01

    By using the ultracontractivity of a reference diffusion semigroup, Krylov's estimate is established for a class of degenerate SDEs with singular drifts, which leads to existence and pathwise uniqueness by means of Zvonkin's transformation. The main result is applied to singular SDEs on generalized Heisenberg groups.

  20. Design, assembly, and testing of a high-resolution relay lens used for holography with operation at both doubled and tripled Nd:YAG laser wavelengths

    NASA Astrophysics Data System (ADS)

    Malone, Robert M.; Capelle, Gene A.; Cox, Brian C.; Frogget, Brent C.; Grover, Mike; Kaufman, Morris I.; Pazuchanics, Peter; Sorenson, Danny S.; Stevens, Gerald D.; Tibbitts, Aric; Turley, William D.

    2009-08-01

    The design and assembly of a nine-element lens that achieves >2000 lp/mm resolution at a 355-nm wavelength (ultraviolet) has been completed. By adding a doublet to this lens system, operation at a 532-nm wavelength (green) with >1100 lp/mm resolution is achieved. This lens is used with high-power laser light to record holograms of fast-moving ejecta particles from a shocked metal surface located inside a test package. Part of the lens and the entire test package are under vacuum with a 1-cm air gap separation. Holograms have been recorded with both doubled and tripled Nd:YAG laser light. The UV operation is very sensitive to the package window's tilt. If this window is tilted by more than 0.1 degrees, the green operation performs with better resolution than that of the UV operation. The setup and alignment are performed with green light, but the dynamic recording can be done with either UV light or green light. A resolution plate can be temporarily placed inside the test package so that a television microscope located beyond the hologram position can archive images of resolution patterns that prove that the calibration wires, interference filter, holographic plate, and relay lenses are in their correct positions. Part of this lens is under vacuum, at the point where the laser illumination passes through a focus. Alignment and tolerancing of this high-resolution lens are presented. Resolution variation across the 12-mm field of view and throughout the 5-mm depth of field is discussed for both wavelengths.

Top