Sample records for singular integral equation

  1. Method of mechanical quadratures for solving singular integral equations of various types

    NASA Astrophysics Data System (ADS)

    Sahakyan, A. V.; Amirjanyan, H. A.

    2018-04-01

    The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.

  2. Numerical quadrature methods for integrals of singular periodic functions and their application to singular and weakly singular integral equations

    NASA Technical Reports Server (NTRS)

    Sidi, A.; Israeli, M.

    1986-01-01

    High accuracy numerical quadrature methods for integrals of singular periodic functions are proposed. These methods are based on the appropriate Euler-Maclaurin expansions of trapezoidal rule approximations and their extrapolations. They are used to obtain accurate quadrature methods for the solution of singular and weakly singular Fredholm integral equations. Such periodic equations are used in the solution of planar elliptic boundary value problems, elasticity, potential theory, conformal mapping, boundary element methods, free surface flows, etc. The use of the quadrature methods is demonstrated with numerical examples.

  3. On the solution of integral equations with a generalized cauchy kernal

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1986-01-01

    A certain class of singular integral equations that may arise from the mixed boundary value problems in nonhonogeneous materials is considered. The distinguishing feature of these equations is that in addition to the Cauchy singularity, the kernels contain terms that are singular only at the end points. In the form of the singular integral equations adopted, the density function is a potential or a displacement and consequently the kernal has strong singularities of the form (t-x)(-2), x(n-2) (t+x)(n), (n is = or 2, 0 x, t b). The complex function theory is used to determine the fundamental function of the problem for the general case and a simple numerical technique is described to solve the integral equation. Two examples from the theory of elasticity are then considered to show the application of the technique.

  4. On the solution of integral equations with strongly singular kernels

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1986-01-01

    Some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m ,m greater than or equal 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t-x) sup -m , terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results.

  5. On the solution of integral equations with strong ly singular kernels

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1985-01-01

    In this paper some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m, m or = 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t,x) sup-m, terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results.

  6. On the solution of integral equations with strongly singular kernels

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1987-01-01

    Some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m, m greater than or equal 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t-x) sup-m, terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results.

  7. On the solution of integral equations with a generalized cauchy kernel

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1986-01-01

    In this paper a certain class of singular integral equations that may arise from the mixed boundary value problems in nonhomogeneous materials is considered. The distinguishing feature of these equations is that in addition to the Cauchy singularity, the kernels contain terms that are singular only at the end points. In the form of the singular integral equations adopted, the density function is a potential or a displacement and consequently the kernel has strong singularities of the form (t-x) sup-2, x sup n-2 (t+x) sup n, (n or = 2, 0x,tb). The complex function theory is used to determine the fundamental function of the problem for the general case and a simple numerical technique is described to solve the integral equation. Two examples from the theory of elasticity are then considered to show the application of the technique.

  8. Singularity Preserving Numerical Methods for Boundary Integral Equations

    NASA Technical Reports Server (NTRS)

    Kaneko, Hideaki (Principal Investigator)

    1996-01-01

    In the past twelve months (May 8, 1995 - May 8, 1996), under the cooperative agreement with Division of Multidisciplinary Optimization at NASA Langley, we have accomplished the following five projects: a note on the finite element method with singular basis functions; numerical quadrature for weakly singular integrals; superconvergence of degenerate kernel method; superconvergence of the iterated collocation method for Hammersteion equations; and singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel. This final report consists of five papers describing these projects. Each project is preceeded by a brief abstract.

  9. Space-time domain solutions of the wave equation by a non-singular boundary integral method and Fourier transform.

    PubMed

    Klaseboer, Evert; Sepehrirahnama, Shahrokh; Chan, Derek Y C

    2017-08-01

    The general space-time evolution of the scattering of an incident acoustic plane wave pulse by an arbitrary configuration of targets is treated by employing a recently developed non-singular boundary integral method to solve the Helmholtz equation in the frequency domain from which the space-time solution of the wave equation is obtained using the fast Fourier transform. The non-singular boundary integral solution can enforce the radiation boundary condition at infinity exactly and can account for multiple scattering effects at all spacings between scatterers without adverse effects on the numerical precision. More generally, the absence of singular kernels in the non-singular integral equation confers high numerical stability and precision for smaller numbers of degrees of freedom. The use of fast Fourier transform to obtain the time dependence is not constrained to discrete time steps and is particularly efficient for studying the response to different incident pulses by the same configuration of scatterers. The precision that can be attained using a smaller number of Fourier components is also quantified.

  10. The problem of a finite strip compressed between two rough rigid stamps

    NASA Technical Reports Server (NTRS)

    Gupta, G. D.

    1975-01-01

    A finite strip compressed between two rough rigid stamps is considered. The elastostatic problem is formulated in terms of a singular integral equation from which the proper stress singularities at the corners are determined. The singular integral equation is solved numerically to determine the stresses along the fixed ends of the strip. The effect of material properties and strip geometry on the stress-intensity factor is presented graphically.

  11. Modeling of Graphene Planar Grating in the THz Range by the Method of Singular Integral Equations

    NASA Astrophysics Data System (ADS)

    Kaliberda, Mstislav E.; Lytvynenko, Leonid M.; Pogarsky, Sergey A.

    2018-04-01

    Diffraction of the H-polarized electromagnetic wave by the planar graphene grating in the THz range is considered. The scattering and absorption characteristics are studied. The scattered field is represented in the spectral domain via unknown spectral function. The mathematical model is based on the graphene surface impedance and the method of singular integral equations. The numerical solution is obtained by the Nystrom-type method of discrete singularities.

  12. Fredholm-Volterra Integral Equation with a Generalized Singular Kernel and its Numerical Solutions

    NASA Astrophysics Data System (ADS)

    El-Kalla, I. L.; Al-Bugami, A. M.

    2010-11-01

    In this paper, the existence and uniqueness of solution of the Fredholm-Volterra integral equation (F-VIE), with a generalized singular kernel, are discussed and proved in the spaceL2(Ω)×C(0,T). The Fredholm integral term (FIT) is considered in position while the Volterra integral term (VIT) is considered in time. Using a numerical technique we have a system of Fredholm integral equations (SFIEs). This system of integral equations can be reduced to a linear algebraic system (LAS) of equations by using two different methods. These methods are: Toeplitz matrix method and Product Nyström method. A numerical examples are considered when the generalized kernel takes the following forms: Carleman function, logarithmic form, Cauchy kernel, and Hilbert kernel.

  13. Perturbed dark and singular optical solitons in polarization preserving fibers by modified simple equation method

    NASA Astrophysics Data System (ADS)

    Yaşar, Emrullah; Yıldırım, Yakup; Zhou, Qin; Moshokoa, Seithuti P.; Ullah, Malik Zaka; Triki, Houria; Biswas, Anjan; Belic, Milivoj

    2017-11-01

    This paper obtains optical soliton solution to perturbed nonlinear Schrödinger's equation by modified simple equation method. There are four types of nonlinear fibers studied in this paper. They are Anti-cubic law, Quadratic-cubic law, Cubic-quintic-septic law and Triple-power law. Dark and singular soliton solutions are derived. Additional solutions such as singular periodic solutions also fall out of the integration scheme.

  14. Numerical techniques in radiative heat transfer for general, scattering, plane-parallel media

    NASA Technical Reports Server (NTRS)

    Sharma, A.; Cogley, A. C.

    1982-01-01

    The study of radiative heat transfer with scattering usually leads to the solution of singular Fredholm integral equations. The present paper presents an accurate and efficient numerical method to solve certain integral equations that govern radiative equilibrium problems in plane-parallel geometry for both grey and nongrey, anisotropically scattering media. In particular, the nongrey problem is represented by a spectral integral of a system of nonlinear integral equations in space, which has not been solved previously. The numerical technique is constructed to handle this unique nongrey governing equation as well as the difficulties caused by singular kernels. Example problems are solved and the method's accuracy and computational speed are analyzed.

  15. Calculating corner singularities by boundary integral equations.

    PubMed

    Shi, Hualiang; Lu, Ya Yan; Du, Qiang

    2017-06-01

    Accurate numerical solutions for electromagnetic fields near sharp corners and edges are important for nanophotonics applications that rely on strong near fields to enhance light-matter interactions. For cylindrical structures, the singularity exponents of electromagnetic fields near sharp edges can be solved analytically, but in general the actual fields can only be calculated numerically. In this paper, we use a boundary integral equation method to compute electromagnetic fields near sharp edges, and construct the leading terms in asymptotic expansions based on numerical solutions. Our integral equations are formulated for rescaled unknown functions to avoid unbounded field components, and are discretized with a graded mesh and properly chosen quadrature schemes. The numerically found singularity exponents agree well with the exact values in all the test cases presented here, indicating that the numerical solutions are accurate.

  16. Soliton structure versus singularity analysis: Third-order completely intergrable nonlinear differential equations in 1 + 1-dimensions

    NASA Astrophysics Data System (ADS)

    Fuchssteiner, Benno; Carillo, Sandra

    1989-01-01

    Bäcklund transformations between all known completely integrable third-order differential equations in (1 + 1)-dimensions are established and the corresponding transformations formulas for their hereditary operators and Hamiltonian formulations are exhibited. Some of these Bäcklund transformations are not injective; therefore additional non-commutative symmetry groups are found for some equations. These non-commutative symmetry groups are classified as having a semisimple part isomorphic to the affine algebra A(1)1. New completely integrable third-order integro-differential equations, some depending explicitly on x, are given. These new equations give rise to nonin equation. Connections between the singularity equations (from the Painlevé analysis) and the nonlinear equations for interacting solitons are established. A common approach to singularity analysis and soliton structure is introduced. The Painlevé analysis is modified in such a sense that it carries over directly and without difficulty to the time evolution of singularity manifolds of equations like the sine-Gordon and nonlinear Schrödinger equation. A method to recover the Painlevé series from its constant level term is exhibit. The soliton-singularity transform is recognized to be connected to the Möbius group. This gives rise to a Darboux-like result for the spectral properties of the recursion operator. These connections are used in order to explain why poles of soliton equations move like trajectories of interacting solitons. Furthermore it is explicitly computed how solitons of singularity equations behave under the effect of this soliton-singularity transform. This then leads to the result that only for scaling degrees α = -1 and α = -2 the usual Painlevé analysis can be carried out. A new invariance principle, connected to kernels of differential operators is discovered. This new invariance, for example, connects the explicit solutions of the Liouville equation with the Miura transform. Simple methods are exhibited which allow to compute out of N-soliton solutions of the KdV (Bargman potentials) explicit solutions of equations like the Harry Dym equation. Certain solutions are plotted.

  17. Solving differential equations for Feynman integrals by expansions near singular points

    NASA Astrophysics Data System (ADS)

    Lee, Roman N.; Smirnov, Alexander V.; Smirnov, Vladimir A.

    2018-03-01

    We describe a strategy to solve differential equations for Feynman integrals by powers series expansions near singular points and to obtain high precision results for the corresponding master integrals. We consider Feynman integrals with two scales, i.e. non-trivially depending on one variable. The corresponding algorithm is oriented at situations where canonical form of the differential equations is impossible. We provide a computer code constructed with the help of our algorithm for a simple example of four-loop generalized sunset integrals with three equal non-zero masses and two zero masses. Our code gives values of the master integrals at any given point on the real axis with a required accuracy and a given order of expansion in the regularization parameter ɛ.

  18. A fast and well-conditioned spectral method for singular integral equations

    NASA Astrophysics Data System (ADS)

    Slevinsky, Richard Mikael; Olver, Sheehan

    2017-03-01

    We develop a spectral method for solving univariate singular integral equations over unions of intervals by utilizing Chebyshev and ultraspherical polynomials to reformulate the equations as almost-banded infinite-dimensional systems. This is accomplished by utilizing low rank approximations for sparse representations of the bivariate kernels. The resulting system can be solved in O (m2 n) operations using an adaptive QR factorization, where m is the bandwidth and n is the optimal number of unknowns needed to resolve the true solution. The complexity is reduced to O (mn) operations by pre-caching the QR factorization when the same operator is used for multiple right-hand sides. Stability is proved by showing that the resulting linear operator can be diagonally preconditioned to be a compact perturbation of the identity. Applications considered include the Faraday cage, and acoustic scattering for the Helmholtz and gravity Helmholtz equations, including spectrally accurate numerical evaluation of the far- and near-field solution. The JULIA software package SingularIntegralEquations.jl implements our method with a convenient, user-friendly interface.

  19. Interaction between a circular inclusion and an arbitrarily oriented crack

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Gupta, G. D.; Ratwani, M.

    1975-01-01

    The plane interaction problem for a circular elastic inclusion embedded in an elastic matrix which contains an arbitrarily oriented crack is considered. Using the existing solutions for the edge dislocations as Green's functions, first the general problem of a through crack in the form of an arbitrary smooth arc located in the matrix in the vicinity of the inclusion is formulated. The integral equations for the line crack are then obtained as a system of singular integral equations with simple Cauchy kernels. The singular behavior of the stresses around the crack tips is examined and the expressions for the stress-intensity factors representing the strength of the stress singularities are obtained in terms of the asymptotic values of the density functions of the integral equations. The problem is solved for various typical crack orientations and the corresponding stress-intensity factors are given.

  20. Integrals and integral equations in linearized wing theory

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Heaslet, Max A; Fuller, Franklyn B

    1951-01-01

    The formulas of subsonic and supersonic wing theory for source, doublet, and vortex distributions are reviewed and a systematic presentation is provided which relates these distributions to the pressure and to the vertical induced velocity in the plane of the wing. It is shown that care must be used in treating the singularities involved in the analysis and that the order of integration is not always reversible. Concepts suggested by the irreversibility of order of integration are shown to be useful in the inversion of singular integral equations when operational techniques are used. A number of examples are given to illustrate the methods presented, attention being directed to supersonic flight speed.

  1. Spontaneous generation of singularities in paraxial optical fields.

    PubMed

    Aiello, Andrea

    2016-04-01

    In nonrelativistic quantum mechanics, the spontaneous generation of singularities in smooth and finite wave functions is a well understood phenomenon also occurring for free particles. We use the familiar analogy between the two-dimensional Schrödinger equation and the optical paraxial wave equation to define a new class of square-integrable paraxial optical fields that develop a spatial singularity in the focal point of a weakly focusing thin lens. These fields are characterized by a single real parameter whose value determines the nature of the singularity. This novel field enhancement mechanism may stimulate fruitful research for diverse technological and scientific applications.

  2. On the complete and partial integrability of non-Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Bountis, T. C.; Ramani, A.; Grammaticos, B.; Dorizzi, B.

    1984-11-01

    The methods of singularity analysis are applied to several third order non-Hamiltonian systems of physical significance including the Lotka-Volterra equations, the three-wave interaction and the Rikitake dynamo model. Complete integrability is defined and new completely integrable systems are discovered by means of the Painlevé property. In all these cases we obtain integrals, which reduce the equations either to a final quadrature or to an irreducible second order ordinary differential equation (ODE) solved by Painlevé transcendents. Relaxing the Painlevé property we find many partially integrable cases whose movable singularities are poles at leading order, with In( t- t0) terms entering at higher orders. In an Nth order, generalized Rössler model a precise relation is established between the partial fulfillment of the Painlevé conditions and the existence of N - 2 integrals of the motion.

  3. A multi-domain spectral method for time-fractional differential equations

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Xu, Qinwu; Hesthaven, Jan S.

    2015-07-01

    This paper proposes an approach for high-order time integration within a multi-domain setting for time-fractional differential equations. Since the kernel is singular or nearly singular, two main difficulties arise after the domain decomposition: how to properly account for the history/memory part and how to perform the integration accurately. To address these issues, we propose a novel hybrid approach for the numerical integration based on the combination of three-term-recurrence relations of Jacobi polynomials and high-order Gauss quadrature. The different approximations used in the hybrid approach are justified theoretically and through numerical examples. Based on this, we propose a new multi-domain spectral method for high-order accurate time integrations and study its stability properties by identifying the method as a generalized linear method. Numerical experiments confirm hp-convergence for both time-fractional differential equations and time-fractional partial differential equations.

  4. On the Formulation of Weakly Singular Displacement/Traction Integral Equations; and Their Solution by the MLPG Method

    NASA Technical Reports Server (NTRS)

    Atluri, Satya N.; Shen, Shengping

    2002-01-01

    In this paper, a very simple method is used to derive the weakly singular traction boundary integral equation based on the integral relationships for displacement gradients. The concept of the MLPG method is employed to solve the integral equations, especially those arising in solid mechanics. A moving Least Squares (MLS) interpolation is selected to approximate the trial functions in this paper. Five boundary integral Solution methods are introduced: direct solution method; displacement boundary-value problem; traction boundary-value problem; mixed boundary-value problem; and boundary variational principle. Based on the local weak form of the BIE, four different nodal-based local test functions are selected, leading to four different MLPG methods for each BIE solution method. These methods combine the advantages of the MLPG method and the boundary element method.

  5. Opening of an interface flaw in a layered elastic half-plane under compressive loading

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.; Fichter, W. B.; Goree, J. G.

    1984-01-01

    A static analysis is given of the problem of an elastic layer perfectly bonded, except for a frictionless interface crack, to a dissimilar elastic half-plane. The free surface of the layer is loaded by a finite pressure distribution directly over the crack. The problem is formulated using the two dimensional linear elasticity equations. Using Fourier transforms, the governing equations are converted to a pair of coupled singular integral equations. The integral equations are reduced to a set of simultaneous algebraic equations by expanding the unknown functions in a series of Jacobi polynomials and then evaluating the singular Cauchy-type integrals. The resulting equations are found to be ill-conditioned and, consequently, are solved in the least-squares sense. Results from the analysis show that, under a normal pressure distribution on the free surface of the layer and depending on the combination of geometric and material parameters, the ends of the crack can open. The resulting stresses at the crack-tips are singular, implying that crack growth is possible. The extent of the opening and the crack-top stress intensity factors depend on the width of the pressure distribution zone, the layer thickness, and the relative material properties of the layer and half-plane.

  6. Landau singularities and symbology: One- and two-loop MHV amplitudes in SYM theory

    DOE PAGES

    Dennen, Tristan; Spradlin, Marcus; Volovich, Anastasia

    2016-03-14

    We apply the Landau equations, whose solutions parameterize the locus of possible branch points, to the one- and two-loop Feynman integrals relevant to MHV amplitudes in planar N = 4 super-Yang-Mills theory. We then identify which of the Landau singularities appear in the symbols of the amplitudes, and which do not. Finally, we observe that all of the symbol entries in the two-loop MHV amplitudes are already present as Landau singularities of one-loop pentagon integrals.

  7. Singular boundary value problem for the integrodifferential equation in an insurance model with stochastic premiums: Analysis and numerical solution

    NASA Astrophysics Data System (ADS)

    Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V.

    2012-10-01

    A singular boundary value problem for a second-order linear integrodifferential equation with Volterra and non-Volterra integral operators is formulated and analyzed. The equation is defined on ℝ+, has a weak singularity at zero and a strong singularity at infinity, and depends on several positive parameters. Under natural constraints on the coefficients of the equation, existence and uniqueness theorems for this problem with given limit boundary conditions at singular points are proved, asymptotic representations of the solution are given, and an algorithm for its numerical determination is described. Numerical computations are performed and their interpretation is given. The problem arises in the study of the survival probability of an insurance company over infinite time (as a function of its initial surplus) in a dynamic insurance model that is a modification of the classical Cramer-Lundberg model with a stochastic process rate of premium under a certain investment strategy in the financial market. A comparative analysis of the results with those produced by the model with deterministic premiums is given.

  8. Theoretical analysis of linearized acoustics and aerodynamics of advanced supersonic propellers

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1985-01-01

    The derivation of a formula for prediction of the noise of supersonic propellers using time domain analysis is presented. This formula is a solution of the Ffowcs Williams-Hawkings equation and does not have the Doppler singularity of some other formulations. The result presented involves some surface integrals over the blade and line integrals over the leading and trailing edges. The blade geometry, motion and surface pressure are needed for noise calculation. To obtain the blade surface pressure, the observer is moved onto the blade surface and a linear singular integral equation is derived which can be solved numerically. Two examples of acoustic calculations using a computer program are currently under development.

  9. The integrable case of Adler-van Moerbeke. Discriminant set and bifurcation diagram

    NASA Astrophysics Data System (ADS)

    Ryabov, Pavel E.; Oshemkov, Andrej A.; Sokolov, Sergei V.

    2016-09-01

    The Adler-van Moerbeke integrable case of the Euler equations on the Lie algebra so(4) is investigated. For the L- A pair found by Reyman and Semenov-Tian-Shansky for this system, we explicitly present a spectral curve and construct the corresponding discriminant set. The singularities of the Adler-van Moerbeke integrable case and its bifurcation diagram are discussed. We explicitly describe singular points of rank 0, determine their types, and show that the momentum mapping takes them to self-intersection points of the real part of the discriminant set. In particular, the described structure of singularities of the Adler-van Moerbeke integrable case shows that it is topologically different from the other known integrable cases on so(4).

  10. Finite-surface method for the Maxwell equations with corner singularities

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel; Yarrow, Maurice

    1994-01-01

    The finite-surface method for the two-dimensional Maxwell equations in generalized coordinates is extended to treat perfect conductor boundaries with sharp corners. Known singular forms of the grid and the electromagnetic fields in the neighborhood of each corner are used to obtain accurate approximations to the surface and line integrals appearing in the method. Numerical results are presented for a harmonic plane wave incident on a finite flat plate. Comparisons with exact solutions show good agreement.

  11. Torsion analysis of cracked circular bars actuated by a piezoelectric coating

    NASA Astrophysics Data System (ADS)

    Hassani, A. R.; Faal, R. T.

    2016-12-01

    This study presents a formulation for a bar with circular cross-section, coated by a piezoelectric layer and subjected to Saint-Venant torsion loading. The bar is weakened by a Volterra-type screw dislocation. First, with aid of the finite Fourier transform, the stress fields in the circular bar and the piezoelectric layer are obtained. The problem is then reduced to a set of singular integral equations with a Cauchy-type singularity. Unknown dislocation density is achieved by numerical solution of these integral equations. Numerical results are discussed, to reveal the effect of the piezoelectric layer on the reduction of the mechanical stress intensity factor in the bar.

  12. Scattering of elastic waves from thin shapes in three dimensions using the composite boundary integral equation formulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Rizzo, F.J.

    1997-08-01

    In this paper, the composite boundary integral equation (BIE) formulation is applied to scattering of elastic waves from thin shapes with small but {ital finite} thickness (open cracks or thin voids, thin inclusions, thin-layer interfaces, etc.), which are modeled with {ital two surfaces}. This composite BIE formulation, which is an extension of the Burton and Miller{close_quote}s formulation for acoustic waves, uses a linear combination of the conventional BIE and the hypersingular BIE. For thin shapes, the conventional BIE, as well as the hypersingular BIE, will degenerate (or nearly degenerate) if they are applied {ital individually} on the two surfaces. Themore » composite BIE formulation, however, will not degenerate for such problems, as demonstrated in this paper. Nearly singular and hypersingular integrals, which arise in problems involving thin shapes modeled with two surfaces, are transformed into sums of weakly singular integrals and nonsingular line integrals. Thus, no finer mesh is needed to compute these nearly singular integrals. Numerical examples of elastic waves scattered from penny-shaped cracks with varying openings are presented to demonstrate the effectiveness of the composite BIE formulation. {copyright} {ital 1997 Acoustical Society of America.}« less

  13. Coprimeness-preserving non-integrable extension to the two-dimensional discrete Toda lattice equation

    NASA Astrophysics Data System (ADS)

    Kamiya, Ryo; Kanki, Masataka; Mase, Takafumi; Tokihiro, Tetsuji

    2017-01-01

    We introduce a so-called coprimeness-preserving non-integrable extension to the two-dimensional Toda lattice equation. We believe that this equation is the first example of such discrete equations defined over a three-dimensional lattice. We prove that all the iterates of the equation are irreducible Laurent polynomials of the initial data and that every pair of two iterates is co-prime, which indicate confined singularities of the equation. By reducing the equation to two- or one-dimensional lattices, we obtain coprimeness-preserving non-integrable extensions to the one-dimensional Toda lattice equation and the Somos-4 recurrence.

  14. A new method for true and spurious eigensolutions of arbitrary cavities using the combined Helmholtz exterior integral equation formulation method.

    PubMed

    Chen, I L; Chen, J T; Kuo, S R; Liang, M T

    2001-03-01

    Integral equation methods have been widely used to solve interior eigenproblems and exterior acoustic problems (radiation and scattering). It was recently found that the real-part boundary element method (BEM) for the interior problem results in spurious eigensolutions if the singular (UT) or the hypersingular (LM) equation is used alone. The real-part BEM results in spurious solutions for interior problems in a similar way that the singular integral equation (UT method) results in fictitious solutions for the exterior problem. To solve this problem, a Combined Helmholtz Exterior integral Equation Formulation method (CHEEF) is proposed. Based on the CHEEF method, the spurious solutions can be filtered out if additional constraints from the exterior points are chosen carefully. Finally, two examples for the eigensolutions of circular and rectangular cavities are considered. The optimum numbers and proper positions for selecting the points in the exterior domain are analytically studied. Also, numerical experiments were designed to verify the analytical results. It is worth pointing out that the nodal line of radiation mode of a circle can be rotated due to symmetry, while the nodal line of the rectangular is on a fixed position.

  15. {lambda} elements for singular problems in CFD: Viscoelastic fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, K.K.; Surana, K.S.

    1996-10-01

    This paper presents two dimensional {lambda} element formulation for viscoelastic fluid flow containing point singularities in the flow field. The flow of viscoelastic fluid even without singularities are a difficult class of problems for increasing Deborah number or Weissenburg number due to increased dominance of convective terms and thus increased hyperbolicity. In the present work the equations of fluid motion and the constitutive laws are recast in the form of a first order system of coupled equations with the use of auxiliary variables. The velocity, pressure and stresses are interpolated using equal order C{sup 0} {lambda} element approximations. The Leastmore » Squares Finite Element Method (LSFEM) is used to construct the integral form (error functional I) corresponding to these equations. The error functional is constructed by taking the integrated sum of the squares of the errors or residuals (over the whole discretization) resulting when the element approximation is substituted into these equations. The conditions resulting from the minimization of the error functional are satisfied by using Newton`s method with line search. LSFEM has much superior performance when dealing with non-linear and convection dominated problems.« less

  16. Computational singular perturbation analysis of stochastic chemical systems with stiffness

    NASA Astrophysics Data System (ADS)

    Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; Najm, Habib N.

    2017-04-01

    Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.

  17. Extension of the KLI approximation toward the exact optimized effective potential.

    PubMed

    Iafrate, G J; Krieger, J B

    2013-03-07

    The integral equation for the optimized effective potential (OEP) is utilized in a compact form from which an accurate OEP solution for the spin-unrestricted exchange-correlation potential, Vxcσ, is obtained for any assumed orbital-dependent exchange-correlation energy functional. The method extends beyond the Krieger-Li-Iafrate (KLI) approximation toward the exact OEP result. The compact nature of the OEP equation arises by replacing the integrals involving the Green's function terms in the traditional OEP equation by an equivalent first-order perturbation theory wavefunction often referred to as the "orbital shift" function. Significant progress is then obtained by solving the equation for the first order perturbation theory wavefunction by use of Dalgarno functions which are determined from well known methods of partial differential equations. The use of Dalgarno functions circumvents the need to explicitly address the Green's functions and the associated problems with "sum over states" numerics; as well, the Dalgarno functions provide ease in dealing with inherent singularities arising from the origin and the zeros of the occupied orbital wavefunctions. The Dalgarno approach for finding a solution to the OEP equation is described herein, and a detailed illustrative example is presented for the special case of a spherically symmetric exchange-correlation potential. For the case of spherical symmetry, the relevant Dalgarno function is derived by direct integration of the appropriate radial equation while utilizing a user friendly method which explicitly treats the singular behavior at the origin and at the nodal singularities arising from the zeros of the occupied states. The derived Dalgarno function is shown to be an explicit integral functional of the exact OEP Vxcσ, thus allowing for the reduction of the OEP equation to a self-consistent integral equation for the exact exchange-correlation potential; the exact solution to this integral equation can be determined by iteration with the natural zeroth order correction given by the KLI exchange-correlation potential. Explicit analytic results are provided to illustrate the first order iterative correction beyond the KLI approximation. The derived correction term to the KLI potential explicitly involves spatially weighted products of occupied orbital densities in any assumed orbital-dependent exchange-correlation energy functional; as well, the correction term is obtained with no adjustable parameters. Moreover, if the equation for the exact optimized effective potential is further iterated, one can obtain the OEP as accurately as desired.

  18. Extension of the KLI approximation toward the exact optimized effective potential

    NASA Astrophysics Data System (ADS)

    Iafrate, G. J.; Krieger, J. B.

    2013-03-01

    The integral equation for the optimized effective potential (OEP) is utilized in a compact form from which an accurate OEP solution for the spin-unrestricted exchange-correlation potential, Vxcσ, is obtained for any assumed orbital-dependent exchange-correlation energy functional. The method extends beyond the Krieger-Li-Iafrate (KLI) approximation toward the exact OEP result. The compact nature of the OEP equation arises by replacing the integrals involving the Green's function terms in the traditional OEP equation by an equivalent first-order perturbation theory wavefunction often referred to as the "orbital shift" function. Significant progress is then obtained by solving the equation for the first order perturbation theory wavefunction by use of Dalgarno functions which are determined from well known methods of partial differential equations. The use of Dalgarno functions circumvents the need to explicitly address the Green's functions and the associated problems with "sum over states" numerics; as well, the Dalgarno functions provide ease in dealing with inherent singularities arising from the origin and the zeros of the occupied orbital wavefunctions. The Dalgarno approach for finding a solution to the OEP equation is described herein, and a detailed illustrative example is presented for the special case of a spherically symmetric exchange-correlation potential. For the case of spherical symmetry, the relevant Dalgarno function is derived by direct integration of the appropriate radial equation while utilizing a user friendly method which explicitly treats the singular behavior at the origin and at the nodal singularities arising from the zeros of the occupied states. The derived Dalgarno function is shown to be an explicit integral functional of the exact OEP Vxcσ, thus allowing for the reduction of the OEP equation to a self-consistent integral equation for the exact exchange-correlation potential; the exact solution to this integral equation can be determined by iteration with the natural zeroth order correction given by the KLI exchange-correlation potential. Explicit analytic results are provided to illustrate the first order iterative correction beyond the KLI approximation. The derived correction term to the KLI potential explicitly involves spatially weighted products of occupied orbital densities in any assumed orbital-dependent exchange-correlation energy functional; as well, the correction term is obtained with no adjustable parameters. Moreover, if the equation for the exact optimized effective potential is further iterated, one can obtain the OEP as accurately as desired.

  19. Solution of Grad-Shafranov equation by the method of fundamental solutions

    NASA Astrophysics Data System (ADS)

    Nath, D.; Kalra, M. S.; Kalra

    2014-06-01

    In this paper we have used the Method of Fundamental Solutions (MFS) to solve the Grad-Shafranov (GS) equation for the axisymmetric equilibria of tokamak plasmas with monomial sources. These monomials are the individual terms appearing on the right-hand side of the GS equation if one expands the nonlinear terms into polynomials. Unlike the Boundary Element Method (BEM), the MFS does not involve any singular integrals and is a meshless boundary-alone method. Its basic idea is to create a fictitious boundary around the actual physical boundary of the computational domain. This automatically removes the involvement of singular integrals. The results obtained by the MFS match well with the earlier results obtained using the BEM. The method is also applied to Solov'ev profiles and it is found that the results are in good agreement with analytical results.

  20. Topics in Bethe Ansatz

    NASA Astrophysics Data System (ADS)

    Wang, Chunguang

    Integrable quantum spin chains have close connections to integrable quantum field. theories, modern condensed matter physics, string and Yang-Mills theories. Bethe. ansatz is one of the most important approaches for solving quantum integrable spin. chains. At the heart of the algebraic structure of integrable quantum spin chains is. the quantum Yang-Baxter equation and the boundary Yang-Baxter equation. This. thesis focuses on four topics in Bethe ansatz. The Bethe equations for the isotropic periodic spin-1/2 Heisenberg chain with N. sites have solutions containing ±i/2 that are singular: both the corresponding energy and the algebraic Bethe ansatz vector are divergent. Such solutions must be carefully regularized. We consider a regularization involving a parameter that can be. determined using a generalization of the Bethe equations. These generalized Bethe. equations provide a practical way of determining which singular solutions correspond. to eigenvectors of the model. The Bethe equations for the periodic XXX and XXZ spin chains admit singular. solutions, for which the corresponding eigenvalues and eigenvectors are ill-defined. We use a twist regularization to derive conditions for such singular solutions to bephysical, in which case they correspond to genuine eigenvalues and eigenvectors of. the Hamiltonian. We analyze the ground state of the open spin-1/2 isotropic quantum spin chain. with a non-diagonal boundary term using a recently proposed Bethe ansatz solution. As the coefficient of the non-diagonal boundary term tends to zero, the Bethe roots. split evenly into two sets: those that remain finite, and those that become infinite. We. argue that the former satisfy conventional Bethe equations, while the latter satisfy a. generalization of the Richardson-Gaudin equations. We derive an expression for the. leading correction to the boundary energy in terms of the boundary parameters. We argue that the Hamiltonians for A(2) 2n open quantum spin chains corresponding. to two choices of integrable boundary conditions have the symmetries Uq(Bn) and. Uq(Cn), respectively. The deformation of Cn is novel, with a nonstandard coproduct. We find a formula for the Dynkin labels of the Bethe states (which determine the degeneracies of the corresponding eigenvalues) in terms of the numbers of Bethe roots of. each type. With the help of this formula, we verify numerically (for a generic value of. the anisotropy parameter) that the degeneracies and multiplicities of the spectra implied by the quantum group symmetries are completely described by the Bethe ansatz.

  1. Analytical and numerical solutions for heat transfer and effective thermal conductivity of cracked media

    NASA Astrophysics Data System (ADS)

    Tran, A. B.; Vu, M. N.; Nguyen, S. T.; Dong, T. Q.; Le-Nguyen, K.

    2018-02-01

    This paper presents analytical solutions to heat transfer problems around a crack and derive an adaptive model for effective thermal conductivity of cracked materials based on singular integral equation approach. Potential solution of heat diffusion through two-dimensional cracked media, where crack filled by air behaves as insulator to heat flow, is obtained in a singular integral equation form. It is demonstrated that the temperature field can be described as a function of temperature and rate of heat flow on the boundary and the temperature jump across the cracks. Numerical resolution of this boundary integral equation allows determining heat conduction and effective thermal conductivity of cracked media. Moreover, writing this boundary integral equation for an infinite medium embedding a single crack under a far-field condition allows deriving the closed-form solution of temperature discontinuity on the crack and particularly the closed-form solution of temperature field around the crack. These formulas are then used to establish analytical effective medium estimates. Finally, the comparison between the developed numerical and analytical solutions allows developing an adaptive model for effective thermal conductivity of cracked media. This model takes into account both the interaction between cracks and the percolation threshold.

  2. Burton-Miller-type singular boundary method for acoustic radiation and scattering

    NASA Astrophysics Data System (ADS)

    Fu, Zhuo-Jia; Chen, Wen; Gu, Yan

    2014-08-01

    This paper proposes the singular boundary method (SBM) in conjunction with Burton and Miller's formulation for acoustic radiation and scattering. The SBM is a strong-form collocation boundary discretization technique using the singular fundamental solutions, which is mathematically simple, easy-to-program, meshless and introduces the concept of source intensity factors (SIFs) to eliminate the singularities of the fundamental solutions. Therefore, it avoids singular numerical integrals in the boundary element method (BEM) and circumvents the troublesome placement of the fictitious boundary in the method of fundamental solutions (MFS). In the present method, we derive the SIFs of exterior Helmholtz equation by means of the SIFs of exterior Laplace equation owing to the same order of singularities between the Laplace and Helmholtz fundamental solutions. In conjunction with the Burton-Miller formulation, the SBM enhances the quality of the solution, particularly in the vicinity of the corresponding interior eigenfrequencies. Numerical illustrations demonstrate efficiency and accuracy of the present scheme on some benchmark examples under 2D and 3D unbounded domains in comparison with the analytical solutions, the boundary element solutions and Dirichlet-to-Neumann finite element solutions.

  3. Plates and shells containing a surface crack under general loading conditions

    NASA Technical Reports Server (NTRS)

    Joseph, Paul F.; Erdogan, Fazil

    1986-01-01

    The severity of the underlying assumptions of the line-spring model (LSM) are such that verification with three-dimensional solutions is necessary. Such comparisons show that the model is quite accurate, and therefore, its use in extensive parameter studies is justified. Investigations into the endpoint behavior of the line-spring model have led to important conclusions about the ability of the model to predict stresses in front of the crack tip. An important application of the LSM was to solve the contact plate bending problem. Here the flexibility of the model to allow for any crack shape is exploited. The use of displacement quantities as unknowns in the formulation of the problem leads to strongly singular integral equations, rather than singular integral equations which result from using displacement derivatives. The collocation method of solving the integral equations was found to be better and more convenient than the quadrature technique. Orthogonal polynomials should be used as fitting functions when using the LSM as opposed to simpler functions such as power series.

  4. Vortex equations: Singularities, numerical solution, and axisymmetric vortex breakdown

    NASA Technical Reports Server (NTRS)

    Bossel, H. H.

    1972-01-01

    A method of weighted residuals for the computation of rotationally symmetric quasi-cylindrical viscous incompressible vortex flow is presented and used to compute a wide variety of vortex flows. The method approximates the axial velocity and circulation profiles by series of exponentials having (N + 1) and N free parameters, respectively. Formal integration results in a set of (2N + 1) ordinary differential equations for the free parameters. The governing equations are shown to have an infinite number of discrete singularities corresponding to critical values of the swirl parameters. The computations point to the controlling influence of the inner core flow on vortex behavior. They also confirm the existence of two particular critical swirl parameter values: one separates vortex flow which decays smoothly from vortex flow which eventually breaks down, and the second is the first singularity of the quasi-cylindrical system, at which point physical vortex breakdown is thought to occur.

  5. Confining potential in momentum space

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Kahana, David E.; Maung, Khin Maung

    1992-01-01

    A method is presented for the solution in momentum space of the bound state problem with a linear potential in r space. The potential is unbounded at large r leading to a singularity at small q. The singularity is integrable, when regulated by exponentially screening the r-space potential, and is removed by a subtraction technique. The limit of zero screening is taken analytically, and the numerical solution of the subtracted integral equation gives eigenvalues and wave functions in good agreement with position space calculations.

  6. Band structure of an electron in a kind of periodic potentials with singularities

    NASA Astrophysics Data System (ADS)

    Hai, Kuo; Yu, Ning; Jia, Jiangping

    2018-06-01

    Noninteracting electrons in some crystals may experience periodic potentials with singularities and the governing Schrödinger equation cannot be defined at the singular points. The band structure of a single electron in such a one-dimensional crystal has been calculated by using an equivalent integral form of the Schrödinger equation. Both the perturbed and exact solutions are constructed respectively for the cases of a general singular weak-periodic system and its an exactly solvable version, Kronig-Penney model. Any one of them leads to a special band structure of the energy-dependent parameter, which results in an effective correction to the previous energy-band structure and gives a new explanation for forming the band structure. The used method and obtained results could be a valuable aid in the study of energy bands in solid-state physics, and the new explanation may trigger investigation to different physical mechanism of electron band structures.

  7. Efficient Solution of Three-Dimensional Problems of Acoustic and Electromagnetic Scattering by Open Surfaces

    NASA Technical Reports Server (NTRS)

    Turc, Catalin; Anand, Akash; Bruno, Oscar; Chaubell, Julian

    2011-01-01

    We present a computational methodology (a novel Nystrom approach based on use of a non-overlapping patch technique and Chebyshev discretizations) for efficient solution of problems of acoustic and electromagnetic scattering by open surfaces. Our integral equation formulations (1) Incorporate, as ansatz, the singular nature of open-surface integral-equation solutions, and (2) For the Electric Field Integral Equation (EFIE), use analytical regularizes that effectively reduce the number of iterations required by iterative linear-algebra solution based on Krylov-subspace iterative solvers.

  8. Computational singular perturbation analysis of stochastic chemical systems with stiffness

    DOE PAGES

    Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; ...

    2017-01-25

    Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to notmore » only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. Furthermore, the algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.« less

  9. Geometric constraints on potentially singular solutions for the 3-D Euler equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, P.; Fefferman, C.; Majda, A.J.

    1996-12-31

    We discuss necessary and sufficient conditions for the formation of finite time singularities (blow up) in the incompressible three dimensional Euler equations. The well-known result of Beale, Kato and Majda states that these equations have smooth solutions on the time interval (0,t) if, and only if lim/t{r_arrow}T {integral}{sup t}{sub 0} {parallel}{Omega}({center_dot},s){parallel}{sub L}{sup {infinity}} (dx)dx < {infinity} where {Omega} = {triangledown} X u is the vorticity of the fluid and u is its divergence=free velocity. In this paper we prove criteria in which the direction of vorticity {xi} = {Omega}/{vert_bar}{Omega}{vert_bar} plays an important role.

  10. General relaxation schemes in multigrid algorithms for higher order singularity methods

    NASA Technical Reports Server (NTRS)

    Oskam, B.; Fray, J. M. J.

    1981-01-01

    Relaxation schemes based on approximate and incomplete factorization technique (AF) are described. The AF schemes allow construction of a fast multigrid method for solving integral equations of the second and first kind. The smoothing factors for integral equations of the first kind, and comparison with similar results from the second kind of equations are a novel item. Application of the MD algorithm shows convergence to the level of truncation error of a second order accurate panel method.

  11. Low-thrust trajectory analysis for the geosynchronous mission

    NASA Technical Reports Server (NTRS)

    Jasper, T. P.

    1973-01-01

    Methodology employed in development of a computer program designed to analyze optimal low-thrust trajectories is described, and application of the program to a Solar Electric Propulsion Stage (SEPS) geosynchronous mission is discussed. To avoid the zero inclination and eccentricity singularities which plague many small-force perturbation techniques, a special set of state variables (equinoctial) is used. Adjoint equations are derived for the minimum time problem and are also free from the singularities. Solutions to the state and adjoint equations are obtained by both orbit averaging and precision numerical integration; an evaluation of these approaches is made.

  12. A fast numerical solution of scattering by a cylinder: Spectral method for the boundary integral equations

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.

    1994-01-01

    It is known that the exact analytic solutions of wave scattering by a circular cylinder, when they exist, are not in a closed form but in infinite series which converges slowly for high frequency waves. In this paper, we present a fast number solution for the scattering problem in which the boundary integral equations, reformulated from the Helmholtz equation, are solved using a Fourier spectral method. It is shown that the special geometry considered here allows the implementation of the spectral method to be simple and very efficient. The present method differs from previous approaches in that the singularities of the integral kernels are removed and dealt with accurately. The proposed method preserves the spectral accuracy and is shown to have an exponential rate of convergence. Aspects of efficient implementation using FFT are discussed. Moreover, the boundary integral equations of combined single and double-layer representation are used in the present paper. This ensures the uniqueness of the numerical solution for the scattering problem at all frequencies. Although a strongly singular kernel is encountered for the Neumann boundary conditions, we show that the hypersingularity can be handled easily in the spectral method. Numerical examples that demonstrate the validity of the method are also presented.

  13. A two-dimensional cascade solution using minimized surface singularity density distributions - with application to film cooled turbine blades

    NASA Technical Reports Server (NTRS)

    Mcfarland, E.; Tabakoff, W.; Hamed, A.

    1977-01-01

    An investigation of the effects of coolant injection on the aerodynamic performance of cooled turbine blades is presented. The coolant injection is modeled in the inviscid irrotational adiabatic flow analysis through the cascade using the distributed singularities approach. The resulting integral equations are solved using a minimized surface singularity density criteria. The aerodynamic performance was evaluated using this solution in conjunction with an existing mixing theory analysis. The results of the present analysis are compared with experimental measurements in cold flow tests.

  14. Issues and Methods Concerning the Evaluation of Hypersingular and Near-Hypersingular Integrals in BEM Formulations

    NASA Technical Reports Server (NTRS)

    Fink, P. W.; Khayat, M. A.; Wilton, D. R.

    2005-01-01

    It is known that higher order modeling of the sources and the geometry in Boundary Element Modeling (BEM) formulations is essential to highly efficient computational electromagnetics. However, in order to achieve the benefits of hIgher order basis and geometry modeling, the singular and near-singular terms arising in BEM formulations must be integrated accurately. In particular, the accurate integration of near-singular terms, which occur when observation points are near but not on source regions of the scattering object, has been considered one of the remaining limitations on the computational efficiency of integral equation methods. The method of singularity subtraction has been used extensively for the evaluation of singular and near-singular terms. Piecewise integration of the source terms in this manner, while manageable for bases of constant and linear orders, becomes unwieldy and prone to error for bases of higher order. Furthermore, we find that the singularity subtraction method is not conducive to object-oriented programming practices, particularly in the context of multiple operators. To extend the capabilities, accuracy, and maintainability of general-purpose codes, the subtraction method is being replaced in favor of the purely numerical quadrature schemes. These schemes employ singularity cancellation methods in which a change of variables is chosen such that the Jacobian of the transformation cancels the singularity. An example of the sin,oularity cancellation approach is the Duffy method, which has two major drawbacks: 1) In the resulting integrand, it produces an angular variation about the singular point that becomes nearly-singular for observation points close to an edge of the parent element, and 2) it appears not to work well when applied to nearly-singular integrals. Recently, the authors have introduced the transformation u(x(prime))= sinh (exp -1) x(prime)/Square root of ((y prime (exp 2))+ z(exp 2) for integrating functions of the form I = Integral of (lambda(r(prime))((e(exp -jkR))/(4 pi R) d D where A (r (prime)) is a vector or scalar basis function and R = Square root of( (x(prime)(exp2) + (y(prime)(exp2) + z(exp 2)) is the distance between source and observation points. This scheme has all of the advantages of the Duffy method while avoiding the disadvantages listed above. In this presentation we will survey similar approaches for handling singular and near-singular terms for kernels with 1/R(exp 2) type behavior, addressing potential pitfalls and offering techniques to efficiently handle special cases.

  15. Fuchsia : A tool for reducing differential equations for Feynman master integrals to epsilon form

    NASA Astrophysics Data System (ADS)

    Gituliar, Oleksandr; Magerya, Vitaly

    2017-10-01

    We present Fuchsia - an implementation of the Lee algorithm, which for a given system of ordinary differential equations with rational coefficients ∂x J(x , ɛ) = A(x , ɛ) J(x , ɛ) finds a basis transformation T(x , ɛ) , i.e., J(x , ɛ) = T(x , ɛ) J‧(x , ɛ) , such that the system turns into the epsilon form : ∂xJ‧(x , ɛ) = ɛ S(x) J‧(x , ɛ) , where S(x) is a Fuchsian matrix. A system of this form can be trivially solved in terms of polylogarithms as a Laurent series in the dimensional regulator ɛ. That makes the construction of the transformation T(x , ɛ) crucial for obtaining solutions of the initial system. In principle, Fuchsia can deal with any regular systems, however its primary task is to reduce differential equations for Feynman master integrals. It ensures that solutions contain only regular singularities due to the properties of Feynman integrals. Program Files doi:http://dx.doi.org/10.17632/zj6zn9vfkh.1 Licensing provisions: MIT Programming language:Python 2.7 Nature of problem: Feynman master integrals may be calculated from solutions of a linear system of differential equations with rational coefficients. Such a system can be easily solved as an ɛ-series when its epsilon form is known. Hence, a tool which is able to find the epsilon form transformations can be used to evaluate Feynman master integrals. Solution method: The solution method is based on the Lee algorithm (Lee, 2015) which consists of three main steps: fuchsification, normalization, and factorization. During the fuchsification step a given system of differential equations is transformed into the Fuchsian form with the help of the Moser method (Moser, 1959). Next, during the normalization step the system is transformed to the form where eigenvalues of all residues are proportional to the dimensional regulator ɛ. Finally, the system is factorized to the epsilon form by finding an unknown transformation which satisfies a system of linear equations. Additional comments including Restrictions and Unusual features: Systems of single-variable differential equations are considered. A system needs to be reducible to Fuchsian form and eigenvalues of its residues must be of the form n + m ɛ, where n is integer. Performance depends upon the input matrix, its size, number of singular points and their degrees. It takes around an hour to reduce an example 74 × 74 matrix with 20 singular points on a PC with a 1.7 GHz Intel Core i5 CPU. An additional slowdown is to be expected for matrices with complex and/or irrational singular point locations, as these are particularly difficult for symbolic algebra software to handle.

  16. Nonlinear bending models for beams and plates

    PubMed Central

    Antipov, Y. A.

    2014-01-01

    A new nonlinear model for large deflections of a beam is proposed. It comprises the Euler–Bernoulli boundary value problem for the deflection and a nonlinear integral condition. When bending does not alter the beam length, this condition guarantees that the deflected beam has the original length and fixes the horizontal displacement of the free end. The numerical results are in good agreement with the ones provided by the elastica model. Dynamic and two-dimensional generalizations of this nonlinear one-dimensional static model are also discussed. The model problem for an inextensible rectangular Kirchhoff plate, when one side is clamped, the opposite one is subjected to a shear force, and the others are free of moments and forces, is reduced to a singular integral equation with two fixed singularities. The singularities of the unknown function are examined, and a series-form solution is derived by the collocation method in terms of the associated Jacobi polynomials. The procedure requires solving an infinite system of linear algebraic equations for the expansion coefficients subject to the inextensibility condition. PMID:25294960

  17. On the solution of integral equations with a generalized Cauchy kernel

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1987-01-01

    A numerical technique is developed analytically to solve a class of singular integral equations occurring in mixed boundary-value problems for nonhomogeneous elastic media with discontinuities. The approach of Kaya and Erdogan (1987) is extended to treat equations with generalized Cauchy kernels, reformulating the boundary-value problems in terms of potentials as the unknown functions. The numerical implementation of the solution is discussed, and results for an epoxy-Al plate with a crack terminating at the interface and loading normal to the crack are presented in tables.

  18. Stress intensity factors of composite orthotropic plates containing periodic buffer strips

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1978-01-01

    The fracture problem of laminated plates which consist of bonded orthotropic layers is studied. The fields equations for an elastic orthotropic body are transformed to give the displacement and stress expressions for each layer or strip. The unknown functions in these expressions are found by satisfying the remaining boundary and continuity conditions. A system of singular integral equations is obtained from the mixed boundary conditions. The singular behavior around the crack tip and at the bimaterial interface is studied. The stress intensity factors are computed for various material combinations and various crack geometries. The results are discussed and are compared with those for isotropic materials.

  19. Finite elements: Theory and application

    NASA Technical Reports Server (NTRS)

    Dwoyer, D. L. (Editor); Hussaini, M. Y. (Editor); Voigt, R. G. (Editor)

    1988-01-01

    Recent advances in FEM techniques and applications are discussed in reviews and reports presented at the ICASE/LaRC workshop held in Hampton, VA in July 1986. Topics addressed include FEM approaches for partial differential equations, mixed FEMs, singular FEMs, FEMs for hyperbolic systems, iterative methods for elliptic finite-element equations on general meshes, mathematical aspects of FEMS for incompressible viscous flows, and gradient weighted moving finite elements in two dimensions. Consideration is given to adaptive flux-corrected FEM transport techniques for CFD, mixed and singular finite elements and the field BEM, p and h-p versions of the FEM, transient analysis methods in computational dynamics, and FEMs for integrated flow/thermal/structural analysis.

  20. Recent developments in rotary-wing aerodynamic theory

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1986-01-01

    Current progress in the computational analysis of rotary-wing flowfields is surveyed, and some typical results are presented in graphs. Topics examined include potential theory, rotating coordinate systems, lifting-surface theory (moving singularity, fixed wing, and rotary wing), panel methods (surface singularity representations, integral equations, and compressible flows), transonic theory (the small-disturbance equation), wake analysis (hovering rotor-wake models and transonic blade-vortex interaction), limitations on computational aerodynamics, and viscous-flow methods (dynamic-stall theories and lifting-line theory). It is suggested that the present algorithms and advanced computers make it possible to begin working toward the ultimate goal of turbulent Navier-Stokes calculations for an entire rotorcraft.

  1. Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations

    PubMed Central

    Feischl, Michael; Gantner, Gregor; Praetorius, Dirk

    2015-01-01

    We consider the Galerkin boundary element method (BEM) for weakly-singular integral equations of the first-kind in 2D. We analyze some residual-type a posteriori error estimator which provides a lower as well as an upper bound for the unknown Galerkin BEM error. The required assumptions are weak and allow for piecewise smooth parametrizations of the boundary, local mesh-refinement, and related standard piecewise polynomials as well as NURBS. In particular, our analysis gives a first contribution to adaptive BEM in the frame of isogeometric analysis (IGABEM), for which we formulate an adaptive algorithm which steers the local mesh-refinement and the multiplicity of the knots. Numerical experiments underline the theoretical findings and show that the proposed adaptive strategy leads to optimal convergence. PMID:26085698

  2. Boundary regularized integral equation formulation of the Helmholtz equation in acoustics.

    PubMed

    Sun, Qiang; Klaseboer, Evert; Khoo, Boo-Cheong; Chan, Derek Y C

    2015-01-01

    A boundary integral formulation for the solution of the Helmholtz equation is developed in which all traditional singular behaviour in the boundary integrals is removed analytically. The numerical precision of this approach is illustrated with calculation of the pressure field owing to radiating bodies in acoustic wave problems. This method facilitates the use of higher order surface elements to represent boundaries, resulting in a significant reduction in the problem size with improved precision. Problems with extreme geometric aspect ratios can also be handled without diminished precision. When combined with the CHIEF method, uniqueness of the solution of the exterior acoustic problem is assured without the need to solve hypersingular integrals.

  3. Boundary regularized integral equation formulation of the Helmholtz equation in acoustics

    PubMed Central

    Sun, Qiang; Klaseboer, Evert; Khoo, Boo-Cheong; Chan, Derek Y. C.

    2015-01-01

    A boundary integral formulation for the solution of the Helmholtz equation is developed in which all traditional singular behaviour in the boundary integrals is removed analytically. The numerical precision of this approach is illustrated with calculation of the pressure field owing to radiating bodies in acoustic wave problems. This method facilitates the use of higher order surface elements to represent boundaries, resulting in a significant reduction in the problem size with improved precision. Problems with extreme geometric aspect ratios can also be handled without diminished precision. When combined with the CHIEF method, uniqueness of the solution of the exterior acoustic problem is assured without the need to solve hypersingular integrals. PMID:26064591

  4. Fracture and fatigue analysis of functionally graded and homogeneous materials using singular integral equation approach

    NASA Astrophysics Data System (ADS)

    Zhao, Huaqing

    There are two major objectives of this thesis work. One is to study theoretically the fracture and fatigue behavior of both homogeneous and functionally graded materials, with or without crack bridging. The other is to further develop the singular integral equation approach in solving mixed boundary value problems. The newly developed functionally graded materials (FGMs) have attracted considerable research interests as candidate materials for structural applications ranging from aerospace to automobile to manufacturing. From the mechanics viewpoint, the unique feature of FGMs is that their resistance to deformation, fracture and damage varies spatially. In order to guide the microstructure selection and the design and performance assessment of components made of functionally graded materials, in this thesis work, a series of theoretical studies has been carried out on the mode I stress intensity factors and crack opening displacements for FGMs with different combinations of geometry and material under various loading conditions, including: (1) a functionally graded layer under uniform strain, far field pure bending and far field axial loading, (2) a functionally graded coating on an infinite substrate under uniform strain, and (3) a functionally graded coating on a finite substrate under uniform strain, far field pure bending and far field axial loading. In solving crack problems in homogeneous and non-homogeneous materials, a very powerful singular integral equation (SEE) method has been developed since 1960s by Erdogan and associates to solve mixed boundary value problems. However, some of the kernel functions developed earlier are incomplete and possibly erroneous. In this thesis work, mode I fracture problems in a homogeneous strip are reformulated and accurate singular Cauchy type kernels are derived. Very good convergence rates and consistency with standard data are achieved. Other kernel functions are subsequently developed for mode I fracture in functionally graded materials. This work provides a solid foundation for further applications of the singular integral equation approach to fracture and fatigue problems in advanced composites. The concept of crack bridging is a unifying theory for fracture at various length scales, from atomic cleavage to rupture of concrete structures. However, most of the previous studies are limited to small scale bridging analyses although large scale bridging conditions prevail in engineering materials. In this work, a large scale bridging analysis is included within the framework of singular integral equation approach. This allows us to study fracture, fatigue and toughening mechanisms in advanced materials with crack bridging. As an example, the fatigue crack growth of grain bridging ceramics is studied. With the advent of composite materials technology, more complex material microstructures are being introduced, and more mechanics issues such as inhomogeneity and nonlinearity come into play. Improved mathematical and numerical tools need to be developed to allow theoretical modeling of these materials. This thesis work is an attempt to meet these challenges by making contributions to both micromechanics modeling and applied mathematics. It sets the stage for further investigations of a wide range of problems in the deformation and fracture of advanced engineering materials.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanna, T.; Sakkaravarthi, K.; Kumar, C. Senthil

    In this paper, we have studied the integrability nature of a system of three-coupled Gross-Pitaevskii type nonlinear evolution equations arising in the context of spinor Bose-Einstein condensates by applying the Painleve singularity structure analysis. We show that only for two sets of parametric choices, corresponding to the known integrable cases, the system passes the Painleve test.

  6. A new aerodynamic integral equation based on an acoustic formula in the time domain

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1984-01-01

    An aerodynamic integral equation for bodies moving at transonic and supersonic speeds is presented. Based on a time-dependent acoustic formula for calculating the noise emanating from the outer portion of a propeller blade travelling at high speed (the Ffowcs Williams-Hawking formulation), the loading terms and a conventional thickness source terms are retained. Two surface and three line integrals are employed to solve an equation for the loading noise. The near-field term is regularized using the collapsing sphere approach to obtain semiconvergence on the blade surface. A singular integral equation is thereby derived for the unknown surface pressure, and is amenable to numerical solutions using Galerkin or collocation methods. The technique is useful for studying the nonuniform inflow to the propeller.

  7. Some boundary-value problems for anisotropic quarter plane

    NASA Astrophysics Data System (ADS)

    Arkhypenko, K. M.; Kryvyi, O. F.

    2018-04-01

    To solve the mixed boundary-value problems of the anisotropic elasticity for the anisotropic quarter plane, a method based on the use of the space of generalized functions {\\Im }{\\prime }({\\text{R}}+2) with slow growth properties was developed. The two-dimensional integral Fourier transform was used to construct the system of fundamental solutions for the anisotropic quarter plane in this space and a system of eight boundary integral relations was obtained, which allows one to reduce the mixed boundary-value problems for the anisotropic quarter plane directly to systems of singular integral equations with fixed singularities. The exact solutions of these systems were found by using the integral Mellin transform. The asymptotic behavior of solutions was investigated at the vertex of the quarter plane.

  8. On randomized algorithms for numerical solution of applied Fredholm integral equations of the second kind

    NASA Astrophysics Data System (ADS)

    Voytishek, Anton V.; Shipilov, Nikolay M.

    2017-11-01

    In this paper, the systematization of numerical (implemented on a computer) randomized functional algorithms for approximation of a solution of Fredholm integral equation of the second kind is carried out. Wherein, three types of such algorithms are distinguished: the projection, the mesh and the projection-mesh methods. The possibilities for usage of these algorithms for solution of practically important problems is investigated in detail. The disadvantages of the mesh algorithms, related to the necessity of calculation values of the kernels of integral equations in fixed points, are identified. On practice, these kernels have integrated singularities, and calculation of their values is impossible. Thus, for applied problems, related to solving Fredholm integral equation of the second kind, it is expedient to use not mesh, but the projection and the projection-mesh randomized algorithms.

  9. Singularities in Dromo formulation. Analysis of deep flybys

    NASA Astrophysics Data System (ADS)

    Roa, Javier; Sanjurjo-Rivo, Manuel; Peláez, Jesús

    2015-08-01

    The singularities in Dromo are characterized in this paper, both from an analytical and a numerical perspective. When the angular momentum vanishes, Dromo may encounter a singularity in the evolution equations. The cancellation of the angular momentum occurs in very specific situations and may be caused by the action of strong perturbations. The gravitational attraction of a perturbing planet may lead to rapid changes in the angular momentum of the particle. In practice, this situation may be encountered during deep planetocentric flybys. The performance of Dromo is evaluated in different scenarios. First, Dromo is validated for integrating the orbit of Near Earth Asteroids. Resulting errors are of the order of the diameter of the asteroid. Second, a set of theoretical flybys are designed for analyzing the performance of the formulation in the vicinity of the singularity. New sets of Dromo variables are proposed in order to minimize the dependency of Dromo on the angular momentum. A slower time scale is introduced, leading to a more stable description of the flyby phase. Improvements in the overall performance of the algorithm are observed when integrating orbits close to the singularity.

  10. Path optimization method for the sign problem

    NASA Astrophysics Data System (ADS)

    Ohnishi, Akira; Mori, Yuto; Kashiwa, Kouji

    2018-03-01

    We propose a path optimization method (POM) to evade the sign problem in the Monte-Carlo calculations for complex actions. Among many approaches to the sign problem, the Lefschetz-thimble path-integral method and the complex Langevin method are promising and extensively discussed. In these methods, real field variables are complexified and the integration manifold is determined by the flow equations or stochastically sampled. When we have singular points of the action or multiple critical points near the original integral surface, however, we have a risk to encounter the residual and global sign problems or the singular drift term problem. One of the ways to avoid the singular points is to optimize the integration path which is designed not to hit the singular points of the Boltzmann weight. By specifying the one-dimensional integration-path as z = t +if(t)(f ɛ R) and by optimizing f(t) to enhance the average phase factor, we demonstrate that we can avoid the sign problem in a one-variable toy model for which the complex Langevin method is found to fail. In this proceedings, we propose POM and discuss how we can avoid the sign problem in a toy model. We also discuss the possibility to utilize the neural network to optimize the path.

  11. Problems of interaction longitudinal shear waves with V-shape tunnels defect

    NASA Astrophysics Data System (ADS)

    Popov, V. G.

    2018-04-01

    The problem of determining the two-dimensional dynamic stress state near a tunnel defect of V-shaped cross-section is solved. The defect is located in an infinite elastic medium, where harmonic longitudinal shear waves are propagating. The initial problem is reduced to a system of two singular integral or integro-differential equations with fixed singularities. A numerical method for solving these systems with regard to the true asymptotics of the unknown functions is developed.

  12. Exact soliton of (2 + 1)-dimensional fractional Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Rizvi, S. T. R.; Ali, K.; Bashir, S.; Younis, M.; Ashraf, R.; Ahmad, M. O.

    2017-07-01

    The nonlinear fractional Schrödinger equation is the basic equation of fractional quantum mechanics introduced by Nick Laskin in 2002. We apply three tools to solve this mathematical-physical model. First, we find the solitary wave solutions including the trigonometric traveling wave solutions, bell and kink shape solitons using the F-expansion and Improve F-expansion method. We also obtain the soliton solution, singular soliton solutions, rational function solution and elliptic integral function solutions, with the help of the extended trial equation method.

  13. Dispersive optical solitons and modulation instability analysis of Schrödinger-Hirota equation with spatio-temporal dispersion and Kerr law nonlinearity

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru

    2018-01-01

    This paper obtains the dark, bright, dark-bright or combined optical and singular solitons to the perturbed nonlinear Schrödinger-Hirota equation (SHE) with spatio-temporal dispersion (STD) and Kerr law nonlinearity in optical fibers. The integration algorithm is the Sine-Gordon equation method (SGEM). Furthermore, the modulation instability analysis (MI) of the equation is studied based on the standard linear-stability analysis and the MI gain spectrum is got.

  14. Overcoming Robot-Arm Joint Singularities

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Houck, J. A.

    1986-01-01

    Kinematic equations allow arm to pass smoothly through singular region. Report discusses mathematical singularities in equations of robotarm control. Operator commands robot arm to move in direction relative to its own axis system by specifying velocity in that direction. Velocity command then resolved into individual-joint rotational velocities in robot arm to effect motion. However, usual resolved-rate equations become singular when robot arm is straightened.

  15. Collisional evolution - an analytical study for the non steady-state mass distribution.

    NASA Astrophysics Data System (ADS)

    Vieira Martins, R.

    1999-05-01

    To study the collisional evolution of asteroidal groups one can use an analytical solution for the self-similar collision cascades. This solution is suitable to study the steady-state mass distribution of the collisional fragmentation. However, out of the steady-state conditions, this solution is not satisfactory for some values of the collisional parameters. In fact, for some values for the exponent of the mass distribution power law of an asteroidal group and its relation to the exponent of the function which describes "how rocks break" the author arrives at singular points for the equation which describes the collisional evolution. These singularities appear since some approximations are usually made in the laborious evaluation of many integrals that appear in the analytical calculations. They concern the cutoff for the smallest and the largest bodies. These singularities set some restrictions to the study of the analytical solution for the collisional equation. To overcome these singularities the author performed an algebraic computation considering the smallest and the largest bodies and he obtained the analytical expressions for the integrals that describe the collisional evolution without restriction on the parameters. However, the new distribution is more sensitive to the values of the collisional parameters. In particular the steady-state solution for the differential mass distribution has exponents slightly different from 11/6 for the usual parameters in the asteroid belt. The sensitivity of this distribution with respect to the parameters is analyzed for the usual values in the asteroidal groups. With an expression for the mass distribution without singularities, one can evaluate also its time evolution. The author arrives at an analytical expression given by a power series of terms constituted by a small parameter multiplied by the mass to an exponent, which depends on the initial power law distribution. This expression is a formal solution for the equation which describes the collisional evolution.

  16. The Riemann-Hilbert problem for nonsymmetric systems

    NASA Astrophysics Data System (ADS)

    Greenberg, W.; Zweifel, P. F.; Paveri-Fontana, S.

    1991-12-01

    A comparison of the Riemann-Hilbert problem and the Wiener-Hopf factorization problem arising in the solution of half-space singular integral equations is presented. Emphasis is on the factorization of functions lacking the reflection symmetry usual in transport theory.

  17. An accurate boundary element method for the exterior elastic scattering problem in two dimensions

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Xu, Liwei; Yin, Tao

    2017-11-01

    This paper is concerned with a Galerkin boundary element method solving the two dimensional exterior elastic wave scattering problem. The original problem is first reduced to the so-called Burton-Miller [1] boundary integral formulation, and essential mathematical features of its variational form are discussed. In numerical implementations, a newly-derived and analytically accurate regularization formula [2] is employed for the numerical evaluation of hyper-singular boundary integral operator. A new computational approach is employed based on the series expansions of Hankel functions for the computation of weakly-singular boundary integral operators during the reduction of corresponding Galerkin equations into a discrete linear system. The effectiveness of proposed numerical methods is demonstrated using several numerical examples.

  18. Aerodynamics Via Acoustics: Application of Acoustic Formulas for Aerodynamic Calculations

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Myers, M. K.

    1986-01-01

    Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.

  19. ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve☆

    PubMed Central

    Feischl, Michael; Führer, Thomas; Karkulik, Michael; Praetorius, Dirk

    2014-01-01

    In the context of the adaptive finite element method (FEM), ZZ-error estimators named after Zienkiewicz and Zhu (1987) [52] are mathematically well-established and widely used in practice. In this work, we propose and analyze ZZ-type error estimators for the adaptive boundary element method (BEM). We consider weakly singular and hyper-singular integral equations and prove, in particular, convergence of the related adaptive mesh-refining algorithms. Throughout, the theoretical findings are underlined by numerical experiments. PMID:24748725

  20. Future singularity avoidance in phantom dark energy models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro, Jaume de, E-mail: jaime.haro@upc.edu

    2012-07-01

    Different approaches to quantum cosmology are studied in order to deal with the future singularity avoidance problem. Our results show that these future singularities will persist but could take different forms. As an example we have studied the big rip which appear when one considers the state equation P = ωρ with ω < −1, showing that it does not disappear in modified gravity. On the other hand, it is well-known that quantum geometric effects (holonomy corrections) in loop quantum cosmology introduce a quadratic modification, namely proportional to ρ{sup 2}, in Friedmann's equation that replace the big rip by amore » non-singular bounce. However this modified Friedmann equation could have been obtained in an inconsistent way, what means that the obtained results from this equation, in particular singularity avoidance, would be incorrect. In fact, we will show that instead of a non-singular bounce, the big rip singularity would be replaced, in loop quantum cosmology, by other kind of singularity.« less

  1. Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dain, Sergio; Ortiz, Omar E.; Facultad de Matematica, Astronomia y Fisica, FaMAF, Universidad Nacional de Cordoba, Instituto de Fisica Enrique Gaviola, IFEG, CONICET, Ciudad Universitaria

    2010-02-15

    For axially symmetric solutions of Einstein equations there exists a gauge which has the remarkable property that the total mass can be written as a conserved, positive definite, integral on the spacelike slices. The mass integral provides a nonlinear control of the variables along the whole evolution. In this gauge, Einstein equations reduce to a coupled hyperbolic-elliptic system which is formally singular at the axis. As a first step in analyzing this system of equations we study linear perturbations on a flat background. We prove that the linear equations reduce to a very simple system of equations which provide, thoughmore » the mass formula, useful insight into the structure of the full system. However, the singular behavior of the coefficients at the axis makes the study of this linear system difficult from the analytical point of view. In order to understand the behavior of the solutions, we study the numerical evolution of them. We provide strong numerical evidence that the system is well-posed and that its solutions have the expected behavior. Finally, this linear system allows us to formulate a model problem which is physically interesting in itself, since it is connected with the linear stability of black hole solutions in axial symmetry. This model can contribute significantly to solve the nonlinear problem and at the same time it appears to be tractable.« less

  2. Group invariant solutions of the Ernst equation of general relativity theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryse, P.V.

    The local symmetry group of the Ernst Equation for stationary, axisymmetric, vacuum space-time manifolds is computed by application of the method of Olver. Several implicit solutions of the equation are found by use of this group. Each of these solutions is given in terms of a function defined as a solution of an ordinary differential equation. One of these equations is integrated by quadratures by use of its own local symmetry group, the result being three explicit solutions of the Ernst Equation. For one of these solutions the metric of the space-time manifold is constructed and studied. The solutions hasmore » a ring curvature singularity and it is asymptotically flat in the sense that the curvature invariants approach zero at spatial infinity. The timelike and null geodesics on the symmetry axis and in the plane of the ring singularity are described. The test particles following these geodesics are seen to be repelled by the ring, which suggests the interpretation of this solution as representing the exterior gravitational field of a rotating ring of matter with negative gravitational mass.« less

  3. Variational Integration for Ideal Magnetohydrodynamics and Formation of Current Singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yao

    Coronal heating has been a long-standing conundrum in solar physics. Parker's conjecture that spontaneous current singularities lead to nanoflares that heat the corona has been controversial. In ideal magnetohydrodynamics (MHD), can genuine current singularities emerge from a smooth 3D line-tied magnetic field? To numerically resolve this issue, the schemes employed must preserve magnetic topology exactly to avoid artificial reconnection in the presence of (nearly) singular current densities. Structure-preserving numerical methods are favorable for mitigating numerical dissipation, and variational integration is a powerful machinery for deriving them. However, successful applications of variational integration to ideal MHD have been scarce. In thismore » thesis, we develop variational integrators for ideal MHD in Lagrangian labeling by discretizing Newcomb's Lagrangian on a moving mesh using discretized exterior calculus. With the built-in frozen-in equation, the schemes are free of artificial reconnection, hence optimal for studying current singularity formation. Using this method, we first study a fundamental prototype problem in 2D, the Hahm-Kulsrud-Taylor (HKT) problem. It considers the effect of boundary perturbations on a 2D plasma magnetized by a sheared field, and its linear solution is singular. We find that with increasing resolution, the nonlinear solution converges to one with a current singularity. The same signature of current singularity is also identified in other 2D cases with more complex magnetic topologies, such as the coalescence instability of magnetic islands. We then extend the HKT problem to 3D line-tied geometry, which models the solar corona by anchoring the field lines in the boundaries. The effect of such geometry is crucial in the controversy over Parker's conjecture. The linear solution, which is singular in 2D, is found to be smooth. However, with finite amplitude, it can become pathological above a critical system length. The nonlinear solution turns out smooth for short systems. Nonetheless, the scaling of peak current density vs. system length suggests that the nonlinear solution may become singular at a finite length. With the results in hand, we cannot confirm or rule out this possibility conclusively, since we cannot obtain solutions with system lengths near the extrapolated critical value.« less

  4. The geometry of singularities and the black hole information paradox

    NASA Astrophysics Data System (ADS)

    Stoica, O. C.

    2015-07-01

    The information loss occurs in an evaporating black hole only if the time evolution ends at the singularity. But as we shall see, the black hole solutions admit analytical extensions beyond the singularities, to globally hyperbolic solutions. The method used is similar to that for the apparent singularity at the event horizon, but at the singularity, the resulting metric is degenerate. When the metric is degenerate, the covariant derivative, the curvature, and the Einstein equation become singular. However, recent advances in the geometry of spacetimes with singular metric show that there are ways to extend analytically the Einstein equation and other field equations beyond such singularities. This means that the information can get out of the singularity. In the case of charged black holes, the obtained solutions have nonsingular electromagnetic field. As a bonus, if particles are such black holes, spacetime undergoes dimensional reduction effects like those required by some approaches to perturbative Quantum Gravity.

  5. Dark optical, singular solitons and conservation laws to the nonlinear Schrödinger’s equation with spatio-temporal dispersion

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi

    2017-05-01

    This paper studies the dynamics of solitons to the nonlinear Schrödinger’s equation (NLSE) with spatio-temporal dispersion (STD). The integration algorithm that is employed in this paper is the Riccati-Bernoulli sub-ODE method. This leads to dark and singular soliton solutions that are important in the field of optoelectronics and fiber optics. The soliton solutions appear with all necessary constraint conditions that are necessary for them to exist. There are four types of nonlinear media studied in this paper. They are Kerr law, power law, parabolic law and dual law. The conservation laws (Cls) for the Kerr law and parabolic law nonlinear media are constructed using the conservation theorem presented by Ibragimov.

  6. Robust penalty method for structural synthesis

    NASA Technical Reports Server (NTRS)

    Kamat, M. P.

    1983-01-01

    The Sequential Unconstrained Minimization Technique (SUMT) offers an easy way of solving nonlinearly constrained problems. However, this algorithm frequently suffers from the need to minimize an ill-conditioned penalty function. An ill-conditioned minimization problem can be solved very effectively by posing the problem as one of integrating a system of stiff differential equations utilizing concepts from singular perturbation theory. This paper evaluates the robustness and the reliability of such a singular perturbation based SUMT algorithm on two different problems of structural optimization of widely separated scales. The report concludes that whereas conventional SUMT can be bogged down by frequent ill-conditioning, especially in large scale problems, the singular perturbation SUMT has no such difficulty in converging to very accurate solutions.

  7. Alien calculus and a Schwinger-Dyson equation: two-point function with a nonperturbative mass scale

    NASA Astrophysics Data System (ADS)

    Bellon, Marc P.; Clavier, Pierre J.

    2018-02-01

    Starting from the Schwinger-Dyson equation and the renormalization group equation for the massless Wess-Zumino model, we compute the dominant nonperturbative contributions to the anomalous dimension of the theory, which are related by alien calculus to singularities of the Borel transform on integer points. The sum of these dominant contributions has an analytic expression. When applied to the two-point function, this analysis gives a tame evolution in the deep euclidean domain at this approximation level, making doubtful the arguments on the triviality of the quantum field theory with positive β -function. On the other side, we have a singularity of the propagator for timelike momenta of the order of the renormalization group invariant scale of the theory, which has a nonperturbative relationship with the renormalization point of the theory. All these results do not seem to have an interpretation in terms of semiclassical analysis of a Feynman path integral.

  8. Dynamical insurance models with investment: Constrained singular problems for integrodifferential equations

    NASA Astrophysics Data System (ADS)

    Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V.

    2016-01-01

    Previous and new results are used to compare two mathematical insurance models with identical insurance company strategies in a financial market, namely, when the entire current surplus or its constant fraction is invested in risky assets (stocks), while the rest of the surplus is invested in a risk-free asset (bank account). Model I is the classical Cramér-Lundberg risk model with an exponential claim size distribution. Model II is a modification of the classical risk model (risk process with stochastic premiums) with exponential distributions of claim and premium sizes. For the survival probability of an insurance company over infinite time (as a function of its initial surplus), there arise singular problems for second-order linear integrodifferential equations (IDEs) defined on a semiinfinite interval and having nonintegrable singularities at zero: model I leads to a singular constrained initial value problem for an IDE with a Volterra integral operator, while II model leads to a more complicated nonlocal constrained problem for an IDE with a non-Volterra integral operator. A brief overview of previous results for these two problems depending on several positive parameters is given, and new results are presented. Additional results are concerned with the formulation, analysis, and numerical study of "degenerate" problems for both models, i.e., problems in which some of the IDE parameters vanish; moreover, passages to the limit with respect to the parameters through which we proceed from the original problems to the degenerate ones are singular for small and/or large argument values. Such problems are of mathematical and practical interest in themselves. Along with insurance models without investment, they describe the case of surplus completely invested in risk-free assets, as well as some noninsurance models of surplus dynamics, for example, charity-type models.

  9. Singularities of the Euler equation and hydrodynamic stability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.; Speziale, Charles G.

    1993-01-01

    Equations governing the motion of a specific class of singularities of the Euler equation in the extended complex spatial domain are derived. Under some assumptions, it is shown how this motion is dictated by the smooth part of the complex velocity at a singular point in the unphysical domain. These results are used to relate the motion of complex singularities to the stability of steady solutions of the Euler equation. A sufficient condition for instability is conjectured. Several examples are presented to demonstrate the efficacy of this sufficient condition which include the class of elliptical flows and the Kelvin-Stuart Cat's Eye.

  10. Singularities of the Euler equation and hydrodynamic stability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.; Speziale, Charles G.

    1992-01-01

    Equations governing the motion of a specific class of singularities of the Euler equation in the extended complex spatial domain are derived. Under some assumptions, it is shown how this motion is dictated by the smooth part of the complex velocity at a singular point in the unphysical domain. These results are used to relate the motion of complex singularities to the stability of steady solutions of the Euler equation. A sufficient condition for instability is conjectured. Several examples are presented to demonstrate the efficacy of this sufficient condition which include the class of elliptical flows and the Kelvin-Stuart Cat's Eye.

  11. On the singular perturbations for fractional differential equation.

    PubMed

    Atangana, Abdon

    2014-01-01

    The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method.

  12. Evidence of singularities for a family of contour dynamics equations

    PubMed Central

    Córdoba, Diego; Fontelos, Marco A.; Mancho, Ana M.; Rodrigo, Jose L.

    2005-01-01

    In this work, we show evidence of the existence of singularities developing in finite time for a class of contour dynamics equations depending on a parameter 0 < α ≤ 1. The limiting case α → 0 corresponds to 2D Euler equations, and α = 1 corresponds to the surface quasi-geostrophic equation. The singularity is point-like, and it is approached in a self-similar manner. PMID:15837929

  13. Optical solitons and modulation instability analysis of an integrable model of (2+1)-Dimensional Heisenberg ferromagnetic spin chain equation

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru

    2017-12-01

    This paper addresses the nonlinear Schrödinger type equation (NLSE) in (2+1)-dimensions which describes the nonlinear spin dynamics of Heisenberg ferromagnetic spin chains (HFSC) with anisotropic and bilinear interactions in the semiclassical limit. Two integration schemes are employed to study the equation. These are the complex envelope function ansatz and the generalized tanh methods. Dark, dark-bright or combined optical and singular soliton solutions of the equation are derived. Furthermore, the modulational instability (MI) is studied based on the standard linear-stability analysis and the MI gain is got. Numerical simulation of the obtained results are analyzed with interesting figures showing the physical meaning of the solutions.

  14. Weak-noise limit of a piecewise-smooth stochastic differential equation.

    PubMed

    Chen, Yaming; Baule, Adrian; Touchette, Hugo; Just, Wolfram

    2013-11-01

    We investigate the validity and accuracy of weak-noise (saddle-point or instanton) approximations for piecewise-smooth stochastic differential equations (SDEs), taking as an illustrative example a piecewise-constant SDE, which serves as a simple model of Brownian motion with solid friction. For this model, we show that the weak-noise approximation of the path integral correctly reproduces the known propagator of the SDE at lowest order in the noise power, as well as the main features of the exact propagator with higher-order corrections, provided the singularity of the path integral associated with the nonsmooth SDE is treated with some heuristics. We also show that, as in the case of smooth SDEs, the deterministic paths of the noiseless system correctly describe the behavior of the nonsmooth SDE in the low-noise limit. Finally, we consider a smooth regularization of the piecewise-constant SDE and study to what extent this regularization can rectify some of the problems encountered when dealing with discontinuous drifts and singularities in SDEs.

  15. Plastic zone size and crack tip opening displacement of a Dugdale crack interacting with a coated circular inclusion

    NASA Astrophysics Data System (ADS)

    Hoh, H. J.; Xiao, Z. M.; Luo, J.

    2010-09-01

    An analytical investigation on the plastic zone size of a crack near a coated circular inclusion under three different loading conditions of uniaxial tension, uniform tension and pure shear was carried out. Both the crack and coated circular inclusion are embedded in an infinite matrix, with the crack oriented along the radial direction of the inclusion. In the solution procedure, the crack is simulated as a continuous distribution of edge dislocations. With the Dugdale model of small-scale yielding [J. Mech. Phys. Solids 8 (1960) p. 100], two thin strips of yielded plastic zones are introduced at both crack tips. Using the solution for a coated circular inclusion interacting with a single dislocation as the Green's function, the physical problem is formulated into a set of singular integral equations. Using the method of Erdogan and Gupta [Q. J. Appl. Math. 29 (1972) p. 525] and iterative numerical procedures, the singular integral equations are solved numerically for the plastic zone sizes and crack tip opening displacement.

  16. Computation of Sound Propagation by Boundary Element Method

    NASA Technical Reports Server (NTRS)

    Guo, Yueping

    2005-01-01

    This report documents the development of a Boundary Element Method (BEM) code for the computation of sound propagation in uniform mean flows. The basic formulation and implementation follow the standard BEM methodology; the convective wave equation and the boundary conditions on the surfaces of the bodies in the flow are formulated into an integral equation and the method of collocation is used to discretize this equation into a matrix equation to be solved numerically. New features discussed here include the formulation of the additional terms due to the effects of the mean flow and the treatment of the numerical singularities in the implementation by the method of collocation. The effects of mean flows introduce terms in the integral equation that contain the gradients of the unknown, which is undesirable if the gradients are treated as additional unknowns, greatly increasing the sizes of the matrix equation, or if numerical differentiation is used to approximate the gradients, introducing numerical error in the computation. It is shown that these terms can be reformulated in terms of the unknown itself, making the integral equation very similar to the case without mean flows and simple for numerical implementation. To avoid asymptotic analysis in the treatment of numerical singularities in the method of collocation, as is conventionally done, we perform the surface integrations in the integral equation by using sub-triangles so that the field point never coincide with the evaluation points on the surfaces. This simplifies the formulation and greatly facilitates the implementation. To validate the method and the code, three canonic problems are studied. They are respectively the sound scattering by a sphere, the sound reflection by a plate in uniform mean flows and the sound propagation over a hump of irregular shape in uniform flows. The first two have analytical solutions and the third is solved by the method of Computational Aeroacoustics (CAA), all of which are used to compare the BEM solutions. The comparisons show very good agreements and validate the accuracy of the BEM approach implemented here.

  17. Integrable discrete PT symmetric model.

    PubMed

    Ablowitz, Mark J; Musslimani, Ziad H

    2014-09-01

    An exactly solvable discrete PT invariant nonlinear Schrödinger-like model is introduced. It is an integrable Hamiltonian system that exhibits a nontrivial nonlinear PT symmetry. A discrete one-soliton solution is constructed using a left-right Riemann-Hilbert formulation. It is shown that this pure soliton exhibits unique features such as power oscillations and singularity formation. The proposed model can be viewed as a discretization of a recently obtained integrable nonlocal nonlinear Schrödinger equation.

  18. On the Singular Perturbations for Fractional Differential Equation

    PubMed Central

    Atangana, Abdon

    2014-01-01

    The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method. PMID:24683357

  19. Initial singularity and pure geometric field theories

    NASA Astrophysics Data System (ADS)

    Wanas, M. I.; Kamal, Mona M.; Dabash, Tahia F.

    2018-01-01

    In the present article we use a modified version of the geodesic equation, together with a modified version of the Raychaudhuri equation, to study initial singularities. These modified equations are used to account for the effect of the spin-torsion interaction on the existence of initial singularities in cosmological models. Such models are the results of solutions of the field equations of a class of field theories termed pure geometric. The geometric structure used in this study is an absolute parallelism structure satisfying the cosmological principle. It is shown that the existence of initial singularities is subject to some mathematical (geometric) conditions. The scheme suggested for this study can be easily generalized.

  20. The condition of regular degeneration for singularly perturbed systems of linear differential-difference equations.

    NASA Technical Reports Server (NTRS)

    Cooke, K. L.; Meyer, K. R.

    1966-01-01

    Extension of problem of singular perturbation for linear scalar constant coefficient differential- difference equation with single retardation to several retardations, noting degenerate equation solution

  1. Contact interaction of thin-walled elements with an elastic layer and an infinite circular cylinder under torsion

    NASA Astrophysics Data System (ADS)

    Kanetsyan, E. G.; Mkrtchyan, M. S.; Mkhitaryan, S. M.

    2018-04-01

    We consider a class of contact torsion problems on interaction of thin-walled elements shaped as an elastic thin washer – a flat circular plate of small height – with an elastic layer, in particular, with a half-space, and on interaction of thin cylindrical shells with a solid elastic cylinder, infinite in both directions. The governing equations of the physical models of elastic thin washers and thin circular cylindrical shells under torsion are derived from the exact equations of mathematical theory of elasticity using the Hankel and Fourier transforms. Within the framework of the accepted physical models, the solution of the contact problem between an elastic washer and an elastic layer is reduced to solving the Fredholm integral equation of the first kind with a kernel representable as a sum of the Weber–Sonin integral and some integral regular kernel, while solving the contact problem between a cylindrical shell and solid cylinder is reduced to a singular integral equation (SIE). An effective method for solving the governing integral equations of these problems are specified.

  2. {lambda} elements for one-dimensional singular problems with known strength of singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, K.K.; Surana, K.S.

    1996-10-01

    This paper presents a new and general procedure for designing special elements called {lambda} elements for one dimensional singular problems where the strength of the singularity is know. The {lambda} elements presented here are of type C{sup 0}. These elements also provide inter-element C{sup 0} continuity with p-version elements. The {lambda} elements do not require a precise knowledge of the extent of singular zone, i.e., their use may be extended beyond the singular zone. When {lambda} elements are used at the singularity, a singular problem behaves like a smooth problem thereby eliminating the need for h, p-adaptive processes all together.more » One dimensional steady state radial flow of an upper convected Maxwell fluid is considered as a sample problem. Least squares approach (or least squares finite element formulation: LSFEF) is used to construct the integral form (error functional I) from the differential equations. Numerical results presented for radially inward flow with inner radius r{sub i} = 0.1, 0.01, 0.001, 0.0001, 0.00001, and Deborah number of 2 (De = 2) demonstrate the accuracy, faster convergence of the iterative solution procedure, faster convergence rate of the error functional and mesh independent characteristics of the {lambda} elements regardless of the severity of the singularity.« less

  3. A Direct and Non-Singular UKF Approach Using Euler Angle Kinematics for Integrated Navigation Systems

    PubMed Central

    Ran, Changyan; Cheng, Xianghong

    2016-01-01

    This paper presents a direct and non-singular approach based on an unscented Kalman filter (UKF) for the integration of strapdown inertial navigation systems (SINSs) with the aid of velocity. The state vector includes velocity and Euler angles, and the system model contains Euler angle kinematics equations. The measured velocity in the body frame is used as the filter measurement. The quaternion nonlinear equality constraint is eliminated, and the cross-noise problem is overcome. The filter model is simple and easy to apply without linearization. Data fusion is performed by an UKF, which directly estimates and outputs the navigation information. There is no need to process navigation computation and error correction separately because the navigation computation is completed synchronously during the filter time updating. In addition, the singularities are avoided with the help of the dual-Euler method. The performance of the proposed approach is verified by road test data from a land vehicle equipped with an odometer aided SINS, and a singularity turntable test is conducted using three-axis turntable test data. The results show that the proposed approach can achieve higher navigation accuracy than the commonly-used indirect approach, and the singularities can be efficiently removed as the result of dual-Euler method. PMID:27598169

  4. Constructing Current Singularity in a 3D Line-tied Plasma

    DOE PAGES

    Zhou, Yao; Huang, Yi-Min; Qin, Hong; ...

    2017-12-27

    We revisit Parker's conjecture of current singularity formation in 3D line-tied plasmas using a recently developed numerical method, variational integration for ideal magnetohydrodynamics in Lagrangian labeling. With the frozen-in equation built-in, the method is free of artificial reconnection, and hence it is arguably an optimal tool for studying current singularity formation. Using this method, the formation of current singularity has previously been confirmed in the Hahm–Kulsrud–Taylor problem in 2D. In this paper, we extend this problem to 3D line-tied geometry. The linear solution, which is singular in 2D, is found to be smooth for arbitrary system length. However, with finitemore » amplitude, the linear solution can become pathological when the system is sufficiently long. The nonlinear solutions turn out to be smooth for short systems. Nonetheless, the scaling of peak current density versus system length suggests that the nonlinear solution may become singular at finite length. Finally, with the results in hand, we can neither confirm nor rule out this possibility conclusively, since we cannot obtain solutions with system length near the extrapolated critical value.« less

  5. Square-integrable solutions to a family of nonlinear schrödinger equations from nonlinear quantum theory

    NASA Astrophysics Data System (ADS)

    Teismann, Holger

    2005-10-01

    We consider nonlinear Schrödinger equations which have been proposed as fundamental equations of nonlinear quantum theories. The equations are singular in that the wave function ψ appears in the denominator of rational expressions. To avoid the problem of zeros of ψ it is natural to make the ansatz ψ = e ν. This ansatz, however, conflicts with the—physically motivated—requirement that the solutions ψ be square integrable. We show that this conflict can be resolved by considering an unusual function space whose definition involves the derivative ∇ ν of ν. This function space turns out to be dense subset of L2 and the equations can be solved in the L2-sense (as desired) by first solving an evolutionary system for ∇ ν and then transforming back to ψ.

  6. High speed propeller acoustics and aerodynamics - A boundary element approach

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Myers, M. K.; Dunn, M. H.

    1989-01-01

    The Boundary Element Method (BEM) is applied in this paper to the problems of acoustics and aerodynamics of high speed propellers. The underlying theory is described based on the linearized Ffowcs Williams-Hawkings equation. The surface pressure on the blade is assumed unknown in the aerodynamic problem. It is obtained by solving a singular integral equation. The acoustic problem is then solved by moving the field point inside the fluid medium and evaluating some surface and line integrals. Thus the BEM provides a powerful technique in calculation of high speed propeller aerodynamics and acoustics.

  7. The numerical calculation of laminar boundary-layer separation

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.; Steger, J. L.

    1974-01-01

    Iterative finite-difference techniques are developed for integrating the boundary-layer equations, without approximation, through a region of reversed flow. The numerical procedures are used to calculate incompressible laminar separated flows and to investigate the conditions for regular behavior at the point of separation. Regular flows are shown to be characterized by an integrable saddle-type singularity that makes it difficult to obtain numerical solutions which pass continuously into the separated region. The singularity is removed and continuous solutions ensured by specifying the wall shear distribution and computing the pressure gradient as part of the solution. Calculated results are presented for several separated flows and the accuracy of the method is verified. A computer program listing and complete solution case are included.

  8. Study on a kind of ϕ-Laplacian Liénard equation with attractive and repulsive singularities.

    PubMed

    Xin, Yun; Cheng, Zhibo

    2017-01-01

    In this paper, by application of the Manasevich-Mawhin continuation theorem, we investigate the existence of a positive periodic solution for a kind of ϕ -Laplacian singular Liénard equation with attractive and repulsive singularities.

  9. Integrable multi-component generalization of a modified short pulse equation

    NASA Astrophysics Data System (ADS)

    Matsuno, Yoshimasa

    2016-11-01

    We propose a multi-component generalization of the modified short pulse (SP) equation which was derived recently as a reduction of Feng's two-component SP equation. Above all, we address the two-component system in depth. We obtain the Lax pair, an infinite number of conservation laws and multisoliton solutions for the system, demonstrating its integrability. Subsequently, we show that the two-component system exhibits cusp solitons and breathers for which the detailed analysis is performed. Specifically, we explore the interaction process of two cusp solitons and derive the formula for the phase shift. While cusp solitons are singular solutions, smooth breather solutions are shown to exist, provided that the parameters characterizing the solutions satisfy certain conditions. Last, we discuss the relation between the proposed system and existing two-component SP equations.

  10. Simulation electromagnetic scattering on bodies through integral equation and neural networks methods

    NASA Astrophysics Data System (ADS)

    Lvovich, I. Ya; Preobrazhenskiy, A. P.; Choporov, O. N.

    2018-05-01

    The paper deals with the issue of electromagnetic scattering on a perfectly conducting diffractive body of a complex shape. Performance calculation of the body scattering is carried out through the integral equation method. Fredholm equation of the second time was used for calculating electric current density. While solving the integral equation through the moments method, the authors have properly described the core singularity. The authors determined piecewise constant functions as basic functions. The chosen equation was solved through the moments method. Within the Kirchhoff integral approach it is possible to define the scattered electromagnetic field, in some way related to obtained electrical currents. The observation angles sector belongs to the area of the front hemisphere of the diffractive body. To improve characteristics of the diffractive body, the authors used a neural network. All the neurons contained a logsigmoid activation function and weighted sums as discriminant functions. The paper presents the matrix of weighting factors of the connectionist model, as well as the results of the optimized dimensions of the diffractive body. The paper also presents some basic steps in calculation technique of the diffractive bodies, based on the combination of integral equation and neural networks methods.

  11. Numerical analysis of composite STEEL-CONCRETE SECTIONS using integral equation of Volterra

    NASA Astrophysics Data System (ADS)

    Partov, Doncho; Kantchev, Vesselin

    2011-09-01

    The paper presents analysis of the stress and deflections changes due to creep in statically determinate composite steel-concrete beam. The mathematical model involves the equation of equilibrium, compatibility and constitutive relationship, i.e. an elastic law for the steel part and an integral-type creep law of Boltzmann — Volterra for the concrete part. On the basis of the theory of the viscoelastic body of Arutyunian-Trost-Bažant for determining the redistribution of stresses in beam section between concrete plate and steel beam with respect to time "t", two independent Volterra integral equations of the second kind have been derived. Numerical method based on linear approximation of the singular kernal function in the integral equation is presented. Example with the model proposed is investigated. The creep functions is suggested by the model CEB MC90-99 and the "ACI 209R-92 model. The elastic modulus of concrete E c (t) is assumed to be constant in time `t'. The obtained results from the both models are compared.

  12. The aerodynamics of propellers and rotors using an acoustic formulation in the time domain

    NASA Technical Reports Server (NTRS)

    Long, L. N.

    1983-01-01

    The aerodynamics of propellers and rotors is especially complicated because of the highly three-dimensional and compressible nature of the flow field. However, in linearized theory the problem is governed by the wave equation, and a numerically-efficient integral formulation can be derived. This reduces the problem from one in space to one over a surface. Many such formulations exist in the aeroacoustics literature, but these become singular integral equations if one naively tries to use them to predict surface pressures, i.e., for aerodynamics. The present paper illustrates how one must interpret these equations in order to obtain nonambiguous results. After the regularized form of the integral equation is derived, a method for solving it numerically is described. This preliminary computer code uses Legendre-Gaussian quadrature to solve the equation. Numerical results are compared to experimental results for ellipsoids, wings, and rotors, including effects due to lift. Compressibility and the farfield boundary conditions are satisfied automatically using this method.

  13. Computational approach to compact Riemann surfaces

    NASA Astrophysics Data System (ADS)

    Frauendiener, Jörg; Klein, Christian

    2017-01-01

    A purely numerical approach to compact Riemann surfaces starting from plane algebraic curves is presented. The critical points of the algebraic curve are computed via a two-dimensional Newton iteration. The starting values for this iteration are obtained from the resultants with respect to both coordinates of the algebraic curve and a suitable pairing of their zeros. A set of generators of the fundamental group for the complement of these critical points in the complex plane is constructed from circles around these points and connecting lines obtained from a minimal spanning tree. The monodromies are computed by solving the defining equation of the algebraic curve on collocation points along these contours and by analytically continuing the roots. The collocation points are chosen to correspond to Chebychev collocation points for an ensuing Clenshaw-Curtis integration of the holomorphic differentials which gives the periods of the Riemann surface with spectral accuracy. At the singularities of the algebraic curve, Puiseux expansions computed by contour integration on the circles around the singularities are used to identify the holomorphic differentials. The Abel map is also computed with the Clenshaw-Curtis algorithm and contour integrals. As an application of the code, solutions to the Kadomtsev-Petviashvili equation are computed on non-hyperelliptic Riemann surfaces.

  14. A boundary integral approach to the scattering of nonplanar acoustic waves by rigid bodies

    NASA Technical Reports Server (NTRS)

    Gallman, Judith M.; Myers, M. K.; Farassat, F.

    1990-01-01

    The acoustic scattering of an incident wave by a rigid body can be described by a singular Fredholm integral equation of the second kind. This equation is derived by solving the wave equation using generalized function theory, Green's function for the wave equation in unbounded space, and the acoustic boundary condition for a perfectly rigid body. This paper will discuss the derivation of the wave equation, its reformulation as a boundary integral equation, and the solution of the integral equation by the Galerkin method. The accuracy of the Galerkin method can be assessed by applying the technique outlined in the paper to reproduce the known pressure fields that are due to various point sources. From the analysis of these simpler cases, the accuracy of the Galerkin solution can be inferred for the scattered pressure field caused by the incidence of a dipole field on a rigid sphere. The solution by the Galerkin technique can then be applied to such problems as a dipole model of a propeller whose pressure field is incident on a rigid cylinder. This is the groundwork for modeling the scattering of rotating blade noise by airplane fuselages.

  15. Bonded half planes containing an arbitrarily oriented crack

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Aksogan, O.

    1973-01-01

    The plane elastostatic problem for two bonded half planes containing an arbitrarily oriented crack in the neighborhood of the interface is considered. Using Mellin transforms, the problem is formulated as a system of singular integral equations. The equations are solved for various crack orientations, material combinations, and external loads. The numerical results given include the stress intensity factors, tHe strain energy release rates, and tHe probable cleavage angles giving the direction of crack propagation.

  16. Quantum singularities in (2+1) dimensional matter coupled black hole spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unver, O.; Gurtug, O.

    2010-10-15

    Quantum singularities considered in the 3D Banados-Teitelboim-Zanelli (BTZ) spacetime by Pitelli and Letelier [Phys. Rev. D 77, 124030 (2008)] is extended to charged BTZ and 3D Einstein-Maxwell-dilaton gravity spacetimes. The occurrence of naked singularities in the Einstein-Maxwell extension of the BTZ spacetime both in linear and nonlinear electrodynamics as well as in the Einstein-Maxwell-dilaton gravity spacetimes are analyzed with the quantum test fields obeying the Klein-Gordon and Dirac equations. We show that with the inclusion of the matter fields, the conical geometry near r=0 is removed and restricted classes of solutions are admitted for the Klein-Gordon and Dirac equations. Hence,more » the classical central singularity at r=0 turns out to be quantum mechanically singular for quantum particles obeying the Klein-Gordon equation but nonsingular for fermions obeying the Dirac equation. Explicit calculations reveal that the occurrence of the timelike naked singularities in the considered spacetimes does not violate the cosmic censorship hypothesis as far as the Dirac fields are concerned. The role of horizons that clothes the singularity in the black hole cases is replaced by repulsive potential barrier against the propagation of Dirac fields.« less

  17. Fracture and contact problems for an elastic wedge

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Arin, K.

    1974-01-01

    The plane elastostatic contact problem for an infinite elastic wedge of arbitrary angle is discussed. The medium is loaded through a frictionless rigid wedge of a given symmetric profile. Using the Mellin transform formulation the mixed boundary value problem is reduced to a singular integral equation with the contact stress as the unknown function. With the application of the results to the fracture of the medium in mind, the main emphasis in the study has been on the investigation of the singular nature of the stress state around the apex of the wedge and on the determination of the contact pressure.

  18. Contact and crack problems for an elastic wedge. [stress concentration in elastic half spaces

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Gupta, G. D.

    1974-01-01

    The contact and the crack problems for an elastic wedge of arbitrary angle are considered. The problem is reduced to a singular integral equation which, in the general case, may have a generalized Cauchy kernel. The singularities under the stamp as well as at the wedge apex were studied, and the relevant stress intensity factors are defined. The problem was solved for various wedge geometries and loading conditions. The results may be applicable to certain foundation problems and to crack problems in symmetrically loaded wedges in which cracks initiate from the apex.

  19. Fracture and contact problems for an elastic wedge

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Arin, K.

    1976-01-01

    The paper deals with the plane elastostatic contact problem for an infinite elastic wedge of arbitrary angle. The medium is loaded through a frictionless rigid wedge of a given symmetric profile. Using the Mellin transform formulation the mixed boundary value problem is reduced to a singular integral equation with the contact stress as the unknown function. With the application of the results to the fracture of the medium in mind, the main emphasis in the study has been on the investigation of the singular nature of the stress state around the apex of the wedge and on the determination of the contact pressure.

  20. Lower Bounds for Possible Singular Solutions for the Navier-Stokes and Euler Equations Revisited

    NASA Astrophysics Data System (ADS)

    Cortissoz, Jean C.; Montero, Julio A.

    2018-03-01

    In this paper we give optimal lower bounds for the blow-up rate of the \\dot{H}s( T^3) -norm, 1/25/2.

  1. Formation of current singularity in a topologically constrained plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yao; Huang, Yi-Min; Qin, Hong

    2016-02-01

    Recently a variational integrator for ideal magnetohydrodynamics in Lagrangian labeling has been developed. Its built-in frozen-in equation makes it optimal for studying current sheet formation. We use this scheme to study the Hahm-Kulsrud-Taylor problem, which considers the response of a 2D plasma magnetized by a sheared field under sinusoidal boundary forcing. We obtain an equilibrium solution that preserves the magnetic topology of the initial field exactly, with a fluid mapping that is non-differentiable. Unlike previous studies that examine the current density output, we identify a singular current sheet from the fluid mapping. These results are benchmarked with a constrained Grad-Shafranovmore » solver. The same signature of current singularity can be found in other cases with more complex magnetic topologies.« less

  2. Singularity-free dislocation dynamics with strain gradient elasticity

    NASA Astrophysics Data System (ADS)

    Po, Giacomo; Lazar, Markus; Seif, Dariush; Ghoniem, Nasr

    2014-08-01

    The singular nature of the elastic fields produced by dislocations presents conceptual challenges and computational difficulties in the implementation of discrete dislocation-based models of plasticity. In the context of classical elasticity, attempts to regularize the elastic fields of discrete dislocations encounter intrinsic difficulties. On the other hand, in gradient elasticity, the issue of singularity can be removed at the outset and smooth elastic fields of dislocations are available. In this work we consider theoretical and numerical aspects of the non-singular theory of discrete dislocation loops in gradient elasticity of Helmholtz type, with interest in its applications to three dimensional dislocation dynamics (DD) simulations. The gradient solution is developed and compared to its singular and non-singular counterparts in classical elasticity using the unified framework of eigenstrain theory. The fundamental equations of curved dislocation theory are given as non-singular line integrals suitable for numerical implementation using fast one-dimensional quadrature. These include expressions for the interaction energy between two dislocation loops and the line integral form of the generalized solid angle associated with dislocations having a spread core. The single characteristic length scale of Helmholtz elasticity is determined from independent molecular statics (MS) calculations. The gradient solution is implemented numerically within our variational formulation of DD, with several examples illustrating the viability of the non-singular solution. The displacement field around a dislocation loop is shown to be smooth, and the loop self-energy non-divergent, as expected from atomic configurations of crystalline materials. The loop nucleation energy barrier and its dependence on the applied shear stress are computed and shown to be in good agreement with atomistic calculations. DD simulations of Lome-Cottrell junctions in Al show that the strength of the junction and its configuration are easily obtained, without ad-hoc regularization of the singular fields. Numerical convergence studies related to the implementation of the non-singular theory in DD are presented.

  3. A new method for extending solutions to the self-similar relativistic magnetohydrodynamic equations for black hole outflows

    NASA Astrophysics Data System (ADS)

    Ceccobello, C.; Cavecchi, Y.; Heemskerk, M. H. M.; Markoff, S.; Polko, P.; Meier, D.

    2018-02-01

    The paradigm in which magnetic fields play a crucial role in launching/collimating outflows in many astrophysical objects continues to gain support. However, semi-analytical models including the effect of magnetic fields on the dynamics and morphology of jets are still missing due to the intrinsic difficulties in integrating the equations describing a collimated, relativistic flow in the presence of gravity. Only few solutions have been found so far, due to the highly non-linear character of the equations together with the need to blindly search for singularities. These numerical problems prevented a full exploration of the parameter space. We present a new integration scheme to solve r-self-similar, stationary, axisymmetric magnetohydrodynamic (MHD) equations describing collimated, relativistic outflows crossing smoothly all the singular points (Alfvén point and modified slow/fast points). For the first time, we are able to integrate from the disc mid-plane to downstream of the modified fast point. We discuss an ensemble of jet solutions, emphasizing trends and features that can be compared to observables. We present, for the first time with a semi-analytical MHD model, solutions showing counter-rotation of the jet for a substantial fraction of its extent. We find diverse jet configurations with bulk Lorentz factors up to 10 and potential sites for recollimation between 103 and 107 gravitational radii. Such extended coverage of the intervals of quantities, such as magnetic-to-thermal energy ratios at the base or the heights/widths of the recollimation region, makes our solutions suitable for application to many different systems where jets are launched.

  4. Stanley Corrsin Award Talk: The role of singularities in hydrodynamics

    NASA Astrophysics Data System (ADS)

    Eggers, Jens

    2017-11-01

    If a tap is opened slowly, a drop will form. The separation of the drop is described by a singularity of the Navier-Stokes equation with a free surface. Shock waves are singular solutions of the equations of ideal, compressible hydrodynamics. These examples show that singularities are characteristic for the tendency of the hydrodynamic equations to develop small scale features spontaneously, starting from smooth initial conditions. As a result, new structures are created, which form the building blocks of more complicated flows. The mathematical structure of singularities is self-similar, and their characteristics are fixed by universal properties. This will be illustrated by physical examples, as well as by applications to engineering problems such as printing, coating, or air entrainment. Finally, more recent developments will be discussed: the increasing complexity underlying the self-similar behavior of some singularities, and the spatial structure of shock waves.

  5. Twisting singular solutions of Betheʼs equations

    NASA Astrophysics Data System (ADS)

    Nepomechie, Rafael I.; Wang, Chunguang

    2014-12-01

    The Bethe equations for the periodic XXX and XXZ spin chains admit singular solutions, for which the corresponding eigenvalues and eigenvectors are ill-defined. We use a twist regularization to derive conditions for such singular solutions to be physical, in which case they correspond to genuine eigenvalues and eigenvectors of the Hamiltonian.

  6. Supercritical flow past a symmetrical bicircular arc airfoil

    NASA Technical Reports Server (NTRS)

    Holt, Maurice; Yew, Khoy Chuah

    1989-01-01

    A numerical scheme is developed for computing steady supercritical flow about symmetrical airfoils, applying it to an ellipse for zero angle of attack. An algorithmic description of this new scheme is presented. Application to a symmetrical bicircular arc airfoil is also proposed. The flow field before the shock is region 1. For transonic flow, singularity can be avoided by integrating the resulting ordinary differential equations away from the body. Region 2 contains the shock which will be located by shock fitting techniques. The shock divides region 2 into supersonic and subsonic regions and there is no singularity problem in this case. The Method of Lines is used in this region and it is advantageous to integrate the resulting ordinary differential equation along the body for shock fitting. Coaxial coordinates have to be used for the bicircular arc airfoil so that boundary values on the airfoil body can be taken with one direction of the coaxial coordinates fixed. To avoid taking boundary values at + or - infinity in the coaxial co-ordinary system, approximate analytical representation of the flow field near the tips of the airfoil is proposed.

  7. A robust direct-integration method for rotorcraft maneuver and periodic response

    NASA Technical Reports Server (NTRS)

    Panda, Brahmananda

    1992-01-01

    The Newmark-Beta method and the Newton-Raphson iteration scheme are combined to develop a direct-integration method for evaluating the maneuver and periodic-response expressions for rotorcraft. The method requires the generation of Jacobians and includes higher derivatives in the formulation of the geometric stiffness matrix to enhance the convergence of the system. The method leads to effective convergence with nonlinear structural dynamics and aerodynamic terms. Singularities in the matrices can be addressed with the method as they arise from a Lagrange multiplier approach for coupling equations with nonlinear constraints. The method is also shown to be general enough to handle singularities from quasisteady control-system models. The method is shown to be more general and robust than the similar 2GCHAS method for analyzing rotorcraft dynamics.

  8. Potential Singularity for a Family of Models of the Axisymmetric Incompressible Flow

    NASA Astrophysics Data System (ADS)

    Hou, Thomas Y.; Jin, Tianling; Liu, Pengfei

    2017-03-01

    We study a family of 3D models for the incompressible axisymmetric Euler and Navier-Stokes equations. The models are derived by changing the strength of the convection terms in the equations written using a set of transformed variables. The models share several regularity results with the Euler and Navier-Stokes equations, including an energy identity, the conservation of a modified circulation quantity, the BKM criterion and the Prodi-Serrin criterion. The inviscid models with weak convection are numerically observed to develop stable self-similar singularity with the singular region traveling along the symmetric axis, and such singularity scenario does not seem to persist for strong convection.

  9. Some integrable maps and their Hirota bilinear forms

    NASA Astrophysics Data System (ADS)

    Hone, A. N. W.; Kouloukas, T. E.; Quispel, G. R. W.

    2018-01-01

    We introduce a two-parameter family of birational maps, which reduces to a family previously found by Demskoi, Tran, van der Kamp and Quispel (DTKQ) when one of the parameters is set to zero. The study of the singularity confinement pattern for these maps leads to the introduction of a tau function satisfying a homogeneous recurrence which has the Laurent property, and the tropical (or ultradiscrete) analogue of this homogeneous recurrence confirms the quadratic degree growth found empirically by Demskoi et al. We prove that the tau function also satisfies two different bilinear equations, each of which is a reduction of the Hirota-Miwa equation (also known as the discrete KP equation, or the octahedron recurrence). Furthermore, these bilinear equations are related to reductions of particular two-dimensional integrable lattice equations, of discrete KdV or discrete Toda type. These connections, as well as the cluster algebra structure of the bilinear equations, allow a direct construction of Poisson brackets, Lax pairs and first integrals for the birational maps. As a consequence of the latter results, we show how each member of the family can be lifted to a system that is integrable in the Liouville sense, clarifying observations made previously in the original DTKQ case.

  10. Expressions for tidal conversion at seafloor topography using physical space integrals

    NASA Astrophysics Data System (ADS)

    Schorghofer, Norbert

    2010-12-01

    The barotropic tide interacts with seafloor topography to generate internal gravity waves. Equations for streamfunction and power conversion are derived in terms of integrals over the topography in spatial coordinates. The slope of the topography does not need to be small. Explicit equations are derived up to second order in slope for general topography, and conversion by a bell-shaped topography is calculated analytically to this order. A concise formalism using Hilbert transforms is developed, the minimally converting topographic shape is discussed, and a numerical scheme for the evaluation of power conversion is designed that robustly deals with the singular integrand.

  11. Comninou contact zones for a crack parallel to an interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, P.F.; Gadi, K.S.; Erdogen, F.

    One of the interesting features in studying the state of stress in elastic solids near singular points, is the so called complex singularity that gives rise to an apparent local oscillatory behavior in the stress and displacement fields. The region in which this occurs is very small, much smaller than any plastic zone would be, and therefore the oscillations can be ignored in practical applications. Nevertheless, it is a matter of interesting theoretical investigation. The Comninou model of a small contact zone near the crack tip appears to correct for this anomaly within the framework of the linear theory. Thismore » model seems to make sense out of a {open_quotes}solution{close_quotes} that violates the boundary conditions. Erdogan and Joseph, showed (to themselves anyway) that the Comninou model actually has a physical basis. They considered a crack parallel to an interface where the order of the singularity is always real. With great care in solving the singular integral equations, it was shown that as the crack approaches the interface, a pinching effect is observed at the crack tip. This pinching effect proves that in the limit as the crack approaches the interface, the correct way to handle the problem is to consider crack surface contact. In this way, the issue of {open_quotes}oscillations{close_quotes} is never encountered for the interface crack problem. In the present study, the value of h/a that corresponds to crack closure (zero value of the stress intensity factor) will be determined for a given material pair for tensile loading. An asymptotic numerical method for the solution of singular integral equations making use of is used to obtain this result. Results for the crack opening displacement near the tip of the crack and the behavior of the stress intensity factor for cracks very close to the interface are presented. Among other interesting issues to be discussed, this solution shows that the semi-infinite crack parallel to an interface is closed.« less

  12. Non-singular acoustic cloak derived by the ray tracing method with rotationally symmetric transformations

    PubMed Central

    Wu, Linzhi

    2016-01-01

    Recently, the ray tracing method has been used to derive the non-singular cylindrical invisibility cloaks for out-of-plane shear waves, which is impossible via the transformation method directly owing to the singular push-forward mapping. In this paper, the method is adopted to design a kind of non-singular acoustic cloak. Based on Hamilton's equations of motion, eikonal equation and pre-designed ray equations, we derive several constraint equations for bulk modulus and density tensor. On the premise that the perfect matching conditions are satisfied, a series of non-singular physical profiles can be obtained by arranging the singular terms reasonably. The physical profiles derived by the ray tracing method will degenerate to the transformation-based solutions when taking the transport equation into consideration. This illuminates the essence of the newly designed cloaks that they are actually the so-called eikonal cloaks that can accurately control the paths of energy flux but with small disturbance in energy distribution along the paths. The near-perfect invisible performance has been demonstrated by the numerical ray tracing results and the pressure distribution snapshots. Finally, a kind of reduced cloak is conceived, and the good invisible performance has been measured quantitatively by the normalized scattering width. PMID:27118884

  13. Stress intensity factor in a tapered specimen

    NASA Technical Reports Server (NTRS)

    Xue-Hui, L.; Erdogan, F.

    1985-01-01

    The general problem of a tapered specimen containing an edge crack is formulated in terms of a system of singular integral equations. The equations are solved and the stress intensity factor is calculated for a compact and for a slender tapered specimen, the latter simulating the double cantilever beam. The results are obtained primarily for a pair of concentrated forces and for crack surface wedge forces. The stress intensity factors are also obtained for a long strip under uniform tension which contains inclined edge cracks.

  14. Extension of the N-point Padé approximants solution of the Eliashberg equations to T ˜ T c

    NASA Astrophysics Data System (ADS)

    Leavens, C. R.; Ritchie, D. S.

    1985-01-01

    Vidberg and Serene introduced a very useful technique for calculating the low temperature (T « T c) gap function of a superconductor which bypasses the real-frequency singular integral equations of Eliashberg. Blashke and Blocksdorf recognized and resolved a difficulty with the technique thereby extending it to higher temperatures. We present a much simpler method of doing essentially the same thing and, for a strong-coupling superconductor at a temperature near T c, compare the gap functions calculated using these methods with the accurate one computed directly from the real-frequency equations.

  15. Symmetry breaking and singularity structure in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Commeford, K. A.; Garcia-March, M. A.; Ferrando, A.; Carr, Lincoln D.

    2012-08-01

    We determine the trajectories of vortex singularities that arise after a single vortex is broken by a discretely symmetric impulse in the context of Bose-Einstein condensates in a harmonic trap. The dynamics of these singularities are analyzed to determine the form of the imprinted motion. We find that the symmetry-breaking process introduces two effective forces: a repulsive harmonic force that causes the daughter trajectories to be ejected from the parent singularity and a Magnus force that introduces a torque about the axis of symmetry. For the analytical noninteracting case we find that the parent singularity is reconstructed from the daughter singularities after one period of the trapping frequency. The interactions between singularities in the weakly interacting system do not allow the parent vortex to be reconstructed. Analytic trajectories were compared to the actual minima of the wave function, showing less than 0.5% error for an impulse strength of v=0.00005. We show that these solutions are valid within the impulse regime for various impulse strengths using numerical integration of the Gross-Pitaevskii equation. We also show that the actual duration of the symmetry-breaking potential does not significantly change the dynamics of the system as long as the strength is below v=0.0005.

  16. Weak solutions of the three-dimensional vorticity equation with vortex singularities

    NASA Technical Reports Server (NTRS)

    Winckelmans, G.; Leonard, A.

    1988-01-01

    The extension of the concept of vortex singularities, developed by Saffman and Meiron (1986) for the case of two-dimensional point vortices in an incompressible vortical flow, to the three-dimensional case of vortex sticks (vortons) is investigated analytically. The derivation of the governing equations is explained, and it is demonstrated that the formulation obtained conserves total vorticity and is a weak solution of the vorticity equation, making it an appropriate means for representing three-dimensional vortical flows with limited numbers of vortex singularities.

  17. The crack problem in a reinforced cylindrical shell

    NASA Technical Reports Server (NTRS)

    Yahsi, O. S.; Erdogan, F.

    1986-01-01

    In this paper a partially reinforced cylinder containing an axial through crack is considered. The reinforcement is assumed to be fully bonded to the main cylinder. The composite cylinder is thus modelled by a nonhomogeneous shell having a step change in the elastic properties at the z=0 plane, z being the axial coordinate. Using a Reissner type transverse shear theory the problem is reduced to a pair of singular integral equations. In the special case of a crack tip touching the bimaterial interface it is shown that the dominant parts of the kernels of the integral equations associated with both membrane loading and bending of the shell reduce to the generalized Cauchy kernel obtained for the corresponding plane stress case. The integral equations are solved and the stress intensity factors are given for various crack and shell dimensions. A bonded fiberglass reinforcement which may serve as a crack arrestor is used as an example.

  18. The crack problem in a reinforced cylindrical shell

    NASA Technical Reports Server (NTRS)

    Yahsi, O. S.; Erdogan, F.

    1986-01-01

    A partially reinforced cylinder containing an axial through crack is considered. The reinforcement is assumed to be fully bonded to the main cylinder. The composite cylinder is thus modelled by a nonhomogeneous shell having a step change in the elastic properties at the z = 0 plane, z being the axial coordinate. Using a Reissner type transverse shear theory the problem is reduced to a pair of singular integral equations. In the special case of a crack tip touching the bimaterial interface it is shown that the dominant parts of the kernels of the integral equations associated with both membrane loading and bending of the shell reduce to the generalized Cauchy kernel obtained for the corresponding plane stress case. The integral equations are solved and the stress intensity factors are given for various crack and shell dimensions. A bonded fiberglass reinforcement which may serve as a crack arrestor is used as an example.

  19. Fully pseudospectral solution of the conformally invariant wave equation near the cylinder at spacelike infinity. III: nonspherical Schwarzschild waves and singularities at null infinity

    NASA Astrophysics Data System (ADS)

    Frauendiener, Jörg; Hennig, Jörg

    2018-03-01

    We extend earlier numerical and analytical considerations of the conformally invariant wave equation on a Schwarzschild background from the case of spherically symmetric solutions, discussed in Frauendiener and Hennig (2017 Class. Quantum Grav. 34 045005), to the case of general, nonsymmetric solutions. A key element of our approach is the modern standard representation of spacelike infinity as a cylinder. With a decomposition into spherical harmonics, we reduce the four-dimensional wave equation to a family of two-dimensional equations. These equations can be used to study the behaviour at the cylinder, where the solutions turn out to have, in general, logarithmic singularities at infinitely many orders. We derive regularity conditions that may be imposed on the initial data, in order to avoid the first singular terms. We then demonstrate that the fully pseudospectral time evolution scheme can be applied to this problem leading to a highly accurate numerical reconstruction of the nonsymmetric solutions. We are particularly interested in the behaviour of the solutions at future null infinity, and we numerically show that the singularities spread to null infinity from the critical set, where the cylinder approaches null infinity. The observed numerical behaviour is consistent with similar logarithmic singularities found analytically on the critical set. Finally, we demonstrate that even solutions with singularities at low orders can be obtained with high accuracy by virtue of a coordinate transformation that converts solutions with logarithmic singularities into smooth solutions.

  20. Volume-preserving normal forms of Hopf-zero singularity

    NASA Astrophysics Data System (ADS)

    Gazor, Majid; Mokhtari, Fahimeh

    2013-10-01

    A practical method is described for computing the unique generator of the algebra of first integrals associated with a large class of Hopf-zero singularity. The set of all volume-preserving classical normal forms of this singularity is introduced via a Lie algebra description. This is a maximal vector space of classical normal forms with first integral; this is whence our approach works. Systems with a nonzero condition on their quadratic parts are considered. The algebra of all first integrals for any such system has a unique (modulo scalar multiplication) generator. The infinite level volume-preserving parametric normal forms of any nondegenerate perturbation within the Lie algebra of any such system is computed, where it can have rich dynamics. The associated unique generator of the algebra of first integrals are derived. The symmetry group of the infinite level normal forms are also discussed. Some necessary formulas are derived and applied to appropriately modified Rössler and generalized Kuramoto-Sivashinsky equations to demonstrate the applicability of our theoretical results. An approach (introduced by Iooss and Lombardi) is applied to find an optimal truncation for the first level normal forms of these examples with exponentially small remainders. The numerically suggested radius of convergence (for the first integral) associated with a hypernormalization step is discussed for the truncated first level normal forms of the examples. This is achieved by an efficient implementation of the results using Maple.

  1. Applied Mathematical Methods in Theoretical Physics

    NASA Astrophysics Data System (ADS)

    Masujima, Michio

    2005-04-01

    All there is to know about functional analysis, integral equations and calculus of variations in a single volume. This advanced textbook is divided into two parts: The first on integral equations and the second on the calculus of variations. It begins with a short introduction to functional analysis, including a short review of complex analysis, before continuing a systematic discussion of different types of equations, such as Volterra integral equations, singular integral equations of Cauchy type, integral equations of the Fredholm type, with a special emphasis on Wiener-Hopf integral equations and Wiener-Hopf sum equations. After a few remarks on the historical development, the second part starts with an introduction to the calculus of variations and the relationship between integral equations and applications of the calculus of variations. It further covers applications of the calculus of variations developed in the second half of the 20th century in the fields of quantum mechanics, quantum statistical mechanics and quantum field theory. Throughout the book, the author presents over 150 problems and exercises -- many from such branches of physics as quantum mechanics, quantum statistical mechanics, and quantum field theory -- together with outlines of the solutions in each case. Detailed solutions are given, supplementing the materials discussed in the main text, allowing problems to be solved making direct use of the method illustrated. The original references are given for difficult problems. The result is complete coverage of the mathematical tools and techniques used by physicists and applied mathematicians Intended for senior undergraduates and first-year graduates in science and engineering, this is equally useful as a reference and self-study guide.

  2. Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: Finite element solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Benzhuo; Holst, Michael J.; Center for Theoretical Biological Physics, University of California San Diego, La Jolla, CA 92093

    2010-09-20

    In this paper we developed accurate finite element methods for solving 3-D Poisson-Nernst-Planck (PNP) equations with singular permanent charges for simulating electrodiffusion in solvated biomolecular systems. The electrostatic Poisson equation was defined in the biomolecules and in the solvent, while the Nernst-Planck equation was defined only in the solvent. We applied a stable regularization scheme to remove the singular component of the electrostatic potential induced by the permanent charges inside biomolecules, and formulated regular, well-posed PNP equations. An inexact-Newton method was used to solve the coupled nonlinear elliptic equations for the steady problems; while an Adams-Bashforth-Crank-Nicolson method was devised formore » time integration for the unsteady electrodiffusion. We numerically investigated the conditioning of the stiffness matrices for the finite element approximations of the two formulations of the Nernst-Planck equation, and theoretically proved that the transformed formulation is always associated with an ill-conditioned stiffness matrix. We also studied the electroneutrality of the solution and its relation with the boundary conditions on the molecular surface, and concluded that a large net charge concentration is always present near the molecular surface due to the presence of multiple species of charged particles in the solution. The numerical methods are shown to be accurate and stable by various test problems, and are applicable to real large-scale biophysical electrodiffusion problems.« less

  3. Poisson-Nernst-Planck Equations for Simulating Biomolecular Diffusion-Reaction Processes I: Finite Element Solutions

    PubMed Central

    Lu, Benzhuo; Holst, Michael J.; McCammon, J. Andrew; Zhou, Y. C.

    2010-01-01

    In this paper we developed accurate finite element methods for solving 3-D Poisson-Nernst-Planck (PNP) equations with singular permanent charges for electrodiffusion in solvated biomolecular systems. The electrostatic Poisson equation was defined in the biomolecules and in the solvent, while the Nernst-Planck equation was defined only in the solvent. We applied a stable regularization scheme to remove the singular component of the electrostatic potential induced by the permanent charges inside biomolecules, and formulated regular, well-posed PNP equations. An inexact-Newton method was used to solve the coupled nonlinear elliptic equations for the steady problems; while an Adams-Bashforth-Crank-Nicolson method was devised for time integration for the unsteady electrodiffusion. We numerically investigated the conditioning of the stiffness matrices for the finite element approximations of the two formulations of the Nernst-Planck equation, and theoretically proved that the transformed formulation is always associated with an ill-conditioned stiffness matrix. We also studied the electroneutrality of the solution and its relation with the boundary conditions on the molecular surface, and concluded that a large net charge concentration is always present near the molecular surface due to the presence of multiple species of charged particles in the solution. The numerical methods are shown to be accurate and stable by various test problems, and are applicable to real large-scale biophysical electrodiffusion problems. PMID:21709855

  4. Poisson-Nernst-Planck Equations for Simulating Biomolecular Diffusion-Reaction Processes I: Finite Element Solutions.

    PubMed

    Lu, Benzhuo; Holst, Michael J; McCammon, J Andrew; Zhou, Y C

    2010-09-20

    In this paper we developed accurate finite element methods for solving 3-D Poisson-Nernst-Planck (PNP) equations with singular permanent charges for electrodiffusion in solvated biomolecular systems. The electrostatic Poisson equation was defined in the biomolecules and in the solvent, while the Nernst-Planck equation was defined only in the solvent. We applied a stable regularization scheme to remove the singular component of the electrostatic potential induced by the permanent charges inside biomolecules, and formulated regular, well-posed PNP equations. An inexact-Newton method was used to solve the coupled nonlinear elliptic equations for the steady problems; while an Adams-Bashforth-Crank-Nicolson method was devised for time integration for the unsteady electrodiffusion. We numerically investigated the conditioning of the stiffness matrices for the finite element approximations of the two formulations of the Nernst-Planck equation, and theoretically proved that the transformed formulation is always associated with an ill-conditioned stiffness matrix. We also studied the electroneutrality of the solution and its relation with the boundary conditions on the molecular surface, and concluded that a large net charge concentration is always present near the molecular surface due to the presence of multiple species of charged particles in the solution. The numerical methods are shown to be accurate and stable by various test problems, and are applicable to real large-scale biophysical electrodiffusion problems.

  5. On nonsingular potentials of Cox-Thompson inversion scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmai, Tamas; Apagyi, Barnabas

    2010-02-15

    We establish a condition for obtaining nonsingular potentials using the Cox-Thompson inverse scattering method with one phase shift. The anomalous singularities of the potentials are avoided by maintaining unique solutions of the underlying Regge-Newton integral equation for the transformation kernel. As a by-product, new inequality sequences of zeros of Bessel functions are discovered.

  6. Continuations of the nonlinear Schrödinger equation beyond the singularity

    NASA Astrophysics Data System (ADS)

    Fibich, G.; Klein, M.

    2011-07-01

    We present four continuations of the critical nonlinear Schrödinger equation (NLS) beyond the singularity: (1) a sub-threshold power continuation, (2) a shrinking-hole continuation for ring-type solutions, (3) a vanishing nonlinear-damping continuation and (4) a complex Ginzburg-Landau (CGL) continuation. Using asymptotic analysis, we explicitly calculate the limiting solutions beyond the singularity. These calculations show that for generic initial data that lead to a loglog collapse, the sub-threshold power limit is a Bourgain-Wang solution, both before and after the singularity, and the vanishing nonlinear-damping and CGL limits are a loglog solution before the singularity, and have an infinite-velocity expanding core after the singularity. Our results suggest that all NLS continuations share the universal feature that after the singularity time Tc, the phase of the singular core is only determined up to multiplication by eiθ. As a result, interactions between post-collapse beams (filaments) become chaotic. We also show that when the continuation model leads to a point singularity and preserves the NLS invariance under the transformation t → -t and ψ → ψ*, the singular core of the weak solution is symmetric with respect to Tc. Therefore, the sub-threshold power and the shrinking-hole continuations are symmetric with respect to Tc, but continuations which are based on perturbations of the NLS equation are generically asymmetric.

  7. Application of a sensitivity analysis technique to high-order digital flight control systems

    NASA Technical Reports Server (NTRS)

    Paduano, James D.; Downing, David R.

    1987-01-01

    A sensitivity analysis technique for multiloop flight control systems is studied. This technique uses the scaled singular values of the return difference matrix as a measure of the relative stability of a control system. It then uses the gradients of these singular values with respect to system and controller parameters to judge sensitivity. The sensitivity analysis technique is first reviewed; then it is extended to include digital systems, through the derivation of singular-value gradient equations. Gradients with respect to parameters which do not appear explicitly as control-system matrix elements are also derived, so that high-order systems can be studied. A complete review of the integrated technique is given by way of a simple example: the inverted pendulum problem. The technique is then demonstrated on the X-29 control laws. Results show linear models of real systems can be analyzed by this sensitivity technique, if it is applied with care. A computer program called SVA was written to accomplish the singular-value sensitivity analysis techniques. Thus computational methods and considerations form an integral part of many of the discussions. A user's guide to the program is included. The SVA is a fully public domain program, running on the NASA/Dryden Elxsi computer.

  8. High order Nyström method for elastodynamic scattering

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Gurrala, Praveen; Song, Jiming; Roberts, Ron

    2016-02-01

    Elastic waves in solids find important applications in ultrasonic non-destructive evaluation. The scattering of elastic waves has been treated using many approaches like the finite element method, boundary element method and Kirchhoff approximation. In this work, we propose a novel accurate and efficient high order Nyström method to solve the boundary integral equations for elastodynamic scattering problems. This approach employs high order geometry description for the element, and high order interpolation for fields inside each element. Compared with the boundary element method, this approach makes the choice of the nodes for interpolation based on the Gaussian quadrature, which renders matrix elements for far field interaction free from integration, and also greatly simplifies the process for singularity and near singularity treatment. The proposed approach employs a novel efficient near singularity treatment that makes the solver able to handle extreme geometries like very thin penny-shaped crack. Numerical results are presented to validate the approach. By using the frequency domain response and performing the inverse Fourier transform, we also report the time domain response of flaw scattering.

  9. A self-consistent two-fluid model of a magnetized plasma-wall transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyergyek, T.; Jožef Stefan Institute, Jamova 39, P.O. Box 100, 1000 Ljubljana; Kovačič, J.

    A self-consistent one-dimensional two-fluid model of the magnetized plasma-wall transition is presented. The model includes magnetic field, elastic collisions between ions and electrons, and creation/annihilation of charged particles. Two systems of differential equations are derived. The first system describes the whole magnetized plasma-wall transition region, which consists of the pre-sheath, the magnetized pre-sheath (Chodura layer), and the sheath, which is not neutral, but contains a positive space charge. The second system of equations describes only the neutral part of the plasma-wall transition region—this means only the pre-sheath and the Chodura layer, but not also the sheath. Both systems are solvedmore » numerically. The first system of equations has two singularities. The first occurs when ion velocity in the direction perpendicularly to the wall drops below the ion thermal velocity. The second occurs when the electron velocity in the direction perpendicularly to the wall exceeds the electron thermal velocity. The second system of differential equations only has one singularity, which has also been derived analytically. For finite electron to ion mass ratio, the integration of the second system always breaks down before the Bohm criterion is fulfilled. Some properties of the first system of equations are examined. It is shown that the increased collision frequency demagnetizes the plasma. On the other hand, if the magnetic field is so strong that the ion Larmor radius and the Debye length are comparable, the electron velocity in the direction perpendicularly to the wall reaches the electron thermal velocity before the ion velocity in the direction perpendicularly to the wall reaches the ion sound velocity. In this case, the integration of the model equations breaks down before the Bohm criterion is fulfilled and the sheath is formed.« less

  10. Boundary-layer effects in composite laminates: Free-edge stress singularities, part 6

    NASA Technical Reports Server (NTRS)

    Wanag, S. S.; Choi, I.

    1981-01-01

    A rigorous mathematical model was obtained for the boundary-layer free-edge stress singularity in angleplied and crossplied fiber composite laminates. The solution was obtained using a method consisting of complex-variable stress function potentials and eigenfunction expansions. The required order of the boundary-layer stress singularity is determined by solving the transcendental characteristic equation obtained from the homogeneous solution of the partial differential equations. Numerical results obtained show that the boundary-layer stress singularity depends only upon material elastic constants and fiber orientation of the adjacent plies. For angleplied and crossplied laminates the order of the singularity is weak in general.

  11. Investigations of dark, bright, combined dark-bright optical and other soliton solutions in the complex cubic nonlinear Schrödinger equation with δ-potential

    NASA Astrophysics Data System (ADS)

    Baskonus, Haci Mehmet; Sulaiman, Tukur Abdulkadir; Bulut, Hasan; Aktürk, Tolga

    2018-03-01

    In this study, using the extended sinh-Gordon equation expansion method, we construct the dark, bright, combined dark-bright optical, singular, combined singular solitons and singular periodic waves solutions to the complex cubic nonlinear Schrödinger equation with δ-potential. The conditions for the existence of the obtained solutions are given. To present the physical feature of the acquired result, the 2D and 3D graphs are plotted under the choice of suitable values of the parameters.

  12. Numerical studies of the Bethe-Salpeter equation for a two-fermion bound state

    NASA Astrophysics Data System (ADS)

    de Paula, W.; Frederico, T.; Salmè, G.; Viviani, M.

    2018-03-01

    Some recent advances on the solution of the Bethe-Salpeter equation (BSE) for a two-fermion bound system directly in Minkowski space are presented. The calculations are based on the expression of the Bethe-Salpeter amplitude in terms of the so-called Nakanishi integral representation and on the light-front projection (i.e. the integration of the light-front variable k - = k 0 - k 3). The latter technique allows for the analytically exact treatment of the singularities plaguing the two-fermion BSE in Minkowski space. The good agreement observed between our results and those obtained using other existing numerical methods, based on both Minkowski and Euclidean space techniques, fully corroborate our analytical treatment.

  13. Regularity gradient estimates for weak solutions of singular quasi-linear parabolic equations

    NASA Astrophysics Data System (ADS)

    Phan, Tuoc

    2017-12-01

    This paper studies the Sobolev regularity for weak solutions of a class of singular quasi-linear parabolic problems of the form ut -div [ A (x , t , u , ∇u) ] =div [ F ] with homogeneous Dirichlet boundary conditions over bounded spatial domains. Our main focus is on the case that the vector coefficients A are discontinuous and singular in (x , t)-variables, and dependent on the solution u. Global and interior weighted W 1 , p (ΩT , ω)-regularity estimates are established for weak solutions of these equations, where ω is a weight function in some Muckenhoupt class of weights. The results obtained are even new for linear equations, and for ω = 1, because of the singularity of the coefficients in (x , t)-variables.

  14. Quantum no-singularity theorem from geometric flows

    NASA Astrophysics Data System (ADS)

    Alsaleh, Salwa; Alasfar, Lina; Faizal, Mir; Ali, Ahmed Farag

    2018-04-01

    In this paper, we analyze the classical geometric flow as a dynamical system. We obtain an action for this system, such that its equation of motion is the Raychaudhuri equation. This action will be used to quantize this system. As the Raychaudhuri equation is the basis for deriving the singularity theorems, we will be able to understand the effects and such a quantization will have on the classical singularity theorems. Thus, quantizing the geometric flow, we can demonstrate that a quantum space-time is complete (nonsingular). This is because the existence of a conjugate point is a necessary condition for the occurrence of singularities, and we will be able to demonstrate that such conjugate points cannot occur due to such quantum effects.

  15. Modified equations, rational solutions, and the Painleve property for the Kadomtsev--Petviashvili and Hirota--Satsuma equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, J.

    1985-09-01

    We propose a method for finding the Lax pairs and rational solutions of integrable partial differential equations. That is, when an equation possesses the Painleve property, a Baecklund transformation is defined in terms of an expansion about the singular manifold. This Baecklund transformation obtains (1) a type of modified equation that is formulated in terms of Schwarzian derivatives and (2) a Miura transformation from the modified to the original equation. By linearizing the (Ricati-type) Miura transformation the Lax pair is found. On the other hand, consideration of the (distinct) Baecklund transformations of the modified equations provides a method for themore » iterative construction of rational solutions. This also obtains the Lax pairs for the modified equations. In this paper we apply this method to the Kadomtsev--Petviashvili equation and the Hirota--Satsuma equations.« less

  16. Does loop quantum cosmology replace the big rip singularity by a non-singular bounce?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro, Jaume de, E-mail: jaime.haro@upc.edu

    It is stated that holonomy corrections in loop quantum cosmology introduce a modification in Friedmann's equation which prevent the big rip singularity. Recently in [1] it has been proved that this modified Friedmann equation is obtained in an inconsistent way, what means that the results deduced from it, in particular the big rip singularity avoidance, are not justified. The problem is that holonomy corrections modify the gravitational part of the Hamiltonian of the system leading, after Legendre's transformation, to a non covariant Lagrangian which is in contradiction with one of the main principles of General Relativity. A more consistent waymore » to deal with the big rip singularity avoidance is to disregard modification in the gravitational part of the Hamiltonian, and only consider inverse volume effects [2]. In this case we will see that, not like the big bang singularity, the big rip singularity survives in loop quantum cosmology. Another way to deal with the big rip avoidance is to take into account geometric quantum effects given by the the Wheeler-De Witt equation. In that case, even though the wave packets spread, the expectation values satisfy the same equations as their classical analogues. Then, following the viewpoint adopted in loop quantum cosmology, one can conclude that the big rip singularity survives when one takes into account these quantum effects. However, the spreading of the wave packets prevents the recover of the semiclassical time, and thus, one might conclude that the classical evolution of the universe come to and end before the big rip is reached. This is not conclusive because. as we will see, it always exists other external times that allows us to define the classical and quantum evolution of the universe up to the big rip singularity.« less

  17. Optical solitons, explicit solutions and modulation instability analysis with second-order spatio-temporal dispersion

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Isa Aliyu, Aliyu; Yusuf, Abdullahi; Baleanu, Dumitru

    2017-12-01

    This paper obtains the dark, bright, dark-bright or combined optical and singular solitons to the nonlinear Schrödinger equation (NLSE) with group velocity dispersion coefficient and second-order spatio-temporal dispersion coefficient, which arises in photonics and waveguide optics and in optical fibers. The integration algorithm is the sine-Gordon equation method (SGEM). Furthermore, the explicit solutions of the equation are derived by considering the power series solutions (PSS) theory and the convergence of the solutions is guaranteed. Lastly, the modulation instability analysis (MI) is studied based on the standard linear-stability analysis and the MI gain spectrum is obtained.

  18. Green's functions for dislocations in bonded strips and related crack problems

    NASA Technical Reports Server (NTRS)

    Ballarini, R.; Luo, H. A.

    1990-01-01

    Green's functions are derived for the plane elastostatics problem of a dislocation in a bimaterial strip. Using these fundamental solutions as kernels, various problems involving cracks in a bimaterial strip are analyzed using singular integral equations. For each problem considered, stress intensity factors are calculated for several combinations of the parameters which describe loading, geometry and material mismatch.

  19. Analytical solutions for two-dimensional Stokes flow singularities in a no-slip wedge of arbitrary angle

    PubMed Central

    Brzezicki, Samuel J.

    2017-01-01

    An analytical method to find the flow generated by the basic singularities of Stokes flow in a wedge of arbitrary angle is presented. Specifically, we solve a biharmonic equation for the stream function of the flow generated by a point stresslet singularity and satisfying no-slip boundary conditions on the two walls of the wedge. The method, which is readily adapted to any other singularity type, takes full account of any transcendental singularities arising at the corner of the wedge. The approach is also applicable to problems of plane strain/stress of an elastic solid where the biharmonic equation also governs the Airy stress function. PMID:28690412

  20. Analytical solutions for two-dimensional Stokes flow singularities in a no-slip wedge of arbitrary angle.

    PubMed

    Crowdy, Darren G; Brzezicki, Samuel J

    2017-06-01

    An analytical method to find the flow generated by the basic singularities of Stokes flow in a wedge of arbitrary angle is presented. Specifically, we solve a biharmonic equation for the stream function of the flow generated by a point stresslet singularity and satisfying no-slip boundary conditions on the two walls of the wedge. The method, which is readily adapted to any other singularity type, takes full account of any transcendental singularities arising at the corner of the wedge. The approach is also applicable to problems of plane strain/stress of an elastic solid where the biharmonic equation also governs the Airy stress function.

  1. Kadomtsev−Petviashvili equation for a flow of highly nonisothermal collisionless plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Movsesyants, Yu. B., E-mail: yumovsesyants@gmail.com; Rukhadze, A. A., E-mail: rukh@fpl.gpi.ru; Tyuryukanov, P. M.

    2016-01-15

    It is shown that the equations of two-fluid electrodynamics for a cold ions flow and Boltzmann electrons in the vicinity of the ion-sound point can be reduced to the Kadomtsev−Petviashvili equation. Examples of two-dimensional equilibria with pole singularities obtained by exactly solving the equations are presented. An exact self-similar solution describing a two-dimensional transonic flow and having no pole singularities is found.

  2. Kadomtsev-Petviashvili equation for a flow of highly nonisothermal collisionless plasma

    NASA Astrophysics Data System (ADS)

    Movsesyants, Yu. B.; Rukhadze, A. A.; Tyuryukanov, P. M.

    2016-01-01

    It is shown that the equations of two-fluid electrodynamics for a cold ions flow and Boltzmann electrons in the vicinity of the ion-sound point can be reduced to the Kadomtsev-Petviashvili equation. Examples of two-dimensional equilibria with pole singularities obtained by exactly solving the equations are presented. An exact self-similar solution describing a two-dimensional transonic flow and having no pole singularities is found.

  3. Accurate ω-ψ Spectral Solution of the Singular Driven Cavity Problem

    NASA Astrophysics Data System (ADS)

    Auteri, F.; Quartapelle, L.; Vigevano, L.

    2002-08-01

    This article provides accurate spectral solutions of the driven cavity problem, calculated in the vorticity-stream function representation without smoothing the corner singularities—a prima facie impossible task. As in a recent benchmark spectral calculation by primitive variables of Botella and Peyret, closed-form contributions of the singular solution for both zero and finite Reynolds numbers are subtracted from the unknown of the problem tackled here numerically in biharmonic form. The method employed is based on a split approach to the vorticity and stream function equations, a Galerkin-Legendre approximation of the problem for the perturbation, and an evaluation of the nonlinear terms by Gauss-Legendre numerical integration. Results computed for Re=0, 100, and 1000 compare well with the benchmark steady solutions provided by the aforementioned collocation-Chebyshev projection method. The validity of the proposed singularity subtraction scheme for computing time-dependent solutions is also established.

  4. Singularities in water waves and Rayleigh-Taylor instability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1991-01-01

    Singularities in inviscid two-dimensional finite-amplitude water waves and inviscid Rayleigh-Taylor instability are discussed. For the deep water gravity waves of permanent form, through a combination of analytical and numerical methods, results describing the precise form, number, and location of singularities in the unphysical domain as the wave height is increased are presented. It is shown how the information on the singularity in the unphysical region has the same form as for deep water waves. However, associated with such a singularity is a series of image singularities at increasing distances from the physical plane with possibly different behavior. Furthermore, for the Rayleigh-Taylor problem of motion of fluid over a vacuum and for the unsteady water wave problem, integro-differential equations valid in the unphysical region are derived, and how these equations can give information on the nature of singularities for arbitrary initial conditions is shown.

  5. Compressible Navier-Stokes Equations in a Polyhedral Cylinder with Inflow Boundary Condition

    NASA Astrophysics Data System (ADS)

    Kwon, Ohsung; Kweon, Jae Ryong

    2018-06-01

    In this paper our concern is with singularity and regularity of the compressible flows through a non-convex edge in R^3. The flows are governed by the compressible Navies-Stokes equations on the infinite cylinder that has the non-convex edge on the inflow boundary. We split the edge singularity by the Poisson problem from the velocity vector and show that the remainder is twice differentiable while the edge singularity is observed to be propagated into the interior of the cylinder by the transport character of the continuity equation. An interior surface layer starting at the edge is generated and not Lipshitz continuous due to the singularity. The density function shows a very steep change near the interface and its normal derivative has a jump discontinuity across there.

  6. Compactness and robustness: Applications in the solution of integral equations for chemical kinetics and electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Zhou, Yajun

    This thesis employs the topological concept of compactness to deduce robust solutions to two integral equations arising from chemistry and physics: the inverse Laplace problem in chemical kinetics and the vector wave scattering problem in dielectric optics. The inverse Laplace problem occurs in the quantitative understanding of biological processes that exhibit complex kinetic behavior: different subpopulations of transition events from the "reactant" state to the "product" state follow distinct reaction rate constants, which results in a weighted superposition of exponential decay modes. Reconstruction of the rate constant distribution from kinetic data is often critical for mechanistic understandings of chemical reactions related to biological macromolecules. We devise a "phase function approach" to recover the probability distribution of rate constants from decay data in the time domain. The robustness (numerical stability) of this reconstruction algorithm builds upon the continuity of the transformations connecting the relevant function spaces that are compact metric spaces. The robust "phase function approach" not only is useful for the analysis of heterogeneous subpopulations of exponential decays within a single transition step, but also is generalizable to the kinetic analysis of complex chemical reactions that involve multiple intermediate steps. A quantitative characterization of the light scattering is central to many meteoro-logical, optical, and medical applications. We give a rigorous treatment to electromagnetic scattering on arbitrarily shaped dielectric media via the Born equation: an integral equation with a strongly singular convolution kernel that corresponds to a non-compact Green operator. By constructing a quadratic polynomial of the Green operator that cancels out the kernel singularity and satisfies the compactness criterion, we reveal the universality of a real resonance mode in dielectric optics. Meanwhile, exploiting the properties of compact operators, we outline the geometric and physical conditions that guarantee a robust solution to the light scattering problem, and devise an asymptotic solution to the Born equation of electromagnetic scattering for arbitrarily shaped dielectric in a non-perturbative manner.

  7. Conformal anomaly of generalized form factors and finite loop integrals

    NASA Astrophysics Data System (ADS)

    Chicherin, Dmitry; Sokatchev, Emery

    2018-04-01

    We reveal a new mechanism of conformal symmetry breaking at Born level. It occurs in generalized form factors with several local operators and an on-shell state of massless particles. The effect is due to hidden singularities on collinear configurations of the momenta. This conformal anomaly is different from the holomorphic anomaly of amplitudes. We present a number of examples in four and six dimensions. We find an application of the new conformal anomaly to finite loop momentum integrals with one or more massless legs. The collinear region around a massless leg creates a contact anomaly, made visible by the loop integration. The anomalous conformal Ward identity for an ℓ-loop integral is a 2nd-order differential equation whose right-hand side is an (ℓ - 1)-loop integral. It could serve as a new useful tool to find/test analytic expressions for conformal integrals. We illustrate this point with several examples of known integrals. We propose a new differential equation for the four-dimensional scalar double box.

  8. Symmetry and singularity properties of second-order ordinary differential equations of Lie's type III

    NASA Astrophysics Data System (ADS)

    Andriopoulos, K.; Leach, P. G. L.

    2007-04-01

    We extend the work of Abraham-Shrauner [B. Abraham-Shrauner, Hidden symmetries and linearization of the modified Painleve-Ince equation, J. Math. Phys. 34 (1993) 4809-4816] on the linearization of the modified Painleve-Ince equation to a wider class of nonlinear second-order ordinary differential equations invariant under the symmetries of time translation and self-similarity. In the process we demonstrate a remarkable connection with the parameters obtained in the singularity analysis of this class of equations.

  9. Quantum probe of Hořava-Lifshitz gravity

    NASA Astrophysics Data System (ADS)

    Gurtug, O.; Mangut, M.

    2018-04-01

    Particle probe analysis of the Kehagias-Sfetsos black hole spacetime of Hořava-Lifshitz gravity is extended to wave probe analysis within the framework of quantum mechanics. The time-like naked singularity that develops when ωM2 < 1/2 is probed with quantum fields obeying Klein-Gordon and Chandrasekhar-Dirac equations. The quantum field probe of the naked singularity has revealed that both the spatial part of the wave and the Hamiltonian operators of Klein-Gordon and Chandrasekhar-Dirac equations are essentially self-adjoint, and thus, the naked singularity in the Kehagias-Sfetsos spacetime becomes quantum mechanically non-singular.

  10. Integrated tools for control-system analysis

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.; Proffitt, Melissa S.; Clark, David R.

    1989-01-01

    The basic functions embedded within a user friendly software package (MATRIXx) are used to provide a high level systems approach to the analysis of linear control systems. Various control system analysis configurations are assembled automatically to minimize the amount of work by the user. Interactive decision making is incorporated via menu options and at selected points, such as in the plotting section, by inputting data. There are five evaluations such as the singular value robustness test, singular value loop transfer frequency response, Bode frequency response, steady-state covariance analysis, and closed-loop eigenvalues. Another section describes time response simulations. A time response for random white noise disturbance is available. The configurations and key equations used for each type of analysis, the restrictions that apply, the type of data required, and an example problem are described. One approach for integrating the design and analysis tools is also presented.

  11. Orbital theory in terms of KS elements with luni-solar perturbations

    NASA Astrophysics Data System (ADS)

    Sellamuthu, Harishkumar; Sharma, Ram

    2016-07-01

    Precise orbit computation of Earth orbiting satellites is essential for efficient mission planning of planetary exploration, navigation and satellite geodesy. The third-body perturbations of the Sun and the Moon predominantly affect the satellite motion in the high altitude and elliptical orbits, where the effect of atmospheric drag is negligible. The physics of the luni-solar gravity effect on Earth satellites have been studied extensively over the years. The combined luni-solar gravitational attraction will induce a cumulative effect on the dynamics of satellite orbits, which mainly oscillates the perigee altitude. Though accurate orbital parameters are computed by numerical integration with respect to complex force models, analytical theories are highly valued for the manifold of solutions restricted to relatively simple force models. During close approach, the classical equations of motion in celestial mechanics are almost singular and they are unstable for long-term orbit propagation. A new singularity-free analytical theory in terms of KS (Kustaanheimo and Stiefel) regular elements with respect to luni-solar perturbation is developed. These equations are regular everywhere and eccentric anomaly is the independent variable. Plataforma Solar de Almería (PSA) algorithm and a Fourier series algorithm are used to compute the accurate positions of the Sun and the Moon, respectively. Numerical studies are carried out for wide range of initial parameters and the analytical solutions are found to be satisfactory when compared with numerically integrated values. The symmetrical nature of the equations allows only two of the nine equations to be solved for computing the state vectors and the time. Only a change in the initial conditions is required to solve the other equations. This theory will find multiple applications including on-board software packages and for mission analysis purposes.

  12. Note on Solutions to a Class of Nonlinear Singular Integro-Differential Equations,

    DTIC Science & Technology

    1986-08-01

    KdV) ut + 2uu x +Uxx x a 0, (1) the sine-Gordon equation Uxt a sin u, (2) and the Kadomtsev - Petviashvili (KP) equation (Ut + 2uu x + UXXx)x -3a 2u yy...SOUIN OA LSFNN ! /" / M.. \\boiz A.S ::-:- and ,M.O.. .- :1/1 / NOTE ON SOLUTIONS TO A CLASS OF NON \\ / LINEAR SINGULAR INTEGRO-DIFFERENTIA[ EQUATIONS by...important nonlinear evolution equations which can be linearized. Many of these equations fall into the category of linearization via soliton theory and

  13. Treatment of constraints in the stochastic quantization method and covariantized Langevin equation

    NASA Astrophysics Data System (ADS)

    Ikegami, Kenji; Kimura, Tadahiko; Mochizuki, Riuji

    1993-04-01

    We study the treatment of the constraints in the stochastic quantization method. We improve the treatment of the stochastic consistency condition proposed by Namiki et al. by suitably taking into account the Ito calculus. Then we obtain an improved Langevi equation and the Fokker-Planck equation which naturally leads to the correct path integral quantization of the constrained system as the stochastic equilibrium state. This treatment is applied to an O( N) non-linear α model and it is shown that singular terms appearing in the improved Langevin equation cancel out the σ n(O) divergences in one loop order. We also ascertain that the above Langevin equation, rewritten in terms of idependent variables, is actually equivalent to the one in the general-coordinate transformation covariant and vielbein-rotation invariant formalish.

  14. Several reverse-time integrable nonlocal nonlinear equations: Rogue-wave solutions

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Chen, Yong

    2018-05-01

    A study of rogue-wave solutions in the reverse-time nonlocal nonlinear Schrödinger (NLS) and nonlocal Davey-Stewartson (DS) equations is presented. By using Darboux transformation (DT) method, several types of rogue-wave solutions are constructed. Dynamics of these rogue-wave solutions are further explored. It is shown that the (1 + 1)-dimensional fundamental rogue-wave solutions in the reverse-time NLS equation can be globally bounded or have finite-time blowing-ups. It is also shown that the (2 + 1)-dimensional line rogue waves in the reverse-time nonlocal DS equations can be bounded for all space and time or develop singularities in critical time. In addition, the multi- and higher-order rogue waves exhibit richer structures, most of which have no counterparts in the corresponding local nonlinear equations.

  15. The optimal modified variational iteration method for the Lane-Emden equations with Neumann and Robin boundary conditions

    NASA Astrophysics Data System (ADS)

    Singh, Randhir; Das, Nilima; Kumar, Jitendra

    2017-06-01

    An effective analytical technique is proposed for the solution of the Lane-Emden equations. The proposed technique is based on the variational iteration method (VIM) and the convergence control parameter h . In order to avoid solving a sequence of nonlinear algebraic or complicated integrals for the derivation of unknown constant, the boundary conditions are used before designing the recursive scheme for solution. The series solutions are found which converges rapidly to the exact solution. Convergence analysis and error bounds are discussed. Accuracy, applicability of the method is examined by solving three singular problems: i) nonlinear Poisson-Boltzmann equation, ii) distribution of heat sources in the human head, iii) second-kind Lane-Emden equation.

  16. Special solutions to Chazy equation

    NASA Astrophysics Data System (ADS)

    Varin, V. P.

    2017-02-01

    We consider the classical Chazy equation, which is known to be integrable in hypergeometric functions. But this solution has remained purely existential and was never used numerically. We give explicit formulas for hypergeometric solutions in terms of initial data. A special solution was found in the upper half plane H with the same tessellation of H as that of the modular group. This allowed us to derive some new identities for the Eisenstein series. We constructed a special solution in the unit disk and gave an explicit description of singularities on its natural boundary. A global solution to Chazy equation in elliptic and theta functions was found that allows parametrization of an arbitrary solution to Chazy equation. The results have applications to analytic number theory.

  17. Singularity-free dynamic equations of spacecraft-manipulator systems

    NASA Astrophysics Data System (ADS)

    From, Pål J.; Ytterstad Pettersen, Kristin; Gravdahl, Jan T.

    2011-12-01

    In this paper we derive the singularity-free dynamic equations of spacecraft-manipulator systems using a minimal representation. Spacecraft are normally modeled using Euler angles, which leads to singularities, or Euler parameters, which is not a minimal representation and thus not suited for Lagrange's equations. We circumvent these issues by introducing quasi-coordinates which allows us to derive the dynamics using minimal and globally valid non-Euclidean configuration coordinates. This is a great advantage as the configuration space of a spacecraft is non-Euclidean. We thus obtain a computationally efficient and singularity-free formulation of the dynamic equations with the same complexity as the conventional Lagrangian approach. The closed form formulation makes the proposed approach well suited for system analysis and model-based control. This paper focuses on the dynamic properties of free-floating and free-flying spacecraft-manipulator systems and we show how to calculate the inertia and Coriolis matrices in such a way that this can be implemented for simulation and control purposes without extensive knowledge of the mathematical background. This paper represents the first detailed study of modeling of spacecraft-manipulator systems with a focus on a singularity free formulation using the proposed framework.

  18. Translational control of a graphically simulated robot arm by kinematic rate equations that overcome elbow joint singularity

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Houck, J. A.; Carzoo, S. W.

    1984-01-01

    An operator commands a robot hand to move in a certain direction relative to its own axis system by specifying a velocity in that direction. This velocity command is then resolved into individual joint rotational velocities in the robot arm to effect the motion. However, the usual resolved-rate equations become singular when the robot arm is straightened. To overcome this elbow joint singularity, equations were developed which allow continued translational control of the robot hand even though the robot arm is (or is nearly) fully extended. A feature of the equations near full arm extension is that an operator simply extends and retracts the robot arm to reverse the direction of the elbow bend (difficult maneuver for the usual resolved-rate equations). Results show successful movement of a graphically simulated robot arm.

  19. Diffraction of Harmonic Flexural Waves in a Cracked Elastic Plate Carrying Electrical Current

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Hasanyan, Davresh; Librescu, iviu; Qin, Zhanming

    2005-01-01

    The scattering effect of harmonic flexural waves at a through crack in an elastic plate carrying electrical current is investigated. In this context, the Kirchhoffean bending plate theory is extended as to include magnetoelastic interactions. An incident wave giving rise to bending moments symmetric about the longitudinal z-axis of the crack is applied. Fourier transform technique reduces the problem to dual integral equations, which are then cast to a system of two singular integral equations. Efficient numerical computation is implemented to get the bending moment intensity factor for arbitrary frequency of the incident wave and of arbitrary electrical current intensity. The asymptotic behaviour of the bending moment intensity factor is analysed and parametric studies are conducted.

  20. High-order integral equation methods for problems of scattering by bumps and cavities on half-planes.

    PubMed

    Pérez-Arancibia, Carlos; Bruno, Oscar P

    2014-08-01

    This paper presents high-order integral equation methods for the evaluation of electromagnetic wave scattering by dielectric bumps and dielectric cavities on perfectly conducting or dielectric half-planes. In detail, the algorithms introduced in this paper apply to eight classical scattering problems, namely, scattering by a dielectric bump on a perfectly conducting or a dielectric half-plane, and scattering by a filled, overfilled, or void dielectric cavity on a perfectly conducting or a dielectric half-plane. In all cases field representations based on single-layer potentials for appropriately chosen Green functions are used. The numerical far fields and near fields exhibit excellent convergence as discretizations are refined-even at and around points where singular fields and infinite currents exist.

  1. On the Kernel function of the integral equation relating lift and downwash distributions of oscillating wings in supersonic flow

    NASA Technical Reports Server (NTRS)

    Watkins, Charles E; Berman, Julian H

    1956-01-01

    This report treats the Kernel function of the integral equation that relates a known or prescribed downwash distribution to an unknown lift distribution for harmonically oscillating wings in supersonic flow. The treatment is essentially an extension to supersonic flow of the treatment given in NACA report 1234 for subsonic flow. For the supersonic case the Kernel function is derived by use of a suitable form of acoustic doublet potential which employs a cutoff or Heaviside unit function. The Kernel functions are reduced to forms that can be accurately evaluated by considering the functions in two parts: a part in which the singularities are isolated and analytically expressed, and a nonsingular part which can be tabulated.

  2. The resolvent of singular integral equations. [of kernel functions in mixed boundary value problems

    NASA Technical Reports Server (NTRS)

    Williams, M. H.

    1977-01-01

    The investigation reported is concerned with the construction of the resolvent for any given kernel function. In problems with ill-behaved inhomogeneous terms as, for instance, in the aerodynamic problem of flow over a flapped airfoil, direct numerical methods become very difficult. A description is presented of a solution method by resolvent which can be employed in such problems.

  3. Elementary exact calculations of degree growth and entropy for discrete equations.

    PubMed

    Halburd, R G

    2017-05-01

    Second-order discrete equations are studied over the field of rational functions [Formula: see text], where z is a variable not appearing in the equation. The exact degree of each iterate as a function of z can be calculated easily using the standard calculations that arise in singularity confinement analysis, even when the singularities are not confined. This produces elementary yet rigorous entropy calculations.

  4. Positive periodic solution for p-Laplacian neutral Rayleigh equation with singularity of attractive type.

    PubMed

    Xin, Yun; Liu, Hongmin; Cheng, Zhibo

    2018-01-01

    In this paper, we consider a kind of p -Laplacian neutral Rayleigh equation with singularity of attractive type, [Formula: see text] By applications of an extension of Mawhin's continuation theorem, sufficient conditions for the existence of periodic solution are established.

  5. On the Singularity Structure of WKB Solution of the Boosted Whittaker Equation: its Relevance to Resurgent Functions with Essential Singularities

    NASA Astrophysics Data System (ADS)

    Kamimoto, Shingo; Kawai, Takahiro; Koike, Tatsuya

    2016-12-01

    Inspired by the symbol calculus of linear differential operators of infinite order applied to the Borel transformed WKB solutions of simple-pole type equation [Kamimoto et al. (RIMS Kôkyûroku Bessatsu B 52:127-146, 2014)], which is summarized in Section 1, we introduce in Section 2 the space of simple resurgent functions depending on a parameter with an infra-exponential type growth order, and then we define the assigning operator A which acts on the space and produces resurgent functions with essential singularities. In Section 3, we apply the operator A to the Borel transforms of the Voros coefficient and its exponentiation for the Whittaker equation with a large parameter so that we may find the Borel transforms of the Voros coefficient and its exponentiation for the boosted Whittaker equation with a large parameter. In Section 4, we use these results to find the explicit form of the alien derivatives of the Borel transformed WKB solutions of the boosted Whittaker equation with a large parameter. The results in this paper manifest the importance of resurgent functions with essential singularities in developing the exact WKB analysis, the WKB analysis based on the resurgent function theory. It is also worth emphasizing that the concrete form of essential singularities we encounter is expressed by the linear differential operators of infinite order.

  6. Solving the hypersingular boundary integral equation for the Burton and Miller formulation.

    PubMed

    Langrenne, Christophe; Garcia, Alexandre; Bonnet, Marc

    2015-11-01

    This paper presents an easy numerical implementation of the Burton and Miller (BM) formulation, where the hypersingular Helmholtz integral is regularized by identities from the associated Laplace equation and thus needing only the evaluation of weakly singular integrals. The Helmholtz equation and its normal derivative are combined directly with combinations at edge or corner collocation nodes not used when the surface is not smooth. The hypersingular operators arising in this process are regularized and then evaluated by an indirect procedure based on discretized versions of the Calderón identities linking the integral operators for associated Laplace problems. The method is valid for acoustic radiation and scattering problems involving arbitrarily shaped three-dimensional bodies. Unlike other approaches using direct evaluation of hypersingular integrals, collocation points still coincide with mesh nodes, as is usual when using conforming elements. Using higher-order shape functions (with the boundary element method model size kept fixed) reduces the overall numerical integration effort while increasing the solution accuracy. To reduce the condition number of the resulting BM formulation at low frequencies, a regularized version α = ik/(k(2 )+ λ) of the classical BM coupling factor α = i/k is proposed. Comparisons with the combined Helmholtz integral equation Formulation method of Schenck are made for four example configurations, two of them featuring non-smooth surfaces.

  7. Hierarchical and non-hierarchical {lambda} elements for one dimensional problems with unknown strength of singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, K.K.; Surana, K.S.

    1996-10-01

    This paper presents a new and general procedure for designing hierarchical and non-hierarchical special elements called {lambda} elements for one dimensional singular problems where the strength of the singularity is unknown. The {lambda} element formulations presented here permit correct numerical simulation of linear as well as non-linear singular problems without a priori knowledge of the strength of the singularity. A procedure is also presented for determining the exact strength of the singularity using the converged solution. It is shown that in special instances, the general formulation of {lambda} elements can also be made hierarchical. The {lambda} elements presented here aremore » of type C{sup 0} and provide C{sup 0} inter-element continuity with p-version elements. One dimensional steady state radial flow of an upper convected Maxwell fluid is considered as a sample problem. Since in this case {lambda}{sub i} are known, this problem provides a good example for investigating the performance of the formulation proposed here. Least squares approach (or Least Squares Finite Element Formulation: LSFEF) is used to construct the integral form (error functional I) from the differential equations. Numerical studies are presented for radially inward flow of an upper convected Maxwell fluid with inner radius r{sub i} = .1 and .01 etc. and Deborah number De = 2.« less

  8. Bright and singular soliton solutions of the conformable time-fractional Klein-Gordon equations with different nonlinearities

    NASA Astrophysics Data System (ADS)

    Hosseini, Kamyar; Mayeli, Peyman; Ansari, Reza

    2018-07-01

    Finding the exact solutions of nonlinear fractional differential equations has gained considerable attention, during the past two decades. In this paper, the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities are studied. Several exact soliton solutions, including the bright (non-topological) and singular soliton solutions are formally extracted by making use of the ansatz method. Results demonstrate that the method can efficiently handle the time-fractional Klein-Gordon equations with different nonlinearities.

  9. Exotic singularities and spatially curved loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Parampreet; Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5; Vidotto, Francesca

    2011-03-15

    We investigate the occurrence of various exotic spacelike singularities in the past and the future evolution of k={+-}1 Friedmann-Robertson-Walker model and loop quantum cosmology using a sufficiently general phenomenological model for the equation of state. We highlight the nontrivial role played by the intrinsic curvature for these singularities and the new physics which emerges at the Planck scale. We show that quantum gravity effects generically resolve all strong curvature singularities including big rip and big freeze singularities. The weak singularities, which include sudden and big brake singularities, are ignored by quantum gravity when spatial curvature is negative, as was previouslymore » found for the spatially flat model. Interestingly, for the spatially closed model there exist cases where weak singularities may be resolved when they occur in the past evolution. The spatially closed model exhibits another novel feature. For a particular class of equation of state, this model also exhibits an additional physical branch in loop quantum cosmology, a baby universe separated from the parent branch. Our analysis generalizes previous results obtained on the resolution of strong curvature singularities in flat models to isotropic spacetimes with nonzero spatial curvature.« less

  10. Cosmological applications of singular hypersurfaces in general relativity

    NASA Astrophysics Data System (ADS)

    Laguna-Castillo, Pablo

    Three applications to cosmology of surface layers, based on Israel's formalism of singular hypersurfaces and thin shells in general relativity, are presented. Einstein's field equations are analyzed in the presence of a bubble nucleated in vacuum phase transitions within the context of the old inflationary universe scenario. The evolution of a bubble with vanishing surface energy density is studied. It is found that such bubbles lead to a worm-hole matching. Next, the observable four-dimensional universe is considered as a singular hypersurface of discontinuity embedded in a five-dimensional Kaluza-Klein cosmology. It is possible to rewrite the projected five-dimensional Einstein equations on the surface layer in a similar way to the four-dimensional Robertson-Walker cosmology equations. Next, a model is described for an infinite-length, straight U(1) cosmic string as a cylindrical, singular shell enclosing a region of false vacuum. A set of equations is introduced which are required to develop a three-dimensional computer code whose purpose is to study the process of intercommuting cosmic strings with the inclusion of gravitational effects. The outcome is evolution and constraint equations for the gravitational, scalar and gauge field of two initially separated, perpendicular, cosmic strings.

  11. Monge-Ampére simulation of fourth order PDEs in two dimensions with application to elastic-electrostatic contact problems

    NASA Astrophysics Data System (ADS)

    DiPietro, Kelsey L.; Lindsay, Alan E.

    2017-11-01

    We present an efficient moving mesh method for the simulation of fourth order nonlinear partial differential equations (PDEs) in two dimensions using the Parabolic Monge-Ampére (PMA) equation. PMA methods have been successfully applied to the simulation of second order problems, but not on systems with higher order equations which arise in many topical applications. Our main application is the resolution of fine scale behavior in PDEs describing elastic-electrostatic interactions. The PDE system considered has multiple parameter dependent singular solution modalities, including finite time singularities and sharp interface dynamics. We describe how to construct a dynamic mesh algorithm for such problems which incorporates known self similar or boundary layer scalings of the underlying equation to locate and dynamically resolve fine scale solution features in these singular regimes. We find a key step in using the PMA equation for mesh generation in fourth order problems is the adoption of a high order representation of the transformation from the computational to physical mesh. We demonstrate the efficacy of the new method on a variety of examples and establish several new results and conjectures on the nature of self-similar singularity formation in higher order PDEs.

  12. Distribution theory for Schrödinger’s integral equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lange, Rutger-Jan, E-mail: rutger-jan.lange@cantab.net

    2015-12-15

    Much of the literature on point interactions in quantum mechanics has focused on the differential form of Schrödinger’s equation. This paper, in contrast, investigates the integral form of Schrödinger’s equation. While both forms are known to be equivalent for smooth potentials, this is not true for distributional potentials. Here, we assume that the potential is given by a distribution defined on the space of discontinuous test functions. First, by using Schrödinger’s integral equation, we confirm a seminal result by Kurasov, which was originally obtained in the context of Schrödinger’s differential equation. This hints at a possible deeper connection between bothmore » forms of the equation. We also sketch a generalisation of Kurasov’s [J. Math. Anal. Appl. 201(1), 297–323 (1996)] result to hypersurfaces. Second, we derive a new closed-form solution to Schrödinger’s integral equation with a delta prime potential. This potential has attracted considerable attention, including some controversy. Interestingly, the derived propagator satisfies boundary conditions that were previously derived using Schrödinger’s differential equation. Third, we derive boundary conditions for “super-singular” potentials given by higher-order derivatives of the delta potential. These boundary conditions cannot be incorporated into the normal framework of self-adjoint extensions. We show that the boundary conditions depend on the energy of the solution and that probability is conserved. This paper thereby confirms several seminal results and derives some new ones. In sum, it shows that Schrödinger’s integral equation is a viable tool for studying singular interactions in quantum mechanics.« less

  13. Matrix Sturm-Liouville equation with a Bessel-type singularity on a finite interval

    NASA Astrophysics Data System (ADS)

    Bondarenko, Natalia

    2017-03-01

    The matrix Sturm-Liouville equation on a finite interval with a Bessel-type singularity in the end of the interval is studied. Special fundamental systems of solutions for this equation are constructed: analytic Bessel-type solutions with the prescribed behavior at the singular point and Birkhoff-type solutions with the known asymptotics for large values of the spectral parameter. The asymptotic formulas for Stokes multipliers, connecting these two fundamental systems of solutions, are derived. We also set boundary conditions and obtain asymptotic formulas for the spectral data (the eigenvalues and the weight matrices) of the boundary value problem. Our results will be useful in the theory of direct and inverse spectral problems.

  14. Geometry of Optimal Paths around Focal Singular Surfaces in Differential Games

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melikyan, Arik; Bernhard, Pierre

    2005-06-15

    We investigate a special type of singularity in non-smooth solutions of first-order partial differential equations, with emphasis on Isaacs' equation. This type, called focal manifold, is characterized by the incoming trajectory fields on the two sides and a discontinuous gradient. We provide a complete set of constructive equations under various hypotheses on the singularity, culminating with the case where no a priori hypothesis on its geometry is known, and where the extremal trajectory fields need not be collinear. We show two examples of differential games exhibiting non-collinear fields of extremal trajectories on the focal manifold, one with a transversal approachmore » and one with a tangential approach.« less

  15. Kinematic rate control of simulated robot hand at or near wrist singularity

    NASA Technical Reports Server (NTRS)

    Barker, K.; Houck, J. A.; Carzoo, S. W.

    1985-01-01

    A robot hand should obey movement commands from an operator on a computer program as closely as possible. However, when two of the three rotational axes of the robot wrist are colinear, the wrist loses a degree of freedom, and the usual resolved rate equations (used to move the hand in response to an operator's inputs) are indeterminant. Furthermore, rate limiting occurs in close vicinity to this singularity. An analysis shows that rate limiting occurs not only in the vicinity of this singularity but also substantially away from it, even when the operator commands rotational rates of the robot hand that are only a small percentage of the operational joint rate limits. Therefore, joint angle rates are scaled when they exceed operational limits in a real time simulation of a robot arm. Simulation results show that a small dead band avoids the wrist singularity in the resolved rate equations but can introduce a high frequency oscillation close to the singularity. However, when a coordinated wrist movement is used in conjunction with the resolved rate equations, the high frequency oscillation disappears.

  16. Similarity solutions of time-dependent relativistic radiation-hydrodynamical plane-parallel flows

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2018-04-01

    Similarity solutions are examined for the frequency-integrated relativistic radiation-hydrodynamical flows, which are described by the comoving quantities. The flows are vertical plane-parallel time-dependent ones with a gray opacity coefficient. For adequate boundary conditions, the flows are accelerated in a somewhat homologous manner, but terminate at some singular locus, which originates from the pathological behavior in relativistic radiation moment equations truncated in finite orders.

  17. Similarity solutions of time-dependent relativistic radiation-hydrodynamical plane-parallel flows

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2018-06-01

    Similarity solutions are examined for the frequency-integrated relativistic radiation-hydrodynamical flows, which are described by the comoving quantities. The flows are vertical plane-parallel time-dependent ones with a gray opacity coefficient. For adequate boundary conditions, the flows are accelerated in a somewhat homologous manner, but terminate at some singular locus, which originates from the pathological behavior in relativistic radiation moment equations truncated in finite orders.

  18. Nonlinear excited waves on the interventricular septum

    NASA Astrophysics Data System (ADS)

    Bekki, Naoaki; Harada, Yoshifumi; Kanai, Hiroshi

    2012-11-01

    Using a novel ultrasonic noninvasive imaging method, we observe some phase singularities in propagating excited waves on a human cardiac interventricular septum (IVS) for a healthy young male. We present a possible physical model explaining one-dimensional dynamics of phase singularities in nonlinearly excited waves on the IVS. We show that at least one of the observed phase singularities in the excited waves on the IVS can be explained by the Bekki-Nozaki hole solution of the complex Ginzburg-Landau equation without any adjustable parameters. We conclude that the complex Ginzburg-Landau equation is such a suitable model for one-dimensional dynamics of cardiac phase singularities in nonlinearly excited waves on the IVS.

  19. Singular boundary method for global gravity field modelling

    NASA Astrophysics Data System (ADS)

    Cunderlik, Robert

    2014-05-01

    The singular boundary method (SBM) and method of fundamental solutions (MFS) are meshless boundary collocation techniques that use the fundamental solution of a governing partial differential equation (e.g. the Laplace equation) as their basis functions. They have been developed to avoid singular numerical integration as well as mesh generation in the traditional boundary element method (BEM). SBM have been proposed to overcome a main drawback of MFS - its controversial fictitious boundary outside the domain. The key idea of SBM is to introduce a concept of the origin intensity factors that isolate singularities of the fundamental solution and its derivatives using some appropriate regularization techniques. Consequently, the source points can be placed directly on the real boundary and coincide with the collocation nodes. In this study we deal with SBM applied for high-resolution global gravity field modelling. The first numerical experiment presents a numerical solution to the fixed gravimetric boundary value problem. The achieved results are compared with the numerical solutions obtained by MFS or the direct BEM indicating efficiency of all methods. In the second numerical experiments, SBM is used to derive the geopotential and its first derivatives from the Tzz components of the gravity disturbing tensor observed by the GOCE satellite mission. A determination of the origin intensity factors allows to evaluate the disturbing potential and gravity disturbances directly on the Earth's surface where the source points are located. To achieve high-resolution numerical solutions, the large-scale parallel computations are performed on the cluster with 1TB of the distributed memory and an iterative elimination of far zones' contributions is applied.

  20. An Improved Transformation and Optimized Sampling Scheme for the Numerical Evaluation of Singular and Near-Singular Potentials

    NASA Technical Reports Server (NTRS)

    Khayat, Michael A.; Wilton, Donald R.; Fink, Patrick W.

    2007-01-01

    Simple and efficient numerical procedures using singularity cancellation methods are presented for evaluating singular and near-singular potential integrals. Four different transformations are compared and the advantages of the Radial-angular transform are demonstrated. A method is then described for optimizing this integration scheme.

  1. Steady/unsteady aerodynamic analysis of wings at subsonic, sonic and supersonic Mach numbers using a 3D panel method

    NASA Astrophysics Data System (ADS)

    Cho, Jeonghyun; Han, Cheolheui; Cho, Leesang; Cho, Jinsoo

    2003-08-01

    This paper treats the kernel function of an integral equation that relates a known or prescribed upwash distribution to an unknown lift distribution for a finite wing. The pressure kernel functions of the singular integral equation are summarized for all speed range in the Laplace transform domain. The sonic kernel function has been reduced to a form, which can be conveniently evaluated as a finite limit from both the subsonic and supersonic sides when the Mach number tends to one. Several examples are solved including rectangular wings, swept wings, a supersonic transport wing and a harmonically oscillating wing. Present results are given with other numerical data, showing continuous results through the unit Mach number. Computed results are in good agreement with other numerical results.

  2. A highly accurate boundary integral equation method for surfactant-laden drops in 3D

    NASA Astrophysics Data System (ADS)

    Sorgentone, Chiara; Tornberg, Anna-Karin

    2018-05-01

    The presence of surfactants alters the dynamics of viscous drops immersed in an ambient viscous fluid. This is specifically true at small scales, such as in applications of droplet based microfluidics, where the interface dynamics become of increased importance. At such small scales, viscous forces dominate and inertial effects are often negligible. Considering Stokes flow, a numerical method based on a boundary integral formulation is presented for simulating 3D drops covered by an insoluble surfactant. The method is able to simulate drops with different viscosities and close interactions, automatically controlling the time step size and maintaining high accuracy also when substantial drop deformation appears. To achieve this, the drop surfaces as well as the surfactant concentration on each surface are represented by spherical harmonics expansions. A novel reparameterization method is introduced to ensure a high-quality representation of the drops also under deformation, specialized quadrature methods for singular and nearly singular integrals that appear in the formulation are evoked and the adaptive time stepping scheme for the coupled drop and surfactant evolution is designed with a preconditioned implicit treatment of the surfactant diffusion.

  3. On the high Mach number shock structure singularity caused by overreach of Maxwellian molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myong, R. S., E-mail: myong@gnu.ac.kr

    2014-05-15

    The high Mach number shock structure singularity arising in moment equations of the Boltzmann equation was investigated. The source of the singularity is shown to be the unbalanced treatment between two high order kinematic and dissipation terms caused by the overreach of Maxwellian molecule assumption. In compressive gaseous flow, the high order stress-strain coupling term of quadratic nature will grow far faster than the strain term, resulting in an imbalance with the linear dissipation term and eventually a blow-up singularity in high thermal nonequilibrium. On the other hand, the singularity arising from unbalanced treatment does not occur in the casemore » of velocity shear and expansion flows, since the high order effects are cancelled under the constraint of the free-molecular asymptotic behavior. As an alternative method to achieve the balanced treatment, Eu's generalized hydrodynamics, consistent with the second law of thermodynamics, was revisited. After introducing the canonical distribution function in exponential form and applying the cumulant expansion to the explicit calculation of the dissipation term, a natural platform suitable for the balanced treatment was derived. The resulting constitutive equation with the nonlinear factor was then shown to be well-posed for all regimes, effectively removing the high Mach number shock structure singularity.« less

  4. On the possibility of singularities in the acoustic field of supersonic sources when BEM is applied to a wave equation

    NASA Technical Reports Server (NTRS)

    De Bernardis, E.; Farassat, F.

    1989-01-01

    Using a time domain method based on the Ffowcs Williams-Hawkings equation, a reliable explanation is provided for the origin of singularities observed in the numerical prediction of supersonic propeller noise. In the last few years Tam and, more recently, Amiet have analyzed the phenomenon from different points of view. The method proposed here offers a clear interpretation of the singularities based on a new description of sources, relating to the behavior of lines where the propeller blade surface exhibit slope discontinuity.

  5. Nodal Green’s Function Method Singular Source Term and Burnable Poison Treatment in Hexagonal Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.A. Bingham; R.M. Ferrer; A.M. ougouag

    2009-09-01

    An accurate and computationally efficient two or three-dimensional neutron diffusion model will be necessary for the development, safety parameters computation, and fuel cycle analysis of a prismatic Very High Temperature Reactor (VHTR) design under Next Generation Nuclear Plant Project (NGNP). For this purpose, an analytical nodal Green’s function solution for the transverse integrated neutron diffusion equation is developed in two and three-dimensional hexagonal geometry. This scheme is incorporated into HEXPEDITE, a code first developed by Fitzpatrick and Ougouag. HEXPEDITE neglects non-physical discontinuity terms that arise in the transverse leakage due to the transverse integration procedure application to hexagonal geometry andmore » cannot account for the effects of burnable poisons across nodal boundaries. The test code being developed for this document accounts for these terms by maintaining an inventory of neutrons by using the nodal balance equation as a constraint of the neutron flux equation. The method developed in this report is intended to restore neutron conservation and increase the accuracy of the code by adding these terms to the transverse integrated flux solution and applying the nodal Green’s function solution to the resulting equation to derive a semi-analytical solution.« less

  6. Generalized teleparallel cosmology and initial singularity crossing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awad, Adel; Nashed, Gamal, E-mail: Adel.Awad@bue.edu.eg, E-mail: gglnashed@sci.asu.edu.eg

    We present a class of cosmological solutions for a generalized teleparallel gravity with f ( T )= T +α̃ (− T ) {sup n} , where α̃ is some parameter and n is an integer or half-integer. Choosing α̃ ∼ G {sup n} {sup −1}, where G is the gravitational constant, and working with an equation of state p = w ρ, one obtains a cosmological solution with multiple branches. The dynamics of the solution describes standard cosmology at late times, but the higher-torsion correction changes the nature of the initial singularity from big bang to a sudden singularity. Themore » milder behavior of the sudden singularity enables us to extend timelike or lightlike curves, through joining two disconnected branches of solution at the singularity, leaving the singularity traversable. We show that this extension is consistent with the field equations through checking the known junction conditions for generalized teleparallel gravity. This suggests that these solutions describe a contracting phase a prior to the expanding phase of the universe.« less

  7. Analysis on singular spaces: Lie manifolds and operator algebras

    NASA Astrophysics Data System (ADS)

    Nistor, Victor

    2016-07-01

    We discuss and develop some connections between analysis on singular spaces and operator algebras, as presented in my sequence of four lectures at the conference Noncommutative geometry and applications, Frascati, Italy, June 16-21, 2014. Therefore this paper is mostly a survey paper, but the presentation is new, and there are included some new results as well. In particular, Sections 3 and 4 provide a complete short introduction to analysis on noncompact manifolds that is geared towards a class of manifolds-called ;Lie manifolds; -that often appears in practice. Our interest in Lie manifolds is due to the fact that they provide the link between analysis on singular spaces and operator algebras. The groupoids integrating Lie manifolds play an important background role in establishing this link because they provide operator algebras whose structure is often well understood. The initial motivation for the work surveyed here-work that spans over close to two decades-was to develop the index theory of stratified singular spaces. Meanwhile, several other applications have emerged as well, including applications to Partial Differential Equations and Numerical Methods. These will be mentioned only briefly, however, due to the lack of space. Instead, we shall concentrate on the applications to Index theory.

  8. The unified acoustic and aerodynamic prediction theory of advanced propellers in the time domain

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1984-01-01

    This paper presents some numerical results for the noise of an advanced supersonic propeller based on a formulation published last year. This formulation was derived to overcome some of the practical numerical difficulties associated with other acoustic formulations. The approach is based on the Ffowcs Williams-Hawkings equation and time domain analysis is used. To illustrate the method of solution, a model problem in three dimensions and based on the Laplace equation is solved. A brief sketch of derivation of the acoustic formula is then given. Another model problem is used to verify validity of the acoustic formulation. A recent singular integral equation for aerodynamic applications derived from the acoustic formula is also presented here.

  9. Numerical Solution of the Gyrokinetic Poisson Equation in TEMPEST

    NASA Astrophysics Data System (ADS)

    Dorr, Milo; Cohen, Bruce; Cohen, Ronald; Dimits, Andris; Hittinger, Jeffrey; Kerbel, Gary; Nevins, William; Rognlien, Thomas; Umansky, Maxim; Xiong, Andrew; Xu, Xueqiao

    2006-10-01

    The gyrokinetic Poisson (GKP) model in the TEMPEST continuum gyrokinetic edge plasma code yields the electrostatic potential due to the charge density of electrons and an arbitrary number of ion species including the effects of gyroaveraging in the limit kρ1. The TEMPEST equations are integrated as a differential algebraic system involving a nonlinear system solve via Newton-Krylov iteration. The GKP preconditioner block is inverted using a multigrid preconditioned conjugate gradient (CG) algorithm. Electrons are treated as kinetic or adiabatic. The Boltzmann relation in the adiabatic option employs flux surface averaging to maintain neutrality within field lines and is solved self-consistently with the GKP equation. A decomposition procedure circumvents the near singularity of the GKP Jacobian block that otherwise degrades CG convergence.

  10. 'Footballs', conical singularities, and the Liouville equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redi, Michele

    We generalize the football shaped extra dimensions scenario to an arbitrary number of branes. The problem is related to the solution of the Liouville equation with singularities, and explicit solutions are presented for the case of three branes. The tensions of the branes do not need to be tuned with each other but only satisfy mild global constraints.

  11. On the box-counting dimension of the potential singular set for suitable weak solutions to the 3D Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Wang, Yanqing; Wu, Gang

    2017-05-01

    In this paper, we are concerned with the upper box-counting dimension of the set of possible singular points in the space-time of suitable weak solutions to the 3D Navier-Stokes equations. By taking full advantage of the pressure \\Pi in terms of \

  12. FLRW Cosmology with Horava-Lifshitz Gravity: Impacts of Equations of State

    NASA Astrophysics Data System (ADS)

    Tawfik, A.; Abou El Dahab, E.

    2017-07-01

    Inspired by Lifshitz theory for quantum critical phenomena in condensed matter, Horava proposed a theory for quantum gravity with an anisotropic scaling in ultraviolet. In Horava-Lifshitz gravity (HLG), we have studied the impacts of six types of equations of state on the evolution of various cosmological parameters such as Hubble parameters and scale factor. From the comparison of the general relativity gravity with the HLG with detailed and without with non-detailed balance conditions, remarkable differences are found. Also, a noticeable dependence of singular and non-singular Big Bang on the equations of state is observed. We conclude that HLG explains various epochs in the early universe and might be able to reproduce the entire cosmic history with and without singular Big Bang.

  13. Nonlinear ion acoustic waves scattered by vortexes

    NASA Astrophysics Data System (ADS)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  14. New perspectives in the use of the Ffowcs Williams Hawkings equation for aeroacoustic analysis of rotating blades

    NASA Astrophysics Data System (ADS)

    Ianniello, S.

    The Ffowcs Williams Hawkings equation represents a standard approach in the prediction of noise from rotating blades. It is widely used for linear aeroacoustic problems concerning helicopter rotors and aircraft propellers and over the last few years, through the use of the so called porous (or permeable) surface formulation, has replaced the Kirchhoff approach in the numerical solution of nonlinear problems. Nevertheless, because of numerical difficulties in evaluating the contribution from supersonic sources, most of the computing tools are still unable to treat the critical velocities at which the shock delocalization occurs. At those conditions, the attention is usually limited to the comparison between the noise prediction and the experimental data in the narrow time region where the pressure peak value is located, but there has been little attention paid to the singular behaviour of the governing equation at supersonic speeds. The aim of this paper is to couple the advantages of the porous formulation to an emission surface integration scheme in order to show if and how the singularities affect the noise prediction and to demonstrate a practical way to remove them. Such an analysis enables an investigation of some interesting and somewhat hidden features of the numerical solution of the governing equation and suggests a new solution approach to predicting the noise of a rotor at any rotational velocity.

  15. Numerical solution methods for viscoelastic orthotropic materials

    NASA Technical Reports Server (NTRS)

    Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.

    1988-01-01

    Numerical solution methods for viscoelastic orthotropic materials, specifically fiber reinforced composite materials, are examined. The methods include classical lamination theory using time increments, direction solution of the Volterra Integral, Zienkiewicz's linear Prony series method, and a new method called Nonlinear Differential Equation Method (NDEM) which uses a nonlinear Prony series. The criteria used for comparison of the various methods include the stability of the solution technique, time step size stability, computer solution time length, and computer memory storage. The Volterra Integral allowed the implementation of higher order solution techniques but had difficulties solving singular and weakly singular compliance function. The Zienkiewicz solution technique, which requires the viscoelastic response to be modeled by a Prony series, works well for linear viscoelastic isotropic materials and small time steps. The new method, NDEM, uses a modified Prony series which allows nonlinear stress effects to be included and can be used with orthotropic nonlinear viscoelastic materials. The NDEM technique is shown to be accurate and stable for both linear and nonlinear conditions with minimal computer time.

  16. Discrete mathematical model of wave diffraction on pre-fractal impedance strips. TM mode case

    NASA Astrophysics Data System (ADS)

    Nesvit, K. V.

    2013-10-01

    In this paper a transverse magnetic (TM) wave diffraction problem on pre-fractal impedance strips is considered. The overall aim of this work is to develop a discrete mathematical model of the boundary integral equations (IEs) with the help of special quadrature formulas with the nodes in the zeros of Chebyshev polynomials and to perform a numerical experiments with the help of an efficient discrete singularities method (DSM).

  17. Singular Hopf bifurcation in a differential equation with large state-dependent delay

    PubMed Central

    Kozyreff, G.; Erneux, T.

    2014-01-01

    We study the onset of sustained oscillations in a classical state-dependent delay (SDD) differential equation inspired by control theory. Owing to the large delays considered, the Hopf bifurcation is singular and the oscillations rapidly acquire a sawtooth profile past the instability threshold. Using asymptotic techniques, we explicitly capture the gradual change from nearly sinusoidal to sawtooth oscillations. The dependence of the delay on the solution can be either linear or nonlinear, with at least quadratic dependence. In the former case, an asymptotic connection is made with the Rayleigh oscillator. In the latter, van der Pol’s equation is derived for the small-amplitude oscillations. SDD differential equations are currently the subject of intense research in order to establish or amend general theorems valid for constant-delay differential equation, but explicit analytical construction of solutions are rare. This paper illustrates the use of singular perturbation techniques and the unusual way in which solvability conditions can arise for SDD problems with large delays. PMID:24511255

  18. Singular Hopf bifurcation in a differential equation with large state-dependent delay.

    PubMed

    Kozyreff, G; Erneux, T

    2014-02-08

    We study the onset of sustained oscillations in a classical state-dependent delay (SDD) differential equation inspired by control theory. Owing to the large delays considered, the Hopf bifurcation is singular and the oscillations rapidly acquire a sawtooth profile past the instability threshold. Using asymptotic techniques, we explicitly capture the gradual change from nearly sinusoidal to sawtooth oscillations. The dependence of the delay on the solution can be either linear or nonlinear, with at least quadratic dependence. In the former case, an asymptotic connection is made with the Rayleigh oscillator. In the latter, van der Pol's equation is derived for the small-amplitude oscillations. SDD differential equations are currently the subject of intense research in order to establish or amend general theorems valid for constant-delay differential equation, but explicit analytical construction of solutions are rare. This paper illustrates the use of singular perturbation techniques and the unusual way in which solvability conditions can arise for SDD problems with large delays.

  19. A Super mKdV Equation: Bosonization, Painlevé Property and Exact Solutions

    NASA Astrophysics Data System (ADS)

    Ren, Bo; Lou, Sen-Yue

    2018-04-01

    The symmetry of the fermionic field is obtained by means of the Lax pair of the mKdV equation. A new super mKdV equation is constructed by virtue of the symmetry of the fermionic form. The super mKdV system is changed to a system of coupled bosonic equations with the bosonization approach. The bosonized SmKdV (BSmKdV) equation admits Painlevé property by the standard singularity analysis. The traveling wave solutions of the BSmKdV system are presented by the mapping and deformation method. We also provide other ideas to construct new super integrable systems. Supported by the National Natural Science Foundation of China under Grant Nos. 11775146, 11435005, and 11472177, Shanghai Knowledge Service Platform for Trustworthy Internet of Things under Grant No. ZF1213 and K. C. Wong Magna Fund in Ningbo University

  20. New optical solitons of space-time conformable fractional perturbed Gerdjikov-Ivanov equation by sine-Gordon equation method

    NASA Astrophysics Data System (ADS)

    Yaşar, Elif; Yıldırım, Yakup; Yaşar, Emrullah

    2018-06-01

    This paper devotes to conformable fractional space-time perturbed Gerdjikov-Ivanov (GI) equation which appears in nonlinear fiber optics and photonic crystal fibers (PCF). We consider the model with full nonlinearity in order to give a generalized flavor. The sine-Gordon equation approach is carried out to model equation for retrieving the dark, bright, dark-bright, singular and combined singular optical solitons. The constraint conditions are also reported for guaranteeing the existence of these solitons. We also present some graphical simulations of the solutions for better understanding the physical phenomena of the behind the considered model.

  1. Using EIGER for Antenna Design and Analysis

    NASA Technical Reports Server (NTRS)

    Champagne, Nathan J.; Khayat, Michael; Kennedy, Timothy F.; Fink, Patrick W.

    2007-01-01

    EIGER (Electromagnetic Interactions GenERalized) is a frequency-domain electromagnetics software package that is built upon a flexible framework, designed using object-oriented techniques. The analysis methods used include moment method solutions of integral equations, finite element solutions of partial differential equations, and combinations thereof. The framework design permits new analysis techniques (boundary conditions, Green#s functions, etc.) to be added to the software suite with a sensible effort. The code has been designed to execute (in serial or parallel) on a wide variety of platforms from Intel-based PCs and Unix-based workstations. Recently, new potential integration scheme s that avoid singularity extraction techniques have been added for integral equation analysis. These new integration schemes are required for facilitating the use of higher-order elements and basis functions. Higher-order elements are better able to model geometrical curvature using fewer elements than when using linear elements. Higher-order basis functions are beneficial for simulating structures with rapidly varying fields or currents. Results presented here will demonstrate curren t and future capabilities of EIGER with respect to analysis of installed antenna system performance in support of NASA#s mission of exploration. Examples include antenna coupling within an enclosed environment and antenna analysis on electrically large manned space vehicles.

  2. Sharp bounds for singular values of fractional integral operators

    NASA Astrophysics Data System (ADS)

    Burman, Prabir

    2007-03-01

    From the results of Dostanic [M.R. Dostanic, Asymptotic behavior of the singular values of fractional integral operators, J. Math. Anal. Appl. 175 (1993) 380-391] and Vu and Gorenflo [Kim Tuan Vu, R. Gorenflo, Singular values of fractional and Volterra integral operators, in: Inverse Problems and Applications to Geophysics, Industry, Medicine and Technology, Ho Chi Minh City, 1995, Ho Chi Minh City Math. Soc., Ho Chi Minh City, 1995, pp. 174-185] it is known that the jth singular value of the fractional integral operator of order [alpha]>0 is approximately ([pi]j)-[alpha] for all large j. In this note we refine this result by obtaining sharp bounds for the singular values and use these bounds to show that the jth singular value is ([pi]j)-[alpha][1+O(j-1)].

  3. Singular temperature dependence of the equation of state of superconductors with spin–orbit interaction in the low-temperature region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovchinnikov, Yu. N., E-mail: ovc@itp.ac.ru

    The equation of state is investigated for a thin superconducting film in a longitudinal magnetic field and with strong spin-orbit interaction at the critical point. As a first step, the state with the maximal value of the magnetic field for a given value of spin–orbit interaction at T = 0 is chosen. This state is investigated in the low-temperature region. The temperature contribution to the equation of state is weakly singular.

  4. Analysis of a Generally Oriented Crack in a Functionally Graded Strip Sandwiched Between Two Homogeneous Half Planes

    NASA Technical Reports Server (NTRS)

    Shbeeb, N.; Binienda, W. K.; Kreider, K.

    1999-01-01

    The driving forces for a generally oriented crack embedded in a Functionally Graded strip sandwiched between two half planes are analyzed using singular integral equations with Cauchy kernels, and integrated using Lobatto-Chebyshev collocation. Mixed-mode Stress Intensity Factors (SIF) and Strain Energy Release Rates (SERR) are calculated. The Stress Intensity Factors are compared for accuracy with previously published results. Parametric studies are conducted for various nonhomogeneity ratios, crack lengths. crack orientation and thickness of the strip. It is shown that the SERR is more complete and should be used for crack propagation analysis.

  5. Analysis of an Interface Crack for a Functionally Graded Strip Sandwiched between Two Homogeneous Layers of Finite Thickness

    NASA Technical Reports Server (NTRS)

    Shbeeh, N. I.; Binienda, W. K.

    1999-01-01

    The interface crack problem for a composite layer that consists of a homogeneous substrate, coating and a non-homogeneous interface was formulated for singular integral equations with Cauchy kernels and integrated using the Lobatto-Chebyshev collocation technique. Mixed-mode Stress Intensity Factors and Strain Energy Release Rates were calculated. The Stress Intensity Factors were compared for accuracy with relevant results previously published. The parametric studies were conducted for the various thickness of each layer and for various non-homogeneity ratios. Particular application to the Zirconia thermal barrier on steel substrate is demonstrated.

  6. A note on singularities of the 3-D Euler equation

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1994-01-01

    In this paper, we consider analytic initial conditions with finite energy, whose complex spatial continuation is a superposition of a smooth background flow and a singular field. Through explicit calculation in the complex plane, we show that under some assumptions, the solution to the 3-D Euler equation ceases to be analytic in the real domain in finite time.

  7. Geostrophic balance with a full Coriolis Force: implications for low latitutde studies

    NASA Technical Reports Server (NTRS)

    Juarez, M. de la Torre

    2002-01-01

    In its standard form, geostrophic balance uses a partial representation of the Coriolis force. The resulting formation has a singularity at the equator, and violates mass and momentum conservation. When the horizontal projection of the planetary rotation vector is considered, the singularity at the equator disappears, continuity can be preserved, and quasigeostrophy can be formulated at planetary scale.

  8. The Friedmann-Lemaître-Robertson-Walker Big Bang Singularities are Well Behaved

    NASA Astrophysics Data System (ADS)

    Stoica, Ovidiu Cristinel

    2016-01-01

    We show that the Big Bang singularity of the Friedmann-Lemaître-Robertson-Walker model does not raise major problems to General Relativity. We prove a theorem showing that the Einstein equation can be written in a non-singular form, which allows the extension of the spacetime before the Big Bang. The physical interpretation of the fields used is discussed. These results follow from our research on singular semi-Riemannian geometry and singular General Relativity.

  9. PREFACE: Symmetries and integrability of difference equations Symmetries and integrability of difference equations

    NASA Astrophysics Data System (ADS)

    Levi, Decio; Olver, Peter; Thomova, Zora; Winternitz, Pavel

    2009-11-01

    The concept of integrability was introduced in classical mechanics in the 19th century for finite dimensional continuous Hamiltonian systems. It was extended to certain classes of nonlinear differential equations in the second half of the 20th century with the discovery of the inverse scattering transform and the birth of soliton theory. Also at the end of the 19th century Lie group theory was invented as a powerful tool for obtaining exact analytical solutions of large classes of differential equations. Together, Lie group theory and integrability theory in its most general sense provide the main tools for solving nonlinear differential equations. Like differential equations, difference equations play an important role in physics and other sciences. They occur very naturally in the description of phenomena that are genuinely discrete. Indeed, they may actually be more fundamental than differential equations if space-time is actually discrete at very short distances. On the other hand, even when treating continuous phenomena described by differential equations it is very often necessary to resort to numerical methods. This involves a discretization of the differential equation, i.e. a replacement of the differential equation by a difference one. Given the well developed and understood techniques of symmetry and integrability for differential equations a natural question to ask is whether it is possible to develop similar techniques for difference equations. The aim is, on one hand, to obtain powerful methods for solving `integrable' difference equations and to establish practical integrability criteria, telling us when the methods are applicable. On the other hand, Lie group methods can be adapted to solve difference equations analytically. Finally, integrability and symmetry methods can be combined with numerical methods to obtain improved numerical solutions of differential equations. The origin of the SIDE meetings goes back to the early 1990s and the first meeting with the name `Symmetries and Integrability of Discrete Equations (SIDE)' was held in Estérel, Québec, Canada. This was organized by D Levi, P Winternitz and L Vinet. After the success of the first meeting the scientific community decided to hold bi-annual SIDE meetings. They were held in 1996 at the University of Kent (UK), 1998 in Sabaudia (Italy), 2000 at the University of Tokyo (Japan), 2002 in Giens (France), 2004 in Helsinki (Finland) and in 2006 at the University of Melbourne (Australia). In 2008 the SIDE 8 meeting was again organized near Montreal, in Ste-Adèle, Québec, Canada. The SIDE 8 International Advisory Committee (also the SIDE steering committee) consisted of Frank Nijhoff, Alexander Bobenko, Basil Grammaticos, Jarmo Hietarinta, Nalini Joshi, Decio Levi, Vassilis Papageorgiou, Junkichi Satsuma, Yuri Suris, Claude Vialet and Pavel Winternitz. The local organizing committee consisted of Pavel Winternitz, John Harnad, Véronique Hussin, Decio Levi, Peter Olver and Luc Vinet. Financial support came from the Centre de Recherches Mathématiques in Montreal and the National Science Foundation (through the University of Minnesota). Proceedings of the first three SIDE meetings were published in the LMS Lecture Note series. Since 2000 the emphasis has been on publishing selected refereed articles in response to a general call for papers issued after the conference. This allows for a wider author base, since the call for papers is not restricted to conference participants. The SIDE topics thus are represented in special issues of Journal of Physics A: Mathematical and General 34 (48) and Journal of Physics A: Mathematical and Theoretical, 40 (42) (SIDE 4 and SIDE 7, respectively), Journal of Nonlinear Mathematical Physics 10 (Suppl. 2) and 12 (Suppl. 2) (SIDE 5 and SIDE 6 respectively). The SIDE 8 meeting was organized around several topics and the contributions to this special issue reflect the diversity presented during the meeting. The papers presented at the SIDE 8 meeting were organized into the following special sessions: geometry of discrete and continuous Painlevé equations; continuous symmetries of discrete equations—theory and computational applications; algebraic aspects of discrete equations; singularity confinement, algebraic entropy and Nevanlinna theory; discrete differential geometry; discrete integrable systems and isomonodromy transformations; special functions as solutions of difference and q-difference equations. This special issue of the journal is organized along similar lines. The first three articles are topical review articles appearing in alphabetical order (by first author). The article by Doliwa and Nieszporski describes the Darboux transformations in a discrete setting, namely for the discrete second order linear problem. The article by Grammaticos, Halburd, Ramani and Viallet concentrates on the integrability of the discrete systems, in particular they describe integrability tests for difference equations such as singularity confinement, algebraic entropy (growth and complexity), and analytic and arithmetic approaches. The topical review by Konopelchenko explores the relationship between the discrete integrable systems and deformations of associative algebras. All other articles are presented in alphabetical order (by first author). The contributions were solicited from all participants as well as from the general scientific community. The contributions published in this special issue can be loosely grouped into several overlapping topics, namely: •Geometry of discrete and continuous Painlevé equations (articles by Spicer and Nijhoff and by Lobb and Nijhoff). •Continuous symmetries of discrete equations—theory and applications (articles by Dorodnitsyn and Kozlov; Levi, Petrera and Scimiterna; Scimiterna; Ste-Marie and Tremblay; Levi and Yamilov; Rebelo and Winternitz). •Yang--Baxter maps (article by Xenitidis and Papageorgiou). •Algebraic aspects of discrete equations (articles by Doliwa and Nieszporski; Konopelchenko; Tsarev and Wolf). •Singularity confinement, algebraic entropy and Nevanlinna theory (articles by Grammaticos, Halburd, Ramani and Viallet; Grammaticos, Ramani and Tamizhmani). •Discrete integrable systems and isomonodromy transformations (article by Dzhamay). •Special functions as solutions of difference and q-difference equations (articles by Atakishiyeva, Atakishiyev and Koornwinder; Bertola, Gekhtman and Szmigielski; Vinet and Zhedanov). •Other topics (articles by Atkinson; Grünbaum Nagai, Kametaka and Watanabe; Nagiyev, Guliyeva and Jafarov; Sahadevan and Uma Maheswari; Svinin; Tian and Hu; Yao, Liu and Zeng). This issue is the result of the collaboration of many individuals. We would like to thank the authors who contributed and everyone else involved in the preparation of this special issue.

  10. On the self-force in Bopp-Podolsky electrodynamics

    NASA Astrophysics Data System (ADS)

    Gratus, Jonathan; Perlick, Volker; Tucker, Robin W.

    2015-10-01

    In the classical vacuum Maxwell-Lorentz theory the self-force of a charged point particle is infinite. This makes classical mass renormalization necessary and, in the special relativistic domain, leads to the Abraham-Lorentz-Dirac equation of motion possessing unphysical run-away and pre-acceleration solutions. In this paper we investigate whether the higher-order modification of classical vacuum electrodynamics suggested by Bopp, Landé, Thomas and Podolsky in the 1940s, can provide a solution to this problem. Since the theory is linear, Green-function techniques enable one to write the field of a charged point particle on Minkowski spacetime as an integral over the particle’s history. By introducing the notion of timelike worldlines that are ‘bounded away from the backward light-cone’ we are able to prescribe criteria for the convergence of such integrals. We also exhibit a timelike worldline yielding singular fields on a lightlike hyperplane in spacetime. In this case the field is mildly singular at the event where the particle crosses the hyperplane. Even in the case when the Bopp-Podolsky field is bounded, it exhibits a directional discontinuity as one approaches the point particle. We describe a procedure for assigning a value to the field on the particle worldline which enables one to define a finite Lorentz self-force. This is explicitly derived leading to an integro-differential equation for the motion of the particle in an external electromagnetic field. We conclude that any worldline solutions to this equation belonging to the categories discussed in the paper have continuous four-velocities.

  11. An improved, robust, axial line singularity method for bodies of revolution

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.

    1989-01-01

    The failures encountered in attempts to increase the range of applicability of the axial line singularity method for representing incompressible, inviscid flow about an inclined and slender body-of-revolution are presently noted to be common to all efforts to solve Fredholm equations of the first kind. It is shown that a previously developed smoothing technique yields a robust method for numerical solution of the governing equations; this technique is easily retrofitted to existing codes, and allows the number of circularities to be increased until the most accurate line singularity solution is obtained.

  12. A General Theory of Unsteady Compressible Potential Aerodynamics

    NASA Technical Reports Server (NTRS)

    Morino, L.

    1974-01-01

    The general theory of potential aerodynamic flow around a lifting body having arbitrary shape and motion is presented. By using the Green function method, an integral representation for the potential is obtained for both supersonic and subsonic flow. Under small perturbation assumption, the potential at any point, P, in the field depends only upon the values of the potential and its normal derivative on the surface, sigma, of the body. Hence, if the point P approaches the surface of the body, the representation reduces to an integro-differential equation relating the potential and its normal derivative (which is known from the boundary conditions) on the surface sigma. For the important practical case of small harmonic oscillation around a rest position, the equation reduces to a two-dimensional Fredholm integral equation of second-type. It is shown that this equation reduces properly to the lifting surface theories as well as other classical mathematical formulas. The question of uniqueness is examined and it is shown that, for thin wings, the operator becomes singular as the thickness approaches zero. This fact may yield numerical problems for very thin wings.

  13. Lens elliptic gamma function solution of the Yang-Baxter equation at roots of unity

    NASA Astrophysics Data System (ADS)

    Kels, Andrew P.; Yamazaki, Masahito

    2018-02-01

    We study the root of unity limit of the lens elliptic gamma function solution of the star-triangle relation, for an integrable model with continuous and discrete spin variables. This limit involves taking an elliptic nome to a primitive rNth root of unity, where r is an existing integer parameter of the lens elliptic gamma function, and N is an additional integer parameter. This is a singular limit of the star-triangle relation, and at subleading order of an asymptotic expansion, another star-triangle relation is obtained for a model with discrete spin variables in {Z}rN . Some special choices of solutions of equation of motion are shown to result in well-known discrete spin solutions of the star-triangle relation. The saddle point equations themselves are identified with three-leg forms of ‘3D-consistent’ classical discrete integrable equations, known as Q4 and Q3(δ=0) . We also comment on the implications for supersymmetric gauge theories, and in particular comment on a close parallel with the works of Nekrasov and Shatashvili.

  14. The crack problem for a nonhomogeneous plane

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1982-01-01

    The plane elasticity problem for a nonhomogeneous medium containing a crack is considered. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy type kernel. Hence, its solution and the stresses around the crack tips have the conventional square root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible.

  15. Elastic interactions of a fatigue crack with a micro-defect by the mixed boundary integral equation method

    NASA Technical Reports Server (NTRS)

    Lua, Yuan J.; Liu, Wing K.; Belytschko, Ted

    1993-01-01

    In this paper, the mixed boundary integral equation method is developed to study the elastic interactions of a fatigue crack and a micro-defect such as a void, a rigid inclusion or a transformation inclusion. The method of pseudo-tractions is employed to study the effect of a transformation inclusion. An enriched element which incorporates the mixed-mode stress intensity factors is applied to characterize the singularity at a moving crack tip. In order to evaluate the accuracy of the numerical procedure, the analysis of a crack emanating from a circular hole in a finite plate is performed and the results are compared with the available numerical solution. The effects of various micro-defects on the crack path and fatigue life are investigated. The results agree with the experimental observations.

  16. The crack problem for a nonhomogeneous plane

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1983-01-01

    The plane elasticity problem for a nonhomogeneous medium containing a crack is considered. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy type kernel. Hence, its solution and the stresses around the crack tips have the conventional square root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible.

  17. A wideband FMBEM for 2D acoustic design sensitivity analysis based on direct differentiation method

    NASA Astrophysics Data System (ADS)

    Chen, Leilei; Zheng, Changjun; Chen, Haibo

    2013-09-01

    This paper presents a wideband fast multipole boundary element method (FMBEM) for two dimensional acoustic design sensitivity analysis based on the direct differentiation method. The wideband fast multipole method (FMM) formed by combining the original FMM and the diagonal form FMM is used to accelerate the matrix-vector products in the boundary element analysis. The Burton-Miller formulation is used to overcome the fictitious frequency problem when using a single Helmholtz boundary integral equation for exterior boundary-value problems. The strongly singular and hypersingular integrals in the sensitivity equations can be evaluated explicitly and directly by using the piecewise constant discretization. The iterative solver GMRES is applied to accelerate the solution of the linear system of equations. A set of optimal parameters for the wideband FMBEM design sensitivity analysis are obtained by observing the performances of the wideband FMM algorithm in terms of computing time and memory usage. Numerical examples are presented to demonstrate the efficiency and validity of the proposed algorithm.

  18. Integrability from point symmetries in a family of cosmological Horndeski Lagrangians

    NASA Astrophysics Data System (ADS)

    Dimakis, N.; Giacomini, Alex; Paliathanasis, Andronikos

    2017-07-01

    For a family of Horndeski theories, formulated in terms of a generalized Galileon model, we study the integrability of the field equations in a Friedmann-Lemaître-Robertson-Walker space-time. We are interested in point transformations which leave invariant the field equations. Noether's theorem is applied to determine the conservation laws for a family of models that belong to the same general class. The cosmological scenarios with or without an extra perfect fluid with constant equation of state parameter are the two important cases of our study. The de Sitter universe and ideal gas solutions are derived by using the invariant functions of the symmetry generators as a demonstration of our result. Furthermore, we discuss the connection of the different models under conformal transformations while we show that when the Horndeski theory reduces to a canonical field the same holds for the conformal equivalent theory. Finally, we discuss how singular solutions provides nonsingular universes in a different frame and vice versa.

  19. A study of methods to predict and measure the transmission of sound through the walls of light aircraft. Integration of certain singular boundary element integrals for applications in linear acoustics

    NASA Technical Reports Server (NTRS)

    Zimmerle, D.; Bernhard, R. J.

    1985-01-01

    An alternative method for performing singular boundary element integrals for applications in linear acoustics is discussed. The method separates the integral of the characteristic solution into a singular and nonsingular part. The singular portion is integrated with a combination of analytic and numerical techniques while the nonsingular portion is integrated with standard Gaussian quadrature. The method may be generalized to many types of subparametric elements. The integrals over elements containing the root node are considered, and the characteristic solution for linear acoustic problems are examined. The method may be generalized to most characteristic solutions.

  20. Investigation of viscous/inviscid interaction in transonic flow over airfoils with suction

    NASA Technical Reports Server (NTRS)

    Vemuru, C. S.; Tiwari, S. N.

    1988-01-01

    The viscous/inviscid interaction over transonic airfoils with and without suction is studied. The streamline angle at the edge of the boundary layer is used to couple the viscous and inviscid flows. The potential flow equations are solved for the inviscid flow field. In the shock region, the Euler equations are solved using the method of integral relations. For this, the potential flow solution is used as the initial and boundary conditions. An integral method is used to solve the laminar boundary-layer equations. Since both methods are integral methods, a continuous interaction is allowed between the outer inviscid flow region and the inner viscous flow region. To avoid the Goldstein singularity near the separation point the laminar boundary-layer equations are derived in an inverse form to obtain solution for the flows with small separations. The displacement thickness distribution is specified instead of the usual pressure distribution to solve the boundry-layer equations. The Euler equations are solved for the inviscid flow using the finite volume technique and the coupling is achieved by a surface transpiration model. A method is developed to apply a minimum amount of suction that is required to have an attached flow on the airfoil. The turbulent boundary layer equations are derived using the bi-logarithmic wall law for mass transfer. The results are found to be in good agreement with available experimental data and with the results of other computational methods.

  1. Singularities in loop quantum cosmology.

    PubMed

    Cailleteau, Thomas; Cardoso, Antonio; Vandersloot, Kevin; Wands, David

    2008-12-19

    We show that simple scalar field models can give rise to curvature singularities in the effective Friedmann dynamics of loop quantum cosmology (LQC). We find singular solutions for spatially flat Friedmann-Robertson-Walker cosmologies with a canonical scalar field and a negative exponential potential, or with a phantom scalar field and a positive potential. While LQC avoids big bang or big rip type singularities, we find sudden singularities where the Hubble rate is bounded, but the Ricci curvature scalar diverges. We conclude that the effective equations of LQC are not in themselves sufficient to avoid the occurrence of curvature singularities.

  2. A clamped rectangular plate containing a crack

    NASA Technical Reports Server (NTRS)

    Tang, R.; Erdogan, F.

    1985-01-01

    The general problem of a rectangular plate clamped along two parallel sides and containing a crack parallel to the clamps is considered. The problem is formulated in terms of a system of singular integral equations and the asymptotic behavior of the stress state near the corners is investigated. Numerical examples are considered for a clamped plate without a crack and with a centrally located crack, and the stress intensity factors and the stresses along the clamps are calculated.

  3. The compressible aerodynamics of rotating blades based on an acoustic formulation

    NASA Technical Reports Server (NTRS)

    Long, L. N.

    1983-01-01

    An acoustic formula derived for the calculation of the noise of moving bodies is applied to aerodynamic problems. The acoustic formulation is a time domain result suitable for slender wings and bodies moving at subsonic speeds. A singular integral equation is derived in terms of the surface pressure which must then be solved numerically for aerodynamic purposes. However, as the 'observer' is moved onto the body surface, the divergent integrals in the acoustic formulation are semiconvergent. The procedure for regularization (or taking principal values of divergent integrals) is explained, and some numerical examples for ellipsoids, wings, and lifting rotors are presented. The numerical results show good agreement with available measured surface pressure data.

  4. Naked singularities are not singular in distorted gravity

    NASA Astrophysics Data System (ADS)

    Garattini, Remo; Majumder, Barun

    2014-07-01

    We compute the Zero Point Energy (ZPE) induced by a naked singularity with the help of a reformulation of the Wheele-DeWitt equation. A variational approach is used for the calculation with Gaussian Trial Wave Functionals. The one loop contribution of the graviton to the ZPE is extracted keeping under control the UltraViolet divergences by means of a distorted gravitational field. Two examples of distortion are taken under consideration: Gravity's Rainbow and Noncommutative Geometry. Surprisingly, we find that the ZPE is no more singular when we approach the singularity.

  5. Singular flow dynamics in three space dimensions driven by advection

    NASA Astrophysics Data System (ADS)

    Karimov, A. R.; Schamel, H.

    2002-03-01

    The initial value problem of an ideal, compressible fluid is investigated in three space dimensions (3D). Starting from a situation where the inertia terms dominate over the force terms in Euler's equation we explore by means of the Lagrangian flow description the basic flow properties. Special attention is drawn to the appearance of singularities in the flow pattern at finite time. Classes of initial velocity profiles giving rise to collapses of density and vorticity are found. This paper, hence, furnishes evidence of focused singularities for coherent structures obeying the 3D Euler equation and applies to potential as well as vortex flows.

  6. An Elementary Introduction to Recently Developed Computational Methods for Solving Singularly Perturbed Partial Differential Equations Arising in Science and Engineering

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Srivastava, Akanksha

    2013-01-01

    This paper presents a survey of innovative approaches of the most effective computational techniques for solving singular perturbed partial differential equations, which are useful because of their numerical and computer realizations. Many applied problems appearing in semiconductors theory, biochemistry, kinetics, theory of electrical chains, economics, solid mechanics, fluid dynamics, quantum mechanics, and many others can be modelled as singularly perturbed systems. Here, we summarize a wide range of research articles published by numerous researchers during the last ten years to get a better view of the present scenario in this area of research.

  7. On spinodal points and Lee-Yang edge singularities

    NASA Astrophysics Data System (ADS)

    An, X.; Mesterházy, D.; Stephanov, M. A.

    2018-03-01

    We address a number of outstanding questions associated with the analytic properties of the universal equation of state of the φ4 theory, which describes the critical behavior of the Ising model and ubiquitous critical points of the liquid–gas type. We focus on the relation between spinodal points that limit the domain of metastability for temperatures below the critical temperature, i.e. T < Tc , and Lee-Yang edge singularities that restrict the domain of analyticity around the point of zero magnetic field H for T > Tc . The extended analyticity conjecture (due to Fonseca and Zamolodchikov) posits that, for T < Tc , the Lee-Yang edge singularities are the closest singularities to the real H axis. This has interesting implications, in particular, that the spinodal singularities must lie off the real H axis for d < 4 , in contrast to the commonly known result of the mean-field approximation. We find that the parametric representation of the Ising equation of state obtained in the \\renewcommandε{\\varepsilon} \

  8. Singular eigenstates in the even(odd) length Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Ranjan Giri, Pulak; Deguchi, Tetsuo

    2015-05-01

    We study the implications of the regularization for the singular solutions on the even(odd) length spin-1/2 XXX chains in some specific down-spin sectors. In particular, the analytic expressions of the Bethe eigenstates for three down-spin sector have been obtained along with their numerical forms in some fixed length chains. For an even-length chain if the singular solutions \\{{{λ }α }\\} are invariant under the sign changes of their rapidities \\{{{λ }α }\\}=\\{-{{λ }α }\\}, then the Bethe ansatz equations are reduced to a system of (M-2)/2((M-3)/2) equations in an even (odd) down-spin sector. For an odd N length chain in the three down-spin sector, it has been analytically shown that there exist singular solutions in any finite length of the spin chain of the form N=3(2k+1) with k=1,2,3,\\cdots . It is also shown that there exist no singular solutions in the four down-spin sector for some odd-length spin-1/2 XXX chains.

  9. Analysis of the cable equation with non-local and non-singular kernel fractional derivative

    NASA Astrophysics Data System (ADS)

    Karaagac, Berat

    2018-02-01

    Recently a new concept of differentiation was introduced in the literature where the kernel was converted from non-local singular to non-local and non-singular. One of the great advantages of this new kernel is its ability to portray fading memory and also well defined memory of the system under investigation. In this paper the cable equation which is used to develop mathematical models of signal decay in submarine or underwater telegraphic cables will be analysed using the Atangana-Baleanu fractional derivative due to the ability of the new fractional derivative to describe non-local fading memory. The existence and uniqueness of the more generalized model is presented in detail via the fixed point theorem. A new numerical scheme is used to solve the new equation. In addition, stability, convergence and numerical simulations are presented.

  10. Extended hamiltonian formalism and Lorentz-violating lagrangians

    NASA Astrophysics Data System (ADS)

    Colladay, Don

    2017-09-01

    A new perspective on the classical mechanical formulation of particle trajectories in Lorentz-violating theories is presented. Using the extended hamiltonian formalism, a Legendre Transformation between the associated covariant lagrangian and hamiltonian varieties is constructed. This approach enables calculation of trajectories using Hamilton's equations in momentum space and the Euler-Lagrange equations in velocity space away from certain singular points that arise in the theory. Singular points are naturally de-singularized by requiring the trajectories to be smooth functions of both velocity and momentum variables. In addition, it is possible to identify specific sheets of the dispersion relations that correspond to specific solutions for the lagrangian. Examples corresponding to bipartite Finsler functions are computed in detail. A direct connection between the lagrangians and the field-theoretic solutions to the Dirac equation is also established for a special case.

  11. Light-cone singularities and transverse-momentum-dependent factorization at twist-3

    NASA Astrophysics Data System (ADS)

    Chen, A. P.; Ma, J. P.

    2017-05-01

    We study transverse-momentum-dependent factorization at twist-3 for Drell-Yan processes. The factorization can be derived straightforwardly at leading order of αs. But at this order we find that light-cone singularities already exist and effects of soft gluons are not correctly factorized. We regularize the singularities with gauge links off the light-cone and introduce a soft factor to factorize the effects of soft gluons. Interestingly, the soft factor must be included in the definition of subtracted TMD parton distributions to correctly factorize the effects of soft gluons. We derive the Collins-Soper equation for one of twist-3 TMD parton distributions. The equation can be useful for resummation of large logarithms terms appearing in the corresponding structure function in collinear factorization. However, the derived equation is nonhomogeneous. This will make the resummation complicated.

  12. Differential Flatness and Cooperative Tracking in the Lorenz System

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.

    2002-01-01

    In this paper the control of the Lorenz system for both stabilization and tracking problems is studied via feedback linearization and differential flatness. By using the Rayleigh number as the control, only variable physically tunable, a barrier in the controllability of the system is incidentally imposed. This is reflected in the appearance of a singularity in the state transformation. Composite controllers that overcome this difficulty are designed and evaluated. The transition through the manifold defined by such a singularity is achieved by inducing a chaotic response within a boundary layer that contains it. Outside this region, a conventional feedback nonlinear control is applied. In this fashion, the authority of the control is enlarged to the whole. state space and the need for high control efforts is mitigated. In addition, the differential parametrization of the problem is used to track nonlinear functions of one state variable (single tracking) as well as several state variables (cooperative tracking). Control tasks that lead to integrable and non-integrable differential equations for the nominal flat output in steady-state are considered. In particular, a novel numerical strategy to deal with the non-integrable case is proposed. Numerical results validate very well the control design.

  13. Integrable mappings and the notion of anticonfinement

    NASA Astrophysics Data System (ADS)

    Mase, T.; Willox, R.; Ramani, A.; Grammaticos, B.

    2018-06-01

    We examine the notion of anticonfinement and the role it has to play in the singularity analysis of discrete systems. A singularity is said to be anticonfined if singular values continue to arise indefinitely for the forward and backward iterations of a mapping, with only a finite number of iterates taking regular values in between. We show through several concrete examples that the behaviour of some anticonfined singularities is strongly related to the integrability properties of the discrete mappings in which they arise, and we explain how to use this information to decide on the integrability or non-integrability of the mapping.

  14. Solution of two-body relativistic bound state equations with confining plus Coulomb interactions

    NASA Technical Reports Server (NTRS)

    Maung, Khin Maung; Kahana, David E.; Norbury, John W.

    1992-01-01

    Studies of meson spectroscopy have often employed a nonrelativistic Coulomb plus Linear Confining potential in position space. However, because the quarks in mesons move at an appreciable fraction of the speed of light, it is necessary to use a relativistic treatment of the bound state problem. Such a treatment is most easily carried out in momentum space. However, the position space Linear and Coulomb potentials lead to singular kernels in momentum space. Using a subtraction procedure we show how to remove these singularities exactly and thereby solve the Schroedinger equation in momentum space for all partial waves. Furthermore, we generalize the Linear and Coulomb potentials to relativistic kernels in four dimensional momentum space. Again we use a subtraction procedure to remove the relativistic singularities exactly for all partial waves. This enables us to solve three dimensional reductions of the Bethe-Salpeter equation. We solve six such equations for Coulomb plus Confining interactions for all partial waves.

  15. The Euler-Poisson-Darboux equation for relativists

    NASA Astrophysics Data System (ADS)

    Stewart, John M.

    2009-09-01

    The Euler-Poisson-Darboux (EPD) equation is the simplest linear hyperbolic equation in two independent variables whose coefficients exhibit singularities, and as such must be of interest as a paradigm to relativists. Sadly it receives scant treatment in the textbooks. The first half of this review is didactic in nature. It discusses in the simplest terms possible the nature of solutions of the EPD equation for the timelike and spacelike singularity cases. Also covered is the Riemann representation of solutions of the characteristic initial value problem, which is hard to find in the literature. The second half examines a few of the possible applications, ranging from explicit computation of the leading terms in the far-field backscatter from predominantly outgoing radiation in a Schwarzschild space-time, to computing explicitly the leading terms in the matter-induced singularities in plane symmetric space-times. There are of course many other applications and the aim of this article is to encourage relativists to investigate this underrated paradigm.

  16. Are Singularities Integral to General Theory of Relativity?

    NASA Astrophysics Data System (ADS)

    Krori, K.; Dutta, S.

    2011-11-01

    Since the 1960s the general relativists have been deeply obsessed with the possibilities of GTR singularities - blackhole as well as cosmological singularities. Senovilla, for the first time, followed by others, showed that there are cylindrically symmetric cosmological space-times which are free of singularities. On the other hand, Krori et al. have presently shown that spherically symmetric cosmological space-times - which later reduce to FRW space-times may also be free of singularities. Besides, Mitra has in the mean-time come forward with some realistic calculations which seem to rule out the possibility of a blackhole singularity. So whether singularities are integral to GTR seems to come under a shadow.

  17. On the Lagrangian description of unsteady boundary-layer separation. I - General theory

    NASA Technical Reports Server (NTRS)

    Van Dommelen, Leon L.; Cowley, Stephen J.

    1990-01-01

    Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.

  18. On the Lagrangian description of unsteady boundary layer separation. Part 1: General theory

    NASA Technical Reports Server (NTRS)

    Vandommelen, Leon L.; Cowley, Stephen J.

    1989-01-01

    Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.

  19. Two Approaches of Studying Singularity of Projective Conics

    ERIC Educational Resources Information Center

    Broyles, Chris; Muller, Lars; Tikoo, Mohan; Wang, Haohao

    2010-01-01

    The singularity of a projective conic can be determined via the associated matrix to the implicit equation of the projective conic. In this expository article, we will first derive a known result for determining the singularity of a projective conic via the associated matrix. Then we will introduce the concepts of [mu]-basis of the parametric…

  20. Lifting-surface theory for calculating the loading induced on a wing by a flap

    NASA Technical Reports Server (NTRS)

    Johnson, W. A.

    1972-01-01

    A method is described for using lifting-surface theory to obtain the pressure distribution on a wing with a trailing-edge flap or control surface. The loading has a logarithmic singularity at the flap edges, which may be determined directly by the method of matched asymptotic expansions. Expressions are given for the singular flap loading for various flap hinge line and side edge geometries, both for steady and unsteady flap deflection. The regular part of the flap loading must be obtained by inverting the lifting-surface-theory integral equation relating the pressure and the downwash on the wing: procedures are described to accomplish this for a general wing and flap geometry. The method is applied to several example wings, and the results are compared with experimental data. Theory and test correlate well.

  1. Splash singularity for water waves.

    PubMed

    Castro, Angel; Córdoba, Diego; Fefferman, Charles L; Gancedo, Francisco; Gómez-Serrano, Javier

    2012-01-17

    We exhibit smooth initial data for the two-dimensional (2D) water-wave equation for which we prove that smoothness of the interface breaks down in finite time. Moreover, we show a stability result together with numerical evidence that there exist solutions of the 2D water-wave equation that start from a graph, turn over, and collapse in a splash singularity (self-intersecting curve in one point) in finite time.

  2. Splash singularity for water waves

    PubMed Central

    Castro, Angel; Córdoba, Diego; Fefferman, Charles L.; Gancedo, Francisco; Gómez-Serrano, Javier

    2012-01-01

    We exhibit smooth initial data for the two-dimensional (2D) water-wave equation for which we prove that smoothness of the interface breaks down in finite time. Moreover, we show a stability result together with numerical evidence that there exist solutions of the 2D water-wave equation that start from a graph, turn over, and collapse in a splash singularity (self-intersecting curve in one point) in finite time. PMID:22219372

  3. Linear stability analysis of collective neutrino oscillations without spurious modes

    NASA Astrophysics Data System (ADS)

    Morinaga, Taiki; Yamada, Shoichi

    2018-01-01

    Collective neutrino oscillations are induced by the presence of neutrinos themselves. As such, they are intrinsically nonlinear phenomena and are much more complex than linear counterparts such as the vacuum or Mikheyev-Smirnov-Wolfenstein oscillations. They obey integro-differential equations, for which it is also very challenging to obtain numerical solutions. If one focuses on the onset of collective oscillations, on the other hand, the equations can be linearized and the technique of linear analysis can be employed. Unfortunately, however, it is well known that such an analysis, when applied with discretizations of continuous angular distributions, suffers from the appearance of so-called spurious modes: unphysical eigenmodes of the discretized linear equations. In this paper, we analyze in detail the origin of these unphysical modes and present a simple solution to this annoying problem. We find that the spurious modes originate from the artificial production of pole singularities instead of a branch cut on the Riemann surface by the discretizations. The branching point singularities on the Riemann surface for the original nondiscretized equations can be recovered by approximating the angular distributions with polynomials and then performing the integrals analytically. We demonstrate for some examples that this simple prescription does remove the spurious modes. We also propose an even simpler method: a piecewise linear approximation to the angular distribution. It is shown that the same methodology is applicable to the multienergy case as well as to the dispersion relation approach that was proposed very recently.

  4. Universal shocks in the Wishart random-matrix ensemble.

    PubMed

    Blaizot, Jean-Paul; Nowak, Maciej A; Warchoł, Piotr

    2013-05-01

    We show that the derivative of the logarithm of the average characteristic polynomial of a diffusing Wishart matrix obeys an exact partial differential equation valid for an arbitrary value of N, the size of the matrix. In the large N limit, this equation generalizes the simple inviscid Burgers equation that has been obtained earlier for Hermitian or unitary matrices. The solution, through the method of characteristics, presents singularities that we relate to the precursors of shock formation in the Burgers equation. The finite N effects appear as a viscosity term in the Burgers equation. Using a scaling analysis of the complete equation for the characteristic polynomial, in the vicinity of the shocks, we recover in a simple way the universal Bessel oscillations (so-called hard-edge singularities) familiar in random-matrix theory.

  5. Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.; Kumar, Dipankar; Chakrabarty, Anuz Kumar

    2018-05-01

    The (2+1)-dimensional hyperbolic and cubic-quintic nonlinear Schrödinger equations describe the propagation of ultra-short pulses in optical fibers of nonlinear media. By using an extended sinh-Gordon equation expansion method, some new complex hyperbolic and trigonometric functions prototype solutions for two nonlinear Schrödinger equations were derived. The acquired new complex hyperbolic and trigonometric solutions are expressed by dark, bright, combined dark-bright, singular and combined singular solitons. The obtained results are more compatible than those of other applied methods. The extended sinh-Gordon equation expansion method is a more powerful and robust mathematical tool for generating new optical solitary wave solutions for many other nonlinear evolution equations arising in the propagation of optical pulses.

  6. The elasticity problem for a thick-walled cylinder containing a circumferential crack

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Erdogan, F.

    1983-01-01

    The elasticity problem for a long hollow circular cylinder containing an axisymmetric circumferential crack subjected to general nonaxisymmetric external loads is considered. The problem is formulated in terms of a system of singular integral equations with the Fourier coefficients of the derivative of the crack surface displacement as density functions. The stress intensity factors and the crack opening displacement are calculated for a cylinder under uniform tension, bending by end couples, and self-equilibrating residual stresses.

  7. The elasticity problem for a thick-walled cylinder containing a circumferential crack

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Erdogan, F.

    1982-01-01

    The elasticity problem for a long hollow circular cylinder containing an axisymmetric circumferential crack subjected to general nonaxisymmetric external loads is considered. The problem is formulated in terms of a system of singular integral equations with the Fourier coefficients of the derivative of the crack surface displacement as density functions. The stress intensity factors and the crack opening displacement are calculated for a cylinder under uniform tension, bending by end couples, and self-equilibrating residual stresses.

  8. The effects of anisotropy on the nonlinear behavior of bridged cracks in long strips

    NASA Technical Reports Server (NTRS)

    Ballarini, R.; Luo, H. A.

    1994-01-01

    A model which can be used to predict the two-dimensional nonlinear behavior of bridged cracks in orthotropic strips is presented. The results obtained using a singular integral equation formulation which incorporates the anisotropy rigorously show that, although the effects of anisotropy are significant, the nondimensional quantities employed by Cox and Marshall can generate nearly universal results (R-curves, for example) for different levels of relative anisotropy. The role of composite constituent properties in the behavior of bridged cracks is clarified.

  9. Fast algorithms for Quadrature by Expansion I: Globally valid expansions

    NASA Astrophysics Data System (ADS)

    Rachh, Manas; Klöckner, Andreas; O'Neil, Michael

    2017-09-01

    The use of integral equation methods for the efficient numerical solution of PDE boundary value problems requires two main tools: quadrature rules for the evaluation of layer potential integral operators with singular kernels, and fast algorithms for solving the resulting dense linear systems. Classically, these tools were developed separately. In this work, we present a unified numerical scheme based on coupling Quadrature by Expansion, a recent quadrature method, to a customized Fast Multipole Method (FMM) for the Helmholtz equation in two dimensions. The method allows the evaluation of layer potentials in linear-time complexity, anywhere in space, with a uniform, user-chosen level of accuracy as a black-box computational method. Providing this capability requires geometric and algorithmic considerations beyond the needs of standard FMMs as well as careful consideration of the accuracy of multipole translations. We illustrate the speed and accuracy of our method with various numerical examples.

  10. The Radiated Field Generated by a Monopole Source in a Short, Rigid, Rectangular Duct. Degree awarded by George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Lakota, Barbara Anne

    1998-01-01

    This thesis develops a method to model the acoustic field generated by a monopole source placed in a moving rectangular duct. The walls of the duct are assumed to be infinitesimally thin and the source is placed at the center of the duct. The total acoustic pressure is written in terms of the free-space pressure, or incident pressure, and the scattered pressure. The scattered pressure is the augmentation to the incident pressure due to the presence of the duct. It satisfies a homogeneous wave equation and is discontinuous across the duct walls. Utilizing an integral representation of the scattered pressure, a set of singular boundary integral equations governing the unknown jump in scattered pressure is derived. This equation is solved by the method of collocation after representing the jump in pressure as a double series of shape functions. The solution obtained is then substituted back into the integral representation to determine the scattered pressure, and the total acoustic pressure at any point in the field. A few examples are included to illustrate the influence of various geometric and kinematic parameters on the radiated sound field.

  11. Volume integral equation for electromagnetic scattering: Rigorous derivation and analysis for a set of multilayered particles with piecewise-smooth boundaries in a passive host medium

    NASA Astrophysics Data System (ADS)

    Yurkin, Maxim A.; Mishchenko, Michael I.

    2018-04-01

    We present a general derivation of the frequency-domain volume integral equation (VIE) for the electric field inside a nonmagnetic scattering object from the differential Maxwell equations, transmission boundary conditions, radiation condition at infinity, and locally-finite-energy condition. The derivation applies to an arbitrary spatially finite group of particles made of isotropic materials and embedded in a passive host medium, including those with edges, corners, and intersecting internal interfaces. This is a substantially more general type of scatterer than in all previous derivations. We explicitly treat the strong singularity of the integral kernel, but keep the entire discussion accessible to the applied scattering community. We also consider the known results on the existence and uniqueness of VIE solution and conjecture a general sufficient condition for that. Finally, we discuss an alternative way of deriving the VIE for an arbitrary object by means of a continuous transformation of the everywhere smooth refractive-index function into a discontinuous one. Overall, the paper examines and pushes forward the state-of-the-art understanding of various analytical aspects of the VIE.

  12. Computation of resistive instabilities by matched asymptotic expansions

    DOE PAGES

    Glasser, A. H.; Wang, Z. R.; Park, J. -K.

    2016-11-17

    Here, we present a method for determining the linear resistive magnetohydrodynamic (MHD) stability of an axisymmetric toroidal plasma, based on the method of matched asymptotic expansions. The plasma is partitioned into a set of ideal MHD outer regions, connected through resistive MHD inner regions about singular layers where q = m/n, with m and n toroidal mode numbers, respectively, and q the safety factor. The outer regions satisfy the ideal MHD equations with zero-frequency, which are identical to the Euler-Lagrange equations for minimizing the potential energy delta W. The solutions to these equations go to infinity at the singular surfaces.more » The inner regions satisfy the equations of motion of resistive MHD with a finite eigenvalue, resolving the singularity. Both outer and inner regions are solved numerically by newly developed singular Galerkin methods, using specialized basis functions. These solutions are matched asymptotically, providing a complex dispersion relation which is solved for global eigenvalues and eigenfunctions in full toroidal geometry. The dispersion relation may have multiple complex unstable roots, which are found by advanced root-finding methods. These methods are much faster and more robust than the previous numerical methods. The new methods are applicable to more challenging high-pressure and strongly shaped plasma equilibria and generalizable to more realistic inner region dynamics. In the thermonuclear regime, where the outer and inner regions overlap, they are also much faster and more accurate than the straight-through methods, which treat the resistive MHD equations in the whole plasma volume.« less

  13. Strength of the singularities, equation of state and asymptotic expansion in Kaluza-Klein space time

    NASA Astrophysics Data System (ADS)

    Samanta, G. C.; Goel, Mayank; Myrzakulov, R.

    2018-04-01

    In this paper an explicit cosmological model which allows cosmological singularities are discussed in Kaluza-Klein space time. The generalized power-law and asymptotic expansions of the baro-tropic fluid index ω and equivalently the deceleration parameter q, in terms of cosmic time 't' are considered. Finally, the strength of the found singularities is discussed.

  14. Spherically symmetric vacuum solutions arising from trace dynamics modifications to gravitation

    NASA Astrophysics Data System (ADS)

    Adler, Stephen L.; Ramazanoğlu, Fethi M.

    2015-12-01

    We derive the equations governing static, spherically symmetric vacuum solutions to the Einstein equations, as modified by the frame-dependent effective action (derived from trace dynamics) that gives an alternative explanation of the origin of "dark energy". We give analytic and numerical results for the solutions of these equations, first in polar coordinates, and then in isotropic coordinates. General features of the static case are that: (i) there is no horizon, since g00 is nonvanishing for finite values of the polar radius, and only vanishes (in isotropic coordinates) at the internal singularity, (ii) the Ricci scalar R vanishes identically, and (iii) there is a physical singularity at cosmological distances. The large distance singularity may be an artifact of the static restriction, since we find that the behavior at large distances is altered in a time-dependent solution using the McVittie Ansatz.

  15. Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions.

    PubMed

    Banik, Suman Kumar; Bag, Bidhan Chandra; Ray, Deb Shankar

    2002-05-01

    Traditionally, quantum Brownian motion is described by Fokker-Planck or diffusion equations in terms of quasiprobability distribution functions, e.g., Wigner functions. These often become singular or negative in the full quantum regime. In this paper a simple approach to non-Markovian theory of quantum Brownian motion using true probability distribution functions is presented. Based on an initial coherent state representation of the bath oscillators and an equilibrium canonical distribution of the quantum mechanical mean values of their coordinates and momenta, we derive a generalized quantum Langevin equation in c numbers and show that the latter is amenable to a theoretical analysis in terms of the classical theory of non-Markovian dynamics. The corresponding Fokker-Planck, diffusion, and Smoluchowski equations are the exact quantum analogs of their classical counterparts. The present work is independent of path integral techniques. The theory as developed here is a natural extension of its classical version and is valid for arbitrary temperature and friction (the Smoluchowski equation being considered in the overdamped limit).

  16. Pulsation of black holes

    NASA Astrophysics Data System (ADS)

    Gao, Changjun; Lu, Youjun; Shen, You-Gen; Faraoni, Valerio

    2018-01-01

    The Hawking-Penrose singularity theorem states that a singularity forms inside a black hole in general relativity. To remove this singularity one must resort to a more fundamental theory. Using a corrected dynamical equation arising in loop quantum cosmology and braneworld models, we study the gravitational collapse of a perfect fluid sphere with a rather general equation of state. In the frame of an observer comoving with this fluid, the sphere pulsates between a maximum and a minimum size, avoiding the singularity. The exterior geometry is also constructed. There are usually an outer and an inner apparent horizon, resembling the Reissner-Nordström situation. For a distant observer the horizon crossing occurs in an infinite time and the pulsations of the black hole quantum "beating heart" are completely unobservable. However, it may be observable if the black hole is not spherical symmetric and radiates gravitational wave due to the quadrupole moment, if any.

  17. Collapsing radiating stars with various equations of state

    NASA Astrophysics Data System (ADS)

    Brassel, Byron P.; Goswami, Rituparno; Maharaj, Sunil D.

    2017-06-01

    We study the gravitational collapse of radiating stars in the context of the cosmic censorship conjecture. We consider a generalized Vaidya spacetime with three concentric regions. The local internal atmosphere is a two-component system consisting of standard pressure-free, null radiation and an additional string fluid with energy density and nonzero pressure obeying all physically realistic energy conditions. The middle region is purely radiative which matches to a third region which is the Schwarzschild exterior. We outline the general mathematical framework to study the conditions on the mass function so that future-directed nonspacelike geodesics can terminate at the singularity in the past. Mass functions for several equations of state are analyzed using this framework and it is shown that the collapse in each case terminates at a locally naked central singularity. We calculate the strength of these singularities to show that they are strong curvature singularities which implies that no extension of spacetime through them is possible.

  18. The magnetic field of a permanent hollow cylindrical magnet

    NASA Astrophysics Data System (ADS)

    Reich, Felix A.; Stahn, Oliver; Müller, Wolfgang H.

    2016-09-01

    Based on the rational version of M AXWELL's equations according to T RUESDELL and T OUPIN or KOVETZ, cf. (Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000; Truesdell and Toupin in Handbuch der Physik, Bd. III/1, Springer, Berlin, pp 226-793; appendix, pp 794-858, 2000), we present, for stationary processes, a closed-form solution for the magnetic flux density of a hollow cylindrical magnet. Its magnetization is constant in axial direction. We consider M AXWELL's equations in regular and singular points that are obtained by rational electrodynamics, adapted to stationary processes. The magnetic flux density is calculated analytically by means of a vector potential. We obtain a solution in terms of complete elliptic integrals. Therefore, numerical evaluation can be performed in a computationally efficient manner. The solution is written in dimensionless form and can easily be applied to cylinders of arbitrary shape. The relation between the magnetic flux density and the magnetic field is linear, and an explicit relation for the field is presented. With a slight modification the result can be used to obtain the field of a solid cylindrical magnet. The mathematical structure of the solution and, in particular, singularities are discussed.

  19. On regularizing the MCTDH equations of motion

    NASA Astrophysics Data System (ADS)

    Meyer, Hans-Dieter; Wang, Haobin

    2018-03-01

    The Multiconfiguration Time-Dependent Hartree (MCTDH) approach leads to equations of motion (EOM) which become singular when there are unoccupied so-called single-particle functions (SPFs). Starting from a Hartree product, all SPFs, except the first one, are unoccupied initially. To solve the MCTDH-EOMs numerically, one therefore has to remove the singularity by a regularization procedure. Usually the inverse of a density matrix is regularized. Here we argue and show that regularizing the coefficient tensor, which in turn regularizes the density matrix as well, leads to an improved performance of the EOMs. The initially unoccupied SPFs are rotated faster into their "correct direction" in Hilbert space and the final results are less sensitive to the choice of the value of the regularization parameter. For a particular example (a spin-boson system studied with a transformed Hamiltonian), we could even show that only with the new regularization scheme could one obtain correct results. Finally, in Appendix A, a new integration scheme for the MCTDH-EOMs developed by Lubich and co-workers is discussed. It is argued that this scheme does not solve the problem of the unoccupied natural orbitals because this scheme ignores the latter and does not propagate them at all.

  20. An exact solution to the Einstein-Maxwell equations representing a nonspherical, highly charged object

    NASA Astrophysics Data System (ADS)

    Menon, Govind K.

    The Reissner-Nordstrom solution possesses a naked singularity when e2 > m2, where m is the mass and e is the net charge of the system. Also, the singularity at r = 0 is repulsive (i.e., no timelike geodesics (neutral particles) can reach the singularity). These unusual properties of the Reissner-Nordstrom geometry are considered as an accident resulting from the highly symmetric nature of the space-time. Here we wish to generalize the condition of spherical symmetry to axial symmetry and to probe into the issues of naked singularity and gravitational repulsion. To do this, we must construct a nonspherical solution to the Einstein-Maxwell set of equations in the event that e2 > m2. The Erez-Rosen extension of the vacuum Schwarzschild solution to the non-spherical case gave one of the first physically significant solutions of the Einstein field equations. Nonvacuum extensions of the Erez-Rosen solution representing a non-spherical mass containing a very high net charge (i.e., when e2 > m2) will be discussed. The special case of spherical symmetry, as would be expected, results in the Reissner-Nordstrom solution. The search for the physical singularities involves the calculation of a nontrivial scalar constructed from the Riemann curvature tensor. As it turns out, the resulting geometry does indeed possess a naked singularity. In addition, the space-time also entertains gravitational repulsion. However, unlike the Reissner-Nordstrom solution, it has been found that all timelike geodesics are not necessarily repelled from the origin.

  1. PREFACE: Physics and Mathematics of Nonlinear Phenomena 2013 (PMNP2013)

    NASA Astrophysics Data System (ADS)

    Konopelchenko, B. G.; Landolfi, G.; Martina, L.; Vitolo, R.

    2014-03-01

    Modern theory of nonlinear integrable equations is nowdays an important and effective tool of study for numerous nonlinear phenomena in various branches of physics from hydrodynamics and optics to quantum filed theory and gravity. It includes the study of nonlinear partial differential and discrete equations, regular and singular behaviour of their solutions, Hamitonian and bi- Hamitonian structures, their symmetries, associated deformations of algebraic and geometrical structures with applications to various models in physics and mathematics. The PMNP 2013 conference focused on recent advances and developments in Continuous and discrete, classical and quantum integrable systems Hamiltonian, critical and geometric structures of nonlinear integrable equations Integrable systems in quantum field theory and matrix models Models of nonlinear phenomena in physics Applications of nonlinear integrable systems in physics The Scientific Committee of the conference was formed by Francesco Calogero (University of Rome `La Sapienza', Italy) Boris A Dubrovin (SISSA, Italy) Yuji Kodama (Ohio State University, USA) Franco Magri (University of Milan `Bicocca', Italy) Vladimir E Zakharov (University of Arizona, USA, and Landau Institute for Theoretical Physics, Russia) The Organizing Committee: Boris G Konopelchenko, Giulio Landolfi, Luigi Martina, Department of Mathematics and Physics `E De Giorgi' and the Istituto Nazionale di Fisica Nucleare, and Raffaele Vitolo, Department of Mathematics and Physics `E De Giorgi'. A list of sponsors, speakers, talks, participants and the conference photograph are given in the PDF. Conference photograph

  2. Global Resolution of the Physical Vacuum Singularity for Three-Dimensional Isentropic Inviscid Flows with Damping in Spherically Symmetric Motions

    NASA Astrophysics Data System (ADS)

    Zeng, Huihui

    2017-10-01

    For the gas-vacuum interface problem with physical singularity and the sound speed being {C^{{1}/{2}}}-Hölder continuous near vacuum boundaries of the isentropic compressible Euler equations with damping, the global existence of smooth solutions and the convergence to Barenblatt self-similar solutions of the corresponding porous media equation are proved in this paper for spherically symmetric motions in three dimensions; this is done by overcoming the analytical difficulties caused by the coordinate's singularity near the center of symmetry, and the physical vacuum singularity to which standard methods of symmetric hyperbolic systems do not apply. Various weights are identified to resolve the singularity near the vacuum boundary and the center of symmetry globally in time. The results obtained here contribute to the theory of global solutions to vacuum boundary problems of compressible inviscid fluids, for which the currently available results are mainly for the local-in-time well-posedness theory, and also to the theory of global smooth solutions of dissipative hyperbolic systems which fail to be strictly hyperbolic.

  3. Shot-noise at a Fermi-edge singularity: Non-Markovian dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ubbelohde, N.; Maire, N.; Haug, R. J.

    2013-12-04

    For an InAs quantum dot we study the current shot noise at a Fermi-edge singularity in low temperature cross-correlation measurements. In the regime of the interaction effect the strong suppression of noise observed at zero magnetic field and the sequence of enhancement and suppression in magnetic field go beyond a Markovian master equation model. Qualitative and quantitative agreement can however be achieved by a generalized master equation model taking non-Markovian dynamics into account.

  4. Formation of curvature singularities on the interface between dielectric liquids in a strong vertical electric field.

    PubMed

    Kochurin, Evgeny A; Zubarev, Nikolay M; Zubareva, Olga V

    2013-08-01

    The nonlinear dynamics of the interface between two deep dielectric fluids in the presence of a vertical electric field is studied. We consider the limit of a strong external electric field where electrostatic forces dominate over gravitational and capillary forces. The nonlinear integrodifferential equations for the interface motion are derived under the assumption of small interfacial slopes. It is shown in the framework of these equations that, in the generic case, the instability development leads to the formation of root singularities at the interface in a finite time. The interfacial curvature becomes infinite at singular points, while the slope angles remain relatively small. The curvature is negative in the vicinity of singularities if the ratio of the permittivities of the fluids exceeds the inverse ratio of their densities, and it is positive in the opposite case (we consider that the lower fluid is heavier than the upper one). In the intermediate case, the interface evolution equations describe the formation and sharpening of dimples at the interface. The results obtained are applicable for the description of the instability of the interface between two magnetic fluids in a vertical magnetic field.

  5. 3D Higher Order Modeling in the BEM/FEM Hybrid Formulation

    NASA Technical Reports Server (NTRS)

    Fink, P. W.; Wilton, D. R.

    2000-01-01

    Higher order divergence- and curl-conforming bases have been shown to provide significant benefits, in both convergence rate and accuracy, in the 2D hybrid finite element/boundary element formulation (P. Fink and D. Wilton, National Radio Science Meeting, Boulder, CO, Jan. 2000). A critical issue in achieving the potential for accuracy of the approach is the accurate evaluation of all matrix elements. These involve products of high order polynomials and, in some instances, singular Green's functions. In the 2D formulation, the use of a generalized Gaussian quadrature method was found to greatly facilitate the computation and to improve the accuracy of the boundary integral equation self-terms. In this paper, a 3D, hybrid electric field formulation employing higher order bases and higher order elements is presented. The improvements in convergence rate and accuracy, compared to those resulting from lower order modeling, are established. Techniques developed to facilitate the computation of the boundary integral self-terms are also shown to improve the accuracy of these terms. Finally, simple preconditioning techniques are used in conjunction with iterative solution procedures to solve the resulting linear system efficiently. In order to handle the boundary integral singularities in the 3D formulation, the parent element- either a triangle or rectangle-is subdivided into a set of sub-triangles with a common vertex at the singularity. The contribution to the integral from each of the sub-triangles is computed using the Duffy transformation to remove the singularity. This method is shown to greatly facilitate t'pe self-term computation when the bases are of higher order. In addition, the sub-triangles can be further divided to achieve near arbitrary accuracy in the self-term computation. An efficient method for subdividing the parent element is presented. The accuracy obtained using higher order bases is compared to that obtained using lower order bases when the number of unknowns is approximately equal. Also, convergence rates obtained using higher order bases are compared to those obtained with lower order bases for selected sample

  6. A new approach to the effect of sound on vortex dynamics

    NASA Technical Reports Server (NTRS)

    Lund, Fernando; Zabusky, Norman J.

    1987-01-01

    Analytical results are presented on the effect of acoustic radiation on three-dimensional vortex motions in a homogeneous, slightly compressible, inviscid fluid. The flow is considered as linear and irrotational everywhere except inside a very thin cylindrical core region around the vortex filament. In the outside region, a velocity potential is introduced that must be multivalued, and it is shown how to compute this scalar potential if the motion of the vortex filament is prescribed. To find the motion of this singularity in an external potential flow, a variational principle involving a volume integral that must exclude the singular region is considered. A functional of the external potential and vortex filament position is obtained whose extrema give equations to determine the sought-after evolution. Thus, a generalization of the Biot-Savart law to flows with constant sound speed at low Mach number is obtained.

  7. Nonlinear Interaction of Detuned Instability Waves in Boundary-Layer Transition: Amplitude Equations

    NASA Technical Reports Server (NTRS)

    Lee, Sang Soo

    1998-01-01

    The non-equilibrium critical-layer analysis of a system of frequency-detuned resonant-triads is presented. In this part of the analysis, the system of partial differential critical-layer equations derived in Part I is solved analytically to yield the amplitude equations which are analyzed using a combination of asymptotic and numerical methods. Numerical solutions of the inviscid non-equilibrium oblique-mode amplitude equations show that the frequency-detuned self-interaction enhances the growth of the lower-frequency oblique modes more than the higher-frequency ones. All amplitudes become singular at the same finite downstream position. The frequency detuning delays the occurrence of the singularity. The spanwise-periodic mean-flow distortion and low-frequency nonlinear modes are generated by the critical-layer interaction between frequency-detuned oblique modes. The nonlinear mean flow and higher harmonics as well as the primary instabilities become as large as the base mean flow in the inviscid wall layer in the downstream region where the distance from the singularity is of the order of the wavelength scale.

  8. Optical soliton solutions for the higher-order dispersive cubic-quintic nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa; Baleanu, Dumitru

    2017-12-01

    In this paper, we analyze new optical soliton solutions to the higher-order dispersive cubic-quintic nonlinear Schrödinger equation (NLSE) using three integration schemes. The schemes used in this paper are modified tanh-coth (MTC), extended Jacobi elliptic function expansion (EJEF), and two variable (G‧ / G , 1 / G) -expansion methods. We obtain new solutions that to the best of our knowledge do not exist previously. The obtained solutions includes bright, dark, combined bright-dark, singular as well as periodic waves solitons. The obtained solutions may be used to explain and understand the physical nature of the wave spreads in the most dispersive optical medium. Some interesting figures for the physical interpretation of the obtained solutions are also presented.

  9. Exact solution of two collinear cracks normal to the boundaries of a 1D layered hexagonal piezoelectric quasicrystal

    NASA Astrophysics Data System (ADS)

    Zhou, Y.-B.; Li, X.-F.

    2018-07-01

    The electroelastic problem related to two collinear cracks of equal length and normal to the boundaries of a one-dimensional hexagonal piezoelectric quasicrystal layer is analysed. By using the finite Fourier transform, a mixed boundary value problem is solved when antiplane mechanical loading and inplane electric loading are applied. The problem is reduce to triple series equations, which are then transformed to a singular integral equation. For uniform remote loading, an exact solution is obtained in closed form, and explicit expressions for the electroelastic field are determined. The intensity factors of the electroelastic field and the energy release rate at the inner and outer crack tips are given and presented graphically.

  10. Future singularities and teleparallelism in loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamba, Kazuharu; Haro, Jaume de; Odintsov, Sergei D., E-mail: bamba@kmi.nagoya-u.ac.jp, E-mail: jaime.haro@upc.edu, E-mail: odintsov@ieec.uab.es

    2013-02-01

    We demonstrate how holonomy corrections in loop quantum cosmology (LQC) prevent the Big Rip singularity by introducing a quadratic modification in terms of the energy density ρ in the Friedmann equation in the Friedmann-Lemaître-Robertson-Walker (FLRW) space-time in a consistent and useful way. In addition, we investigate whether other kind of singularities like Type II,III and IV singularities survive or are avoided in LQC when the universe is filled by a barotropic fluid with the state equation P = −ρ−f(ρ), where P is the pressure and f(ρ) a function of ρ. It is shown that the Little Rip cosmology does notmore » happen in LQC. Nevertheless, the occurrence of the Pseudo-Rip cosmology, in which the phantom universe approaches the de Sitter one asymptotically, is established, and the corresponding example is presented. It is interesting that the disintegration of bound structures in the Pseudo-Rip cosmology in LQC always takes more time than that in Einstein cosmology. Our investigation on future singularities is generalized to that in modified teleparallel gravity, where LQC and Brane Cosmology in the Randall-Sundrum scenario are the best examples. It is remarkable that F(T) gravity may lead to all the kinds of future singularities including Little Rip.« less

  11. Loss of regularity in the {K(m, n)} equations

    NASA Astrophysics Data System (ADS)

    Zilburg, Alon; Rosenau, Philip

    2018-06-01

    Using a priori estimates we prove that initially nonnegative, smooth and compactly supported solutions of the equations must lose their smoothness within a finite time. Formation of a singularity is a prerequisite for the subsequent emergence of compactons. Numerical studies are presented that demonstrate two manifestations of the emerging singularity: either propagation of the right front downstream or the formation of an oscillatory tail upstream. Formation of one type of motion does not preclude the possible formation of the other at a later time.

  12. Non-singular spacetimes with a negative cosmological constant: IV. Stationary black hole solutions with matter fields

    NASA Astrophysics Data System (ADS)

    Chruściel, Piotr T.; Delay, Erwann; Klinger, Paul

    2018-02-01

    We use an elliptic system of equations with complex coefficients for a set of complex-valued tensor fields as a tool to construct infinite-dimensional families of non-singular stationary black holes, real-valued Lorentzian solutions of the Einstein–Maxwell-dilaton-scalar fields-Yang–Mills–Higgs–Chern–Simons-f(R) equations with a negative cosmological constant. The families include an infinite-dimensional family of solutions with the usual AdS conformal structure at conformal infinity.

  13. Closed solutions of singular equations of thermoelasticity of compositions of shells of revolution smoothly connected with each other

    NASA Astrophysics Data System (ADS)

    Belostochny, Grigory; Myltcina, Olga

    2018-05-01

    The paper deals with the main positions of strict continuum model of compositions of shells of revolution smoothly connected with each other. Solutions of singular equations of the membrane conduct thermoelasticity for different species of compositions obtained in a closed form. The ability to eliminate discontinuities of the first kind of one of the tangential force on the lines of the distortion has been proved by using the additional local force impact or temperature.

  14. Singular growth shapes in turbulent field theories

    NASA Astrophysics Data System (ADS)

    Conrado, Claudine V.; Bohr, Tomas

    1994-05-01

    In this work we study deterministic, turbulent partial differential equations (the Kuramoto-Sivashinsky equation and generalizations) with initial conditions which are nonzero only in a small region. We demonstrate that the asymptotic state has a well-defined growth shape, which can be determined by the combination of nonlinear growth velocities, and front propagation governed by the linear instabilities. We show that the growth shapes are, in general, singular and that a new type of instability occurs when the growth shape becomes discontinuous.

  15. Classification of singularities in the problem of motion of the Kovalevskaya top in a double force field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryabov, Pavel E; Kharlamov, Mikhail P

    2012-02-28

    The problem of motion of the Kovalevskaya top in a double force field is investigated (the integrable case of A.G. Reyman and M.A. Semenov-Tian-Shansky without a gyrostatic momentum). It is a completely integrable Hamiltonian system with three degrees of freedom not reducible to a family of systems with two degrees of freedom. The critical set of the integral map is studied. The critical subsystems and bifurcation diagrams are described. The classification of all nondegenerate critical points is given. The set of these points consists of equilibria (nondegenerate singularities of rank 0), of singular periodic motions (nondegenerate singularities of rank 1),more » and also of critical two-frequency motions (nondegenerate singularities of rank 2). Bibliography: 32 titles.« less

  16. Exact solution for an optimal impermeable parachute problem

    NASA Astrophysics Data System (ADS)

    Lupu, Mircea; Scheiber, Ernest

    2002-10-01

    In the paper there are solved direct and inverse boundary problems and analytical solutions are obtained for optimization problems in the case of some nonlinear integral operators. It is modeled the plane potential flow of an inviscid, incompressible and nonlimited fluid jet, witch encounters a symmetrical, curvilinear obstacle--the deflector of maximal drag. There are derived integral singular equations, for direct and inverse problems and the movement in the auxiliary canonical half-plane is obtained. Next, the optimization problem is solved in an analytical manner. The design of the optimal airfoil is performed and finally, numerical computations concerning the drag coefficient and other geometrical and aerodynamical parameters are carried out. This model corresponds to the Helmholtz impermeable parachute problem.

  17. Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field.

    PubMed

    Carmelo, J M P; Sacramento, P D; Machado, J D P; Campbell, D K

    2015-10-14

    We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the 'pseudofermion dynamical theory' (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents ζ(τ)(k) controlling the singularities for both the longitudinal (τ = l) and transverse (τ = t) dynamical structure factors for the whole momentum range k ∈ ]0,π[, in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.

  18. Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Sacramento, P. D.; Machado, J. D. P.; Campbell, D. K.

    2015-10-01

    We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents {{\\zeta}τ}(k) controlling the singularities for both the longitudinal ≤ft(τ =l\\right) and transverse ≤ft(τ =t\\right) dynamical structure factors for the whole momentum range k\\in ]0,π[ , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.

  19. Higher Order Bases in a 2D Hybrid BEM/FEM Formulation

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.; Wilton, Donald R.

    2002-01-01

    The advantages of using higher order, interpolatory basis functions are examined in the analysis of transverse electric (TE) plane wave scattering by homogeneous, dielectric cylinders. A boundary-element/finite-element (BEM/FEM) hybrid formulation is employed in which the interior dielectric region is modeled with the vector Helmholtz equation, and a radiation boundary condition is supplied by an Electric Field Integral Equation (EFIE). An efficient method of handling the singular self-term arising in the EFIE is presented. The iterative solution of the partially dense system of equations is obtained using the Quasi-Minimal Residual (QMR) algorithm with an Incomplete LU Threshold (ILUT) preconditioner. Numerical results are shown for the case of an incident wave impinging upon a square dielectric cylinder. The convergence of the solution is shown versus the number of unknowns as a function of the completeness order of the basis functions.

  20. A penny shaped crack in a filament-reinforced matrix. 2: The crack problem

    NASA Technical Reports Server (NTRS)

    Pacella, A. H.; Erdogan, F.

    1973-01-01

    The elastostatic interaction problem between a penny-shaped crack and a slender inclusion or filament in an elastic matrix was formulated. For a single filament as well as multiple identical filaments located symmetrically around the crack the problem is shown to reduce to a singular integral equation. The solution of the problem is obtained for various geometries and filament-to-matrix stiffness ratios, and the results relating to the angular variation of the stress intensity factor and the maximum filament stress are presented.

  1. Stress state of a piecewise uniform layered space with doubly periodic internal cracks

    NASA Astrophysics Data System (ADS)

    Hakobyan, V. N.; Dashtoyan, L. L.

    2018-04-01

    The present paper deals with the stress state of a piecewise homogeneous plane formed by alternation junction of two distinct strips of equal height manufactured of different materials. There is a doubly periodic system of cracks on the plane. The governing system of singular integral equations of the first kind for the density of the crack dislocation is derived. The solution of the problem in the case where only one of the repeated strips contains one doubly-periodic crack is obtained by the method of mechanical quadratures.

  2. Boundary-element modelling of dynamics in external poroviscoelastic problems

    NASA Astrophysics Data System (ADS)

    Igumnov, L. A.; Litvinchuk, S. Yu; Ipatov, A. A.; Petrov, A. N.

    2018-04-01

    A problem of a spherical cavity in porous media is considered. Porous media are assumed to be isotropic poroelastic or isotropic poroviscoelastic. The poroviscoelastic formulation is treated as a combination of Biot’s theory of poroelasticity and elastic-viscoelastic correspondence principle. Such viscoelastic models as Kelvin–Voigt, Standard linear solid, and a model with weakly singular kernel are considered. Boundary field study is employed with the help of the boundary element method. The direct approach is applied. The numerical scheme is based on the collocation method, regularized boundary integral equation, and Radau stepped scheme.

  3. Asymptotics and numerics of a family of two-dimensional generalized surface quasi-geostrophic equations

    NASA Astrophysics Data System (ADS)

    Ohkitani, Koji

    2012-09-01

    We study the generalised 2D surface quasi-geostrophic (SQG) equation, where the active scalar is given by a fractional power α of Laplacian applied to the stream function. This includes the 2D SQG and Euler equations as special cases. Using Poincaré's successive approximation to higher α-derivatives of the active scalar, we derive a variational equation for describing perturbations in the generalized SQG equation. In particular, in the limit α → 0, an asymptotic equation is derived on a stretched time variable τ = αt, which unifies equations in the family near α = 0. The successive approximation is also discussed at the other extreme of the 2D Euler limit α = 2-0. Numerical experiments are presented for both limits. We consider whether the solution behaves in a more singular fashion, with more effective nonlinearity, when α is increased. Two competing effects are identified: the regularizing effect of a fractional inverse Laplacian (control by conservation) and cancellation by symmetry (nonlinearity depletion). Near α = 0 (complete depletion), the solution behaves in a more singular fashion as α increases. Near α = 2 (maximal control by conservation), the solution behave in a more singular fashion, as α decreases, suggesting that there may be some α in [0, 2] at which the solution behaves in the most singular manner. We also present some numerical results of the family for α = 0.5, 1, and 1.5. On the original time t, the H1 norm of θ generally grows more rapidly with increasing α. However, on the new time τ, this order is reversed. On the other hand, contour patterns for different α appear to be similar at fixed τ, even though the norms are markedly different in magnitude. Finally, point-vortex systems for the generalized SQG family are discussed to shed light on the above problems of time scale.

  4. Introducing time-dependent molecular fields: a new derivation of the wave equations

    NASA Astrophysics Data System (ADS)

    Baer, Michael

    2018-02-01

    This article is part of a series of articles trying to establish the concept molecular field. The theory that induced us to introduce this novel concept is based on the Born-Huang expansion as applied to the Schroedinger equation that describes the interaction of a molecular system with an external electric field. Assuming the molecular system is made up of two coupled adiabatic states the theory leads from a single spatial curl equation, two space-time curl equations and one single space-time divergent equation to a pair of decoupled wave equations usually encountered within the theory of fields. In the present study, just like in the previous study [see Baer et al., Mol. Phys. 114, 227 (2016)] the wave equations are derived for an electric field having two features: (a) its intensity is high enough; (b) its duration is short enough. Although not all the findings are new the derivation, in the present case, is new, straightforward, fluent and much friendlier as compared to the previous one and therefore should be presented again. For this situation the study reveals that the just described interaction creates two fields that coexist within a molecule: one is a novel vectorial field formed via the interaction of the electric field with the Born-Huang non-adiabatic coupling terms (NACTs) and the other is an ordinary, scalar, electric field essentially identical to the original electric field. Section 4 devoted to the visualization of the outcomes via two intersecting Jahn-Teller cones which contain NACTs that become singular at the intersection point of these cones. Finally, the fact that eventually we are facing a kind of a cosmic situation may bring us to speculate that singular NACTs are a result of cosmic phenomena. Thus, if indeed this singularity is somehow connected to reality then, like other singularities in physics, it is formed at (or immediately after) the Big Bang and consequently, guarantees the formation of molecules.

  5. Cosmological solutions and finite time singularities in Finslerian geometry

    NASA Astrophysics Data System (ADS)

    Paul, Nupur; de, S. S.; Rahaman, Farook

    2018-03-01

    We consider a very general scenario of our universe where its geometry is characterized by the Finslerian structure on the underlying spacetime manifold, a generalization of the Riemannian geometry. Now considering a general energy-momentum tensor for matter sector, we derive the gravitational field equations in such spacetime. Further, to depict the cosmological dynamics in such spacetime proposing an interesting equation of state identified by a sole parameter γ which for isotropic limit is simply the barotropic equation of state p = (γ ‑ 1)ρ (γ ∈ ℝ being the barotropic index), we solve the background dynamics. The dynamics offers several possibilities depending on this sole parameter as follows: (i) only an exponential expansion, or (ii) a finite time past singularity (big bang) with late accelerating phase, or (iii) a nonsingular universe exhibiting an accelerating scenario at late time which finally predicts a big rip type singularity. We also discuss several energy conditions and the possibility of cosmic bounce. Finally, we establish the first law of thermodynamics in such spacetime.

  6. Treatment of charge singularities in implicit solvent models.

    PubMed

    Geng, Weihua; Yu, Sining; Wei, Guowei

    2007-09-21

    This paper presents a novel method for solving the Poisson-Boltzmann (PB) equation based on a rigorous treatment of geometric singularities of the dielectric interface and a Green's function formulation of charge singularities. Geometric singularities, such as cusps and self-intersecting surfaces, in the dielectric interfaces are bottleneck in developing highly accurate PB solvers. Based on an advanced mathematical technique, the matched interface and boundary (MIB) method, we have recently developed a PB solver by rigorously enforcing the flux continuity conditions at the solvent-molecule interface where geometric singularities may occur. The resulting PB solver, denoted as MIBPB-II, is able to deliver second order accuracy for the molecular surfaces of proteins. However, when the mesh size approaches half of the van der Waals radius, the MIBPB-II cannot maintain its accuracy because the grid points that carry the interface information overlap with those that carry distributed singular charges. In the present Green's function formalism, the charge singularities are transformed into interface flux jump conditions, which are treated on an equal footing as the geometric singularities in our MIB framework. The resulting method, denoted as MIBPB-III, is able to provide highly accurate electrostatic potentials at a mesh as coarse as 1.2 A for proteins. Consequently, at a given level of accuracy, the MIBPB-III is about three times faster than the APBS, a recent multigrid PB solver. The MIBPB-III has been extensively validated by using analytically solvable problems, molecular surfaces of polyatomic systems, and 24 proteins. It provides reliable benchmark numerical solutions for the PB equation.

  7. Treatment of charge singularities in implicit solvent models

    NASA Astrophysics Data System (ADS)

    Geng, Weihua; Yu, Sining; Wei, Guowei

    2007-09-01

    This paper presents a novel method for solving the Poisson-Boltzmann (PB) equation based on a rigorous treatment of geometric singularities of the dielectric interface and a Green's function formulation of charge singularities. Geometric singularities, such as cusps and self-intersecting surfaces, in the dielectric interfaces are bottleneck in developing highly accurate PB solvers. Based on an advanced mathematical technique, the matched interface and boundary (MIB) method, we have recently developed a PB solver by rigorously enforcing the flux continuity conditions at the solvent-molecule interface where geometric singularities may occur. The resulting PB solver, denoted as MIBPB-II, is able to deliver second order accuracy for the molecular surfaces of proteins. However, when the mesh size approaches half of the van der Waals radius, the MIBPB-II cannot maintain its accuracy because the grid points that carry the interface information overlap with those that carry distributed singular charges. In the present Green's function formalism, the charge singularities are transformed into interface flux jump conditions, which are treated on an equal footing as the geometric singularities in our MIB framework. The resulting method, denoted as MIBPB-III, is able to provide highly accurate electrostatic potentials at a mesh as coarse as 1.2Å for proteins. Consequently, at a given level of accuracy, the MIBPB-III is about three times faster than the APBS, a recent multigrid PB solver. The MIBPB-III has been extensively validated by using analytically solvable problems, molecular surfaces of polyatomic systems, and 24 proteins. It provides reliable benchmark numerical solutions for the PB equation.

  8. Computation of solar perturbations with Poisson series

    NASA Technical Reports Server (NTRS)

    Broucke, R.

    1974-01-01

    Description of a project for computing first-order perturbations of natural or artificial satellites by integrating the equations of motion on a computer with automatic Poisson series expansions. A basic feature of the method of solution is that the classical variation-of-parameters formulation is used rather than rectangular coordinates. However, the variation-of-parameters formulation uses the three rectangular components of the disturbing force rather than the classical disturbing function, so that there is no problem in expanding the disturbing function in series. Another characteristic of the variation-of-parameters formulation employed is that six rather unusual variables are used in order to avoid singularities at the zero eccentricity and zero (or 90 deg) inclination. The integration process starts by assuming that all the orbit elements present on the right-hand sides of the equations of motion are constants. These right-hand sides are then simple Poisson series which can be obtained with the use of the Bessel expansions of the two-body problem in conjunction with certain interation methods. These Poisson series can then be integrated term by term, and a first-order solution is obtained.

  9. The Capra Research Program for Modelling Extreme Mass Ratio Inspirals

    NASA Astrophysics Data System (ADS)

    Thornburg, Jonathan

    2011-02-01

    Suppose a small compact object (black hole or neutron star) of mass m orbits a large black hole of mass M ≫ m. This system emits gravitational waves (GWs) that have a radiation-reaction effect on the particle's motion. EMRIs (extreme-mass-ratio inspirals) of this type will be important GW sources for LISA. To fully analyze these GWs, and to detect weaker sources also present in the LISA data stream, will require highly accurate EMRI GW templates. In this article I outline the ``Capra'' research program to try to model EMRIs and calculate their GWs ab initio, assuming only that m ≪ M and that the Einstein equations hold. Because m ≪ M the timescale for the particle's orbit to shrink is too long for a practical direct numerical integration of the Einstein equations, and because this orbit may be deep in the large black hole's strong-field region, a post-Newtonian approximation would be inaccurate. Instead, we treat the EMRI spacetime as a perturbation of the large black hole's ``background'' (Schwarzschild or Kerr) spacetime and use the methods of black-hole perturbation theory, expanding in the small parameter m/M. The particle's motion can be described either as the result of a radiation-reaction ``self-force'' acting in the background spacetime or as geodesic motion in a perturbed spacetime. Several different lines of reasoning lead to the (same) basic O(m/M) ``MiSaTaQuWa'' equations of motion for the particle. In particular, the MiSaTaQuWa equations can be derived by modelling the particle as either a point particle or a small Schwarzschild black hole. The latter is conceptually elegant, but the former is technically much simpler and (surprisingly for a nonlinear field theory such as general relativity) still yields correct results. Modelling the small body as a point particle, its own field is singular along the particle worldline, so it's difficult to formulate a meaningful ``perturbation'' theory or equations of motion there. Detweiler and Whiting found an elegant decomposition of the particle's metric perturbation into a singular part which is spherically symmetric at the particle and a regular part which is smooth (and non-symmetric) at the particle. If we assume that the singular part (being spherically symmetric at the particle) exerts no force on the particle, then the MiSaTaQuWa equations follow immediately. The MiSaTaQuWa equations involve gradients of a (curved-spacetime) Green function, integrated over the particle's entire past worldline. These expressions aren't amenable to direct use in practical computations. By carefully analysing the singularity structure of each term in a spherical-harmonic expansion of the particle's field, Barack and Ori found that the self-force can be written as an infinite sum of modes, each of which can be calculated by (numerically) solving a set of wave equations in 1{+}1 dimensions, summing the gradients of the resulting fields at the particle position, and then subtracting certain analytically-calculable ``regularization parameters''. This ``mode-sum'' regularization scheme has been the basis for much further research including explicit numerical calculations of the self-force in a variety of situations, initially for Schwarzschild spacetime and more recently extending to Kerr spacetime. Recently Barack and Golbourn developed an alternative ``m-mode'' regularization scheme. This regularizes the physical metric perturbation by subtracting from it a suitable ``puncture function'' approximation to the Detweiler-Whiting singular field. The residual is then decomposed into a Fourier sum over azimuthal (e^{imϕ}) modes, and the resulting equations solved numerically in 2{+}1 dimensions. Vega and Detweiler have developed a related scheme that uses the same puncture-function regularization but then solves the regularized perturbation equation numerically in 3{+}1 dimensions, avoiding a mode-sum decomposition entirely. A number of research projects are now using these puncture-function regularization schemes, particularly for calculations in Kerr spacetime. Most Capra research to date has used 1st order perturbation theory, with the particle moving on a fixed (usually geodesic) worldline. Much current research is devoted to generalizing this to allow the particle worldline to be perturbed by the self-force, and to obtain approximation schemes which remain valid over long (EMRI-inspiral) timescales. To obtain the very high accuracies needed to fully exploit LISA's observations of the strongest EMRIs, 2nd order perturbation theory will probably also be needed; both this and long-time approximations remain frontiers for future Capra research.

  10. Collapse of a self-similar cylindrical scalar field with non-minimal coupling II: strong cosmic censorship

    NASA Astrophysics Data System (ADS)

    Condron, Eoin; Nolan, Brien C.

    2014-08-01

    We investigate self-similar scalar field solutions to the Einstein equations in whole cylinder symmetry. Imposing self-similarity on the spacetime gives rise to a set of single variable functions describing the metric. Furthermore, it is shown that the scalar field is dependent on a single unknown function of the same variable and that the scalar field potential has exponential form. The Einstein equations then take the form of a set of ODEs. Self-similarity also gives rise to a singularity at the scaling origin. We extend the work of Condron and Nolan (2014 Class. Quantum Grav. 31 015015), which determined the global structure of all solutions with a regular axis in the causal past of the singularity. We identified a class of solutions that evolves through the past null cone of the singularity. We give the global structure of these solutions and show that the singularity is censored in all cases.

  11. Absence of splash singularities for surface quasi-geostrophic sharp fronts and the Muskat problem.

    PubMed

    Gancedo, Francisco; Strain, Robert M

    2014-01-14

    In this paper, for both the sharp front surface quasi-geostrophic equation and the Muskat problem, we rule out the "splash singularity" blow-up scenario; in other words, we prove that the contours evolving from either of these systems cannot intersect at a single point while the free boundary remains smooth. Splash singularities have been shown to hold for the free boundary incompressible Euler equation in the form of the water waves contour evolution problem. Our result confirms the numerical simulations in earlier work, in which it was shown that the curvature blows up because the contours collapse at a point. Here, we prove that maintaining control of the curvature will remove the possibility of pointwise interphase collapse. Another conclusion that we provide is a better understanding of earlier work in which squirt singularities are ruled out; in this case, a positive volume of fluid between the contours cannot be ejected in finite time.

  12. Physics at the surface of a star in Eddington-inspired Born-Infeld Gravity

    NASA Astrophysics Data System (ADS)

    Kim, Hyeong-Chan

    2014-03-01

    We study phenomena happening at the surface of a star in Eddington-inspired Born-Infeld (EiBI) gravity. The star is made of particles, which are effectively described by a polytropic fluid. The EiBI theory was known to have a pathology that singularities happen at a star surface. We suggest that the gravitational backreaction on the particles cures the problem. Strong tidal forces near the (surface) singularity modify the effective equation of state of the particles or make the surface be unstable depending on its matter contents. The geodesic deviation equations take after Hooke's law, where its frequency squared is proportional to the scalar curvature at the surface. For a positive curvature, a particle collides with a probing wall more often and increases the pressure. With the increased pressure, the surface is no longer singular. For a negative curvature, the matters around the surface experience repulsions with infinite accelerations. Therefore, the EiBI gravity is saved from the pathology of a surface singularity.

  13. Towards the quantization of Eddington-inspired-Born-Infeld theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhmadi-López, Mariam; Chen, Che-Yu, E-mail: mbl@ubi.pt, E-mail: b97202056@gmail.com

    2016-11-01

    The quantum effects close to the classical big rip singularity within the Eddington-inspired-Born-Infeld theory (EiBI) are investigated through quantum geometrodynamics. It is the first time that this approach is applied to a modified theory constructed upon Palatini formalism. The Wheeler-DeWitt (WDW) equation is obtained and solved based on an alternative action proposed in ref. [1], under two different factor ordering choices. This action is dynamically equivalent to the original EiBI action while it is free of square root of the spacetime curvature. We consider a homogeneous, isotropic and spatially flat universe, which is assumed to be dominated by a phantommore » perfect fluid whose equation of state is a constant. We obtain exact solutions of the WDW equation based on some specific conditions. In more general cases, we propose a qualitative argument with the help of a Wentzel-Kramers-Brillouin (WKB) approximation to get further solutions. Besides, we also construct an effective WDW equation by simply promoting the classical Friedmann equations. We find that for all the approaches considered, the DeWitt condition hinting singularity avoidance is satisfied. Therefore the big rip singularity is expected to be avoided through the quantum approach within the EiBI theory.« less

  14. The quantum realm of the ''Little Sibling'' of the Big Rip singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albarran, Imanol; Bouhmadi-López, Mariam; Cabral, Francisco

    We analyse the quantum behaviour of the ''Little Sibling'' of the Big Rip singularity (LSBR) [1]. The quantisation is carried within the geometrodynamical approach given by the Wheeler-DeWitt (WDW) equation. The classical model is based on a Friedmann-Lemaître-Robertson-Walker Universe filled by a perfect fluid that can be mapped to a scalar field with phantom character. We analyse the WDW equation in two setups. In the first step, we consider the scale factor as the single degree of freedom, which from a classical perspective parametrises both the geometry and the matter content given by the perfect fluid. We then solve themore » WDW equation within a WKB approximation, for two factor ordering choices. On the second approach, we consider the WDW equation with two degrees of freedom: the scale factor and a scalar field. We solve the WDW equation, with the Laplace-Beltrami factor-ordering, using a Born-Oppenheimer approximation. In both approaches, we impose the DeWitt (DW) condition as a potential criterion for singularity avoidance. We conclude that in all the cases analysed the DW condition can be verified, which might be an indication that the LSBR can be avoided or smoothed in the quantum approach.« less

  15. Application of singular value decomposition to structural dynamics systems with constraints

    NASA Technical Reports Server (NTRS)

    Juang, J.-N.; Pinson, L. D.

    1985-01-01

    Singular value decomposition is used to construct a coordinate transformation for a linear dynamic system subject to linear, homogeneous constraint equations. The method is compared with two commonly used methods, namely classical Gaussian elimination and Walton-Steeves approach. Although the classical method requires fewer numerical operations, the singular value decomposition method is more accurate and convenient in eliminating the dependent coordinates. Numerical examples are presented to demonstrate the application of the method.

  16. Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oshemkov, Andrey A

    2010-10-06

    A complete invariant is constructed that is a solution of the problem of semilocal classification of saddle singularities of integrable Hamiltonian systems. Namely, a certain combinatorial object (an f{sub n}-graph) is associated with every nondegenerate saddle singularity of rank zero; as a result, the problem of semilocal classification of saddle singularities of rank zero is reduced to the problem of enumeration of the f{sub n}-graphs. This enables us to describe a simple algorithm for obtaining the lists of saddle singularities of rank zero for a given number of degrees of freedom and a given complexity. Bibliography: 24 titles.

  17. Scattering of a vortex pair by a single quantum vortex in a Bose–Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, L. A., E-mail: smirnov-lev@allp.sci-nnov.ru; Smirnov, A. I., E-mail: smirnov@appl.sci-nnov.ru; Mironov, V. A.

    We analyze the scattering of vortex pairs (the particular case of 2D dark solitons) by a single quantum vortex in a Bose–Einstein condensate with repulsive interaction between atoms. For this purpose, an asymptotic theory describing the dynamics of such 2D soliton-like formations in an arbitrary smoothly nonuniform flow of a ultracold Bose gas is developed. Disregarding the radiation loss associated with acoustic wave emission, we demonstrate that vortex–antivortex pairs can be put in correspondence with quasiparticles, and their behavior can be described by canonical Hamilton equations. For these equations, we determine the integrals of motion that can be used tomore » classify various regimes of scattering of vortex pairs by a single quantum vortex. Theoretical constructions are confirmed by numerical calculations performed directly in terms of the Gross–Pitaevskii equation. We propose a method for estimating the radiation loss in a collision of a soliton-like formation with a phase singularity. It is shown by direct numerical simulation that under certain conditions, the interaction of vortex pairs with a core of a single quantum vortex is accompanied by quite intense acoustic wave emission; as a result, the conditions for applicability of the asymptotic theory developed here are violated. In particular, it is visually demonstrated by a specific example how radiation losses lead to a transformation of a vortex–antivortex pair into a vortex-free 2D dark soliton (i.e., to the annihilation of phase singularities).« less

  18. Discrete homotopy analysis for optimal trading execution with nonlinear transient market impact

    NASA Astrophysics Data System (ADS)

    Curato, Gianbiagio; Gatheral, Jim; Lillo, Fabrizio

    2016-10-01

    Optimal execution in financial markets is the problem of how to trade a large quantity of shares incrementally in time in order to minimize the expected cost. In this paper, we study the problem of the optimal execution in the presence of nonlinear transient market impact. Mathematically such problem is equivalent to solve a strongly nonlinear integral equation, which in our model is a weakly singular Urysohn equation of the first kind. We propose an approach based on Homotopy Analysis Method (HAM), whereby a well behaved initial trading strategy is continuously deformed to lower the expected execution cost. Specifically, we propose a discrete version of the HAM, i.e. the DHAM approach, in order to use the method when the integrals to compute have no closed form solution. We find that the optimal solution is front loaded for concave instantaneous impact even when the investor is risk neutral. More important we find that the expected cost of the DHAM strategy is significantly smaller than the cost of conventional strategies.

  19. Root finding in the complex plane for seismo-acoustic propagation scenarios with Green's function solutions.

    PubMed

    McCollom, Brittany A; Collis, Jon M

    2014-09-01

    A normal mode solution to the ocean acoustic problem of the Pekeris waveguide with an elastic bottom using a Green's function formulation for a compressional wave point source is considered. Analytic solutions to these types of waveguide propagation problems are strongly dependent on the eigenvalues of the problem; these eigenvalues represent horizontal wavenumbers, corresponding to propagating modes of energy. The eigenvalues arise as singularities in the inverse Hankel transform integral and are specified by roots to a characteristic equation. These roots manifest themselves as poles in the inverse transform integral and can be both subtle and difficult to determine. Following methods previously developed [S. Ivansson et al., J. Sound Vib. 161 (1993)], a root finding routine has been implemented using the argument principle. Using the roots to the characteristic equation in the Green's function formulation, full-field solutions are calculated for scenarios where an acoustic source lies in either the water column or elastic half space. Solutions are benchmarked against laboratory data and existing numerical solutions.

  20. Bäcklund transformations for the Boussinesq equation and merging solitons

    NASA Astrophysics Data System (ADS)

    Rasin, Alexander G.; Schiff, Jeremy

    2017-08-01

    The Bäcklund transformation (BT) for the ‘good’ Boussinesq equation and its superposition principles are presented and applied. Unlike other standard integrable equations, the Boussinesq equation does not have a strictly algebraic superposition principle for 2 BTs, but it does for 3. We present this and discuss associated lattice systems. Applying the BT to the trivial solution generates both standard solitons and what we call ‘merging solitons’—solutions in which two solitary waves (with related speeds) merge into a single one. We use the superposition principles to generate a variety of interesting solutions, including superpositions of a merging soliton with 1 or 2 regular solitons, and solutions that develop a singularity in finite time which then disappears at a later finite time. We prove a Wronskian formula for the solutions obtained by applying a general sequence of BTs on the trivial solution. Finally, we obtain the standard conserved quantities of the Boussinesq equation from the BT, and show how the hierarchy of local symmetries follows in a simple manner from the superposition principle for 3 BTs.

  1. A new numerical approach to solve Thomas-Fermi model of an atom using bio-inspired heuristics integrated with sequential quadratic programming.

    PubMed

    Raja, Muhammad Asif Zahoor; Zameer, Aneela; Khan, Aziz Ullah; Wazwaz, Abdul Majid

    2016-01-01

    In this study, a novel bio-inspired computing approach is developed to analyze the dynamics of nonlinear singular Thomas-Fermi equation (TFE) arising in potential and charge density models of an atom by exploiting the strength of finite difference scheme (FDS) for discretization and optimization through genetic algorithms (GAs) hybrid with sequential quadratic programming. The FDS procedures are used to transform the TFE differential equations into a system of nonlinear equations. A fitness function is constructed based on the residual error of constituent equations in the mean square sense and is formulated as the minimization problem. Optimization of parameters for the system is carried out with GAs, used as a tool for viable global search integrated with SQP algorithm for rapid refinement of the results. The design scheme is applied to solve TFE for five different scenarios by taking various step sizes and different input intervals. Comparison of the proposed results with the state of the art numerical and analytical solutions reveals that the worth of our scheme in terms of accuracy and convergence. The reliability and effectiveness of the proposed scheme are validated through consistently getting optimal values of statistical performance indices calculated for a sufficiently large number of independent runs to establish its significance.

  2. Optimal boundary regularity for a singular Monge-Ampère equation

    NASA Astrophysics Data System (ADS)

    Jian, Huaiyu; Li, You

    2018-06-01

    In this paper we study the optimal global regularity for a singular Monge-Ampère type equation which arises from a few geometric problems. We find that the global regularity does not depend on the smoothness of domain, but it does depend on the convexity of the domain. We introduce (a , η) type to describe the convexity. As a result, we show that the more convex is the domain, the better is the regularity of the solution. In particular, the regularity is the best near angular points.

  3. An Unstable Arch Model of a Solar Flare

    DTIC Science & Technology

    1976-08-10

    where the Euler-Lagrange equation becomes singular. We now expand f(r) and g(r) around the singular point r. Thus k JA + - p x, (3.20) m where x...current layer, etc.) can result only from convection. The equations we will use are ()B E 2 - VX(vXB)- _ VX(1TV XB), (4.8) E+ vX B=77j (4.9) C and curl (P...d- curl (J ( curl B) X B+pg . (4.10) Since the treatment is principally concerned with resistive instabilities whose growth times are long compared to

  4. Exact ground-state correlation functions of an atomic-molecular Bose–Einstein condensate model

    NASA Astrophysics Data System (ADS)

    Links, Jon; Shen, Yibing

    2018-05-01

    We study the ground-state properties of an atomic-molecular Bose–Einstein condensate model through an exact Bethe Ansatz solution. For a certain range of parameter choices, we prove that the ground-state Bethe roots lie on the positive real-axis. We then use a continuum limit approach to obtain a singular integral equation characterising the distribution of these Bethe roots. Solving this equation leads to an analytic expression for the ground-state energy. The form of the expression is consistent with the existence of a line of quantum phase transitions, which has been identified in earlier studies. This line demarcates a molecular phase from a mixed phase. Certain correlation functions, which characterise these phases, are then obtained through the Hellmann–Feynman theorem.

  5. Effect of Ply Orientation and Crack Location on SIFs in Finite Multilayers with Aligned Cracks

    NASA Astrophysics Data System (ADS)

    Chen, Linfeng; Pindera, Marek-Jerzy

    2008-02-01

    An exact elasticity solution is presented for arbitrarily laminated finite multilayers in a state of generalized plane deformation under horizontally pinned end constraints that are weakened by aligned cracks. Based on half-range Fourier series and the local/global stiffness matrix approach, the mixed boundary-value problem is reduced to Cauchy-type singular integral equations in the unknown displacement discontinuities. Solution to these equations is obtained using the approach developed by Erdogan and co-workers. Numerical results quantify the thus-far undocumented geometric and material effects on Mode I, II and III stress intensity factors in composite multilayers with interacting cracks under uniform vertical displacement. These effects include finite dimensions, crack location, material anisotropy due to a unidirectional fiber-reinforced layer/s orientation, and orientational grading.

  6. Elasticity solutions for a class of composite laminate problems with stress singularities

    NASA Technical Reports Server (NTRS)

    Wang, S. S.

    1983-01-01

    A study on the fundamental mechanics of fiber-reinforced composite laminates with stress singularities is presented. Based on the theory of anisotropic elasticity and Lekhnitskii's complex-variable stress potentials, a system of coupled governing partial differential equations are established. An eigenfunction expansion method is introduced to determine the orders of stress singularities in composite laminates with various geometric configurations and material systems. Complete elasticity solutions are obtained for this class of singular composite laminate mechanics problems. Homogeneous solutions in eigenfunction series and particular solutions in polynomials are presented for several cases of interest. Three examples are given to illustrate the method of approach and the basic nature of the singular laminate elasticity solutions. The first problem is the well-known laminate free-edge stress problem, which has a rather weak stress singularity. The second problem is the important composite delamination problem, which has a strong crack-tip stress singularity. The third problem is the commonly encountered bonded composite joints, which has a complex solution structure with moderate orders of stress singularities.

  7. Simple and Efficient Numerical Evaluation of Near-Hypersingular Integrals

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.; Wilton, Donald R.; Khayat, Michael A.

    2007-01-01

    Recently, significant progress has been made in the handling of singular and nearly-singular potential integrals that commonly arise in the Boundary Element Method (BEM). To facilitate object-oriented programming and handling of higher order basis functions, cancellation techniques are favored over techniques involving singularity subtraction. However, gradients of the Newton-type potentials, which produce hypersingular kernels, are also frequently required in BEM formulations. As is the case with the potentials, treatment of the near-hypersingular integrals has proven more challenging than treating the limiting case in which the observation point approaches the surface. Historically, numerical evaluation of these near-hypersingularities has often involved a two-step procedure: a singularity subtraction to reduce the order of the singularity, followed by a boundary contour integral evaluation of the extracted part. Since this evaluation necessarily links basis function, Green s function, and the integration domain (element shape), the approach ill fits object-oriented programming concepts. Thus, there is a need for cancellation-type techniques for efficient numerical evaluation of the gradient of the potential. Progress in the development of efficient cancellation-type procedures for the gradient potentials was recently presented. To the extent possible, a change of variables is chosen such that the Jacobian of the transformation cancels the singularity. However, since the gradient kernel involves singularities of different orders, we also require that the transformation leaves remaining terms that are analytic. The terms "normal" and "tangential" are used herein with reference to the source element. Also, since computational formulations often involve the numerical evaluation of both potentials and their gradients, it is highly desirable that a single integration procedure efficiently handles both.

  8. Naked shell singularities on the brane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seahra, Sanjeev S.

    By utilizing nonstandard slicings of 5-dimensional Schwarzschild and Schwarzschild-AdS manifolds based on isotropic coordinates, we generate static and spherically-symmetric braneworld spacetimes containing shell-like naked null singularities. For planar slicings, we find that the brane-matter sourcing the solution is a perfect fluid with an exotic equation of state and a pressure singularity where the brane crosses the bulk horizon. From a relativistic point of view, such a singularity is required to maintain matter infinitesimally above the surface of a black hole. From the point of view of the AdS/CFT conjecture, the singular horizon can be seen as one possible quantum correctionmore » to a classical black hole geometry. Various generalizations of planar slicings are also considered for a Ricci-flat bulk, and we find that singular horizons and exotic matter distributions are common features.« less

  9. Complexiton and solitary wave solutions of the coupled nonlinear Maccari’s system using two integration schemes

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru; Nuray, Elif

    2018-01-01

    In this paper, we consider a coupled nonlinear Maccari’s system (CNMS) which describes the motion of isolated waves localized in a small part of space. There are some integration tools that are adopted to retrieve the solitary wave solutions. They are the modified F-Expansion and the generalized projective Riccati equation methods. Topological, non-topological, complexiton, singular and trigonometric function solutions are derived. A comparison between the results in this paper and the well-known results in the literature is also given. The derived structures of the obtained solutions offer a rich platform to study the nonlinear CNMS. Numerical simulation of the obtained solutions are presented with interesting figures showing the physical meaning of the solutions.

  10. Dynamic of solitary wave solutions in some nonlinear pseudoparabolic models and Dodd-Bullough-Mikhailov equation

    NASA Astrophysics Data System (ADS)

    Ilhan, O. A.; Bulut, H.; Sulaiman, T. A.; Baskonus, H. M.

    2018-02-01

    In this study, the modified exp ( - Φ (η )) -expansion function method is used in constructing some solitary wave solutions to the Oskolkov-Benjamin-Bona-Mahony-Burgers, one-dimensional Oskolkov equations and the Dodd-Bullough-Mikhailov equation. We successfully construct some singular solitons and singular periodic waves solutions with the hyperbolic, trigonometric and exponential function structures to these three nonlinear models. Under the choice of some suitable values of the parameters involved, we plot the 2D and 3D graphics to some of the obtained solutions in this study. All the obtained solutions in this study verify their corresponding equation. We perform all the computations in this study with the help of the Wolfram Mathematica software. The obtained solutions in this study may be helpful in explaining some practical physical problems.

  11. On the Weyl curvature hypothesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoica, Ovidiu Cristinel, E-mail: holotronix@gmail.com

    2013-11-15

    The Weyl curvature hypothesis of Penrose attempts to explain the high homogeneity and isotropy, and the very low entropy of the early universe, by conjecturing the vanishing of the Weyl tensor at the Big-Bang singularity. In previous papers it has been proposed an equivalent form of Einstein’s equation, which extends it and remains valid at an important class of singularities (including in particular the Schwarzschild, FLRW, and isotropic singularities). Here it is shown that if the Big-Bang singularity is from this class, it also satisfies the Weyl curvature hypothesis. As an application, we study a very general example of cosmologicalmore » models, which generalizes the FLRW model by dropping the isotropy and homogeneity constraints. This model also generalizes isotropic singularities, and a class of singularities occurring in Bianchi cosmologies. We show that the Big-Bang singularity of this model is of the type under consideration, and satisfies therefore the Weyl curvature hypothesis. -- Highlights: •The singularities we introduce are described by finite geometric/physical objects. •Our singularities have smooth Riemann and Weyl curvatures. •We show they satisfy Penrose’s Weyl curvature hypothesis (Weyl=0 at singularities). •Examples: FLRW, isotropic singularities, an extension of Schwarzschild’s metric. •Example: a large class of singularities which may be anisotropic and inhomogeneous.« less

  12. Singularity in structural optimization

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Guptill, J. D.; Berke, L.

    1993-01-01

    The conditions under which global and local singularities may arise in structural optimization are examined. Examples of these singularities are presented, and a framework is given within which the singularities can be recognized. It is shown, in particular, that singularities can be identified through the analysis of stress-displacement relations together with compatibility conditions or the displacement-stress relations derived by the integrated force method of structural analysis. Methods of eliminating the effects of singularities are suggested and illustrated numerically.

  13. Some Theoretical Aspects of Nonzero Sum Differential Games and Applications to Combat Problems

    DTIC Science & Technology

    1971-06-01

    the Equilibrium Solution . 7 Hamilton-Jacobi-Bellman Partial Differential Equations ............. .............. 9 Influence Function Differential...Linearly .......... ............ 18 Problem Statement .......... ............ 18 Formulation of LJB Equations, Influence Function Equations and the TPBVP...19 Control Lawe . . .. ...... ........... 21 Conditions for Influence Function Continuity along Singular Surfaces

  14. General method of solving the Schroedinger equation of atoms and molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakatsuji, Hiroshi

    2005-12-15

    We propose a general method of solving the Schroedinger equation of atoms and molecules. We first construct the wave function having the exact structure, using the ICI (iterative configuration or complement interaction) method and then optimize the variables involved by the variational principle. Based on the scaled Schroedinger equation and related principles, we can avoid the singularity problem of atoms and molecules and formulate a general method of calculating the exact wave functions in an analytical expansion form. We choose initial function {psi}{sub 0} and scaling g function, and then the ICI method automatically generates the wave function that hasmore » the exact structure by using the Hamiltonian of the system. The Hamiltonian contains all the information of the system. The free ICI method provides a flexible and variationally favorable procedure of constructing the exact wave function. We explain the computational procedure of the analytical ICI method routinely performed in our laboratory. Simple examples are given using hydrogen atom for the nuclear singularity case, the Hooke's atom for the electron singularity case, and the helium atom for both cases.« less

  15. Scale-invariant streamline equations and strings of singular vorticity for perturbed anisotropic solutions of the Navier-Stokes equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libin, A., E-mail: a_libin@netvision.net.il

    2012-12-15

    A linear combination of a pair of dual anisotropic decaying Beltrami flows with spatially constant amplitudes (the Trkal solutions) with the same eigenvalue of the curl operator and of a constant velocity orthogonal vector to the Beltrami pair yields a triplet solution of the force-free Navier-Stokes equation. The amplitudes slightly variable in space (large scale perturbations) yield the emergence of a time-dependent phase between the dual Beltrami flows and of the upward velocity, which are unstable at large values of the Reynolds number. They also lead to the formation of large-scale curved prisms of streamlines with edges being the stringsmore » of singular vorticity.« less

  16. Inverse Jacobi multiplier as a link between conservative systems and Poisson structures

    NASA Astrophysics Data System (ADS)

    García, Isaac A.; Hernández-Bermejo, Benito

    2017-08-01

    Some aspects of the relationship between conservativeness of a dynamical system (namely the preservation of a finite measure) and the existence of a Poisson structure for that system are analyzed. From the local point of view, due to the flow-box theorem we restrict ourselves to neighborhoods of singularities. In this sense, we characterize Poisson structures around the typical zero-Hopf singularity in dimension 3 under the assumption of having a local analytic first integral with non-vanishing first jet by connecting with the classical Poincaré center problem. From the global point of view, we connect the property of being strictly conservative (the invariant measure must be positive) with the existence of a Poisson structure depending on the phase space dimension. Finally, weak conservativeness in dimension two is introduced by the extension of inverse Jacobi multipliers as weak solutions of its defining partial differential equation and some of its applications are developed. Examples including Lotka-Volterra systems, quadratic isochronous centers, and non-smooth oscillators are provided.

  17. On the contact interaction of two identical stringers with an elastic semi-infinite continuous or vertically cracked plate

    NASA Astrophysics Data System (ADS)

    Grigoryan, M. S.

    2018-04-01

    This paper considers two connected contact problems on the interaction of stringers with an elastic semi-infinite plate. In the first problem, an elastic half-infinite continuous plate is reinforced on its boundary by two identical stringers exposed to a tensile external force. In the second problem, in the presence of the same stringers, the plate contains a collinear system of cracks on its vertical axis. The solution of both problems is reduced to the solution of singular integral equations (SIE) that are solved by a known numerical-analytical method.

  18. Crack problems for a rectangular plate and an infinite strip

    NASA Technical Reports Server (NTRS)

    Civelek, M. B.; Erdogan, F.

    1980-01-01

    The general plane problem for an infinite strip containing multiple cracks perpendicular to its boundaries is considered. The problem is reduced to a system of singular integral equations. Two specific problems of practical interest are then studied in detail. The first problem explores the interaction effect of multiple edge cracks in a plate or beam under tension or bending. The second problem is that of a rectangular plate containing an arbitrarily oriented crack in the plane of symmetry. Particular emphasis is placed on the problem of a plate containing an edge crack and subjected to concentrated forces.

  19. Penny-shaped interface crack between an elastic layer and a half space.

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Arin, K.

    1972-01-01

    The axially symmetric elastostatic problem for a layer bonded to a half space with different material properties is considered. It is assumed that the bi-material interface contains a penny-shaped crack the surfaces of which are subjected to known tractions. The solution of the problem is reduced to that of a system of singular integral equations of the second kind. A numerical example for an aluminum-epoxy material combination is given. The stress intensity factors and the strain energy release rate are calculated and are given as functions of layer thickness-to-crack radius ratio.

  20. Computing singularities of perturbation series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kvaal, Simen; Jarlebring, Elias; Michiels, Wim

    2011-03-15

    Many properties of current ab initio approaches to the quantum many-body problem, both perturbational and otherwise, are related to the singularity structure of the Rayleigh-Schroedinger perturbation series. A numerical procedure is presented that in principle computes the complete set of singularities, including the dominant singularity which limits the radius of convergence. The method approximates the singularities as eigenvalues of a certain generalized eigenvalue equation which is solved using iterative techniques. It relies on computation of the action of the Hamiltonian matrix on a vector and does not rely on the terms in the perturbation series. The method can be usefulmore » for studying perturbation series of typical systems of moderate size, for fundamental development of resummation schemes, and for understanding the structure of singularities for typical systems. Some illustrative model problems are studied, including a helium-like model with {delta}-function interactions for which Moeller-Plesset perturbation theory is considered and the radius of convergence found.« less

  1. Stress singularities at the vertex of a cylindrically anisotropic wedge

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Boduroglu, H.

    1980-01-01

    The plane elasticity problem for a cylindrically anisotropic solid is formulated. The form of the solution for an infinite wedge shaped domain with various homogeneous boundary conditions is derived and the nature of the stress singularity at the vertex of the wedge is studied. The characteristic equations giving the stress singularity and the angular distribution of the stresses around the vertex of the wedge are obtained for three standard homogeneous boundary conditions. The numerical examples show that the singular behavior of the stresses around the vertex of an anisotropic wedge may be significantly different from that of the isotropic material. Some of the results which may be of practical importance are that for a half plane the stress state at r = 0 may be singular and for a crack the power of stress singularity may be greater or less than 1/2.

  2. Einstein-Langevin and Einstein-Fokker-Planck equations for Oppenheimer-Snyder gravitational collapse in a spacetime with conformal vacuum fluctuations

    NASA Astrophysics Data System (ADS)

    Miller, Steven David

    1999-10-01

    A consistent extension of the Oppenheimer-Snyder gravitational collapse formalism is presented which incorporates stochastic, conformal, vacuum fluctuations of the metric tensor. This results in a tractable approach to studying the possible effects of vacuum fluctuations on collapse and singularity formation. The motivation here, is that it is known that coupling stochastic noise to a classical field theory can lead to workable methodologies that accommodate or reproduce many aspects of quantum theory, turbulence or structure formation. The effect of statistically averaging over the metric fluctuations gives the appearance of a deterministic Riemannian structure, with an induced non-vanishing cosmological constant arising from the nonlinearity. The Oppenheimer-Snyder collapse of a perfect fluid or dust star in the fluctuating or `turbulent' spacetime, is reformulated in terms of nonlinear Einstein-Langevin field equations, with an additional noise source in the energy-momentum tensor. The smooth deterministic worldlines of collapsing matter within the classical Oppenheimer-Snyder model, now become nonlinear Brownian motions due to the backreaction induced by vacuum fluctuations. As the star collapses, the matter worldlines become increasingly randomized since the backreaction coupling to the vacuum fluctuations is nonlinear; the input assumptions of the Hawking-Penrose singularity theorems should then be violated. Solving the nonlinear Einstein-Langevin field equation for collapse - via the Ito interpretation - gives a singularity-free solution, which is equivalent to the original Oppenheimer solution but with higher-order stochastic corrections; the original singular solution is recovered in the limit of zero vacuum fluctuations. The `geometro-hydrodynamics' of noisy gravitational collapse, were also translated into an equivalent mathematical formulation in terms of nonlinear Einstein-Fokker-Planck (EFP) continuity equations with respect to comoving coordinates: these describe the collapse as a conserved flow of probability. A solution was found in the dilute limit of weak fluctuations where the EFP equation is linearized. There is zero probability that the star collapses to a singular state in the presence of background vacuum fluctuations, but the singularity returns with unit probability when the fluctuations are reduced to zero. Finally, an EFP equation was considered with respect to standard exterior coordinates. Using the thermal Brownian motion paradigm, an exact stationary or equilibrium solution was found in the infinite standard time relaxation limit. The solution gives the conditions required for the final collapsed object (a black hole) to be in thermal equilibrium with the background vacuum fluctuations. From this solution, one recovers the Hawking temperature without using field theory. The stationary solution then seems to correspond to a black hole in thermal equilibrium with a fluctuating conformal scalar field; or the Hawking-Hartle state.

  3. A well-posed numerical method to track isolated conformal map singularities in Hele-Shaw flow

    NASA Technical Reports Server (NTRS)

    Baker, Gregory; Siegel, Michael; Tanveer, Saleh

    1995-01-01

    We present a new numerical method for calculating an evolving 2D Hele-Shaw interface when surface tension effects are neglected. In the case where the flow is directed from the less viscous fluid into the more viscous fluid, the motion of the interface is ill-posed; small deviations in the initial condition will produce significant changes in the ensuing motion. This situation is disastrous for numerical computation, as small round-off errors can quickly lead to large inaccuracies in the computed solution. Our method of computation is most easily formulated using a conformal map from the fluid domain into a unit disk. The method relies on analytically continuing the initial data and equations of motion into the region exterior to the disk, where the evolution problem becomes well-posed. The equations are then numerically solved in the extended domain. The presence of singularities in the conformal map outside of the disk introduces specific structures along the fluid interface. Our method can explicitly track the location of isolated pole and branch point singularities, allowing us to draw connections between the development of interfacial patterns and the motion of singularities as they approach the unit disk. In particular, we are able to relate physical features such as finger shape, side-branch formation, and competition between fingers to the nature and location of the singularities. The usefulness of this method in studying the formation of topological singularities (self-intersections of the interface) is also pointed out.

  4. Influence of vorticity distribution on singularities in linearized supersonic flow

    NASA Astrophysics Data System (ADS)

    Gopal, Vijay; Maddalena, Luca

    2018-05-01

    The linearized steady three-dimensional supersonic flow can be analyzed using a vector potential approach which transforms the governing equation to a standard form of two-dimensional wave equation. Of particular interest are the canonical horseshoe line-vortex distribution and the resulting induced velocity field in supersonic flow. In this case, the singularities are present at the vortex line itself and also at the surface of the cone of influence originating from the vertices of the horseshoe structure. This is a characteristic of the hyperbolic nature of the flow which renders the study of supersonic vortex dynamics a challenging task. It is conjectured in this work that the presence of the singularity at the cone of influence is associated with the step-function nature of the vorticity distribution specified in the canonical case. At the phenomenological level, if one considers the three-dimensional steady supersonic flow, then a sudden appearance of a line-vortex will generate a ripple of singularities in the induced velocity field which convect downstream and laterally spread, at the most, to the surface of the cone of influence. Based on these findings, this work includes an exploration of potential candidates for vorticity distributions that eliminate the singularities at the cone of influence. The analysis of the resulting induced velocity field is then compared with the canonical case, and it is observed that the singularities were successfully eliminated. The manuscript includes an application of the proposed method to study the induced velocity field in a confined supersonic flow.

  5. Geometrical shock dynamics, formation of singularities and topological bifurcations of converging shock fronts

    NASA Astrophysics Data System (ADS)

    Suramlishvili, Nugzar; Eggers, Jens; Fontelos, Marco

    2014-11-01

    We are concerned with singularities of the shock fronts of converging perturbed shock waves. Our considerations are based on Whitham's theory of geometrical shock dynamics. The recently developed method of local analysis is applied in order to determine generic singularities. In this case the solutions of partial differential equations describing the geometry of the shock fronts are presented as families of smooth maps with state variables and the set of control parameters dependent on Mach number, time and initial conditions. The space of control parameters of the singularities is analysed, the unfoldings describing the deformations of the canonical germs of shock front singularities are found and corresponding bifurcation diagrams are constructed. Research is supported by the Leverhulme Trust, Grant Number RPG-2012-568.

  6. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.

    PubMed

    Nakatsuji, Hiroshi

    2012-09-18

    Just as Newtonian law governs classical physics, the Schrödinger equation (SE) and the relativistic Dirac equation (DE) rule the world of chemistry. So, if we can solve these equations accurately, we can use computation to predict chemistry precisely. However, for approximately 80 years after the discovery of these equations, chemists believed that they could not solve SE and DE for atoms and molecules that included many electrons. This Account reviews ideas developed over the past decade to further the goal of predictive quantum chemistry. Between 2000 and 2005, I discovered a general method of solving the SE and DE accurately. As a first inspiration, I formulated the structure of the exact wave function of the SE in a compact mathematical form. The explicit inclusion of the exact wave function's structure within the variational space allows for the calculation of the exact wave function as a solution of the variational method. Although this process sounds almost impossible, it is indeed possible, and I have published several formulations and applied them to solve the full configuration interaction (CI) with a very small number of variables. However, when I examined analytical solutions for atoms and molecules, the Hamiltonian integrals in their secular equations diverged. This singularity problem occurred in all atoms and molecules because it originates from the singularity of the Coulomb potential in their Hamiltonians. To overcome this problem, I first introduced the inverse SE and then the scaled SE. The latter simpler idea led to immediate and surprisingly accurate solution for the SEs of the hydrogen atom, helium atom, and hydrogen molecule. The free complement (FC) method, also called the free iterative CI (free ICI) method, was efficient for solving the SEs. In the FC method, the basis functions that span the exact wave function are produced by the Hamiltonian of the system and the zeroth-order wave function. These basis functions are called complement functions because they are the elements of the complete functions for the system under consideration. We extended this idea to solve the relativistic DE and applied it to the hydrogen and helium atoms, without observing any problems such as variational collapse. Thereafter, we obtained very accurate solutions of the SE for the ground and excited states of the Born-Oppenheimer (BO) and non-BO states of very small systems like He, H(2)(+), H(2), and their analogues. For larger systems, however, the overlap and Hamiltonian integrals over the complement functions are not always known mathematically (integration difficulty); therefore we formulated the local SE (LSE) method as an integral-free method. Without any integration, the LSE method gave fairly accurate energies and wave functions for small atoms and molecules. We also calculated continuous potential curves of the ground and excited states of small diatomic molecules by introducing the transferable local sampling method. Although the FC-LSE method is simple, the achievement of chemical accuracy in the absolute energy of larger systems remains time-consuming. The development of more efficient methods for the calculations of ordinary molecules would allow researchers to make these calculations more easily.

  7. A new formulation of electromagnetic wave scattering using an on-surface radiation boundary condition approach

    NASA Technical Reports Server (NTRS)

    Kriegsmann, Gregory A.; Taflove, Allen; Umashankar, Koradar R.

    1987-01-01

    A new formulation of electromagnetic wave scattering by convex, two-dimensional conducting bodies is reported. This formulation, called the on-surface radiation condition (OSRC) approach, is based upon an expansion of the radiation condition applied directly on the surface of a scatterer. It is now shown that application of a suitable radiation condition directly on the surface of a convex conducting scatterer can lead to substantial simplification of the frequency-domain integral equation for the scattered field, which is reduced to just a line integral. For the transverse magnetic case, the integrand is known explicitly. For the transverse electric case, the integrand can be easily constructed by solving an ordinary differential equation around the scatterer surface contour. Examples are provided which show that OSRC yields computed near and far fields which approach the exact results for canonical shapes such as the circular cylinder, square cylinder, and strip. Electrical sizes for the examples are ka = 5 and ka = 10. The new OSRC formulation of scattering may present a useful alternative to present integral equation and uniform high-frequency approaches for convex cylinders larger than ka = 1. Structures with edges or corners can also be analyzed, although more work is needed to incorporate the physics of singular currents at these discontinuities. Convex dielectric structures can also be treated using OSRC.

  8. Partial regularity of weak solutions to a PDE system with cubic nonlinearity

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Xu, Xiangsheng

    2018-04-01

    In this paper we investigate regularity properties of weak solutions to a PDE system that arises in the study of biological transport networks. The system consists of a possibly singular elliptic equation for the scalar pressure of the underlying biological network coupled to a diffusion equation for the conductance vector of the network. There are several different types of nonlinearities in the system. Of particular mathematical interest is a term that is a polynomial function of solutions and their partial derivatives and this polynomial function has degree three. That is, the system contains a cubic nonlinearity. Only weak solutions to the system have been shown to exist. The regularity theory for the system remains fundamentally incomplete. In particular, it is not known whether or not weak solutions develop singularities. In this paper we obtain a partial regularity theorem, which gives an estimate for the parabolic Hausdorff dimension of the set of possible singular points.

  9. An Onsager Singularity Theorem for Turbulent Solutions of Compressible Euler Equations

    NASA Astrophysics Data System (ADS)

    Drivas, Theodore D.; Eyink, Gregory L.

    2017-12-01

    We prove that bounded weak solutions of the compressible Euler equations will conserve thermodynamic entropy unless the solution fields have sufficiently low space-time Besov regularity. A quantity measuring kinetic energy cascade will also vanish for such Euler solutions, unless the same singularity conditions are satisfied. It is shown furthermore that strong limits of solutions of compressible Navier-Stokes equations that are bounded and exhibit anomalous dissipation are weak Euler solutions. These inviscid limit solutions have non-negative anomalous entropy production and kinetic energy dissipation, with both vanishing when solutions are above the critical degree of Besov regularity. Stationary, planar shocks in Euclidean space with an ideal-gas equation of state provide simple examples that satisfy the conditions of our theorems and which demonstrate sharpness of our L 3-based conditions. These conditions involve space-time Besov regularity, but we show that they are satisfied by Euler solutions that possess similar space regularity uniformly in time.

  10. Study of the 3D Euler equations using Clebsch potentials: dual mechanisms for geometric depletion

    NASA Astrophysics Data System (ADS)

    Ohkitani, Koji

    2018-02-01

    After surveying analyses of the 3D Euler equations using the Clebsch potentials scattered over the literature, we report some preliminary new results. 1. Assuming that flow fields are free from nulls of the impulse and the vorticity fields, we study how constraints imposed by the Clebsch potentials lead to a degenerate geometrical structure, typically in the form of depletion of nonlinearity. We consider a vorticity surface spanned by \\boldsymbol ω and another material vector \\boldsymbol {W} such that \\boldsymbol γ=\\boldsymbol ω× \\boldsymbol {W}, where \\boldsymbol γ is the impulse variable in geometric gauge. We identify dual mechanism for geometric depletion and show that at least of one them is acting if \\boldsymbol {W} does not develop a null. This suggests that formation of singularity in flows endowed with Clebsch potentials is less likely to happen than in more general flows. Some arguments are given towards exclusion of ‘type I’ blowup. A mathematical challenge remains to rule out singularity formation for flows which have Clebsch potentials everywhere. 2. We exploit classical differential geometry kinematically to write down the Gauss-Weingarten equations for the vorticity surface of the Clebsch potential in terms of fluid dynamical variables, as are the first, second and third fundamental forms. In particular, we derive a constraint on the size of the Gaussian curvature near the point of a possible singularity. On the other hand, an application of the Gauss-Bonnet theorem reveals that the tangential curvature of the surface becomes large in the neighborhood of near-singularity. 3. Using spatially-periodic flows with highly-symmetry, i.e. initial conditions of the Taylor-Green vortex and the Kida-Pelz flow, we present explicit formulas of the Clebsch potentials with exceptional singular surfaces where the Clebsch potentials are undefined. This is done by connecting the known expressions with the solenoidal impulse variable (i.e. the incompressible velocity) using suitable canonical transforms. By a simple argument we show that they keep forming material separatrices under the time evolution of the 3D Euler equations. We argue on this basis that a singularity, if developed, will be associated with these exceptional material surfaces. The difficulty of having Clebsch potentials globally on all of space have been with us for a long time. The proposal rather seeks to turn the difficulty into an advantage by using their absence to identify and locate possible singularities.

  11. Classical eighth- and lower-order Runge-Kutta-Nystroem formulas with a new stepsize control procedure for special second-order differential equations

    NASA Technical Reports Server (NTRS)

    Fehlberg, E.

    1973-01-01

    New Runge-Kutta-Nystrom formulas of the eighth, seventh, sixth, and fifth order are derived for the special second-order (vector) differential equation x = f (t,x). In contrast to Runge-Kutta-Nystrom formulas of an earlier NASA report, these formulas provide a stepsize control procedure based on the leading term of the local truncation error in x. This new procedure is more accurate than the earlier Runge-Kutta-Nystrom procedure (with stepsize control based on the leading term of the local truncation error in x) when integrating close to singularities. Two central orbits are presented as examples. For these orbits, the accuracy and speed of the formulas of this report are compared with those of Runge-Kutta-Nystrom and Runge-Kutta formulas of earlier NASA reports.

  12. A spatially nonlocal model for polymer-penetrant diffusion

    NASA Astrophysics Data System (ADS)

    Edwards, D. A.

    Diffusion of a penetrant in a polymer entanglement network cannot be described by Fick's Law alone; rather, one must incorporate other nonlocal effects. In contrast to previous viscoelastic models which have modeled these effects through hereditary integrals in time, a new model is presented exploiting the disparate lengths of the polymer in the glassy (dry) and rubbery (saturated) states. This model leads to a partial integrodifferential equation which is nonlocal in space. The system is recast as a moving boundary-value problem between sets of coupled partial differential equations. Using singular perturbation techniques, sorption in a semi-infinite polymer is studied on several time scales with varying exposed interface conditions. Though some of the results match with those from viscoelastic models, new physically relevant behaviors also appear. These include the formation of stopping fronts and overshoot in the pseudostress.

  13. A problem with inverse time for a singularly perturbed integro-differential equation with diagonal degeneration of the kernel of high order

    NASA Astrophysics Data System (ADS)

    Bobodzhanov, A. A.; Safonov, V. F.

    2016-04-01

    We consider an algorithm for constructing asymptotic solutions regularized in the sense of Lomov (see [1], [2]). We show that such problems can be reduced to integro-differential equations with inverse time. But in contrast to known papers devoted to this topic (see, for example, [3]), in this paper we study a fundamentally new case, which is characterized by the absence, in the differential part, of a linear operator that isolates, in the asymptotics of the solution, constituents described by boundary functions and by the fact that the integral operator has kernel with diagonal degeneration of high order. Furthermore, the spectrum of the regularization operator A(t) (see below) may contain purely imaginary eigenvalues, which causes difficulties in the application of the methods of construction of asymptotic solutions proposed in the monograph [3]. Based on an analysis of the principal term of the asymptotics, we isolate a class of inhomogeneities and initial data for which the exact solution of the original problem tends to the limit solution (as \\varepsilon\\to+0) on the entire time interval under consideration, also including a boundary-layer zone (that is, we solve the so-called initialization problem). The paper is of a theoretical nature and is designed to lead to a greater understanding of the problems in the theory of singular perturbations. There may be applications in various applied areas where models described by integro-differential equations are used (for example, in elasticity theory, the theory of electrical circuits, and so on).

  14. Certain bright soliton interactions of the Sasa-Satsuma equation in a monomode optical fiber

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Tian, Bo; Chai, Han-Peng; Yuan, Yu-Qiang

    2017-03-01

    Under investigation in this paper is the Sasa-Satsuma equation, which describes the propagation of ultrashort pulses in a monomode fiber with the third-order dispersion, self-steepening, and stimulated Raman scattering effects. Based on the known bilinear forms, through the modified expanded formulas and symbolic computation, we construct the bright two-soliton solutions. Through classifying the interactions under different parameter conditions, we reveal six cases of interactions between the two solitons via an asymptotic analysis. With the help of the analytic and graphic analysis, we find that such interactions are different from those of the nonlinear Schrödinger equation and Hirota equation. When those solitons interact with each other, the singular-I soliton is shape-preserving, while the singular-II and nonsingular solitons may be shape preserving or shape changing. Such elastic and inelastic interaction phenomena in a scalar equation might enrich the knowledge of soliton behavior, which could be expected to be experimentally observed.

  15. Certain bright soliton interactions of the Sasa-Satsuma equation in a monomode optical fiber.

    PubMed

    Liu, Lei; Tian, Bo; Chai, Han-Peng; Yuan, Yu-Qiang

    2017-03-01

    Under investigation in this paper is the Sasa-Satsuma equation, which describes the propagation of ultrashort pulses in a monomode fiber with the third-order dispersion, self-steepening, and stimulated Raman scattering effects. Based on the known bilinear forms, through the modified expanded formulas and symbolic computation, we construct the bright two-soliton solutions. Through classifying the interactions under different parameter conditions, we reveal six cases of interactions between the two solitons via an asymptotic analysis. With the help of the analytic and graphic analysis, we find that such interactions are different from those of the nonlinear Schrödinger equation and Hirota equation. When those solitons interact with each other, the singular-I soliton is shape-preserving, while the singular-II and nonsingular solitons may be shape preserving or shape changing. Such elastic and inelastic interaction phenomena in a scalar equation might enrich the knowledge of soliton behavior, which could be expected to be experimentally observed.

  16. Resolution of quantum singularities

    NASA Astrophysics Data System (ADS)

    Konkowski, Deborah; Helliwell, Thomas

    2017-01-01

    A review of quantum singularities in static and conformally static spacetimes is given. A spacetime is said to be quantum mechanically non-singular if a quantum wave packet does not feel, in some sense, the presence of a singularity; mathematically, this means that the wave operator is essentially self-adjoint on the space of square integrable functions. Spacetimes with classical mild singularities (quasiregular ones) to spacetimes with classical strong curvature singularities have been tested. Here we discuss the similarities and differences between classical singularities that are healed quantum mechanically and those that are not. Possible extensions of the mathematical technique to more physically realistic spacetimes are discussed.

  17. Singular Behaviour of the Electrodynamic Fields of an Oscillating Dipole

    ERIC Educational Resources Information Center

    Leung, P. T.

    2008-01-01

    The singularity of the exact electromagnetic fields is derived to include the "source terms" for harmonically oscillating electric (and magnetic) dipoles, so that the fields will be consistent with the full Maxwell equations with a source. It is shown explicitly, as somewhat expected, that the same [delta]-function terms for the case of static…

  18. Prediction of Supersonic Store Separation Characteristics Including Fuselage and Stores of Noncircular Cross Section. Volume II. Users Manual for the Computer Program.

    DTIC Science & Technology

    1980-11-01

    CMACH $ FMACH) 132 TRJTRY STOP normal termination (test: TIME > TIMEF-0.00001 or NDIFEQ = 1) BDCOEF message warning - NAFLD exceeds blank common...BDCOEF**, NTAP7- , IUB= , NAFLD = . (Test: NAFLD > NADIM) CRFWBD STOP 001 (Test: NER > 1; equation solution singular) INVER2 STOP **Matrix is singular

  19. Dynamic Analysis and Control of Lightweight Manipulators with Flexible Parallel Link Mechanisms. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lee, Jeh Won

    1990-01-01

    The objective is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. The resulting equation of motion have a structure which is useful to reduce the number of terms calculated, to check correctness, or to extend the model to higher order. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. Elastic motion is expressed by the assumed mode method. Mode shape functions of each link are chosen using the load interfaced component mode synthesis. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model.

  20. Effect of nose shape on three-dimensional stagnation region streamlines and heating rates

    NASA Technical Reports Server (NTRS)

    Hassan, Basil; Dejarnette, Fred R.; Zoby, E. V.

    1991-01-01

    A new method for calculating the three-dimensional inviscid surface streamlines and streamline metrics using Cartesian coordinates and time as the independent variable of integration has been developed. The technique calculates the streamline from a specified point on the body to a point near the stagnation point by using a prescribed pressure distribution in the Euler equations. The differential equations, which are singular at the stagnation point, are of the two point boundary value problem type. Laminar heating rates are calculated using the axisymmetric analog concept for three-dimensional boundary layers and approximate solutions to the axisymmetric boundary layer equations. Results for elliptic conic forebody geometries show that location of the point of maximum heating depends on the type of conic in the plane of symmetry and the angle of attack, and that this location is in general different from the stagnation point. The new method was found to give smooth predictions of heat transfer in the nose region where previous methods gave oscillatory results.

  1. A Curved, Elastostatic Boundary Element for Plane Anisotropic Structures

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S.; Klang, Eric C.

    2001-01-01

    The plane-stress equations of linear elasticity are used in conjunction with those of the boundary element method to develop a novel curved, quadratic boundary element applicable to structures composed of anisotropic materials in a state of plane stress or plane strain. The curved boundary element is developed to solve two-dimensional, elastostatic problems of arbitrary shape, connectivity, and material type. As a result of the anisotropy, complex variables are employed in the fundamental solution derivations for a concentrated unit-magnitude force in an infinite elastic anisotropic medium. Once known, the fundamental solutions are evaluated numerically by using the known displacement and traction boundary values in an integral formulation with Gaussian quadrature. All the integral equations of the boundary element method are evaluated using one of two methods: either regular Gaussian quadrature or a combination of regular and logarithmic Gaussian quadrature. The regular Gaussian quadrature is used to evaluate most of the integrals along the boundary, and the combined scheme is employed for integrals that are singular. Individual element contributions are assembled into the global matrices of the standard boundary element method, manipulated to form a system of linear equations, and the resulting system is solved. The interior displacements and stresses are found through a separate set of auxiliary equations that are derived using an Airy-type stress function in terms of complex variables. The capabilities and accuracy of this method are demonstrated for a laminated-composite plate with a central, elliptical cutout that is subjected to uniform tension along one of the straight edges of the plate. Comparison of the boundary element results for this problem with corresponding results from an analytical model show a difference of less than 1%.

  2. Modeling electro-magneto-hydrodynamic thermo-fluidic transport of biofluids with new trend of fractional derivative without singular kernel

    NASA Astrophysics Data System (ADS)

    Abdulhameed, M.; Vieru, D.; Roslan, R.

    2017-10-01

    This paper investigates the electro-magneto-hydrodynamic flow of the non-Newtonian behavior of biofluids, with heat transfer, through a cylindrical microchannel. The fluid is acted by an arbitrary time-dependent pressure gradient, an external electric field and an external magnetic field. The governing equations are considered as fractional partial differential equations based on the Caputo-Fabrizio time-fractional derivatives without singular kernel. The usefulness of fractional calculus to study fluid flows or heat and mass transfer phenomena was proven. Several experimental measurements led to conclusion that, in such problems, the models described by fractional differential equations are more suitable. The most common time-fractional derivative used in Continuum Mechanics is Caputo derivative. However, two disadvantages appear when this derivative is used. First, the definition kernel is a singular function and, secondly, the analytical expressions of the problem solutions are expressed by generalized functions (Mittag-Leffler, Lorenzo-Hartley, Robotnov, etc.) which, generally, are not adequate to numerical calculations. The new time-fractional derivative Caputo-Fabrizio, without singular kernel, is more suitable to solve various theoretical and practical problems which involve fractional differential equations. Using the Caputo-Fabrizio derivative, calculations are simpler and, the obtained solutions are expressed by elementary functions. Analytical solutions of the biofluid velocity and thermal transport are obtained by means of the Laplace and finite Hankel transforms. The influence of the fractional parameter, Eckert number and Joule heating parameter on the biofluid velocity and thermal transport are numerically analyzed and graphic presented. This fact can be an important in Biochip technology, thus making it possible to use this analysis technique extremely effective to control bioliquid samples of nanovolumes in microfluidic devices used for biological analysis and medical diagnosis.

  3. Solitary Waves, Periodic Peakons and Pseudo-Peakons of the Nonlinear Acoustic Wave Model in Rotating Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Li, Jibin

    The dynamical model of the nonlinear acoustic wave in rotating magnetized plasma is governed by a partial differential equation system. Its traveling system is a singular traveling wave system of first class depending on two parameters. By using the bifurcation theory and method of dynamical systems and the theory of singular traveling wave systems, in this paper, we show that there exist parameter groups such that this singular system has pseudo-peakons, periodic peakons and compactons as well as different solitary wave solutions.

  4. Periodic Peakons, Pseudo-Peakons and Compactons of Ion-Acoustic Wave Model in Electronegative Plasmas with Electrons Featuring Tsallis Distribution

    NASA Astrophysics Data System (ADS)

    Li, Jibin

    The dynamical model of the nonlinear ion-acoustic oscillations is governed by a partial differential equation system. Its traveling system is just a singular traveling wave system of first class depending on four parameters. By using the method of dynamical systems and the theory of singular traveling wave systems, in this paper, we show that there exist parameter groups such that this singular system has pseudo-peakons, periodic peakons and compactons as well as kink and anti-kink wave solutions.

  5. Inflation and acceleration of the universe by nonlinear magnetic monopole fields

    NASA Astrophysics Data System (ADS)

    Övgün, A.

    2017-02-01

    Despite impressive phenomenological success, cosmological models are incomplete without an understanding of what happened at the big bang singularity. Maxwell electrodynamics, considered as a source of the classical Einstein field equations, leads to the singular isotropic Friedmann solutions. In the context of Friedmann-Robertson-Walker (FRW) spacetime, we show that singular behavior does not occur for a class of nonlinear generalizations of the electromagnetic theory for strong fields. A new mathematical model is proposed for which the analytical nonsingular extension of FRW solutions is obtained by using the nonlinear magnetic monopole fields.

  6. Accurate Solution of Multi-Region Continuum Biomolecule Electrostatic Problems Using the Linearized Poisson-Boltzmann Equation with Curved Boundary Elements

    PubMed Central

    Altman, Michael D.; Bardhan, Jaydeep P.; White, Jacob K.; Tidor, Bruce

    2009-01-01

    We present a boundary-element method (BEM) implementation for accurately solving problems in biomolecular electrostatics using the linearized Poisson–Boltzmann equation. Motivating this implementation is the desire to create a solver capable of precisely describing the geometries and topologies prevalent in continuum models of biological molecules. This implementation is enabled by the synthesis of four technologies developed or implemented specifically for this work. First, molecular and accessible surfaces used to describe dielectric and ion-exclusion boundaries were discretized with curved boundary elements that faithfully reproduce molecular geometries. Second, we avoided explicitly forming the dense BEM matrices and instead solved the linear systems with a preconditioned iterative method (GMRES), using a matrix compression algorithm (FFTSVD) to accelerate matrix-vector multiplication. Third, robust numerical integration methods were employed to accurately evaluate singular and near-singular integrals over the curved boundary elements. Finally, we present a general boundary-integral approach capable of modeling an arbitrary number of embedded homogeneous dielectric regions with differing dielectric constants, possible salt treatment, and point charges. A comparison of the presented BEM implementation and standard finite-difference techniques demonstrates that for certain classes of electrostatic calculations, such as determining absolute electrostatic solvation and rigid-binding free energies, the improved convergence properties of the BEM approach can have a significant impact on computed energetics. We also demonstrate that the improved accuracy offered by the curved-element BEM is important when more sophisticated techniques, such as non-rigid-binding models, are used to compute the relative electrostatic effects of molecular modifications. In addition, we show that electrostatic calculations requiring multiple solves using the same molecular geometry, such as charge optimization or component analysis, can be computed to high accuracy using the presented BEM approach, in compute times comparable to traditional finite-difference methods. PMID:18567005

  7. The boundary element method applied to 3D magneto-electro-elastic dynamic problems

    NASA Astrophysics Data System (ADS)

    Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.

    2017-11-01

    Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlov, I K

    In this paper we study topological properties of an integrable case for Euler's equations on the Lie algebra so(4), which can be regarded as an analogue of the classical Kovalevskaya case in rigid body dynamics. In particular, for all values of the parameters of the system under consideration, the bifurcation diagrams of the momentum mapping are constructed, the types of critical points of rank 0 are determined, the bifurcations of Liouville tori are described, and the loop molecules are computed for all singular points of the bifurcation diagrams. It follows from the obtained results that some topological properties of the classicalmore » Kovalevskaya case can be obtained from the corresponding properties of the considered integrable case on the Lie algebra so(4) by taking a natural limit. Bibliography: 21 titles.« less

  9. Development of Advanced Methods of Structural and Trajectory Analysis for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.; Windhorst, Robert; Phillips, James

    1998-01-01

    This paper develops a near-optimal guidance law for generating minimum fuel, time, or cost fixed-range trajectories for supersonic transport aircraft. The approach uses a choice of new state variables along with singular perturbation techniques to time-scale decouple the dynamic equations into multiple equations of single order (second order for the fast dynamics). Application of the maximum principle to each of the decoupled equations, as opposed to application to the original coupled equations, avoids the two point boundary value problem and transforms the problem from one of a functional optimization to one of multiple function optimizations. It is shown that such an approach produces well known aircraft performance results such as minimizing the Brequet factor for minimum fuel consumption and the energy climb path. Furthermore, the new state variables produce a consistent calculation of flight path angle along the trajectory, eliminating one of the deficiencies in the traditional energy state approximation. In addition, jumps in the energy climb path are smoothed out by integration of the original dynamic equations at constant load factor. Numerical results performed for a supersonic transport design show that a pushover dive followed by a pullout at nominal load factors are sufficient maneuvers to smooth the jump.

  10. Optimization of Supersonic Transport Trajectories

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.; Windhorst, Robert; Phillips, James

    1998-01-01

    This paper develops a near-optimal guidance law for generating minimum fuel, time, or cost fixed-range trajectories for supersonic transport aircraft. The approach uses a choice of new state variables along with singular perturbation techniques to time-scale decouple the dynamic equations into multiple equations of single order (second order for the fast dynamics). Application of the maximum principle to each of the decoupled equations, as opposed to application to the original coupled equations, avoids the two point boundary value problem and transforms the problem from one of a functional optimization to one of multiple function optimizations. It is shown that such an approach produces well known aircraft performance results such as minimizing the Brequet factor for minimum fuel consumption and the energy climb path. Furthermore, the new state variables produce a consistent calculation of flight path angle along the trajectory, eliminating one of the deficiencies in the traditional energy state approximation. In addition, jumps in the energy climb path are smoothed out by integration of the original dynamic equations at constant load factor. Numerical results performed for a supersonic transport design show that a pushover dive followed by a pullout at nominal load factors are sufficient maneuvers to smooth the jump.

  11. Unwrapping Closed Timelike Curves

    NASA Astrophysics Data System (ADS)

    Slobodov, Sergei

    2008-12-01

    Closed timelike curves (CTCs) appear in many solutions of the Einstein equation, even with reasonable matter sources. These solutions appear to violate causality and so are considered problematic. Since CTCs reflect the global properties of a spacetime, one can attempt to extend a local CTC-free patch of such a spacetime in a way that does not give rise to CTCs. One such procedure is informally known as unwrapping. However, changes in global identifications tend to lead to local effects, and unwrapping is no exception, as it introduces a special kind of singularity, called quasi-regular. This “unwrapping” singularity is similar to the string singularities. We define an unwrapping of a (locally) axisymmetric spacetime as the universal cover of the spacetime after one or more of the local axes of symmetry is removed. We give two examples of unwrapping of essentially 2+1 dimensional spacetimes with CTCs, the Gott spacetime and the Gödel spacetime. We show that the unwrapped Gott spacetime, while singular, is at least devoid of CTCs. In contrast, the unwrapped Gödel spacetime still contains CTCs through every point. A “multiple unwrapping” procedure is devised to remove the remaining circular CTCs. We conclude that, based on the given examples, CTCs appearing in the solutions of the Einstein equation are not simply a mathematical artifact of coordinate identifications. Alternative extensions of spacetimes with CTCs tend to lead to other pathologies, such as naked quasi-regular singularities.

  12. Chaotic processes using the two-parameter derivative with non-singular and non-local kernel: Basic theory and applications

    NASA Astrophysics Data System (ADS)

    Doungmo Goufo, Emile Franc

    2016-08-01

    After having the issues of singularity and locality addressed recently in mathematical modelling, another question regarding the description of natural phenomena was raised: How influent is the second parameter β of the two-parameter Mittag-Leffler function E α , β ( z ) , z ∈ ℂ ? To answer this question, we generalize the newly introduced one-parameter derivative with non-singular and non-local kernel [A. Atangana and I. Koca, Chaos, Solitons Fractals 89, 447 (2016); A. Atangana and D. Bealeanu (e-print)] by developing a similar two-parameter derivative with non-singular and non-local kernel based on Eα,β(z). We exploit the Agarwal/Erdelyi higher transcendental functions together with their Laplace transforms to explicitly establish the Laplace transform's expressions of the two-parameter derivatives, necessary for solving related fractional differential equations. Explicit expression of the associated two-parameter fractional integral is also established. Concrete applications are done on atmospheric convection process by using Lorenz non-linear simple system. Existence result for the model is provided and a numerical scheme established. As expected, solutions exhibit chaotic behaviors for α less than 0.55, and this chaos is not interrupted by the impact of β. Rather, this second parameter seems to indirectly squeeze and rotate the solutions, giving an impression of twisting. The whole graphics seem to have completely changed its orientation to a particular direction. This is a great observation that clearly shows the substantial impact of the second parameter of Eα,β(z), certainly opening new doors to modeling with two-parameter derivatives.

  13. Chaotic processes using the two-parameter derivative with non-singular and non-local kernel: Basic theory and applications.

    PubMed

    Doungmo Goufo, Emile Franc

    2016-08-01

    After having the issues of singularity and locality addressed recently in mathematical modelling, another question regarding the description of natural phenomena was raised: How influent is the second parameter β of the two-parameter Mittag-Leffler function Eα,β(z), z∈ℂ? To answer this question, we generalize the newly introduced one-parameter derivative with non-singular and non-local kernel [A. Atangana and I. Koca, Chaos, Solitons Fractals 89, 447 (2016); A. Atangana and D. Bealeanu (e-print)] by developing a similar two-parameter derivative with non-singular and non-local kernel based on Eα , β(z). We exploit the Agarwal/Erdelyi higher transcendental functions together with their Laplace transforms to explicitly establish the Laplace transform's expressions of the two-parameter derivatives, necessary for solving related fractional differential equations. Explicit expression of the associated two-parameter fractional integral is also established. Concrete applications are done on atmospheric convection process by using Lorenz non-linear simple system. Existence result for the model is provided and a numerical scheme established. As expected, solutions exhibit chaotic behaviors for α less than 0.55, and this chaos is not interrupted by the impact of β. Rather, this second parameter seems to indirectly squeeze and rotate the solutions, giving an impression of twisting. The whole graphics seem to have completely changed its orientation to a particular direction. This is a great observation that clearly shows the substantial impact of the second parameter of Eα , β(z), certainly opening new doors to modeling with two-parameter derivatives.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokkoris, George; Boudouvis, Andreas G.; Gogolides, Evangelos

    An integrated framework for the neutral flux calculation inside trenches and holes during plasma etching is described, and a comparison between the two types of structure in a number of applications is presented. First, a detailed and functional set of equations for the neutral and ion flux calculations inside long trenches and holes with cylindrical symmetry is explicitly formulated. This set is based on early works [T. S. Cale and G. B. Raupp, J. Vac. Sci. Technol. B 8, 1242 (1990); V. K. Singh et al., J. Vac. Sci. Technol. B 10, 1091 (1992)], and includes new equations for themore » case of holes with cylindrical symmetry. Second, a method for the solution of the respective numerical task, i.e., one or a set of linear or nonlinear integral equations, is described. This method includes a coupling algorithm with a surface chemistry model and resolves the singularity problem of the integral equations. Third, the fluxes inside trenches and holes are compared. The flux from reemission is the major portion of the local flux at the bottom of both types of structure. The framework is applied in SiO{sub 2} etching by fluorocarbon plasmas to predict the increased intensity of reactive ion etching lag in SiO{sub 2} holes compared to trenches. It is also applied in deep Si etching: By calculating the flux of F atoms at the bottom of very high aspect ratio (up to 150) Si trenches and holes during the gas chopping process, the aspect ratio at which the flux of F atoms is eliminated and etching practically stops is estimated.« less

  15. Toroidal regularization of the guiding center Lagrangian

    DOE PAGES

    Burby, J. W.; Ellison, C. L.

    2017-11-22

    In the Lagrangian theory of guiding center motion, an effective magnetic field B* = B+ (m/e)v ∥∇ x b appears prominently in the equations of motion. Because the parallel component of this field can vanish, there is a range of parallel velocities where the Lagrangian guiding center equations of motion are either ill-defined or very badly behaved. Moreover, the velocity dependence of B* greatly complicates the identification of canonical variables and therefore the formulation of symplectic integrators for guiding center dynamics. Here, this letter introduces a simple coordinate transformation that alleviates both these problems simultaneously. In the new coordinates, themore » Liouville volume element is equal to the toroidal contravariant component of the magnetic field. Consequently, the large-velocity singularity is completely eliminated. Moreover, passing from the new coordinate system to canonical coordinates is extremely simple, even if the magnetic field is devoid of flux surfaces. We demonstrate the utility of this approach in regularizing the guiding center Lagrangian by presenting a new and stable one-step variational integrator for guiding centers moving in arbitrary time-dependent electromagnetic fields.« less

  16. Toroidal regularization of the guiding center Lagrangian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burby, J. W.; Ellison, C. L.

    In the Lagrangian theory of guiding center motion, an effective magnetic field B* = B+ (m/e)v ∥∇ x b appears prominently in the equations of motion. Because the parallel component of this field can vanish, there is a range of parallel velocities where the Lagrangian guiding center equations of motion are either ill-defined or very badly behaved. Moreover, the velocity dependence of B* greatly complicates the identification of canonical variables and therefore the formulation of symplectic integrators for guiding center dynamics. Here, this letter introduces a simple coordinate transformation that alleviates both these problems simultaneously. In the new coordinates, themore » Liouville volume element is equal to the toroidal contravariant component of the magnetic field. Consequently, the large-velocity singularity is completely eliminated. Moreover, passing from the new coordinate system to canonical coordinates is extremely simple, even if the magnetic field is devoid of flux surfaces. We demonstrate the utility of this approach in regularizing the guiding center Lagrangian by presenting a new and stable one-step variational integrator for guiding centers moving in arbitrary time-dependent electromagnetic fields.« less

  17. A two-component Matched Interface and Boundary (MIB) regularization for charge singularity in implicit solvation

    NASA Astrophysics Data System (ADS)

    Geng, Weihua; Zhao, Shan

    2017-12-01

    We present a new Matched Interface and Boundary (MIB) regularization method for treating charge singularity in solvated biomolecules whose electrostatics are described by the Poisson-Boltzmann (PB) equation. In a regularization method, by decomposing the potential function into two or three components, the singular component can be analytically represented by the Green's function, while other components possess a higher regularity. Our new regularization combines the efficiency of two-component schemes with the accuracy of the three-component schemes. Based on this regularization, a new MIB finite difference algorithm is developed for solving both linear and nonlinear PB equations, where the nonlinearity is handled by using the inexact-Newton's method. Compared with the existing MIB PB solver based on a three-component regularization, the present algorithm is simpler to implement by circumventing the work to solve a boundary value Poisson equation inside the molecular interface and to compute related interface jump conditions numerically. Moreover, the new MIB algorithm becomes computationally less expensive, while maintains the same second order accuracy. This is numerically verified by calculating the electrostatic potential and solvation energy on the Kirkwood sphere on which the analytical solutions are available and on a series of proteins with various sizes.

  18. Trotter's limit formula for the Schrödinger equation with singular potential

    NASA Astrophysics Data System (ADS)

    Nathanson, Ekaterina S.; Jørgensen, Palle E. T.

    2017-12-01

    We discuss the Schrödinger equation with singular potentials. Our focus is non-relativistic Schrödinger operators H with scalar potentials V defined on R d, hence covering such quantum systems as atoms, molecules, and subatomic particles whether free, bound, or localized. By a "singular potential" V, we refer to the case when the corresponding Schrödinger operators H, with their natural minimal domain in L2(R d), are not essentially self-adjoint. Since V is assumed real valued, the corresponding Hermitian symmetric operator H commutes with the conjugation in L2(R d), and so (by von Neumann's theorem), H has deficiency indices (n, n). The case of singular potentials V refers to when n > 0. Hence, by von Neumann's theory, we know the full variety of all the self-adjoint extensions. Since the Trotter formula is restricted to the case when n = 0, and here n > 0, two questions arise: (i) existence of the Trotter limit and (ii) the nature of this limit. We answer (i) affirmatively. Our answer to (ii) is that when n > 0, the Trotter limit is a strongly continuous contraction semigroup; so it is not time-reversible.

  19. A well-posed numerical method to track isolated conformal map singularities in Hele-Shaw flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, G.; Siegel, M.; Tanveer, S.

    1995-09-01

    We present a new numerical method for calculating an evolving 2D Hele-Shaw interface when surface tension effects are neglected. In the case where the flow is directed from the less viscous fluid into the more viscous fluid, the motion of the interface is ill-posed; small deviations in the initial condition will produce significant changes in the ensuing motion. The situation is disastrous for numerical computation, as small roundoff errors can quickly lead to large inaccuracies in the computed solution. Our method of computation is most easily formulated using a conformal map from the fluid domain into a unit disk. Themore » method relies on analytically continuing the initial data and equations of motion into the region exterior to the disk, where the evolution problem becomes well-posed. The equations are then numerically solved in the extended domain. The presence of singularities in the conformal map outside of the disk introduces specific structures along the fluid interface. Our method can explicitly track the location of isolated pole and branch point singularities, allowing us to draw connections between the development of interfacial patterns and the motion of singularities as they approach the unit disk. In particular, we are able to relate physical features such as finger shape, side-branch formation, and competition between fingers to the nature and location of the singularities. The usefulness of this method in studying the formation of topological singularities (self-intersections of the interface) is also pointed out. 47 refs., 10 figs., 1 tab.« less

  20. Singularities and the geometry of spacetime

    NASA Astrophysics Data System (ADS)

    Hawking, Stephen

    2014-11-01

    The aim of this essay is to investigate certain aspects of the geometry of the spacetime manifold in the General Theory of Relativity with particular reference to the occurrence of singularities in cosmological solutions and their relation with other global properties. Section 2 gives a brief outline of Riemannian geometry. In Section 3, the General Theory of Relativity is presented in the form of two postulates and two requirements which are common to it and to the Special Theory of Relativity, and a third requirement, the Einstein field equations, which distinguish it from the Special Theory. There does not seem to be any alternative set of field equations which would not have some undeseriable features. Some exact solutions are described. In Section 4, the physical significance of curvature is investigated using the deviation equation for timelike and null curves. The Riemann tensor is decomposed into the Ricci tensor which represents the gravitational effect at a point of matter at that point and the Welyl tensor which represents the effect at a point of gravitational radiation and matter at other points. The two tensors are related by the Bianchi identities which are presented in a form analogous to the Maxwell equations. Some lemmas are given for the occurrence of conjugate points on timelike and null geodesics and their relation with the variation of timelike and null curves is established. Section 5 is concerned with properties of causal relations between points of spacetime. It is shown that these could be used to determine physically the manifold structure of spacetime if the strong causality assumption held. The concepts of a null horizon and a partial Cauchy surface are introduced and are used to prove a number of lemmas relating to the existence of a timelike curve of maximum length between two sets. In Section 6, the definition of a singularity of spacetime is given in terms of geodesic incompleteness. The various energy assumptions needed to prove the occurrence of singularities are discussed and then a number of theorems are presented which prove the occurrence of singularities in most cosmological solutions. A procedure is given which could be used to describe and classify the singularites and their expected nature is discussed. Sections 2 and 3 are reviews of standard work. In Section 4, the deviation equation is standard but the matrix method used to analyse it is the author's own as is the decomposition given of the Bianchi identities (this was also obtained independently by Trümper). Variation of curves and conjugate points are standard in a positive-definite metric but this seems to be the first full account for timelike and null curves in a Lorentz metric. Except where otherwise indicated in the text, Sections 5 and 6 are the work of the author who, however, apologises if through ignorance or inadvertance he has failed to make acknowledgements where due. Some of this work has been described in [Hawking S.W. 1965b. Occurrence of singularities in open universes. Phys. Rev. Lett. 15: 689-690; Hawking S.W. and G.F.R. Ellis. 1965c. Singularities in homogeneous world models. Phys. Rev. Lett. 17: 246-247; Hawking S.W. 1966a. Singularities in the universe. Phys. Rev. Lett. 17: 444-445; Hawking S.W. 1966c. The occurrence of singularities in cosmology. Proc. Roy. Soc. Lond. A 294: 511-521]. Undoubtedly, the most important results are the theorems in Section 6 on the occurrence of singularities. These seem to imply either that the General Theory of Relativity breaks down or that there could be particles whose histories did not exist before (or after) a certain time. The author's own opinion is that the theory probably does break down, but only when quantum gravitational effects become important. This would not be expected to happen until the radius of curvature of spacetime became about 10-14 cm.

  1. On the nonlinear development of the most unstable Goertler vortex mode

    NASA Technical Reports Server (NTRS)

    Denier, James P.; Hall, Philip

    1991-01-01

    The nonlinear development of the most unstable Gortler vortex mode in boundary layer flows over curved walls is investigated. The most unstable Gortler mode is confined to a viscous wall layer of thickness O(G -1/5) and has spanwise wavelength O(G 11/5); it is, of course, most relevant to flow situations where the Gortler number G is much greater than 1. The nonlinear equations covering the evolution of this mode over an O(G -3/5) streamwise lengthscale are derived and are found to be of a fully nonparallel nature. The solution of these equations is achieved by making use of the numerical scheme used by Hall (1988) for the numerical solution of the nonlinear Gortler equations valid for O(1) Gortler numbers. Thus, the spanwise dependence of the flow is described by a Fourier expansion, whereas the streamwise and normal variations of the flow are dealt with by employing a suitable finite difference discretization of the governing equations. Our calculations demonstrate that, given a suitable initial disturbance, after a brief interval of decay, the energy in all the higher harmonics grows until a singularity is encountered at some downstream position. The structure of the flowfield as this singularity is approached suggests that the singularity is responsible for the vortices, which are initially confined to the thin viscous wall layer, moving away from the wall and into the core of the boundary layer.

  2. Kinematic equations for resolved-rate control of an industrial robot arm

    NASA Technical Reports Server (NTRS)

    Barker, L. K.

    1983-01-01

    An operator can use kinematic, resolved-rate equations to dynamically control a robot arm by watching its response to commanded inputs. Known resolved-rate equations for the control of a particular six-degree-of-freedom industrial robot arm and proceeds to simplify the equations for faster computations are derived. Methods for controlling the robot arm in regions which normally cause mathematical singularities in the resolved-rate equations are discussed.

  3. On the initial value problem for the wave equation in Friedmann-Robertson-Walker space-times.

    PubMed

    Abbasi, Bilal; Craig, Walter

    2014-09-08

    The propagator W ( t 0 , t 1 )( g , h ) for the wave equation in a given space-time takes initial data ( g ( x ), h ( x )) on a Cauchy surface {( t , x ) :  t = t 0 } and evaluates the solution ( u ( t 1 , x ),∂ t u ( t 1 , x )) at other times t 1 . The Friedmann-Robertson-Walker space-times are defined for t 0 , t 1 >0, whereas for t 0 →0, there is a metric singularity. There is a spherical means representation for the general solution of the wave equation with the Friedmann-Robertson-Walker background metric in the three spatial dimensional cases of curvature K =0 and K =-1 given by S. Klainerman and P. Sarnak. We derive from the expression of their representation three results about the wave propagator for the Cauchy problem in these space-times. First, we give an elementary proof of the sharp rate of time decay of solutions with compactly supported data. Second, we observe that the sharp Huygens principle is not satisfied by solutions, unlike in the case of three-dimensional Minkowski space-time (the usual Huygens principle of finite propagation speed is satisfied, of course). Third, we show that for 0< t 0 < t the limit, [Formula: see text] exists, it is independent of h ( x ), and for all reasonable initial data g ( x ), it gives rise to a well-defined solution for all t >0 emanating from the space-time singularity at t =0. Under reflection t →- t , the Friedmann-Robertson-Walker metric gives a space-time metric for t <0 with a singular future at t =0, and the same solution formulae hold. We thus have constructed solutions u ( t , x ) of the wave equation in Friedmann-Robertson-Walker space-times which exist for all [Formula: see text] and [Formula: see text], where in conformally regularized coordinates, these solutions are continuous through the singularity t =0 of space-time, taking on specified data u (0,⋅)= g (⋅) at the singular time.

  4. Cosmic ray-modified stellar winds. I - Solution topologies and singularities

    NASA Technical Reports Server (NTRS)

    Ko, C. M.; Webb, G. M.

    1987-01-01

    In the present two-fluid hydrodynamical model for stellar wind flow modification due to its interaction with Galactic cosmic rays, these rays are coupled to the stellar wind by either hydromagnetic wave scattering or background flow irregularity propagation. The background flow is modified by the cosmic rays via their pressure gradient. The system of equations used possesses a line of singularities in (r, u, P sub c)-space, or a two-dimensional hypersurface of singularities in (r, u, P sub c, dP sub c/dr)-space, where r, u, and P sub c are respectively the radial distance from the star, the radial wind flow speed, and the cosmic ray pressure. The singular points may be nodes, foci, or saddle points.

  5. The fields of a naked singularity and a black hole in mutual equilibrium

    NASA Astrophysics Data System (ADS)

    Paolino, Armando; Pizzi, Marco

    2008-01-01

    Recently Alekseev and Belinski have presented a new exact solution of the Einstein-Maxwell equation which describes two Reissner-Nordstrom (RN) sources in reciprocal equilibrium (no struts nor strings) one source is a naked singularity, the other is a black hole. In this paper we use the Alekseev-Belinki solution in the special case in which the charge of the black hole is zero-therefore we have a naked singularity near a neutral black hole. We give the plots of the electric force lines in both the cases in which the naked singularity has a mass comparable with the black hole and in which it is much smaller. The analysis of this latter case confirm the goodness of the Hanni-Ruffini approximation.

  6. Modeling of thin-walled structures interacting with acoustic media as constrained two-dimensional continua

    NASA Astrophysics Data System (ADS)

    Rabinskiy, L. N.; Zhavoronok, S. I.

    2018-04-01

    The transient interaction of acoustic media and elastic shells is considered on the basis of the transition function approach. The three-dimensional hyperbolic initial boundary-value problem is reduced to a two-dimensional problem of shell theory with integral operators approximating the acoustic medium effect on the shell dynamics. The kernels of these integral operators are determined by the elementary solution of the problem of acoustic waves diffraction at a rigid obstacle with the same boundary shape as the wetted shell surface. The closed-form elementary solution for arbitrary convex obstacles can be obtained at the initial interaction stages on the background of the so-called “thin layer hypothesis”. Thus, the shell–wave interaction model defined by integro-differential dynamic equations with analytically determined kernels of integral operators becomes hence two-dimensional but nonlocal in time. On the other hand, the initial interaction stage results in localized dynamic loadings and consequently in complex strain and stress states that require higher-order shell theories. Here the modified theory of I.N.Vekua–A.A.Amosov-type is formulated in terms of analytical continuum dynamics. The shell model is constructed on a two-dimensional manifold within a set of field variables, Lagrangian density, and constraint equations following from the boundary conditions “shifted” from the shell faces to its base surface. Such an approach allows one to construct consistent low-order shell models within a unified formal hierarchy. The equations of the N th-order shell theory are singularly perturbed and contain second-order partial derivatives with respect to time and surface coordinates whereas the numerical integration of systems of first-order equations is more efficient. Such systems can be obtained as Hamilton–de Donder–Weyl-type equations for the Lagrangian dynamical system. The Hamiltonian formulation of the elementary N th-order shell theory is here briefly described.

  7. Classification of almost toric singularities of Lagrangian foliations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izosimov, Anton M

    2011-07-31

    The topological classification is given of almost toric singularities of integrable Hamiltonian systems with a large number of degrees of freedom, that is, of nondegenerate singularities without hyperbolic components. A descriptive geometric model is constructed, which makes it possible to perform effective calculations. Bibliography: 10 titles.

  8. American Mathematics from 1940 to the Day Before Yesterday

    ERIC Educational Resources Information Center

    Ewing, J. H.; And Others

    1976-01-01

    Ten recent results in pure mathematics are described, covering the continuum hypothesis, Diophantine equations, simple groups, resolution of singularities, Weil conjectures, Lie groups, Poincare conjecture, exotic spheres, differential equations, and the index theorem. Proofs are omitted, but references are provided. (DT)

  9. Finite Difference Schemes as Algebraic Correspondences between Layers

    NASA Astrophysics Data System (ADS)

    Malykh, Mikhail; Sevastianov, Leonid

    2018-02-01

    For some differential equations, especially for Riccati equation, new finite difference schemes are suggested. These schemes define protective correspondences between the layers. Calculation using these schemes can be extended to the area beyond movable singularities of exact solution without any error accumulation.

  10. A singularity free analytical solution of artificial satellite motion with drag

    NASA Technical Reports Server (NTRS)

    Scheifele, G.; Mueller, A. C.; Starke, S. E.

    1977-01-01

    The connection between the existing Delaunay-Similar and Poincare-Similar satellite theories in the true anomaly version is outlined for the J(2) perturbation and the new drag approach. An overall description of the concept of the approach is given while the necessary expansions and the procedure to arrive at the computer program for the canonical forces is delineated. The procedure for the analytical integration of these developed equations is described. In addition, some numerical results are given. The computer program for the algebraic multiplication of the Fourier series which creates the FORTRAN coding in an automatic manner is described and documented.

  11. Fracture analysis of a transversely isotropic high temperature superconductor strip based on real fundamental solutions

    NASA Astrophysics Data System (ADS)

    Gao, Zhiwen; Zhou, Youhe

    2015-04-01

    Real fundamental solution for fracture problem of transversely isotropic high temperature superconductor (HTS) strip is obtained. The superconductor E-J constitutive law is characterized by the Bean model where the critical current density is independent of the flux density. Fracture analysis is performed by the methods of singular integral equations which are solved numerically by Gauss-Lobatto-Chybeshev (GSL) collocation method. To guarantee a satisfactory accuracy, the convergence behavior of the kernel function is investigated. Numerical results of fracture parameters are obtained and the effects of the geometric characteristics, applied magnetic field and critical current density on the stress intensity factors (SIF) are discussed.

  12. An elastic strip with multiple cracks and applications to tapered specimens

    NASA Technical Reports Server (NTRS)

    Liu, X.-H.; Erdogan, F.

    1985-01-01

    In this paper an infinite elastic strip containing arbitrarily oriented cracks and subjected to uniform tension and a pair of concentrated forces is formulated in terms of a system of singular integral equations. Even though the technique is sufficiently general to solve new multiple crack problem, with the objective of applying the results to tapered specimens, only a certain symmetric crack geometry and loading conditions are considered. The stress intensity factors are calculated for edge cracks in the strip under uniform tension and for a 'compact' and a 'slender' tapered specimen (the latter simulating the double cantilever beam) under concentrated forces or crack surface wedge forces.

  13. Bio-inspired computational heuristics to study Lane-Emden systems arising in astrophysics model.

    PubMed

    Ahmad, Iftikhar; Raja, Muhammad Asif Zahoor; Bilal, Muhammad; Ashraf, Farooq

    2016-01-01

    This study reports novel hybrid computational methods for the solutions of nonlinear singular Lane-Emden type differential equation arising in astrophysics models by exploiting the strength of unsupervised neural network models and stochastic optimization techniques. In the scheme the neural network, sub-part of large field called soft computing, is exploited for modelling of the equation in an unsupervised manner. The proposed approximated solutions of higher order ordinary differential equation are calculated with the weights of neural networks trained with genetic algorithm, and pattern search hybrid with sequential quadratic programming for rapid local convergence. The results of proposed solvers for solving the nonlinear singular systems are in good agreements with the standard solutions. Accuracy and convergence the design schemes are demonstrated by the results of statistical performance measures based on the sufficient large number of independent runs.

  14. RAS one-equation turbulence model with non-singular eddy-viscosity coefficient

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Agarwal, R. K.; Siikonen, T.

    2016-02-01

    A simplified consistency formulation for Pk/ε (production to dissipation ratio) is devised to obtain a non-singular Cμ (coefficient of eddy-viscosity) in the explicit algebraic Reynolds stress model of Gatski and Speziale. The coefficient Cμ depends non-linearly on both rotational/irrotational strains and is used in the framework of an improved RAS (Rahman-Agarwal-Siikonen) one-equation turbulence model to calculate a few well-documented turbulent flows, yielding predictions in good agreement with the direct numerical simulation and experimental data. The strain-dependent Cμ assists the RAS model in constructing the coefficients and functions such as to benefit complex flows with non-equilibrium turbulence. Comparisons with the Spalart-Allmaras one-equation model and the shear stress transport k-ω model demonstrate that Cμ improves the response of RAS model to non-equilibrium effects.

  15. A Highly Accurate Technique for the Treatment of Flow Equations at the Polar Axis in Cylindrical Coordinates using Series Expansions. Appendix A

    NASA Technical Reports Server (NTRS)

    Constantinescu, George S.; Lele, S. K.

    2001-01-01

    Numerical methods for solving the flow equations in cylindrical or spherical coordinates should be able to capture the behavior of the exact solution near the regions where the particular form of the governing equations is singular. In this work we focus on the treatment of these numerical singularities for finite-differences methods by reinterpreting the regularity conditions developed in the context of pseudo-spectral methods. A generally applicable numerical method for treating the singularities present at the polar axis, when nonaxisymmetric flows are solved in cylindrical, coordinates using highly accurate finite differences schemes (e.g., Pade schemes) on non-staggered grids, is presented. Governing equations for the flow at the polar axis are derived using series expansions near r=0. The only information needed to calculate the coefficients in these equations are the values of the flow variables and their radial derivatives at the previous iteration (or time) level. These derivatives, which are multi-valued at the polar axis, are calculated without dropping the accuracy of the numerical method using a mapping of the flow domain from (0,R)*(0,2pi) to (-R,R)*(0,pi), where R is the radius of the computational domain. This allows the radial derivatives to be evaluated using high-order differencing schemes (e.g., compact schemes) at points located on the polar axis. The proposed technique is illustrated by results from simulations of laminar-forced jets and turbulent compressible jets using large eddy simulation (LES) methods. In term of the general robustness of the numerical method and smoothness of the solution close to the polar axis, the present results compare very favorably to similar calculations in which the equations are solved in Cartesian coordinates at the polar axis, or in which the singularity is removed by employing a staggered mesh in the radial direction without a mesh point at r=0, following the method proposed recently by Mohseni and Colonius (1). Extension of the method described here for incompressible flows or for any other set of equations that are solved on a non-staggered mesh in cylindrical or spherical coordinates with finite-differences schemes of various level of accuracy is immediate.

  16. Singularity perturbed zero dynamics of nonlinear systems

    NASA Technical Reports Server (NTRS)

    Isidori, A.; Sastry, S. S.; Kokotovic, P. V.; Byrnes, C. I.

    1992-01-01

    Stability properties of zero dynamics are among the crucial input-output properties of both linear and nonlinear systems. Unstable, or 'nonminimum phase', zero dynamics are a major obstacle to input-output linearization and high-gain designs. An analysis of the effects of regular perturbations in system equations on zero dynamics shows that whenever a perturbation decreases the system's relative degree, it manifests itself as a singular perturbation of zero dynamics. Conditions are given under which the zero dynamics evolve in two timescales characteristic of a standard singular perturbation form that allows a separate analysis of slow and fast parts of the zero dynamics.

  17. Asymptotic Behaviour of the Ground State of Singularly Perturbed Elliptic Equations

    NASA Astrophysics Data System (ADS)

    Piatnitski, Andrey L.

    The ground state of a singularly perturbed nonselfadjoint elliptic operator defined on a smooth compact Riemannian manifold with metric aij(x)=(aij(x))-1, is studied. We investigate the limiting behaviour of the first eigenvalue of this operator as μ goes to zero, and find the logarithmic asymptotics of the first eigenfunction everywhere on the manifold. The results are formulated in terms of auxiliary variational problems on the manifold. This approach also allows to study the general singularly perturbed second order elliptic operator on a bounded domain in Rn.

  18. Dissipative universe-inflation with soft singularity

    NASA Astrophysics Data System (ADS)

    Brevik, Iver; Timoshkin, Alexander V.

    We investigate the early-time accelerated universe after the Big Bang. We pay attention to the dissipative properties of the inflationary universe in the presence of a soft type singularity, making use of the parameters of the generalized equation of state of the fluid. Flat Friedmann-Robertson-Walker metric is being used. We consider cosmological models leading to the so-called type IV singular inflation. Our obtained theoretical results are compared with observational data from the Planck satellite. The theoretical predictions for the spectral index turn out to be in agreement with the data, while for the scalar-to-tensor ratio, there are minor deviations.

  19. Resonant vibrations of a submerged beam

    NASA Astrophysics Data System (ADS)

    Achenbach, J. D.; Qu, J.

    1986-03-01

    Forced vibration of a simply supported submerged beam of circular cross section is investigated by the use of two mathematical methods. In the first approach the problem formulation is reduced to a singular integro-differential equation for the transverse deflection. In the second approach the method of matched asymptotic expansions is employed. The integro-differential equation is solved numerically, to yield an exact solution for the frequency response. Subsequent use of a representation integral yields the radiated far field acoustic pressure. The exact results for the beam deflection are compared with approximate results that are available in the literature. Next, a matched asymptotic expansion is worked out by constructing "inner" and "outer" expansions for frequencies near and not near resonance frequencies, respectively. The two expansions are matched in an appropriate manner to yield a uniformly valid solution. The leading term of the matched asymptotic solution is compared with exact numerical results.

  20. From Newton's Law to the Linear Boltzmann Equation Without Cut-Off

    NASA Astrophysics Data System (ADS)

    Ayi, Nathalie

    2017-03-01

    We provide a rigorous derivation of the linear Boltzmann equation without cut-off starting from a system of particles interacting via a potential with infinite range as the number of particles N goes to infinity under the Boltzmann-Grad scaling. More particularly, we will describe the motion of a tagged particle in a gas close to global equilibrium. The main difficulty in our context is that, due to the infinite range of the potential, a non-integrable singularity appears in the angular collision kernel, making no longer valid the single-use of Lanford's strategy. Our proof relies then on a combination of Lanford's strategy, of tools developed recently by Bodineau, Gallagher and Saint-Raymond to study the collision process, and of new duality arguments to study the additional terms associated with the long-range interaction, leading to some explicit weak estimates.

  1. The Versatile Elastohydrodynamics of a Free Particle near a Thin Soft Wall

    NASA Astrophysics Data System (ADS)

    Salez, Thomas; Saintyves, Baudouin; Mahadevan, L.

    2015-03-01

    We address the free motion of a buoyant particle inside a viscous fluid, in the vicinity of a thin compressible elastic wall. After discussing the main scalings, we obtain analytically the dominant drag forces within the soft lubrication approximation. By including those into the equations of motion of the particle, we establish a general governing system of three coupled nonlinear and singular differential equations, that describe the three essential motions: sedimentation, hydroplaning, and hydrospinning, through four dimensionless control parameters. Numerical integration allows us to predict a wide zoology of exotic solutions - despite the low-Reynolds feature of the flow - including: spontaneous oscillation, Magnus-like effect, enhanced sedimentation, and boomerang-like effect. We compare these predictions to experiments. The presented elementary approach could be of interest in the description of a broad variety of elastohydrodynamical phenomena, including: landslides, ageing of cartilaginous joints, and motion of a cell in a microfluidic channel or in a blood vessel.

  2. Dispersion analysis of leaky guided waves in fluid-loaded waveguides of generic shape.

    PubMed

    Mazzotti, M; Marzani, A; Bartoli, I

    2014-01-01

    A fully coupled 2.5D formulation is proposed to compute the dispersive parameters of waveguides with arbitrary cross-section immersed in infinite inviscid fluids. The discretization of the waveguide is performed by means of a Semi-Analytical Finite Element (SAFE) approach, whereas a 2.5D BEM formulation is used to model the impedance of the surrounding infinite fluid. The kernels of the boundary integrals contain the fundamental solutions of the space Fourier-transformed Helmholtz equation, which governs the wave propagation process in the fluid domain. Numerical difficulties related to the evaluation of singular integrals are avoided by using a regularization procedure. To improve the numerical stability of the discretized boundary integral equations for the external Helmholtz problem, the so called CHIEF method is used. The discrete wave equation results in a nonlinear eigenvalue problem in the complex axial wavenumbers that is solved at the frequencies of interest by means of a contour integral algorithm. In order to separate physical from non-physical solutions and to fulfill the requirement of holomorphicity of the dynamic stiffness matrix inside the complex wavenumber contour, the phase of the radial bulk wavenumber is uniquely defined by enforcing the Snell-Descartes law at the fluid-waveguide interface. Three numerical applications are presented. The computed dispersion curves for a circular bar immersed in oil are in agreement with those extracted using the Global Matrix Method. Novel results are presented for viscoelastic steel bars of square and L-shaped cross-section immersed in water. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Finite element techniques applied to cracks interacting with selected singularities

    NASA Technical Reports Server (NTRS)

    Conway, J. C.

    1975-01-01

    The finite-element method for computing the extensional stress-intensity factor for cracks approaching selected singularities of varied geometry is described. Stress-intensity factors are generated using both displacement and J-integral techniques, and numerical results are compared to those obtained experimentally in a photoelastic investigation. The selected singularities considered are a colinear crack, a circular penetration, and a notched circular penetration. Results indicate that singularities greatly influence the crack-tip stress-intensity factor as the crack approaches the singularity. In addition, the degree of influence can be regulated by varying the overall geometry of the singularity. Local changes in singularity geometry have little effect on the stress-intensity factor for the cases investigated.

  4. The scattering variety

    NASA Astrophysics Data System (ADS)

    He, Yang-Hui; Matti, Cyril; Sun, Chuang

    2014-10-01

    The so-called Scattering Equations which govern the kinematics of the scattering of massless particles in arbitrary dimensions have recently been cast into a system of homogeneous polynomials. We study these as affine and projective geometries which we call Scattering Varieties by analyzing such properties as Hilbert series, Euler characteristic and singularities. Interestingly, we find structures such as affine Calabi-Yau threefolds as well as singular K3 and Fano varieties.

  5. The general relativistic thin disc evolution equation

    NASA Astrophysics Data System (ADS)

    Balbus, Steven A.

    2017-11-01

    In the classical theory of thin disc accretion discs, the constraints of mass and angular momentum conservation lead to a diffusion-like equation for the turbulent evolution of the surface density. Here, we revisit this problem, extending the Newtonian analysis to the regime of Kerr geometry relevant to black holes. A diffusion-like equation once again emerges, but now with a singularity at the radius at which the effective angular momentum gradient passes through zero. The equation may be analysed using a combination of Wentzel-Kramers-Brillouin techniques, local techniques and matched asymptotic expansions. It is shown that imposing the boundary condition of a vanishing stress tensor (more precisely the radial-azimuthal component thereof) allows smooth stable modes to exist external to the angular momentum singularity, the innermost stable circular orbit, while smoothly vanishing inside this location. The extension of the disc diffusion equation to the domain of general relativity introduces a new tool for numerical and phenomenological studies of accretion discs, and may prove to be a useful technique for understanding black hole X-ray transients.

  6. Absence of splash singularities for surface quasi-geostrophic sharp fronts and the Muskat problem

    PubMed Central

    Gancedo, Francisco; Strain, Robert M.

    2014-01-01

    In this paper, for both the sharp front surface quasi-geostrophic equation and the Muskat problem, we rule out the “splash singularity” blow-up scenario; in other words, we prove that the contours evolving from either of these systems cannot intersect at a single point while the free boundary remains smooth. Splash singularities have been shown to hold for the free boundary incompressible Euler equation in the form of the water waves contour evolution problem. Our result confirms the numerical simulations in earlier work, in which it was shown that the curvature blows up because the contours collapse at a point. Here, we prove that maintaining control of the curvature will remove the possibility of pointwise interphase collapse. Another conclusion that we provide is a better understanding of earlier work in which squirt singularities are ruled out; in this case, a positive volume of fluid between the contours cannot be ejected in finite time. PMID:24347645

  7. Experimental characterization of extreme events of inertial dissipation in a turbulent swirling flow

    PubMed Central

    Saw, E. -W.; Kuzzay, D.; Faranda, D.; Guittonneau, A.; Daviaud, F.; Wiertel-Gasquet, C.; Padilla, V.; Dubrulle, B.

    2016-01-01

    The three-dimensional incompressible Navier–Stokes equations, which describe the motion of many fluids, are the cornerstones of many physical and engineering sciences. However, it is still unclear whether they are mathematically well posed, that is, whether their solutions remain regular over time or develop singularities. Even though it was shown that singularities, if exist, could only be rare events, they may induce additional energy dissipation by inertial means. Here, using measurements at the dissipative scale of an axisymmetric turbulent flow, we report estimates of such inertial energy dissipation and identify local events of extreme values. We characterize the topology of these extreme events and identify several main types. Most of them appear as fronts separating regions of distinct velocities, whereas events corresponding to focusing spirals, jets and cusps are also found. Our results highlight the non-triviality of turbulent flows at sub-Kolmogorov scales as possible footprints of singularities of the Navier–Stokes equation. PMID:27578459

  8. Trajectory planning of free-floating space robot using Particle Swarm Optimization (PSO)

    NASA Astrophysics Data System (ADS)

    Wang, Mingming; Luo, Jianjun; Walter, Ulrich

    2015-07-01

    This paper investigates the application of Particle Swarm Optimization (PSO) strategy to trajectory planning of the kinematically redundant space robot in free-floating mode. Due to the path dependent dynamic singularities, the volume of available workspace of the space robot is limited and enormous joint velocities are required when such singularities are met. In order to overcome this effect, the direct kinematics equations in conjunction with PSO are employed for trajectory planning of free-floating space robot. The joint trajectories are parametrized with the Bézier curve to simplify the calculation. Constrained PSO scheme with adaptive inertia weight is implemented to find the optimal solution of joint trajectories while specific objectives and imposed constraints are satisfied. The proposed method is not sensitive to the singularity issue due to the application of forward kinematic equations. Simulation results are presented for trajectory planning of 7 degree-of-freedom (DOF) redundant manipulator mounted on a free-floating spacecraft and demonstrate the effectiveness of the proposed method.

  9. Variety of (d + 1) dimensional cosmological evolutions with and without bounce in a class of LQC-inspired models

    NASA Astrophysics Data System (ADS)

    Rama, S. Kalyana

    2017-08-01

    The bouncing evolution of an universe in Loop Quantum Cosmology can be described very well by a set of effective equations, involving a function sin x. Recently, we have generalised these effective equations to (d + 1) dimensions and to any function f( x). Depending on f( x) in these models inspired by Loop Quantum Cosmology, a variety of cosmological evolutions are possible, singular as well as non singular. In this paper, we study them in detail. Among other things, we find that the scale factor a(t) ∝ t^{ 2 q/(2 q - 1) (1 + w) d} for f(x) = x^q, and find explicit Kasner-type solutions if w = 2 q - 1 also. A result which we find particularly fascinating is that, for f(x) = √{x}, the evolution is non singular and the scale factor a( t) grows exponentially at a rate set, not by a constant density, but by a quantum parameter related to the area quantum.

  10. Non-singular and cyclic universe from the modified GUP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salah, Maha; Hammad, Fayçal; Faizal, Mir

    In this paper, we investigate the effects of a new version of the generalized uncertainty principle (modified GUP) on the dynamics of the Universe. As the modified GUP will modify the relation between the entropy and area of the apparent horizon, it will also deform the Friedmann equations within Jacobson's approach. We explicitly find these deformed Friedmann equations governing the modified GUP-corrected dynamics of such a Universe. It is shown that the modified GUP-deformed Jacobson's approach implies an upper bound for the density of such a Universe. The Big Bang singularity can therefore also be avoided using the modified GUP-correctionsmore » to horizons' thermodynamics. In fact, we are able to analyze the pre Big Bang state of the Universe. Furthermore, the equations imply that the expansion of the Universe will come to a halt and then will immediately be followed by a contracting phase. When the equations are extrapolated beyond the maximum rate of contraction, a cyclic Universe scenario emerges.« less

  11. Non-singular and cyclic universe from the modified GUP

    NASA Astrophysics Data System (ADS)

    Salah, Maha; Hammad, Fayçal; Faizal, Mir; Farag Ali, Ahmed

    2017-02-01

    In this paper, we investigate the effects of a new version of the generalized uncertainty principle (modified GUP) on the dynamics of the Universe. As the modified GUP will modify the relation between the entropy and area of the apparent horizon, it will also deform the Friedmann equations within Jacobson's approach. We explicitly find these deformed Friedmann equations governing the modified GUP-corrected dynamics of such a Universe. It is shown that the modified GUP-deformed Jacobson's approach implies an upper bound for the density of such a Universe. The Big Bang singularity can therefore also be avoided using the modified GUP-corrections to horizons' thermodynamics. In fact, we are able to analyze the pre Big Bang state of the Universe. Furthermore, the equations imply that the expansion of the Universe will come to a halt and then will immediately be followed by a contracting phase. When the equations are extrapolated beyond the maximum rate of contraction, a cyclic Universe scenario emerges.

  12. A spectral approach for the stability analysis of turbulent open-channel flows over granular beds

    NASA Astrophysics Data System (ADS)

    Camporeale, C.; Canuto, C.; Ridolfi, L.

    2012-01-01

    A novel Orr-Sommerfeld-like equation for gravity-driven turbulent open-channel flows over a granular erodible bed is here derived, and the linear stability analysis is developed. The whole spectrum of eigenvalues and eigenvectors of the complete generalized eigenvalue problem is computed and analyzed. The fourth-order eigenvalue problem presents singular non-polynomial coefficients with non-homogenous Robin-type boundary conditions that involve first and second derivatives. Furthermore, the Exner condition is imposed at an internal point. We propose a numerical discretization of spectral type based on a single-domain Galerkin scheme. In order to manage the presence of singular coefficients, some properties of Jacobi polynomials have been carefully blended with numerical integration of Gauss-Legendre type. The results show a positive agreement with the classical experimental data and allow one to relate the different types of instability to such parameters as the Froude number, wavenumber, and the roughness scale. The eigenfunctions allow two types of boundary layers to be distinguished, scaling, respectively, with the roughness height and the saltation layer for the bedload sediment transport.

  13. One-loop corrections from higher dimensional tree amplitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cachazo, Freddy; He, Song; Yuan, Ellis Ye

    We show how one-loop corrections to scattering amplitudes of scalars and gauge bosons can be obtained from tree amplitudes in one higher dimension. Starting with a complete tree-level scattering amplitude of n + 2 particles in five dimensions, one assumes that two of them cannot be “detected” and therefore an integration over their LIPS is carried out. The resulting object, function of the remaining n particles, is taken to be four-dimensional by restricting the corresponding momenta. We perform this procedure in the context of the tree-level CHY formulation of amplitudes. The scattering equations obtained in the procedure coincide with thosemore » derived by Geyer et al. from ambitwistor constructions and recently studied by two of the authors for bi-adjoint scalars. They have two sectors of solutions: regular and singular. We prove that the contribution from regular solutions generically gives rise to unphysical poles. However, using a BCFW argument we prove that the unphysical contributions are always homogeneous functions of the loop momentum and can be discarded. We also show that the contribution from singular solutions turns out to be homogeneous as well.« less

  14. One-loop corrections from higher dimensional tree amplitudes

    DOE PAGES

    Cachazo, Freddy; He, Song; Yuan, Ellis Ye

    2016-08-01

    We show how one-loop corrections to scattering amplitudes of scalars and gauge bosons can be obtained from tree amplitudes in one higher dimension. Starting with a complete tree-level scattering amplitude of n + 2 particles in five dimensions, one assumes that two of them cannot be “detected” and therefore an integration over their LIPS is carried out. The resulting object, function of the remaining n particles, is taken to be four-dimensional by restricting the corresponding momenta. We perform this procedure in the context of the tree-level CHY formulation of amplitudes. The scattering equations obtained in the procedure coincide with thosemore » derived by Geyer et al. from ambitwistor constructions and recently studied by two of the authors for bi-adjoint scalars. They have two sectors of solutions: regular and singular. We prove that the contribution from regular solutions generically gives rise to unphysical poles. However, using a BCFW argument we prove that the unphysical contributions are always homogeneous functions of the loop momentum and can be discarded. We also show that the contribution from singular solutions turns out to be homogeneous as well.« less

  15. On some theoretical and practical aspects of multigrid methods. [to solve finite element systems from elliptic equations

    NASA Technical Reports Server (NTRS)

    Nicolaides, R. A.

    1979-01-01

    A description and explanation of a simple multigrid algorithm for solving finite element systems is given. Numerical results for an implementation are reported for a number of elliptic equations, including cases with singular coefficients and indefinite equations. The method shows the high efficiency, essentially independent of the grid spacing, predicted by the theory.

  16. Geometry of PDE's. IV

    NASA Astrophysics Data System (ADS)

    Prástaro, Agostino

    2008-02-01

    Following our previous results on this subject [R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(I): Webs on PDE's and integral bordism groups. The general theory, Adv. Math. Sci. Appl. 17 (2007) 239-266; R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(II): Webs on PDE's and integral bordism groups. Applications to Riemannian geometry PDE's, Adv. Math. Sci. Appl. 17 (2007) 267-285; A. Prástaro, Geometry of PDE's and Mechanics, World Scientific, Singapore, 1996; A. Prástaro, Quantum and integral (co)bordism in partial differential equations, Acta Appl. Math. (5) (3) (1998) 243-302; A. Prástaro, (Co)bordism groups in PDE's, Acta Appl. Math. 59 (2) (1999) 111-201; A. Prástaro, Quantized Partial Differential Equations, World Scientific Publishing Co, Singapore, 2004, 500 pp.; A. Prástaro, Geometry of PDE's. I: Integral bordism groups in PDE's, J. Math. Anal. Appl. 319 (2006) 547-566; A. Prástaro, Geometry of PDE's. II: Variational PDE's and integral bordism groups, J. Math. Anal. Appl. 321 (2006) 930-948; A. Prástaro, Th.M. Rassias, Ulam stability in geometry of PDE's, Nonlinear Funct. Anal. Appl. 8 (2) (2003) 259-278; I. Stakgold, Boundary Value Problems of Mathematical Physics, I, The MacMillan Company, New York, 1967; I. Stakgold, Boundary Value Problems of Mathematical Physics, II, Collier-MacMillan, Canada, Ltd, Toronto, Ontario, 1968], integral bordism groups of the Navier-Stokes equation are calculated for smooth, singular and weak solutions, respectively. Then a characterization of global solutions is made on this ground. Enough conditions to assure existence of global smooth solutions are given and related to nullity of integral characteristic numbers of the boundaries. Stability of global solutions are related to some characteristic numbers of the space-like Cauchy dataE Global solutions of variational problems constrained by (NS) are classified by means of suitable integral bordism groups too.

  17. Kalman Filter Estimation of Spinning Spacecraft Attitude using Markley Variables

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph E.; Harman, Richard

    2004-01-01

    There are several different ways to represent spacecraft attitude and its time rate of change. For spinning or momentum-biased spacecraft, one particular representation has been put forward as a superior parameterization for numerical integration. Markley has demonstrated that these new variables have fewer rapidly varying elements for spinning spacecraft than other commonly used representations and provide advantages when integrating the equations of motion. The current work demonstrates how a Kalman filter can be devised to estimate the attitude using these new variables. The seven Markley variables are subject to one constraint condition, making the error covariance matrix singular. The filter design presented here explicitly accounts for this constraint by using a six-component error state in the filter update step. The reduced dimension error state is unconstrained and its covariance matrix is nonsingular.

  18. Mathematical and computational aspects of nonuniform frictional slip modeling

    NASA Astrophysics Data System (ADS)

    Gorbatikh, Larissa

    2004-07-01

    A mechanics-based model of non-uniform frictional sliding is studied from the mathematical/computational analysis point of view. This problem is of a key importance for a number of applications (particularly geomechanical ones), where materials interfaces undergo partial frictional sliding under compression and shear. We show that the problem is reduced to Dirichlet's problem for monotonic loading and to Riemman's problem for cyclic loading. The problem may look like a traditional crack interaction problem, however, it is confounded by the fact that locations of n sliding intervals are not known. They are to be determined from the condition for the stress intensity factors: KII=0 at the ends of the sliding zones. Computationally, it reduces to solving a system of 2n coupled non-linear algebraic equations involving singular integrals with unknown limits of integration.

  19. Singularities in Optimal Structural Design

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Guptill, J. D.; Berke, L.

    1992-01-01

    Singularity conditions that arise during structural optimization can seriously degrade the performance of the optimizer. The singularities are intrinsic to the formulation of the structural optimization problem and are not associated with the method of analysis. Certain conditions that give rise to singularities have been identified in earlier papers, encompassing the entire structure. Further examination revealed more complex sets of conditions in which singularities occur. Some of these singularities are local in nature, being associated with only a segment of the structure. Moreover, the likelihood that one of these local singularities may arise during an optimization procedure can be much greater than that of the global singularity identified earlier. Examples are provided of these additional forms of singularities. A framework is also given in which these singularities can be recognized. In particular, the singularities can be identified by examination of the stress displacement relations along with the compatibility conditions and/or the displacement stress relations derived in the integrated force method of structural analysis.

  20. Singularities in optimal structural design

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Guptill, J. D.; Berke, L.

    1992-01-01

    Singularity conditions that arise during structural optimization can seriously degrade the performance of the optimizer. The singularities are intrinsic to the formulation of the structural optimization problem and are not associated with the method of analysis. Certain conditions that give rise to singularities have been identified in earlier papers, encompassing the entire structure. Further examination revealed more complex sets of conditions in which singularities occur. Some of these singularities are local in nature, being associated with only a segment of the structure. Moreover, the likelihood that one of these local singularities may arise during an optimization procedure can be much greater than that of the global singularity identified earlier. Examples are provided of these additional forms of singularities. A framework is also given in which these singularities can be recognized. In particular, the singularities can be identified by examination of the stress displacement relations along with the compatibility conditions and/or the displacement stress relations derived in the integrated force method of structural analysis.

  1. Leading singularities and off-shell conformal integrals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drummond, James; Duhr, Claude; Eden, Burkhard

    2013-08-29

    The three-loop four-point function of stress-tensor multiplets in N=4 super Yang-Mills theory contains two so far unknown, off-shell, conformal integrals, in addition to the known, ladder-type integrals. In our paper we evaluate the unknown integrals, thus obtaining the three-loop correlation function analytically. The integrals have the generic structure of rational functions multiplied by (multiple) polylogarithms. We use the idea of leading singularities to obtain the rational coefficients, the symbol — with an appropriate ansatz for its structure — as a means of characterising multiple polylogarithms, and the technique of asymptotic expansion of Feynman integrals to obtain the integrals in certainmore » limits. The limiting behaviour uniquely fixes the symbols of the integrals, which we then lift to find the corresponding polylogarithmic functions. The final formulae are numerically confirmed. Furthermore, we develop techniques that can be applied more generally, and we illustrate this by analytically evaluating one of the integrals contributing to the same four-point function at four loops. This example shows a connection between the leading singularities and the entries of the symbol.« less

  2. Asymptotic behavior of dynamical variables and naked singularity formation in spherically symmetric gravitational collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, Hayato; Mitsuda, Eiji; Nambu, Yasusada

    In considering the gravitational collapse of matter, it is an important problem to clarify what kind of conditions leads to the formation of naked singularity. For this purpose, we apply the 1+3 orthonormal frame formalism introduced by Uggla et al. to the spherically symmetric gravitational collapse of a perfect fluid. This formalism allows us to construct an autonomous system of evolution and constraint equations for scale-invariant dynamical variables normalized by the volume expansion rate of the timelike orthonormal frame vector. We investigate the asymptotic evolution of such dynamical variables towards the formation of a central singularity and present a conjecturemore » that the steep spatial gradient for the normalized density function is a characteristic of the naked singularity formation.« less

  3. FastMag: Fast micromagnetic simulator for complex magnetic structures (invited)

    NASA Astrophysics Data System (ADS)

    Chang, R.; Li, S.; Lubarda, M. V.; Livshitz, B.; Lomakin, V.

    2011-04-01

    A fast micromagnetic simulator (FastMag) for general problems is presented. FastMag solves the Landau-Lifshitz-Gilbert equation and can handle multiscale problems with a high computational efficiency. The simulator derives its high performance from efficient methods for evaluating the effective field and from implementations on massively parallel graphics processing unit (GPU) architectures. FastMag discretizes the computational domain into tetrahedral elements and therefore is highly flexible for general problems. The magnetostatic field is computed via the superposition principle for both volume and surface parts of the computational domain. This is accomplished by implementing efficient quadrature rules and analytical integration for overlapping elements in which the integral kernel is singular. Thus, discretized superposition integrals are computed using a nonuniform grid interpolation method, which evaluates the field from N sources at N collocated observers in O(N) operations. This approach allows handling objects of arbitrary shape, allows easily calculating of the field outside the magnetized domains, does not require solving a linear system of equations, and requires little memory. FastMag is implemented on GPUs with ?> GPU-central processing unit speed-ups of 2 orders of magnitude. Simulations are shown of a large array of magnetic dots and a recording head fully discretized down to the exchange length, with over a hundred million tetrahedral elements on an inexpensive desktop computer.

  4. Singular solution of the Feller diffusion equation via a spectral decomposition.

    PubMed

    Gan, Xinjun; Waxman, David

    2015-01-01

    Feller studied a branching process and found that the distribution for this process approximately obeys a diffusion equation [W. Feller, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, Berkeley and Los Angeles, 1951), pp. 227-246]. This diffusion equation and its generalizations play an important role in many scientific problems, including, physics, biology, finance, and probability theory. We work under the assumption that the fundamental solution represents a probability density and should account for all of the probability in the problem. Thus, under the circumstances where the random process can be irreversibly absorbed at the boundary, this should lead to the presence of a Dirac delta function in the fundamental solution at the boundary. However, such a feature is not present in the standard approach (Laplace transformation). Here we require that the total integrated probability is conserved. This yields a fundamental solution which, when appropriate, contains a term proportional to a Dirac delta function at the boundary. We determine the fundamental solution directly from the diffusion equation via spectral decomposition. We obtain exact expressions for the eigenfunctions, and when the fundamental solution contains a Dirac delta function at the boundary, every eigenfunction of the forward diffusion operator contains a delta function. We show how these combine to produce a weight of the delta function at the boundary which ensures the total integrated probability is conserved. The solution we present covers cases where parameters are time dependent, thereby greatly extending its applicability.

  5. Singular solution of the Feller diffusion equation via a spectral decomposition

    NASA Astrophysics Data System (ADS)

    Gan, Xinjun; Waxman, David

    2015-01-01

    Feller studied a branching process and found that the distribution for this process approximately obeys a diffusion equation [W. Feller, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, Berkeley and Los Angeles, 1951), pp. 227-246]. This diffusion equation and its generalizations play an important role in many scientific problems, including, physics, biology, finance, and probability theory. We work under the assumption that the fundamental solution represents a probability density and should account for all of the probability in the problem. Thus, under the circumstances where the random process can be irreversibly absorbed at the boundary, this should lead to the presence of a Dirac delta function in the fundamental solution at the boundary. However, such a feature is not present in the standard approach (Laplace transformation). Here we require that the total integrated probability is conserved. This yields a fundamental solution which, when appropriate, contains a term proportional to a Dirac delta function at the boundary. We determine the fundamental solution directly from the diffusion equation via spectral decomposition. We obtain exact expressions for the eigenfunctions, and when the fundamental solution contains a Dirac delta function at the boundary, every eigenfunction of the forward diffusion operator contains a delta function. We show how these combine to produce a weight of the delta function at the boundary which ensures the total integrated probability is conserved. The solution we present covers cases where parameters are time dependent, thereby greatly extending its applicability.

  6. Stability of the nakedness of Weyl singularities

    NASA Technical Reports Server (NTRS)

    Haugan, M. P.; Liang, E. P. T.

    1979-01-01

    The stability of the nakedness of the Weyl singularities against matter perturbations is investigated. Consideration is given to the effects of infalling test matter on the convergence of outgoing null rays. It is shown that the additional convergence induced by infalling test matter does not blow up sufficiently fast to reconverge diverging outgoing rays, at least in the equator, and that the nakedness seems to be stable in this limited sense.

  7. A parallel algorithm for nonlinear convection-diffusion equations

    NASA Technical Reports Server (NTRS)

    Scroggs, Jeffrey S.

    1990-01-01

    A parallel algorithm for the efficient solution of nonlinear time-dependent convection-diffusion equations with small parameter on the diffusion term is presented. The method is based on a physically motivated domain decomposition that is dictated by singular perturbation analysis. The analysis is used to determine regions where certain reduced equations may be solved in place of the full equation. The method is suitable for the solution of problems arising in the simulation of fluid dynamics. Experimental results for a nonlinear equation in two-dimensions are presented.

  8. Perturbation analysis of the limit cycle of the free van der Pol equation

    NASA Technical Reports Server (NTRS)

    Dadfar, M. B.; Geer, J.; Anderson, C. M.

    1983-01-01

    A power series expansion in the damping parameter, epsilon, of the limit cycle of the free van der Pol equation is constructed and analyzed. Coefficients in the expansion are computed in exact rational arithmetic using the symbolic manipulation system MACSYMA and using a FORTRAN program. The series is analyzed using Pade approximants. The convergence of the series for the maximum amplitude of the limit cycle is limited by two pair of complex conjugate singularities in the complex epsilon-plane. A new expansion parameter is introduced which maps these singularities to infinity and leads to a new expansion for the amplitude which converges for all real values of epsilon. Amplitudes computed from this transformed series agree very well with reported numerical and asymptotic results. For the limit cycle itself, convergence of the series expansion is limited by three pair of complex conjugate branch point singularities. Two pair remain fixed throughout the cycle, and correspond to the singularities found in the maximum amplitude series, while the third pair moves in the epsilon-plane as a function of t from one of the fixed pairs to the other. The limit cycle series is transformed using a new expansion parameter, which leads to a new series that converges for larger values of epsilon.

  9. Multivalued classical mechanics arising from singularity loops in complex time

    NASA Astrophysics Data System (ADS)

    Koch, Werner; Tannor, David J.

    2018-02-01

    Complex-valued classical trajectories in complex time encounter singular times at which the momentum diverges. A closed time contour around such a singular time may result in final values for q and p that differ from their initial values. In this work, we develop a calculus for determining the exponent and prefactor of the asymptotic time dependence of p from the singularities of the potential as the singularity time is approached. We identify this exponent with the number of singularity loops giving distinct solutions to Hamilton's equations of motion. The theory is illustrated for the Eckart, Coulomb, Morse, and quartic potentials. Collectively, these potentials illustrate a wide variety of situations: poles and essential singularities at finite and infinite coordinate values. We demonstrate quantitative agreement between analytical and numerical exponents and prefactors, as well as the connection between the exponent and the time circuit count. This work provides the theoretical underpinnings for the choice of time contours described in the studies of Doll et al. [J. Chem. Phys. 58(4), 1343-1351 (1973)] and Petersen and Kay [J. Chem. Phys. 141(5), 054114 (2014)]. It also has implications for wavepacket reconstruction from complex classical trajectories when multiple branches of trajectories are involved.

  10. Observational constraints on cosmological future singularities

    NASA Astrophysics Data System (ADS)

    Beltrán Jiménez, Jose; Lazkoz, Ruth; Sáez-Gómez, Diego; Salzano, Vincenzo

    2016-11-01

    In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such a kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolution regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H( z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behavior of the Hubble factor). We show that, for our family of parameterizations, the lower bound for the singularity time cannot be smaller than about 1.2 times the age of the universe, what roughly speaking means {˜ }2.8 Gyrs from the present time.

  11. Finding a spherically symmetric cosmology from observations in observational coordinates — advantages and challenges

    NASA Astrophysics Data System (ADS)

    Araújo, M. E.; Stoeger, W. R.

    2011-07-01

    One of the continuing challenges in cosmology has been to determine the large-scale space-time metric from observations with a minimum of assumptions — without, for instance, assuming that the universe is almost Friedmann-Lemaître-Robertson-Walker (FLRW). If we are lucky enough this would be a way of demonstrating that our universe is FLRW, instead of presupposing it or simply showing that the observations are consistent with FLRW. Showing how to do this within the more general spherically symmetric, inhomogeneous space-time framework takes us a long way towards fulfilling this goal. In recent work researchers have shown how this can be done both in the traditional Lemaître-Tolman-Bondi (LTB) 3 + 1 coordinate framework, and in the observational coordinate (OC) framework, in which the radial coordinate y is null (light-like) and measured down the past light cone of the observer. In this paper we investigate the stability of solutions, and the use of data in the OC field equations including their time evolution — i.e. our procedure is not restricted to our past light cone — and compare both approaches with respect to the singularity problem at the maximum of the angular-diameter distance, the stability of solutions, and the use of data in the field equations. We also compare the two approaches with regard to determining the cosmological constant Λ. This allows a more detailed account and assessment of the OC integration procedure, and enables a comparison of the relative advantages of the two equivalent solution frameworks. Both formulations and integration procedures should, in principle, lead to the same results. However, as we show in this paper, the OC procedure manifests certain advantages, particularly in the avoidance of coordinate singularities at the maximum of the angular-diameter distance, and in the stability of the solutions obtained. This particular feature is what allows us to do the best fitting of the data to smooth data functions and the possibility of constructing analytic solutions to the field equations. Smoothed data functions enable us to include properties that data must have within the model.

  12. Elimination of trait blocks from multiple trait mixed model equations with singular (Co)variance parameter matrices

    USDA-ARS?s Scientific Manuscript database

    Transformations to multiple trait mixed model equations (MME) which are intended to improve computational efficiency in best linear unbiased prediction (BLUP) and restricted maximum likelihood (REML) are described. It is shown that traits that are expected or estimated to have zero residual variance...

  13. Incipient singularities in the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Siggia, E. D.; Pumir, A.

    1985-01-01

    Infinite pointwise stretching in a finite time for general initial conditions is found in a simulation of the Biot-Savart equation for a slender vortex tube in three dimensions. Viscosity is ineffective in limiting the divergence in the vorticity as long as it remains concentrated in tubes. Stability has not been shown.

  14. Alternative Analysis of the Michaelis-Menten Equations

    ERIC Educational Resources Information Center

    Krogstad, Harald E.; Dawed, Mohammed Yiha; Tegegne, Tadele Tesfa

    2011-01-01

    Courses in mathematical modelling are always in need of simple, illustrative examples. The Michaelis-Menten reaction kinetics equations have been considered to be a basic example of scaling and singular perturbation. However, the leading order approximations do not easily show the expected behaviour, and this note proposes a different perturbation…

  15. Quaternion regularization in celestial mechanics, astrodynamics, and trajectory motion control. III

    NASA Astrophysics Data System (ADS)

    Chelnokov, Yu. N.

    2015-09-01

    The present paper1 analyzes the basic problems arising in the solution of problems of the optimum control of spacecraft (SC) trajectory motion (including the Lyapunov instability of solutions of conjugate equations) using the principle of the maximum. The use of quaternion models of astrodynamics is shown to allow: (1) the elimination of singular points in the differential phase and conjugate equations and in their partial analytical solutions; (2) construction of the first integrals of the new quaternion; (3) a considerable decrease of the dimensions of systems of differential equations of boundary value optimization problems with their simultaneous simplification by using the new quaternion variables related with quaternion constants of motion by rotation transformations; (4) construction of general solutions of differential equations for phase and conjugate variables on the sections of SC passive motion in the simplest and most convenient form, which is important for the solution of optimum pulse SC transfers; (5) the extension of the possibilities of the analytical investigation of differential equations of boundary value problems with the purpose of identifying the basic laws of optimum control and motion of SC; (6) improvement of the computational stability of the solution of boundary value problems; (7) a decrease in the required volume of computation.

  16. Singular value decomposition: a diagnostic tool for ill-posed inverse problems in optical computed tomography

    NASA Astrophysics Data System (ADS)

    Lanen, Theo A.; Watt, David W.

    1995-10-01

    Singular value decomposition has served as a diagnostic tool in optical computed tomography by using its capability to provide insight into the condition of ill-posed inverse problems. Various tomographic geometries are compared to one another through the singular value spectrum of their weight matrices. The number of significant singular values in the singular value spectrum of a weight matrix is a quantitative measure of the condition of the system of linear equations defined by a tomographic geometery. The analysis involves variation of the following five parameters, characterizing a tomographic geometry: 1) the spatial resolution of the reconstruction domain, 2) the number of views, 3) the number of projection rays per view, 4) the total observation angle spanned by the views, and 5) the selected basis function. Five local basis functions are considered: the square pulse, the triangle, the cubic B-spline, the Hanning window, and the Gaussian distribution. Also items like the presence of noise in the views, the coding accuracy of the weight matrix, as well as the accuracy of the accuracy of the singular value decomposition procedure itself are assessed.

  17. Propagation of singularities for linearised hybrid data impedance tomography

    NASA Astrophysics Data System (ADS)

    Bal, Guillaume; Hoffmann, Kristoffer; Knudsen, Kim

    2018-02-01

    For a general formulation of linearised hybrid inverse problems in impedance tomography, the qualitative properties of the solutions are analysed. Using an appropriate scalar pseudo-differential formulation, the problems are shown to permit propagating singularities under certain non-elliptic conditions, and the associated directions of propagation are precisely identified relative to the directions in which ellipticity is lost. The same result is found in the setting for the corresponding normal formulation of the scalar pseudo-differential equations. A numerical reconstruction procedure based of the least squares finite element method is derived, and a series of numerical experiments visualise exactly how the loss of ellipticity manifests itself as propagating singularities.

  18. A numerical solution of a singular boundary value problem arising in boundary layer theory.

    PubMed

    Hu, Jiancheng

    2016-01-01

    In this paper, a second-order nonlinear singular boundary value problem is presented, which is equivalent to the well-known Falkner-Skan equation. And the one-dimensional third-order boundary value problem on interval [Formula: see text] is equivalently transformed into a second-order boundary value problem on finite interval [Formula: see text]. The finite difference method is utilized to solve the singular boundary value problem, in which the amount of computational effort is significantly less than the other numerical methods. The numerical solutions obtained by the finite difference method are in agreement with those obtained by previous authors.

  19. Color-suppression of non-planar diagrams in bosonic bound states

    NASA Astrophysics Data System (ADS)

    Alvarenga Nogueira, J. H.; Ji, Chueng-Ryong; Ydrefors, E.; Frederico, T.

    2018-02-01

    We study the suppression of non-planar diagrams in a scalar QCD model of a meson system in 3 + 1 space-time dimensions due to the inclusion of the color degrees of freedom. As a prototype of the color-singlet meson, we consider a flavor-nonsinglet system consisting of a scalar-quark and a scalar-antiquark with equal masses exchanging a scalar-gluon of a different mass, which is investigated within the framework of the homogeneous Bethe-Salpeter equation. The equation is solved by using the Nakanishi representation for the manifestly covariant bound-state amplitude and its light-front projection. The resulting non-singular integral equation is solved numerically. The damping of the impact of the cross-ladder kernel on the binding energies are studied in detail. The color-suppression of the cross-ladder effects on the light-front wave function and the elastic electromagnetic form factor are also discussed. As our results show, the suppression appears significantly large for Nc = 3, which supports the use of rainbow-ladder truncations in practical non-perturbative calculations within QCD.

  20. On the r-mode spectrum of relativistic stars in the low-frequency approximation

    NASA Astrophysics Data System (ADS)

    Ruoff, Johannes; Kokkotas, Kostas D.

    2001-12-01

    The axial modes for non-barotropic relativistic rotating neutron stars with uniform angular velocity are studied, using the slow-rotation formalism together with the low-frequency approximation, first investigated by Kojima. The time-independent form of the equations leads to a singular eigenvalue problem, which admits a continuous spectrum. We show that for l=2, it is nevertheless also possible to find discrete mode solutions (the r modes). However, under certain conditions related to the equation of state and the compactness of the stellar model, the eigenfrequency lies inside the continuous band and the associated velocity perturbation is divergent; hence these solutions have to be discarded as being unphysical. We corroborate our results by explicitly integrating the time-dependent equations. For stellar models admitting a physical r-mode solution, it can indeed be excited by arbitrary initial data. For models admitting only an unphysical mode solution, the evolutions do not show any tendency to oscillate with the respective frequency. For higher values of l it seems that in certain cases there are no mode solutions at all.

  1. Asymptotics of action variables near semi-toric singularities

    NASA Astrophysics Data System (ADS)

    Wacheux, Christophe

    2015-12-01

    The presence of focus-focus singularities in semi-toric integrables Hamiltonian systems is one of the reasons why there cannot exist global Action-Angle coordinates on such systems. At focus-focus critical points, the Liouville-Arnold-Mineur theorem does not apply. In particular, the affine structure of the image of the moment map around has non-trivial monodromy. In this article, we establish that the singular behavior and the multi-valuedness of the Action integrals is given by a complex logarithm. This extends a previous result by San Vũ Ngọc to any dimension. We also calculate the monodromy matrix for these systems.

  2. The accurate solution of Poisson's equation by expansion in Chebyshev polynomials

    NASA Technical Reports Server (NTRS)

    Haidvogel, D. B.; Zang, T.

    1979-01-01

    A Chebyshev expansion technique is applied to Poisson's equation on a square with homogeneous Dirichlet boundary conditions. The spectral equations are solved in two ways - by alternating direction and by matrix diagonalization methods. Solutions are sought to both oscillatory and mildly singular problems. The accuracy and efficiency of the Chebyshev approach compare favorably with those of standard second- and fourth-order finite-difference methods.

  3. Singularity-free solutions for anisotropic charged fluids with Chaplygin equation of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahaman, Farook; Ray, Saibal; Jafry, Abdul Kayum

    2010-11-15

    We extend the Krori-Barua analysis of the static, spherically symmetric, Einstein-Maxwell field equations and consider charged fluid sources with anisotropic stresses. The inclusion of a new variable (tangential pressure) allows the use of a nonlinear, Chaplygin-type equation of state with coefficients fixed by the matching conditions at the boundary of the source. Some physical features are briefly discussed.

  4. Can accretion disk properties observationally distinguish black holes from naked singularities?

    NASA Astrophysics Data System (ADS)

    Kovács, Z.; Harko, T.

    2010-12-01

    Naked singularities are hypothetical astrophysical objects, characterized by a gravitational singularity without an event horizon. Penrose has proposed a conjecture, according to which there exists a cosmic censor who forbids the occurrence of naked singularities. Distinguishing between astrophysical black holes and naked singularities is a major challenge for present day observational astronomy. In the context of stationary and axially symmetrical geometries, a possibility of differentiating naked singularities from black holes is through the comparative study of thin accretion disks properties around rotating naked singularities and Kerr-type black holes, respectively. In the present paper, we consider accretion disks around axially-symmetric rotating naked singularities, obtained as solutions of the field equations in the Einstein-massless scalar field theory. A first major difference between rotating naked singularities and Kerr black holes is in the frame dragging effect, the angular velocity of a rotating naked singularity being inversely proportional to its spin parameter. Because of the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution and equilibrium radiation spectrum) are different for these two classes of compact objects, consequently giving clear observational signatures that could discriminate between black holes and naked singularities. For specific values of the spin parameter and of the scalar charge, the energy flux from the disk around a rotating naked singularity can exceed by several orders of magnitude the flux from the disk of a Kerr black hole. In addition to this, it is also shown that the conversion efficiency of the accreting mass into radiation by rotating naked singularities is always higher than the conversion efficiency for black holes, i.e., naked singularities provide a much more efficient mechanism for converting mass into radiation than black holes. Thus, these observational signatures may provide the necessary tools from clearly distinguishing rotating naked singularities from Kerr-type black holes.

  5. An internal crack parallel to the boundary of a nonhomogeneous half plane under thermal loading

    NASA Astrophysics Data System (ADS)

    Jin, Zhi-He; Noda, Naotake

    1993-05-01

    This paper considers the crack problem for a semi-infinite nonhomogeneous thermoelastic solid subjected to steady heat flux over the boundary. The crack faces are assumed to be insulated. The research is aimed at understanding the effect of nonhomogeneities of materials on stress intensity factors. By using the Fourier transform, the problem is reduced to a system of singular integral equations which are solved numerically. Results are presented illustrating the influence of the nonhomogeneity of the material on the stress intensity factors. Zero Mode I stress intensity factors are found for some groups of the material constants, which may be interesting for the understanding of compositions of advanced Functionally Gradient Materials.

  6. Penny-shaped crack in a fiber-reinforced matrix. [elastostatics

    NASA Technical Reports Server (NTRS)

    Narayanan, T. V.; Erdogan, F.

    1974-01-01

    Using a slender inclusion model developed earlier, the elastostatic interaction problem between a penny-shaped crack and elastic fibers in an elastic matrix is formulated. For a single set and for multiple sets of fibers oriented perpendicularly to the plane of the crack and distributed symmetrically on concentric circles, the problem was reduced to a system of singular integral equations. Techniques for the regularization and for the numerical solution of the system are outlined. For various fiber geometries numerical examples are given, and distribution of the stress intensity factor along the crack border was obtained. Sample results showing the distribution of the fiber stress and a measure of the fiber-matrix interface shear are also included.

  7. Finite element modeling of frictionally restrained composite interfaces

    NASA Technical Reports Server (NTRS)

    Ballarini, Roberto; Ahmed, Shamim

    1989-01-01

    The use of special interface finite elements to model frictional restraint in composite interfaces is described. These elements simulate Coulomb friction at the interface, and are incorporated into a standard finite element analysis of a two-dimensional isolated fiber pullout test. Various interfacial characteristics, such as the distribution of stresses at the interface, the extent of slip and delamination, load diffusion from fiber to matrix, and the amount of fiber extraction or depression are studied for different friction coefficients. The results are compared to those obtained analytically using a singular integral equation approach, and those obtained by assuming a constant interface shear strength. The usefulness of these elements in micromechanical modeling of fiber-reinforced composite materials is highlighted.

  8. Penny-shaped crack in a fiber-reinforced matrix

    NASA Technical Reports Server (NTRS)

    Narayanan, T. V.; Erdogan, F.

    1975-01-01

    Using the slender inclusion model developed earlier the elastostatic interaction problem between a penny-shaped crack and elastic fibers in an elastic matrix is formulated. For a single set and for multiple sets of fibers oriented perpendicularly to the plane of the crack and distributed symmetrically on concentric circles the problem is reduced to a system of singular integral equations. Techniques for the regularization and for the numerical solution of the system are outlined. For various fiber geometries numerical examples are given and distribution of the stress intensity factor along the crack border is obtained. Sample results showing the distribution of the fiber stress and a measure of the fiber-matrix interface shear are also included.

  9. Normal forms of Hopf-zero singularity

    NASA Astrophysics Data System (ADS)

    Gazor, Majid; Mokhtari, Fahimeh

    2015-01-01

    The Lie algebra generated by Hopf-zero classical normal forms is decomposed into two versal Lie subalgebras. Some dynamical properties for each subalgebra are described; one is the set of all volume-preserving conservative systems while the other is the maximal Lie algebra of nonconservative systems. This introduces a unique conservative-nonconservative decomposition for the normal form systems. There exists a Lie-subalgebra that is Lie-isomorphic to a large family of vector fields with Bogdanov-Takens singularity. This gives rise to a conclusion that the local dynamics of formal Hopf-zero singularities is well-understood by the study of Bogdanov-Takens singularities. Despite this, the normal form computations of Bogdanov-Takens and Hopf-zero singularities are independent. Thus, by assuming a quadratic nonzero condition, complete results on the simplest Hopf-zero normal forms are obtained in terms of the conservative-nonconservative decomposition. Some practical formulas are derived and the results implemented using Maple. The method has been applied on the Rössler and Kuramoto-Sivashinsky equations to demonstrate the applicability of our results.

  10. Singularity and steering logic for control moment gyros on flexible space structures

    NASA Astrophysics Data System (ADS)

    Hu, Quan; Guo, Chuandong; Zhang, Jun

    2017-08-01

    Control moment gyros (CMGs) are a widely used device for generating control torques for spacecraft attitude control without expending propellant. Because of its effectiveness and cleanness, it has been considered to be mounted on a space structure for active vibration suppression. The resultant system is the so-called gyroelastic body. Since CMGs could exert both torque and modal force to the structure, it can also be used to simultaneously achieve attitude maneuver and vibration reduction of a flexible spacecraft. In this paper, we consider the singularity problem in such application of CMGs. The dynamics of an unconstrained gyroelastic body is established, from which the output equations of the CMGs are extracted. Then, torque singular state and modal force singular state are defined and visualized to demonstrate the singularity. Numerical examples of several typical CMGs configurations on a gyroelastic body are given. Finally, a steering law allowing output error is designed and applied to the vibration suppression of a plate with distributed CMGs.

  11. A numerical scheme for singularly perturbed reaction-diffusion problems with a negative shift via numerov method

    NASA Astrophysics Data System (ADS)

    Dinesh Kumar, S.; Nageshwar Rao, R.; Pramod Chakravarthy, P.

    2017-11-01

    In this paper, we consider a boundary value problem for a singularly perturbed delay differential equation of reaction-diffusion type. We construct an exponentially fitted numerical method using Numerov finite difference scheme, which resolves not only the boundary layers but also the interior layers arising from the delay term. An extensive amount of computational work has been carried out to demonstrate the applicability of the proposed method.

  12. Fermi-edge singularity and the functional renormalization group

    NASA Astrophysics Data System (ADS)

    Kugler, Fabian B.; von Delft, Jan

    2018-05-01

    We study the Fermi-edge singularity, describing the response of a degenerate electron system to optical excitation, in the framework of the functional renormalization group (fRG). Results for the (interband) particle-hole susceptibility from various implementations of fRG (one- and two-particle-irreducible, multi-channel Hubbard–Stratonovich, flowing susceptibility) are compared to the summation of all leading logarithmic (log) diagrams, achieved by a (first-order) solution of the parquet equations. For the (zero-dimensional) special case of the x-ray-edge singularity, we show that the leading log formula can be analytically reproduced in a consistent way from a truncated, one-loop fRG flow. However, reviewing the underlying diagrammatic structure, we show that this derivation relies on fortuitous partial cancellations special to the form of and accuracy applied to the x-ray-edge singularity and does not generalize.

  13. Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time data

    NASA Astrophysics Data System (ADS)

    Lukyanenko, D. V.; Shishlenin, M. A.; Volkov, V. T.

    2018-01-01

    We propose the numerical method for solving coefficient inverse problem for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time observation data based on the asymptotic analysis and the gradient method. Asymptotic analysis allows us to extract a priory information about interior layer (moving front), which appears in the direct problem, and boundary layers, which appear in the conjugate problem. We describe and implement the method of constructing a dynamically adapted mesh based on this a priory information. The dynamically adapted mesh significantly reduces the complexity of the numerical calculations and improve the numerical stability in comparison with the usual approaches. Numerical example shows the effectiveness of the proposed method.

  14. Singular dynamics of a q-difference Painlevé equation in its initial-value space

    NASA Astrophysics Data System (ADS)

    Joshi, N.; Lobb, S. B.

    2016-01-01

    We construct the initial-value space of a q-discrete first Painlevé equation explicitly and describe the behaviours of its solutions w(n) in this space as n\\to ∞ , with particular attention paid to neighbourhoods of exceptional lines and irreducible components of the anti-canonical divisor. These results show that trajectories starting in domains bounded away from the origin in initial value space are repelled away from such singular lines. However, the dynamical behaviours in neighbourhoods containing the origin are complicated by the merger of two simple base points at the origin in the limit. We show that these lead to a saddle-point-type behaviour in a punctured neighbourhood of the origin.

  15. Locating an atmospheric contamination source using slow manifolds

    NASA Astrophysics Data System (ADS)

    Tang, Wenbo; Haller, George; Baik, Jong-Jin; Ryu, Young-Hee

    2009-04-01

    Finite-size particle motion in fluids obeys the Maxey-Riley equations, which become singular in the limit of infinitesimally small particle size. Because of this singularity, finding the source of a dispersed set of small particles is a numerically ill-posed problem that leads to exponential blowup. Here we use recent results on the existence of a slow manifold in the Maxey-Riley equations to overcome this difficulty in source inversion. Specifically, we locate the source of particles by projecting their dispersed positions on a time-varying slow manifold, and by advecting them on the manifold in backward time. We use this technique to locate the source of a hypothetical anthrax release in an unsteady three-dimensional atmospheric wind field in an urban street canyon.

  16. Fast and accurate implementation of Fourier spectral approximations of nonlocal diffusion operators and its applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Qiang, E-mail: jyanghkbu@gmail.com; Yang, Jiang, E-mail: qd2125@columbia.edu

    This work is concerned with the Fourier spectral approximation of various integral differential equations associated with some linear nonlocal diffusion and peridynamic operators under periodic boundary conditions. For radially symmetric kernels, the nonlocal operators under consideration are diagonalizable in the Fourier space so that the main computational challenge is on the accurate and fast evaluation of their eigenvalues or Fourier symbols consisting of possibly singular and highly oscillatory integrals. For a large class of fractional power-like kernels, we propose a new approach based on reformulating the Fourier symbols both as coefficients of a series expansion and solutions of some simplemore » ODE models. We then propose a hybrid algorithm that utilizes both truncated series expansions and high order Runge–Kutta ODE solvers to provide fast evaluation of Fourier symbols in both one and higher dimensional spaces. It is shown that this hybrid algorithm is robust, efficient and accurate. As applications, we combine this hybrid spectral discretization in the spatial variables and the fourth-order exponential time differencing Runge–Kutta for temporal discretization to offer high order approximations of some nonlocal gradient dynamics including nonlocal Allen–Cahn equations, nonlocal Cahn–Hilliard equations, and nonlocal phase-field crystal models. Numerical results show the accuracy and effectiveness of the fully discrete scheme and illustrate some interesting phenomena associated with the nonlocal models.« less

  17. Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glasser, Alexander; Kolemen, Egemen; Glasser, Alan H.

    To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time < 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescalemore » $$\\tau$$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.« less

  18. Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control

    DOE PAGES

    Glasser, Alexander; Kolemen, Egemen; Glasser, Alan H.

    2018-03-26

    To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time < 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescalemore » $$\\tau$$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.« less

  19. Second-order Poisson Nernst-Planck solver for ion channel transport

    PubMed Central

    Zheng, Qiong; Chen, Duan; Wei, Guo-Wei

    2010-01-01

    The Poisson Nernst-Planck (PNP) theory is a simplified continuum model for a wide variety of chemical, physical and biological applications. Its ability of providing quantitative explanation and increasingly qualitative predictions of experimental measurements has earned itself much recognition in the research community. Numerous computational algorithms have been constructed for the solution of the PNP equations. However, in the realistic ion-channel context, no second order convergent PNP algorithm has ever been reported in the literature, due to many numerical obstacles, including discontinuous coefficients, singular charges, geometric singularities, and nonlinear couplings. The present work introduces a number of numerical algorithms to overcome the abovementioned numerical challenges and constructs the first second-order convergent PNP solver in the ion-channel context. First, a Dirichlet to Neumann mapping (DNM) algorithm is designed to alleviate the charge singularity due to the protein structure. Additionally, the matched interface and boundary (MIB) method is reformulated for solving the PNP equations. The MIB method systematically enforces the interface jump conditions and achieves the second order accuracy in the presence of complex geometry and geometric singularities of molecular surfaces. Moreover, two iterative schemes are utilized to deal with the coupled nonlinear equations. Furthermore, extensive and rigorous numerical validations are carried out over a number of geometries, including a sphere, two proteins and an ion channel, to examine the numerical accuracy and convergence order of the present numerical algorithms. Finally, application is considered to a real transmembrane protein, the Gramicidin A channel protein. The performance of the proposed numerical techniques is tested against a number of factors, including mesh sizes, diffusion coefficient profiles, iterative schemes, ion concentrations, and applied voltages. Numerical predictions are compared with experimental measurements. PMID:21552336

  20. Hörmander multipliers on two-dimensional dyadic Hardy spaces

    NASA Astrophysics Data System (ADS)

    Daly, J.; Fridli, S.

    2008-12-01

    In this paper we are interested in conditions on the coefficients of a two-dimensional Walsh multiplier operator that imply the operator is bounded on certain of the Hardy type spaces Hp, 0

  1. Loop Quantum Cosmology.

    PubMed

    Bojowald, Martin

    2008-01-01

    Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time. Supplementary material is available for this article at 10.12942/lrr-2008-4.

  2. Multiphase wavetrains, singular wave interactions and the emergence of the Korteweg–de Vries equation

    PubMed Central

    Bridges, Thomas J.

    2016-01-01

    Multiphase wavetrains are multiperiodic travelling waves with a set of distinct wavenumbers and distinct frequencies. In conservative systems, such families are associated with the conservation of wave action or other conservation law. At generic points (where the Jacobian of the wave action flux is non-degenerate), modulation of the wavetrain leads to the dispersionless multiphase conservation of wave action. The main result of this paper is that modulation of the multiphase wavetrain, when the Jacobian of the wave action flux vector is singular, morphs the vector-valued conservation law into the scalar Korteweg–de Vries (KdV) equation. The coefficients in the emergent KdV equation have a geometrical interpretation in terms of projection of the vector components of the conservation law. The theory herein is restricted to two phases to simplify presentation, with extensions to any finite dimension discussed in the concluding remarks. Two applications of the theory are presented: a coupled nonlinear Schrödinger equation and two-layer shallow-water hydrodynamics with a free surface. Both have two-phase solutions where criticality and the properties of the emergent KdV equation can be determined analytically. PMID:28119546

  3. Constraint elimination in dynamical systems

    NASA Technical Reports Server (NTRS)

    Singh, R. P.; Likins, P. W.

    1989-01-01

    Large space structures (LSSs) and other dynamical systems of current interest are often extremely complex assemblies of rigid and flexible bodies subjected to kinematical constraints. A formulation is presented for the governing equations of constrained multibody systems via the application of singular value decomposition (SVD). The resulting equations of motion are shown to be of minimum dimension.

  4. Numerical evaluation of multi-loop integrals for arbitrary kinematics with SecDec 2.0

    NASA Astrophysics Data System (ADS)

    Borowka, Sophia; Carter, Jonathon; Heinrich, Gudrun

    2013-02-01

    We present the program SecDec 2.0, which contains various new features. First, it allows the numerical evaluation of multi-loop integrals with no restriction on the kinematics. Dimensionally regulated ultraviolet and infrared singularities are isolated via sector decomposition, while threshold singularities are handled by a deformation of the integration contour in the complex plane. As an application, we present numerical results for various massive two-loop four-point diagrams. SecDec 2.0 also contains new useful features for the calculation of more general parameter integrals, related for example to phase space integrals. Program summaryProgram title: SecDec 2.0 Catalogue identifier: AEIR_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIR_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 156829 No. of bytes in distributed program, including test data, etc.: 2137907 Distribution format: tar.gz Programming language: Wolfram Mathematica, Perl, Fortran/C++. Computer: From a single PC to a cluster, depending on the problem. Operating system: Unix, Linux. RAM: Depending on the complexity of the problem Classification: 4.4, 5, 11.1. Catalogue identifier of previous version: AEIR_v1_0 Journal reference of previous version: Comput. Phys. Comm. 182(2011)1566 Does the new version supersede the previous version?: Yes Nature of problem: Extraction of ultraviolet and infrared singularities from parametric integrals appearing in higher order perturbative calculations in gauge theories. Numerical integration in the presence of integrable singularities (e.g., kinematic thresholds). Solution method: Algebraic extraction of singularities in dimensional regularization using iterated sector decomposition. This leads to a Laurent series in the dimensional regularization parameter ɛ, where the coefficients are finite integrals over the unit hypercube. Those integrals are evaluated numerically by Monte Carlo integration. The integrable singularities are handled by choosing a suitable integration contour in the complex plane, in an automated way. Reasons for new version: In the previous version the calculation of multi-scale integrals was restricted to the Euclidean region. Now multi-loop integrals with arbitrary physical kinematics can be evaluated. Another major improvement is the possibility of full parallelization. Summary of revisions: No restriction on the kinematics for multi-loop integrals. The integrand can be constructed from the topological cuts of the diagram. Possibility of full parallelization. Numerical integration of multi-loop integrals written in C++ rather than Fortran. Possibility to loop over ranges of parameters. Restrictions: Depending on the complexity of the problem, limited by memory and CPU time. The restriction that multi-scale integrals could only be evaluated at Euclidean points is superseded in version 2.0. Running time: Between a few minutes and several days, depending on the complexity of the problem. Test runs provided take only seconds.

  5. Lump solutions of the BKP equation

    NASA Astrophysics Data System (ADS)

    Gilson, C. R.; Nimmo, J. J. C.

    1990-07-01

    Rational solutions of the BKP equation which decay to zero in all directions in the plane are obtained. These solutions are analogous to the lump solutions of the KPI equation. Properties of the single lump solution are described and the form of the N-lump solution is given. It is shown that single lump solutions are only non-singular for spectral parameters lying in certain regions of the complex plane.

  6. The Cucker-Smale Equation: Singular Communication Weight, Measure-Valued Solutions and Weak-Atomic Uniqueness

    NASA Astrophysics Data System (ADS)

    Mucha, Piotr B.; Peszek, Jan

    2018-01-01

    The Cucker-Smale flocking model belongs to a wide class of kinetic models that describe a collective motion of interacting particles that exhibit some specific tendency, e.g. to aggregate, flock or disperse. This paper examines the kinetic Cucker-Smale equation with a singular communication weight. Given a compactly supported measure as an initial datum we construct a global in time weak measure-valued solution in the space {C_{weak}(0,∞M)}. The solution is defined as a mean-field limit of the empirical distributions of particles, the dynamics of which is governed by the Cucker-Smale particle system. The studied communication weight is {ψ(s)=|s|^{-α}} with {α \\in (0,1/2)}. This range of singularity admits the sticking of characteristics/trajectories. The second result concerns the weak-atomic uniqueness property stating that a weak solution initiated by a finite sum of atoms, i.e. Dirac deltas in the form {m_i δ_{x_i} ⊗ δ_{v_i}}, preserves its atomic structure. Hence these coincide with unique solutions to the system of ODEs associated with the Cucker-Smale particle system.

  7. Kinematic equations for control of the redundant eight-degree-of-freedom advanced research manipulator 2

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., II

    1992-01-01

    The forward position and velocity kinematics for the redundant eight-degree-of-freedom Advanced Research Manipulator 2 (ARM2) are presented. Inverse position and velocity kinematic solutions are also presented. The approach in this paper is to specify two of the unknowns and solve for the remaining six unknowns. Two unknowns can be specified with two restrictions. First, the elbow joint angle and rate cannot be specified because they are known from the end-effector position and velocity. Second, one unknown must be specified from the four-jointed wrist, and the second from joints that translate the wrist, elbow joint excluded. There are eight solutions to the inverse position problem. The inverse velocity solution is unique, assuming the Jacobian matrix is not singular. A discussion of singularities is based on specifying two joint rates and analyzing the reduced Jacobian matrix. When this matrix is singular, the generalized inverse may be used as an alternate solution. Computer simulations were developed to verify the equations. Examples demonstrate agreement between forward and inverse solutions.

  8. Singularity: Scientific containers for mobility of compute.

    PubMed

    Kurtzer, Gregory M; Sochat, Vanessa; Bauer, Michael W

    2017-01-01

    Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science.

  9. Singularity: Scientific containers for mobility of compute

    PubMed Central

    Kurtzer, Gregory M.; Bauer, Michael W.

    2017-01-01

    Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science. PMID:28494014

  10. Extension of Nikiforov-Uvarov method for the solution of Heun equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karayer, H., E-mail: hale.karayer@gmail.com; Demirhan, D.; Büyükkılıç, F.

    2015-06-15

    We report an alternative method to solve second order differential equations which have at most four singular points. This method is developed by changing the degrees of the polynomials in the basic equation of Nikiforov-Uvarov (NU) method. This is called extended NU method for this paper. The eigenvalue solutions of Heun equation and confluent Heun equation are obtained via extended NU method. Some quantum mechanical problems such as Coulomb problem on a 3-sphere, two Coulombically repelling electrons on a sphere, and hyperbolic double-well potential are investigated by this method.

  11. Blowup with vorticity control for a 2D model of the Boussinesq equations

    NASA Astrophysics Data System (ADS)

    Hoang, V.; Orcan-Ekmekci, B.; Radosz, M.; Yang, H.

    2018-06-01

    We propose a system of equations with nonlocal flux in two space dimensions which is closely modeled after the 2D Boussinesq equations in a hyperbolic flow scenario. Our equations involve a vorticity stretching term and a non-local Biot-Savart law and provide insight into the underlying intrinsic mechanisms of singularity formation. We prove stable, controlled finite time blowup involving upper and lower bounds on the vorticity up to the time of blowup for a wide class of initial data.

  12. The surface crack problem for a functionally graded coating bonded to a homogeneous layer

    NASA Astrophysics Data System (ADS)

    Kasmalkar, Maheendra B.

    In the continuing search for materials which can withstand the grueling requirements of modern day applications, Functionally Graded Materials (FGMs) seem to be a promising alternative to conventional materials. These nonhomogeneous materials offer better interfacial properties by improving bond strength and reducing thermal mismatch. Before putting these materials into application, an important step in the design of FGMs is the stress analysis and fracture characterization. The fracture performance of FGM coatings on homogeneous substrates is the focus of this study. In this study, various internal and surface crack configurations in the coating and the substrate are subjected to mechanical and thermal loads. The analysis is linear elastic. The thermo-mechanical properties of the FGM coating are assumed to vary exponentially with the spatial coordinate. The equilibrium equations are solved using integral transforms. The resulting singular integral equations are solved using numerical integration. The results of interest for this mode I formulation are the stress intensity factors and the crack opening displacements. The effects of the nonhomogeneity parameter and various dimensionless length parameters are studied. One of the most important outcomes of this study is the theoretical proof that "kink" in material property at the interface does not introduce any singularity. In the numerical results it is observed that generally the stress intensity factors tend to increase with material nonhomogeneity. Also, it is observed that the substrate thickness tends to suppress cracking in the coating. In pure thermal loading, the surface cracks may either be arrested or there might be crack closure. The stress intensity factors from different loadings can be added up to obtain the resultant stress intensity factor for multiple loading. Results in this study have wide-ranging applications. They can be applied to thermal barrier coatings on turbine components, combustion chambers, parts of the airframe for the "Space Plane", soil mechanics, bone fractures and many more applications where the material is macroscopically nonhomogeneous. Thus this study solves a basic problem common to a variety of applications in diverse fields.

  13. Aspects géométriques et intégrables des modèles de matrices aléatoires

    NASA Astrophysics Data System (ADS)

    Marchal, Olivier

    2010-12-01

    This thesis deals with the geometric and integrable aspects associated with random matrix models. Its purpose is to provide various applications of random matrix theory, from algebraic geometry to partial differential equations of integrable systems. The variety of these applications shows why matrix models are important from a mathematical point of view. First, the thesis will focus on the study of the merging of two intervals of the eigenvalues density near a singular point. Specifically, we will show why this special limit gives universal equations from the Painlevé II hierarchy of integrable systems theory. Then, following the approach of (bi) orthogonal polynomials introduced by Mehta to compute partition functions, we will find Riemann-Hilbert and isomonodromic problems connected to matrix models, making the link with the theory of Jimbo, Miwa and Ueno. In particular, we will describe how the hermitian two-matrix models provide a degenerate case of Jimbo-Miwa-Ueno's theory that we will generalize in this context. Furthermore, the loop equations method, with its central notions of spectral curve and topological expansion, will lead to the symplectic invariants of algebraic geometry recently proposed by Eynard and Orantin. This last point will be generalized to the case of non-hermitian matrix models (arbitrary beta) paving the way to "quantum algebraic geometry" and to the generalization of symplectic invariants to "quantum curves". Finally, this set up will be applied to combinatorics in the context of topological string theory, with the explicit computation of an hermitian random matrix model enumerating the Gromov-Witten invariants of a toric Calabi-Yau threefold.

  14. Quantum descriptions of singularities leading to pair creation. [of gravitons

    NASA Technical Reports Server (NTRS)

    Misner, C. W.

    1974-01-01

    A class of cosmological models is analyzed which provide a mathematically convenient (but idealized) description of a cosmological singularity that develops into a pair creation epoch and terminates in an adiabatic expansion with redshifting particle energies. This class of models was obtained by Gowdy (1971, 1974) as a set of exact solutions of the classical empty space Einstein equations describing inhomogeneous universes populated only by gravitational waves. It is shown that these models can be used to exhibit simplified models of quantized gravitational fields, and that a quantum description can be given arbitrarily near a cosmological singularity. Graviton pair creation occurs, and can be seen to convert anisotropic expansion rates into the energy of graviton pairs.

  15. Surface curvature singularities of polytropic spheres in Palatini f (R ,T ) gravity

    NASA Astrophysics Data System (ADS)

    Barrientos O., José; Rubilar, Guillermo F.

    2016-01-01

    We consider Palatini f (R ,T ) gravity models, similar to those introduced by Harko et al. (2012), where the gravitational Lagrangian is given by an arbitrary function of the curvature scalar R and of the trace of the energy-momentum tensor T . Interior spherical static solutions are studied considering the model of matter given by a perfect fluid configuration and a polytropic equation of state. We analyze the curvature singularities found previously for Palatini f (R ) gravity and discuss the possibility to remove them in some particular f (R ,T ) models. We show that it is possible to construct a restricted family of models for which these singularities are not present.

  16. Unsteady three-dimensional marginal separation caused by surface-mounted obstacles and/or local suction

    NASA Astrophysics Data System (ADS)

    Braun, Stefan; Kluwick, Alfred

    2004-09-01

    Earlier investigations of steady two-dimensional marginally separated laminar boundary layers have shown that the non-dimensional wall shear (or equivalently the negative non-dimensional perturbation displacement thickness) is governed by a nonlinear integro-differential equation. This equation contains a single controlling parameter Gamma characterizing, for example, the angle of attack of a slender airfoil and has the important property that (real) solutions exist up to a critical value Gamma_c of Gamma only. Here we investigate three-dimensional unsteady perturbations of an incompressible steady two-dimensional marginally separated laminar boundary layer with special emphasis on the flow behaviour near Gamma_c. Specifically, it is shown that the integro differential equation which governs these disturbances if Gamma_c {-} Gamma {=} O(1) reduces to a nonlinear partial differential equation known as the Fisher equation as Gamma approaches the critical value Gamma_c. This in turn leads to a significant simplification of the problem allowing, among other things, a systematic study of devices used in boundary-layer control and an analytical investigation of the conditions leading to the formation of finite-time singularities which have been observed in earlier numerical studies of unsteady two-dimensional and three-dimensional flows in the vicinity of a line of symmetry. Also, it is found that it is possible to construct exact solutions which describe waves of constant form travelling in the spanwise direction. These waves may contain singularities which can be interpreted as vortex sheets. The existence of these solutions strongly suggests that solutions of the Fisher equation which lead to finite-time blow-up may be extended beyond the blow-up time, thereby generating moving singularities which can be interpreted as vortical structures qualitatively similar to those emerging in direct numerical simulations of near critical (i.e. transitional) laminar separation bubbles. This is supported by asymptotic analysis.

  17. Concentration dependence of the wings of a dipole-broadened magnetic resonance line in magnetically diluted lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zobov, V. E., E-mail: rsa@iph.krasn.ru; Kucherov, M. M.

    2017-01-15

    The singularities of the time autocorrelation functions (ACFs) of magnetically diluted spin systems with dipole–dipole interaction (DDI), which determine the high-frequency asymptotics of autocorrelation functions and the wings of a magnetic resonance line, are studied. Using the self-consistent fluctuating local field approximation, nonlinear equations are derived for autocorrelation functions averaged over the independent random arrangement of spins (magnetic atoms) in a diamagnetic lattice with different spin concentrations. The equations take into account the specificity of the dipole–dipole interaction. First, due to its axial symmetry in a strong static magnetic field, the autocorrelation functions of longitudinal and transverse spin components aremore » described by different equations. Second, the long-range type of the dipole–dipole interaction is taken into account by separating contributions into the local field from distant and near spins. The recurrent equations are obtained for the expansion coefficients of autocorrelation functions in power series in time. From them, the numerical value of the coordinate of the nearest singularity of the autocorrelation function is found on the imaginary time axis, which is equal to the radius of convergence of these expansions. It is shown that in the strong dilution case, the logarithmic concentration dependence of the coordinate of the singularity is observed, which is caused by the presence of a cluster of near spins whose fraction is small but contribution to the modulation frequency is large. As an example a silicon crystal with different {sup 29}Si concentrations in magnetic fields directed along three crystallographic axes is considered.« less

  18. k-essence in the DGP brane-world cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhmadi-Lopez, Mariam; Chimento, Luis P.

    We analyze a Dvali-Gabadadze-Porrati (DGP) brane filled with a k-essence field and assume the k field evolving linearly with the cosmic time of the brane. We then solve analytically the Friedmann equation and deduce the different behavior of the brane at the low- and the high-energy regimes. The asymptotic behavior can be quite different involving accelerating branes, big bangs, big crunches, big rips, or quiescent singularities. The latter correspond to a type of sudden singularity.

  19. High-Order Accurate Solutions to the Helmholtz Equation in the Presence of Boundary Singularities

    DTIC Science & Technology

    2015-03-31

    FD scheme is only consistent for classical solutions of the PDE . For this reason, we implement the method of singularity subtraction as a means for...regularity due to the boundary conditions. This is because the FD scheme is only consistent for classical solutions of the PDE . For this reason, we...Introduction In the present work, we develop a high-order numerical method for solving linear elliptic PDEs with well-behaved variable coefficients on

  20. On the Debye-Hückel effect of electric screening

    NASA Astrophysics Data System (ADS)

    Campos, L. M. B. C.; Lau, F. J. P.

    2014-07-01

    The paper considers non-linear self-consistent electric potential equation (Sec. I), due to a cloud made of a single species of electric charges, satisfying a Boltzmann distribution law (Sec. II). Exact solutions are obtained in a simple logarithmic form, in three cases: (Sec. III) spherical radial symmetry; (Sec. IV) plane parallel symmetry; (Sec. V) a special case of azimuthal-cylindrical symmetry. All these solutions, and their transformations (Sec. VI), involve the Debye-Hückel radius; the latter was originally defined from a solution of the linearized self-consistent potential equation. Using an exact solution of the self-consistent potential equation, the distance at which the potential vanishes differs from the Debye-Hückel radius by a factor of √2 . The preceding (Secs. II-VI) simple logarithmic exact solutions of the self-consistent potential equations involve no arbitrary constants, and thus are special or singular integrals not the general integral. The general solution of the self-consistent potential equation is obtained in the plane parallel case (Sec. VII), and it involves two arbitrary constants that can be reduced to one via a translation (Sec. VIII). The plots of dimensionless potential (Figure 1), electric field (Figure 2), charge density (Figure 3), and total charge between ζ and infinity (Figure 4), versus distance normalized to Debye-Hückel radius ζ ≡ z/a, show that (Sec. IX) there is a continuum of solutions, ranging from a charge distribution concentrated inside the Debye-Hückel radius to one spread-out beyond it. The latter case leads to the limiting case of logarithmic potential, and stronger electric field; the former case, of very concentrated charge distribution, leads to a fratricide effect and weaker electric field.

  1. On the Debye–Hückel effect of electric screening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos, L. M. B. C.; Lau, F. J. P.

    2014-07-15

    The paper considers non-linear self-consistent electric potential equation (Sec. I), due to a cloud made of a single species of electric charges, satisfying a Boltzmann distribution law (Sec. II). Exact solutions are obtained in a simple logarithmic form, in three cases: (Sec. III) spherical radial symmetry; (Sec. IV) plane parallel symmetry; (Sec. V) a special case of azimuthal-cylindrical symmetry. All these solutions, and their transformations (Sec. VI), involve the Debye-Hückel radius; the latter was originally defined from a solution of the linearized self-consistent potential equation. Using an exact solution of the self-consistent potential equation, the distance at which the potentialmore » vanishes differs from the Debye-Hückel radius by a factor of √(2). The preceding (Secs. II–VI) simple logarithmic exact solutions of the self-consistent potential equations involve no arbitrary constants, and thus are special or singular integrals not the general integral. The general solution of the self-consistent potential equation is obtained in the plane parallel case (Sec. VII), and it involves two arbitrary constants that can be reduced to one via a translation (Sec. VIII). The plots of dimensionless potential (Figure 1), electric field (Figure 2), charge density (Figure 3), and total charge between ζ and infinity (Figure 4), versus distance normalized to Debye-Hückel radius ζ ≡ z/a, show that (Sec. IX) there is a continuum of solutions, ranging from a charge distribution concentrated inside the Debye-Hückel radius to one spread-out beyond it. The latter case leads to the limiting case of logarithmic potential, and stronger electric field; the former case, of very concentrated charge distribution, leads to a fratricide effect and weaker electric field.« less

  2. A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamba, Irene M.; ICES, The University of Texas at Austin, 201 E. 24th St., Stop C0200, Austin, TX 78712; Haack, Jeffrey R.

    2014-08-01

    We present the formulation of a conservative spectral method for the Boltzmann collision operator with anisotropic scattering cross-sections. The method is an extension of the conservative spectral method of Gamba and Tharkabhushanam [17,18], which uses the weak form of the collision operator to represent the collisional term as a weighted convolution in Fourier space. The method is tested by computing the collision operator with a suitably cut-off angular cross section and comparing the results with the solution of the Landau equation. We analytically study the convergence rate of the Fourier transformed Boltzmann collision operator in the grazing collisions limit tomore » the Fourier transformed Landau collision operator under the assumption of some regularity and decay conditions of the solution to the Boltzmann equation. Our results show that the angular singularity which corresponds to the Rutherford scattering cross section is the critical singularity for which a grazing collision limit exists for the Boltzmann operator. Additionally, we numerically study the differences between homogeneous solutions of the Boltzmann equation with the Rutherford scattering cross section and an artificial cross section, which give convergence to solutions of the Landau equation at different asymptotic rates. We numerically show the rate of the approximation as well as the consequences for the rate of entropy decay for homogeneous solutions of the Boltzmann equation and Landau equation.« less

  3. Whitham modulation theory for the two-dimensional Benjamin-Ono equation.

    PubMed

    Ablowitz, Mark; Biondini, Gino; Wang, Qiao

    2017-09-01

    Whitham modulation theory for the two-dimensional Benjamin-Ono (2DBO) equation is presented. A system of five quasilinear first-order partial differential equations is derived. The system describes modulations of the traveling wave solutions of the 2DBO equation. These equations are transformed to a singularity-free hydrodynamic-like system referred to here as the 2DBO-Whitham system. Exact reductions of this system are discussed, the formulation of initial value problems is considered, and the system is used to study the transverse stability of traveling wave solutions of the 2DBO equation.

  4. Integrating the Gradient of the Thin Wire Kernel

    NASA Technical Reports Server (NTRS)

    Champagne, Nathan J.; Wilton, Donald R.

    2008-01-01

    A formulation for integrating the gradient of the thin wire kernel is presented. This approach employs a new expression for the gradient of the thin wire kernel derived from a recent technique for numerically evaluating the exact thin wire kernel. This approach should provide essentially arbitrary accuracy and may be used with higher-order elements and basis functions using the procedure described in [4].When the source and observation points are close, the potential integrals over wire segments involving the wire kernel are split into parts to handle the singular behavior of the integrand [1]. The singularity characteristics of the gradient of the wire kernel are different than those of the wire kernel, and the axial and radial components have different singularities. The characteristics of the gradient of the wire kernel are discussed in [2]. To evaluate the near electric and magnetic fields of a wire, the integration of the gradient of the wire kernel needs to be calculated over the source wire. Since the vector bases for current have constant direction on linear wire segments, these integrals reduce to integrals of the form

  5. Equilibrium stellar systems with spindle singularities

    NASA Technical Reports Server (NTRS)

    Shapiro, Stuart L.; Teukolsky, Saul A.

    1992-01-01

    Equilibrium sequences of axisymmetric Newtonian clusters that tend toward singular states are constructed. The distribution functions are chosen to be of the form f = f(E, Jz). The numerical method then determines the density and gravitational potential self-consistently to satisfy Poisson's equation. For the prolate models, spindle singularities arise from the depletion of angular momentum near the symmetry axis. While the resulting density enhancement is confined to the region near the axis, the influence of the spindle extends much further out through its tidal gravitational field. Centrally condensed prolate clusters may contain strong-field regions even though the spindle mass is small and the mean cluster eccentricity is not extreme. While the calculations performed here are entirely Newtonian, the issue of singularities is an important topic in general relativity. Equilibrium solutions for relativistic star clusters can provide a testing ground for exploring this issue. The methods used in this paper for building nonspherical clusters can be extended to relativistic systems.

  6. MHD memes

    NASA Astrophysics Data System (ADS)

    Dewar, R. L.; Mills, R.; Hole, M. J.

    2009-05-01

    The celebration of Allan Kaufman's 80th birthday was an occasion to reflect on a career that has stimulated the mutual exchange of ideas (or memes in the terminology of Richard Dawkins) between many researchers. This paper will revisit a meme Allan encountered in his early career in magnetohydrodynamics, the continuation of a magnetohydrodynamic mode through a singularity, and will also mention other problems where Allan's work has had a powerful cross-fertilizing effect in plasma physics and other areas of physics and mathematics. To resolve the continuation problem we regularize the Newcomb equation, solve it in terms of Legendre functions of imaginary argument, and define the small weak solutions of the Newcomb equation as generalized functions in the manner of Lighthill, i.e. via a limiting sequence of analytic functions that connect smoothly across the singularity.

  7. Asymptotic behavior of solutions of the renormalization group K-epsilon turbulence model

    NASA Technical Reports Server (NTRS)

    Yakhot, A.; Staroselsky, I.; Orszag, S. A.

    1994-01-01

    Presently, the only efficient way to calculate turbulent flows in complex geometries of engineering interest is to use Reynolds-average Navier-Stokes (RANS) equations. As compared to the original Navier-Stokes problem, these RANS equations posses much more complicated nonlinear structure and may exhibit far more complex nonlinear behavior. In certain cases, the asymptotic behavior of such models can be studied analytically which, aside from being an interesting fundamental problem, is important for better understanding of the internal structure of the models as well as to improve their performances. The renormalization group (RNG) K-epsilon turbulence model, derived directly from the incompresible Navier-Stokes equations, is analyzed. It has already been used to calculate a variety of turbulent and transitional flows in complex geometries. For large values of the RNG viscosity parameter, the model may exhibit singular behavior. In the form of the RNG K-epsilon model that avoids the use of explicit wall functions, a = 1, so the RNG viscosity parameter must be smaller than 23.62 to avoid singularities.

  8. Fracture Mechanics Analysis of an Annular Crack in a Three-concentric-cylinder Composite Model

    NASA Technical Reports Server (NTRS)

    Kuguoglu, Latife H.; Binienda, Wieslaw K.; Roberts, Gary D.

    2004-01-01

    A boundary-value problem governing a three-phase concentric-cylinder model was analytically modeled to analyze annular interfacial crack problems with Love s strain functions in order to find the stress intensity factors (SIFs) and strain energy release rates (SERRs) at the tips of an interface crack in a nonhomogeneous medium. The complex form of a singular integral equation (SIE) of the second kind was formulated using Bessel s functions in the Fourier domain, and the SIF and total SERR were calculated using Jacoby polynomials. For the validity of the SIF equations to be established, the SIE of the three-concentric-cylinder model was reduced to the SIE for a two-concentric-cylinder model, and the results were compared with the previous results of Erdogan. A preliminary set of parametric studies was carried out to show the effect of interphase properties on the SERR. The method presented here provides insight about the effect of interphase properties on the crack driving force.

  9. Singularly Perturbed Equations in the Critical Case.

    DTIC Science & Technology

    1980-02-01

    asymptotic properties of the differential equation (1) in the noncritical case (all ReXi (t) ɘ) . We will consider the critical case (k 0) ; the...the inequality (3), that is, ReXi (t,a) < 0 (58) The matrix ca(t,a) , consisting of the eigenvectors corresponding to w 0 , now has the form I (P -(t

  10. Magnetic Bianchi type II string cosmological model in loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Rikhvitsky, Victor; Saha, Bijan; Visinescu, Mihai

    2014-07-01

    The loop quantum cosmology of the Bianchi type II string cosmological model in the presence of a homogeneous magnetic field is studied. We present the effective equations which provide modifications to the classical equations of motion due to quantum effects. The numerical simulations confirm that the big bang singularity is resolved by quantum gravity effects.

  11. Algebraic approach to solve ttbar dilepton equations

    NASA Astrophysics Data System (ADS)

    Sonnenschein, Lars

    2006-01-01

    The set of non-linear equations describing the Standard Model kinematics of the top quark an- tiqark production system in the dilepton decay channel has at most a four-fold ambiguity due to two not fully reconstructed neutrinos. Its most precise and robust solution is of major importance for measurements of top quark properties like the top quark mass and t t spin correlations. Simple algebraic operations allow to transform the non-linear equations into a system of two polynomial equations with two unknowns. These two polynomials of multidegree eight can in turn be an- alytically reduced to one polynomial with one unknown by means of resultants. The obtained univariate polynomial is of degree sixteen and the coefficients are free of any singularity. The number of its real solutions is determined analytically by means of Sturm’s theorem, which is as well used to isolate each real solution into a unique pairwise disjoint interval. The solutions are polished by seeking the sign change of the polynomial in a given interval through binary brack- eting. Further a new Ansatz - exploiting an accidental cancelation in the process of transforming the equations - is presented. It permits to transform the initial system of equations into two poly- nomial equations with two unknowns. These two polynomials of multidegree two can be reduced to one univariate polynomial of degree four by means of resultants. The obtained quartic equation can be solved analytically. The analytical solution has singularities which can be circumvented by the algebraic approach described above.

  12. A multiwave range test for obstacle reconstructions with unknown physical properties

    NASA Astrophysics Data System (ADS)

    Potthast, Roland; Schulz, Jochen

    2007-08-01

    We develop a new multiwave version of the range test for shape reconstruction in inverse scattering theory. The range test [R. Potthast, et al., A `range test' for determining scatterers with unknown physical properties, Inverse Problems 19(3) (2003) 533-547] has originally been proposed to obtain knowledge about an unknown scatterer when the far field pattern for only one plane wave is given. Here, we extend the method to the case of multiple waves and show that the full shape of the unknown scatterer can be reconstructed. We further will clarify the relation between the range test methods, the potential method [A. Kirsch, R. Kress, On an integral equation of the first kind in inverse acoustic scattering, in: Inverse Problems (Oberwolfach, 1986), Internationale Schriftenreihe zur Numerischen Mathematik, vol. 77, Birkhauser, Basel, 1986, pp. 93-102] and the singular sources method [R. Potthast, Point sources and multipoles in inverse scattering theory, Habilitation Thesis, Gottingen, 1999]. In particular, we propose a new version of the Kirsch-Kress method using the range test and a new approach to the singular sources method based on the range test and potential method. Numerical examples of reconstructions for all four methods are provided.

  13. A single-sided representation for the homogeneous Green's function of a unified scalar wave equation.

    PubMed

    Wapenaar, Kees

    2017-06-01

    A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.

  14. A finite element method for solving the shallow water equations on the sphere

    NASA Astrophysics Data System (ADS)

    Comblen, Richard; Legrand, Sébastien; Deleersnijder, Eric; Legat, Vincent

    Within the framework of ocean general circulation modeling, the present paper describes an efficient way to discretize partial differential equations on curved surfaces by means of the finite element method on triangular meshes. Our approach benefits from the inherent flexibility of the finite element method. The key idea consists in a dialog between a local coordinate system defined for each element in which integration takes place, and a nodal coordinate system in which all local contributions related to a vectorial degree of freedom are assembled. Since each element of the mesh and each degree of freedom are treated in the same way, the so-called pole singularity issue is fully circumvented. Applied to the shallow water equations expressed in primitive variables, this new approach has been validated against the standard test set defined by [Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., Swarztrauber, P.N., 1992. A standard test set for numerical approximations to the shallow water equations in spherical geometry. Journal of Computational Physics 102, 211-224]. Optimal rates of convergence for the P1NC-P1 finite element pair are obtained, for both global and local quantities of interest. Finally, the approach can be extended to three-dimensional thin-layer flows in a straightforward manner.

  15. Convergence of Weak Kähler-Ricci Flows on Minimal Models of Positive Kodaira Dimension

    NASA Astrophysics Data System (ADS)

    Eyssidieux, Phylippe; Guedj, Vincent; Zeriahi, Ahmed

    2018-02-01

    Studying the behavior of the Kähler-Ricci flow on mildly singular varieties, one is naturally lead to study weak solutions of degenerate parabolic complex Monge-Ampère equations. In this article, the third of a series on this subject, we study the long term behavior of the normalized Kähler-Ricci flow on mildly singular varieties of positive Kodaira dimension, generalizing results of Song and Tian who dealt with smooth minimal models.

  16. Applying Novel Time-Frequency Moments Singular Value Decomposition Method and Artificial Neural Networks for Ballistocardiography

    NASA Astrophysics Data System (ADS)

    Akhbardeh, Alireza; Junnila, Sakari; Koivuluoma, Mikko; Koivistoinen, Teemu; Värri, Alpo

    2006-12-01

    As we know, singular value decomposition (SVD) is designed for computing singular values (SVs) of a matrix. Then, if it is used for finding SVs of an [InlineEquation not available: see fulltext.]-by-1 or 1-by- [InlineEquation not available: see fulltext.] array with elements representing samples of a signal, it will return only one singular value that is not enough to express the whole signal. To overcome this problem, we designed a new kind of the feature extraction method which we call ''time-frequency moments singular value decomposition (TFM-SVD).'' In this new method, we use statistical features of time series as well as frequency series (Fourier transform of the signal). This information is then extracted into a certain matrix with a fixed structure and the SVs of that matrix are sought. This transform can be used as a preprocessing stage in pattern clustering methods. The results in using it indicate that the performance of a combined system including this transform and classifiers is comparable with the performance of using other feature extraction methods such as wavelet transforms. To evaluate TFM-SVD, we applied this new method and artificial neural networks (ANNs) for ballistocardiogram (BCG) data clustering to look for probable heart disease of six test subjects. BCG from the test subjects was recorded using a chair-like ballistocardiograph, developed in our project. This kind of device combined with automated recording and analysis would be suitable for use in many places, such as home, office, and so forth. The results show that the method has high performance and it is almost insensitive to BCG waveform latency or nonlinear disturbance.

  17. Self-similar dynamics of air film entrained by a solid disk in confined space: A simple prototype of topological transitions

    NASA Astrophysics Data System (ADS)

    Nakazato, Hana; Yamagishi, Yuki; Okumura, Ko

    2018-05-01

    In hydrodynamic topological transitions, one mass of fluid breaks into two or two merge into one. For example, in honey-drop formation when honey is dripping from a spoon, honey is extended to separate into two masses as the liquid neck bridging them thins down to the micron scale. At the moment when the topology changes due to the breakup, physical observables such as surface curvature locally diverge. Such singular dynamics has widely attracted physicists, revealing universality in self-similar dynamics, which shares much in common with critical phenomena in thermodynamics. Many experimental examples have been found, including an electric spout and vibration-induced jet eruption. However, only a few cases have been physically understood on the basis of equations that govern the singular dynamics and even in such a case the physical understanding is mathematically complicated, inevitably involving delicate numerical calculations. Here we study the breakup of air film entrained by a solid disk into viscous liquid in a confined space, which leads to formation, thinning, and breakup of the neck of air. As a result, we unexpectedly find that equations governing the neck dynamics can be solved analytically by virtue of two remarkable experimental features: Only a single length scale linearly dependent on time remains near the singularity and two universal scaling functions describing the singular neck shape and velocity field are both analytic. The present solvable case would be essential for a better understanding of the singular dynamics and will help reveal the physics of unresolved examples intimately related to daily-life phenomena and diverse practical applications.

  18. Constraints on Stress Components at the Internal Singular Point of an Elastic Compound Structure

    NASA Astrophysics Data System (ADS)

    Pestrenin, V. M.; Pestrenina, I. V.

    2017-03-01

    The classical analytical and numerical methods for investigating the stress-strain state (SSS) in the vicinity of a singular point consider the point as a mathematical one (having no linear dimensions). The reliability of the solution obtained by such methods is valid only outside a small vicinity of the singular point, because the macroscopic equations become incorrect and microscopic ones have to be used to describe the SSS in this vicinity. Also, it is impossible to set constraint or to formulate solutions in stress-strain terms for a mathematical point. These problems do not arise if the singular point is identified with the representative volume of material of the structure studied. In authors' opinion, this approach is consistent with the postulates of continuum mechanics. In this case, the formulation of constraints at a singular point and their investigation becomes an independent problem of mechanics for bodies with singularities. This method was used to explore constraints at an internal singular point (representative volume) of a compound wedge and a compound rib. It is shown that, in addition to the constraints given in the classical approach, there are also constraints depending on the macroscopic parameters of constituent materials. These constraints turn the problems of deformable bodies with an internal singular point into nonclassical ones. Combinations of material parameters determine the number of additional constraints and the critical stress state at the singular point. Results of this research can be used in the mechanics of composite materials and fracture mechanics and in studying stress concentrations in composite structural elements.

  19. Boundary singularities produced by the motion of soap films.

    PubMed

    Goldstein, Raymond E; McTavish, James; Moffatt, H Keith; Pesci, Adriana I

    2014-06-10

    Recent work has shown that a Möbius strip soap film rendered unstable by deforming its frame changes topology to that of a disk through a "neck-pinching" boundary singularity. This behavior is unlike that of the catenoid, which transitions to two disks through a bulk singularity. It is not yet understood whether the type of singularity is generally a consequence of the surface topology, nor how this dependence could arise from an equation of motion for the surface. To address these questions we investigate experimentally, computationally, and theoretically the route to singularities of soap films with different topologies, including a family of punctured Klein bottles. We show that the location of singularities (bulk or boundary) may depend on the path of the boundary deformation. In the unstable regime the driving force for soap-film motion is the mean curvature. Thus, the narrowest part of the neck, associated with the shortest nontrivial closed geodesic of the surface, has the highest curvature and is the fastest moving. Just before onset of the instability there exists on the stable surface the shortest closed geodesic, which is the initial condition for evolution of the neck's geodesics, all of which have the same topological relationship to the frame. We make the plausible conjectures that if the initial geodesic is linked to the boundary, then the singularity will occur at the boundary, whereas if the two are unlinked initially, then the singularity will occur in the bulk. Numerical study of mean curvature flows and experiments support these conjectures.

  20. Complete conformal classification of the Friedmann–Lemaître–Robertson–Walker solutions with a linear equation of state

    NASA Astrophysics Data System (ADS)

    Harada, Tomohiro; Carr, B. J.; Igata, Takahisa

    2018-05-01

    We completely classify Friedmann–Lemaître–Robertson–Walker solutions with spatial curvature and equation of state , according to their conformal structure, singularities and trapping horizons. We do not assume any energy conditions and allow , thereby going beyond the usual well-known solutions. For each spatial curvature, there is an initial spacelike big-bang singularity for w  >  ‑1/3 and , while there is no big-bang singularity for w  <  ‑1 and . For K  =  0 or  ‑1, ‑1  <  w  <  ‑1/3 and , there is an initial null big-bang singularity. For each spatial curvature, there is a final spacelike future big-rip singularity for w  <  ‑1 and , with null geodesics being future complete for but incomplete for w  <  ‑5/3. For w  =  ‑1/3, the expansion speed is constant. For  ‑1  <  w  <  ‑1/3 and K  =  1, the universe contracts from infinity, then bounces and expands back to infinity. For K  =  0, the past boundary consists of timelike infinity and a regular null hypersurface for  ‑5/3  <  w  <  ‑1, while it consists of past timelike and past null infinities for . For w  <  ‑1 and K  =  1, the spacetime contracts from an initial spacelike past big-rip singularity, then bounces and blows up at a final spacelike future big-rip singularity. For w  <  ‑1 and K  =  ‑1, the past boundary consists of a regular null hypersurface. The trapping horizons are timelike, null and spacelike for , and , respectively. A negative energy density () is possible only for K  =  ‑1. In this case, for w  >  ‑1/3, the universe contracts from infinity, then bounces and expands to infinity; for  ‑1  <  w  <  ‑1/3, it starts from a big-bang singularity and contracts to a big-crunch singularity; for w  <  ‑1, it expands from a regular null hypersurface and contracts to another regular null hypersurface.

Top