Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN.
Liu, Chang; Cheng, Gang; Chen, Xihui; Pang, Yusong
2018-05-11
Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears.
Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN
Cheng, Gang; Chen, Xihui
2018-01-01
Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears. PMID:29751671
Flight-determined stability analysis of multiple-input-multiple-output control systems
NASA Technical Reports Server (NTRS)
Burken, John J.
1992-01-01
Singular value analysis can give conservative stability margin results. Applying structure to the uncertainty can reduce this conservatism. This paper presents flight-determined stability margins for the X-29A lateral-directional, multiloop control system. These margins are compared with the predicted unscaled singular values and scaled structured singular values. The algorithm was further evaluated with flight data by changing the roll-rate-to-aileron command-feedback gain by +/- 20 percent. Minimum eigenvalues of the return difference matrix which bound the singular values are also presented. Extracting multiloop singular values from flight data and analyzing the feedback gain variations validates this technique as a measure of robustness. This analysis can be used for near-real-time flight monitoring and safety testing.
Flight-determined stability analysis of multiple-input-multiple-output control systems
NASA Technical Reports Server (NTRS)
Burken, John J.
1992-01-01
Singular value analysis can give conservative stability margin results. Applying structure to the uncertainty can reduce this conservatism. This paper presents flight-determined stability margins for the X-29A lateral-directional, multiloop control system. These margins are compared with the predicted unscaled singular values and scaled structured singular values. The algorithm was further evaluated with flight data by changing the roll-rate-to-aileron-command-feedback gain by +/- 20 percent. Also presented are the minimum eigenvalues of the return difference matrix which bound the singular values. Extracting multiloop singular values from flight data and analyzing the feedback gain variations validates this technique as a measure of robustness. This analysis can be used for near-real-time flight monitoring and safety testing.
Singular value decomposition based feature extraction technique for physiological signal analysis.
Chang, Cheng-Ding; Wang, Chien-Chih; Jiang, Bernard C
2012-06-01
Multiscale entropy (MSE) is one of the popular techniques to calculate and describe the complexity of the physiological signal. Many studies use this approach to detect changes in the physiological conditions in the human body. However, MSE results are easily affected by noise and trends, leading to incorrect estimation of MSE values. In this paper, singular value decomposition (SVD) is adopted to replace MSE to extract the features of physiological signals, and adopt the support vector machine (SVM) to classify the different physiological states. A test data set based on the PhysioNet website was used, and the classification results showed that using SVD to extract features of the physiological signal could attain a classification accuracy rate of 89.157%, which is higher than that using the MSE value (71.084%). The results show the proposed analysis procedure is effective and appropriate for distinguishing different physiological states. This promising result could be used as a reference for doctors in diagnosis of congestive heart failure (CHF) disease.
Singularity-free backstepping controller for model helicopters.
Zou, Yao; Huo, Wei
2016-11-01
This paper develops a backstepping controller for model helicopters to achieve trajectory tracking without singularity, which occurs in the attitude representation when the roll or pitch reaches ±π2. Based on a simplified model with unmodeled dynamics, backstepping technique is introduced to exploit the controller and hyperbolic tangent functions are utilized to compensate the unmodeled dynamics. Firstly, a position loop controller is designed for the position tracking, where an auxiliary dynamic system with suitable parameters is introduced to warrant the singularity-free requirement for the extracted command attitude. Then, a novel attitude loop controller is proposed to obviate singularity. It is demonstrated that, based on the established criteria for selecting controller parameters and desired trajectories, the proposed controller realizes the singularity-free trajectory tracking of the model helicopter. Simulations confirm the theoretical results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Simple and Efficient Numerical Evaluation of Near-Hypersingular Integrals
NASA Technical Reports Server (NTRS)
Fink, Patrick W.; Wilton, Donald R.; Khayat, Michael A.
2007-01-01
Recently, significant progress has been made in the handling of singular and nearly-singular potential integrals that commonly arise in the Boundary Element Method (BEM). To facilitate object-oriented programming and handling of higher order basis functions, cancellation techniques are favored over techniques involving singularity subtraction. However, gradients of the Newton-type potentials, which produce hypersingular kernels, are also frequently required in BEM formulations. As is the case with the potentials, treatment of the near-hypersingular integrals has proven more challenging than treating the limiting case in which the observation point approaches the surface. Historically, numerical evaluation of these near-hypersingularities has often involved a two-step procedure: a singularity subtraction to reduce the order of the singularity, followed by a boundary contour integral evaluation of the extracted part. Since this evaluation necessarily links basis function, Green s function, and the integration domain (element shape), the approach ill fits object-oriented programming concepts. Thus, there is a need for cancellation-type techniques for efficient numerical evaluation of the gradient of the potential. Progress in the development of efficient cancellation-type procedures for the gradient potentials was recently presented. To the extent possible, a change of variables is chosen such that the Jacobian of the transformation cancels the singularity. However, since the gradient kernel involves singularities of different orders, we also require that the transformation leaves remaining terms that are analytic. The terms "normal" and "tangential" are used herein with reference to the source element. Also, since computational formulations often involve the numerical evaluation of both potentials and their gradients, it is highly desirable that a single integration procedure efficiently handles both.
Valous, Nektarios A; Mendoza, Fernando; Sun, Da-Wen; Allen, Paul
2010-03-01
The quaternionic singular value decomposition is a technique to decompose a quaternion matrix (representation of a colour image) into quaternion singular vector and singular value component matrices exposing useful properties. The objective of this study was to use a small portion of uncorrelated singular values, as robust features for the classification of sliced pork ham images, using a supervised artificial neural network classifier. Images were acquired from four qualities of sliced cooked pork ham typically consumed in Ireland (90 slices per quality), having similar appearances. Mahalanobis distances and Pearson product moment correlations were used for feature selection. Six highly discriminating features were used as input to train the neural network. An adaptive feedforward multilayer perceptron classifier was employed to obtain a suitable mapping from the input dataset. The overall correct classification performance for the training, validation and test set were 90.3%, 94.4%, and 86.1%, respectively. The results confirm that the classification performance was satisfactory. Extracting the most informative features led to the recognition of a set of different but visually quite similar textural patterns based on quaternionic singular values. Copyright 2009 Elsevier Ltd. All rights reserved.
Sample-space-based feature extraction and class preserving projection for gene expression data.
Wang, Wenjun
2013-01-01
In order to overcome the problems of high computational complexity and serious matrix singularity for feature extraction using Principal Component Analysis (PCA) and Fisher's Linear Discrinimant Analysis (LDA) in high-dimensional data, sample-space-based feature extraction is presented, which transforms the computation procedure of feature extraction from gene space to sample space by representing the optimal transformation vector with the weighted sum of samples. The technique is used in the implementation of PCA, LDA, Class Preserving Projection (CPP) which is a new method for discriminant feature extraction proposed, and the experimental results on gene expression data demonstrate the effectiveness of the method.
NASA Astrophysics Data System (ADS)
Wang, L.-P.; Ochoa-Rodríguez, S.; Onof, C.; Willems, P.
2015-09-01
Gauge-based radar rainfall adjustment techniques have been widely used to improve the applicability of radar rainfall estimates to large-scale hydrological modelling. However, their use for urban hydrological applications is limited as they were mostly developed based upon Gaussian approximations and therefore tend to smooth off so-called "singularities" (features of a non-Gaussian field) that can be observed in the fine-scale rainfall structure. Overlooking the singularities could be critical, given that their distribution is highly consistent with that of local extreme magnitudes. This deficiency may cause large errors in the subsequent urban hydrological modelling. To address this limitation and improve the applicability of adjustment techniques at urban scales, a method is proposed herein which incorporates a local singularity analysis into existing adjustment techniques and allows the preservation of the singularity structures throughout the adjustment process. In this paper the proposed singularity analysis is incorporated into the Bayesian merging technique and the performance of the resulting singularity-sensitive method is compared with that of the original Bayesian (non singularity-sensitive) technique and the commonly used mean field bias adjustment. This test is conducted using as case study four storm events observed in the Portobello catchment (53 km2) (Edinburgh, UK) during 2011 and for which radar estimates, dense rain gauge and sewer flow records, as well as a recently calibrated urban drainage model were available. The results suggest that, in general, the proposed singularity-sensitive method can effectively preserve the non-normality in local rainfall structure, while retaining the ability of the original adjustment techniques to generate nearly unbiased estimates. Moreover, the ability of the singularity-sensitive technique to preserve the non-normality in rainfall estimates often leads to better reproduction of the urban drainage system's dynamics, particularly of peak runoff flows.
Palmprint and Face Multi-Modal Biometric Recognition Based on SDA-GSVD and Its Kernelization
Jing, Xiao-Yuan; Li, Sheng; Li, Wen-Qian; Yao, Yong-Fang; Lan, Chao; Lu, Jia-Sen; Yang, Jing-Yu
2012-01-01
When extracting discriminative features from multimodal data, current methods rarely concern themselves with the data distribution. In this paper, we present an assumption that is consistent with the viewpoint of discrimination, that is, a person's overall biometric data should be regarded as one class in the input space, and his different biometric data can form different Gaussians distributions, i.e., different subclasses. Hence, we propose a novel multimodal feature extraction and recognition approach based on subclass discriminant analysis (SDA). Specifically, one person's different bio-data are treated as different subclasses of one class, and a transformed space is calculated, where the difference among subclasses belonging to different persons is maximized, and the difference within each subclass is minimized. Then, the obtained multimodal features are used for classification. Two solutions are presented to overcome the singularity problem encountered in calculation, which are using PCA preprocessing, and employing the generalized singular value decomposition (GSVD) technique, respectively. Further, we provide nonlinear extensions of SDA based multimodal feature extraction, that is, the feature fusion based on KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first apply Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we directly perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the singular problem. For simplicity two typical types of biometric data are considered in this paper, i.e., palmprint data and face data. Compared with several representative multimodal biometrics recognition methods, experimental results show that our approaches outperform related multimodal recognition methods and KSDA-GSVD achieves the best recognition performance. PMID:22778600
Palmprint and face multi-modal biometric recognition based on SDA-GSVD and its kernelization.
Jing, Xiao-Yuan; Li, Sheng; Li, Wen-Qian; Yao, Yong-Fang; Lan, Chao; Lu, Jia-Sen; Yang, Jing-Yu
2012-01-01
When extracting discriminative features from multimodal data, current methods rarely concern themselves with the data distribution. In this paper, we present an assumption that is consistent with the viewpoint of discrimination, that is, a person's overall biometric data should be regarded as one class in the input space, and his different biometric data can form different Gaussians distributions, i.e., different subclasses. Hence, we propose a novel multimodal feature extraction and recognition approach based on subclass discriminant analysis (SDA). Specifically, one person's different bio-data are treated as different subclasses of one class, and a transformed space is calculated, where the difference among subclasses belonging to different persons is maximized, and the difference within each subclass is minimized. Then, the obtained multimodal features are used for classification. Two solutions are presented to overcome the singularity problem encountered in calculation, which are using PCA preprocessing, and employing the generalized singular value decomposition (GSVD) technique, respectively. Further, we provide nonlinear extensions of SDA based multimodal feature extraction, that is, the feature fusion based on KPCA-SDA and KSDA-GSVD. In KPCA-SDA, we first apply Kernel PCA on each single modal before performing SDA. While in KSDA-GSVD, we directly perform Kernel SDA to fuse multimodal data by applying GSVD to avoid the singular problem. For simplicity two typical types of biometric data are considered in this paper, i.e., palmprint data and face data. Compared with several representative multimodal biometrics recognition methods, experimental results show that our approaches outperform related multimodal recognition methods and KSDA-GSVD achieves the best recognition performance.
Optical character recognition with feature extraction and associative memory matrix
NASA Astrophysics Data System (ADS)
Sasaki, Osami; Shibahara, Akihito; Suzuki, Takamasa
1998-06-01
A method is proposed in which handwritten characters are recognized using feature extraction and an associative memory matrix. In feature extraction, simple processes such as shifting and superimposing patterns are executed. A memory matrix is generated with singular value decomposition and by modifying small singular values. The method is optically implemented with two liquid crystal displays. Experimental results for the recognition of 25 handwritten alphabet characters clearly shows the effectiveness of the method.
Finite element techniques applied to cracks interacting with selected singularities
NASA Technical Reports Server (NTRS)
Conway, J. C.
1975-01-01
The finite-element method for computing the extensional stress-intensity factor for cracks approaching selected singularities of varied geometry is described. Stress-intensity factors are generated using both displacement and J-integral techniques, and numerical results are compared to those obtained experimentally in a photoelastic investigation. The selected singularities considered are a colinear crack, a circular penetration, and a notched circular penetration. Results indicate that singularities greatly influence the crack-tip stress-intensity factor as the crack approaches the singularity. In addition, the degree of influence can be regulated by varying the overall geometry of the singularity. Local changes in singularity geometry have little effect on the stress-intensity factor for the cases investigated.
A novel image watermarking method based on singular value decomposition and digital holography
NASA Astrophysics Data System (ADS)
Cai, Zhishan
2016-10-01
According to the information optics theory, a novel watermarking method based on Fourier-transformed digital holography and singular value decomposition (SVD) is proposed in this paper. First of all, a watermark image is converted to a digital hologram using the Fourier transform. After that, the original image is divided into many non-overlapping blocks. All the blocks and the hologram are decomposed using SVD. The singular value components of the hologram are then embedded into the singular value components of each block using an addition principle. Finally, SVD inverse transformation is carried out on the blocks and hologram to generate the watermarked image. The watermark information embedded in each block is extracted at first when the watermark is extracted. After that, an averaging operation is carried out on the extracted information to generate the final watermark information. Finally, the algorithm is simulated. Furthermore, to test the encrypted image's resistance performance against attacks, various attack tests are carried out. The results show that the proposed algorithm has very good robustness against noise interference, image cut, compression, brightness stretching, etc. In particular, when the image is rotated by a large angle, the watermark information can still be extracted correctly.
Naked singularities are not singular in distorted gravity
NASA Astrophysics Data System (ADS)
Garattini, Remo; Majumder, Barun
2014-07-01
We compute the Zero Point Energy (ZPE) induced by a naked singularity with the help of a reformulation of the Wheele-DeWitt equation. A variational approach is used for the calculation with Gaussian Trial Wave Functionals. The one loop contribution of the graviton to the ZPE is extracted keeping under control the UltraViolet divergences by means of a distorted gravitational field. Two examples of distortion are taken under consideration: Gravity's Rainbow and Noncommutative Geometry. Surprisingly, we find that the ZPE is no more singular when we approach the singularity.
Characterization of agricultural land using singular value decomposition
NASA Astrophysics Data System (ADS)
Herries, Graham M.; Danaher, Sean; Selige, Thomas
1995-11-01
A method is defined and tested for the characterization of agricultural land from multi-spectral imagery, based on singular value decomposition (SVD) and key vector analysis. The SVD technique, which bears a close resemblance to multivariate statistic techniques, has previously been successfully applied to problems of signal extraction for marine data and forestry species classification. In this study the SVD technique is used as a classifier for agricultural regions, using airborne Daedalus ATM data, with 1 m resolution. The specific region chosen is an experimental research farm in Bavaria, Germany. This farm has a large number of crops, within a very small region and hence is not amenable to existing techniques. There are a number of other significant factors which render existing techniques such as the maximum likelihood algorithm less suitable for this area. These include a very dynamic terrain and tessellated pattern soil differences, which together cause large variations in the growth characteristics of the crops. The SVD technique is applied to this data set using a multi-stage classification approach, removing unwanted land-cover classes one step at a time. Typical classification accuracy's for SVD are of the order of 85-100%. Preliminary results indicate that it is a fast and efficient classifier with the ability to differentiate between crop types such as wheat, rye, potatoes and clover. The results of characterizing 3 sub-classes of Winter Wheat are also shown.
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Mukhopadhyay, V.
1983-01-01
A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two-input/two-output drone flight control system.
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Mukhopadhyay, V.
1983-01-01
A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two output drone flight control system.
Wang, Wei; Qiao, Yu; Ishijima, Reika; Yokozeki, Tomoaki; Honda, Daigo; Matsuda, Akihiro; Hanson, Steen G; Takeda, Mitsuo
2008-09-01
A novel technique for biological kinematic analysis is proposed that makes use of the pseudophase singularities in a complex signal generated from a speckle-like pattern. In addition to the information about the locations and the anisotropic core structures of the pseudophase singularities, we also detect the spatial structures of a cluster of phase singularities, which serves as a unique constellation characterizing the mutual position relation between the individual pseudophase singularities. Experimental results of in vivo measurements for a swimming fish along with its kinematic analysis are presented, which demonstrate the validity of the proposed technique.
On important precursor of singular optics (tutorial)
NASA Astrophysics Data System (ADS)
Polyanskii, Peter V.; Felde, Christina V.; Bogatyryova, Halina V.; Konovchuk, Alexey V.
2018-01-01
The rise of singular optics is usually associated with the seminal paper by J. F. Nye and M. V. Berry [Proc. R. Soc. Lond. A, 336, 165-189 (1974)]. Intense development of this area of modern photonics has started since the early eighties of the XX century due to invention of the interfrence technique for detection and diagnostics of phase singularities, such as optical vortices in complex speckle-structured light fields. The next powerful incentive for formation of singular optics into separate area of the science on light was connectected with discovering of very practical technique for creation of singular optical beams of various kinds on the base of computer-generated holograms. In the eghties and ninetieth of the XX century, singular optics evolved, almost entirely, under the approximation of complete coherency of light field. Only at the threshold of the XXI century, it has been comprehended that the singular-optics approaches can be fruitfully expanded onto partially spatially coherent, partially polarized and polychromatic light fields supporting singularities of new kinds, that has been resulted in establishing of correlation singular optics. Here we show that correlation singular optics has much deeper roots, ascending to "pre-singular" and even pre-laser epoch and associated with the concept of partial coherence and polarization. It is remarcable that correlation singular optics in its present interpretation has forestalled the standard coherent singular optics. This paper is timed to the sixtieth anniversary of the most profound precursor of modern correlation singular optics [J. Opt. Soc. Am., 47, 895-902 (1957)].
Fingerprint recognition system by use of graph matching
NASA Astrophysics Data System (ADS)
Shen, Wei; Shen, Jun; Zheng, Huicheng
2001-09-01
Fingerprint recognition is an important subject in biometrics to identify or verify persons by physiological characteristics, and has found wide applications in different domains. In the present paper, we present a finger recognition system that combines singular points and structures. The principal steps of processing in our system are: preprocessing and ridge segmentation, singular point extraction and selection, graph representation, and finger recognition by graphs matching. Our fingerprint recognition system is implemented and tested for many fingerprint images and the experimental result are satisfactory. Different techniques are used in our system, such as fast calculation of orientation field, local fuzzy dynamical thresholding, algebraic analysis of connections and fingerprints representation and matching by graphs. Wed find that for fingerprint database that is not very large, the recognition rate is very high even without using a prior coarse category classification. This system works well for both one-to-few and one-to-many problems.
Resolution of quantum singularities
NASA Astrophysics Data System (ADS)
Konkowski, Deborah; Helliwell, Thomas
2017-01-01
A review of quantum singularities in static and conformally static spacetimes is given. A spacetime is said to be quantum mechanically non-singular if a quantum wave packet does not feel, in some sense, the presence of a singularity; mathematically, this means that the wave operator is essentially self-adjoint on the space of square integrable functions. Spacetimes with classical mild singularities (quasiregular ones) to spacetimes with classical strong curvature singularities have been tested. Here we discuss the similarities and differences between classical singularities that are healed quantum mechanically and those that are not. Possible extensions of the mathematical technique to more physically realistic spacetimes are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Futatani, S.; Bos, W.J.T.; Del-Castillo-Negrete, Diego B
2011-01-01
We assess two techniques for extracting coherent vortices out of turbulent flows: the wavelet based Coherent Vorticity Extraction (CVE) and the Proper Orthogonal Decomposition (POD). The former decomposes the flow field into an orthogonal wavelet representation and subsequent thresholding of the coefficients allows one to split the flow into organized coherent vortices with non-Gaussian statistics and an incoherent random part which is structureless. POD is based on the singular value decomposition and decomposes the flow into basis functions which are optimal with respect to the retained energy for the ensemble average. Both techniques are applied to direct numerical simulation datamore » of two-dimensional drift-wave turbulence governed by Hasegawa Wakatani equation, considering two limit cases: the quasi-hydrodynamic and the quasi-adiabatic regimes. The results are compared in terms of compression rate, retained energy, retained enstrophy and retained radial flux, together with the enstrophy spectrum and higher order statistics. (c) 2010 Published by Elsevier Masson SAS on behalf of Academie des sciences.« less
NASA Astrophysics Data System (ADS)
Zhang, Shangbin; Lu, Siliang; He, Qingbo; Kong, Fanrang
2016-09-01
For rotating machines, the defective faults of bearings generally are represented as periodic transient impulses in acquired signals. The extraction of transient features from signals has been a key issue for fault diagnosis. However, the background noise reduces identification performance of periodic faults in practice. This paper proposes a time-varying singular value decomposition (TSVD) method to enhance the identification of periodic faults. The proposed method is inspired by the sliding window method. By applying singular value decomposition (SVD) to the signal under a sliding window, we can obtain a time-varying singular value matrix (TSVM). Each column in the TSVM is occupied by the singular values of the corresponding sliding window, and each row represents the intrinsic structure of the raw signal, namely time-singular-value-sequence (TSVS). Theoretical and experimental analyses show that the frequency of TSVS is exactly twice that of the corresponding intrinsic structure. Moreover, the signal-to-noise ratio (SNR) of TSVS is improved significantly in comparison with the raw signal. The proposed method takes advantages of the TSVS in noise suppression and feature extraction to enhance fault frequency for diagnosis. The effectiveness of the TSVD is verified by means of simulation studies and applications to diagnosis of bearing faults. Results indicate that the proposed method is superior to traditional methods for bearing fault diagnosis.
On the solution of integral equations with a generalized cauchy kernal
NASA Technical Reports Server (NTRS)
Kaya, A. C.; Erdogan, F.
1986-01-01
A certain class of singular integral equations that may arise from the mixed boundary value problems in nonhonogeneous materials is considered. The distinguishing feature of these equations is that in addition to the Cauchy singularity, the kernels contain terms that are singular only at the end points. In the form of the singular integral equations adopted, the density function is a potential or a displacement and consequently the kernal has strong singularities of the form (t-x)(-2), x(n-2) (t+x)(n), (n is = or 2, 0 x, t b). The complex function theory is used to determine the fundamental function of the problem for the general case and a simple numerical technique is described to solve the integral equation. Two examples from the theory of elasticity are then considered to show the application of the technique.
Singularity Analysis: a powerful image processing tool in remote sensing of the oceans
NASA Astrophysics Data System (ADS)
Turiel, A.; Umbert, M.; Hoareau, N.; Ballabrera-Poy, J.; Portabella, M.
2012-04-01
The study of fully developed turbulence has given rise to the development of new methods to describe real data of scalars submitted to the action of a turbulent flow. The application of this brand of methodologies (known as Microcanonical Multifractal Formalism, MMF) on remote sensing ocean maps open new ways to exploit those data for oceanographic purposes. The main technique in MMF is that of Singularity Analysis (SA). By means of SA a singularity exponents is assigned to each point of a given image. The singularity exponent of a given point is a dimensionless measure of the regularity or irregularity of the scalar at that point. Singularity exponents arrange in singularity lines, which accurately track the flow streamlines from any scalar, as we have verified with remote sensing and simulated data. Applications of SA include quality assessment of different products, the estimation of surface velocities, the development of fusion techniques for different types of scalars, comparison with measures of ocean mixing, and improvement in assimilation schemes.
Application of a sensitivity analysis technique to high-order digital flight control systems
NASA Technical Reports Server (NTRS)
Paduano, James D.; Downing, David R.
1987-01-01
A sensitivity analysis technique for multiloop flight control systems is studied. This technique uses the scaled singular values of the return difference matrix as a measure of the relative stability of a control system. It then uses the gradients of these singular values with respect to system and controller parameters to judge sensitivity. The sensitivity analysis technique is first reviewed; then it is extended to include digital systems, through the derivation of singular-value gradient equations. Gradients with respect to parameters which do not appear explicitly as control-system matrix elements are also derived, so that high-order systems can be studied. A complete review of the integrated technique is given by way of a simple example: the inverted pendulum problem. The technique is then demonstrated on the X-29 control laws. Results show linear models of real systems can be analyzed by this sensitivity technique, if it is applied with care. A computer program called SVA was written to accomplish the singular-value sensitivity analysis techniques. Thus computational methods and considerations form an integral part of many of the discussions. A user's guide to the program is included. The SVA is a fully public domain program, running on the NASA/Dryden Elxsi computer.
NASA Astrophysics Data System (ADS)
Ali Shah, Nehad; Mahsud, Yasir; Ali Zafar, Azhar
2017-10-01
This article introduces a theoretical study for unsteady free convection flow of an incompressible viscous fluid. The fluid flows near an isothermal vertical plate. The plate has a translational motion with time-dependent velocity. The equations governing the fluid flow are expressed in fractional differential equations by using a newly defined time-fractional Caputo-Fabrizio derivative without singular kernel. Explicit solutions for velocity, temperature and solute concentration are obtained by applying the Laplace transform technique. As the fractional parameter approaches to one, solutions for the ordinary fluid model are extracted from the general solutions of the fractional model. The results showed that, for the fractional model, the obtained solutions for velocity, temperature and concentration exhibit stationary jumps discontinuity across the plane at t=0 , while the solutions are continuous functions in the case of the ordinary model. Finally, numerical results for flow features at small-time are illustrated through graphs for various pertinent parameters.
On the solution of integral equations with a generalized cauchy kernel
NASA Technical Reports Server (NTRS)
Kaya, A. C.; Erdogan, F.
1986-01-01
In this paper a certain class of singular integral equations that may arise from the mixed boundary value problems in nonhomogeneous materials is considered. The distinguishing feature of these equations is that in addition to the Cauchy singularity, the kernels contain terms that are singular only at the end points. In the form of the singular integral equations adopted, the density function is a potential or a displacement and consequently the kernel has strong singularities of the form (t-x) sup-2, x sup n-2 (t+x) sup n, (n or = 2, 0x,tb). The complex function theory is used to determine the fundamental function of the problem for the general case and a simple numerical technique is described to solve the integral equation. Two examples from the theory of elasticity are then considered to show the application of the technique.
Singular Atom Optics with Spinor BECs
NASA Astrophysics Data System (ADS)
Schultz, Justin T.; Hansen, Azure; Bigelow, Nicholas P.
2015-05-01
We create and study singular spin textures in pseudo-spin-1/2 BECs. A series of two-photon Raman interactions allows us to not only engineer the spinor wavefunction but also perform the equivalent of atomic polarimetry on the BEC. Adapting techniques from optical polarimetry, we can image two-dimensional maps of the atomic Stokes parameters, thereby fully reconstructing the atomic wavefunction. In a spin-1/2 system, we can represent the local spin superposition with ellipses in a Cartesian basis. The patterns that emerge from the major axes of the ellipses provide fingerprints of the singularities that enable us to classify them as lemons, stars, saddles, or spirals similar to classification schemes for singularities in singular optics, condensed matter, and liquid crystals. These techniques may facilitate the study of geometric Gouy phases in matter waves as well as provide an avenue for utilizing topological structures as quantum gates.
NASA Astrophysics Data System (ADS)
Akhbardeh, Alireza; Junnila, Sakari; Koivuluoma, Mikko; Koivistoinen, Teemu; Värri, Alpo
2006-12-01
As we know, singular value decomposition (SVD) is designed for computing singular values (SVs) of a matrix. Then, if it is used for finding SVs of an [InlineEquation not available: see fulltext.]-by-1 or 1-by- [InlineEquation not available: see fulltext.] array with elements representing samples of a signal, it will return only one singular value that is not enough to express the whole signal. To overcome this problem, we designed a new kind of the feature extraction method which we call ''time-frequency moments singular value decomposition (TFM-SVD).'' In this new method, we use statistical features of time series as well as frequency series (Fourier transform of the signal). This information is then extracted into a certain matrix with a fixed structure and the SVs of that matrix are sought. This transform can be used as a preprocessing stage in pattern clustering methods. The results in using it indicate that the performance of a combined system including this transform and classifiers is comparable with the performance of using other feature extraction methods such as wavelet transforms. To evaluate TFM-SVD, we applied this new method and artificial neural networks (ANNs) for ballistocardiogram (BCG) data clustering to look for probable heart disease of six test subjects. BCG from the test subjects was recorded using a chair-like ballistocardiograph, developed in our project. This kind of device combined with automated recording and analysis would be suitable for use in many places, such as home, office, and so forth. The results show that the method has high performance and it is almost insensitive to BCG waveform latency or nonlinear disturbance.
An improved, robust, axial line singularity method for bodies of revolution
NASA Technical Reports Server (NTRS)
Hemsch, Michael J.
1989-01-01
The failures encountered in attempts to increase the range of applicability of the axial line singularity method for representing incompressible, inviscid flow about an inclined and slender body-of-revolution are presently noted to be common to all efforts to solve Fredholm equations of the first kind. It is shown that a previously developed smoothing technique yields a robust method for numerical solution of the governing equations; this technique is easily retrofitted to existing codes, and allows the number of circularities to be increased until the most accurate line singularity solution is obtained.
Metaheuristic optimisation methods for approximate solving of singular boundary value problems
NASA Astrophysics Data System (ADS)
Sadollah, Ali; Yadav, Neha; Gao, Kaizhou; Su, Rong
2017-07-01
This paper presents a novel approximation technique based on metaheuristics and weighted residual function (WRF) for tackling singular boundary value problems (BVPs) arising in engineering and science. With the aid of certain fundamental concepts of mathematics, Fourier series expansion, and metaheuristic optimisation algorithms, singular BVPs can be approximated as an optimisation problem with boundary conditions as constraints. The target is to minimise the WRF (i.e. error function) constructed in approximation of BVPs. The scheme involves generational distance metric for quality evaluation of the approximate solutions against exact solutions (i.e. error evaluator metric). Four test problems including two linear and two non-linear singular BVPs are considered in this paper to check the efficiency and accuracy of the proposed algorithm. The optimisation task is performed using three different optimisers including the particle swarm optimisation, the water cycle algorithm, and the harmony search algorithm. Optimisation results obtained show that the suggested technique can be successfully applied for approximate solving of singular BVPs.
Singularity detection in FOG-based pavement data by wavelet transform
NASA Astrophysics Data System (ADS)
Yang, Dandan; Wang, Lixin; Hu, Wenbin; Zhang, Zhen; Fu, Jinghua; Gan, Weibing
2017-04-01
The angular velocity data of Fiber-Optic Gyro (FOG) has been analyzed to locate the singularity by the wavelet transform (WT) method. By using WT analysis method to decompose and reconstruct the signal of pavement data collecting by the FOG, the different types of pavement singularities can be extracted. The experiments are conducted on different road surfaces. The experimental results show that the locations of bumps and expansion joints have been obtained, with a relative precision of 0.5 m and an absolute precision of 2 m over 2.4 km. The characteristic of the pavement roughness can also be identified.
NASA Astrophysics Data System (ADS)
Soskin, Marat S.; Denisenko, Vladimir G.; Egorov, Roman I.
2004-08-01
Polarimetry is effective technique for polarized light fields characterization. It was shown recently that most full "finger-print" of light fields with arbitrary complexity is network of polarization singularities: C points with circular polarization and L lines with variable azimuth. The new singular Stokes-polarimetry was elaborated for such measurements. It allows define azimuth, eccentricity and handedness of elliptical vibrations in each pixel of receiving CCD camera in the range of mega-pixels. It is based on precise measurement of full set of Stokes parameters by the help of high quality analyzers and quarter-wave plates with λ/500 preciseness and 4" adjustment. The matrices of obtained data are processed in PC by special programs to find positions of polarization singularities and other needed topological features. The developed SSP technique was proved successfully by measurements of topology of polarized speckle-fields produced by multimode "photonic-crystal" fibers, double side rubbed polymer films, biomedical samples. Each singularity is localized with preciseness up to +/- 1 pixel in comparison with 500 pixels dimensions of typical speckle. It was confirmed that network of topological features appeared in polarized light field after its interaction with specimen under inspection is exact individual "passport" for its characterization. Therefore, SSP can be used for smart materials characterization. The presented data show that SSP technique is promising for local analysis of properties and defects of thin films, liquid crystal cells, optical elements, biological samples, etc. It is able discover heterogeneities and defects, which define essentially merits of specimens under inspection and can"t be checked by usual polarimetry methods. The detected extra high sensitivity of polarization singularities position and network to any changes of samples position and deformation opens quite new possibilities for sensing of deformations and displacement of checked elements in the sub-micron range.
Complex eigenvalue extraction in NASTRAN by the tridiagonal reduction (FEER) method
NASA Technical Reports Server (NTRS)
Newman, M.; Mann, F. I.
1977-01-01
An extension of the Tridiagonal Reduction (FEER) method to complex eigenvalue analysis in NASTRAN is described. As in the case of real eigenvalue analysis, the eigensolutions closest to a selected point in the eigenspectrum are extracted from a reduced, symmetric, tridiagonal eigenmatrix whose order is much lower than that of the full size problem. The reduction process is effected automatically, and thus avoids the arbitrary lumping of masses and other physical quantities at selected grid points. The statement of the algebraic eigenvalue problem admits mass, damping and stiffness matrices which are unrestricted in character, i.e., they may be real, complex, symmetric or unsymmetric, singular or non-singular.
Han, Te; Jiang, Dongxiang; Zhang, Xiaochen; Sun, Yankui
2017-03-27
Rotating machinery is widely used in industrial applications. With the trend towards more precise and more critical operating conditions, mechanical failures may easily occur. Condition monitoring and fault diagnosis (CMFD) technology is an effective tool to enhance the reliability and security of rotating machinery. In this paper, an intelligent fault diagnosis method based on dictionary learning and singular value decomposition (SVD) is proposed. First, the dictionary learning scheme is capable of generating an adaptive dictionary whose atoms reveal the underlying structure of raw signals. Essentially, dictionary learning is employed as an adaptive feature extraction method regardless of any prior knowledge. Second, the singular value sequence of learned dictionary matrix is served to extract feature vector. Generally, since the vector is of high dimensionality, a simple and practical principal component analysis (PCA) is applied to reduce dimensionality. Finally, the K -nearest neighbor (KNN) algorithm is adopted for identification and classification of fault patterns automatically. Two experimental case studies are investigated to corroborate the effectiveness of the proposed method in intelligent diagnosis of rotating machinery faults. The comparison analysis validates that the dictionary learning-based matrix construction approach outperforms the mode decomposition-based methods in terms of capacity and adaptability for feature extraction.
Elasto-plastic flow in cracked bodies using a new finite element model. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Karabin, M. E., Jr.
1977-01-01
Cracked geometries were studied by finite element techniques with the aid of a new special element embedded at the crack tip. This model seeked to accurately represent the singular stresses and strains associated with the elasto-plastic flow process. The present model was not restricted to a material type and did not predetermine a singularity. Rather the singularity was treated as an unknown. For each step of the incremental process the nodal degrees of freedom and the unknown singularity were found through minimization of an energy-like functional. The singularity and nodal degrees of freedom were determined by means of an iterative process.
Embedding Dimension Selection for Adaptive Singular Spectrum Analysis of EEG Signal.
Xu, Shanzhi; Hu, Hai; Ji, Linhong; Wang, Peng
2018-02-26
The recorded electroencephalography (EEG) signal is often contaminated with different kinds of artifacts and noise. Singular spectrum analysis (SSA) is a powerful tool for extracting the brain rhythm from a noisy EEG signal. By analyzing the frequency characteristics of the reconstructed component (RC) and the change rate in the trace of the Toeplitz matrix, it is demonstrated that the embedding dimension is related to the frequency bandwidth of each reconstructed component, in consistence with the component mixing in the singular value decomposition step. A method for selecting the embedding dimension is thereby proposed and verified by simulated EEG signal based on the Markov Process Amplitude (MPA) EEG Model. Real EEG signal is also collected from the experimental subjects under both eyes-open and eyes-closed conditions. The experimental results show that based on the embedding dimension selection method, the alpha rhythm can be extracted from the real EEG signal by the adaptive SSA, which can be effectively utilized to distinguish between the eyes-open and eyes-closed states.
NASA Astrophysics Data System (ADS)
Sovardi, Carlo; Jaensch, Stefan; Polifke, Wolfgang
2016-09-01
A numerical method to concurrently characterize both aeroacoustic scattering and noise sources at a duct singularity is presented. This approach combines Large Eddy Simulation (LES) with techniques of System Identification (SI): In a first step, a highly resolved LES with external broadband acoustic excitation is carried out. Subsequently, time series data extracted from the LES are post-processed by means of SI to model both acoustic propagation and noise generation. The present work studies the aero-acoustic characteristics of an orifice placed in a duct at low flow Mach numbers with the "LES-SI" method. Parametric SI based on the Box-Jenkins mathematical structure is employed, with a prediction error approach that utilizes correlation analysis of the output residuals to avoid overfitting. Uncertainties of model parameters due to the finite length of times series are quantified in terms of confidence intervals. Numerical results for acoustic scattering matrices and power spectral densities of broad-band noise are validated against experimental measurements over a wide range of frequencies below the cut-off frequency of the duct.
Singularity and steering logic for control moment gyros on flexible space structures
NASA Astrophysics Data System (ADS)
Hu, Quan; Guo, Chuandong; Zhang, Jun
2017-08-01
Control moment gyros (CMGs) are a widely used device for generating control torques for spacecraft attitude control without expending propellant. Because of its effectiveness and cleanness, it has been considered to be mounted on a space structure for active vibration suppression. The resultant system is the so-called gyroelastic body. Since CMGs could exert both torque and modal force to the structure, it can also be used to simultaneously achieve attitude maneuver and vibration reduction of a flexible spacecraft. In this paper, we consider the singularity problem in such application of CMGs. The dynamics of an unconstrained gyroelastic body is established, from which the output equations of the CMGs are extracted. Then, torque singular state and modal force singular state are defined and visualized to demonstrate the singularity. Numerical examples of several typical CMGs configurations on a gyroelastic body are given. Finally, a steering law allowing output error is designed and applied to the vibration suppression of a plate with distributed CMGs.
Numerical Tests of the Cosmic Censorship Conjecture via Event-Horizon Finding
NASA Astrophysics Data System (ADS)
Okounkova, Maria; Ott, Christian; Scheel, Mark; Szilagyi, Bela
2015-04-01
We present the current state of our research on the possibility of naked singularity formation in gravitational collapse, numerically testing both the cosmic censorship conjecture and the hoop conjecture. The former of these posits that all singularities lie behind an event horizon, while the later conjectures that this is true if collapse occurs from an initial configuration with all circumferences C <= 4 πM . We reconsider the classical Shapiro & Teukolsky (1991) prolate spheroid naked singularity scenario. Using the exponentially error-convergent Spectral Einstein Code (SpEC) we simulate the collapse of collisionless matter and probe for apparent horizons. We propose a new method to probe for the existence of an event horizon by following characteristic from regions near the singularity, using methods commonly employed in Cauchy characteristic extraction. This research was partially supported by NSF under Award No. PHY-1404569.
NASA Astrophysics Data System (ADS)
Cui, Ximing; Wang, Zhe; Kang, Yihua; Pu, Haiming; Deng, Zhiyang
2018-05-01
Singular value decomposition (SVD) has been proven to be an effective de-noising tool for flaw echo signal feature detection in ultrasonic non-destructive evaluation (NDE). However, the uncertainty in the arbitrary manner of the selection of an effective singular value weakens the robustness of this technique. Improper selection of effective singular values will lead to bad performance of SVD de-noising. What is more, the computational complexity of SVD is too large for it to be applied in real-time applications. In this paper, to eliminate the uncertainty in SVD de-noising, a novel flaw indicator, named the maximum singular value indicator (MSI), based on short-time SVD (STSVD), is proposed for flaw feature detection from a measured signal in ultrasonic NDE. In this technique, the measured signal is first truncated into overlapping short-time data segments to put feature information of a transient flaw echo signal in local field, and then the MSI can be obtained from the SVD of each short-time data segment. Research shows that this indicator can clearly indicate the location of ultrasonic flaw signals, and the computational complexity of this STSVD-based indicator is significantly reduced with the algorithm proposed in this paper. Both simulation and experiments show that this technique is very efficient for real-time application in flaw detection from noisy data.
Han, Te; Jiang, Dongxiang; Zhang, Xiaochen; Sun, Yankui
2017-01-01
Rotating machinery is widely used in industrial applications. With the trend towards more precise and more critical operating conditions, mechanical failures may easily occur. Condition monitoring and fault diagnosis (CMFD) technology is an effective tool to enhance the reliability and security of rotating machinery. In this paper, an intelligent fault diagnosis method based on dictionary learning and singular value decomposition (SVD) is proposed. First, the dictionary learning scheme is capable of generating an adaptive dictionary whose atoms reveal the underlying structure of raw signals. Essentially, dictionary learning is employed as an adaptive feature extraction method regardless of any prior knowledge. Second, the singular value sequence of learned dictionary matrix is served to extract feature vector. Generally, since the vector is of high dimensionality, a simple and practical principal component analysis (PCA) is applied to reduce dimensionality. Finally, the K-nearest neighbor (KNN) algorithm is adopted for identification and classification of fault patterns automatically. Two experimental case studies are investigated to corroborate the effectiveness of the proposed method in intelligent diagnosis of rotating machinery faults. The comparison analysis validates that the dictionary learning-based matrix construction approach outperforms the mode decomposition-based methods in terms of capacity and adaptability for feature extraction. PMID:28346385
On the solution of integral equations with strongly singular kernels
NASA Technical Reports Server (NTRS)
Kaya, A. C.; Erdogan, F.
1986-01-01
Some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m ,m greater than or equal 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t-x) sup -m , terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results.
On the solution of integral equations with strong ly singular kernels
NASA Technical Reports Server (NTRS)
Kaya, A. C.; Erdogan, F.
1985-01-01
In this paper some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m, m or = 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t,x) sup-m, terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results.
On the solution of integral equations with strongly singular kernels
NASA Technical Reports Server (NTRS)
Kaya, A. C.; Erdogan, F.
1987-01-01
Some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m, m greater than or equal 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t-x) sup-m, terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results.
Tests of conformal field theory at the Yang-Lee singularity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wydro, Tomasz; McCabe, John F.
2009-12-14
This paper studies the Yang-Lee edge singularity of 2-dimensional (2D) Ising model based on a quantum spin chain and transfer matrix measurements on the cylinder. Based on finite-size scaling, the low-lying excitation spectrum is found at the Yang-Lee edge singularity. Based on transfer matrix techniques, the single structure constant is evaluated at the Yang-Lee edge singularity. The results of both types of measurements are found to be fully consistent with the predictions for the (A{sub 4}, A{sub 1}) minimal conformal field theory, which was previously identified with this critical point.
Development of a sensitivity analysis technique for multiloop flight control systems
NASA Technical Reports Server (NTRS)
Vaillard, A. H.; Paduano, J.; Downing, D. R.
1985-01-01
This report presents the development and application of a sensitivity analysis technique for multiloop flight control systems. This analysis yields very useful information on the sensitivity of the relative-stability criteria of the control system, with variations or uncertainties in the system and controller elements. The sensitivity analysis technique developed is based on the computation of the singular values and singular-value gradients of a feedback-control system. The method is applicable to single-input/single-output as well as multiloop continuous-control systems. Application to sampled-data systems is also explored. The sensitivity analysis technique was applied to a continuous yaw/roll damper stability augmentation system of a typical business jet, and the results show that the analysis is very useful in determining the system elements which have the largest effect on the relative stability of the closed-loop system. As a secondary product of the research reported here, the relative stability criteria based on the concept of singular values were explored.
Spatial-spectral preprocessing for endmember extraction on GPU's
NASA Astrophysics Data System (ADS)
Jimenez, Luis I.; Plaza, Javier; Plaza, Antonio; Li, Jun
2016-10-01
Spectral unmixing is focused in the identification of spectrally pure signatures, called endmembers, and their corresponding abundances in each pixel of a hyperspectral image. Mainly focused on the spectral information contained in the hyperspectral images, endmember extraction techniques have recently included spatial information to achieve more accurate results. Several algorithms have been developed for automatic or semi-automatic identification of endmembers using spatial and spectral information, including the spectral-spatial endmember extraction (SSEE) where, within a preprocessing step in the technique, both sources of information are extracted from the hyperspectral image and equally used for this purpose. Previous works have implemented the SSEE technique in four main steps: 1) local eigenvectors calculation in each sub-region in which the original hyperspectral image is divided; 2) computation of the maxima and minima projection of all eigenvectors over the entire hyperspectral image in order to obtain a candidates pixels set; 3) expansion and averaging of the signatures of the candidate set; 4) ranking based on the spectral angle distance (SAD). The result of this method is a list of candidate signatures from which the endmembers can be extracted using various spectral-based techniques, such as orthogonal subspace projection (OSP), vertex component analysis (VCA) or N-FINDR. Considering the large volume of data and the complexity of the calculations, there is a need for efficient implementations. Latest- generation hardware accelerators such as commodity graphics processing units (GPUs) offer a good chance for improving the computational performance in this context. In this paper, we develop two different implementations of the SSEE algorithm using GPUs. Both are based on the eigenvectors computation within each sub-region of the first step, one using the singular value decomposition (SVD) and another one using principal component analysis (PCA). Based on our experiments with hyperspectral data sets, high computational performance is observed in both cases.
Analysis and modelling of septic shock microarray data using Singular Value Decomposition.
Allanki, Srinivas; Dixit, Madhulika; Thangaraj, Paul; Sinha, Nandan Kumar
2017-06-01
Being a high throughput technique, enormous amounts of microarray data has been generated and there arises a need for more efficient techniques of analysis, in terms of speed and accuracy. Finding the differentially expressed genes based on just fold change and p-value might not extract all the vital biological signals that occur at a lower gene expression level. Besides this, numerous mathematical models have been generated to predict the clinical outcome from microarray data, while very few, if not none, aim at predicting the vital genes that are important in a disease progression. Such models help a basic researcher narrow down and concentrate on a promising set of genes which leads to the discovery of gene-based therapies. In this article, as a first objective, we have used the lesser known and used Singular Value Decomposition (SVD) technique to build a microarray data analysis tool that works with gene expression patterns and intrinsic structure of the data in an unsupervised manner. We have re-analysed a microarray data over the clinical course of Septic shock from Cazalis et al. (2014) and have shown that our proposed analysis provides additional information compared to the conventional method. As a second objective, we developed a novel mathematical model that predicts a set of vital genes in the disease progression that works by generating samples in the continuum between health and disease, using a simple normal-distribution-based random number generator. We also verify that most of the predicted genes are indeed related to septic shock. Copyright © 2017 Elsevier Inc. All rights reserved.
Computing singularities of perturbation series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kvaal, Simen; Jarlebring, Elias; Michiels, Wim
2011-03-15
Many properties of current ab initio approaches to the quantum many-body problem, both perturbational and otherwise, are related to the singularity structure of the Rayleigh-Schroedinger perturbation series. A numerical procedure is presented that in principle computes the complete set of singularities, including the dominant singularity which limits the radius of convergence. The method approximates the singularities as eigenvalues of a certain generalized eigenvalue equation which is solved using iterative techniques. It relies on computation of the action of the Hamiltonian matrix on a vector and does not rely on the terms in the perturbation series. The method can be usefulmore » for studying perturbation series of typical systems of moderate size, for fundamental development of resummation schemes, and for understanding the structure of singularities for typical systems. Some illustrative model problems are studied, including a helium-like model with {delta}-function interactions for which Moeller-Plesset perturbation theory is considered and the radius of convergence found.« less
Automated detection of microaneurysms using robust blob descriptors
NASA Astrophysics Data System (ADS)
Adal, K.; Ali, S.; Sidibé, D.; Karnowski, T.; Chaum, E.; Mériaudeau, F.
2013-03-01
Microaneurysms (MAs) are among the first signs of diabetic retinopathy (DR) that can be seen as round dark-red structures in digital color fundus photographs of retina. In recent years, automated computer-aided detection and diagnosis (CAD) of MAs has attracted many researchers due to its low-cost and versatile nature. In this paper, the MA detection problem is modeled as finding interest points from a given image and several interest point descriptors are introduced and integrated with machine learning techniques to detect MAs. The proposed approach starts by applying a novel fundus image contrast enhancement technique using Singular Value Decomposition (SVD) of fundus images. Then, Hessian-based candidate selection algorithm is applied to extract image regions which are more likely to be MAs. For each candidate region, robust low-level blob descriptors such as Speeded Up Robust Features (SURF) and Intensity Normalized Radon Transform are extracted to characterize candidate MA regions. The combined features are then classified using SVM which has been trained using ten manually annotated training images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. Preliminary results show the competitiveness of the proposed candidate selection techniques against state-of-the art methods as well as the promising future for the proposed descriptors to be used in the localization of MAs from fundus images.
NASA Astrophysics Data System (ADS)
Li, Tie; He, Xiaoyang; Tang, Junci; Zeng, Hui; Zhou, Chunying; Zhang, Nan; Liu, Hui; Lu, Zhuoxin; Kong, Xiangrui; Yan, Zheng
2018-02-01
Forasmuch as the distinguishment of islanding is easy to be interfered by grid disturbance, island detection device may make misjudgment thus causing the consequence of photovoltaic out of service. The detection device must provide with the ability to differ islanding from grid disturbance. In this paper, the concept of deep learning is introduced into classification of islanding and grid disturbance for the first time. A novel deep learning framework is proposed to detect and classify islanding or grid disturbance. The framework is a hybrid of wavelet transformation, multi-resolution singular spectrum entropy, and deep learning architecture. As a signal processing method after wavelet transformation, multi-resolution singular spectrum entropy combines multi-resolution analysis and spectrum analysis with entropy as output, from which we can extract the intrinsic different features between islanding and grid disturbance. With the features extracted, deep learning is utilized to classify islanding and grid disturbance. Simulation results indicate that the method can achieve its goal while being highly accurate, so the photovoltaic system mistakenly withdrawing from power grids can be avoided.
Incoherent averaging of phase singularities in speckle-shearing interferometry.
Mantel, Klaus; Nercissian, Vanusch; Lindlein, Norbert
2014-08-01
Interferometric speckle techniques are plagued by the omnipresence of phase singularities, impairing the phase unwrapping process. To reduce the number of phase singularities by physical means, an incoherent averaging of multiple speckle fields may be applied. It turns out, however, that the results may strongly deviate from the expected √N behavior. Using speckle-shearing interferometry as an example, we investigate the mechanism behind the reduction of phase singularities, both by calculations and by computer simulations. Key to an understanding of the reduction mechanism during incoherent averaging is the representation of the physical averaging process in terms of certain vector fields associated with each speckle field.
Unification of color postprocessing techniques for 3-dimensional computational mechanics
NASA Technical Reports Server (NTRS)
Bailey, Bruce Charles
1985-01-01
To facilitate the understanding of complex three-dimensional numerical models, advanced interactive color postprocessing techniques are introduced. These techniques are sufficiently flexible so that postprocessing difficulties arising from model size, geometric complexity, response variation, and analysis type can be adequately overcome. Finite element, finite difference, and boundary element models may be evaluated with the prototype postprocessor. Elements may be removed from parent models to be studied as independent subobjects. Discontinuous responses may be contoured including responses which become singular, and nonlinear color scales may be input by the user for the enhancement of the contouring operation. Hit testing can be performed to extract precise geometric, response, mesh, or material information from the database. In addition, stress intensity factors may be contoured along the crack front of a fracture model. Stepwise analyses can be studied, and the user can recontour responses repeatedly, as if he were paging through the response sets. As a system, these tools allow effective interpretation of complex analysis results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shaobu; Lu, Shuai; Zhou, Ning
In interconnected power systems, dynamic model reduction can be applied on generators outside the area of interest to mitigate the computational cost with transient stability studies. This paper presents an approach of deriving the reduced dynamic model of the external area based on dynamic response measurements, which comprises of three steps, dynamic-feature extraction, attribution and reconstruction (DEAR). In the DEAR approach, a feature extraction technique, such as singular value decomposition (SVD), is applied to the measured generator dynamics after a disturbance. Characteristic generators are then identified in the feature attribution step for matching the extracted dynamic features with the highestmore » similarity, forming a suboptimal ‘basis’ of system dynamics. In the reconstruction step, generator state variables such as rotor angles and voltage magnitudes are approximated with a linear combination of the characteristic generators, resulting in a quasi-nonlinear reduced model of the original external system. Network model is un-changed in the DEAR method. Tests on several IEEE standard systems show that the proposed method gets better reduction ratio and response errors than the traditional coherency aggregation methods.« less
Integrated ensemble noise-reconstructed empirical mode decomposition for mechanical fault detection
NASA Astrophysics Data System (ADS)
Yuan, Jing; Ji, Feng; Gao, Yuan; Zhu, Jun; Wei, Chenjun; Zhou, Yu
2018-05-01
A new branch of fault detection is utilizing the noise such as enhancing, adding or estimating the noise so as to improve the signal-to-noise ratio (SNR) and extract the fault signatures. Hereinto, ensemble noise-reconstructed empirical mode decomposition (ENEMD) is a novel noise utilization method to ameliorate the mode mixing and denoised the intrinsic mode functions (IMFs). Despite the possibility of superior performance in detecting weak and multiple faults, the method still suffers from the major problems of the user-defined parameter and the powerless capability for a high SNR case. Hence, integrated ensemble noise-reconstructed empirical mode decomposition is proposed to overcome the drawbacks, improved by two noise estimation techniques for different SNRs as well as the noise estimation strategy. Independent from the artificial setup, the noise estimation by the minimax thresholding is improved for a low SNR case, which especially shows an outstanding interpretation for signature enhancement. For approximating the weak noise precisely, the noise estimation by the local reconfiguration using singular value decomposition (SVD) is proposed for a high SNR case, which is particularly powerful for reducing the mode mixing. Thereinto, the sliding window for projecting the phase space is optimally designed by the correlation minimization. Meanwhile, the reasonable singular order for the local reconfiguration to estimate the noise is determined by the inflection point of the increment trend of normalized singular entropy. Furthermore, the noise estimation strategy, i.e. the selection approaches of the two estimation techniques along with the critical case, is developed and discussed for different SNRs by means of the possible noise-only IMF family. The method is validated by the repeatable simulations to demonstrate the synthetical performance and especially confirm the capability of noise estimation. Finally, the method is applied to detect the local wear fault from a dual-axis stabilized platform and the gear crack from an operating electric locomotive to verify its effectiveness and feasibility.
Singularly Perturbed Lie Bracket Approximation
Durr, Hans-Bernd; Krstic, Miroslav; Scheinker, Alexander; ...
2015-03-27
Here, we consider the interconnection of two dynamical systems where one has an input-affine vector field. We show that by employing a singular perturbation analysis and the Lie bracket approximation technique, the stability of the overall system can be analyzed by regarding the stability properties of two reduced, uncoupled systems.
NASA Astrophysics Data System (ADS)
Hosseini, Kamyar; Mayeli, Peyman; Ansari, Reza
2018-07-01
Finding the exact solutions of nonlinear fractional differential equations has gained considerable attention, during the past two decades. In this paper, the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities are studied. Several exact soliton solutions, including the bright (non-topological) and singular soliton solutions are formally extracted by making use of the ansatz method. Results demonstrate that the method can efficiently handle the time-fractional Klein-Gordon equations with different nonlinearities.
An adaptive singular spectrum analysis method for extracting brain rhythms of electroencephalography
Hu, Hai; Guo, Shengxin; Liu, Ran
2017-01-01
Artifacts removal and rhythms extraction from electroencephalography (EEG) signals are important for portable and wearable EEG recording devices. Incorporating a novel grouping rule, we proposed an adaptive singular spectrum analysis (SSA) method for artifacts removal and rhythms extraction. Based on the EEG signal amplitude, the grouping rule determines adaptively the first one or two SSA reconstructed components as artifacts and removes them. The remaining reconstructed components are then grouped based on their peak frequencies in the Fourier transform to extract the desired rhythms. The grouping rule thus enables SSA to be adaptive to EEG signals containing different levels of artifacts and rhythms. The simulated EEG data based on the Markov Process Amplitude (MPA) EEG model and the experimental EEG data in the eyes-open and eyes-closed states were used to verify the adaptive SSA method. Results showed a better performance in artifacts removal and rhythms extraction, compared with the wavelet decomposition (WDec) and another two recently reported SSA methods. Features of the extracted alpha rhythms using adaptive SSA were calculated to distinguish between the eyes-open and eyes-closed states. Results showed a higher accuracy (95.8%) than those of the WDec method (79.2%) and the infinite impulse response (IIR) filtering method (83.3%). PMID:28674650
NASA Technical Reports Server (NTRS)
Zimmerle, D.; Bernhard, R. J.
1985-01-01
An alternative method for performing singular boundary element integrals for applications in linear acoustics is discussed. The method separates the integral of the characteristic solution into a singular and nonsingular part. The singular portion is integrated with a combination of analytic and numerical techniques while the nonsingular portion is integrated with standard Gaussian quadrature. The method may be generalized to many types of subparametric elements. The integrals over elements containing the root node are considered, and the characteristic solution for linear acoustic problems are examined. The method may be generalized to most characteristic solutions.
Application of higher order SVD to vibration-based system identification and damage detection
NASA Astrophysics Data System (ADS)
Chao, Shu-Hsien; Loh, Chin-Hsiung; Weng, Jian-Huang
2012-04-01
Singular value decomposition (SVD) is a powerful linear algebra tool. It is widely used in many different signal processing methods, such principal component analysis (PCA), singular spectrum analysis (SSA), frequency domain decomposition (FDD), subspace identification and stochastic subspace identification method ( SI and SSI ). In each case, the data is arranged appropriately in matrix form and SVD is used to extract the feature of the data set. In this study three different algorithms on signal processing and system identification are proposed: SSA, SSI-COV and SSI-DATA. Based on the extracted subspace and null-space from SVD of data matrix, damage detection algorithms can be developed. The proposed algorithm is used to process the shaking table test data of the 6-story steel frame. Features contained in the vibration data are extracted by the proposed method. Damage detection can then be investigated from the test data of the frame structure through subspace-based and nullspace-based damage indices.
NASA Astrophysics Data System (ADS)
Yang, Honggang; Lin, Huibin; Ding, Kang
2018-05-01
The performance of sparse features extraction by commonly used K-Singular Value Decomposition (K-SVD) method depends largely on the signal segment selected in rolling bearing diagnosis, furthermore, the calculating speed is relatively slow and the dictionary becomes so redundant when the fault signal is relatively long. A new sliding window denoising K-SVD (SWD-KSVD) method is proposed, which uses only one small segment of time domain signal containing impacts to perform sliding window dictionary learning and select an optimal pattern with oscillating information of the rolling bearing fault according to a maximum variance principle. An inner product operation between the optimal pattern and the whole fault signal is performed to enhance the characteristic of the impacts' occurrence moments. Lastly, the signal is reconstructed at peak points of the inner product to realize the extraction of the rolling bearing fault features. Both simulation and experiments verify that the method could extract the fault features effectively.
Watermarking scheme based on singular value decomposition and homomorphic transform
NASA Astrophysics Data System (ADS)
Verma, Deval; Aggarwal, A. K.; Agarwal, Himanshu
2017-10-01
A semi-blind watermarking scheme based on singular-value-decomposition (SVD) and homomorphic transform is pro-posed. This scheme ensures the digital security of an eight bit gray scale image by inserting an invisible eight bit gray scale wa-termark into it. The key approach of the scheme is to apply the homomorphic transform on the host image to obtain its reflectance component. The watermark is embedded into the singular values that are obtained by applying the singular value decomposition on the reflectance component. Peak-signal-to-noise-ratio (PSNR), normalized-correlation-coefficient (NCC) and mean-structural-similarity-index-measure (MSSIM) are used to evaluate the performance of the scheme. Invisibility of watermark is ensured by visual inspection and high value of PSNR of watermarked images. Presence of watermark is ensured by visual inspection and high values of NCC and MSSIM of extracted watermarks. Robustness of the scheme is verified by high values of NCC and MSSIM for attacked watermarked images.
Liu, Zhigang; Han, Zhiwei; Zhang, Yang; Zhang, Qiaoge
2014-11-01
Multiwavelets possess better properties than traditional wavelets. Multiwavelet packet transformation has more high-frequency information. Spectral entropy can be applied as an analysis index to the complexity or uncertainty of a signal. This paper tries to define four multiwavelet packet entropies to extract the features of different transmission line faults, and uses a radial basis function (RBF) neural network to recognize and classify 10 fault types of power transmission lines. First, the preprocessing and postprocessing problems of multiwavelets are presented. Shannon entropy and Tsallis entropy are introduced, and their difference is discussed. Second, multiwavelet packet energy entropy, time entropy, Shannon singular entropy, and Tsallis singular entropy are defined as the feature extraction methods of transmission line fault signals. Third, the plan of transmission line fault recognition using multiwavelet packet entropies and an RBF neural network is proposed. Finally, the experimental results show that the plan with the four multiwavelet packet energy entropies defined in this paper achieves better performance in fault recognition. The performance with SA4 (symmetric antisymmetric) multiwavelet packet Tsallis singular entropy is the best among the combinations of different multiwavelet packets and the four multiwavelet packet entropies.
A novel finite element analysis of three-dimensional circular crack
NASA Astrophysics Data System (ADS)
Ping, X. C.; Wang, C. G.; Cheng, L. P.
2018-06-01
A novel singular element containing a part of the circular crack front is established to solve the singular stress fields of circular cracks by using the numerical series eigensolutions of singular stress fields. The element is derived from the Hellinger-Reissner variational principle and can be directly incorporated into existing 3D brick elements. The singular stress fields are determined as the system unknowns appearing as displacement nodal values. The numerical studies are conducted to demonstrate the simplicity of the proposed technique in handling fracture problems of circular cracks. The usage of the novel singular element can avoid mesh refinement near the crack front domain without loss of calculation accuracy and velocity of convergence. Compared with the conventional finite element methods and existing analytical methods, the present method is more suitable for dealing with complicated structures with a large number of elements.
Correlation between topological structure and its properties in dynamic singular vector fields.
Vasilev, Vasyl; Soskin, Marat
2016-04-20
A new technique for establishment of topology measurements for static and dynamic singular vector fields is elaborated. It is based on precise measurement of the 3D landscape of ellipticity distribution for a checked singular optical field with C points on the tops of ellipticity hills. Vector fields possess three-component topology: areas with right-hand (RH) and left-hand (LH) ellipses, and delimiting those L lines as the singularities of handedness. The azimuth map of polarization ellipses is common for both RH and LH ellipses of vector fields and do not feel L lines. The strict rules were confirmed experimentally, which define the connection between the sign of underlying optical vortices and morphological parameters of upper-lying C points. Percolation phenomena explain their realization in-between singular vector fields and long duration of their chains of 103 s order.
Feedback control for fuel-optimal descents using singular perturbation techniques
NASA Technical Reports Server (NTRS)
Price, D. B.
1984-01-01
In response to rising fuel costs and reduced profit margins for the airline companies, the optimization of the paths flown by transport aircraft has been considered. It was found that application of optimal control theory to the considered problem can result in savings in fuel, time, and direct operating costs. The best solution to the aircraft trajectory problem is an onboard real-time feedback control law. The present paper presents a technique which shows promise of becoming a part of a complete solution. The application of singular perturbation techniques to the problem is discussed, taking into account the benefits and some problems associated with them. A different technique for handling the descent part of a trajectory is also discussed.
Feedback linearization of singularly perturbed systems based on canonical similarity transformations
NASA Astrophysics Data System (ADS)
Kabanov, A. A.
2018-05-01
This paper discusses the problem of feedback linearization of a singularly perturbed system in a state-dependent coefficient form. The result is based on the introduction of a canonical similarity transformation. The transformation matrix is constructed from separate blocks for fast and slow part of an original singularly perturbed system. The transformed singular perturbed system has a linear canonical form that significantly simplifies a control design problem. Proposed similarity transformation allows accomplishing linearization of the system without considering the virtual output (as it is needed for normal form method), a technique of a transition from phase coordinates of the transformed system to state variables of the original system is simpler. The application of the proposed approach is illustrated through example.
Global embeddings for branes at toric singularities
NASA Astrophysics Data System (ADS)
Balasubramanian, Vijay; Berglund, Per; Braun, Volker; García-Etxebarria, Iñaki
2012-10-01
We describe how local toric singularities, including the Toric Lego construction, can be embedded in compact Calabi-Yau manifolds. We study in detail the addition of D-branes, including non-compact flavor branes as typically used in semi-realistic model building. The global geometry provides constraints on allowable local models. As an illustration of our discussion we focus on D3 and D7-branes on (the partially resolved) ( dP 0)3 singularity, its embedding in a specific Calabi-Yau manifold as a hypersurface in a toric variety, the related type IIB orientifold compactification, as well as the corresponding F-theory uplift. Our techniques generalize naturally to complete intersections, and to a large class of F-theory backgrounds with singularities.
Demons versus Level-Set motion registration for coronary 18F-sodium fluoride PET.
Rubeaux, Mathieu; Joshi, Nikhil; Dweck, Marc R; Fletcher, Alison; Motwani, Manish; Thomson, Louise E; Germano, Guido; Dey, Damini; Berman, Daniel S; Newby, David E; Slomka, Piotr J
2016-02-27
Ruptured coronary atherosclerotic plaques commonly cause acute myocardial infarction. It has been recently shown that active microcalcification in the coronary arteries, one of the features that characterizes vulnerable plaques at risk of rupture, can be imaged using cardiac gated 18 F-sodium fluoride ( 18 F-NaF) PET. We have shown in previous work that a motion correction technique applied to cardiac-gated 18 F-NaF PET images can enhance image quality and improve uptake estimates. In this study, we further investigated the applicability of different algorithms for registration of the coronary artery PET images. In particular, we aimed to compare demons vs. level-set nonlinear registration techniques applied for the correction of cardiac motion in coronary 18 F-NaF PET. To this end, fifteen patients underwent 18 F-NaF PET and prospective coronary CT angiography (CCTA). PET data were reconstructed in 10 ECG gated bins; subsequently these gated bins were registered using demons and level-set methods guided by the extracted coronary arteries from CCTA, to eliminate the effect of cardiac motion on PET images. Noise levels, target-to-background ratios (TBR) and global motion were compared to assess image quality. Compared to the reference standard of using only diastolic PET image (25% of the counts from PET acquisition), cardiac motion registration using either level-set or demons techniques almost halved image noise due to the use of counts from the full PET acquisition and increased TBR difference between 18 F-NaF positive and negative lesions. The demons method produces smoother deformation fields, exhibiting no singularities (which reflects how physically plausible the registration deformation is), as compared to the level-set method, which presents between 4 and 8% of singularities, depending on the coronary artery considered. In conclusion, the demons method produces smoother motion fields as compared to the level-set method, with a motion that is physiologically plausible. Therefore, level-set technique will likely require additional post-processing steps. On the other hand, the observed TBR increases were the highest for the level-set technique. Further investigations of the optimal registration technique of this novel coronary PET imaging technique are warranted.
Demons versus level-set motion registration for coronary 18F-sodium fluoride PET
NASA Astrophysics Data System (ADS)
Rubeaux, Mathieu; Joshi, Nikhil; Dweck, Marc R.; Fletcher, Alison; Motwani, Manish; Thomson, Louise E.; Germano, Guido; Dey, Damini; Berman, Daniel S.; Newby, David E.; Slomka, Piotr J.
2016-03-01
Ruptured coronary atherosclerotic plaques commonly cause acute myocardial infarction. It has been recently shown that active microcalcification in the coronary arteries, one of the features that characterizes vulnerable plaques at risk of rupture, can be imaged using cardiac gated 18F-sodium fluoride (18F-NaF) PET. We have shown in previous work that a motion correction technique applied to cardiac-gated 18F-NaF PET images can enhance image quality and improve uptake estimates. In this study, we further investigated the applicability of different algorithms for registration of the coronary artery PET images. In particular, we aimed to compare demons vs. level-set nonlinear registration techniques applied for the correction of cardiac motion in coronary 18F-NaF PET. To this end, fifteen patients underwent 18F-NaF PET and prospective coronary CT angiography (CCTA). PET data were reconstructed in 10 ECG gated bins; subsequently these gated bins were registered using demons and level-set methods guided by the extracted coronary arteries from CCTA, to eliminate the effect of cardiac motion on PET images. Noise levels, target-to-background ratios (TBR) and global motion were compared to assess image quality. Compared to the reference standard of using only diastolic PET image (25% of the counts from PET acquisition), cardiac motion registration using either level-set or demons techniques almost halved image noise due to the use of counts from the full PET acquisition and increased TBR difference between 18F-NaF positive and negative lesions. The demons method produces smoother deformation fields, exhibiting no singularities (which reflects how physically plausible the registration deformation is), as compared to the level-set method, which presents between 4 and 8% of singularities, depending on the coronary artery considered. In conclusion, the demons method produces smoother motion fields as compared to the level-set method, with a motion that is physiologically plausible. Therefore, level-set technique will likely require additional post-processing steps. On the other hand, the observed TBR increases were the highest for the level-set technique. Further investigations of the optimal registration technique of this novel coronary PET imaging technique are warranted.
Kotlyar, Victor V; Almazov, Anton A; Khonina, Svetlana N; Soifer, Victor A; Elfstrom, Henna; Turunen, Jari
2005-05-01
We deduce and study an analytical expression for Fresnel diffraction of a plane wave by a spiral phase plate (SPP) that imparts an arbitrary-order phase singularity on the light field. Estimates for the optical vortex radius that depends on the singularity's integer order n (also termed topological charge, or order of the dislocation) have been derived. The near-zero vortex intensity is shown to be proportional to rho2n, where p is the radial coordinate. Also, an analytical expression for Fresnel diffraction of the Gaussian beam by a SPP with nth-order singularity is analyzed. The far-field intensity distribution is derived. The radius of maximal intensity is shown to depend on the singularity number. The behavior of the Gaussian beam intensity after a SPP with second-order singularity (n = 2) is studied in more detail. The parameters of the light beams generated numerically with the Fresnel transform and via analytical formulas are in good agreement. In addition, the light fields with first- and second-order singularities were generated by a 32-level SPP fabricated on the resist by use of the electron-beam lithography technique.
NASA Astrophysics Data System (ADS)
Duchko, Andrey; Bykov, Alexandr
2015-06-01
Nowadays the task of spectra processing is as relevant as ever in molecular spectroscopy. Nevertheless, existing techniques of vibrational energy levels and wave functions computation often come to a dead-lock. Application of standard quantum-mechanical approaches often faces inextricable difficulties. Variational method requires unimaginable computational performance. On the other hand perturbational approaches beat against divergent series. That's why this problem faces an urgent need in application of specific resummation techniques. In this research Rayleigh-Schrödinger perturbation theory is applied to vibrational energy levels calculation of excited vibrational states of H_2CO. It is known that perturbation series diverge in the case of anharmonic resonance coupling between vibrational states [1]. Nevertheless, application of advanced divergent series summation techniques makes it possible to calculate the value of energy with high precision (more than 10 true digits) even for highly excited states of the molecule [2]. For this purposes we have applied several summation techniques based on high-order Pade-Hermite approximations. Our research shows that series behaviour completely depends on the singularities of complex energy function inside unit circle. That's why choosing an approximation function modelling this singularities allows to calculate the sum of divergent series. Our calculations for formaldehyde molecule show that the efficiency of each summation technique depends on the resonant type. REFERENCES 1. J. Cizek, V. Spirko, and O. Bludsky, ON THE USE OF DIVERGENT SERIES IN VIBRATIONAL SPECTROSCOPY. TWO- AND THREE-DIMENSIONAL OSCILLATORS, J. Chem. Phys. 99, 7331 (1993). 2. A. V. Sergeev and D. Z. Goodson, SINGULARITY ANALYSIS OF FOURTH-ORDER MöLLER-PLESSET PERTURBATION THEORY, J. Chem. Phys. 124, 4111 (2006).
A two-stage linear discriminant analysis via QR-decomposition.
Ye, Jieping; Li, Qi
2005-06-01
Linear Discriminant Analysis (LDA) is a well-known method for feature extraction and dimension reduction. It has been used widely in many applications involving high-dimensional data, such as image and text classification. An intrinsic limitation of classical LDA is the so-called singularity problems; that is, it fails when all scatter matrices are singular. Many LDA extensions were proposed in the past to overcome the singularity problems. Among these extensions, PCA+LDA, a two-stage method, received relatively more attention. In PCA+LDA, the LDA stage is preceded by an intermediate dimension reduction stage using Principal Component Analysis (PCA). Most previous LDA extensions are computationally expensive, and not scalable, due to the use of Singular Value Decomposition or Generalized Singular Value Decomposition. In this paper, we propose a two-stage LDA method, namely LDA/QR, which aims to overcome the singularity problems of classical LDA, while achieving efficiency and scalability simultaneously. The key difference between LDA/QR and PCA+LDA lies in the first stage, where LDA/QR applies QR decomposition to a small matrix involving the class centroids, while PCA+LDA applies PCA to the total scatter matrix involving all training data points. We further justify the proposed algorithm by showing the relationship among LDA/QR and previous LDA methods. Extensive experiments on face images and text documents are presented to show the effectiveness of the proposed algorithm.
Exact optical solitons in (n + 1)-dimensions with anti-cubic nonlinearity
NASA Astrophysics Data System (ADS)
Younis, Muhammad; Shahid, Iram; Anbreen, Sumaira; Rizvi, Syed Tahir Raza
2018-02-01
The paper studies the propagation of optical solitons in (n + 1)-dimensions under anti-cubic law of nonlinearity. The bright, dark and singular optical solitons are extracted using the extended trial equation method. The constraint conditions, for the existence of these solitons, are also listed. Additionally, a couple of other solutions known as singular periodic and Jacobi elliptic solutions, fall out as a by-product of this scheme. The obtained results are new and reported first time in (n + 1)-dimensions with anti-cubic law of nonlinearity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulbakin, D. E., E-mail: kulbakin-d@mail.ru; Tomsk State University, 36, Lenin Avenue, Tomsk, 634050; Mukhamedov, M. R., E-mail: muhamedov@oncology.tomsk.ru
2015-11-17
Our study has demonstrated feasibility of performing larynx preservation surgeries in patients with recurrent laryngeal cancer after failure of radiotherapy. The technique of combined laryngeal reconstruction with endografts from superelastic titanium-nickelid-based alloy Singular tissue Plural tissues results in improvement of life quality by preserving laryngeal functions.
NASA Astrophysics Data System (ADS)
Kulbakin, D. E.; Mukhamedov, M. R.; Choynzonov, E. L.; Gynter, V. E.
2015-11-01
Our study has demonstrated feasibility of performing larynx preservation surgeries in patients with recurrent laryngeal cancer after failure of radiotherapy. The technique of combined laryngeal reconstruction with endografts from superelastic titanium-nickelid-based alloy Singular tissue Plural tissues results in improvement of life quality by preserving laryngeal functions.
Burton-Miller-type singular boundary method for acoustic radiation and scattering
NASA Astrophysics Data System (ADS)
Fu, Zhuo-Jia; Chen, Wen; Gu, Yan
2014-08-01
This paper proposes the singular boundary method (SBM) in conjunction with Burton and Miller's formulation for acoustic radiation and scattering. The SBM is a strong-form collocation boundary discretization technique using the singular fundamental solutions, which is mathematically simple, easy-to-program, meshless and introduces the concept of source intensity factors (SIFs) to eliminate the singularities of the fundamental solutions. Therefore, it avoids singular numerical integrals in the boundary element method (BEM) and circumvents the troublesome placement of the fictitious boundary in the method of fundamental solutions (MFS). In the present method, we derive the SIFs of exterior Helmholtz equation by means of the SIFs of exterior Laplace equation owing to the same order of singularities between the Laplace and Helmholtz fundamental solutions. In conjunction with the Burton-Miller formulation, the SBM enhances the quality of the solution, particularly in the vicinity of the corresponding interior eigenfrequencies. Numerical illustrations demonstrate efficiency and accuracy of the present scheme on some benchmark examples under 2D and 3D unbounded domains in comparison with the analytical solutions, the boundary element solutions and Dirichlet-to-Neumann finite element solutions.
NASA Astrophysics Data System (ADS)
Fang, M.; Hager, B. H.
2014-12-01
In geophysical applications the boundary element method (BEM) often carries the essential physics in addition to being an efficient numerical scheme. For use of the BEM in a self-gravitating uniform half-space, we made extra effort and succeeded in deriving the fundamental solution analytically in closed-form. A problem that goes deep into the heart of the classic BEM is encountered when we try to apply the new fundamental solution in BEM for deformation field induced by a magma chamber or a fluid-filled reservoir. The central issue of the BEM is the singular integral arising from determination of the boundary values. A widely employed technique is to rescale the singular boundary point into a small finite volume and then shrink it to extract the limits. This operation boils down to the calculation of the so-called C-matrix. Authors in the past take the liberty of either adding or subtracting a small volume. By subtracting a small volume, the C-matrix is (1/2)I on a smooth surface, where I is the identity matrix; by adding a small volume, we arrive at the same C-matrix in the form of I - (1/2)I. This evenness is a result of the spherical symmetry of Kelvin's fundamental solution employed. When the spherical symmetry is broken by gravity, the C-matrix is polarized. And we face the choice between right and wrong, for adding and subtracting a small volume yield different C-matrices. Close examination reveals that both derivations, addition and subtraction of a small volume, are ad hoc. To resolve the issue we revisit the Somigliana identity with a new derivation and careful step-by-step anatomy. The result proves that even though both adding and subtracting a small volume appear to twist the original boundary, only addition essentially modifies the original boundary and consequently modifies the physics of the original problem in a subtle way. The correct procedure is subtraction. We complete a new BEM theory by introducing in full analytical form what we call the singular stress tensor for the fundamental solution. We partition the stress tensor of the fundamental solution into a singular part and a regular part. In this way all singular integrals systematically shift into the easy singular stress tensor. Applications of this new BEM to deformation and gravitational perturbation induced by magma chambers of finite volume will be presented.
Singularity analysis: theory and further developments
NASA Astrophysics Data System (ADS)
Cheng, Qiuming
2015-04-01
Since the concept of singularity and local singularity analysis method (LSA) were originally proposed by the author for characterizing the nonlinear property of hydrothermal mineralization processes, the local singularity analysis technique has been successfully applied for identification of geochemical and geophysical anomalies related to various types of mineral deposits. It has also been shown that the singularity is the generic property of singular geo-processes which result in anomalous amounts of energy release or material accumulation within a narrow spatial-temporal interval. In the current paper we introduce several new developments about singularity analysis. First is a new concept of 'fractal density' which describes the singularity of complex phenomena of fractal nature. While the ordinary density possesses a unit of ratio of mass and volume (e.g. g/cm3, kg/m3) or ratio of energy over volume or time (e.g. J/cm3, w/L3, w/s), the fractal density has a unit of ratio of mass over fractal set or energy over fractal set (e.g. g/cmα, kg/mα, J/ mα, w/Lα, where α can be a non-integer). For the matter with fractal density (a non-integer α), the ordinary density of the phenomena (mass or energy) no longer exists and depicts singularity. We demonstrate that most of extreme geo-processes occurred in the earth crust originated from cascade earth dynamics (mental convection, plate tectonics, orogeny and weathering etc) may cause fractal density of mass accumulation or energy release. The examples to be used to demonstrate the concepts of fractal density and singularity are earthquakes, floods, volcanos, hurricanes, heat flow over oceanic ridge, hydrothermal mineralization in orogenic belt, and anomalies in regolith over mine caused by ore and toxic elements vertical migration. Other developments of singularity theory and methodologies including singular Kriging and singularity weights of evidence model for information integration will also be introduced.
Glove-based approach to online signature verification.
Kamel, Nidal S; Sayeed, Shohel; Ellis, Grant A
2008-06-01
Utilizing the multiple degrees of freedom offered by the data glove for each finger and the hand, a novel on-line signature verification system using the Singular Value Decomposition (SVD) numerical tool for signature classification and verification is presented. The proposed technique is based on the Singular Value Decomposition in finding r singular vectors sensing the maximal energy of glove data matrix A, called principal subspace, so the effective dimensionality of A can be reduced. Having modeled the data glove signature through its r-principal subspace, signature authentication is performed by finding the angles between the different subspaces. A demonstration of the data glove is presented as an effective high-bandwidth data entry device for signature verification. This SVD-based signature verification technique is tested and its performance is shown to be able to recognize forgery signatures with a false acceptance rate of less than 1.2%.
NASA Astrophysics Data System (ADS)
Roul, Pradip; Warbhe, Ujwal
2017-08-01
The classical homotopy perturbation method proposed by J. H. He, Comput. Methods Appl. Mech. Eng. 178, 257 (1999) is useful for obtaining the approximate solutions for a wide class of nonlinear problems in terms of series with easily calculable components. However, in some cases, it has been found that this method results in slowly convergent series. To overcome the shortcoming, we present a new reliable algorithm called the domain decomposition homotopy perturbation method (DDHPM) to solve a class of singular two-point boundary value problems with Neumann and Robin-type boundary conditions arising in various physical models. Five numerical examples are presented to demonstrate the accuracy and applicability of our method, including thermal explosion, oxygen-diffusion in a spherical cell and heat conduction through a solid with heat generation. A comparison is made between the proposed technique and other existing seminumerical or numerical techniques. Numerical results reveal that only two or three iterations lead to high accuracy of the solution and this newly improved technique introduces a powerful improvement for solving nonlinear singular boundary value problems (SBVPs).
Algorithm 971: An Implementation of a Randomized Algorithm for Principal Component Analysis
LI, HUAMIN; LINDERMAN, GEORGE C.; SZLAM, ARTHUR; STANTON, KELLY P.; KLUGER, YUVAL; TYGERT, MARK
2017-01-01
Recent years have witnessed intense development of randomized methods for low-rank approximation. These methods target principal component analysis and the calculation of truncated singular value decompositions. The present article presents an essentially black-box, foolproof implementation for Mathworks’ MATLAB, a popular software platform for numerical computation. As illustrated via several tests, the randomized algorithms for low-rank approximation outperform or at least match the classical deterministic techniques (such as Lanczos iterations run to convergence) in basically all respects: accuracy, computational efficiency (both speed and memory usage), ease-of-use, parallelizability, and reliability. However, the classical procedures remain the methods of choice for estimating spectral norms and are far superior for calculating the least singular values and corresponding singular vectors (or singular subspaces). PMID:28983138
NASA Astrophysics Data System (ADS)
Wan, Xiaoqing; Zhao, Chunhui; Wang, Yanchun; Liu, Wu
2017-11-01
This paper proposes a novel classification paradigm for hyperspectral image (HSI) using feature-level fusion and deep learning-based methodologies. Operation is carried out in three main steps. First, during a pre-processing stage, wave atoms are introduced into bilateral filter to smooth HSI, and this strategy can effectively attenuate noise and restore texture information. Meanwhile, high quality spectral-spatial features can be extracted from HSI by taking geometric closeness and photometric similarity among pixels into consideration simultaneously. Second, higher order statistics techniques are firstly introduced into hyperspectral data classification to characterize the phase correlations of spectral curves. Third, multifractal spectrum features are extracted to characterize the singularities and self-similarities of spectra shapes. To this end, a feature-level fusion is applied to the extracted spectral-spatial features along with higher order statistics and multifractal spectrum features. Finally, stacked sparse autoencoder is utilized to learn more abstract and invariant high-level features from the multiple feature sets, and then random forest classifier is employed to perform supervised fine-tuning and classification. Experimental results on two real hyperspectral data sets demonstrate that the proposed method outperforms some traditional alternatives.
Data-driven Applications for the Sun-Earth System
NASA Astrophysics Data System (ADS)
Kondrashov, D. A.
2016-12-01
Advances in observational and data mining techniques allow extracting information from the large volume of Sun-Earth observational data that can be assimilated into first principles physical models. However, equations governing Sun-Earth phenomena are typically nonlinear, complex, and high-dimensional. The high computational demand of solving the full governing equations over a large range of scales precludes the use of a variety of useful assimilative tools that rely on applied mathematical and statistical techniques for quantifying uncertainty and predictability. Effective use of such tools requires the development of computationally efficient methods to facilitate fusion of data with models. This presentation will provide an overview of various existing as well as newly developed data-driven techniques adopted from atmospheric and oceanic sciences that proved to be useful for space physics applications, such as computationally efficient implementation of Kalman Filter in radiation belts modeling, solar wind gap-filling by Singular Spectrum Analysis, and low-rank procedure for assimilation of low-altitude ionospheric magnetic perturbations into the Lyon-Fedder-Mobarry (LFM) global magnetospheric model. Reduced-order non-Markovian inverse modeling and novel data-adaptive decompositions of Sun-Earth datasets will be also demonstrated.
Multi-Level Adaptive Techniques (MLAT) for singular-perturbation problems
NASA Technical Reports Server (NTRS)
Brandt, A.
1978-01-01
The multilevel (multigrid) adaptive technique, a general strategy of solving continuous problems by cycling between coarser and finer levels of discretization is described. It provides very fast general solvers, together with adaptive, nearly optimal discretization schemes. In the process, boundary layers are automatically either resolved or skipped, depending on a control function which expresses the computational goal. The global error decreases exponentially as a function of the overall computational work, in a uniform rate independent of the magnitude of the singular-perturbation terms. The key is high-order uniformly stable difference equations, and uniformly smoothing relaxation schemes.
Algorithms for computing the geopotential using a simple density layer
NASA Technical Reports Server (NTRS)
Morrison, F.
1976-01-01
Several algorithms have been developed for computing the potential and attraction of a simple density layer. These are numerical cubature, Taylor series, and a mixed analytic and numerical integration using a singularity-matching technique. A computer program has been written to combine these techniques for computing the disturbing acceleration on an artificial earth satellite. A total of 1640 equal-area, constant surface density blocks on an oblate spheroid are used. The singularity-matching algorithm is used in the subsatellite region, Taylor series in the surrounding zone, and numerical cubature on the rest of the earth.
Singularity classification as a design tool for multiblock grids
NASA Technical Reports Server (NTRS)
Jones, Alan K.
1992-01-01
A major stumbling block in interactive design of 3-D multiblock grids is the difficulty of visualizing the design as a whole. One way to make this visualization task easier is to focus, at least in early design stages, on an aspect of the grid which is inherently easy to present graphically, and to conceptualize mentally, namely the nature and location of singularities in the grid. The topological behavior of a multiblock grid design is determined by what happens at its edges and vertices. Only a few of these are in any way exceptional. The exceptional behaviors lie along a singularity graph, which is a 1-D construct embedded in 3-D space. The varieties of singular behavior are limited enough to make useful symbology on a graphics device possible. Furthermore, some forms of block design manipulation that appear appropriate to the early conceptual-modeling phase can be accomplished on this level of abstraction. An overview of a proposed singularity classification scheme and selected examples of corresponding manipulation techniques is presented.
Array magnetics modal analysis for the DIII-D tokamak based on localized time-series modelling
Olofsson, K. Erik J.; Hanson, Jeremy M.; Shiraki, Daisuke; ...
2014-07-14
Here, time-series analysis of magnetics data in tokamaks is typically done using block-based fast Fourier transform methods. This work presents the development and deployment of a new set of algorithms for magnetic probe array analysis. The method is based on an estimation technique known as stochastic subspace identification (SSI). Compared with the standard coherence approach or the direct singular value decomposition approach, the new technique exhibits several beneficial properties. For example, the SSI method does not require that frequencies are orthogonal with respect to the timeframe used in the analysis. Frequencies are obtained directly as parameters of localized time-series models.more » The parameters are extracted by solving small-scale eigenvalue problems. Applications include maximum-likelihood regularized eigenmode pattern estimation, detection of neoclassical tearing modes, including locked mode precursors, and automatic clustering of modes, and magnetics-pattern characterization of sawtooth pre- and postcursors, edge harmonic oscillations and fishbones.« less
NASA Astrophysics Data System (ADS)
Unnikrishnan, Poornima; Jothiprakash, Vinayakam
2017-04-01
Precipitation is the major component in the hydrologic cycle. Awareness of not only the total amount of rainfall pertaining to a catchment, but also the pattern of its spatial and temporal distribution are equally important in the management of water resources systems in an efficient way. Trend is the long term direction of a time series; it determines the overall pattern of a time series. Singular Spectrum Analysis (SSA) is a time series analysis technique that decomposes the time series into small components (eigen triples). This property of the method of SSA has been utilized to extract the trend component of the rainfall time series. In order to derive trend from the rainfall time series, we need to select components corresponding to trend from the eigen triples. For this purpose, periodogram analysis of the eigen triples have been proposed to be coupled with SSA, in the present study. In the study, seasonal data of England and Wales Precipitation (EWP) for a time period of 1766-2013 have been analyzed and non linear trend have been derived out of the precipitation data. In order to compare the performance of SSA in deriving trend component, Mann Kendall (MK) test is also used to detect trends in EWP seasonal series and the results have been compared. The result showed that the MK test could detect the presence of positive or negative trend for a significance level, whereas the proposed methodology of SSA could extract the non-linear trend present in the rainfall series along with its shape. We will discuss further the comparison of both the methodologies along with the results in the presentation.
NASA Astrophysics Data System (ADS)
Monga, Olivier; Ayache, Nicholas; Sander, Peter T.
1991-09-01
Modern medical image techniques, such as magnetic resonance image (MRI) or x-ray computed tomography provide three dimensional images of internal structures of the body, usually by means of a stack of tomographic images. The first stage in the automatic analysis of such data is 3-D edge detection1,2 which provides points corresponding to the boundaries of the surfaces forming the 3-D structure. The next stage is to characterize the local geometry of these surfaces in order to extract points or lines on which registration and/or tracking procedures can rely.3,4,5,6 This paper presents a pipeline of processes which define a hierarchical description of the second order differential characteristics of the surfaces. The focus is on the theoretical coherence of these levels of representation. Using uncertainty, a link is established between the edge detection and the local surface approximation by addressing the uncertainties inherent to edge detection in 2-D or 3-D images; and how to incorporate these uncertainties into the computation of local geometric models. In particular, calculate the uncertainty of edge location, direction, and magnitude for the 3-D Deriche operator is calculated.1,2 Statistical results are then used as a solid theoretical foundation on which to base subsequent computations, such as the determination of local surface curvature using local geometric models for surface segmentation. From the local fitting, for each edge point the mean and Gaussian curvature, principal curvatures and directions, curvature singularities, lines of curvature singularities, and covariance matrices defining the uncertainties are calculated. Experimental results for real data using two 3-D scanner images of the same organ taken at different positions demonstrate the stability of the mean and Gaussian curvatures. Experimental results for real data showing the determination of local curvature extremes of surfaces extracted from MR images are presented.
Solution of plane cascade flow using improved surface singularity methods
NASA Technical Reports Server (NTRS)
Mcfarland, E. R.
1981-01-01
A solution method has been developed for calculating compressible inviscid flow through a linear cascade of arbitrary blade shapes. The method uses advanced surface singularity formulations which were adapted from those found in current external flow analyses. The resulting solution technique provides a fast flexible calculation for flows through turbomachinery blade rows. The solution method and some examples of the method's capabilities are presented.
Singularity problems of the power law for modeling creep compliance
NASA Technical Reports Server (NTRS)
Dillard, D. A.; Hiel, C.
1985-01-01
An explanation is offered for the extreme sensitivity that has been observed in the power law parameters of the T300/934 graphite epoxy material systems during experiments to evaluate the system's viscoelastic response. It is shown that the singularity associated with the power law can explain the sensitivity as well as the observed variability in the calculated parameters. Techniques for minimizing errors are suggested.
Constrained trajectory optimization for kinematically redundant arms
NASA Technical Reports Server (NTRS)
Carignan, Craig R.; Tarrant, Janice M.
1990-01-01
Two velocity optimization schemes for resolving redundant joint configurations are compared. The Extended Moore-Penrose Technique minimizes the joint velocities and avoids obstacles indirectly by adjoining a cost gradient to the solution. A new method can incorporate inequality constraints directly to avoid obstacles and singularities in the workspace. A four-link arm example is used to illustrate singularity avoidance while tracking desired end-effector paths.
NASA Astrophysics Data System (ADS)
Kumar, Manoj; Srivastava, Akanksha
2013-01-01
This paper presents a survey of innovative approaches of the most effective computational techniques for solving singular perturbed partial differential equations, which are useful because of their numerical and computer realizations. Many applied problems appearing in semiconductors theory, biochemistry, kinetics, theory of electrical chains, economics, solid mechanics, fluid dynamics, quantum mechanics, and many others can be modelled as singularly perturbed systems. Here, we summarize a wide range of research articles published by numerous researchers during the last ten years to get a better view of the present scenario in this area of research.
Finite elements: Theory and application
NASA Technical Reports Server (NTRS)
Dwoyer, D. L. (Editor); Hussaini, M. Y. (Editor); Voigt, R. G. (Editor)
1988-01-01
Recent advances in FEM techniques and applications are discussed in reviews and reports presented at the ICASE/LaRC workshop held in Hampton, VA in July 1986. Topics addressed include FEM approaches for partial differential equations, mixed FEMs, singular FEMs, FEMs for hyperbolic systems, iterative methods for elliptic finite-element equations on general meshes, mathematical aspects of FEMS for incompressible viscous flows, and gradient weighted moving finite elements in two dimensions. Consideration is given to adaptive flux-corrected FEM transport techniques for CFD, mixed and singular finite elements and the field BEM, p and h-p versions of the FEM, transient analysis methods in computational dynamics, and FEMs for integrated flow/thermal/structural analysis.
NASA Astrophysics Data System (ADS)
Xiao, Fan; Chen, Zhijun; Chen, Jianguo; Zhou, Yongzhang
2016-05-01
In this study, a novel batch sliding window (BSW) based singularity mapping approach was proposed. Compared to the traditional sliding window (SW) technique with disadvantages of the empirical predetermination of a fixed maximum window size and outliers sensitivity of least-squares (LS) linear regression method, the BSW based singularity mapping approach can automatically determine the optimal size of the largest window for each estimated position, and utilizes robust linear regression (RLR) which is insensitive to outlier values. In the case study, tin geochemical data in Gejiu, Yunnan, have been processed by BSW based singularity mapping approach. The results show that the BSW approach can improve the accuracy of the calculation of singularity exponent values due to the determination of the optimal maximum window size. The utilization of RLR method in the BSW approach can smoothen the distribution of singularity index values with few or even without much high fluctuate values looking like noise points that usually make a singularity map much roughly and discontinuously. Furthermore, the student's t-statistic diagram indicates a strong spatial correlation between high geochemical anomaly and known tin polymetallic deposits. The target areas within high tin geochemical anomaly could probably have much higher potential for the exploration of new tin polymetallic deposits than other areas, particularly for the areas that show strong tin geochemical anomalies whereas no tin polymetallic deposits have been found in them.
Generation of phase edge singularities by coplanar three-beam interference and their detection.
Patorski, Krzysztof; Sluzewski, Lukasz; Trusiak, Maciej; Pokorski, Krzysztof
2017-02-06
In recent years singular optics has gained considerable attention in science and technology. Up to now optical vortices (phase point dislocations) have been of main interest. This paper presents the first general analysis of formation of phase edge singularities by coplanar three-beam interference. They can be generated, for example, by three-slit interference or self-imaging in the Fresnel diffraction field of a sinusoidal grating. We derive a general condition for the ratio of amplitudes of interfering beams resulting in phase edge dislocations, lateral separation of dislocations depends on this ratio as well. Analytically derived properties are corroborated by numerical and experimental studies. We develop a simple, robust, common path optical self-imaging configuration aided by a coherent tilted reference wave and spatial filtering. Finally, we propose an automatic fringe pattern analysis technique for detecting phase edge dislocations, based on the continuous wavelet transform. Presented studies open new possibilities for developing grating based sensing techniques for precision metrology of very small phase differences.
Numerical methods for coupled fracture problems
NASA Astrophysics Data System (ADS)
Viesca, Robert C.; Garagash, Dmitry I.
2018-04-01
We consider numerical solutions in which the linear elastic response to an opening- or sliding-mode fracture couples with one or more processes. Classic examples of such problems include traction-free cracks leading to stress singularities or cracks with cohesive-zone strength requirements leading to non-singular stress distributions. These classical problems have characteristic square-root asymptotic behavior for stress, relative displacement, or their derivatives. Prior work has shown that such asymptotics lead to a natural quadrature of the singular integrals at roots of Chebyhsev polynomials of the first, second, third, or fourth kind. We show that such quadratures lead to convenient techniques for interpolation, differentiation, and integration, with the potential for spectral accuracy. We further show that these techniques, with slight amendment, may continue to be used for non-classical problems which lack the classical asymptotic behavior. We consider solutions to example problems of both the classical and non-classical variety (e.g., fluid-driven opening-mode fracture and fault shear rupture driven by thermal weakening), with comparisons to analytical solutions or asymptotes, where available.
Singular Hopf bifurcation in a differential equation with large state-dependent delay
Kozyreff, G.; Erneux, T.
2014-01-01
We study the onset of sustained oscillations in a classical state-dependent delay (SDD) differential equation inspired by control theory. Owing to the large delays considered, the Hopf bifurcation is singular and the oscillations rapidly acquire a sawtooth profile past the instability threshold. Using asymptotic techniques, we explicitly capture the gradual change from nearly sinusoidal to sawtooth oscillations. The dependence of the delay on the solution can be either linear or nonlinear, with at least quadratic dependence. In the former case, an asymptotic connection is made with the Rayleigh oscillator. In the latter, van der Pol’s equation is derived for the small-amplitude oscillations. SDD differential equations are currently the subject of intense research in order to establish or amend general theorems valid for constant-delay differential equation, but explicit analytical construction of solutions are rare. This paper illustrates the use of singular perturbation techniques and the unusual way in which solvability conditions can arise for SDD problems with large delays. PMID:24511255
Singular Hopf bifurcation in a differential equation with large state-dependent delay.
Kozyreff, G; Erneux, T
2014-02-08
We study the onset of sustained oscillations in a classical state-dependent delay (SDD) differential equation inspired by control theory. Owing to the large delays considered, the Hopf bifurcation is singular and the oscillations rapidly acquire a sawtooth profile past the instability threshold. Using asymptotic techniques, we explicitly capture the gradual change from nearly sinusoidal to sawtooth oscillations. The dependence of the delay on the solution can be either linear or nonlinear, with at least quadratic dependence. In the former case, an asymptotic connection is made with the Rayleigh oscillator. In the latter, van der Pol's equation is derived for the small-amplitude oscillations. SDD differential equations are currently the subject of intense research in order to establish or amend general theorems valid for constant-delay differential equation, but explicit analytical construction of solutions are rare. This paper illustrates the use of singular perturbation techniques and the unusual way in which solvability conditions can arise for SDD problems with large delays.
Nonlinear zero-sum differential game analysis by singular perturbation methods
NASA Technical Reports Server (NTRS)
Sinar, J.; Farber, N.
1982-01-01
A class of nonlinear, zero-sum differential games, exhibiting time-scale separation properties, can be analyzed by singular-perturbation techniques. The merits of such an analysis, leading to an approximate game solution, as well as the 'well-posedness' of the formulation, are discussed. This approach is shown to be attractive for investigating pursuit-evasion problems; the original multidimensional differential game is decomposed to a 'simple pursuit' (free-stream) game and two independent (boundary-layer) optimal-control problems. Using multiple time-scale boundary-layer models results in a pair of uniformly valid zero-order composite feedback strategies. The dependence of suboptimal strategies on relative geometry and own-state measurements is demonstrated by a three dimensional, constant-speed example. For game analysis with realistic vehicle dynamics, the technique of forced singular perturbations and a variable modeling approach is proposed. Accuracy of the analysis is evaluated by comparison with the numerical solution of a time-optimal, variable-speed 'game of two cars' in the horizontal plane.
NASA Technical Reports Server (NTRS)
Mcfarland, E. R.
1981-01-01
A solution method was developed for calculating compressible inviscid flow through a linear cascade of arbitrary blade shapes. The method uses advanced surface singularity formulations which were adapted from those in current external flow analyses. The resulting solution technique provides a fast flexible calculation for flows through turbomachinery blade rows. The solution method and some examples of the method's capabilities are presented.
A singular finite element technique for calculating continuum damping of Alfvén eigenmodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowden, G. W.; Hole, M. J.
2015-02-15
Damping due to continuum resonances can be calculated using dissipation-less ideal magnetohydrodynamics provided that the poles due to these resonances are properly treated. We describe a singular finite element technique for calculating the continuum damping of Alfvén waves. A Frobenius expansion is used to determine appropriate finite element basis functions on an inner region surrounding a pole due to the continuum resonance. The location of the pole due to the continuum resonance and mode frequency is calculated iteratively using a Galerkin method. This method is used to find the complex frequency and mode structure of a toroidicity-induced Alfvén eigenmode inmore » a large aspect ratio circular tokamak and is shown to agree closely with a complex contour technique.« less
Robust penalty method for structural synthesis
NASA Technical Reports Server (NTRS)
Kamat, M. P.
1983-01-01
The Sequential Unconstrained Minimization Technique (SUMT) offers an easy way of solving nonlinearly constrained problems. However, this algorithm frequently suffers from the need to minimize an ill-conditioned penalty function. An ill-conditioned minimization problem can be solved very effectively by posing the problem as one of integrating a system of stiff differential equations utilizing concepts from singular perturbation theory. This paper evaluates the robustness and the reliability of such a singular perturbation based SUMT algorithm on two different problems of structural optimization of widely separated scales. The report concludes that whereas conventional SUMT can be bogged down by frequent ill-conditioning, especially in large scale problems, the singular perturbation SUMT has no such difficulty in converging to very accurate solutions.
Sensitivity analysis of automatic flight control systems using singular value concepts
NASA Technical Reports Server (NTRS)
Herrera-Vaillard, A.; Paduano, J.; Downing, D.
1985-01-01
A sensitivity analysis is presented that can be used to judge the impact of vehicle dynamic model variations on the relative stability of multivariable continuous closed-loop control systems. The sensitivity analysis uses and extends the singular-value concept by developing expressions for the gradients of the singular value with respect to variations in the vehicle dynamic model and the controller design. Combined with a priori estimates of the accuracy of the model, the gradients are used to identify the elements in the vehicle dynamic model and controller that could severely impact the system's relative stability. The technique is demonstrated for a yaw/roll damper stability augmentation designed for a business jet.
An accelerated training method for back propagation networks
NASA Technical Reports Server (NTRS)
Shelton, Robert O. (Inventor)
1993-01-01
The principal objective is to provide a training procedure for a feed forward, back propagation neural network which greatly accelerates the training process. A set of orthogonal singular vectors are determined from the input matrix such that the standard deviations of the projections of the input vectors along these singular vectors, as a set, are substantially maximized, thus providing an optimal means of presenting the input data. Novelty exists in the method of extracting from the set of input data, a set of features which can serve to represent the input data in a simplified manner, thus greatly reducing the time/expense to training the system.
Treatment of charge singularities in implicit solvent models.
Geng, Weihua; Yu, Sining; Wei, Guowei
2007-09-21
This paper presents a novel method for solving the Poisson-Boltzmann (PB) equation based on a rigorous treatment of geometric singularities of the dielectric interface and a Green's function formulation of charge singularities. Geometric singularities, such as cusps and self-intersecting surfaces, in the dielectric interfaces are bottleneck in developing highly accurate PB solvers. Based on an advanced mathematical technique, the matched interface and boundary (MIB) method, we have recently developed a PB solver by rigorously enforcing the flux continuity conditions at the solvent-molecule interface where geometric singularities may occur. The resulting PB solver, denoted as MIBPB-II, is able to deliver second order accuracy for the molecular surfaces of proteins. However, when the mesh size approaches half of the van der Waals radius, the MIBPB-II cannot maintain its accuracy because the grid points that carry the interface information overlap with those that carry distributed singular charges. In the present Green's function formalism, the charge singularities are transformed into interface flux jump conditions, which are treated on an equal footing as the geometric singularities in our MIB framework. The resulting method, denoted as MIBPB-III, is able to provide highly accurate electrostatic potentials at a mesh as coarse as 1.2 A for proteins. Consequently, at a given level of accuracy, the MIBPB-III is about three times faster than the APBS, a recent multigrid PB solver. The MIBPB-III has been extensively validated by using analytically solvable problems, molecular surfaces of polyatomic systems, and 24 proteins. It provides reliable benchmark numerical solutions for the PB equation.
Treatment of charge singularities in implicit solvent models
NASA Astrophysics Data System (ADS)
Geng, Weihua; Yu, Sining; Wei, Guowei
2007-09-01
This paper presents a novel method for solving the Poisson-Boltzmann (PB) equation based on a rigorous treatment of geometric singularities of the dielectric interface and a Green's function formulation of charge singularities. Geometric singularities, such as cusps and self-intersecting surfaces, in the dielectric interfaces are bottleneck in developing highly accurate PB solvers. Based on an advanced mathematical technique, the matched interface and boundary (MIB) method, we have recently developed a PB solver by rigorously enforcing the flux continuity conditions at the solvent-molecule interface where geometric singularities may occur. The resulting PB solver, denoted as MIBPB-II, is able to deliver second order accuracy for the molecular surfaces of proteins. However, when the mesh size approaches half of the van der Waals radius, the MIBPB-II cannot maintain its accuracy because the grid points that carry the interface information overlap with those that carry distributed singular charges. In the present Green's function formalism, the charge singularities are transformed into interface flux jump conditions, which are treated on an equal footing as the geometric singularities in our MIB framework. The resulting method, denoted as MIBPB-III, is able to provide highly accurate electrostatic potentials at a mesh as coarse as 1.2Å for proteins. Consequently, at a given level of accuracy, the MIBPB-III is about three times faster than the APBS, a recent multigrid PB solver. The MIBPB-III has been extensively validated by using analytically solvable problems, molecular surfaces of polyatomic systems, and 24 proteins. It provides reliable benchmark numerical solutions for the PB equation.
Subudhi, Badri Narayan; Thangaraj, Veerakumar; Sankaralingam, Esakkirajan; Ghosh, Ashish
2016-11-01
In this article, a statistical fusion based segmentation technique is proposed to identify different abnormality in magnetic resonance images (MRI). The proposed scheme follows seed selection, region growing-merging and fusion of multiple image segments. In this process initially, an image is divided into a number of blocks and for each block we compute the phase component of the Fourier transform. The phase component of each block reflects the gray level variation among the block but contains a large correlation among them. Hence a singular value decomposition (SVD) technique is adhered to generate a singular value of each block. Then a thresholding procedure is applied on these singular values to identify edgy and smooth regions and some seed points are selected for segmentation. By considering each seed point we perform a binary segmentation of the complete MRI and hence with all seed points we get an equal number of binary images. A parcel based statistical fusion process is used to fuse all the binary images into multiple segments. Effectiveness of the proposed scheme is tested on identifying different abnormalities: prostatic carcinoma detection, tuberculous granulomas identification and intracranial neoplasm or brain tumor detection. The proposed technique is established by comparing its results against seven state-of-the-art techniques with six performance evaluation measures. Copyright © 2016 Elsevier Inc. All rights reserved.
Using linear algebra for protein structural comparison and classification
2009-01-01
In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in. PMID:21637532
Using linear algebra for protein structural comparison and classification.
Gomide, Janaína; Melo-Minardi, Raquel; Dos Santos, Marcos Augusto; Neshich, Goran; Meira, Wagner; Lopes, Júlio César; Santoro, Marcelo
2009-07-01
In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in.
A Transform-Based Feature Extraction Approach for Motor Imagery Tasks Classification
Khorshidtalab, Aida; Mesbah, Mostefa; Salami, Momoh J. E.
2015-01-01
In this paper, we present a new motor imagery classification method in the context of electroencephalography (EEG)-based brain–computer interface (BCI). This method uses a signal-dependent orthogonal transform, referred to as linear prediction singular value decomposition (LP-SVD), for feature extraction. The transform defines the mapping as the left singular vectors of the LP coefficient filter impulse response matrix. Using a logistic tree-based model classifier; the extracted features are classified into one of four motor imagery movements. The proposed approach was first benchmarked against two related state-of-the-art feature extraction approaches, namely, discrete cosine transform (DCT) and adaptive autoregressive (AAR)-based methods. By achieving an accuracy of 67.35%, the LP-SVD approach outperformed the other approaches by large margins (25% compared with DCT and 6 % compared with AAR-based methods). To further improve the discriminatory capability of the extracted features and reduce the computational complexity, we enlarged the extracted feature subset by incorporating two extra features, namely, Q- and the Hotelling’s \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$T^{2}$ \\end{document} statistics of the transformed EEG and introduced a new EEG channel selection method. The performance of the EEG classification based on the expanded feature set and channel selection method was compared with that of a number of the state-of-the-art classification methods previously reported with the BCI IIIa competition data set. Our method came second with an average accuracy of 81.38%. PMID:27170898
Super-nodal methods for space-time kinetics
NASA Astrophysics Data System (ADS)
Mertyurek, Ugur
The purpose of this research has been to develop an advanced Super-Nodal method to reduce the run time of 3-D core neutronics models, such as in the NESTLE reactor core simulator and FORMOSA nuclear fuel management optimization codes. Computational performance of the neutronics model is increased by reducing the number of spatial nodes used in the core modeling. However, as the number of spatial nodes decreases, the error in the solution increases. The Super-Nodal method reduces the error associated with the use of coarse nodes in the analyses by providing a new set of cross sections and ADFs (Assembly Discontinuity Factors) for the new nodalization. These so called homogenization parameters are obtained by employing consistent collapsing technique. During this research a new type of singularity, namely "fundamental mode singularity", is addressed in the ANM (Analytical Nodal Method) solution. The "Coordinate Shifting" approach is developed as a method to address this singularity. Also, the "Buckling Shifting" approach is developed as an alternative and more accurate method to address the zero buckling singularity, which is a more common and well known singularity problem in the ANM solution. In the course of addressing the treatment of these singularities, an effort was made to provide better and more robust results from the Super-Nodal method by developing several new methods for determining the transverse leakage and collapsed diffusion coefficient, which generally are the two main approximations in the ANM methodology. Unfortunately, the proposed new transverse leakage and diffusion coefficient approximations failed to provide a consistent improvement to the current methodology. However, improvement in the Super-Nodal solution is achieved by updating the homogenization parameters at several time points during a transient. The update is achieved by employing a refinement technique similar to pin-power reconstruction. A simple error analysis based on the relative residual in the 3-D few group diffusion equation at the fine mesh level is also introduced in this work.
Using EIGER for Antenna Design and Analysis
NASA Technical Reports Server (NTRS)
Champagne, Nathan J.; Khayat, Michael; Kennedy, Timothy F.; Fink, Patrick W.
2007-01-01
EIGER (Electromagnetic Interactions GenERalized) is a frequency-domain electromagnetics software package that is built upon a flexible framework, designed using object-oriented techniques. The analysis methods used include moment method solutions of integral equations, finite element solutions of partial differential equations, and combinations thereof. The framework design permits new analysis techniques (boundary conditions, Green#s functions, etc.) to be added to the software suite with a sensible effort. The code has been designed to execute (in serial or parallel) on a wide variety of platforms from Intel-based PCs and Unix-based workstations. Recently, new potential integration scheme s that avoid singularity extraction techniques have been added for integral equation analysis. These new integration schemes are required for facilitating the use of higher-order elements and basis functions. Higher-order elements are better able to model geometrical curvature using fewer elements than when using linear elements. Higher-order basis functions are beneficial for simulating structures with rapidly varying fields or currents. Results presented here will demonstrate curren t and future capabilities of EIGER with respect to analysis of installed antenna system performance in support of NASA#s mission of exploration. Examples include antenna coupling within an enclosed environment and antenna analysis on electrically large manned space vehicles.
Numerical techniques in radiative heat transfer for general, scattering, plane-parallel media
NASA Technical Reports Server (NTRS)
Sharma, A.; Cogley, A. C.
1982-01-01
The study of radiative heat transfer with scattering usually leads to the solution of singular Fredholm integral equations. The present paper presents an accurate and efficient numerical method to solve certain integral equations that govern radiative equilibrium problems in plane-parallel geometry for both grey and nongrey, anisotropically scattering media. In particular, the nongrey problem is represented by a spectral integral of a system of nonlinear integral equations in space, which has not been solved previously. The numerical technique is constructed to handle this unique nongrey governing equation as well as the difficulties caused by singular kernels. Example problems are solved and the method's accuracy and computational speed are analyzed.
Segmentation of singularity maps in the context of soil porosity
NASA Astrophysics Data System (ADS)
Martin-Sotoca, Juan J.; Saa-Requejo, Antonio; Grau, Juan; Tarquis, Ana M.
2016-04-01
Geochemical exploration have found with increasingly interests and benefits of using fractal (power-law) models to characterize geochemical distribution, including concentration-area (C-A) model (Cheng et al., 1994; Cheng, 2012) and concentration-volume (C-V) model (Afzal et al., 2011) just to name a few examples. These methods are based on the singularity maps of a measure that at each point define areas with self-similar properties that are shown in power-law relationships in Concentration-Area plots (C-A method). The C-A method together with the singularity map ("Singularity-CA" method) define thresholds that can be applied to segment the map. Recently, the "Singularity-CA" method has been applied to binarize 2D grayscale Computed Tomography (CT) soil images (Martin-Sotoca et al, 2015). Unlike image segmentation based on global thresholding methods, the "Singularity-CA" method allows to quantify the local scaling property of the grayscale value map in the space domain and determinate the intensity of local singularities. It can be used as a high-pass-filter technique to enhance high frequency patterns usually regarded as anomalies when applied to maps. In this work we will put special attention on how to select the singularity thresholds in the C-A plot to segment the image. We will compare two methods: 1) cross point of linear regressions and 2) Wavelets Transform Modulus Maxima (WTMM) singularity function detection. REFERENCES Cheng, Q., Agterberg, F. P. and Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109-130. Cheng, Q. (2012). Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Afzal, P., Fadakar Alghalandis, Y., Khakzad, A., Moarefvand, P. and Rashidnejad Omran, N. (2011) Delineation of mineralization zones in porphyry Cu deposits by fractal concentration-volume modeling. Journal of Geochemical Exploration, 108, 220-232. Martín-Sotoca, J. J., Tarquis, A. M., Saa-Requejo, A. and Grau, J. B. (2015). Pore detection in Computed Tomography (CT) soil images through singularity map analysis. Oral Presentation in PedoFract VIII Congress (June, La Coruña - Spain).
Singular-value decomposition of a tomosynthesis system
Burvall, Anna; Barrett, Harrison H.; Myers, Kyle J.; Dainty, Christopher
2010-01-01
Tomosynthesis is an emerging technique with potential to replace mammography, since it gives 3D information at a relatively small increase in dose and cost. We present an analytical singular-value decomposition of a tomosynthesis system, which provides the measurement component of any given object. The method is demonstrated on an example object. The measurement component can be used as a reconstruction of the object, and can also be utilized in future observer studies of tomosynthesis image quality. PMID:20940966
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, K.
2007-03-15
We explore the phase structure induced by closed string tachyon condensation of toric nonsupersymmetric conifold-like singularities described by an integral charge matrix Q=(n{sub 1}n{sub 2}-n{sub 3}-n{sub 4}), n{sub i}>0, iQ{sub i}{ne}0, initiated by Narayan [J. High Energy Phys. 03 (2006) 036]. Using gauged linear sigma model renormalization group flows and toric geometry techniques, we see a cascadelike phase structure containing decays to lower order conifold-like singularities, including, in particular, the supersymmetric conifold and the Y{sup pq} spaces. This structure is consistent with the Type II GSO projection obtained previously for these singularities. Transitions between the various phases of these geometriesmore » include flips and flops.« less
NASA Technical Reports Server (NTRS)
Fink, P. W.; Khayat, M. A.; Wilton, D. R.
2005-01-01
It is known that higher order modeling of the sources and the geometry in Boundary Element Modeling (BEM) formulations is essential to highly efficient computational electromagnetics. However, in order to achieve the benefits of hIgher order basis and geometry modeling, the singular and near-singular terms arising in BEM formulations must be integrated accurately. In particular, the accurate integration of near-singular terms, which occur when observation points are near but not on source regions of the scattering object, has been considered one of the remaining limitations on the computational efficiency of integral equation methods. The method of singularity subtraction has been used extensively for the evaluation of singular and near-singular terms. Piecewise integration of the source terms in this manner, while manageable for bases of constant and linear orders, becomes unwieldy and prone to error for bases of higher order. Furthermore, we find that the singularity subtraction method is not conducive to object-oriented programming practices, particularly in the context of multiple operators. To extend the capabilities, accuracy, and maintainability of general-purpose codes, the subtraction method is being replaced in favor of the purely numerical quadrature schemes. These schemes employ singularity cancellation methods in which a change of variables is chosen such that the Jacobian of the transformation cancels the singularity. An example of the sin,oularity cancellation approach is the Duffy method, which has two major drawbacks: 1) In the resulting integrand, it produces an angular variation about the singular point that becomes nearly-singular for observation points close to an edge of the parent element, and 2) it appears not to work well when applied to nearly-singular integrals. Recently, the authors have introduced the transformation u(x(prime))= sinh (exp -1) x(prime)/Square root of ((y prime (exp 2))+ z(exp 2) for integrating functions of the form I = Integral of (lambda(r(prime))((e(exp -jkR))/(4 pi R) d D where A (r (prime)) is a vector or scalar basis function and R = Square root of( (x(prime)(exp2) + (y(prime)(exp2) + z(exp 2)) is the distance between source and observation points. This scheme has all of the advantages of the Duffy method while avoiding the disadvantages listed above. In this presentation we will survey similar approaches for handling singular and near-singular terms for kernels with 1/R(exp 2) type behavior, addressing potential pitfalls and offering techniques to efficiently handle special cases.
Smith, D J; Gaffney, E A; Blake, J R
2007-07-01
We discuss in detail techniques for modelling flows due to finite and infinite arrays of beating cilia. An efficient technique, based on concepts from previous 'singularity models' is described, that is accurate in both near and far-fields. Cilia are modelled as curved slender ellipsoidal bodies by distributing Stokeslet and potential source dipole singularities along their centrelines, leading to an integral equation that can be solved using a simple and efficient discretisation. The computed velocity on the cilium surface is found to compare favourably with the boundary condition. We then present results for two topics of current interest in biology. 1) We present the first theoretical results showing the mechanism by which rotating embryonic nodal cilia produce a leftward flow by a 'posterior tilt,' and track particle motion in an array of three simulated nodal cilia. We find that, contrary to recent suggestions, there is no continuous layer of negative fluid transport close to the ciliated boundary. The mean leftward particle transport is found to be just over 1 mum/s, within experimentally measured ranges. We also discuss the accuracy of models that represent the action of cilia by steady rotlet arrays, in particular, confirming the importance of image systems in the boundary in establishing the far-field fluid transport. Future modelling may lead to understanding of the mechanisms by which morphogen gradients or mechanosensing cilia convert a directional flow to asymmetric gene expression. 2) We develop a more complex and detailed model of flow patterns in the periciliary layer of the airway surface liquid. Our results confirm that shear flow of the mucous layer drives a significant volume of periciliary liquid in the direction of mucus transport even during the recovery stroke of the cilia. Finally, we discuss the advantages and disadvantages of the singularity technique and outline future theoretical and experimental developments required to apply this technique to various other biological problems, particularly in the reproductive system.
NASA Astrophysics Data System (ADS)
Zhao, Ming; Jia, Xiaodong
2017-09-01
Singular value decomposition (SVD), as an effective signal denoising tool, has been attracting considerable attention in recent years. The basic idea behind SVD denoising is to preserve the singular components (SCs) with significant singular values. However, it is shown that the singular values mainly reflect the energy of decomposed SCs, therefore traditional SVD denoising approaches are essentially energy-based, which tend to highlight the high-energy regular components in the measured signal, while ignoring the weak feature caused by early fault. To overcome this issue, a reweighted singular value decomposition (RSVD) strategy is proposed for signal denoising and weak feature enhancement. In this work, a novel information index called periodic modulation intensity is introduced to quantify the diagnostic information in a mechanical signal. With this index, the decomposed SCs can be evaluated and sorted according to their information levels, rather than energy. Based on that, a truncated linear weighting function is proposed to control the contribution of each SC in the reconstruction of the denoised signal. In this way, some weak but informative SCs could be highlighted effectively. The advantages of RSVD over traditional approaches are demonstrated by both simulated signals and real vibration/acoustic data from a two-stage gearbox as well as train bearings. The results demonstrate that the proposed method can successfully extract the weak fault feature even in the presence of heavy noise and ambient interferences.
Leading singularities and off-shell conformal integrals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drummond, James; Duhr, Claude; Eden, Burkhard
2013-08-29
The three-loop four-point function of stress-tensor multiplets in N=4 super Yang-Mills theory contains two so far unknown, off-shell, conformal integrals, in addition to the known, ladder-type integrals. In our paper we evaluate the unknown integrals, thus obtaining the three-loop correlation function analytically. The integrals have the generic structure of rational functions multiplied by (multiple) polylogarithms. We use the idea of leading singularities to obtain the rational coefficients, the symbol — with an appropriate ansatz for its structure — as a means of characterising multiple polylogarithms, and the technique of asymptotic expansion of Feynman integrals to obtain the integrals in certainmore » limits. The limiting behaviour uniquely fixes the symbols of the integrals, which we then lift to find the corresponding polylogarithmic functions. The final formulae are numerically confirmed. Furthermore, we develop techniques that can be applied more generally, and we illustrate this by analytically evaluating one of the integrals contributing to the same four-point function at four loops. This example shows a connection between the leading singularities and the entries of the symbol.« less
The relationship between two fast/slow analysis techniques for bursting oscillations
Teka, Wondimu; Tabak, Joël; Bertram, Richard
2012-01-01
Bursting oscillations in excitable systems reflect multi-timescale dynamics. These oscillations have often been studied in mathematical models by splitting the equations into fast and slow subsystems. Typically, one treats the slow variables as parameters of the fast subsystem and studies the bifurcation structure of this subsystem. This has key features such as a z-curve (stationary branch) and a Hopf bifurcation that gives rise to a branch of periodic spiking solutions. In models of bursting in pituitary cells, we have recently used a different approach that focuses on the dynamics of the slow subsystem. Characteristic features of this approach are folded node singularities and a critical manifold. In this article, we investigate the relationships between the key structures of the two analysis techniques. We find that the z-curve and Hopf bifurcation of the two-fast/one-slow decomposition are closely related to the voltage nullcline and folded node singularity of the one-fast/two-slow decomposition, respectively. They become identical in the double singular limit in which voltage is infinitely fast and calcium is infinitely slow. PMID:23278052
Combining spiral and target wave detection to analyze excitable media dynamics
NASA Astrophysics Data System (ADS)
Geberth, Daniel; Hütt, Marc-Thorsten
2010-01-01
Excitable media dynamics is the lossless active transmission of waves of excitation over a field of coupled elements, such as electrical excitation in heart tissue or nerve fibers, cAMP signaling in the slime mold Dictyostelium discoideum or waves of chemical activity in the Belousov-Zhabotinsky reaction. All these systems follow essentially the same generic dynamics, including undamped wave transmission and the self-organized emergence of circular target and self-sustaining spiral waves. We combine spiral recognition, using the established phase singularity technique, and a novel three-dimensional fitting algorithm for noise-resistant target wave recognition to extract all important events responsible for the layout of the asymptotic large-scale pattern. Space-time plots of these combined events reveal signatures of events leading to spiral formation, illuminating the microscopic mechanisms at work. This strategy can be applied to arbitrary excitable media data from either models or experiments, giving insight into for example the microscopic causes for formation of pathological spiral waves in heart tissue, which could lead to novel techniques for diagnosis, risk evaluation and treatment.
NASA Technical Reports Server (NTRS)
Maskew, B.
1976-01-01
A discrete singularity method has been developed for calculating the potential flow around two-dimensional airfoils. The objective was to calculate velocities at any arbitrary point in the flow field, including points that approach the airfoil surface. That objective was achieved and is demonstrated here on a Joukowski airfoil. The method used combined vortices and sources ''submerged'' a small distance below the airfoil surface and incorporated a near-field subvortex technique developed earlier. When a velocity calculation point approached the airfoil surface, the number of discrete singularities effectively increased (but only locally) to keep the point just outside the error region of the submerged singularity discretization. The method could be extended to three dimensions, and should improve nonlinear methods, which calculate interference effects between multiple wings, and which include the effects of force-free trailing vortex sheets. The capability demonstrated here would extend the scope of such calculations to allow the close approach of wings and vortex sheets (or vortices).
Aoyagi, Miki; Nagata, Kenji
2012-06-01
The term algebraic statistics arises from the study of probabilistic models and techniques for statistical inference using methods from algebra and geometry (Sturmfels, 2009 ). The purpose of our study is to consider the generalization error and stochastic complexity in learning theory by using the log-canonical threshold in algebraic geometry. Such thresholds correspond to the main term of the generalization error in Bayesian estimation, which is called a learning coefficient (Watanabe, 2001a , 2001b ). The learning coefficient serves to measure the learning efficiencies in hierarchical learning models. In this letter, we consider learning coefficients for Vandermonde matrix-type singularities, by using a new approach: focusing on the generators of the ideal, which defines singularities. We give tight new bound values of learning coefficients for the Vandermonde matrix-type singularities and the explicit values with certain conditions. By applying our results, we can show the learning coefficients of three-layered neural networks and normal mixture models.
Aerodynamic influence coefficient method using singularity splines
NASA Technical Reports Server (NTRS)
Mercer, J. E.; Weber, J. A.; Lesferd, E. P.
1974-01-01
A numerical lifting surface formulation, including computed results for planar wing cases is presented. This formulation, referred to as the vortex spline scheme, combines the adaptability to complex shapes offered by paneling schemes with the smoothness and accuracy of loading function methods. The formulation employes a continuous distribution of singularity strength over a set of panels on a paneled wing. The basic distributions are independent, and each satisfied all the continuity conditions required of the final solution. These distributions are overlapped both spanwise and chordwise. Boundary conditions are satisfied in a least square error sense over the surface using a finite summing technique to approximate the integral. The current formulation uses the elementary horseshoe vortex as the basic singularity and is therefore restricted to linearized potential flow. As part of the study, a non planar development was considered, but the numerical evaluation of the lifting surface concept was restricted to planar configurations. Also, a second order sideslip analysis based on an asymptotic expansion was investigated using the singularity spline formulation.
Zhan, Liang; Liu, Yashu; Wang, Yalin; Zhou, Jiayu; Jahanshad, Neda; Ye, Jieping; Thompson, Paul M.
2015-01-01
Alzheimer's disease (AD) is a progressive brain disease. Accurate detection of AD and its prodromal stage, mild cognitive impairment (MCI), are crucial. There is also a growing interest in identifying brain imaging biomarkers that help to automatically differentiate stages of Alzheimer's disease. Here, we focused on brain structural networks computed from diffusion MRI and proposed a new feature extraction and classification framework based on higher order singular value decomposition and sparse logistic regression. In tests on publicly available data from the Alzheimer's Disease Neuroimaging Initiative, our proposed framework showed promise in detecting brain network differences that help in classifying different stages of Alzheimer's disease. PMID:26257601
Confining potential in momentum space
NASA Technical Reports Server (NTRS)
Norbury, John W.; Kahana, David E.; Maung, Khin Maung
1992-01-01
A method is presented for the solution in momentum space of the bound state problem with a linear potential in r space. The potential is unbounded at large r leading to a singularity at small q. The singularity is integrable, when regulated by exponentially screening the r-space potential, and is removed by a subtraction technique. The limit of zero screening is taken analytically, and the numerical solution of the subtracted integral equation gives eigenvalues and wave functions in good agreement with position space calculations.
Numerical solution methods for viscoelastic orthotropic materials
NASA Technical Reports Server (NTRS)
Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.
1988-01-01
Numerical solution methods for viscoelastic orthotropic materials, specifically fiber reinforced composite materials, are examined. The methods include classical lamination theory using time increments, direction solution of the Volterra Integral, Zienkiewicz's linear Prony series method, and a new method called Nonlinear Differential Equation Method (NDEM) which uses a nonlinear Prony series. The criteria used for comparison of the various methods include the stability of the solution technique, time step size stability, computer solution time length, and computer memory storage. The Volterra Integral allowed the implementation of higher order solution techniques but had difficulties solving singular and weakly singular compliance function. The Zienkiewicz solution technique, which requires the viscoelastic response to be modeled by a Prony series, works well for linear viscoelastic isotropic materials and small time steps. The new method, NDEM, uses a modified Prony series which allows nonlinear stress effects to be included and can be used with orthotropic nonlinear viscoelastic materials. The NDEM technique is shown to be accurate and stable for both linear and nonlinear conditions with minimal computer time.
NASA Astrophysics Data System (ADS)
Tauscher, Keith A.; Burns, Jack O.; Rapetti, David; Mirocha, Jordan; Monsalve, Raul A.
2017-01-01
The Dark Ages Radio Explorer (DARE) is a mission concept proposed to NASA in which a crossed dipole antenna collects low frequency (40-120 MHz) radio measurements above the farside of the Moon to detect and characterize the global 21-cm signal from the early (z~35-11) Universe's neutral hydrogen. Simulated data for DARE includes: 1) the global signal modeled using the ares code, 2) spectrally smooth Galactic foregrounds with spatial structure taken from multiple radio foreground maps averaged over a large, well characterized beam, 3) systematics introduced in the data by antenna/receiver reflections, and 4) the Moon. This simulated data is fed into a signal extraction pipeline. As the signal is 4-5 orders of magnitude below the Galactic synchrotron contribution, it is best extracted from the data using Bayesian techniques which take full advantage of prior knowledge of the instrument and foregrounds. For the DARE pipeline, we use the affine-invariant MCMC algorithm implemented in the Python package, emcee. The pipeline also employs singular value decomposition to use known spectral features of the antenna and receiver to form a natural basis with which to fit instrumental systematics. Taking advantage of high-fidelity measurements of the antenna beam (to ~20 ppm) and precise calibration of the instrument, the pipeline extracts the global 21-cm signal with an average RMS error of 10-15 mK for multiple signal models.
Singularity resolution in string theory and new quantum condensed matter phases
NASA Astrophysics Data System (ADS)
Fidkowski, Lukasz
2007-12-01
In the first part of this thesis (chapters 1 through 4) we study singularity resolution in string theory. We employ an array of techniques, including the AdS-CFT correspondence, exact solvability of low dimensional models, and supersymmetry. We are able to detect a signature of the black hole singularity by analytically continuing certain AdS-CFT correlators. Also in AdS-CFT, we are able to study a D-brane snapping transition on both sides of the correspondence. In the second part (chapters 5 through 7) we study topological phases in condensed matter systems. We investigate theoretical lattice models realizing such phases, use these to derive nontrivial mathematical physics results, and study an idealized quantum interferometer designed to detect such a phase in quantum Hall systems.
2017-01-01
Singular Perturbations represent an advantageous theory to deal with systems characterized by a two-time scale separation, such as the longitudinal dynamics of aircraft which are called phugoid and short period. In this work, the combination of the NonLinear Geometric Approach and the Singular Perturbations leads to an innovative Fault Detection and Isolation system dedicated to the isolation of faults affecting the air data system of a general aviation aircraft. The isolation capabilities, obtained by means of the approach proposed in this work, allow for the solution of a fault isolation problem otherwise not solvable by means of standard geometric techniques. Extensive Monte-Carlo simulations, exploiting a high fidelity aircraft simulator, show the effectiveness of the proposed Fault Detection and Isolation system. PMID:28946673
Singular perturbation techniques for real time aircraft trajectory optimization and control
NASA Technical Reports Server (NTRS)
Calise, A. J.; Moerder, D. D.
1982-01-01
The usefulness of singular perturbation methods for developing real time computer algorithms to control and optimize aircraft flight trajectories is examined. A minimum time intercept problem using F-8 aerodynamic and propulsion data is used as a baseline. This provides a framework within which issues relating to problem formulation, solution methodology and real time implementation are examined. Theoretical questions relating to separability of dynamics are addressed. With respect to implementation, situations leading to numerical singularities are identified, and procedures for dealing with them are outlined. Also, particular attention is given to identifying quantities that can be precomputed and stored, thus greatly reducing the on-board computational load. Numerical results are given to illustrate the minimum time algorithm, and the resulting flight paths. An estimate is given for execution time and storage requirements.
NASA Astrophysics Data System (ADS)
Turiel, A.; Umbert, M.; Hoareau, N.; Ballabrera-Poy, J.; Font, J.
2012-12-01
Remote sensing platforms onboard satellites provide synoptic maps of ocean surface and thus an accurate picture of many processes taking place in the ocean at mesoscale and sub-mesoscale levels mainly can be gained. Since the first ocean observation satellites these images has been exploited to assess ocean processes; however, extracting further dynamic information from remote sensing maps generally implies a higher degree of processing complexity, involving the use of numerical models and assimilation schemes. A critical variable for the understanding the climate system is Sea Surface Salinity (SSS). The arrival of SMOS and Aquarius missions has given us access to SSS in a regular basis. However, those images still suffer of many acquisition and processing issues, what precludes gaining a complete picture of ocean surface dynamics. In order to favor the oceanographic exploitation of SMOS and Aquarius maps new filtering schemes need to be devised. During the last years a new branch of image processing techniques applied to ocean observation has arisen with force, namely multiscale/multifractal analysis. Different scalars submitted to the action of the ocean flow develop an identical inner structure (multifractal structure) that can be revealed by means of the appropriate analysis tools (singularity analysis). These tools allow for instance to characterize surface currents from snapshots of different scalars (Turiel et al, Ocean Sciences, 2009). In this work we go further away, with the introduction of a new method to blend different types of scalar in a single map of improved quality. The method does not imply the introduction of any parameter, nor relies in any numerical model, but in the assumption that the action of the oceanic flow leads to the same multifractal structure in any ocean variable. The method allows, for instance, to use the multifractal structure coming from SST images to improve the quality of SSS maps (as illustrated in the figure). It can also be applied to merge SMOS and Aquarius maps to increase the quality and spatial coverage.; Top row: 10-day MW SST (left), SMOS SSS (middle), and SSS resulting from fusing SST singularities (right). Bottom row: Associated singularity exponents. Brighter colors are associated to most singular (i.e., negative) exponents.
Demodulation of moire fringes in digital holographic interferometry using an extended Kalman filter.
Ramaiah, Jagadesh; Rastogi, Pramod; Rajshekhar, Gannavarpu
2018-03-10
This paper presents a method for extracting multiple phases from a single moire fringe pattern in digital holographic interferometry. The method relies on component separation using singular value decomposition and an extended Kalman filter for demodulating the moire fringes. The Kalman filter is applied by modeling the interference field locally as a multi-component polynomial phase signal and extracting the associated multiple polynomial coefficients using the state space approach. In addition to phase, the corresponding multiple phase derivatives can be simultaneously extracted using the proposed method. The applicability of the proposed method is demonstrated using simulation and experimental results.
Singularities in Free Surface Flows
NASA Astrophysics Data System (ADS)
Thete, Sumeet Suresh
Free surface flows where the shape of the interface separating two or more phases or liquids are unknown apriori, are commonplace in industrial applications and nature. Distribution of drop sizes, coalescence rate of drops, and the behavior of thin liquid films are crucial to understanding and enhancing industrial practices such as ink-jet printing, spraying, separations of chemicals, and coating flows. When a contiguous mass of liquid such as a drop, filament or a film undergoes breakup to give rise to multiple masses, the topological transition is accompanied with a finite-time singularity . Such singularity also arises when two or more masses of liquid merge into each other or coalesce. Thus the dynamics close to singularity determines the fate of about-to-form drops or films and applications they are involved in, and therefore needs to be analyzed precisely. The primary goal of this thesis is to resolve and analyze the dynamics close to singularity when free surface flows experience a topological transition, using a combination of theory, experiments, and numerical simulations. The first problem under consideration focuses on the dynamics following flow shut-off in bottle filling applications that are relevant to pharmaceutical and consumer products industry, using numerical techniques based on Galerkin Finite Element Methods (GFEM). The second problem addresses the dual flow behavior of aqueous foams that are observed in oil and gas fields and estimates the relevant parameters that describe such flows through a series of experiments. The third problem aims at understanding the drop formation of Newtonian and Carreau fluids, computationally using GFEM. The drops are formed as a result of imposed flow rates or expanding bubbles similar to those of piezo actuated and thermal ink-jet nozzles. The focus of fourth problem is on the evolution of thinning threads of Newtonian fluids and suspensions towards singularity, using computations based on GFEM and experimental techniques. The aim of fifth problem is to analyze the coalescence dynamics of drops through a combination of GFEM and scaling theory. Lastly, the sixth problem concerns the thinning and rupture dynamics of thin films of Newtonian and power-law fluids using scaling theory based on asymptotic analysis and the predictions of this theory are corroborated using computations based on GFEM.
2011-01-01
Background Singular value decomposition (SVD) is a powerful technique for information retrieval; it helps uncover relationships between elements that are not prima facie related. SVD was initially developed to reduce the time needed for information retrieval and analysis of very large data sets in the complex internet environment. Since information retrieval from large-scale genome and proteome data sets has a similar level of complexity, SVD-based methods could also facilitate data analysis in this research area. Results We found that SVD applied to amino acid sequences demonstrates relationships and provides a basis for producing clusters and cladograms, demonstrating evolutionary relatedness of species that correlates well with Linnaean taxonomy. The choice of a reasonable number of singular values is crucial for SVD-based studies. We found that fewer singular values are needed to produce biologically significant clusters when SVD is employed. Subsequently, we developed a method to determine the lowest number of singular values and fewest clusters needed to guarantee biological significance; this system was developed and validated by comparison with Linnaean taxonomic classification. Conclusions By using SVD, we can reduce uncertainty concerning the appropriate rank value necessary to perform accurate information retrieval analyses. In tests, clusters that we developed with SVD perfectly matched what was expected based on Linnaean taxonomy. PMID:22369633
NASA Technical Reports Server (NTRS)
Shu, J. Y.
1983-01-01
Two different singularity methods have been utilized to calculate the potential flow past a three dimensional non-lifting body. Two separate FORTRAN computer programs have been developed to implement these theoretical models, which will in the future allow inclusion of the fuselage effect in a pair of existing subcritical wing design computer programs. The first method uses higher order axial singularity distributions to model axisymmetric bodies of revolution in an either axial or inclined uniform potential flow. Use of inset of the singularity line away from the body for blunt noses, and cosine-type element distributions have been applied to obtain the optimal results. Excellent agreement to five significant figures with the exact solution pressure coefficient value has been found for a series of ellipsoids at different angles of attack. Solutions obtained for other axisymmetric bodies compare well with available experimental data. The second method utilizes distributions of singularities on the body surface, in the form of a discrete vortex lattice. This program is capable of modeling arbitrary three dimensional non-lifting bodies. Much effort has been devoted to finding the optimal method of calculating the tangential velocity on the body surface, extending techniques previously developed by other workers.
NASA Astrophysics Data System (ADS)
Lukyanenko, D. V.; Shishlenin, M. A.; Volkov, V. T.
2018-01-01
We propose the numerical method for solving coefficient inverse problem for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time observation data based on the asymptotic analysis and the gradient method. Asymptotic analysis allows us to extract a priory information about interior layer (moving front), which appears in the direct problem, and boundary layers, which appear in the conjugate problem. We describe and implement the method of constructing a dynamically adapted mesh based on this a priory information. The dynamically adapted mesh significantly reduces the complexity of the numerical calculations and improve the numerical stability in comparison with the usual approaches. Numerical example shows the effectiveness of the proposed method.
Maadooliat, Mehdi; Huang, Jianhua Z.
2013-01-01
Despite considerable progress in the past decades, protein structure prediction remains one of the major unsolved problems in computational biology. Angular-sampling-based methods have been extensively studied recently due to their ability to capture the continuous conformational space of protein structures. The literature has focused on using a variety of parametric models of the sequential dependencies between angle pairs along the protein chains. In this article, we present a thorough review of angular-sampling-based methods by assessing three main questions: What is the best distribution type to model the protein angles? What is a reasonable number of components in a mixture model that should be considered to accurately parameterize the joint distribution of the angles? and What is the order of the local sequence–structure dependency that should be considered by a prediction method? We assess the model fits for different methods using bivariate lag-distributions of the dihedral/planar angles. Moreover, the main information across the lags can be extracted using a technique called Lag singular value decomposition (LagSVD), which considers the joint distribution of the dihedral/planar angles over different lags using a nonparametric approach and monitors the behavior of the lag-distribution of the angles using singular value decomposition. As a result, we developed graphical tools and numerical measurements to compare and evaluate the performance of different model fits. Furthermore, we developed a web-tool (http://www.stat.tamu.edu/∼madoliat/LagSVD) that can be used to produce informative animations. PMID:22926831
Weak characteristic information extraction from early fault of wind turbine generator gearbox
NASA Astrophysics Data System (ADS)
Xu, Xiaoli; Liu, Xiuli
2017-09-01
Given the weak early degradation characteristic information during early fault evolution in gearbox of wind turbine generator, traditional singular value decomposition (SVD)-based denoising may result in loss of useful information. A weak characteristic information extraction based on μ-SVD and local mean decomposition (LMD) is developed to address this problem. The basic principle of the method is as follows: Determine the denoising order based on cumulative contribution rate, perform signal reconstruction, extract and subject the noisy part of signal to LMD and μ-SVD denoising, and obtain denoised signal through superposition. Experimental results show that this method can significantly weaken signal noise, effectively extract the weak characteristic information of early fault, and facilitate the early fault warning and dynamic predictive maintenance.
Solution of linear systems by a singular perturbation technique
NASA Technical Reports Server (NTRS)
Ardema, M. D.
1976-01-01
An approximate solution is obtained for a singularly perturbed system of initial valued, time invariant, linear differential equations with multiple boundary layers. Conditions are stated under which the approximate solution converges uniformly to the exact solution as the perturbation parameter tends to zero. The solution is obtained by the method of matched asymptotic expansions. Use of the results for obtaining approximate solutions of general linear systems is discussed. An example is considered to illustrate the method and it is shown that the formulas derived give a readily computed uniform approximation.
Renormalized asymptotic enumeration of Feynman diagrams
NASA Astrophysics Data System (ADS)
Borinsky, Michael
2017-10-01
A method to obtain all-order asymptotic results for the coefficients of perturbative expansions in zero-dimensional quantum field is described. The focus is on the enumeration of the number of skeleton or primitive diagrams of a certain QFT and its asymptotics. The procedure heavily applies techniques from singularity analysis. To utilize singularity analysis, a representation of the zero-dimensional path integral as a generalized hyperelliptic curve is deduced. As applications the full asymptotic expansions of the number of disconnected, connected, 1PI and skeleton Feynman diagrams in various theories are given.
Maneuvering strategies using CMGs
NASA Technical Reports Server (NTRS)
Oh, H. S.; Vadali, S. R.
1988-01-01
This paper considers control strategies for maneuvering spacecraft using Single-Gimbal Control Momentum Gyros (CMGs). A pyramid configuration using four gyros is utilized. Preferred initial gimbal angles for maximum utilization of CMG momentum are obtained for some known torque commands. Feedback control laws are derived from the stability point of view by using the Liapunov's Second Theorem. The gyro rates are obtained by the pseudo-inverse technique. The effect of gimbal rate bounds on controllability are studied for an example maneuver. Singularity avoidance is based on limiting the gyro rates depending on a singularity index.
Intangible pointlike tracers for liquid-crystal-based microsensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brasselet, Etienne; Juodkazis, Saulius
2010-12-15
We propose an optical detection technique for liquid-crystal-based sensors that is based on polarization-resolved tracking of optical singularities and does not rely on standard observation of light-intensity changes caused by modifications of the liquid crystal orientational ordering. It uses a natural two-dimensional network of polarization singularities embedded in the transverse cross section of a probe beam that passes through a liquid crystal sample, in our case, a nematic droplet held in laser tweezers. The identification and spatial evolution of such a topological fingerprint is retrieved from subwavelength polarization-resolved imaging, and the mechanical constraint exerted on the molecular ordering by themore » trapping beam itself is chosen as the control parameter. By restricting our analysis to one type of point singularity, C points, which correspond to location in space where the polarization azimuth is undefined, we show that polarization singularities appear as intangible pointlike tracers for liquid-crystal-based three-dimensional microsensors. The method has a superresolution potential and can be used to visualize changes at the nanoscale.« less
López-Rodríguez, Patricia; Escot-Bocanegra, David; Fernández-Recio, Raúl; Bravo, Ignacio
2015-01-01
Radar high resolution range profiles are widely used among the target recognition community for the detection and identification of flying targets. In this paper, singular value decomposition is applied to extract the relevant information and to model each aircraft as a subspace. The identification algorithm is based on angle between subspaces and takes place in a transformed domain. In order to have a wide database of radar signatures and evaluate the performance, simulated range profiles are used as the recognition database while the test samples comprise data of actual range profiles collected in a measurement campaign. Thanks to the modeling of aircraft as subspaces only the valuable information of each target is used in the recognition process. Thus, one of the main advantages of using singular value decomposition, is that it helps to overcome the notable dissimilarities found in the shape and signal-to-noise ratio between actual and simulated profiles due to their difference in nature. Despite these differences, the recognition rates obtained with the algorithm are quite promising. PMID:25551484
Multiphase model for transformation induced plasticity. Extended Leblond's model
NASA Astrophysics Data System (ADS)
Weisz-Patrault, Daniel
2017-09-01
Transformation induced plasticity (TRIP) classically refers to plastic strains observed during phase transitions that occur under mechanical loads (that can be lower than the yield stress). A theoretical approach based on homogenization is proposed to deal with multiphase changes and to extend the validity of the well known and widely used model proposed by Leblond (1989). The approach is similar, but several product phases are considered instead of one and several assumptions have been released. Thus, besides the generalization for several phases, one can mention three main improvements in the calculation of the local equivalent plastic strain: the deviatoric part of the phase transformation is taken into account, both parent and product phases are elastic-plastic with linear isotropic hardening and the applied stress is considered. Results show that classical issues of singularities arising in the Leblond's model (corrected by ad hoc numerical functions or thresholding) are solved in this contribution excepted when the applied equivalent stress reaches the yield stress. Indeed, in this situation the parent phase is entirely plastic as soon as the phase transformation begins and the same singularity as in the Leblond's model arises. A physical explanation of the cutoff function is introduced in order to regularize the singularity. Furthermore, experiments extracted from the literature dealing with multiphase transitions and multiaxial loads are compared with the original Leblond's model and the proposed extended version. For the extended version, very good agreement is observed without any fitting procedures (i.e., material parameters are extracted from other dedicated experiments) and for the original version results are more qualitative.
Adaptive fault feature extraction from wayside acoustic signals from train bearings
NASA Astrophysics Data System (ADS)
Zhang, Dingcheng; Entezami, Mani; Stewart, Edward; Roberts, Clive; Yu, Dejie
2018-07-01
Wayside acoustic detection of train bearing faults plays a significant role in maintaining safety in the railway transport system. However, the bearing fault information is normally masked by strong background noises and harmonic interferences generated by other components (e.g. axles and gears). In order to extract the bearing fault feature information effectively, a novel method called improved singular value decomposition (ISVD) with resonance-based signal sparse decomposition (RSSD), namely the ISVD-RSSD method, is proposed in this paper. A Savitzky-Golay (S-G) smoothing filter is used to filter singular vectors (SVs) in the ISVD method as an extension of the singular value decomposition (SVD) theorem. Hilbert spectrum entropy and a stepwise optimisation strategy are used to optimize the S-G filter's parameters. The RSSD method is able to nonlinearly decompose the wayside acoustic signal of a faulty train bearing into high and low resonance components, the latter of which contains bearing fault information. However, the high level of noise usually results in poor decomposition results from the RSSD method. Hence, the collected wayside acoustic signal must first be de-noised using the ISVD component of the ISVD-RSSD method. Next, the de-noised signal is decomposed by using the RSSD method. The obtained low resonance component is then demodulated with a Hilbert transform such that the bearing fault can be detected by observing Hilbert envelope spectra. The effectiveness of the ISVD-RSSD method is verified through both laboratory field-based experiments as described in the paper. The results indicate that the proposed method is superior to conventional spectrum analysis and ensemble empirical mode decomposition methods.
Nakamichi, Yu; Kalatsky, Valery A; Watanabe, Hideyuki; Sato, Takayuki; Rajagopalan, Uma Maheswari; Tanifuji, Manabu
2018-04-01
Orientation tuning is a canonical neuronal response property of six-layer visual cortex that is encoded in pinwheel structures with center orientation singularities. Optical imaging of intrinsic signals enables us to map these surface two-dimensional (2D) structures, whereas lack of appropriate techniques has not allowed us to visualize depth structures of orientation coding. In the present study, we performed functional optical coherence tomography (fOCT), a technique capable of acquiring a 3D map of the intrinsic signals, to study the topology of orientation coding inside the cat visual cortex. With this technique, for the first time, we visualized columnar assemblies in orientation coding that had been predicted from electrophysiological recordings. In addition, we found that the columnar structures were largely distorted around pinwheel centers: center singularities were not rigid straight lines running perpendicularly to the cortical surface but formed twisted string-like structures inside the cortex that turned and extended horizontally through the cortex. Looping singularities were observed with their respective termini accessing the same cortical surface via clockwise and counterclockwise orientation pinwheels. These results suggest that a 3D topology of orientation coding cannot be fully anticipated from 2D surface measurements. Moreover, the findings demonstrate the utility of fOCT as an in vivo mesoscale imaging method for mapping functional response properties of cortex in the depth axis. NEW & NOTEWORTHY We used functional optical coherence tomography (fOCT) to visualize three-dimensional structure of the orientation columns with millimeter range and micrometer spatial resolution. We validated vertically elongated columnar structure in iso-orientation domains. The columnar structure was distorted around pinwheel centers. An orientation singularity formed a string with tortuous trajectories inside the cortex and connected clockwise and counterclockwise pinwheel centers in the surface orientation map. The results were confirmed by comparisons with conventional optical imaging and electrophysiological recordings.
Singular boundary method for global gravity field modelling
NASA Astrophysics Data System (ADS)
Cunderlik, Robert
2014-05-01
The singular boundary method (SBM) and method of fundamental solutions (MFS) are meshless boundary collocation techniques that use the fundamental solution of a governing partial differential equation (e.g. the Laplace equation) as their basis functions. They have been developed to avoid singular numerical integration as well as mesh generation in the traditional boundary element method (BEM). SBM have been proposed to overcome a main drawback of MFS - its controversial fictitious boundary outside the domain. The key idea of SBM is to introduce a concept of the origin intensity factors that isolate singularities of the fundamental solution and its derivatives using some appropriate regularization techniques. Consequently, the source points can be placed directly on the real boundary and coincide with the collocation nodes. In this study we deal with SBM applied for high-resolution global gravity field modelling. The first numerical experiment presents a numerical solution to the fixed gravimetric boundary value problem. The achieved results are compared with the numerical solutions obtained by MFS or the direct BEM indicating efficiency of all methods. In the second numerical experiments, SBM is used to derive the geopotential and its first derivatives from the Tzz components of the gravity disturbing tensor observed by the GOCE satellite mission. A determination of the origin intensity factors allows to evaluate the disturbing potential and gravity disturbances directly on the Earth's surface where the source points are located. To achieve high-resolution numerical solutions, the large-scale parallel computations are performed on the cluster with 1TB of the distributed memory and an iterative elimination of far zones' contributions is applied.
NASA Astrophysics Data System (ADS)
Zubaidi, Salah L.; Dooley, Jayne; Alkhaddar, Rafid M.; Abdellatif, Mawada; Al-Bugharbee, Hussein; Ortega-Martorell, Sandra
2018-06-01
Valid and dependable water demand prediction is a major element of the effective and sustainable expansion of municipal water infrastructures. This study provides a novel approach to quantifying water demand through the assessment of climatic factors, using a combination of a pretreatment signal technique, a hybrid particle swarm optimisation algorithm and an artificial neural network (PSO-ANN). The Singular Spectrum Analysis (SSA) technique was adopted to decompose and reconstruct water consumption in relation to six weather variables, to create a seasonal and stochastic time series. The results revealed that SSA is a powerful technique, capable of decomposing the original time series into many independent components including trend, oscillatory behaviours and noise. In addition, the PSO-ANN algorithm was shown to be a reliable prediction model, outperforming the hybrid Backtracking Search Algorithm BSA-ANN in terms of fitness function (RMSE). The findings of this study also support the view that water demand is driven by climatological variables.
Refinement of Methods for Evaluation of Near-Hypersingular Integrals in BEM Formulations
NASA Technical Reports Server (NTRS)
Fink, Patricia W.; Khayat, Michael A.; Wilton, Donald R.
2006-01-01
In this paper, we present advances in singularity cancellation techniques applied to integrals in BEM formulations that are nearly hypersingular. Significant advances have been made recently in singularity cancellation techniques applied to 1 R type kernels [M. Khayat, D. Wilton, IEEE Trans. Antennas and Prop., 53, pp. 3180-3190, 2005], as well as to the gradients of these kernels [P. Fink, D. Wilton, and M. Khayat, Proc. ICEAA, pp. 861-864, Torino, Italy, 2005] on curved subdomains. In these approaches, the source triangle is divided into three tangent subtriangles with a common vertex at the normal projection of the observation point onto the source element or the extended surface containing it. The geometry of a typical tangent subtriangle and its local rectangular coordinate system with origin at the projected observation point is shown in Fig. 1. Whereas singularity cancellation techniques for 1 R type kernels are now nearing maturity, the efficient handling of near-hypersingular kernels still needs attention. For example, in the gradient reference above, techniques are presented for computing the normal component of the gradient relative to the plane containing the tangent subtriangle. These techniques, summarized in the transformations in Table 1, are applied at the sub-triangle level and correspond particularly to the case in which the normal projection of the observation point lies within the boundary of the source element. They are found to be highly efficient as z approaches zero. Here, we extend the approach to cover two instances not previously addressed. First, we consider the case in which the normal projection of the observation point lies external to the source element. For such cases, we find that simple modifications to the transformations of Table 1 permit significant savings in computational cost. Second, we present techniques that permit accurate computation of the tangential components of the gradient; i.e., tangent to the plane containing the source element.
Poisson traces, D-modules, and symplectic resolutions
NASA Astrophysics Data System (ADS)
Etingof, Pavel; Schedler, Travis
2018-03-01
We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence, the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require.
Poisson traces, D-modules, and symplectic resolutions.
Etingof, Pavel; Schedler, Travis
2018-01-01
We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence, the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require.
NASA Technical Reports Server (NTRS)
Klumpp, A. R.
1976-01-01
A computer algorithm for extracting a quaternion from a direction-cosine matrix (DCM) is described. The quaternion provides a four-parameter representation of rotation, as against the nine-parameter representation afforded by a DCM. Commanded attitude in space shuttle steering is conveniently computed by DCM, while actual attitude is computed most compactly as a quaternion, as is attitude error. The unit length of the rotation quaternion, and interchangeable of a quaternion and its negative, are used to advantage in the extraction algorithm. Protection of the algorithm against square root failure and division overflow are considered. Necessary and sufficient conditions for handling the rotation vector element of largest magnitude are discussed
Infrared singularities of scattering amplitudes in perturbative QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becher, Thomas; Neubert, Matthias
2013-11-01
An exact formula is derived for the infrared singularities of dimensionally regularized scattering amplitudes in massless QCD with an arbitrary number of legs, valid at any number of loops. It is based on the conjecture that the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory contains only a single non-trivial color structure, whose coefficient is the cusp anomalous dimension of Wilson loops with light-like segments. Its color-diagonal part is characterized by two anomalous dimensions, which are extracted to three-loop order from known perturbative results for the quark and gluon form factors. This allows us to predict the three-loop coefficientsmore » of all 1/epsilon^k poles for an arbitrary n-parton scattering amplitudes, generalizing existing two-loop results.« less
Efficient scheme for parametric fitting of data in arbitrary dimensions.
Pang, Ning-Ning; Tzeng, Wen-Jer; Kao, Hisen-Ching
2008-07-01
We propose an efficient scheme for parametric fitting expressed in terms of the Legendre polynomials. For continuous systems, our scheme is exact and the derived explicit expression is very helpful for further analytical studies. For discrete systems, our scheme is almost as accurate as the method of singular value decomposition. Through a few numerical examples, we show that our algorithm costs much less CPU time and memory space than the method of singular value decomposition. Thus, our algorithm is very suitable for a large amount of data fitting. In addition, the proposed scheme can also be used to extract the global structure of fluctuating systems. We then derive the exact relation between the correlation function and the detrended variance function of fluctuating systems in arbitrary dimensions and give a general scaling analysis.
Zhan, L.; Liu, Y.; Zhou, J.; Ye, J.; Thompson, P.M.
2015-01-01
Mild cognitive impairment (MCI) is an intermediate stage between normal aging and Alzheimer's disease (AD), and around 10-15% of people with MCI develop AD each year. More recently, MCI has been further subdivided into early and late stages, and there is interest in identifying sensitive brain imaging biomarkers that help to differentiate stages of MCI. Here, we focused on anatomical brain networks computed from diffusion MRI and proposed a new feature extraction and classification framework based on higher order singular value decomposition and sparse logistic regression. In tests on publicly available data from the Alzheimer's Disease Neuroimaging Initiative, our proposed framework showed promise in detecting brain network differences that help in classifying early versus late MCI. PMID:26413202
Semi-Poisson statistics in quantum chaos.
García-García, Antonio M; Wang, Jiao
2006-03-01
We investigate the quantum properties of a nonrandom Hamiltonian with a steplike singularity. It is shown that the eigenfunctions are multifractals and, in a certain range of parameters, the level statistics is described exactly by semi-Poisson statistics (SP) typical of pseudointegrable systems. It is also shown that our results are universal, namely, they depend exclusively on the presence of the steplike singularity and are not modified by smooth perturbations of the potential or the addition of a magnetic flux. Although the quantum properties of our system are similar to those of a disordered conductor at the Anderson transition, we report important quantitative differences in both the level statistics and the multifractal dimensions controlling the transition. Finally, the study of quantum transport properties suggests that the classical singularity induces quantum anomalous diffusion. We discuss how these findings may be experimentally corroborated by using ultracold atoms techniques.
Cuckoo search algorithm based satellite image contrast and brightness enhancement using DWT-SVD.
Bhandari, A K; Soni, V; Kumar, A; Singh, G K
2014-07-01
This paper presents a new contrast enhancement approach which is based on Cuckoo Search (CS) algorithm and DWT-SVD for quality improvement of the low contrast satellite images. The input image is decomposed into the four frequency subbands through Discrete Wavelet Transform (DWT), and CS algorithm used to optimize each subband of DWT and then obtains the singular value matrix of the low-low thresholded subband image and finally, it reconstructs the enhanced image by applying IDWT. The singular value matrix employed intensity information of the particular image, and any modification in the singular values changes the intensity of the given image. The experimental results show superiority of the proposed method performance in terms of PSNR, MSE, Mean and Standard Deviation over conventional and state-of-the-art techniques. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Image compression using singular value decomposition
NASA Astrophysics Data System (ADS)
Swathi, H. R.; Sohini, Shah; Surbhi; Gopichand, G.
2017-11-01
We often need to transmit and store the images in many applications. Smaller the image, less is the cost associated with transmission and storage. So we often need to apply data compression techniques to reduce the storage space consumed by the image. One approach is to apply Singular Value Decomposition (SVD) on the image matrix. In this method, digital image is given to SVD. SVD refactors the given digital image into three matrices. Singular values are used to refactor the image and at the end of this process, image is represented with smaller set of values, hence reducing the storage space required by the image. Goal here is to achieve the image compression while preserving the important features which describe the original image. SVD can be adapted to any arbitrary, square, reversible and non-reversible matrix of m × n size. Compression ratio and Mean Square Error is used as performance metrics.
Composite fuzzy sliding mode control of nonlinear singularly perturbed systems.
Nagarale, Ravindrakumar M; Patre, B M
2014-05-01
This paper deals with the robust asymptotic stabilization for a class of nonlinear singularly perturbed systems using the fuzzy sliding mode control technique. In the proposed approach the original system is decomposed into two subsystems as slow and fast models by the singularly perturbed method. The composite fuzzy sliding mode controller is designed for stabilizing the full order system by combining separately designed slow and fast fuzzy sliding mode controllers. The two-time scale design approach minimizes the effect of boundary layer system on the full order system. A stability analysis allows us to provide sufficient conditions for the asymptotic stability of the full order closed-loop system. The simulation results show improved system performance of the proposed controller as compared to existing methods. The experimentation results validate the effectiveness of the proposed controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Aerodynamic influence coefficient method using singularity splines.
NASA Technical Reports Server (NTRS)
Mercer, J. E.; Weber, J. A.; Lesferd, E. P.
1973-01-01
A new numerical formulation with computed results, is presented. This formulation combines the adaptability to complex shapes offered by paneling schemes with the smoothness and accuracy of the loading function methods. The formulation employs a continuous distribution of singularity strength over a set of panels on a paneled wing. The basic distributions are independent, and each satisfies all of the continuity conditions required of the final solution. These distributions are overlapped both spanwise and chordwise (termed 'spline'). Boundary conditions are satisfied in a least square error sense over the surface using a finite summing technique to approximate the integral.
Low-thrust trajectory analysis for the geosynchronous mission
NASA Technical Reports Server (NTRS)
Jasper, T. P.
1973-01-01
Methodology employed in development of a computer program designed to analyze optimal low-thrust trajectories is described, and application of the program to a Solar Electric Propulsion Stage (SEPS) geosynchronous mission is discussed. To avoid the zero inclination and eccentricity singularities which plague many small-force perturbation techniques, a special set of state variables (equinoctial) is used. Adjoint equations are derived for the minimum time problem and are also free from the singularities. Solutions to the state and adjoint equations are obtained by both orbit averaging and precision numerical integration; an evaluation of these approaches is made.
Primer Vector Optimization: Survey of Theory, New Analysis and Applications
NASA Technical Reports Server (NTRS)
Guzman, J. J.; Mailhe, L. M.; Schiff, C.; Hughes, S. P.; Folta, D. C.
2002-01-01
In this paper, a summary of primer vector theory is presented. The applicability of primer vector theory is examined in an effort to understand when and why the theory can fail. For example, since the Calculus of Variations is based on "small" variations, singularities in the linearized (variational) equations of motion along the arcs must be taken into account. These singularities are a recurring problem in analyse that employ small variations. Two examples, the initialization of an orbit and a line of apsides rotation, are presented. Recommendations, future work, and the possible addition of other optimization techniques are also discussed.
An elementary singularity-free Rotational Brownian Dynamics algorithm for anisotropic particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilie, Ioana M.; Briels, Wim J.; MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede
2015-03-21
Brownian Dynamics is the designated technique to simulate the collective dynamics of colloidal particles suspended in a solution, e.g., the self-assembly of patchy particles. Simulating the rotational dynamics of anisotropic particles by a first-order Langevin equation, however, gives rise to a number of complications, ranging from singularities when using a set of three rotational coordinates to subtle metric and drift corrections. Here, we derive and numerically validate a quaternion-based Rotational Brownian Dynamics algorithm that handles these complications in a simple and elegant way. The extension to hydrodynamic interactions is also discussed.
Li, Zhigang; Wang, Qiaoyun; Lv, Jiangtao; Ma, Zhenhe; Yang, Linjuan
2015-06-01
Spectroscopy is often applied when a rapid quantitative analysis is required, but one challenge is the translation of raw spectra into a final analysis. Derivative spectra are often used as a preliminary preprocessing step to resolve overlapping signals, enhance signal properties, and suppress unwanted spectral features that arise due to non-ideal instrument and sample properties. In this study, to improve quantitative analysis of near-infrared spectra, derivatives of noisy raw spectral data need to be estimated with high accuracy. A new spectral estimator based on singular perturbation technique, called the singular perturbation spectra estimator (SPSE), is presented, and the stability analysis of the estimator is given. Theoretical analysis and simulation experimental results confirm that the derivatives can be estimated with high accuracy using this estimator. Furthermore, the effectiveness of the estimator for processing noisy infrared spectra is evaluated using the analysis of beer spectra. The derivative spectra of the beer and the marzipan are used to build the calibration model using partial least squares (PLS) modeling. The results show that the PLS based on the new estimator can achieve better performance compared with the Savitzky-Golay algorithm and can serve as an alternative choice for quantitative analytical applications.
Daily rainfall forecasting for one year in a single run using Singular Spectrum Analysis
NASA Astrophysics Data System (ADS)
Unnikrishnan, Poornima; Jothiprakash, V.
2018-06-01
Effective modelling and prediction of smaller time step rainfall is reported to be very difficult owing to its highly erratic nature. Accurate forecast of daily rainfall for longer duration (multi time step) may be exceptionally helpful in the efficient planning and management of water resources systems. Identification of inherent patterns in a rainfall time series is also important for an effective water resources planning and management system. In the present study, Singular Spectrum Analysis (SSA) is utilized to forecast the daily rainfall time series pertaining to Koyna watershed in Maharashtra, India, for 365 days after extracting various components of the rainfall time series such as trend, periodic component, noise and cyclic component. In order to forecast the time series for longer time step (365 days-one window length), the signal and noise components of the time series are forecasted separately and then added together. The results of the study show that the method of SSA could extract the various components of the time series effectively and could also forecast the daily rainfall time series for longer duration such as one year in a single run with reasonable accuracy.
Inflection point caustic problems and solutions for high-gain dual-shaped reflectors
NASA Technical Reports Server (NTRS)
Galindo-Israel, Victor; Veruttipong, Thavath; Imbriale, William; Rengarajan, Sembiam
1990-01-01
The singular nature of the uniform geometrical theory of diffraction (UTD) subreflector scattered field at the vicinity of the main reflector edge (for a high-gain antenna design) is investigated. It is shown that the singularity in the UTD edge-diffracted and slope-diffracted fields is due to the reflection distance parameter approaching infinity in the transition functions. While the geometrical optics (GO) and UTD edge-diffracted fields exhibit singularities of the same order, the edge slope-diffracted field singularity is more significant and is substantial for greater subreflector edge tapers. The diffraction analysis of such a subreflector in the vicinity of the main reflector edge has been carried out efficiently and accurately by a stationary phase evaluation of the phi-integral, whereas the theta-integral is carried out numerically. Computational results from UTD and physical optics (PO) analysis of a 34-m ground station dual-shaped reflector confirm the analytical formulations for both circularly symmetric and offset asymmetric subreflectors. It is concluded that the proposed PO(theta)GO(phi) technique can be used to study the spillover or noise temperature characteristics of a high-gain reflector antenna efficiently and accurately.
On SYM theory and all order bulk singularity structures of BPS strings in type II theory
NASA Astrophysics Data System (ADS)
Hatefi, Ehsan
2018-06-01
The complete forms of the S-matrix elements of a transverse scalar field, two world volume gauge fields, and a Potential Cn-1 Ramond-Ramond (RR) form field are investigated. In order to find an infinite number of t , s , (t + s + u)-channel bulk singularity structures of this particular mixed open-closed amplitude, we employ all the conformal field theory techniques to
The feature extraction of "cat-eye" targets based on bi-spectrum
NASA Astrophysics Data System (ADS)
Zhang, Tinghua; Fan, Guihua; Sun, Huayan
2016-10-01
In order to resolve the difficult problem of detection and identification of optical targets in complex background or in long-distance transmission, this paper mainly study the range profiles of "cat-eye" targets using bi-spectrum. For the problems of laser echo signal attenuation serious and low Signal-Noise Ratio (SNR), the multi-pulse laser signal echo signal detection algorithm which is based on high-order cumulant, filter processing and the accumulation of multi-pulse is proposed. This could improve the detection range effectively. In order to extract the stable characteristics of the one-dimensional range profile coming from the cat-eye targets, a method is proposed which extracts the bi-spectrum feature, and uses the singular value decomposition to simplify the calculation. Then, by extracting data samples of different distance, type and incidence angle, verify the stability of the eigenvector and effectiveness extracted by bi-spectrum.
NASA Astrophysics Data System (ADS)
Du, Kongchang; Zhao, Ying; Lei, Jiaqiang
2017-09-01
In hydrological time series prediction, singular spectrum analysis (SSA) and discrete wavelet transform (DWT) are widely used as preprocessing techniques for artificial neural network (ANN) and support vector machine (SVM) predictors. These hybrid or ensemble models seem to largely reduce the prediction error. In current literature researchers apply these techniques to the whole observed time series and then obtain a set of reconstructed or decomposed time series as inputs to ANN or SVM. However, through two comparative experiments and mathematical deduction we found the usage of SSA and DWT in building hybrid models is incorrect. Since SSA and DWT adopt 'future' values to perform the calculation, the series generated by SSA reconstruction or DWT decomposition contain information of 'future' values. These hybrid models caused incorrect 'high' prediction performance and may cause large errors in practice.
Rotation forms and local Hamiltonian monodromy
NASA Astrophysics Data System (ADS)
Efstathiou, K.; Giacobbe, A.; Mardešić, P.; Sugny, D.
2017-02-01
The monodromy of torus bundles associated with completely integrable systems can be computed using geometric techniques (constructing homology cycles) or analytic arguments (computing discontinuities of abelian integrals). In this article, we give a general approach to the computation of monodromy that resembles the analytical one, reducing the problem to the computation of residues of polar 1-forms. We apply our technique to three celebrated examples of systems with monodromy (the champagne bottle, the spherical pendulum, the hydrogen atom) and to the case of non-degenerate focus-focus singularities, re-obtaining the classical results. An advantage of this approach is that the residue-like formula can be shown to be local in a neighborhood of a singularity, hence allowing the definition of monodromy also in the case of non-compact fibers. This idea has been introduced in the literature under the name of scattering monodromy. We prove the coincidence of the two definitions with the monodromy of an appropriately chosen compactification.
Regularization with numerical extrapolation for finite and UV-divergent multi-loop integrals
NASA Astrophysics Data System (ADS)
de Doncker, E.; Yuasa, F.; Kato, K.; Ishikawa, T.; Kapenga, J.; Olagbemi, O.
2018-03-01
We give numerical integration results for Feynman loop diagrams such as those covered by Laporta (2000) and by Baikov and Chetyrkin (2010), and which may give rise to loop integrals with UV singularities. We explore automatic adaptive integration using multivariate techniques from the PARINT package for multivariate integration, as well as iterated integration with programs from the QUADPACK package, and a trapezoidal method based on a double exponential transformation. PARINT is layered over MPI (Message Passing Interface), and incorporates advanced parallel/distributed techniques including load balancing among processes that may be distributed over a cluster or a network/grid of nodes. Results are included for 2-loop vertex and box diagrams and for sets of 2-, 3- and 4-loop self-energy diagrams with or without UV terms. Numerical regularization of integrals with singular terms is achieved by linear and non-linear extrapolation methods.
Elastic constants from microscopic strain fluctuations
Sengupta; Nielaba; Rao; Binder
2000-02-01
Fluctuations of the instantaneous local Lagrangian strain epsilon(ij)(r,t), measured with respect to a static "reference" lattice, are used to obtain accurate estimates of the elastic constants of model solids from atomistic computer simulations. The measured strains are systematically coarse-grained by averaging them within subsystems (of size L(b)) of a system (of total size L) in the canonical ensemble. Using a simple finite size scaling theory we predict the behavior of the fluctuations
An Application of Conley Index Techniques to a Model of Bursting in Excitable Membranes
NASA Astrophysics Data System (ADS)
Kinney, William M.
2000-04-01
Assumptions about a model of bursting activity in pancreatic β-cells are stated and a neighborhood of the attractor in this model is constructed. Conley index results and techniques are used to give a sufficient condition for a singular isolating neighborhood to isolate a nonempty attractor. Finally, this theorem is applied to the bursting model.
NASA Technical Reports Server (NTRS)
Balas, Gary J.
1996-01-01
This final report summarizes the research results under NASA Contract NAG-1-1254 from May, 1991 - April, 1995. The main contribution of this research are in the areas of control of flexible structures, model validation, optimal control analysis and synthesis techniques, and use of shape memory alloys for structural damping.
NASA Astrophysics Data System (ADS)
Ikeda, Hayato; Nagaoka, Ryo; Lafond, Maxime; Yoshizawa, Shin; Iwasaki, Ryosuke; Maeda, Moe; Umemura, Shin-ichiro; Saijo, Yoshifumi
2018-07-01
High-intensity focused ultrasound is a noninvasive treatment applied by externally irradiating ultrasound to the body to coagulate the target tissue thermally. Recently, it has been proposed as a noninvasive treatment for vascular occlusion to replace conventional invasive treatments. Cavitation bubbles generated by the focused ultrasound can accelerate the effect of thermal coagulation. However, the tissues surrounding the target may be damaged by cavitation bubbles generated outside the treatment area. Conventional methods based on Doppler analysis only in the time domain are not suitable for monitoring blood flow in the presence of cavitation. In this study, we proposed a novel filtering method based on the differences in spatiotemporal characteristics, to separate tissue, blood flow, and cavitation by employing singular value decomposition. Signals from cavitation and blood flow were extracted automatically using spatial and temporal covariance matrices.
Numerical evaluation of multi-loop integrals for arbitrary kinematics with SecDec 2.0
NASA Astrophysics Data System (ADS)
Borowka, Sophia; Carter, Jonathon; Heinrich, Gudrun
2013-02-01
We present the program SecDec 2.0, which contains various new features. First, it allows the numerical evaluation of multi-loop integrals with no restriction on the kinematics. Dimensionally regulated ultraviolet and infrared singularities are isolated via sector decomposition, while threshold singularities are handled by a deformation of the integration contour in the complex plane. As an application, we present numerical results for various massive two-loop four-point diagrams. SecDec 2.0 also contains new useful features for the calculation of more general parameter integrals, related for example to phase space integrals. Program summaryProgram title: SecDec 2.0 Catalogue identifier: AEIR_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIR_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 156829 No. of bytes in distributed program, including test data, etc.: 2137907 Distribution format: tar.gz Programming language: Wolfram Mathematica, Perl, Fortran/C++. Computer: From a single PC to a cluster, depending on the problem. Operating system: Unix, Linux. RAM: Depending on the complexity of the problem Classification: 4.4, 5, 11.1. Catalogue identifier of previous version: AEIR_v1_0 Journal reference of previous version: Comput. Phys. Comm. 182(2011)1566 Does the new version supersede the previous version?: Yes Nature of problem: Extraction of ultraviolet and infrared singularities from parametric integrals appearing in higher order perturbative calculations in gauge theories. Numerical integration in the presence of integrable singularities (e.g., kinematic thresholds). Solution method: Algebraic extraction of singularities in dimensional regularization using iterated sector decomposition. This leads to a Laurent series in the dimensional regularization parameter ɛ, where the coefficients are finite integrals over the unit hypercube. Those integrals are evaluated numerically by Monte Carlo integration. The integrable singularities are handled by choosing a suitable integration contour in the complex plane, in an automated way. Reasons for new version: In the previous version the calculation of multi-scale integrals was restricted to the Euclidean region. Now multi-loop integrals with arbitrary physical kinematics can be evaluated. Another major improvement is the possibility of full parallelization. Summary of revisions: No restriction on the kinematics for multi-loop integrals. The integrand can be constructed from the topological cuts of the diagram. Possibility of full parallelization. Numerical integration of multi-loop integrals written in C++ rather than Fortran. Possibility to loop over ranges of parameters. Restrictions: Depending on the complexity of the problem, limited by memory and CPU time. The restriction that multi-scale integrals could only be evaluated at Euclidean points is superseded in version 2.0. Running time: Between a few minutes and several days, depending on the complexity of the problem. Test runs provided take only seconds.
Linear prediction and single-channel recording.
Carter, A A; Oswald, R E
1995-08-01
The measurement of individual single-channel events arising from the gating of ion channels provides a detailed data set from which the kinetic mechanism of a channel can be deduced. In many cases, the pattern of dwells in the open and closed states is very complex, and the kinetic mechanism and parameters are not easily determined. Assuming a Markov model for channel kinetics, the probability density function for open and closed time dwells should consist of a sum of decaying exponentials. One method of approaching the kinetic analysis of such a system is to determine the number of exponentials and the corresponding parameters which comprise the open and closed dwell time distributions. These can then be compared to the relaxations predicted from the kinetic model to determine, where possible, the kinetic constants. We report here the use of a linear technique, linear prediction/singular value decomposition, to determine the number of exponentials and the exponential parameters. Using simulated distributions and comparing with standard maximum-likelihood analysis, the singular value decomposition techniques provide advantages in some situations and are a useful adjunct to other single-channel analysis techniques.
The general relativistic thin disc evolution equation
NASA Astrophysics Data System (ADS)
Balbus, Steven A.
2017-11-01
In the classical theory of thin disc accretion discs, the constraints of mass and angular momentum conservation lead to a diffusion-like equation for the turbulent evolution of the surface density. Here, we revisit this problem, extending the Newtonian analysis to the regime of Kerr geometry relevant to black holes. A diffusion-like equation once again emerges, but now with a singularity at the radius at which the effective angular momentum gradient passes through zero. The equation may be analysed using a combination of Wentzel-Kramers-Brillouin techniques, local techniques and matched asymptotic expansions. It is shown that imposing the boundary condition of a vanishing stress tensor (more precisely the radial-azimuthal component thereof) allows smooth stable modes to exist external to the angular momentum singularity, the innermost stable circular orbit, while smoothly vanishing inside this location. The extension of the disc diffusion equation to the domain of general relativity introduces a new tool for numerical and phenomenological studies of accretion discs, and may prove to be a useful technique for understanding black hole X-ray transients.
NASA Technical Reports Server (NTRS)
Balas, Gary J.
1992-01-01
The use is studied of active control to attenuate structural vibrations of the NASA Langley Phase Zero Evolutionary Structure due to external disturbance excitations. H sub infinity and structured singular value (mu) based control techniques are used to analyze and synthesize control laws for the NASA Langley Controls Structures Interaction (CSI) Evolutionary Model (CEM). The CEM structure experiment provides an excellent test bed to address control design issues for large space structures. Specifically, control design for structures with numerous lightly damped, coupled flexible modes, collocated and noncollocated sensors and actuators and stringent performance specifications. The performance objectives are to attenuate the vibration of the structure due to external disturbances, and minimize the actuator control force. The control design problem formulation for the CEM Structure uses a mathematical model developed with finite element techniques. A reduced order state space model for the control design is formulated from the finite element model. It is noted that there are significant variations between the design model and the experimentally derived transfer function data.
NASA Astrophysics Data System (ADS)
Mercan, Kadir; Demir, Çiǧdem; Civalek, Ömer
2016-01-01
In the present manuscript, free vibration response of circular cylindrical shells with functionally graded material (FGM) is investigated. The method of discrete singular convolution (DSC) is used for numerical solution of the related governing equation of motion of FGM cylindrical shell. The constitutive relations are based on the Love's first approximation shell theory. The material properties are graded in the thickness direction according to a volume fraction power law indexes. Frequency values are calculated for different types of boundary conditions, material and geometric parameters. In general, close agreement between the obtained results and those of other researchers has been found.
Integrals and integral equations in linearized wing theory
NASA Technical Reports Server (NTRS)
Lomax, Harvard; Heaslet, Max A; Fuller, Franklyn B
1951-01-01
The formulas of subsonic and supersonic wing theory for source, doublet, and vortex distributions are reviewed and a systematic presentation is provided which relates these distributions to the pressure and to the vertical induced velocity in the plane of the wing. It is shown that care must be used in treating the singularities involved in the analysis and that the order of integration is not always reversible. Concepts suggested by the irreversibility of order of integration are shown to be useful in the inversion of singular integral equations when operational techniques are used. A number of examples are given to illustrate the methods presented, attention being directed to supersonic flight speed.
Singular value description of a digital radiographic detector: Theory and measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyprianou, Iacovos S.; Badano, Aldo; Gallas, Brandon D.
The H operator represents the deterministic performance of any imaging system. For a linear, digital imaging system, this system operator can be written in terms of a matrix, H, that describes the deterministic response of the system to a set of point objects. A singular value decomposition of this matrix results in a set of orthogonal functions (singular vectors) that form the system basis. A linear combination of these vectors completely describes the transfer of objects through the linear system, where the respective singular values associated with each singular vector describe the magnitude with which that contribution to the objectmore » is transferred through the system. This paper is focused on the measurement, analysis, and interpretation of the H matrix for digital x-ray detectors. A key ingredient in the measurement of the H matrix is the detector response to a single x ray (or infinitestimal x-ray beam). The authors have developed a method to estimate the 2D detector shift-variant, asymmetric ray response function (RRF) from multiple measured line response functions (LRFs) using a modified edge technique. The RRF measurements cover a range of x-ray incident angles from 0 deg. (equivalent location at the detector center) to 30 deg. (equivalent location at the detector edge) for a standard radiographic or cone-beam CT geometric setup. To demonstrate the method, three beam qualities were tested using the inherent, Lu/Er, and Yb beam filtration. The authors show that measures using the LRF, derived from an edge measurement, underestimate the system's performance when compared with the H matrix derived using the RRF. Furthermore, the authors show that edge measurements must be performed at multiple directions in order to capture rotational asymmetries of the RRF. The authors interpret the results of the H matrix SVD and provide correlations with the familiar MTF methodology. Discussion is made about the benefits of the H matrix technique with regards to signal detection theory, and the characterization of shift-variant imaging systems.« less
Chaotic attractors of relaxation oscillators
NASA Astrophysics Data System (ADS)
Guckenheimer, John; Wechselberger, Martin; Young, Lai-Sang
2006-03-01
We develop a general technique for proving the existence of chaotic attractors for three-dimensional vector fields with two time scales. Our results connect two important areas of dynamical systems: the theory of chaotic attractors for discrete two-dimensional Henon-like maps and geometric singular perturbation theory. Two-dimensional Henon-like maps are diffeomorphisms that limit on non-invertible one-dimensional maps. Wang and Young formulated hypotheses that suffice to prove the existence of chaotic attractors in these families. Three-dimensional singularly perturbed vector fields have return maps that are also two-dimensional diffeomorphisms limiting on one-dimensional maps. We describe a generic mechanism that produces folds in these return maps and demonstrate that the Wang-Young hypotheses are satisfied. Our analysis requires a careful study of the convergence of the return maps to their singular limits in the Ck topology for k >= 3. The theoretical results are illustrated with a numerical study of a variant of the forced van der Pol oscillator.
An omnidirectional retroreflector based on the transmutation of dielectric singularities.
Ma, Yun Gui; Ong, C K; Tyc, Tomás; Leonhardt, Ulf
2009-08-01
Transformation optics is a concept used in some metamaterials to guide light on a predetermined path. In this approach, the materials implement coordinate transformations on electromagnetic waves to create the illusion that the waves are propagating through a virtual space. Transforming space by appropriately designed materials makes devices possible that have been deemed impossible. In particular, transformation optics has led to the demonstration of invisibility cloaking for microwaves, surface plasmons and infrared light. Here, on the basis of transformation optics, we implement a microwave device that would normally require a dielectric singularity, an infinity in the refractive index. To fabricate such a device, we transmute a dielectric singularity in virtual space into a mere topological defect in a real metamaterial. In particular, we demonstrate an omnidirectional retroreflector, a device for faithfully reflecting images and for creating high visibility from all directions. Our method is robust, potentially broadband and could also be applied to visible light using similar techniques.
NASA Astrophysics Data System (ADS)
Wu, Sheng-Jhih; Chu, Moody T.
2017-08-01
An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, and analytic gradient flow is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing-Thompson, and Weyl-Horn theorems concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values. The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are at general locations.
High order discretization techniques for real-space ab initio simulations
NASA Astrophysics Data System (ADS)
Anderson, Christopher R.
2018-03-01
In this paper, we present discretization techniques to address numerical problems that arise when constructing ab initio approximations that use real-space computational grids. We present techniques to accommodate the singular nature of idealized nuclear and idealized electronic potentials, and we demonstrate the utility of using high order accurate grid based approximations to Poisson's equation in unbounded domains. To demonstrate the accuracy of these techniques, we present results for a Full Configuration Interaction computation of the dissociation of H2 using a computed, configuration dependent, orbital basis set.
Ground Vibration Test Planning and Pre-Test Analysis for the X-33 Vehicle
NASA Technical Reports Server (NTRS)
Bedrossian, Herand; Tinker, Michael L.; Hidalgo, Homero
2000-01-01
This paper describes the results of the modal test planning and the pre-test analysis for the X-33 vehicle. The pre-test analysis included the selection of the target modes, selection of the sensor and shaker locations and the development of an accurate Test Analysis Model (TAM). For target mode selection, four techniques were considered, one based on the Modal Cost technique, one based on Balanced Singular Value technique, a technique known as the Root Sum Squared (RSS) method, and a Modal Kinetic Energy (MKE) approach. For selecting sensor locations, four techniques were also considered; one based on the Weighted Average Kinetic Energy (WAKE), one based on Guyan Reduction (GR), one emphasizing engineering judgment, and one based on an optimum sensor selection technique using Genetic Algorithm (GA) search technique combined with a criteria based on Hankel Singular Values (HSV's). For selecting shaker locations, four techniques were also considered; one based on the Weighted Average Driving Point Residue (WADPR), one based on engineering judgment and accessibility considerations, a frequency response method, and an optimum shaker location selection based on a GA search technique combined with a criteria based on HSV's. To evaluate the effectiveness of the proposed sensor and shaker locations for exciting the target modes, extensive numerical simulations were performed. Multivariate Mode Indicator Function (MMIF) was used to evaluate the effectiveness of each sensor & shaker set with respect to modal parameter identification. Several TAM reduction techniques were considered including, Guyan, IRS, Modal, and Hybrid. Based on a pre-test cross-orthogonality checks using various reduction techniques, a Hybrid TAM reduction technique was selected and was used for all three vehicle fuel level configurations.
A new method to extract modal parameters using output-only responses
NASA Astrophysics Data System (ADS)
Kim, Byeong Hwa; Stubbs, Norris; Park, Taehyo
2005-04-01
This work proposes a new output-only modal analysis method to extract mode shapes and natural frequencies of a structure. The proposed method is based on an approach with a single-degree-of-freedom in the time domain. For a set of given mode-isolated signals, the un-damped mode shapes are extracted utilizing the singular value decomposition of the output energy correlation matrix with respect to sensor locations. The natural frequencies are extracted from a noise-free signal that is projected on the estimated modal basis. The proposed method is particularly efficient when a high resolution of mode shape is essential. The accuracy of the method is numerically verified using a set of time histories that are simulated using a finite-element method. The feasibility and practicality of the method are verified using experimental data collected at the newly constructed King Storm Water Bridge in California, United States.
Leonard, Laurence B.; Fey, Marc E.; Deevy, Patricia; Bredin-Oja, Shelley L.
2015-01-01
We tested four predictions based on the assumption that optional infinitives can be attributed to properties of the input whereby children inappropriately extract nonfinite subject-verb sequences (e.g. the girl run) from larger input utterances (e.g. Does the girl run? Let’s watch the girl run). Thirty children with specific language impairment (SLI) and 30 typically developing children heard novel and familiar verbs that appeared exclusively either in utterances containing nonfinite subject-verb sequences or in simple sentences with the verb inflected for third person singular –s. Subsequent testing showed strong input effects, especially for the SLI group. The results provide support for input-based factors as significant contributors not only to the optional infinitive period in typical development, but also to the especially protracted optional infinitive period seen in SLI. PMID:25076070
Trajectory phase transitions and dynamical Lee-Yang zeros of the Glauber-Ising chain.
Hickey, James M; Flindt, Christian; Garrahan, Juan P
2013-07-01
We examine the generating function of the time-integrated energy for the one-dimensional Glauber-Ising model. At long times, the generating function takes on a large-deviation form and the associated cumulant generating function has singularities corresponding to continuous trajectory (or "space-time") phase transitions between paramagnetic trajectories and ferromagnetically or antiferromagnetically ordered trajectories. In the thermodynamic limit, the singularities make up a whole curve of critical points in the complex plane of the counting field. We evaluate analytically the generating function by mapping the generator of the biased dynamics to a non-Hermitian Hamiltonian of an associated quantum spin chain. We relate the trajectory phase transitions to the high-order cumulants of the time-integrated energy which we use to extract the dynamical Lee-Yang zeros of the generating function. This approach offers the possibility to detect continuous trajectory phase transitions from the finite-time behavior of measurable quantities.
Singular Spectrum Analysis for Astronomical Time Series: Constructing a Parsimonious Hypothesis Test
NASA Astrophysics Data System (ADS)
Greco, G.; Kondrashov, D.; Kobayashi, S.; Ghil, M.; Branchesi, M.; Guidorzi, C.; Stratta, G.; Ciszak, M.; Marino, F.; Ortolan, A.
We present a data-adaptive spectral method - Monte Carlo Singular Spectrum Analysis (MC-SSA) - and its modification to tackle astrophysical problems. Through numerical simulations we show the ability of the MC-SSA in dealing with 1/f β power-law noise affected by photon counting statistics. Such noise process is simulated by a first-order autoregressive, AR(1) process corrupted by intrinsic Poisson noise. In doing so, we statistically estimate a basic stochastic variation of the source and the corresponding fluctuations due to the quantum nature of light. In addition, MC-SSA test retains its effectiveness even when a significant percentage of the signal falls below a certain level of detection, e.g., caused by the instrument sensitivity. The parsimonious approach presented here may be broadly applied, from the search for extrasolar planets to the extraction of low-intensity coherent phenomena probably hidden in high energy transients.
Digital enhancement of computerized axial tomograms
NASA Technical Reports Server (NTRS)
Roberts, E., Jr.
1978-01-01
A systematic evaluation was conducted of certain digital image enhancement techniques performed in image space. Three types of images were used, computer generated phantoms, tomograms of a synthetic phantom, and axial tomograms of human anatomy containing images of lesions, artificially introduced into the tomograms. Several types of smoothing, sharpening, and histogram modification were explored. It was concluded that the most useful enhancement techniques are a selective smoothing of singular picture elements, combined with contrast manipulation. The most useful tool in applying these techniques is the gray-scale histogram.
Techniques for Computation of Frequency Limited H∞ Norm
NASA Astrophysics Data System (ADS)
Haider, Shafiq; Ghafoor, Abdul; Imran, Muhammad; Fahad Mumtaz, Malik
2018-01-01
Traditional H ∞ norm depicts peak system gain over infinite frequency range, but many applications like filter design, model order reduction and controller design etc. require computation of peak system gain over specific frequency interval rather than infinite range. In present work, new computationally efficient techniques for computation of H ∞ norm over frequency limited interval are proposed. Proposed techniques link norm computation with maximum singular value of the system in limited frequency interval. Numerical examples are incorporated to validate the proposed concept.
Note: Sound recovery from video using SVD-based information extraction
NASA Astrophysics Data System (ADS)
Zhang, Dashan; Guo, Jie; Lei, Xiujun; Zhu, Chang'an
2016-08-01
This note reports an efficient singular value decomposition (SVD)-based vibration extraction approach that recovers sound information in silent high-speed video. A high-speed camera of which frame rates are in the range of 2 kHz-10 kHz is applied to film the vibrating objects. Sub-images cut from video frames are transformed into column vectors and then reconstructed to a new matrix. The SVD of the new matrix produces orthonormal image bases (OIBs) and image projections onto specific OIB can be recovered as understandable acoustical signals. Standard frequencies of 256 Hz and 512 Hz tuning forks are extracted offline from their vibrating surfaces and a 3.35 s speech signal is recovered online from a piece of paper that is stimulated by sound waves within 1 min.
Yet another method for triangulation and contouring for automated cartography
NASA Technical Reports Server (NTRS)
De Floriani, L.; Falcidieno, B.; Nasy, G.; Pienovi, C.
1982-01-01
An algorithm is presented for hierarchical subdivision of a set of three-dimensional surface observations. The data structure used for obtaining the desired triangulation is also singularly appropriate for extracting contours. Some examples are presented, and the results obtained are compared with those given by Delaunay triangulation. The data points selected by the algorithm provide a better approximation to the desired surface than do randomly selected points.
NASA Astrophysics Data System (ADS)
Pai Raikar, Vipul; Kwartowitz, David M.
2016-04-01
Degradation and injury of the rotator cuff is one of the most common diseases of the shoulder among the general population. In orthopedic injuries, rotator cuff disease is only second to back pain in terms of overall reduced quality of life for patients. Clinically, this disease is managed via pain and activity assessment and diagnostic imaging using ultrasound and MRI. Ultrasound has been shown to have good accuracy for identification and measurement of rotator cuff tears. In our previous work, we have developed novel, real-time techniques to biomechanically assess the condition of the rotator cuff based on Musculoskeletal Ultrasound. Of the rotator cuff tissues, supraspinatus is the first that sees degradation and is the most commonly affected. In our work, one of the challenges lies in effectively segmenting and characterizing the supraspinatus. We are exploring the possibility of using curvelet transform for improving techniques to segment tissue in ultrasound. Curvelets have been shown to give optimal multi-scale representation of edges in images. They are designed to represent edges and singularities along curves in images which makes them an attractive proposition for use in ultrasound segmentation. In this work, we present a novel approach to the possibility of using curvelet transforms for automatic edge and feature extraction for the supraspinatus.
Nonlinear multivariate and time series analysis by neural network methods
NASA Astrophysics Data System (ADS)
Hsieh, William W.
2004-03-01
Methods in multivariate statistical analysis are essential for working with large amounts of geophysical data, data from observational arrays, from satellites, or from numerical model output. In classical multivariate statistical analysis, there is a hierarchy of methods, starting with linear regression at the base, followed by principal component analysis (PCA) and finally canonical correlation analysis (CCA). A multivariate time series method, the singular spectrum analysis (SSA), has been a fruitful extension of the PCA technique. The common drawback of these classical methods is that only linear structures can be correctly extracted from the data. Since the late 1980s, neural network methods have become popular for performing nonlinear regression and classification. More recently, neural network methods have been extended to perform nonlinear PCA (NLPCA), nonlinear CCA (NLCCA), and nonlinear SSA (NLSSA). This paper presents a unified view of the NLPCA, NLCCA, and NLSSA techniques and their applications to various data sets of the atmosphere and the ocean (especially for the El Niño-Southern Oscillation and the stratospheric quasi-biennial oscillation). These data sets reveal that the linear methods are often too simplistic to describe real-world systems, with a tendency to scatter a single oscillatory phenomenon into numerous unphysical modes or higher harmonics, which can be largely alleviated in the new nonlinear paradigm.
Direct Fault Tolerant RLV Altitude Control: A Singular Perturbation Approach
NASA Technical Reports Server (NTRS)
Zhu, J. J.; Lawrence, D. A.; Fisher, J.; Shtessel, Y. B.; Hodel, A. S.; Lu, P.; Jackson, Scott (Technical Monitor)
2002-01-01
In this paper, we present a direct fault tolerant control (DFTC) technique, where by "direct" we mean that no explicit fault identification is used. The technique will be presented for the attitude controller (autopilot) for a reusable launch vehicle (RLV), although in principle it can be applied to many other applications. Any partial or complete failure of control actuators and effectors will be inferred from saturation of one or more commanded control signals generated by the controller. The saturation causes a reduction in the effective gain, or bandwidth of the feedback loop, which can be modeled as an increase in singular perturbation in the loop. In order to maintain stability, the bandwidth of the nominal (reduced-order) system will be reduced proportionally according to the singular perturbation theory. The presented DFTC technique automatically handles momentary saturations and integrator windup caused by excessive disturbances, guidance command or dispersions under normal vehicle conditions. For multi-input, multi-output (MIMO) systems with redundant control effectors, such as the RLV attitude control system, an algorithm is presented for determining the direction of bandwidth cutback using the method of minimum-time optimal control with constrained control in order to maintain the best performance that is possible with the reduced control authority. Other bandwidth cutback logic, such as one that preserves the commanded direction of the bandwidth or favors a preferred direction when the commanded direction cannot be achieved, is also discussed. In this extended abstract, a simplistic example is proved to demonstrate the idea. In the final paper, test results on the high fidelity 6-DOF X-33 model with severe dispersions will be presented.
Dik, O E; Sviatogor, I A; Ishinova, V A; Nozdrachev, A D
2012-01-01
The task of estimation of the functional state of the human brain during psychotherapeutic treatment of psychogenic pain in patients with anxious phobic disorders is examined. For solving the task the methods of spectral and multifractal analyses of EEG fragments are applied during the perception of psychogenic pain and its removal by the psychorelaxation technique. Contrary to power spectra singularity spectra allow to distinguish EEGs quanitatively in the examined functional states of the human brain. The pain suppression in patients with anxious phobic disorders during psychorelaxation is accompanied by changing the width of the singularity spectrum and approximation of this multifractal partameter to the value corresponding to a healthy subject.
Generative Processes: Thick Drawing
ERIC Educational Resources Information Center
Wallick, Karl
2012-01-01
This article presents techniques and theories of generative drawing as a means for developing complex content in architecture design studios. Appending the word "generative" to drawing adds specificity to the most common representation tool and clarifies that such drawings are not singularly about communication or documentation but are…
Dyer, Bryce; Hassani, Hossein; Shadi, Mehran
2016-01-01
The format of cycling time trials in England, Wales and Northern Ireland, involves riders competing individually over several fixed race distances of 10-100 miles in length and using time constrained formats of 12 and 24 h in duration. Drawing on data provided by the national governing body that covers the regions of England and Wales, an analysis of six male competition record progressions was undertaken to illustrate its progression. Future forecasts are then projected through use of the Singular Spectrum Analysis technique. This method has not been applied to sport-based time series data before. All six records have seen a progressive improvement and are non-linear in nature. Five records saw their highest level of record change during the 1950-1969 period. Whilst new record frequency generally has reduced since this period, the magnitude of performance improvement has generally increased. The Singular Spectrum Analysis technique successfully provided forecasted projections in the short to medium term with a high level of fit to the time series data.
Szidarovszky, Tamás; Császár, Attila G; Czakó, Gábor
2010-08-01
Several techniques of varying efficiency are investigated, which treat all singularities present in the triatomic vibrational kinetic energy operator given in orthogonal internal coordinates of the two distances-one angle type. The strategies are based on the use of a direct-product basis built from one-dimensional discrete variable representation (DVR) bases corresponding to the two distances and orthogonal Legendre polynomials, or the corresponding Legendre-DVR basis, corresponding to the angle. The use of Legendre functions ensures the efficient treatment of the angular singularity. Matrix elements of the singular radial operators are calculated employing DVRs using the quadrature approximation as well as special DVRs satisfying the boundary conditions and thus allowing for the use of exact DVR expressions. Potential optimized (PO) radial DVRs, based on one-dimensional Hamiltonians with potentials obtained by fixing or relaxing the two non-active coordinates, are also studied. The numerical calculations employed Hermite-DVR, spherical-oscillator-DVR, and Bessel-DVR bases as the primitive radial functions. A new analytical formula is given for the determination of the matrix elements of the singular radial operator using the Bessel-DVR basis. The usually claimed failure of the quadrature approximation in certain singular integrals is revisited in one and three dimensions. It is shown that as long as no potential optimization is carried out the quadrature approximation works almost as well as the exact DVR expressions. If wave functions with finite amplitude at the boundary are to be computed, the basis sets need to meet the required boundary conditions. The present numerical results also confirm that PO-DVRs should be constructed employing relaxed potentials and PO-DVRs can be useful for optimizing quadrature points for calculations applying large coordinate intervals and describing large-amplitude motions. The utility and efficiency of the different algorithms is demonstrated by the computation of converged near-dissociation vibrational energy levels for the H molecular ion.
Diagnosis of Tempromandibular Disorders Using Local Binary Patterns.
Haghnegahdar, A A; Kolahi, S; Khojastepour, L; Tajeripour, F
2018-03-01
Temporomandibular joint disorder (TMD) might be manifested as structural changes in bone through modification, adaptation or direct destruction. We propose to use Local Binary Pattern (LBP) characteristics and histogram-oriented gradients on the recorded images as a diagnostic tool in TMD assessment. CBCT images of 66 patients (132 joints) with TMD and 66 normal cases (132 joints) were collected and 2 coronal cut prepared from each condyle, although images were limited to head of mandibular condyle. In order to extract features of images, first we use LBP and then histogram of oriented gradients. To reduce dimensionality, the linear algebra Singular Value Decomposition (SVD) is applied to the feature vectors matrix of all images. For evaluation, we used K nearest neighbor (K-NN), Support Vector Machine, Naïve Bayesian and Random Forest classifiers. We used Receiver Operating Characteristic (ROC) to evaluate the hypothesis. K nearest neighbor classifier achieves a very good accuracy (0.9242), moreover, it has desirable sensitivity (0.9470) and specificity (0.9015) results, when other classifiers have lower accuracy, sensitivity and specificity. We proposed a fully automatic approach to detect TMD using image processing techniques based on local binary patterns and feature extraction. K-NN has been the best classifier for our experiments in detecting patients from healthy individuals, by 92.42% accuracy, 94.70% sensitivity and 90.15% specificity. The proposed method can help automatically diagnose TMD at its initial stages.
NASA Astrophysics Data System (ADS)
Kumar, Ravi; Bhaduri, Basanta; Nishchal, Naveen K.
2018-01-01
In this study, we propose a quick response (QR) code based nonlinear optical image encryption technique using spiral phase transform (SPT), equal modulus decomposition (EMD) and singular value decomposition (SVD). First, the primary image is converted into a QR code and then multiplied with a spiral phase mask (SPM). Next, the product is spiral phase transformed with particular spiral phase function, and further, the EMD is performed on the output of SPT, which results into two complex images, Z 1 and Z 2. Among these, Z 1 is further Fresnel propagated with distance d, and Z 2 is reserved as a decryption key. Afterwards, SVD is performed on Fresnel propagated output to get three decomposed matrices i.e. one diagonal matrix and two unitary matrices. The two unitary matrices are modulated with two different SPMs and then, the inverse SVD is performed using the diagonal matrix and modulated unitary matrices to get the final encrypted image. Numerical simulation results confirm the validity and effectiveness of the proposed technique. The proposed technique is robust against noise attack, specific attack, and brutal force attack. Simulation results are presented in support of the proposed idea.
On the use of the singular value decomposition for text retrieval
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husbands, P.; Simon, H.D.; Ding, C.
2000-12-04
The use of the Singular Value Decomposition (SVD) has been proposed for text retrieval in several recent works. This technique uses the SVD to project very high dimensional document and query vectors into a low dimensional space. In this new space it is hoped that the underlying structure of the collection is revealed thus enhancing retrieval performance. Theoretical results have provided some evidence for this claim and to some extent experiments have confirmed this. However, these studies have mostly used small test collections and simplified document models. In this work we investigate the use of the SVD on large documentmore » collections. We show that, if interpreted as a mechanism for representing the terms of the collection, this technique alone is insufficient for dealing with the variability in term occurrence. Section 2 introduces the text retrieval concepts necessary for our work. A short description of our experimental architecture is presented in Section 3. Section 4 describes how term occurrence variability affects the SVD and then shows how the decomposition influences retrieval performance. A possible way of improving SVD-based techniques is presented in Section 5 and concluded in Section 6.« less
Numerical linear algebra in data mining
NASA Astrophysics Data System (ADS)
Eldén, Lars
Ideas and algorithms from numerical linear algebra are important in several areas of data mining. We give an overview of linear algebra methods in text mining (information retrieval), pattern recognition (classification of handwritten digits), and PageRank computations for web search engines. The emphasis is on rank reduction as a method of extracting information from a data matrix, low-rank approximation of matrices using the singular value decomposition and clustering, and on eigenvalue methods for network analysis.
Supercritical Carbon Dioxide Extraction of Carotenoids from Pumpkin (Cucurbita spp.): A Review
Durante, Miriana; Lenucci, Marcello Salvatore; Mita, Giovanni
2014-01-01
Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp.) flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE), have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2) extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1) dehydration pre-treatments; (2) extraction parameters (temperature and pressure); the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix. PMID:24756094
Supercritical carbon dioxide extraction of carotenoids from pumpkin (Cucurbita spp.): a review.
Durante, Miriana; Lenucci, Marcello Salvatore; Mita, Giovanni
2014-04-21
Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp.) flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE), have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2) extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1) dehydration pre-treatments; (2) extraction parameters (temperature and pressure); the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix.
Identification and modification of dominant noise sources in diesel engines
NASA Astrophysics Data System (ADS)
Hayward, Michael D.
Determination of dominant noise sources in diesel engines is an integral step in the creation of quiet engines, but is a process which can involve an extensive series of expensive, time-consuming fired and motored tests. The goal of this research is to determine dominant noise source characteristics of a diesel engine in the near and far-fields with data from fewer tests than is currently required. Pre-conditioning and use of numerically robust methods to solve a set of cross-spectral density equations results in accurate calculation of the transfer paths between the near- and far-field measurement points. Application of singular value decomposition to an input cross-spectral matrix determines the spectral characteristics of a set of independent virtual sources, that, when scaled and added, result in the input cross spectral matrix. Each virtual source power spectral density is a singular value resulting from the decomposition performed over a range of frequencies. The complex relationship between virtual and physical sources is estimated through determination of virtual source contributions to each input measurement power spectral density. The method is made more user-friendly through use of a percentage contribution color plotting technique, where different normalizations can be used to help determine the presence of sources and the strengths of their contributions. Convolution of input measurements with the estimated path impulse responses results in a set of far-field components, to which the same singular value contribution plotting technique can be applied, thus allowing dominant noise source characteristics in the far-field to also be examined. Application of the methods presented results in determination of the spectral characteristics of dominant noise sources both in the near- and far-fields from one fired test, which significantly reduces the need for extensive fired and motored testing. Finally, it is shown that the far-field noise time history of a physically altered engine can be simulated through modification of singular values and recalculation of transfer paths between input and output measurements of previously recorded data.
Source-space ICA for MEG source imaging.
Jonmohamadi, Yaqub; Jones, Richard D
2016-02-01
One of the most widely used approaches in electroencephalography/magnetoencephalography (MEG) source imaging is application of an inverse technique (such as dipole modelling or sLORETA) on the component extracted by independent component analysis (ICA) (sensor-space ICA + inverse technique). The advantage of this approach over an inverse technique alone is that it can identify and localize multiple concurrent sources. Among inverse techniques, the minimum-variance beamformers offer a high spatial resolution. However, in order to have both high spatial resolution of beamformer and be able to take on multiple concurrent sources, sensor-space ICA + beamformer is not an ideal combination. We propose source-space ICA for MEG as a powerful alternative approach which can provide the high spatial resolution of the beamformer and handle multiple concurrent sources. The concept of source-space ICA for MEG is to apply the beamformer first and then singular value decomposition + ICA. In this paper we have compared source-space ICA with sensor-space ICA both in simulation and real MEG. The simulations included two challenging scenarios of correlated/concurrent cluster sources. Source-space ICA provided superior performance in spatial reconstruction of source maps, even though both techniques performed equally from a temporal perspective. Real MEG from two healthy subjects with visual stimuli were also used to compare performance of sensor-space ICA and source-space ICA. We have also proposed a new variant of minimum-variance beamformer called weight-normalized linearly-constrained minimum-variance with orthonormal lead-field. As sensor-space ICA-based source reconstruction is popular in EEG and MEG imaging, and given that source-space ICA has superior spatial performance, it is expected that source-space ICA will supersede its predecessor in many applications.
Through-wall image enhancement using fuzzy and QR decomposition.
Riaz, Muhammad Mohsin; Ghafoor, Abdul
2014-01-01
QR decomposition and fuzzy logic based scheme is proposed for through-wall image enhancement. QR decomposition is less complex compared to singular value decomposition. Fuzzy inference engine assigns weights to different overlapping subspaces. Quantitative measures and visual inspection are used to analyze existing and proposed techniques.
Using dynamic mode decomposition for real-time background/foreground separation in video
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutz, Jose Nathan; Grosek, Jacob; Brunton, Steven
The technique of dynamic mode decomposition (DMD) is disclosed herein for the purpose of robustly separating video frames into background (low-rank) and foreground (sparse) components in real-time. Foreground/background separation is achieved at the computational cost of just one singular value decomposition (SVD) and one linear equation solve, thus producing results orders of magnitude faster than robust principal component analysis (RPCA). Additional techniques, including techniques for analyzing the video for multi-resolution time-scale components, and techniques for reusing computations to allow processing of streaming video in real time, are also described herein.
A trade-off solution between model resolution and covariance in surface-wave inversion
Xia, J.; Xu, Y.; Miller, R.D.; Zeng, C.
2010-01-01
Regularization is necessary for inversion of ill-posed geophysical problems. Appraisal of inverse models is essential for meaningful interpretation of these models. Because uncertainties are associated with regularization parameters, extra conditions are usually required to determine proper parameters for assessing inverse models. Commonly used techniques for assessment of a geophysical inverse model derived (generally iteratively) from a linear system are based on calculating the model resolution and the model covariance matrices. Because the model resolution and the model covariance matrices of the regularized solutions are controlled by the regularization parameter, direct assessment of inverse models using only the covariance matrix may provide incorrect results. To assess an inverted model, we use the concept of a trade-off between model resolution and covariance to find a proper regularization parameter with singular values calculated in the last iteration. We plot the singular values from large to small to form a singular value plot. A proper regularization parameter is normally the first singular value that approaches zero in the plot. With this regularization parameter, we obtain a trade-off solution between model resolution and model covariance in the vicinity of a regularized solution. The unit covariance matrix can then be used to calculate error bars of the inverse model at a resolution level determined by the regularization parameter. We demonstrate this approach with both synthetic and real surface-wave data. ?? 2010 Birkh??user / Springer Basel AG.
Treatment of geometric singularities in implicit solvent models
NASA Astrophysics Data System (ADS)
Yu, Sining; Geng, Weihua; Wei, G. W.
2007-06-01
Geometric singularities, such as cusps and self-intersecting surfaces, are major obstacles to the accuracy, convergence, and stability of the numerical solution of the Poisson-Boltzmann (PB) equation. In earlier work, an interface technique based PB solver was developed using the matched interface and boundary (MIB) method, which explicitly enforces the flux jump condition at the solvent-solute interfaces and leads to highly accurate biomolecular electrostatics in continuum electric environments. However, such a PB solver, denoted as MIBPB-I, cannot maintain the designed second order convergence whenever there are geometric singularities, such as cusps and self-intersecting surfaces. Moreover, the matrix of the MIBPB-I is not optimally symmetrical, resulting in the convergence difficulty. The present work presents a new interface method based PB solver, denoted as MIBPB-II, to address the aforementioned problems. The present MIBPB-II solver is systematical and robust in treating geometric singularities and delivers second order convergence for arbitrarily complex molecular surfaces of proteins. A new procedure is introduced to make the MIBPB-II matrix optimally symmetrical and diagonally dominant. The MIBPB-II solver is extensively validated by the molecular surfaces of few-atom systems and a set of 24 proteins. Converged electrostatic potentials and solvation free energies are obtained at a coarse grid spacing of 0.5Å and are considerably more accurate than those obtained by the PBEQ and the APBS at finer grid spacings.
Pseudoinverse Decoding Process in Delay-Encoded Synthetic Transmit Aperture Imaging.
Gong, Ping; Kolios, Michael C; Xu, Yuan
2016-09-01
Recently, we proposed a new method to improve the signal-to-noise ratio of the prebeamformed radio-frequency data in synthetic transmit aperture (STA) imaging: the delay-encoded STA (DE-STA) imaging. In the decoding process of DE-STA, the equivalent STA data were obtained by directly inverting the coding matrix. This is usually regarded as an ill-posed problem, especially under high noise levels. Pseudoinverse (PI) is usually used instead for seeking a more stable inversion process. In this paper, we apply singular value decomposition to the coding matrix to conduct the PI. Our numerical studies demonstrate that the singular values of the coding matrix have a special distribution, i.e., all the values are the same except for the first and last ones. We compare the PI in two cases: complete PI (CPI), where all the singular values are kept, and truncated PI (TPI), where the last and smallest singular value is ignored. The PI (both CPI and TPI) DE-STA processes are tested against noise with both numerical simulations and experiments. The CPI and TPI can restore the signals stably, and the noise mainly affects the prebeamformed signals corresponding to the first transmit channel. The difference in the overall enveloped beamformed image qualities between the CPI and TPI is negligible. Thus, it demonstrates that DE-STA is a relatively stable encoding and decoding technique. Also, according to the special distribution of the singular values of the coding matrix, we propose a new efficient decoding formula that is based on the conjugate transpose of the coding matrix. We also compare the computational complexity of the direct inverse and the new formula.
A singularity free approach to post glacial rebound calculations
NASA Technical Reports Server (NTRS)
Fang, Ming; Hager, Bradford H.
1994-01-01
Calculating the post glacial response of a viscoelastic Earth model using the exponential decay normal mode technique leads to intrinsic singularities if viscosity varies continuously as a function of radius. We develop a numerical implementation of the Complex Real Fourier transform (CRFT) method as an accurate and stable procedure to avoid these singularities. Using CRFT, we investigate the response of a set of Maxwell Earth models to surface loading. We find that the effect of expanding a layered viscosity structure into a continuously varying structure is to destroy the modes associated with the boundary between layers. Horizontal motion is more sensitive than vertical motion to the viscosity structure just below the lithosphere. Horizontal motion is less sensitive to the viscosity of the lower mantle than the vertical motion is. When the viscosity increases at 670 km depth by a factor of about 60, the response of the lower mantle is close to its elastic limit. Any further increase of the viscosity contrast at 670 km depth or further increase of viscosity as a continuous function of depth starting from 670 km depth is unlikely to be resolved.
Raman Excitation Profile of the G-band Enhancement in Twisted Bilayer Graphene
NASA Astrophysics Data System (ADS)
Eliel, G. S. N.; Ribeiro, H. B.; Sato, K.; Saito, R.; Lu, Chun-Chieh; Chiu, Po-Wen; Fantini, C.; Righi, A.; Pimenta, M. A.
2017-12-01
A resonant Raman study of twisted bilayer graphene (TBG) samples with different twisting angles using many different laser lines in the visible range is presented. The samples were fabricated by CVD technique and transferred to Si/SiO2 substrates. The Raman excitation profiles of the huge enhancement of the G-band intensity for a group of different TBG flakes were obtained experimentally, and the analysis of the profiles using a theoretical expression for the Raman intensities allowed us to obtain the energies of the van Hove singularities generated by the Moiré patterns and the lifetimes of the excited state of the Raman process. Our results exhibit a good agreement between experimental and calculated energies for van Hove singularities and show that the lifetime of photoexcited carrier does not depend significantly on the twisting angle in the range intermediate angles ( 𝜃 between 10∘ and 15∘). We observed that the width of the resonance window (Γ ≈ 250 meV) is much larger than the REP of the Raman modes of carbon nanotubes, which are also enhanced by resonances with van Hove singularities.
NASA Astrophysics Data System (ADS)
Vatankhah, Saeed; Renaut, Rosemary A.; Ardestani, Vahid E.
2018-04-01
We present a fast algorithm for the total variation regularization of the 3-D gravity inverse problem. Through imposition of the total variation regularization, subsurface structures presenting with sharp discontinuities are preserved better than when using a conventional minimum-structure inversion. The associated problem formulation for the regularization is nonlinear but can be solved using an iteratively reweighted least-squares algorithm. For small-scale problems the regularized least-squares problem at each iteration can be solved using the generalized singular value decomposition. This is not feasible for large-scale, or even moderate-scale, problems. Instead we introduce the use of a randomized generalized singular value decomposition in order to reduce the dimensions of the problem and provide an effective and efficient solution technique. For further efficiency an alternating direction algorithm is used to implement the total variation weighting operator within the iteratively reweighted least-squares algorithm. Presented results for synthetic examples demonstrate that the novel randomized decomposition provides good accuracy for reduced computational and memory demands as compared to use of classical approaches.
Integrating the Gradient of the Thin Wire Kernel
NASA Technical Reports Server (NTRS)
Champagne, Nathan J.; Wilton, Donald R.
2008-01-01
A formulation for integrating the gradient of the thin wire kernel is presented. This approach employs a new expression for the gradient of the thin wire kernel derived from a recent technique for numerically evaluating the exact thin wire kernel. This approach should provide essentially arbitrary accuracy and may be used with higher-order elements and basis functions using the procedure described in [4].When the source and observation points are close, the potential integrals over wire segments involving the wire kernel are split into parts to handle the singular behavior of the integrand [1]. The singularity characteristics of the gradient of the wire kernel are different than those of the wire kernel, and the axial and radial components have different singularities. The characteristics of the gradient of the wire kernel are discussed in [2]. To evaluate the near electric and magnetic fields of a wire, the integration of the gradient of the wire kernel needs to be calculated over the source wire. Since the vector bases for current have constant direction on linear wire segments, these integrals reduce to integrals of the form
Singularity in the positive Hall coeffcient near pre-onset temperatures in high-Tc superconductors
NASA Astrophysics Data System (ADS)
Vezzoli, G. C.; Chen, M. F.; Craver, F.; Moon, B. M.; Safari, A.; Burke, T.; Stanley, W.
1990-10-01
Hall measurements using continuous extremely slow cooling and reheating rates as well as employing eqiulibrium point-by-point conventional techniques reveals a clear anomally in RH at pre-onset temperatures near Tc in polycrystalline samples Y1Ba2Cu3O7 and Bi2Sr2Ca2Cu3O10. The anomaly has the appearance of a singularity of Dirac-delta function which parallels earlier work on La1-xSrxCuO4. Recent single crystal work on the Bi-containing high-Tc superconductor is in accord with a clearcut anomaly. The singularity is tentatively interpreted to be associated (upon cooling) with initially the removal of positive holes from the hopping conduction system of the normal state such as from the increased concentration of bound virtual excitons due to increased exciton and hole lifetimes at low temperature. Subsequently the formation of Cooper pairs by mediation from these centers (bound-holes) and/or bound excitons) may cause an ionization of these bound virtual excitons thereby re-introducing holes and electrons into the conduction system at Tc.
SU-G-JeP4-03: Anomaly Detection of Respiratory Motion by Use of Singular Spectrum Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotoku, J; Kumagai, S; Nakabayashi, S
Purpose: The implementation and realization of automatic anomaly detection of respiratory motion is a very important technique to prevent accidental damage during radiation therapy. Here, we propose an automatic anomaly detection method using singular value decomposition analysis. Methods: The anomaly detection procedure consists of four parts:1) measurement of normal respiratory motion data of a patient2) calculation of a trajectory matrix representing normal time-series feature3) real-time monitoring and calculation of a trajectory matrix of real-time data.4) calculation of an anomaly score from the similarity of the two feature matrices. Patient motion was observed by a marker-less tracking system using a depthmore » camera. Results: Two types of motion e.g. cough and sudden stop of breathing were successfully detected in our real-time application. Conclusion: Automatic anomaly detection of respiratory motion using singular spectrum analysis was successful in the cough and sudden stop of breathing. The clinical use of this algorithm will be very hopeful. This work was supported by JSPS KAKENHI Grant Number 15K08703.« less
Digital enhancement of computerized axial tomograms
NASA Technical Reports Server (NTRS)
Roberts, E., Jr.
1978-01-01
A systematic evaluation has been conducted of certain digital image enhancement techniques performed in image space. Three types of images have been used, computer generated phantoms, tomograms of a synthetic phantom, and axial tomograms of human anatomy containing images of lesions, artificially introduced into the tomograms. Several types of smoothing, sharpening, and histogram modification have been explored. It has been concluded that the most useful enhancement techniques are a selective smoothing of singular picture elements, combined with contrast manipulation. The most useful tool in applying these techniques is the gray-scale histogram.
Connection between optimal control theory and adiabatic-passage techniques in quantum systems
NASA Astrophysics Data System (ADS)
Assémat, E.; Sugny, D.
2012-08-01
This work explores the relationship between optimal control theory and adiabatic passage techniques in quantum systems. The study is based on a geometric analysis of the Hamiltonian dynamics constructed from Pontryagin's maximum principle. In a three-level quantum system, we show that the stimulated Raman adiabatic passage technique can be associated to a peculiar Hamiltonian singularity. One deduces that the adiabatic pulse is solution of the optimal control problem only for a specific cost functional. This analysis is extended to the case of a four-level quantum system.
3D Boolean operations in virtual surgical planning.
Charton, Jerome; Laurentjoye, Mathieu; Kim, Youngjun
2017-10-01
Boolean operations in computer-aided design or computer graphics are a set of operations (e.g. intersection, union, subtraction) between two objects (e.g. a patient model and an implant model) that are important in performing accurate and reproducible virtual surgical planning. This requires accurate and robust techniques that can handle various types of data, such as a surface extracted from volumetric data, synthetic models, and 3D scan data. This article compares the performance of the proposed method (Boolean operations by a robust, exact, and simple method between two colliding shells (BORES)) and an existing method based on the Visualization Toolkit (VTK). In all tests presented in this article, BORES could handle complex configurations as well as report impossible configurations of the input. In contrast, the VTK implementations were unstable, do not deal with singular edges and coplanar collisions, and have created several defects. The proposed method of Boolean operations, BORES, is efficient and appropriate for virtual surgical planning. Moreover, it is simple and easy to implement. In future work, we will extend the proposed method to handle non-colliding components.
A new classification scheme of plastic wastes based upon recycling labels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Özkan, Kemal, E-mail: kozkan@ogu.edu.tr; Ergin, Semih, E-mail: sergin@ogu.edu.tr; Işık, Şahin, E-mail: sahini@ogu.edu.tr
Highlights: • PET, HPDE or PP types of plastics are considered. • An automated classification of plastic bottles based on the feature extraction and classification methods is performed. • The decision mechanism consists of PCA, Kernel PCA, FLDA, SVD and Laplacian Eigenmaps methods. • SVM is selected to achieve the classification task and majority voting technique is used. - Abstract: Since recycling of materials is widely assumed to be environmentally and economically beneficial, reliable sorting and processing of waste packaging materials such as plastics is very important for recycling with high efficiency. An automated system that can quickly categorize thesemore » materials is certainly needed for obtaining maximum classification while maintaining high throughput. In this paper, first of all, the photographs of the plastic bottles have been taken and several preprocessing steps were carried out. The first preprocessing step is to extract the plastic area of a bottle from the background. Then, the morphological image operations are implemented. These operations are edge detection, noise removal, hole removing, image enhancement, and image segmentation. These morphological operations can be generally defined in terms of the combinations of erosion and dilation. The effect of bottle color as well as label are eliminated using these operations. Secondly, the pixel-wise intensity values of the plastic bottle images have been used together with the most popular subspace and statistical feature extraction methods to construct the feature vectors in this study. Only three types of plastics are considered due to higher existence ratio of them than the other plastic types in the world. The decision mechanism consists of five different feature extraction methods including as Principal Component Analysis (PCA), Kernel PCA (KPCA), Fisher’s Linear Discriminant Analysis (FLDA), Singular Value Decomposition (SVD) and Laplacian Eigenmaps (LEMAP) and uses a simple experimental setup with a camera and homogenous backlighting. Due to the giving global solution for a classification problem, Support Vector Machine (SVM) is selected to achieve the classification task and majority voting technique is used as the decision mechanism. This technique equally weights each classification result and assigns the given plastic object to the class that the most classification results agree on. The proposed classification scheme provides high accuracy rate, and also it is able to run in real-time applications. It can automatically classify the plastic bottle types with approximately 90% recognition accuracy. Besides this, the proposed methodology yields approximately 96% classification rate for the separation of PET or non-PET plastic types. It also gives 92% accuracy for the categorization of non-PET plastic types into HPDE or PP.« less
Evaluation of constraint stabilization procedures for multibody dynamical systems
NASA Technical Reports Server (NTRS)
Park, K. C.; Chiou, J. C.
1987-01-01
Comparative numerical studies of four constraint treatment techniques for the simulation of general multibody dynamic systems are presented, and results are presented for the example of a classical crank mechanism and for a simplified version of the seven-link manipulator deployment problem. The staggered stabilization technique (Park, 1986) is found to yield improved accuracy and robustness over Baumgarte's (1972) technique, the singular decomposition technique (Walton and Steeves, 1969), and the penalty technique (Lotstedt, 1979). Furthermore, the staggered stabilization technique offers software modularity, and the only data each solution module needs to exchange with the other is a set of vectors plus a common module to generate the gradient matrix of the constraints, B.
Improvements in surface singularity analysis and design methods. [applicable to airfoils
NASA Technical Reports Server (NTRS)
Bristow, D. R.
1979-01-01
The coupling of the combined source vortex distribution of Green's potential flow function with contemporary numerical techniques is shown to provide accurate, efficient, and stable solutions to subsonic inviscid analysis and design problems for multi-element airfoils. The analysis problem is solved by direct calculation of the surface singularity distribution required to satisfy the flow tangency boundary condition. The design or inverse problem is solved by an iteration process. In this process, the geometry and the associated pressure distribution are iterated until the pressure distribution most nearly corresponding to the prescribed design distribution is obtained. Typically, five iteration cycles are required for convergence. A description of the analysis and design method is presented, along with supporting examples.
The numerical calculation of laminar boundary-layer separation
NASA Technical Reports Server (NTRS)
Klineberg, J. M.; Steger, J. L.
1974-01-01
Iterative finite-difference techniques are developed for integrating the boundary-layer equations, without approximation, through a region of reversed flow. The numerical procedures are used to calculate incompressible laminar separated flows and to investigate the conditions for regular behavior at the point of separation. Regular flows are shown to be characterized by an integrable saddle-type singularity that makes it difficult to obtain numerical solutions which pass continuously into the separated region. The singularity is removed and continuous solutions ensured by specifying the wall shear distribution and computing the pressure gradient as part of the solution. Calculated results are presented for several separated flows and the accuracy of the method is verified. A computer program listing and complete solution case are included.
Locating an atmospheric contamination source using slow manifolds
NASA Astrophysics Data System (ADS)
Tang, Wenbo; Haller, George; Baik, Jong-Jin; Ryu, Young-Hee
2009-04-01
Finite-size particle motion in fluids obeys the Maxey-Riley equations, which become singular in the limit of infinitesimally small particle size. Because of this singularity, finding the source of a dispersed set of small particles is a numerically ill-posed problem that leads to exponential blowup. Here we use recent results on the existence of a slow manifold in the Maxey-Riley equations to overcome this difficulty in source inversion. Specifically, we locate the source of particles by projecting their dispersed positions on a time-varying slow manifold, and by advecting them on the manifold in backward time. We use this technique to locate the source of a hypothetical anthrax release in an unsteady three-dimensional atmospheric wind field in an urban street canyon.
Resonances in Coupled π K - η K Scattering from Quantum Chromodynamics
Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.; ...
2014-10-01
Using first-principles calculation within Quantum Chromodynamics, we are able to reproduce the pattern of experimental strange resonances which appear as complex singularities within coupled πK, ηK scattering amplitudes. We make use of numerical computation within the lattice discretized approach to QCD, extracting the energy dependence of scattering amplitudes through their relation- ship to the discrete spectrum of the theory in a finite-volume, which we map out in unprecedented detail.
Effect of heavy doping on the optical spectra of silicon
NASA Astrophysics Data System (ADS)
Chen, Chen-jia; A, Borghesi; G, Guizzetti; L, Nosenzo; E, Reguzzoni; A, Stella
1985-07-01
In this paper reflectance (R) and thermoreflectance (TR) spectra in heavily doped silicon concerning both interband and intraband transitions are reported and discussed. The heavily doped sample shows a red-shift and lifetime broadening in the two singularities E1(similar 3.4eV) and E2(similar 4.5eV). The values of the scattering time τ extracted from the reflectivity fit are obtained and compared with those obtained from Hall mobility measurements.
Lv, Yong; Song, Gangbing
2018-01-01
Rolling bearings are important components in rotary machinery systems. In the field of multi-fault diagnosis of rolling bearings, the vibration signal collected from single channels tends to miss some fault characteristic information. Using multiple sensors to collect signals at different locations on the machine to obtain multivariate signal can remedy this problem. The adverse effect of a power imbalance between the various channels is inevitable, and unfavorable for multivariate signal processing. As a useful, multivariate signal processing method, Adaptive-projection has intrinsically transformed multivariate empirical mode decomposition (APIT-MEMD), and exhibits better performance than MEMD by adopting adaptive projection strategy in order to alleviate power imbalances. The filter bank properties of APIT-MEMD are also adopted to enable more accurate and stable intrinsic mode functions (IMFs), and to ease mode mixing problems in multi-fault frequency extractions. By aligning IMF sets into a third order tensor, high order singular value decomposition (HOSVD) can be employed to estimate the fault number. The fault correlation factor (FCF) analysis is used to conduct correlation analysis, in order to determine effective IMFs; the characteristic frequencies of multi-faults can then be extracted. Numerical simulations and the application of multi-fault situation can demonstrate that the proposed method is promising in multi-fault diagnoses of multivariate rolling bearing signal. PMID:29659510
Yuan, Rui; Lv, Yong; Song, Gangbing
2018-04-16
Rolling bearings are important components in rotary machinery systems. In the field of multi-fault diagnosis of rolling bearings, the vibration signal collected from single channels tends to miss some fault characteristic information. Using multiple sensors to collect signals at different locations on the machine to obtain multivariate signal can remedy this problem. The adverse effect of a power imbalance between the various channels is inevitable, and unfavorable for multivariate signal processing. As a useful, multivariate signal processing method, Adaptive-projection has intrinsically transformed multivariate empirical mode decomposition (APIT-MEMD), and exhibits better performance than MEMD by adopting adaptive projection strategy in order to alleviate power imbalances. The filter bank properties of APIT-MEMD are also adopted to enable more accurate and stable intrinsic mode functions (IMFs), and to ease mode mixing problems in multi-fault frequency extractions. By aligning IMF sets into a third order tensor, high order singular value decomposition (HOSVD) can be employed to estimate the fault number. The fault correlation factor (FCF) analysis is used to conduct correlation analysis, in order to determine effective IMFs; the characteristic frequencies of multi-faults can then be extracted. Numerical simulations and the application of multi-fault situation can demonstrate that the proposed method is promising in multi-fault diagnoses of multivariate rolling bearing signal.
Methods, Software and Tools for Three Numerical Applications. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. R. Jessup
2000-03-01
This is a report of the results of the authors work supported by DOE contract DE-FG03-97ER25325. They proposed to study three numerical problems. They are: (1) the extension of the PMESC parallel programming library; (2) the development of algorithms and software for certain generalized eigenvalue and singular value (SVD) problems, and (3) the application of techniques of linear algebra to an information retrieval technique known as latent semantic indexing (LSI).
Asymptotic-induced numerical methods for conservation laws
NASA Technical Reports Server (NTRS)
Garbey, Marc; Scroggs, Jeffrey S.
1990-01-01
Asymptotic-induced methods are presented for the numerical solution of hyperbolic conservation laws with or without viscosity. The methods consist of multiple stages. The first stage is to obtain a first approximation by using a first-order method, such as the Godunov scheme. Subsequent stages of the method involve solving internal-layer problems identified by using techniques derived via asymptotics. Finally, a residual correction increases the accuracy of the scheme. The method is derived and justified with singular perturbation techniques.
Coppi, B.; Basu, B.; Fletcher, A.
2017-05-31
In the context of a two-fluid theory of magnetic reconnection, when the longitudinal electron thermal conductivity is relatively large, the perturbed electron temperature tends to become singular in the presence of a reconnected field component and an electron temperature gradient. A finite transverse thermal diffusivity removes this singularity while a finite ‘inductivity’ can remove the singularity of the relevant plasma displacement. Then (i) a new ‘magneto-thermal’ reconnection producing mode, is found with characteristic widths of the reconnection layer remaining significant even when the macroscopic distances involved are very large; (ii) the mode phase velocities can be both in the directionmore » of the electron diamagnetic velocity as well in the opposite (ion) direction. A numerical solution of the complete set of equations has been carried out with a simplified analytical reformulation of the problem. A sequence of processes is analyzed to point out that high-energy particle populations can be produced as a result of reconnection events. These processes involve mode-particle resonances transferring energy of the reconnecting mode to a superthermal ion population and the excitation of lower hybrid waves that can lead to a significant superthermal electron population. The same modes excited in axisymmetric (e.g. toroidal) confinement configurations can extract angular momentum from the main body of the plasma column and thereby sustain a local ‘spontaneous rotation’ of it.« less
The Semantics of Plurals: A Defense of Singularism
ERIC Educational Resources Information Center
Florio, Salvatore
2010-01-01
In this dissertation, I defend "semantic singularism", which is the view that syntactically plural terms, such as "they" or "Russell and Whitehead", are semantically singular. A semantically singular term is a term that denotes a single entity. Semantic singularism is to be distinguished from "syntactic singularism", according to which…
Detecting and interpreting distortions in hierarchical organization of complex time series
NASA Astrophysics Data System (ADS)
DroŻdŻ, Stanisław; OświÈ©cimka, Paweł
2015-03-01
Hierarchical organization is a cornerstone of complexity and multifractality constitutes its central quantifying concept. For model uniform cascades the corresponding singularity spectra are symmetric while those extracted from empirical data are often asymmetric. Using selected time series representing such diverse phenomena as price changes and intertransaction times in financial markets, sentence length variability in narrative texts, Missouri River discharge, and sunspot number variability as examples, we show that the resulting singularity spectra appear strongly asymmetric, more often left sided but in some cases also right sided. We present a unified view on the origin of such effects and indicate that they may be crucially informative for identifying the composition of the time series. One particularly intriguing case of this latter kind of asymmetry is detected in the daily reported sunspot number variability. This signals that either the commonly used famous Wolf formula distorts the real dynamics in expressing the largest sunspot numbers or, if not, that their dynamics is governed by a somewhat different mechanism.
Multilayer neural networks for reduced-rank approximation.
Diamantaras, K I; Kung, S Y
1994-01-01
This paper is developed in two parts. First, the authors formulate the solution to the general reduced-rank linear approximation problem relaxing the invertibility assumption of the input autocorrelation matrix used by previous authors. The authors' treatment unifies linear regression, Wiener filtering, full rank approximation, auto-association networks, SVD and principal component analysis (PCA) as special cases. The authors' analysis also shows that two-layer linear neural networks with reduced number of hidden units, trained with the least-squares error criterion, produce weights that correspond to the generalized singular value decomposition of the input-teacher cross-correlation matrix and the input data matrix. As a corollary the linear two-layer backpropagation model with reduced hidden layer extracts an arbitrary linear combination of the generalized singular vector components. Second, the authors investigate artificial neural network models for the solution of the related generalized eigenvalue problem. By introducing and utilizing the extended concept of deflation (originally proposed for the standard eigenvalue problem) the authors are able to find that a sequential version of linear BP can extract the exact generalized eigenvector components. The advantage of this approach is that it's easier to update the model structure by adding one more unit or pruning one or more units when the application requires it. An alternative approach for extracting the exact components is to use a set of lateral connections among the hidden units trained in such a way as to enforce orthogonality among the upper- and lower-layer weights. The authors call this the lateral orthogonalization network (LON) and show via theoretical analysis-and verify via simulation-that the network extracts the desired components. The advantage of the LON-based model is that it can be applied in a parallel fashion so that the components are extracted concurrently. Finally, the authors show the application of their results to the solution of the identification problem of systems whose excitation has a non-invertible autocorrelation matrix. Previous identification methods usually rely on the invertibility assumption of the input autocorrelation, therefore they can not be applied to this case.
A novel approach to automatic threat detection in MMW imagery of people scanned in portals
NASA Astrophysics Data System (ADS)
Vaidya, Nitin M.; Williams, Thomas
2008-04-01
We have developed a novel approach to performing automatic detection of concealed threat objects in passive MMW imagery of people scanned in a portal setting. It is applicable to the significant class of imaging scanners that use the protocol of having the subject rotate in front of the camera in order to image them from several closely spaced directions. Customary methods of dealing with MMW sequences rely on the analysis of the spatial images in a frame-by-frame manner, with information extracted from separate frames combined by some subsequent technique of data association and tracking over time. We contend that the pooling of information over time in traditional methods is not as direct as can be and potentially less efficient in distinguishing threats from clutter. We have formulated a more direct approach to extracting information about the scene as it evolves over time. We propose an atypical spatio-temporal arrangement of the MMW image data - to which we give the descriptive name Row Evolution Image (REI) sequence. This representation exploits the singular aspect of having the subject rotate in front of the camera. We point out which features in REIs are most relevant to detecting threats, and describe the algorithms we have developed to extract them. We demonstrate results of successful automatic detection of threats, including ones whose faint image contrast renders their disambiguation from clutter very challenging. We highlight the ease afforded by the REI approach in permitting specialization of the detection algorithms to different parts of the subject body. Finally, we describe the execution efficiency advantages of our approach, given its natural fit to parallel processing. mage
Passive forensics for copy-move image forgery using a method based on DCT and SVD.
Zhao, Jie; Guo, Jichang
2013-12-10
As powerful image editing tools are widely used, the demand for identifying the authenticity of an image is much increased. Copy-move forgery is one of the tampering techniques which are frequently used. Most existing techniques to expose this forgery need to improve the robustness for common post-processing operations and fail to precisely locate the tampering region especially when there are large similar or flat regions in the image. In this paper, a robust method based on DCT and SVD is proposed to detect this specific artifact. Firstly, the suspicious image is divided into fixed-size overlapping blocks and 2D-DCT is applied to each block, then the DCT coefficients are quantized by a quantization matrix to obtain a more robust representation of each block. Secondly, each quantized block is divided non-overlapping sub-blocks and SVD is applied to each sub-block, then features are extracted to reduce the dimension of each block using its largest singular value. Finally, the feature vectors are lexicographically sorted, and duplicated image blocks will be matched by predefined shift frequency threshold. Experiment results demonstrate that our proposed method can effectively detect multiple copy-move forgery and precisely locate the duplicated regions, even when an image was distorted by Gaussian blurring, AWGN, JPEG compression and their mixed operations. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Linear signatures in nonlinear gyrokinetics: interpreting turbulence with pseudospectra
Hatch, D. R.; Jenko, F.; Navarro, A. Banon; ...
2016-07-26
A notable feature of plasma turbulence is its propensity to retain features of the underlying linear eigenmodes in a strongly turbulent state—a property that can be exploited to predict various aspects of the turbulence using only linear information. In this context, this work examines gradient-driven gyrokinetic plasma turbulence through three lenses—linear eigenvalue spectra, pseudospectra, and singular value decomposition (SVD). We study a reduced gyrokinetic model whose linear eigenvalue spectra include ion temperature gradient driven modes, stable drift waves, and kinetic modes representing Landau damping. The goal is to characterize in which ways, if any, these familiar ingredients are manifest inmore » the nonlinear turbulent state. This pursuit is aided by the use of pseudospectra, which provide a more nuanced view of the linear operator by characterizing its response to perturbations. We introduce a new technique whereby the nonlinearly evolved phase space structures extracted with SVD are linked to the linear operator using concepts motivated by pseudospectra. Using this technique, we identify nonlinear structures that have connections to not only the most unstable eigenmode but also subdominant modes that are nonlinearly excited. The general picture that emerges is a system in which signatures of the linear physics persist in the turbulence, albeit in ways that cannot be fully explained by the linear eigenvalue approach; a non-modal treatment is necessary to understand key features of the turbulence.« less
Data Mining in Earth System Science (DMESS 2011)
Forrest M. Hoffman; J. Walter Larson; Richard Tran Mills; Bhorn-Gustaf Brooks; Auroop R. Ganguly; William Hargrove; et al
2011-01-01
From field-scale measurements to global climate simulations and remote sensing, the growing body of very large and long time series Earth science data are increasingly difficult to analyze, visualize, and interpret. Data mining, information theoretic, and machine learning techniquesâsuch as cluster analysis, singular value decomposition, block entropy, Fourier and...
Solving Discipline Problems: Strategies for Classroom Teachers.
ERIC Educational Resources Information Center
Wolfgang, Charles H.; Glickman, Carl D.
This book provides classroom teachers with a variety of discipline models, techniques, methods, and constructs designed to enable them to move beyond a singular approach in handling classroom behavior problems. The book first discusses the Teacher Behavior Continuum (TBC) which shows the teacher the context of his or her own general behavior with…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ndong, Mamadou; Lauvergnat, David; Nauts, André
2013-11-28
We present new techniques for an automatic computation of the kinetic energy operator in analytical form. These techniques are based on the use of the polyspherical approach and are extended to take into account Cartesian coordinates as well. An automatic procedure is developed where analytical expressions are obtained by symbolic calculations. This procedure is a full generalization of the one presented in Ndong et al., [J. Chem. Phys. 136, 034107 (2012)]. The correctness of the new implementation is analyzed by comparison with results obtained from the TNUM program. We give several illustrations that could be useful for users of themore » code. In particular, we discuss some cyclic compounds which are important in photochemistry. Among others, we show that choosing a well-adapted parameterization and decomposition into subsystems can allow one to avoid singularities in the kinetic energy operator. We also discuss a relation between polyspherical and Z-matrix coordinates: this comparison could be helpful for building an interface between the new code and a quantum chemistry package.« less
Bisquert, Juan; Henn, François; Giuntini, Jean-Charles
2005-03-01
Strong changes in relaxation rates observed at the glass transition region are frequently explained in terms of a physical singularity of the molecular motions. We show that the unexpected trends and values for activation energy and preexponential factor of the relaxation time tau, obtained at the glass transition from the analysis of the thermally stimulated current signal, result from the use of the Arrhenius law for treating the experimental data obtained in nonstationary experimental conditions. We then demonstrate that a simple model of structural relaxation based on a time dependent configurational entropy and Adam-Gibbs relaxation time is sufficient to explain the experimental behavior, without invoking a kinetic singularity at the glass transition region. The pronounced variation of the effective activation energy appears as a dynamic signature of entropy relaxation that governs the change of relaxation time in nonstationary conditions. A connection is demonstrated between the peak of apparent activation energy measured in nonequilibrium dielectric techniques, with the overshoot of the dynamic specific heat that is obtained in calorimetry techniques.
An improved pulse sequence and inversion algorithm of T2 spectrum
NASA Astrophysics Data System (ADS)
Ge, Xinmin; Chen, Hua; Fan, Yiren; Liu, Juntao; Cai, Jianchao; Liu, Jianyu
2017-03-01
The nuclear magnetic resonance transversal relaxation time is widely applied in geological prospecting, both in laboratory and downhole environments. However, current methods used for data acquisition and inversion should be reformed to characterize geological samples with complicated relaxation components and pore size distributions, such as samples of tight oil, gas shale, and carbonate. We present an improved pulse sequence to collect transversal relaxation signals based on the CPMG (Carr, Purcell, Meiboom, and Gill) pulse sequence. The echo spacing is not constant but varies in different windows, depending on prior knowledge or customer requirements. We use the entropy based truncated singular value decomposition (TSVD) to compress the ill-posed matrix and discard small singular values which cause the inversion instability. A hybrid algorithm combining the iterative TSVD and a simultaneous iterative reconstruction technique is implemented to reach the global convergence and stability of the inversion. Numerical simulations indicate that the improved pulse sequence leads to the same result as CPMG, but with lower echo numbers and computational time. The proposed method is a promising technique for geophysical prospecting and other related fields in future.
Hypersonic vehicle control law development using H infinity and mu-synthesis
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.
1992-01-01
Applicability and effectiveness of robust control techniques to a single-stage-to-orbit (SSTO) airbreathing hypersonic vehicle on an ascent accelerating path and their effectiveness are explored in this paper. An SSTO control system design problem, requiring high accuracy tracking of velocity and altitude commands while limiting angle of attack oscillations, minimizing control power usage and stabilizing the vehicle all in the presence of atmospheric turbulence and uncertainty in the system, was formulated to compare results of the control designs using H infinity and mu-synthesis procedures. The math model, an integrated flight/propulsion dynamic model of a conical accelerator class vehicle, was linearized as the vehicle accelerated through Mach 8. Controller analysis was conducted using the singular value technique and the mu-analysis approach. Analysis results were obtained in both the frequency and the time domains. The results clearly demonstrate the inherent advantages of the structured singular value framework for this class of problems. Since payload performance margins are so critical for the SSTO mission, it is crucial that adequate stability margins be provided without sacrificing any payload mass.
Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems.
Chen, Mou; Wu, Qing-Xian; Cui, Rong-Xin
2013-03-01
In this paper, the terminal sliding mode tracking control is proposed for the uncertain single-input and single-output (SISO) nonlinear system with unknown external disturbance. For the unmeasured disturbance of nonlinear systems, terminal sliding mode disturbance observer is presented. The developed disturbance observer can guarantee the disturbance approximation error to converge to zero in the finite time. Based on the output of designed disturbance observer, the terminal sliding mode tracking control is presented for uncertain SISO nonlinear systems. Subsequently, terminal sliding mode tracking control is developed using disturbance observer technique for the uncertain SISO nonlinear system with control singularity and unknown non-symmetric input saturation. The effects of the control singularity and unknown input saturation are combined with the external disturbance which is approximated using the disturbance observer. Under the proposed terminal sliding mode tracking control techniques, the finite time convergence of all closed-loop signals are guaranteed via Lyapunov analysis. Numerical simulation results are given to illustrate the effectiveness of the proposed terminal sliding mode tracking control. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Finite-size scaling and integer-spin Heisenberg chains
NASA Astrophysics Data System (ADS)
Bonner, Jill C.; Müller, Gerhard
1984-03-01
Finite-size scaling (phenomenological renormalization) techniques are trusted and widely applied in low-dimensional magnetism and, particularly, in lattice gauge field theory. Recently, investigations have begun which subject the theoretical basis to systematic and intensive scrutiny to determine the validity of finite-size scaling in a variety of situations. The 2D ANNNI model is an example of a situation where finite-size scaling methods encounter difficulty, related to the occurrence of a disorder line (one-dimensional line). A second example concerns the behavior of the spin-1/2 antiferromagnetic XXZ model where the T=0 critical behavior is exactly known and features an essential singularity at the isotropic Heisenberg point. Standard finite-size scaling techniques do not convincingly reproduce the exact phase behavior and this is attributable to the essential singularity. The point is relevant in connection with a finite-size scaling analysis of a spin-one antiferromagnetic XXZ model, which claims to support a conjecture by Haldane that the T=0 phase behavior of integer-spin Heisenberg chains is significantly different from that of half-integer-spin Heisenberg chains.
Singularities in Optimal Structural Design
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Guptill, J. D.; Berke, L.
1992-01-01
Singularity conditions that arise during structural optimization can seriously degrade the performance of the optimizer. The singularities are intrinsic to the formulation of the structural optimization problem and are not associated with the method of analysis. Certain conditions that give rise to singularities have been identified in earlier papers, encompassing the entire structure. Further examination revealed more complex sets of conditions in which singularities occur. Some of these singularities are local in nature, being associated with only a segment of the structure. Moreover, the likelihood that one of these local singularities may arise during an optimization procedure can be much greater than that of the global singularity identified earlier. Examples are provided of these additional forms of singularities. A framework is also given in which these singularities can be recognized. In particular, the singularities can be identified by examination of the stress displacement relations along with the compatibility conditions and/or the displacement stress relations derived in the integrated force method of structural analysis.
Singularities in optimal structural design
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Guptill, J. D.; Berke, L.
1992-01-01
Singularity conditions that arise during structural optimization can seriously degrade the performance of the optimizer. The singularities are intrinsic to the formulation of the structural optimization problem and are not associated with the method of analysis. Certain conditions that give rise to singularities have been identified in earlier papers, encompassing the entire structure. Further examination revealed more complex sets of conditions in which singularities occur. Some of these singularities are local in nature, being associated with only a segment of the structure. Moreover, the likelihood that one of these local singularities may arise during an optimization procedure can be much greater than that of the global singularity identified earlier. Examples are provided of these additional forms of singularities. A framework is also given in which these singularities can be recognized. In particular, the singularities can be identified by examination of the stress displacement relations along with the compatibility conditions and/or the displacement stress relations derived in the integrated force method of structural analysis.
Naked singularity resolution in cylindrical collapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurita, Yasunari; Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502; Nakao, Ken-ichi
In this paper, we study the gravitational collapse of null dust in cylindrically symmetric spacetime. The naked singularity necessarily forms at the symmetry axis. We consider the situation in which null dust is emitted again from the naked singularity formed by the collapsed null dust and investigate the backreaction by this emission for the naked singularity. We show a very peculiar but physically important case in which the same amount of null dust as that of the collapsed one is emitted from the naked singularity as soon as the ingoing null dust hits the symmetry axis and forms the nakedmore » singularity. In this case, although this naked singularity satisfies the strong curvature condition by Krolak (limiting focusing condition), geodesics which hit the singularity can be extended uniquely across the singularity. Therefore, we may say that the collapsing null dust passes through the singularity formed by itself and then leaves for infinity. Finally, the singularity completely disappears and the flat spacetime remains.« less
Robust Stability Analysis of the Space Launch System Control Design: A Singular Value Approach
NASA Technical Reports Server (NTRS)
Pei, Jing; Newsome, Jerry R.
2015-01-01
Classical stability analysis consists of breaking the feedback loops one at a time and determining separately how much gain or phase variations would destabilize the stable nominal feedback system. For typical launch vehicle control design, classical control techniques are generally employed. In addition to stability margins, frequency domain Monte Carlo methods are used to evaluate the robustness of the design. However, such techniques were developed for Single-Input-Single-Output (SISO) systems and do not take into consideration the off-diagonal terms in the transfer function matrix of Multi-Input-Multi-Output (MIMO) systems. Robust stability analysis techniques such as H(sub infinity) and mu are applicable to MIMO systems but have not been adopted as standard practices within the launch vehicle controls community. This paper took advantage of a simple singular-value-based MIMO stability margin evaluation method based on work done by Mukhopadhyay and Newsom and applied it to the SLS high-fidelity dynamics model. The method computes a simultaneous multi-loop gain and phase margin that could be related back to classical margins. The results presented in this paper suggest that for the SLS system, traditional SISO stability margins are similar to the MIMO margins. This additional level of verification provides confidence in the robustness of the control design.
Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves
Xia, J.; Miller, R.D.; Park, C.B.
1999-01-01
The shear-wave (S-wave) velocity of near-surface materials (soil, rocks, pavement) and its effect on seismic-wave propagation are of fundamental interest in many groundwater, engineering, and environmental studies. Rayleigh-wave phase velocity of a layered-earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity, density, and thickness of layers. Analysis of the Jacobian matrix provides a measure of dispersion-curve sensitivity to earth properties. S-wave velocities are the dominant influence on a dispersion curve in a high-frequency range (>5 Hz) followed by layer thickness. An iterative solution technique to the weighted equation proved very effective in the high-frequency range when using the Levenberg-Marquardt and singular-value decomposition techniques. Convergence of the weighted solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Synthetic examples demonstrated calculation efficiency and stability of inverse procedures. We verify our method using borehole S-wave velocity measurements.Iterative solutions to the weighted equation by the Levenberg-Marquardt and singular-value decomposition techniques are derived to estimate near-surface shear-wave velocity. Synthetic and real examples demonstrate the calculation efficiency and stability of the inverse procedure. The inverse results of the real example are verified by borehole S-wave velocity measurements.
[Surface electromyography signal classification using gray system theory].
Xie, Hongbo; Ma, Congbin; Wang, Zhizhong; Huang, Hai
2004-12-01
A new method based on gray correlation was introduced to improve the identification rate in artificial limb. The electromyography (EMG) signal was first transformed into time-frequency domain by wavelet transform. Singular value decomposition (SVD) was then used to extract feature vector from the wavelet coefficient for pattern recognition. The decision was made according to the maximum gray correlation coefficient. Compared with neural network recognition, this robust method has an almost equivalent recognition rate but much lower computation costs and less training samples.
Deformations of the Almheiri-Polchinski model
NASA Astrophysics Data System (ADS)
Kyono, Hideki; Okumura, Suguru; Yoshida, Kentaroh
2017-03-01
We study deformations of the Almheiri-Polchinski (AP) model by employing the Yang-Baxter deformation technique. The general deformed AdS2 metric becomes a solution of a deformed AP model. In particular, the dilaton potential is deformed from a simple quadratic form to a hyperbolic function-type potential similarly to integrable deformations. A specific solution is a deformed black hole solution. Because the deformation makes the spacetime structure around the boundary change drastically and a new naked singularity appears, the holographic interpretation is far from trivial. The Hawking temperature is the same as the undeformed case but the Bekenstein-Hawking entropy is modified due to the deformation. This entropy can also be reproduced by evaluating the renormalized stress tensor with an appropriate counter-term on the regularized screen close to the singularity.
Fredholm-Volterra Integral Equation with a Generalized Singular Kernel and its Numerical Solutions
NASA Astrophysics Data System (ADS)
El-Kalla, I. L.; Al-Bugami, A. M.
2010-11-01
In this paper, the existence and uniqueness of solution of the Fredholm-Volterra integral equation (F-VIE), with a generalized singular kernel, are discussed and proved in the spaceL2(Ω)×C(0,T). The Fredholm integral term (FIT) is considered in position while the Volterra integral term (VIT) is considered in time. Using a numerical technique we have a system of Fredholm integral equations (SFIEs). This system of integral equations can be reduced to a linear algebraic system (LAS) of equations by using two different methods. These methods are: Toeplitz matrix method and Product Nyström method. A numerical examples are considered when the generalized kernel takes the following forms: Carleman function, logarithmic form, Cauchy kernel, and Hilbert kernel.
A multiple maximum scatter difference discriminant criterion for facial feature extraction.
Song, Fengxi; Zhang, David; Mei, Dayong; Guo, Zhongwei
2007-12-01
Maximum scatter difference (MSD) discriminant criterion was a recently presented binary discriminant criterion for pattern classification that utilizes the generalized scatter difference rather than the generalized Rayleigh quotient as a class separability measure, thereby avoiding the singularity problem when addressing small-sample-size problems. MSD classifiers based on this criterion have been quite effective on face-recognition tasks, but as they are binary classifiers, they are not as efficient on large-scale classification tasks. To address the problem, this paper generalizes the classification-oriented binary criterion to its multiple counterpart--multiple MSD (MMSD) discriminant criterion for facial feature extraction. The MMSD feature-extraction method, which is based on this novel discriminant criterion, is a new subspace-based feature-extraction method. Unlike most other subspace-based feature-extraction methods, the MMSD computes its discriminant vectors from both the range of the between-class scatter matrix and the null space of the within-class scatter matrix. The MMSD is theoretically elegant and easy to calculate. Extensive experimental studies conducted on the benchmark database, FERET, show that the MMSD out-performs state-of-the-art facial feature-extraction methods such as null space method, direct linear discriminant analysis (LDA), eigenface, Fisherface, and complete LDA.
Cycle of phase, coherence and polarization singularities in Young's three-pinhole experiment.
Pang, Xiaoyan; Gbur, Greg; Visser, Taco D
2015-12-28
It is now well-established that a variety of singularities can be characterized and observed in optical wavefields. It is also known that these phase singularities, polarization singularities and coherence singularities are physically related, but the exact nature of their relationship is still somewhat unclear. We show how a Young-type three-pinhole interference experiment can be used to create a continuous cycle of transformations between classes of singularities, often accompanied by topological reactions in which different singularities are created and annihilated. This arrangement serves to clarify the relationships between the different singularity types, and provides a simple tool for further exploration.
Numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity
NASA Astrophysics Data System (ADS)
Korepanov, V. V.; Matveenko, V. P.; Fedorov, A. Yu.; Shardakov, I. N.
2013-07-01
An algorithm for the numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity is considered. The algorithm is based on separation of a power-law dependence from the finite-element solution in a neighborhood of singular points in the domain under study, where singular solutions are possible. The obtained power-law dependencies allow one to conclude whether the stresses have singularities and what the character of these singularities is. The algorithm was tested for problems of classical elasticity by comparing the stress singularity exponents obtained by the proposed method and from known analytic solutions. Problems with various cases of singular points, namely, body surface points at which either the smoothness of the surface is violated, or the type of boundary conditions is changed, or distinct materials are in contact, are considered as applications. The stress singularity exponents obtained by using the models of classical and asymmetric elasticity are compared. It is shown that, in the case of cracks, the stress singularity exponents are the same for the elasticity models under study, but for other cases of singular points, the stress singularity exponents obtained on the basis of asymmetric elasticity have insignificant quantitative distinctions from the solutions of the classical elasticity.
Diagnosis of Tempromandibular Disorders Using Local Binary Patterns
Haghnegahdar, A.A.; Kolahi, S.; Khojastepour, L.; Tajeripour, F.
2018-01-01
Background: Temporomandibular joint disorder (TMD) might be manifested as structural changes in bone through modification, adaptation or direct destruction. We propose to use Local Binary Pattern (LBP) characteristics and histogram-oriented gradients on the recorded images as a diagnostic tool in TMD assessment. Material and Methods: CBCT images of 66 patients (132 joints) with TMD and 66 normal cases (132 joints) were collected and 2 coronal cut prepared from each condyle, although images were limited to head of mandibular condyle. In order to extract features of images, first we use LBP and then histogram of oriented gradients. To reduce dimensionality, the linear algebra Singular Value Decomposition (SVD) is applied to the feature vectors matrix of all images. For evaluation, we used K nearest neighbor (K-NN), Support Vector Machine, Naïve Bayesian and Random Forest classifiers. We used Receiver Operating Characteristic (ROC) to evaluate the hypothesis. Results: K nearest neighbor classifier achieves a very good accuracy (0.9242), moreover, it has desirable sensitivity (0.9470) and specificity (0.9015) results, when other classifiers have lower accuracy, sensitivity and specificity. Conclusion: We proposed a fully automatic approach to detect TMD using image processing techniques based on local binary patterns and feature extraction. K-NN has been the best classifier for our experiments in detecting patients from healthy individuals, by 92.42% accuracy, 94.70% sensitivity and 90.15% specificity. The proposed method can help automatically diagnose TMD at its initial stages. PMID:29732343
Primer Vector Optimization: Survey of Theory, new Analysis and Applications
NASA Astrophysics Data System (ADS)
Guzman
This paper presents a preliminary study in developing a set of optimization tools for orbit rendezvous, transfer and station keeping. This work is part of a large scale effort undergoing at NASA Goddard Space Flight Center and a.i. solutions, Inc. to build generic methods, which will enable missions with tight fuel budgets. Since no single optimization technique can solve efficiently all existing problems, a library of tools where the user could pick the method most suited for the particular mission is envisioned. The first trajectory optimization technique explored is Lawden's primer vector theory [Ref. 1]. Primer vector theory can be considered as a byproduct of applying Calculus of Variations (COV) techniques to the problem of minimizing the fuel usage of impulsive trajectories. For an n-impulse trajectory, it involves the solution of n-1 two-point boundary value problems. In this paper, we look at some of the different formulations of the primer vector (dependent on the frame employed and on the force model). Also, the applicability of primer vector theory is examined in effort to understand when and why the theory can fail. Specifically, since COV is based on "small variations", singularities in the linearized (variational) equations of motion along the arcs must be taken into account. These singularities are a recurring problem in analyzes that employ "small variations" [Refs. 2, 3]. For example, singularities in the (2-body problem) variational equations along elliptic arcs occur when [Ref. 4], 1) the difference between the initial and final times is a multiple of the reference orbit period, 2) the difference between the initial and final true anomalies are given by k, for k= 0, 1, 2, 3,..., note that this cover the 3) the time of flight is a minimum for the given difference in true anomaly. For the N-body problem, the situation is more complex and is still under investigation. Several examples, such as the initialization of an orbit (ascent trajectory) and rotation of the line of apsides, are utilized as test cases. Recommendations, future work, and the possible addition of other optimization techniques are also discussed. References: [1] Lawden D.F., Optimal Trajectories for Space Navigation, Butterworths, London, 1963. [2] Wilson, R.S., Howell, K.C., and, Lo, M, "Optimization of Insertion Cost for Transfer Trajectories to Libration Point Orbits", AIAA/AAS Astrodynamics Specialist Conference, AAS 99-041, Girdwood, Alaska, August 16-19, 1999. [3] Goodson, T, "Monte-Carlo Maneuver Analysis for the Microwave Anisotropy Probe", AAS/AIAA Astrodynamics Specialist Conference, AAS 01-331, Quebec City, Canada, July 30 - August 2, 2001. [4] Stern, R.G., "Singularities in the Analytic Solution of the Linearized Variational Equations of Elliptical Motion", Report RE-8, May 1964, Experimental Astronomy Lab., Massachusetts Institute of Technology, Cambridge, Massachusetts.
SINGER, A.; GILLESPIE, D.; NORBURY, J.; EISENBERG, R. S.
2009-01-01
Ion channels are proteins with a narrow hole down their middle that control a wide range of biological function by controlling the flow of spherical ions from one macroscopic region to another. Ion channels do not change their conformation on the biological time scale once they are open, so they can be described by a combination of Poisson and drift-diffusion (Nernst–Planck) equations called PNP in biophysics. We use singular perturbation techniques to analyse the steady-state PNP system for a channel with a general geometry and a piecewise constant permanent charge profile. We construct an outer solution for the case of a constant permanent charge density in three dimensions that is also a valid solution of the one-dimensional system. The asymptotical current–voltage (I–V ) characteristic curve of the device (obtained by the singular perturbation analysis) is shown to be a very good approximation of the numerical I–V curve (obtained by solving the system numerically). The physical constraint of non-negative concentrations implies a unique solution, i.e., for each given applied potential there corresponds a unique electric current (relaxing this constraint yields non-physical multiple solutions for sufficiently large voltages). PMID:19809600
Second-order relativistic corrections for the S(L=0) states in one- and two-electron atomic systems
NASA Astrophysics Data System (ADS)
Frolov, A. M.; Mitelut, C. C.; Zhong, Z.
2005-01-01
An analytical approach is developed to compute the first- (similar to alpha(2)) and second-order (similar to alpha(4)) relativistic corrections in one- and two-electron atomic systems. The approach is based on the reduction of all operators to divergent (singular) and nondivergent (regular) parts. Then, we show that all the divergent parts from the differentmatrix elements cancel each other. The remaining expression contains only regular operators and its expectation value can be easily computed. Analysis of the S(L = 0) states in such systems is of specific interest since the corresponding operators for these states contain a large number of singularities. For one-electron systems the computed relativistic corrections coincide exactly with the appropriate result that follows from the Taylor expansion of the relativistic (i.e., Dirac) energy. We also discuss an alternative approach that allows one to cancel all singularities by using the so-called operator-compensation technique. This second approach is found to be very effective in applications of more complex systems, such as helium-like atoms and ions, H-2(+)-like ions, and some exotic three-body systems.
Liang, Bin; Li, Yongbao; Wei, Ran; Guo, Bin; Xu, Xuang; Liu, Bo; Li, Jiafeng; Wu, Qiuwen; Zhou, Fugen
2018-01-05
With robot-controlled linac positioning, robotic radiotherapy systems such as CyberKnife significantly increase freedom of radiation beam placement, but also impose more challenges on treatment plan optimization. The resampling mechanism in the vendor-supplied treatment planning system (MultiPlan) cannot fully explore the increased beam direction search space. Besides, a sparse treatment plan (using fewer beams) is desired to improve treatment efficiency. This study proposes a singular value decomposition linear programming (SVDLP) optimization technique for circular collimator based robotic radiotherapy. The SVDLP approach initializes the input beams by simulating the process of covering the entire target volume with equivalent beam tapers. The requirements on dosimetry distribution are modeled as hard and soft constraints, and the sparsity of the treatment plan is achieved by compressive sensing. The proposed linear programming (LP) model optimizes beam weights by minimizing the deviation of soft constraints subject to hard constraints, with a constraint on the l 1 norm of the beam weight. A singular value decomposition (SVD) based acceleration technique was developed for the LP model. Based on the degeneracy of the influence matrix, the model is first compressed into lower dimension for optimization, and then back-projected to reconstruct the beam weight. After beam weight optimization, the number of beams is reduced by removing the beams with low weight, and optimizing the weights of the remaining beams using the same model. This beam reduction technique is further validated by a mixed integer programming (MIP) model. The SVDLP approach was tested on a lung case. The results demonstrate that the SVD acceleration technique speeds up the optimization by a factor of 4.8. Furthermore, the beam reduction achieves a similar plan quality to the globally optimal plan obtained by the MIP model, but is one to two orders of magnitude faster. Furthermore, the SVDLP approach is tested and compared with MultiPlan on three clinical cases of varying complexities. In general, the plans generated by the SVDLP achieve steeper dose gradient, better conformity and less damage to normal tissues. In conclusion, the SVDLP approach effectively improves the quality of treatment plan due to the use of the complete beam search space. This challenging optimization problem with the complete beam search space is effectively handled by the proposed SVD acceleration.
NASA Astrophysics Data System (ADS)
Liang, Bin; Li, Yongbao; Wei, Ran; Guo, Bin; Xu, Xuang; Liu, Bo; Li, Jiafeng; Wu, Qiuwen; Zhou, Fugen
2018-01-01
With robot-controlled linac positioning, robotic radiotherapy systems such as CyberKnife significantly increase freedom of radiation beam placement, but also impose more challenges on treatment plan optimization. The resampling mechanism in the vendor-supplied treatment planning system (MultiPlan) cannot fully explore the increased beam direction search space. Besides, a sparse treatment plan (using fewer beams) is desired to improve treatment efficiency. This study proposes a singular value decomposition linear programming (SVDLP) optimization technique for circular collimator based robotic radiotherapy. The SVDLP approach initializes the input beams by simulating the process of covering the entire target volume with equivalent beam tapers. The requirements on dosimetry distribution are modeled as hard and soft constraints, and the sparsity of the treatment plan is achieved by compressive sensing. The proposed linear programming (LP) model optimizes beam weights by minimizing the deviation of soft constraints subject to hard constraints, with a constraint on the l 1 norm of the beam weight. A singular value decomposition (SVD) based acceleration technique was developed for the LP model. Based on the degeneracy of the influence matrix, the model is first compressed into lower dimension for optimization, and then back-projected to reconstruct the beam weight. After beam weight optimization, the number of beams is reduced by removing the beams with low weight, and optimizing the weights of the remaining beams using the same model. This beam reduction technique is further validated by a mixed integer programming (MIP) model. The SVDLP approach was tested on a lung case. The results demonstrate that the SVD acceleration technique speeds up the optimization by a factor of 4.8. Furthermore, the beam reduction achieves a similar plan quality to the globally optimal plan obtained by the MIP model, but is one to two orders of magnitude faster. Furthermore, the SVDLP approach is tested and compared with MultiPlan on three clinical cases of varying complexities. In general, the plans generated by the SVDLP achieve steeper dose gradient, better conformity and less damage to normal tissues. In conclusion, the SVDLP approach effectively improves the quality of treatment plan due to the use of the complete beam search space. This challenging optimization problem with the complete beam search space is effectively handled by the proposed SVD acceleration.
Evolution of singularities in a partially coherent vortex beam.
van Dijk, Thomas; Visser, Taco D
2009-04-01
We study the evolution of phase singularities and coherence singularities in a Laguerre-Gauss beam that is rendered partially coherent by letting it pass through a spatial light modulator. The original beam has an on-axis minumum of intensity--a phase singularity--that transforms into a maximum of the far-field intensity. In contrast, although the original beam has no coherence singularities, such singularities are found to develop as the beam propagates. This disappearance of one kind of singularity and the gradual appearance of another is illustrated with numerical examples.
Naked singularity, firewall, and Hawking radiation.
Zhang, Hongsheng
2017-06-21
Spacetime singularity has always been of interest since the proof of the Penrose-Hawking singularity theorem. Naked singularity naturally emerges from reasonable initial conditions in the collapsing process. A recent interesting approach in black hole information problem implies that we need a firewall to break the surplus entanglements among the Hawking photons. Classically, the firewall becomes a naked singularity. We find some vacuum analytical solutions in R n -gravity of the firewall-type and use these solutions as concrete models to study the naked singularities. By using standard quantum theory, we investigate the Hawking radiation emitted from the black holes with naked singularities. Here we show that the singularity itself does not destroy information. A unitary quantum theory works well around a firewall-type singularity. We discuss the validity of our result in general relativity. Further our result demonstrates that the temperature of the Hawking radiation still can be expressed in the form of the surface gravity divided by 2π. This indicates that a naked singularity may not compromise the Hakwing evaporation process.
On the Weyl curvature hypothesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoica, Ovidiu Cristinel, E-mail: holotronix@gmail.com
2013-11-15
The Weyl curvature hypothesis of Penrose attempts to explain the high homogeneity and isotropy, and the very low entropy of the early universe, by conjecturing the vanishing of the Weyl tensor at the Big-Bang singularity. In previous papers it has been proposed an equivalent form of Einstein’s equation, which extends it and remains valid at an important class of singularities (including in particular the Schwarzschild, FLRW, and isotropic singularities). Here it is shown that if the Big-Bang singularity is from this class, it also satisfies the Weyl curvature hypothesis. As an application, we study a very general example of cosmologicalmore » models, which generalizes the FLRW model by dropping the isotropy and homogeneity constraints. This model also generalizes isotropic singularities, and a class of singularities occurring in Bianchi cosmologies. We show that the Big-Bang singularity of this model is of the type under consideration, and satisfies therefore the Weyl curvature hypothesis. -- Highlights: •The singularities we introduce are described by finite geometric/physical objects. •Our singularities have smooth Riemann and Weyl curvatures. •We show they satisfy Penrose’s Weyl curvature hypothesis (Weyl=0 at singularities). •Examples: FLRW, isotropic singularities, an extension of Schwarzschild’s metric. •Example: a large class of singularities which may be anisotropic and inhomogeneous.« less
3D Higher Order Modeling in the BEM/FEM Hybrid Formulation
NASA Technical Reports Server (NTRS)
Fink, P. W.; Wilton, D. R.
2000-01-01
Higher order divergence- and curl-conforming bases have been shown to provide significant benefits, in both convergence rate and accuracy, in the 2D hybrid finite element/boundary element formulation (P. Fink and D. Wilton, National Radio Science Meeting, Boulder, CO, Jan. 2000). A critical issue in achieving the potential for accuracy of the approach is the accurate evaluation of all matrix elements. These involve products of high order polynomials and, in some instances, singular Green's functions. In the 2D formulation, the use of a generalized Gaussian quadrature method was found to greatly facilitate the computation and to improve the accuracy of the boundary integral equation self-terms. In this paper, a 3D, hybrid electric field formulation employing higher order bases and higher order elements is presented. The improvements in convergence rate and accuracy, compared to those resulting from lower order modeling, are established. Techniques developed to facilitate the computation of the boundary integral self-terms are also shown to improve the accuracy of these terms. Finally, simple preconditioning techniques are used in conjunction with iterative solution procedures to solve the resulting linear system efficiently. In order to handle the boundary integral singularities in the 3D formulation, the parent element- either a triangle or rectangle-is subdivided into a set of sub-triangles with a common vertex at the singularity. The contribution to the integral from each of the sub-triangles is computed using the Duffy transformation to remove the singularity. This method is shown to greatly facilitate t'pe self-term computation when the bases are of higher order. In addition, the sub-triangles can be further divided to achieve near arbitrary accuracy in the self-term computation. An efficient method for subdividing the parent element is presented. The accuracy obtained using higher order bases is compared to that obtained using lower order bases when the number of unknowns is approximately equal. Also, convergence rates obtained using higher order bases are compared to those obtained with lower order bases for selected sample
Yin, X X; Ng, B W-H; Ramamohanarao, K; Baghai-Wadji, A; Abbott, D
2012-09-01
It has been shown that, magnetic resonance images (MRIs) with sparsity representation in a transformed domain, e.g. spatial finite-differences (FD), or discrete cosine transform (DCT), can be restored from undersampled k-space via applying current compressive sampling theory. The paper presents a model-based method for the restoration of MRIs. The reduced-order model, in which a full-system-response is projected onto a subspace of lower dimensionality, has been used to accelerate image reconstruction by reducing the size of the involved linear system. In this paper, the singular value threshold (SVT) technique is applied as a denoising scheme to reduce and select the model order of the inverse Fourier transform image, and to restore multi-slice breast MRIs that have been compressively sampled in k-space. The restored MRIs with SVT for denoising show reduced sampling errors compared to the direct MRI restoration methods via spatial FD, or DCT. Compressive sampling is a technique for finding sparse solutions to underdetermined linear systems. The sparsity that is implicit in MRIs is to explore the solution to MRI reconstruction after transformation from significantly undersampled k-space. The challenge, however, is that, since some incoherent artifacts result from the random undersampling, noise-like interference is added to the image with sparse representation. These recovery algorithms in the literature are not capable of fully removing the artifacts. It is necessary to introduce a denoising procedure to improve the quality of image recovery. This paper applies a singular value threshold algorithm to reduce the model order of image basis functions, which allows further improvement of the quality of image reconstruction with removal of noise artifacts. The principle of the denoising scheme is to reconstruct the sparse MRI matrices optimally with a lower rank via selecting smaller number of dominant singular values. The singular value threshold algorithm is performed by minimizing the nuclear norm of difference between the sampled image and the recovered image. It has been illustrated that this algorithm improves the ability of previous image reconstruction algorithms to remove noise artifacts while significantly improving the quality of MRI recovery.
Yongqiang Liu
2003-01-01
The relations between monthly-seasonal soil moisture and precipitation variability are investigated by identifying the coupled patterns of the two hydrological fields using singular value decomposition (SVD). SVD is a technique of principal component analysis similar to empirical orthogonal knctions (EOF). However, it is applied to two variables simultaneously and is...
The geometry of singularities and the black hole information paradox
NASA Astrophysics Data System (ADS)
Stoica, O. C.
2015-07-01
The information loss occurs in an evaporating black hole only if the time evolution ends at the singularity. But as we shall see, the black hole solutions admit analytical extensions beyond the singularities, to globally hyperbolic solutions. The method used is similar to that for the apparent singularity at the event horizon, but at the singularity, the resulting metric is degenerate. When the metric is degenerate, the covariant derivative, the curvature, and the Einstein equation become singular. However, recent advances in the geometry of spacetimes with singular metric show that there are ways to extend analytically the Einstein equation and other field equations beyond such singularities. This means that the information can get out of the singularity. In the case of charged black holes, the obtained solutions have nonsingular electromagnetic field. As a bonus, if particles are such black holes, spacetime undergoes dimensional reduction effects like those required by some approaches to perturbative Quantum Gravity.
Enhancing reproducibility in scientific computing: Metrics and registry for Singularity containers.
Sochat, Vanessa V; Prybol, Cameron J; Kurtzer, Gregory M
2017-01-01
Here we present Singularity Hub, a framework to build and deploy Singularity containers for mobility of compute, and the singularity-python software with novel metrics for assessing reproducibility of such containers. Singularity containers make it possible for scientists and developers to package reproducible software, and Singularity Hub adds automation to this workflow by building, capturing metadata for, visualizing, and serving containers programmatically. Our novel metrics, based on custom filters of content hashes of container contents, allow for comparison of an entire container, including operating system, custom software, and metadata. First we will review Singularity Hub's primary use cases and how the infrastructure has been designed to support modern, common workflows. Next, we conduct three analyses to demonstrate build consistency, reproducibility metric and performance and interpretability, and potential for discovery. This is the first effort to demonstrate a rigorous assessment of measurable similarity between containers and operating systems. We provide these capabilities within Singularity Hub, as well as the source software singularity-python that provides the underlying functionality. Singularity Hub is available at https://singularity-hub.org, and we are excited to provide it as an openly available platform for building, and deploying scientific containers.
Enhancing reproducibility in scientific computing: Metrics and registry for Singularity containers
Prybol, Cameron J.; Kurtzer, Gregory M.
2017-01-01
Here we present Singularity Hub, a framework to build and deploy Singularity containers for mobility of compute, and the singularity-python software with novel metrics for assessing reproducibility of such containers. Singularity containers make it possible for scientists and developers to package reproducible software, and Singularity Hub adds automation to this workflow by building, capturing metadata for, visualizing, and serving containers programmatically. Our novel metrics, based on custom filters of content hashes of container contents, allow for comparison of an entire container, including operating system, custom software, and metadata. First we will review Singularity Hub’s primary use cases and how the infrastructure has been designed to support modern, common workflows. Next, we conduct three analyses to demonstrate build consistency, reproducibility metric and performance and interpretability, and potential for discovery. This is the first effort to demonstrate a rigorous assessment of measurable similarity between containers and operating systems. We provide these capabilities within Singularity Hub, as well as the source software singularity-python that provides the underlying functionality. Singularity Hub is available at https://singularity-hub.org, and we are excited to provide it as an openly available platform for building, and deploying scientific containers. PMID:29186161
Big bounce with finite-time singularity: The F(R) gravity description
NASA Astrophysics Data System (ADS)
Odintsov, S. D.; Oikonomou, V. K.
An alternative to the Big Bang cosmologies is obtained by the Big Bounce cosmologies. In this paper, we study a bounce cosmology with a Type IV singularity occurring at the bouncing point in the context of F(R) modified gravity. We investigate the evolution of the Hubble radius and we examine the issue of primordial cosmological perturbations in detail. As we demonstrate, for the singular bounce, the primordial perturbations originating from the cosmological era near the bounce do not produce a scale-invariant spectrum and also the short wavelength modes after these exit the horizon, do not freeze, but grow linearly with time. After presenting the cosmological perturbations study, we discuss the viability of the singular bounce model, and our results indicate that the singular bounce must be combined with another cosmological scenario, or should be modified appropriately, in order that it leads to a viable cosmology. The study of the slow-roll parameters leads to the same result indicating that the singular bounce theory is unstable at the singularity point for certain values of the parameters. We also conformally transform the Jordan frame singular bounce, and as we demonstrate, the Einstein frame metric leads to a Big Rip singularity. Therefore, the Type IV singularity in the Jordan frame becomes a Big Rip singularity in the Einstein frame. Finally, we briefly study a generalized singular cosmological model, which contains two Type IV singularities, with quite appealing features.
Deflation as a method of variance reduction for estimating the trace of a matrix inverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gambhir, Arjun Singh; Stathopoulos, Andreas; Orginos, Kostas
Many fields require computing the trace of the inverse of a large, sparse matrix. The typical method used for such computations is the Hutchinson method which is a Monte Carlo (MC) averaging over matrix quadratures. To improve its convergence, several variance reductions techniques have been proposed. In this paper, we study the effects of deflating the near null singular value space. We make two main contributions. First, we analyze the variance of the Hutchinson method as a function of the deflated singular values and vectors. Although this provides good intuition in general, by assuming additionally that the singular vectors aremore » random unitary matrices, we arrive at concise formulas for the deflated variance that include only the variance and mean of the singular values. We make the remarkable observation that deflation may increase variance for Hermitian matrices but not for non-Hermitian ones. This is a rare, if not unique, property where non-Hermitian matrices outperform Hermitian ones. The theory can be used as a model for predicting the benefits of deflation. Second, we use deflation in the context of a large scale application of "disconnected diagrams" in Lattice QCD. On lattices, Hierarchical Probing (HP) has previously provided an order of magnitude of variance reduction over MC by removing "error" from neighboring nodes of increasing distance in the lattice. Although deflation used directly on MC yields a limited improvement of 30% in our problem, when combined with HP they reduce variance by a factor of over 150 compared to MC. For this, we pre-computated 1000 smallest singular values of an ill-conditioned matrix of size 25 million. Furthermore, using PRIMME and a domain-specific Algebraic Multigrid preconditioner, we perform one of the largest eigenvalue computations in Lattice QCD at a fraction of the cost of our trace computation.« less
Deflation as a method of variance reduction for estimating the trace of a matrix inverse
Gambhir, Arjun Singh; Stathopoulos, Andreas; Orginos, Kostas
2017-04-06
Many fields require computing the trace of the inverse of a large, sparse matrix. The typical method used for such computations is the Hutchinson method which is a Monte Carlo (MC) averaging over matrix quadratures. To improve its convergence, several variance reductions techniques have been proposed. In this paper, we study the effects of deflating the near null singular value space. We make two main contributions. First, we analyze the variance of the Hutchinson method as a function of the deflated singular values and vectors. Although this provides good intuition in general, by assuming additionally that the singular vectors aremore » random unitary matrices, we arrive at concise formulas for the deflated variance that include only the variance and mean of the singular values. We make the remarkable observation that deflation may increase variance for Hermitian matrices but not for non-Hermitian ones. This is a rare, if not unique, property where non-Hermitian matrices outperform Hermitian ones. The theory can be used as a model for predicting the benefits of deflation. Second, we use deflation in the context of a large scale application of "disconnected diagrams" in Lattice QCD. On lattices, Hierarchical Probing (HP) has previously provided an order of magnitude of variance reduction over MC by removing "error" from neighboring nodes of increasing distance in the lattice. Although deflation used directly on MC yields a limited improvement of 30% in our problem, when combined with HP they reduce variance by a factor of over 150 compared to MC. For this, we pre-computated 1000 smallest singular values of an ill-conditioned matrix of size 25 million. Furthermore, using PRIMME and a domain-specific Algebraic Multigrid preconditioner, we perform one of the largest eigenvalue computations in Lattice QCD at a fraction of the cost of our trace computation.« less
Global structure of static spherically symmetric solutions surrounded by quintessence
NASA Astrophysics Data System (ADS)
Cruz, Miguel; Ganguly, Apratim; Gannouji, Radouane; Leon, Genly; Saridakis, Emmanuel N.
2017-06-01
We investigate all static spherically symmetric solutions in the context of general relativity surrounded by a minimally-coupled quintessence field, using dynamical system analysis. Applying the 1 + 1 + 2 formalism and introducing suitable normalized variables involving the Gaussian curvature, we were able to reformulate the field equations as first order differential equations. In the case of a massless canonical scalar field we recovered all known black hole results, such as the Fisher solution, and we found that apart from the Schwarzschild solution all other solutions are naked singularities. Additionally, we identified the symmetric phase space which corresponds to the white hole part of the solution and in the case of a phantom field, we were able to extract the conditions for the existence of wormholes and define all possible classes of solutions such as cold black holes, singular spacetimes and wormholes such as the Ellis wormhole, for example. For an exponential potential, we found that the black hole solution which is asymptotically flat is unique and it is the Schwarzschild spacetime, while all other solutions are naked singularities. Furthermore, we found solutions connecting to a white hole through a maximum radius, and not a minimum radius (throat) such as wormhole solutions, therefore violating the flare-out condition. Finally, we have found a necessary and sufficient condition on the form of the potential to have an asymptotically AdS spacetime along with a necessary condition for the existence of asymptotically flat black holes.
Singularity in structural optimization
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Guptill, J. D.; Berke, L.
1993-01-01
The conditions under which global and local singularities may arise in structural optimization are examined. Examples of these singularities are presented, and a framework is given within which the singularities can be recognized. It is shown, in particular, that singularities can be identified through the analysis of stress-displacement relations together with compatibility conditions or the displacement-stress relations derived by the integrated force method of structural analysis. Methods of eliminating the effects of singularities are suggested and illustrated numerically.
NASA Technical Reports Server (NTRS)
Khayat, Michael A.; Wilton, Donald R.; Fink, Patrick W.
2007-01-01
Simple and efficient numerical procedures using singularity cancellation methods are presented for evaluating singular and near-singular potential integrals. Four different transformations are compared and the advantages of the Radial-angular transform are demonstrated. A method is then described for optimizing this integration scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasil'ev, Vasilii I; Soskin, M S
2013-02-28
A natural singular dynamics of elliptically polarised speckle-fields induced by the 'optical damage' effect in a photorefractive crystal of lithium niobate by a passing beam of a helium - neon laser is studied by the developed methods of singular optics. For the polarisation singularities (C points), a new class of chain reactions, namely, singular chain reactions are discovered and studied. It is shown that they obey the topological charge and sum Poincare index conservation laws. In addition, they exist for all the time of crystal irradiation. They consist of a series of interlocking chains, where singularity pairs arising in amore » chain annihilate with singularities from neighbouring independently created chains. Less often singular 'loop' reactions are observed where arising pairs of singularities annihilate after reversible transformations in within the boundaries of a single speckle. The type of a singular reaction is determined by a topology and dynamics of the speckles, in which the reactions are developing. (laser optics 2012)« less
Can accretion disk properties observationally distinguish black holes from naked singularities?
NASA Astrophysics Data System (ADS)
Kovács, Z.; Harko, T.
2010-12-01
Naked singularities are hypothetical astrophysical objects, characterized by a gravitational singularity without an event horizon. Penrose has proposed a conjecture, according to which there exists a cosmic censor who forbids the occurrence of naked singularities. Distinguishing between astrophysical black holes and naked singularities is a major challenge for present day observational astronomy. In the context of stationary and axially symmetrical geometries, a possibility of differentiating naked singularities from black holes is through the comparative study of thin accretion disks properties around rotating naked singularities and Kerr-type black holes, respectively. In the present paper, we consider accretion disks around axially-symmetric rotating naked singularities, obtained as solutions of the field equations in the Einstein-massless scalar field theory. A first major difference between rotating naked singularities and Kerr black holes is in the frame dragging effect, the angular velocity of a rotating naked singularity being inversely proportional to its spin parameter. Because of the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution and equilibrium radiation spectrum) are different for these two classes of compact objects, consequently giving clear observational signatures that could discriminate between black holes and naked singularities. For specific values of the spin parameter and of the scalar charge, the energy flux from the disk around a rotating naked singularity can exceed by several orders of magnitude the flux from the disk of a Kerr black hole. In addition to this, it is also shown that the conversion efficiency of the accreting mass into radiation by rotating naked singularities is always higher than the conversion efficiency for black holes, i.e., naked singularities provide a much more efficient mechanism for converting mass into radiation than black holes. Thus, these observational signatures may provide the necessary tools from clearly distinguishing rotating naked singularities from Kerr-type black holes.
Bio-inspired computational heuristics to study Lane-Emden systems arising in astrophysics model.
Ahmad, Iftikhar; Raja, Muhammad Asif Zahoor; Bilal, Muhammad; Ashraf, Farooq
2016-01-01
This study reports novel hybrid computational methods for the solutions of nonlinear singular Lane-Emden type differential equation arising in astrophysics models by exploiting the strength of unsupervised neural network models and stochastic optimization techniques. In the scheme the neural network, sub-part of large field called soft computing, is exploited for modelling of the equation in an unsupervised manner. The proposed approximated solutions of higher order ordinary differential equation are calculated with the weights of neural networks trained with genetic algorithm, and pattern search hybrid with sequential quadratic programming for rapid local convergence. The results of proposed solvers for solving the nonlinear singular systems are in good agreements with the standard solutions. Accuracy and convergence the design schemes are demonstrated by the results of statistical performance measures based on the sufficient large number of independent runs.
Are Singularities Integral to General Theory of Relativity?
NASA Astrophysics Data System (ADS)
Krori, K.; Dutta, S.
2011-11-01
Since the 1960s the general relativists have been deeply obsessed with the possibilities of GTR singularities - blackhole as well as cosmological singularities. Senovilla, for the first time, followed by others, showed that there are cylindrically symmetric cosmological space-times which are free of singularities. On the other hand, Krori et al. have presently shown that spherically symmetric cosmological space-times - which later reduce to FRW space-times may also be free of singularities. Besides, Mitra has in the mean-time come forward with some realistic calculations which seem to rule out the possibility of a blackhole singularity. So whether singularities are integral to GTR seems to come under a shadow.
NASA Astrophysics Data System (ADS)
Pisana, Francesco; Henzler, Thomas; Schönberg, Stefan; Klotz, Ernst; Schmidt, Bernhard; Kachelrieß, Marc
2017-03-01
Dynamic CT perfusion acquisitions are intrinsically high-dose examinations, due to repeated scanning. To keep radiation dose under control, relatively noisy images are acquired. Noise is then further enhanced during the extraction of functional parameters from the post-processing of the time attenuation curves of the voxels (TACs) and normally some smoothing filter needs to be employed to better visualize any perfusion abnormality, but sacrificing spatial resolution. In this study we propose a new method to detect perfusion abnormalities keeping both high spatial resolution and high CNR. To do this we first perform the singular value decomposition (SVD) of the original noisy spatial temporal data matrix to extract basis functions of the TACs. Then we iteratively cluster the voxels based on a smoothed version of the three most significant singular vectors. Finally, we create high spatial resolution 3D volumes where to each voxel is assigned a distance from the centroid of each cluster, showing how functionally similar each voxel is compared to the others. The method was tested on three noisy clinical datasets: one brain perfusion case with an occlusion in the left internal carotid, one healthy brain perfusion case, and one liver case with an enhancing lesion. Our method successfully detected all perfusion abnormalities with higher spatial precision when compared to the functional maps obtained with a commercially available software. We conclude this method might be employed to have a rapid qualitative indication of functional abnormalities in low dose dynamic CT perfusion datasets. The method seems to be very robust with respect to both spatial and temporal noise and does not require any special a priori assumption. While being more robust respect to noise and with higher spatial resolution and CNR when compared to the functional maps, our method is not quantitative and a potential usage in clinical routine could be as a second reader to assist in the maps evaluation, or to guide a dataset smoothing before the modeling part.
Asymptotics of bivariate generating functions with algebraic singularities
NASA Astrophysics Data System (ADS)
Greenwood, Torin
Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of uni- variate generating functions with algebraic singularities. Gao and Richmond (1992) and Hwang (1996, 1998) extended these results to classes of multivariate generating functions, in both cases by reducing to the univariate case. Pemantle and Wilson (2013) outlined new multivariate ana- lytic techniques and used them to analyze the coefficients of rational generating functions. After overviewing these methods, we use them to find asymptotic formulae for the coefficients of a broad class of bivariate generating functions with algebraic singularities. Beginning with the Cauchy integral formula, we explicity deform the contour of integration so that it hugs a set of critical points. The asymptotic contribution to the integral comes from analyzing the integrand near these points, leading to explicit asymptotic formulae. Next, we use this formula to analyze an example from current research. In the following chapter, we apply multivariate analytic techniques to quan- tum walks. Bressler and Pemantle (2007) found a (d + 1)-dimensional rational generating function whose coefficients described the amplitude of a particle at a position in the integer lattice after n steps. Here, the minimal critical points form a curve on the (d + 1)-dimensional unit torus. We find asymptotic formulae for the amplitude of a particle in a given position, normalized by the number of steps n, as n approaches infinity. Each critical point contributes to the asymptotics for a specific normalized position. Using Groebner bases in Maple again, we compute the explicit locations of peak amplitudes. In a scaling window of size the square root of n near the peaks, each amplitude is asymptotic to an Airy function.
NASA Astrophysics Data System (ADS)
Guesmi, Latifa; Menif, Mourad
2015-09-01
Optical performance monitoring (OPM) becomes an inviting topic in high speed optical communication networks. In this paper, a novel technique of OPM based on a new elaborated computation approach of singular spectrum analysis (SSA) for time series prediction is presented. Indeed, various optical impairments among chromatic dispersion (CD), polarization mode dispersion (PMD) and amplified spontaneous emission (ASE) noise are a major factors limiting quality of transmission data in the systems with data rates lager than 40 Gbit/s. This technique proposed an independent and simultaneous multi-impairments monitoring, where we used SSA of time series analysis and forecasting. It has proven their usefulness in the temporal analysis of short and noisy time series in several fields, that it is based on the singular value decomposition (SVD). Also, advanced optical modulation formats (100 Gbit/s non-return-to zero dual-polarization quadrature phase shift keying (NRZ-DP-QPSK) and 160 Gbit/s DP-16 quadrature amplitude modulation (DP-16QAM)) offering high spectral efficiencies have been successfully employed by analyzing their asynchronously sampled amplitude. The simulated results proved that our method is efficient on CD, first-order PMD, Q-factor and OSNR monitoring, which enabled large monitoring ranges, the CD in the range of 170-1700 ps/nm.Km and 170-1110 ps/nm.Km for 100 Gbit/s NRZ-DP-QPSK and 160 Gbit/s DP-16QAM respectively, and also the DGD up to 20 ps is monitored. We could accurately monitor the OSNR in the range of 10-40 dB with monitoring error remains less than 1 dB in the presence of large accumulated CD.
NASA Astrophysics Data System (ADS)
Li, Lin; Li, Dalin; Zhu, Haihong; Li, You
2016-10-01
Street trees interlaced with other objects in cluttered point clouds of urban scenes inhibit the automatic extraction of individual trees. This paper proposes a method for the automatic extraction of individual trees from mobile laser scanning data, according to the general constitution of trees. Two components of each individual tree - a trunk and a crown can be extracted by the dual growing method. This method consists of coarse classification, through which most of artifacts are removed; the automatic selection of appropriate seeds for individual trees, by which the common manual initial setting is avoided; a dual growing process that separates one tree from others by circumscribing a trunk in an adaptive growing radius and segmenting a crown in constrained growing regions; and a refining process that draws a singular trunk from the interlaced other objects. The method is verified by two datasets with over 98% completeness and over 96% correctness. The low mean absolute percentage errors in capturing the morphological parameters of individual trees indicate that this method can output individual trees with high precision.
On the dynamic singularities in the control of free-floating space manipulators
NASA Technical Reports Server (NTRS)
Papadopoulos, E.; Dubowsky, S.
1989-01-01
It is shown that free-floating space manipulator systems have configurations which are dynamically singular. At a dynamically singular position, the manipulator is unable to move its end effector in some direction. This problem appears in any free-floating space manipulator system that permits the vehicle to move in response to manipulator motion without correction from the vehicle's attitude control system. Dynamic singularities are functions of the dynamic properties of the system; their existence and locations cannot be predicted solely from the kinematic structure of the manipulator, unlike the singularities for fixed base manipulators. It is also shown that the location of these dynamic singularities in the workplace is dependent upon the path taken by the manipulator in reaching them. Dynamic singularities must be considered in the control, planning and design of free-floating space manipulator systems. A method for calculating these dynamic singularities is presented, and it is shown that the system parameters can be selected to reduce the effect of dynamic singularities on a system's performance.
Brandão, Pedro Francisco; Ramos, Rui Miguel; Almeida, Paulo Joaquim; Rodrigues, José António
2017-02-08
A new approach is proposed for the extraction and determination of carbonyl compounds in solid samples, such as wood or cork materials. Cork products are used as building materials due to their singular characteristics; however, little is known about its aldehyde emission potential and content. Sample preparation was done by using a gas-diffusion microextraction (GDME) device for the direct extraction of volatile aldehydes and derivatization with 2,4-dinitrophenylhydrazine. Analytical determination of the extracts was done by HPLC-UV, with detection at 360 nm. The developed methodology proved to be a reliable tool for aldehyde determination in cork agglomerate samples with suitable method features. Mass spectrometry studies were performed for each sample, which enabled the identification, in the extracts, of the derivatization products of a total of 13 aldehydes (formaldehyde, acetaldehyde, furfural, propanal, 5-methylfurfural, butanal, benzaldehyde, pentanal, hexanal, trans-2-heptenal, heptanal, octanal, and trans-2-nonenal) and 4 ketones (3-hydroxy-2-butanone, acetone, cyclohexanone, and acetophenone). This new analytical methodology simultaneously proved to be consistent for the identification and determination of aldehydes in cork agglomerates and a very simple and straightforward procedure.
Comparison of extraction techniques of robenidine from poultry feed samples.
Wilga, Joanna; Wasik, Agata Kot-; Namieśnik, Jacek
2007-10-31
In this paper, effectiveness of six different commonly applied extraction techniques for the determination of robenidine in poultry feed has been compared. The sample preparation techniques included shaking, Soxhlet, Soxtec, ultrasonically assisted extraction, microwave - assisted extraction and accelerated solvent extraction. Comparison of these techniques was done with respect to the recovery extraction, temperature and time, reproducibility and solvent consumption. Every single extract was subjected to clean - up using aluminium oxide column (Pasteur pipette filled with 1g of aluminium oxide), from which robenidine was eluted with 10ml of methanol. The eluate from the clean-up column was collected in a volumetric flask, and finally it was analysed by HPLC-DAD-MS. In general, all extraction techniques were capable of isolating of robenidine from poultry feed, but the recovery obtained using modern extraction techniques was higher than that obtained using conventional techniques. In particular, accelerated solvent extraction was more superior to other techniques, which highlights the advantages of this sample preparation technique. However, in routine analysis, shaking and ultrasonically assisted extraction is still the preferred method for the solution of robenidine and other coccidiostatics.
NASA Astrophysics Data System (ADS)
Gruszczynska, M.; Rosat, S.; Klos, A.; Bogusz, J.
2017-12-01
In this study, Singular Spectrum Analysis (SSA) along with its multivariate extension MSSA (Multichannel SSA) were used to estimate long-term trend and gravimetric factor at the Chandler wobble frequency from superconducting gravimeter (SG) records. We have used data from seven stations located worldwide and contributing to the International Geodynamics and Earth Tides Service (IGETS). The timespan ranged from 15 to 19 years. Before applying SSA and MSSA, we had removed local tides, atmospheric (ECMWF data), hydrological (MERRA2 products) loadings and non-tidal ocean loading (ECCO2 products) effects. In the first part of analysis, we used the SSA approach in order to estimate the long-term trends from SG observations. We use the technique based on the classical Karhunen-Loève spectral decomposition of time series into long-term trend, oscillations and noise. In the second part, we present the determination of common time-varying pole tide (annual and Chandler wobble) to estimate gravimetric factor from SG time series using the MSSA approach. The presented method takes advantage over traditional methods like Least Squares Estimation by determining common modes of variability which reflect common geophysical field. We adopted a 6-year lag-window as the optimal length to extract common seasonal signals and the Chandler components of the Earth polar motion. The signals characterized by annual and Chandler wobble account for approximately 62% of the total variance of residual SG data. Then, we estimated the amplitude factors and phase lags of Chandler wobble with respect to the IERS (International Earth Rotation and Reference Systems Service) polar motion observations. The resulting gravimetric factors at the Chandler Wobble period are finally compared with previously estimates. A robust estimate of the gravimetric Earth response to the Chandlerian component of the polar motion is required to better constrain the mantle anelasticity at this frequency and hence the attenuation models of the Earth interior.
Statistical and sampling issues when using multiple particle tracking
NASA Astrophysics Data System (ADS)
Savin, Thierry; Doyle, Patrick S.
2007-08-01
Video microscopy can be used to simultaneously track several microparticles embedded in a complex material. The trajectories are used to extract a sample of displacements at random locations in the material. From this sample, averaged quantities characterizing the dynamics of the probes are calculated to evaluate structural and/or mechanical properties of the assessed material. However, the sampling of measured displacements in heterogeneous systems is singular because the volume of observation with video microscopy is finite. By carefully characterizing the sampling design in the experimental output of the multiple particle tracking technique, we derive estimators for the mean and variance of the probes’ dynamics that are independent of the peculiar statistical characteristics. We expose stringent tests of these estimators using simulated and experimental complex systems with a known heterogeneous structure. Up to a certain fundamental limitation, which we characterize through a material degree of sampling by the embedded probe tracking, these estimators can be applied to quantify the heterogeneity of a material, providing an original and intelligible kind of information on complex fluid properties. More generally, we show that the precise assessment of the statistics in the multiple particle tracking output sample of observations is essential in order to provide accurate unbiased measurements.
Resurgence and hydrodynamic attractors in Gauss-Bonnet holography
NASA Astrophysics Data System (ADS)
Casalderrey-Solana, Jorge; Gushterov, Nikola I.; Meiring, Ben
2018-04-01
We study the convergence of the hydrodynamic series in the gravity dual of Gauss-Bonnet gravity in five dimensions with negative cosmological constant via holography. By imposing boost invariance symmetry, we find a solution to the Gauss-Bonnet equation of motion in inverse powers of the proper time, from which we can extract high order corrections to Bjorken flow for different values of the Gauss-Bonnet parameter λGB. As in all other known examples the gradient expansion is, at most, an asymptotic series which can be understood through applying the techniques of Borel-Padé summation. As expected from the behaviour of the quasi-normal modes in the theory, we observe that the singularities in the Borel plane of this series show qualitative features that interpolate between the infinitely strong coupling limit of N=4 Super Yang Mills theory and the expectation from kinetic theory. We further perform the Borel resummation to constrain the behaviour of hydrodynamic attractors beyond leading order in the hydrodynamic expansion. We find that for all values of λGB considered, the convergence of different initial conditions to the resummation and its hydrodynamization occur at large and comparable values of the pressure anisotropy.
NASA Astrophysics Data System (ADS)
Sitohang, Yosep Oktavianus; Darmawan, Gumgum
2017-08-01
This research attempts to compare between two forecasting models in time series analysis for predicting the sales volume of motorcycle in Indonesia. The first forecasting model used in this paper is Autoregressive Fractionally Integrated Moving Average (ARFIMA). ARFIMA can handle non-stationary data and has a better performance than ARIMA in forecasting accuracy on long memory data. This is because the fractional difference parameter can explain correlation structure in data that has short memory, long memory, and even both structures simultaneously. The second forecasting model is Singular spectrum analysis (SSA). The advantage of the technique is that it is able to decompose time series data into the classic components i.e. trend, cyclical, seasonal and noise components. This makes the forecasting accuracy of this technique significantly better. Furthermore, SSA is a model-free technique, so it is likely to have a very wide range in its application. Selection of the best model is based on the value of the lowest MAPE. Based on the calculation, it is obtained the best model for ARFIMA is ARFIMA (3, d = 0, 63, 0) with MAPE value of 22.95 percent. For SSA with a window length of 53 and 4 group of reconstructed data, resulting MAPE value of 13.57 percent. Based on these results it is concluded that SSA produces better forecasting accuracy.
Zhang, Yongtao; Cui, Yan; Wang, Fei; Cai, Yangjian
2015-05-04
We have investigated the correlation singularities, coherence vortices of two-point correlation function in a partially coherent vector beam with initially radial polarization, i.e., partially coherent radially polarized (PCRP) beam. It is found that these singularities generally occur during free space propagation. Analytical formulae for characterizing the dynamics of the correlation singularities on propagation are derived. The influence of the spatial coherence length of the beam on the evolution properties of the correlation singularities and the conditions for creation and annihilation of the correlation singularities during propagation have been studied in detail based on the derived formulae. Some interesting results are illustrated. These correlation singularities have implication for interference experiments with a PCRP beam.
The effect of spherical aberration on the phase singularities of focused dark-hollow Gaussian beams
NASA Astrophysics Data System (ADS)
Luo, Yamei; Lü, Baida
2009-06-01
The phase singularities of focused dark-hollow Gaussian beams in the presence of spherical aberration are studied. It is shown that the evolution behavior of phase singularities of focused dark-hollow Gaussian beams in the focal region depends not only on the truncation parameter and beam order, but also on the spherical aberration. The spherical aberration leads to an asymmetric spatial distribution of singularities outside the focal plane and to a shift of singularities near the focal plane. The reorganization process of singularities and spatial distribution of singularities are additionally dependent on the sign of the spherical aberration. The results are illustrated by numerical examples.
NASA Astrophysics Data System (ADS)
Tan, Shurun
The objective of my research is two-fold: to study wave scattering phenomena in dense volumetric random media and in periodic wave functional materials. For the first part, the goal is to use the microwave remote sensing technique to monitor water resources and global climate change. Towards this goal, I study the microwave scattering behavior of snow and ice sheet. For snowpack scattering, I have extended the traditional dense media radiative transfer (DMRT) approach to include cyclical corrections that give rise to backscattering enhancements, enabling the theory to model combined active and passive observations of snowpack using the same set of physical parameters. Besides DMRT, a fully coherent approach is also developed by solving Maxwell's equations directly over the entire snowpack including a bottom half space. This revolutionary new approach produces consistent scattering and emission results, and demonstrates backscattering enhancements and coherent layer effects. The birefringence in anisotropic snow layers is also analyzed by numerically solving Maxwell's equation directly. The effects of rapid density fluctuations in polar ice sheet emission in the 0.5˜2.0 GHz spectrum are examined using both fully coherent and partially coherent layered media emission theories that agree with each other and distinct from incoherent approaches. For the second part, the goal is to develop integral equation based methods to solve wave scattering in periodic structures such as photonic crystals and metamaterials that can be used for broadband simulations. Set upon the concept of modal expansion of the periodic Green's function, we have developed the method of broadband Green's function with low wavenumber extraction (BBGFL), where a low wavenumber component is extracted and results a non-singular and fast-converging remaining part with simple wavenumber dependence. We've applied the technique to simulate band diagrams and modal solutions of periodic structures, and to construct broadband Green's functions including periodic scatterers.
Unidirectional spectral singularities.
Ramezani, Hamidreza; Li, Hao-Kun; Wang, Yuan; Zhang, Xiang
2014-12-31
We propose a class of spectral singularities emerging from the coincidence of two independent singularities with highly directional responses. These spectral singularities result from resonance trapping induced by the interplay between parity-time symmetry and Fano resonances. At these singularities, while the system is reciprocal in terms of a finite transmission, a simultaneous infinite reflection from one side and zero reflection from the opposite side can be realized.
Understanding Singular Vectors
ERIC Educational Resources Information Center
James, David; Botteron, Cynthia
2013-01-01
matrix yields a surprisingly simple, heuristical approximation to its singular vectors. There are correspondingly good approximations to the singular values. Such rules of thumb provide an intuitive interpretation of the singular vectors that helps explain why the SVD is so…
2017-07-01
8-3 8.4.1 Characteristics of a Singular Composite Output Signal ...................................... 8-3 8.5 Single Bus Track Spread Recording ...Format .............................................................. 8-5 8.5.1 Single Bus Recording Technique Characteristics...check FCS frame check sequence HDDR high-density digital recording MIL-STD Military Standard msb most significant bit PCM pulse code modulation
Finite-dimensional integrable systems: A collection of research problems
NASA Astrophysics Data System (ADS)
Bolsinov, A. V.; Izosimov, A. M.; Tsonev, D. M.
2017-05-01
This article suggests a series of problems related to various algebraic and geometric aspects of integrability. They reflect some recent developments in the theory of finite-dimensional integrable systems such as bi-Poisson linear algebra, Jordan-Kronecker invariants of finite dimensional Lie algebras, the interplay between singularities of Lagrangian fibrations and compatible Poisson brackets, and new techniques in projective geometry.
Development of an Efficient Binaural Simulation for the Analysis of Structural Acoustic Data
NASA Technical Reports Server (NTRS)
Johnson, Marty E.; Lalime, Aimee L.; Grosveld, Ferdinand W.; Rizzi, Stephen A.; Sullivan, Brenda M.
2003-01-01
Applying binaural simulation techniques to structural acoustic data can be very computationally intensive as the number of discrete noise sources can be very large. Typically, Head Related Transfer Functions (HRTFs) are used to individually filter the signals from each of the sources in the acoustic field. Therefore, creating a binaural simulation implies the use of potentially hundreds of real time filters. This paper details two methods of reducing the number of real-time computations required by: (i) using the singular value decomposition (SVD) to reduce the complexity of the HRTFs by breaking them into dominant singular values and vectors and (ii) by using equivalent source reduction (ESR) to reduce the number of sources to be analyzed in real-time by replacing sources on the scale of a structural wavelength with sources on the scale of an acoustic wavelength. The ESR and SVD reduction methods can be combined to provide an estimated computation time reduction of 99.4% for the structural acoustic data tested. In addition, preliminary tests have shown that there is a 97% correlation between the results of the combined reduction methods and the results found with the current binaural simulation techniques
Philippe, Franck D; Prada, Claire; de Rosny, Julien; Clorennec, Dominique; Minonzio, Jean-Gabriel; Fink, Mathias
2008-08-01
This paper reports the results of an investigation into extracting of the backscattered frequency signature of a target in a waveguide. Retrieving the target signature is difficult because it is blurred by waveguide reflections and modal interference. It is shown that the decomposition of the time-reversal operator method provides a solution to this problem. Using a modal theory, this paper shows that the first singular value associated with a target is proportional to the backscattering form function. It is linked to the waveguide geometry through a factor that weakly depends on frequency as long as the target is far from the boundaries. Using the same approach, the second singular value is shown to be proportional to the second derivative of the angular form function which is a relevant parameter for target identification. Within this framework the coupling between two targets is considered. Small scale experimental studies are performed in the 3.5 MHz frequency range for 3 mm spheres in a 28 mm deep and 570 mm long waveguide and confirm the theoretical results.
NASA Astrophysics Data System (ADS)
Zhang, Siqian; Kuang, Gangyao
2014-10-01
In this paper, a novel three-dimensional imaging algorithm of downward-looking linear array SAR is presented. To improve the resolution, multiple signal classification (MUSIC) algorithm has been used. However, since the scattering centers are always correlated in real SAR system, the estimated covariance matrix becomes singular. To address the problem, a three-dimensional spatial smoothing method is proposed in this paper to restore the singular covariance matrix to a full-rank one. The three-dimensional signal matrix can be divided into a set of orthogonal three-dimensional subspaces. The main idea of the method is based on extracting the array correlation matrix as the average of all correlation matrices from the subspaces. In addition, the spectral height of the peaks contains no information with regard to the scattering intensity of the different scattering centers, thus it is difficulty to reconstruct the backscattering information. The least square strategy is used to estimate the amplitude of the scattering center in this paper. The above results of the theoretical analysis are verified by 3-D scene simulations and experiments on real data.
Nonstationary Dynamics Data Analysis with Wavelet-SVD Filtering
NASA Technical Reports Server (NTRS)
Brenner, Marty; Groutage, Dale; Bessette, Denis (Technical Monitor)
2001-01-01
Nonstationary time-frequency analysis is used for identification and classification of aeroelastic and aeroservoelastic dynamics. Time-frequency multiscale wavelet processing generates discrete energy density distributions. The distributions are processed using the singular value decomposition (SVD). Discrete density functions derived from the SVD generate moments that detect the principal features in the data. The SVD standard basis vectors are applied and then compared with a transformed-SVD, or TSVD, which reduces the number of features into more compact energy density concentrations. Finally, from the feature extraction, wavelet-based modal parameter estimation is applied.
Hyperboloidal evolution of test fields in three spatial dimensions
NASA Astrophysics Data System (ADS)
Zenginoǧlu, Anıl; Kidder, Lawrence E.
2010-06-01
We present the numerical implementation of a clean solution to the outer boundary and radiation extraction problems within the 3+1 formalism for hyperbolic partial differential equations on a given background. Our approach is based on compactification at null infinity in hyperboloidal scri fixing coordinates. We report numerical tests for the particular example of a scalar wave equation on Minkowski and Schwarzschild backgrounds. We address issues related to the implementation of the hyperboloidal approach for the Einstein equations, such as nonlinear source functions, matching, and evaluation of formally singular terms at null infinity.
Extension of the tridiagonal reduction (FEER) method for complex eigenvalue problems in NASTRAN
NASA Technical Reports Server (NTRS)
Newman, M.; Mann, F. I.
1978-01-01
As in the case of real eigenvalue analysis, the eigensolutions closest to a selected point in the eigenspectrum were extracted from a reduced, symmetric, tridiagonal eigenmatrix whose order was much lower than that of the full size problem. The reduction process was effected automatically, and thus avoided the arbitrary lumping of masses and other physical quantities at selected grid points. The statement of the algebraic eigenvalue problem admitted mass, damping, and stiffness matrices which were unrestricted in character, i.e., they might be real, symmetric or nonsymmetric, singular or nonsingular.
Tachyon field in loop quantum cosmology: An example of traversable singularity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Lifang; Zhu Jianyang
2009-06-15
Loop quantum cosmology (LQC) predicts a nonsingular evolution of the universe through a bounce in the high energy region. But LQC has an ambiguity about the quantization scheme. Recently, the authors in [Phys. Rev. D 77, 124008 (2008)] proposed a new quantization scheme. Similar to others, this new quantization scheme also replaces the big bang singularity with the quantum bounce. More interestingly, it introduces a quantum singularity, which is traversable. We investigate this novel dynamics quantitatively with a tachyon scalar field, which gives us a concrete example. Our result shows that our universe can evolve through the quantum singularity regularly,more » which is different from the classical big bang singularity. So this singularity is only a weak singularity.« less
Luzanov, A V
2008-09-07
The Wigner function for the pure quantum states is used as an integral kernel of the non-Hermitian operator K, to which the standard singular value decomposition (SVD) is applied. It provides a set of the squared singular values treated as probabilities of the individual phase-space processes, the latter being described by eigenfunctions of KK(+) (for coordinate variables) and K(+)K (for momentum variables). Such a SVD representation is employed to obviate the well-known difficulties in the definition of the phase-space entropy measures in terms of the Wigner function that usually allows negative values. In particular, the new measures of nonclassicality are constructed in the form that automatically satisfies additivity for systems composed of noninteracting parts. Furthermore, the emphasis is given on the geometrical interpretation of the full entropy measure as the effective phase-space volume in the Wigner picture of quantum mechanics. The approach is exemplified by considering some generic vibrational systems. Specifically, for eigenstates of the harmonic oscillator and a superposition of coherent states, the singular value spectrum is evaluated analytically. Numerical computations are given for the nonlinear problems (the Morse and double well oscillators, and the Henon-Heiles system). We also discuss the difficulties in implementation of a similar technique for electronic problems.
Singularities in loop quantum cosmology.
Cailleteau, Thomas; Cardoso, Antonio; Vandersloot, Kevin; Wands, David
2008-12-19
We show that simple scalar field models can give rise to curvature singularities in the effective Friedmann dynamics of loop quantum cosmology (LQC). We find singular solutions for spatially flat Friedmann-Robertson-Walker cosmologies with a canonical scalar field and a negative exponential potential, or with a phantom scalar field and a positive potential. While LQC avoids big bang or big rip type singularities, we find sudden singularities where the Hubble rate is bounded, but the Ricci curvature scalar diverges. We conclude that the effective equations of LQC are not in themselves sufficient to avoid the occurrence of curvature singularities.
NASA Technical Reports Server (NTRS)
Sidi, A.; Israeli, M.
1986-01-01
High accuracy numerical quadrature methods for integrals of singular periodic functions are proposed. These methods are based on the appropriate Euler-Maclaurin expansions of trapezoidal rule approximations and their extrapolations. They are used to obtain accurate quadrature methods for the solution of singular and weakly singular Fredholm integral equations. Such periodic equations are used in the solution of planar elliptic boundary value problems, elasticity, potential theory, conformal mapping, boundary element methods, free surface flows, etc. The use of the quadrature methods is demonstrated with numerical examples.
MIBPB: a software package for electrostatic analysis.
Chen, Duan; Chen, Zhan; Chen, Changjun; Geng, Weihua; Wei, Guo-Wei
2011-03-01
The Poisson-Boltzmann equation (PBE) is an established model for the electrostatic analysis of biomolecules. The development of advanced computational techniques for the solution of the PBE has been an important topic in the past two decades. This article presents a matched interface and boundary (MIB)-based PBE software package, the MIBPB solver, for electrostatic analysis. The MIBPB has a unique feature that it is the first interface technique-based PBE solver that rigorously enforces the solution and flux continuity conditions at the dielectric interface between the biomolecule and the solvent. For protein molecular surfaces, which may possess troublesome geometrical singularities, the MIB scheme makes the MIBPB by far the only existing PBE solver that is able to deliver the second-order convergence, that is, the accuracy increases four times when the mesh size is halved. The MIBPB method is also equipped with a Dirichlet-to-Neumann mapping technique that builds a Green's function approach to analytically resolve the singular charge distribution in biomolecules in order to obtain reliable solutions at meshes as coarse as 1 Å--whereas it usually takes other traditional PB solvers 0.25 Å to reach similar level of reliability. This work further accelerates the rate of convergence of linear equation systems resulting from the MIBPB by using the Krylov subspace (KS) techniques. Condition numbers of the MIBPB matrices are significantly reduced by using appropriate KS solver and preconditioner combinations. Both linear and nonlinear PBE solvers in the MIBPB package are tested by protein-solvent solvation energy calculations and analysis of salt effects on protein-protein binding energies, respectively. Copyright © 2010 Wiley Periodicals, Inc.
MIBPB: A software package for electrostatic analysis
Chen, Duan; Chen, Zhan; Chen, Changjun; Geng, Weihua; Wei, Guo-Wei
2010-01-01
The Poisson-Boltzmann equation (PBE) is an established model for the electrostatic analysis of biomolecules. The development of advanced computational techniques for the solution of the PBE has been an important topic in the past two decades. This paper presents a matched interface and boundary (MIB) based PBE software package, the MIBPB solver, for electrostatic analysis. The MIBPB has a unique feature that it is the first interface technique based PBE solver that rigorously enforces the solution and flux continuity conditions at the dielectric interface between the biomolecule and the solvent. For protein molecular surfaces which may possess troublesome geometrical singularities, the MIB scheme makes the MIBPB by far the only existing PBE solver that is able to deliver the second order convergence, i.e., the accuracy increases four times when the mesh size is halved. The MIBPB method is also equipped with a Dirichlet-to-Neumann mapping (DNM) technique, that builds a Green's function approach to analytically resolve the singular charge distribution in biomolecules in order to obtain reliable solutions at meshes as coarse as 1Å — while it usually takes other traditional PB solvers 0.25Å to reach similar level of reliability. The present work further accelerates the rate of convergence of linear equation systems resulting from the MIBPB by utilizing the Krylov subspace (KS) techniques. Condition numbers of the MIBPB matrices are significantly reduced by using appropriate Krylov subspace solver and preconditioner combinations. Both linear and nonlinear PBE solvers in the MIBPB package are tested by protein-solvent solvation energy calculations and analysis of salt effects on protein-protein binding energies, respectively. PMID:20845420
NASA Astrophysics Data System (ADS)
Dehghan, Mehdi; Mohammadi, Vahid
2017-08-01
In this research, we investigate the numerical solution of nonlinear Schrödinger equations in two and three dimensions. The numerical meshless method which will be used here is RBF-FD technique. The main advantage of this method is the approximation of the required derivatives based on finite difference technique at each local-support domain as Ωi. At each Ωi, we require to solve a small linear system of algebraic equations with a conditionally positive definite matrix of order 1 (interpolation matrix). This scheme is efficient and its computational cost is same as the moving least squares (MLS) approximation. A challengeable issue is choosing suitable shape parameter for interpolation matrix in this way. In order to overcome this matter, an algorithm which was established by Sarra (2012), will be applied. This algorithm computes the condition number of the local interpolation matrix using the singular value decomposition (SVD) for obtaining the smallest and largest singular values of that matrix. Moreover, an explicit method based on Runge-Kutta formula of fourth-order accuracy will be applied for approximating the time variable. It also decreases the computational costs at each time step since we will not solve a nonlinear system. On the other hand, to compare RBF-FD method with another meshless technique, the moving kriging least squares (MKLS) approximation is considered for the studied model. Our results demonstrate the ability of the present approach for solving the applicable model which is investigated in the current research work.
Reducing Memory Cost of Exact Diagonalization using Singular Value Decomposition
NASA Astrophysics Data System (ADS)
Weinstein, Marvin; Chandra, Ravi; Auerbach, Assa
2012-02-01
We present a modified Lanczos algorithm to diagonalize lattice Hamiltonians with dramatically reduced memory requirements. In contrast to variational approaches and most implementations of DMRG, Lanczos rotations towards the ground state do not involve incremental minimizations, (e.g. sweeping procedures) which may get stuck in false local minima. The lattice of size N is partitioned into two subclusters. At each iteration the rotating Lanczos vector is compressed into two sets of nsvd small subcluster vectors using singular value decomposition. For low entanglement entropy See, (satisfied by short range Hamiltonians), the truncation error is bounded by (-nsvd^1/See). Convergence is tested for the Heisenberg model on Kagom'e clusters of 24, 30 and 36 sites, with no lattice symmetries exploited, using less than 15GB of dynamical memory. Generalization of the Lanczos-SVD algorithm to multiple partitioning is discussed, and comparisons to other techniques are given. Reference: arXiv:1105.0007
Łącki, Mateusz; Damski, Bogdan; Zakrzewski, Jakub
2016-12-02
We show that the critical point of the two-dimensional Bose-Hubbard model can be easily found through studies of either on-site atom number fluctuations or the nearest-neighbor two-point correlation function (the expectation value of the tunnelling operator). Our strategy to locate the critical point is based on the observation that the derivatives of these observables with respect to the parameter that drives the superfluid-Mott insulator transition are singular at the critical point in the thermodynamic limit. Performing the quantum Monte Carlo simulations of the two-dimensional Bose-Hubbard model, we show that this technique leads to the accurate determination of the position of its critical point. Our results can be easily extended to the three-dimensional Bose-Hubbard model and different Hubbard-like models. They provide a simple experimentally-relevant way of locating critical points in various cold atomic lattice systems.
Singular perturbations and time scales in the design of digital flight control systems
NASA Technical Reports Server (NTRS)
Naidu, Desineni S.; Price, Douglas B.
1988-01-01
The results are presented of application of the methodology of Singular Perturbations and Time Scales (SPATS) to the control of digital flight systems. A block diagonalization method is described to decouple a full order, two time (slow and fast) scale, discrete control system into reduced order slow and fast subsystems. Basic properties and numerical aspects of the method are discussed. A composite, closed-loop, suboptimal control system is constructed as the sum of the slow and fast optimal feedback controls. The application of this technique to an aircraft model shows close agreement between the exact solutions and the decoupled (or composite) solutions. The main advantage of the method is the considerable reduction in the overall computational requirements for the evaluation of optimal guidance and control laws. The significance of the results is that it can be used for real time, onboard simulation. A brief survey is also presented of digital flight systems.
Juan, Pierre -Alexandre; Dingreville, Remi
2016-10-31
Interfacial crack fields and singularities in bimaterial interfaces (i.e., grain boundaries or dissimilar materials interfaces) are considered through a general formulation for two-dimensional (2-D) anisotropic elasticity while accounting for the interfacial structure by means of an interfacial elasticity paradigm. The interfacial elasticity formulation introduces boundary conditions that are effectively equivalent to those for a weakly bounded interface. This formalism considers the 2-D crack-tip elastic fields using complex variable techniques. While the consideration of the interfacial elasticity does not affect the order of the singularity, it modifies the oscillatory effects associated with problems involving interface cracks. Constructive or destructive “interferences” aremore » directly affected by the interface structure and its elastic response. Furthermore, this general formulation provides an insight on the physical significance and the obvious coupling between the interface structure and the associated mechanical fields in the vicinity of the crack tip.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juan, Pierre -Alexandre; Dingreville, Remi
Interfacial crack fields and singularities in bimaterial interfaces (i.e., grain boundaries or dissimilar materials interfaces) are considered through a general formulation for two-dimensional (2-D) anisotropic elasticity while accounting for the interfacial structure by means of an interfacial elasticity paradigm. The interfacial elasticity formulation introduces boundary conditions that are effectively equivalent to those for a weakly bounded interface. This formalism considers the 2-D crack-tip elastic fields using complex variable techniques. While the consideration of the interfacial elasticity does not affect the order of the singularity, it modifies the oscillatory effects associated with problems involving interface cracks. Constructive or destructive “interferences” aremore » directly affected by the interface structure and its elastic response. Furthermore, this general formulation provides an insight on the physical significance and the obvious coupling between the interface structure and the associated mechanical fields in the vicinity of the crack tip.« less
Wavelet maxima curves of surface latent heat flux associated with two recent Greek earthquakes
NASA Astrophysics Data System (ADS)
Cervone, G.; Kafatos, M.; Napoletani, D.; Singh, R. P.
2004-05-01
Multi sensor data available through remote sensing satellites provide information about changes in the state of the oceans, land and atmosphere. Recent studies have shown anomalous changes in oceans, land, atmospheric and ionospheric parameters prior to earthquakes events. This paper introduces an innovative data mining technique to identify precursory signals associated with earthquakes. The proposed methodology is a multi strategy approach which employs one dimensional wavelet transformations to identify singularities in the data, and an analysis of the continuity of the wavelet maxima in time and space to identify the singularities associated with earthquakes. The proposed methodology has been employed using Surface Latent Heat Flux (SLHF) data to study the earthquakes which occurred on 14 August 2003 and on 1 March 2004 in Greece. A single prominent SLHF anomaly has been found about two weeks prior to each of the earthquakes.
NASA Astrophysics Data System (ADS)
Emge, Darren K.; Adalı, Tülay
2014-06-01
As the availability and use of imaging methodologies continues to increase, there is a fundamental need to jointly analyze data that is collected from multiple modalities. This analysis is further complicated when, the size or resolution of the images differ, implying that the observation lengths of each of modality can be highly varying. To address this expanding landscape, we introduce the multiset singular value decomposition (MSVD), which can perform a joint analysis on any number of modalities regardless of their individual observation lengths. Through simulations, the inter modal relationships across the different modalities which are revealed by the MSVD are shown. We apply the MSVD to forensic fingerprint analysis, showing that MSVD joint analysis successfully identifies relevant similarities for further analysis, significantly reducing the processing time required. This reduction, takes this technique from a laboratory method to a useful forensic tool with applications across the law enforcement and security regimes.
Basin boundaries and focal points in a map coming from Bairstow's method.
Gardini, Laura; Bischi, Gian-Italo; Fournier-Prunaret, Daniele
1999-06-01
This paper is devoted to the study of the global dynamical properties of a two-dimensional noninvertible map, with a denominator which can vanish, obtained by applying Bairstow's method to a cubic polynomial. It is shown that the complicated structure of the basins of attraction of the fixed points is due to the existence of singularities such as sets of nondefinition, focal points, and prefocal curves, which are specific to maps with a vanishing denominator, and have been recently introduced in the literature. Some global bifurcations that change the qualitative structure of the basin boundaries, are explained in terms of contacts among these singularities. The techniques used in this paper put in evidence some new dynamic behaviors and bifurcations, which are peculiar of maps with denominator; hence they can be applied to the analysis of other classes of maps coming from iterative algorithms (based on Newton's method, or others). (c) 1999 American Institute of Physics.
NASA Technical Reports Server (NTRS)
Nissim, Eli
1990-01-01
The aerodynamic energy method is used to synthesize control laws for NASA's drone for aerodynamic and structural testing-aerodynamic research wing 1 (DAST-ARW1) mathematical model. The performance of these control laws in terms of closed-loop flutter dynamic pressure, control surface activity, and robustness is compared with other control laws that relate to the same model. A control law synthesis technique that makes use of the return difference singular values is developed. It is based on the aerodynamic energy approach and is shown to yield results that are superior to those results given in the literature and are based on optimal control theory. Nyquist plots are presented, together with a short discussion regarding the relative merits of the minimum singular value as a measure of robustness as compared with the more traditional measure involving phase and gain margins.
NASA Technical Reports Server (NTRS)
Nissim, E.
1989-01-01
The aerodynamic energy method is used in this paper to synthesize control laws for NASA's Drone for Aerodynamic and Structural Testing-Aerodynamic Research Wing 1 (DAST-ARW1) mathematical model. The performance of these control laws in terms of closed-loop flutter dynamic pressure, control surface activity, and robustness is compared against other control laws that appear in the literature and relate to the same model. A control law synthesis technique that makes use of the return difference singular values is developed in this paper. it is based on the aerodynamic energy approach and is shown to yield results superior to those given in the literature and based on optimal control theory. Nyquist plots are presented together with a short discussion regarding the relative merits of the minimum singular value as a measure of robustness, compared with the more traditional measure of robustness involving phase and gain margins.
NASA Astrophysics Data System (ADS)
Florindo, João. Batista
2018-04-01
This work proposes the use of Singular Spectrum Analysis (SSA) for the classification of texture images, more specifically, to enhance the performance of the Bouligand-Minkowski fractal descriptors in this task. Fractal descriptors are known to be a powerful approach to model and particularly identify complex patterns in natural images. Nevertheless, the multiscale analysis involved in those descriptors makes them highly correlated. Although other attempts to address this point was proposed in the literature, none of them investigated the relation between the fractal correlation and the well-established analysis employed in time series. And SSA is one of the most powerful techniques for this purpose. The proposed method was employed for the classification of benchmark texture images and the results were compared with other state-of-the-art classifiers, confirming the potential of this analysis in image classification.
NASA Astrophysics Data System (ADS)
Das, Siddhartha; Siopsis, George; Weedbrook, Christian
2018-02-01
With the significant advancement in quantum computation during the past couple of decades, the exploration of machine-learning subroutines using quantum strategies has become increasingly popular. Gaussian process regression is a widely used technique in supervised classical machine learning. Here we introduce an algorithm for Gaussian process regression using continuous-variable quantum systems that can be realized with technology based on photonic quantum computers under certain assumptions regarding distribution of data and availability of efficient quantum access. Our algorithm shows that by using a continuous-variable quantum computer a dramatic speedup in computing Gaussian process regression can be achieved, i.e., the possibility of exponentially reducing the time to compute. Furthermore, our results also include a continuous-variable quantum-assisted singular value decomposition method of nonsparse low rank matrices and forms an important subroutine in our Gaussian process regression algorithm.
Control landscapes are almost always trap free: a geometric assessment
NASA Astrophysics Data System (ADS)
Russell, Benjamin; Rabitz, Herschel; Wu, Re-Bing
2017-05-01
A proof is presented that almost all closed, finite dimensional quantum systems have trap free (i.e. free from local optima) landscapes for a large and physically general class of circumstances, which includes qubit evolutions in quantum computing. This result offers an explanation for why gradient-based methods succeed so frequently in quantum control. The role of singular controls is analyzed using geometric tools in the case of the control of the propagator, and thus in the case of observables as well. Singular controls have been implicated as a source of landscape traps. The conditions under which singular controls can introduce traps, and thus interrupt the progress of a control optimization, are discussed and a geometrical characterization of the issue is presented. It is shown that a control being singular is not sufficient to cause control optimization progress to halt, and sufficient conditions for a trap free landscape are presented. It is further shown that the local surjectivity (full rank) assumption of landscape analysis can be refined to the condition that the end-point map is transverse to each of the level sets of the fidelity function. This mild condition is shown to be sufficient for a quantum system’s landscape to be trap free. The control landscape is shown to be trap free for all but a null set of Hamiltonians using a geometric technique based on the parametric transversality theorem. Numerical evidence confirming this analysis is also presented. This new result is the analogue of the work of Altifini, wherein it was shown that controllability holds for all but a null set of quantum systems in the dipole approximation. These collective results indicate that the availability of adequate control resources remains the most physically relevant issue for achieving high fidelity control performance while also avoiding landscape traps.
Second-order Poisson Nernst-Planck solver for ion channel transport
Zheng, Qiong; Chen, Duan; Wei, Guo-Wei
2010-01-01
The Poisson Nernst-Planck (PNP) theory is a simplified continuum model for a wide variety of chemical, physical and biological applications. Its ability of providing quantitative explanation and increasingly qualitative predictions of experimental measurements has earned itself much recognition in the research community. Numerous computational algorithms have been constructed for the solution of the PNP equations. However, in the realistic ion-channel context, no second order convergent PNP algorithm has ever been reported in the literature, due to many numerical obstacles, including discontinuous coefficients, singular charges, geometric singularities, and nonlinear couplings. The present work introduces a number of numerical algorithms to overcome the abovementioned numerical challenges and constructs the first second-order convergent PNP solver in the ion-channel context. First, a Dirichlet to Neumann mapping (DNM) algorithm is designed to alleviate the charge singularity due to the protein structure. Additionally, the matched interface and boundary (MIB) method is reformulated for solving the PNP equations. The MIB method systematically enforces the interface jump conditions and achieves the second order accuracy in the presence of complex geometry and geometric singularities of molecular surfaces. Moreover, two iterative schemes are utilized to deal with the coupled nonlinear equations. Furthermore, extensive and rigorous numerical validations are carried out over a number of geometries, including a sphere, two proteins and an ion channel, to examine the numerical accuracy and convergence order of the present numerical algorithms. Finally, application is considered to a real transmembrane protein, the Gramicidin A channel protein. The performance of the proposed numerical techniques is tested against a number of factors, including mesh sizes, diffusion coefficient profiles, iterative schemes, ion concentrations, and applied voltages. Numerical predictions are compared with experimental measurements. PMID:21552336
Argyres, Philip C.; Uensal, Mithat
2012-08-10
We study the dynamics of four dimensional gauge theories with adjoint fermions for all gauge groups, both in perturbation theory and non-perturbatively, by using circle compactification with periodic boundary conditions for the fermions. There are new gauge phenomena. We show that, to all orders in perturbation theory, many gauge groups are Higgsed by the gauge holonomy around the circle to a product of both abelian and nonabelian gauge group factors. Non-perturbatively there are monopole-instantons with fermion zero modes and two types of monopole-anti-monopole molecules, called bions. One type are magnetic bions which carry net magnetic charge and induce a massmore » gap for gauge fluctuations. Another type are neutral bions which are magnetically neutral, and their understanding requires a generalization of multi-instanton techniques in quantum mechanics — which we refer to as the Bogomolny-Zinn-Justin (BZJ) prescription — to compactified field theory. The BZJ prescription applied to bion-anti-bion topological molecules predicts a singularity on the positive real axis of the Borel plane (i.e., a divergence from summing large orders in peturbation theory) which is of order N times closer to the origin than the leading 4-d BPST instanton-anti-instanton singularity, where N is the rank of the gauge group. The position of the bion-anti-bion singularity is thus qualitatively similar to that of the 4-d IR renormalon singularity, and we conjecture that they are continuously related as the compactification radius is changed. By making use of transseries and Écalle’s resurgence theory we argue that a non-perturbative continuum definition of a class of field theories which admit semi-classical expansions may be possible.« less
Exponential Approximations Using Fourier Series Partial Sums
NASA Technical Reports Server (NTRS)
Banerjee, Nana S.; Geer, James F.
1997-01-01
The problem of accurately reconstructing a piece-wise smooth, 2(pi)-periodic function f and its first few derivatives, given only a truncated Fourier series representation of f, is studied and solved. The reconstruction process is divided into two steps. In the first step, the first 2N + 1 Fourier coefficients of f are used to approximate the locations and magnitudes of the discontinuities in f and its first M derivatives. This is accomplished by first finding initial estimates of these quantities based on certain properties of Gibbs phenomenon, and then refining these estimates by fitting the asymptotic form of the Fourier coefficients to the given coefficients using a least-squares approach. It is conjectured that the locations of the singularities are approximated to within O(N(sup -M-2), and the associated jump of the k(sup th) derivative of f is approximated to within O(N(sup -M-l+k), as N approaches infinity, and the method is robust. These estimates are then used with a class of singular basis functions, which have certain 'built-in' singularities, to construct a new sequence of approximations to f. Each of these new approximations is the sum of a piecewise smooth function and a new Fourier series partial sum. When N is proportional to M, it is shown that these new approximations, and their derivatives, converge exponentially in the maximum norm to f, and its corresponding derivatives, except in the union of a finite number of small open intervals containing the points of singularity of f. The total measure of these intervals decreases exponentially to zero as M approaches infinity. The technique is illustrated with several examples.
NASA Astrophysics Data System (ADS)
Abdulhameed, M.; Vieru, D.; Roslan, R.
2017-10-01
This paper investigates the electro-magneto-hydrodynamic flow of the non-Newtonian behavior of biofluids, with heat transfer, through a cylindrical microchannel. The fluid is acted by an arbitrary time-dependent pressure gradient, an external electric field and an external magnetic field. The governing equations are considered as fractional partial differential equations based on the Caputo-Fabrizio time-fractional derivatives without singular kernel. The usefulness of fractional calculus to study fluid flows or heat and mass transfer phenomena was proven. Several experimental measurements led to conclusion that, in such problems, the models described by fractional differential equations are more suitable. The most common time-fractional derivative used in Continuum Mechanics is Caputo derivative. However, two disadvantages appear when this derivative is used. First, the definition kernel is a singular function and, secondly, the analytical expressions of the problem solutions are expressed by generalized functions (Mittag-Leffler, Lorenzo-Hartley, Robotnov, etc.) which, generally, are not adequate to numerical calculations. The new time-fractional derivative Caputo-Fabrizio, without singular kernel, is more suitable to solve various theoretical and practical problems which involve fractional differential equations. Using the Caputo-Fabrizio derivative, calculations are simpler and, the obtained solutions are expressed by elementary functions. Analytical solutions of the biofluid velocity and thermal transport are obtained by means of the Laplace and finite Hankel transforms. The influence of the fractional parameter, Eckert number and Joule heating parameter on the biofluid velocity and thermal transport are numerically analyzed and graphic presented. This fact can be an important in Biochip technology, thus making it possible to use this analysis technique extremely effective to control bioliquid samples of nanovolumes in microfluidic devices used for biological analysis and medical diagnosis.
A Generalized Method of Image Analysis from an Intercorrelation Matrix which May Be Singular.
ERIC Educational Resources Information Center
Yanai, Haruo; Mukherjee, Bishwa Nath
1987-01-01
This generalized image analysis method is applicable to singular and non-singular correlation matrices (CMs). Using the orthogonal projector and a weaker generalized inverse matrix, image and anti-image covariance matrices can be derived from a singular CM. (SLD)
Li, Lifeng
2012-04-01
I extend a previous work [J. Opt. Soc. Am. A, 738 (2011)] on field singularities at lossless metal-dielectric right-angle edges and their ramifications to the numerical modeling of gratings to the case of arbitrary metallic wedge angles. Simple criteria are given that allow one knowing the lossless permittivities and the arbitrary wedge angles to determine if the electric field at the edges is nonsingular, can be regularly singular, or can be irregularly singular without calculating the singularity exponent. Furthermore, the knowledge of the singularity type enables one to predict immediately if a numerical method that uses Fourier expansions of the transverse electric field components at the edges will converge or not without making any numerical tests. All conclusions of the previous work about the general relationships between field singularities, Fourier representation of singular fields, and convergence of numerical methods for modeling lossless metal-dielectric gratings have been reconfirmed.
Elasticity solutions for a class of composite laminate problems with stress singularities
NASA Technical Reports Server (NTRS)
Wang, S. S.
1983-01-01
A study on the fundamental mechanics of fiber-reinforced composite laminates with stress singularities is presented. Based on the theory of anisotropic elasticity and Lekhnitskii's complex-variable stress potentials, a system of coupled governing partial differential equations are established. An eigenfunction expansion method is introduced to determine the orders of stress singularities in composite laminates with various geometric configurations and material systems. Complete elasticity solutions are obtained for this class of singular composite laminate mechanics problems. Homogeneous solutions in eigenfunction series and particular solutions in polynomials are presented for several cases of interest. Three examples are given to illustrate the method of approach and the basic nature of the singular laminate elasticity solutions. The first problem is the well-known laminate free-edge stress problem, which has a rather weak stress singularity. The second problem is the important composite delamination problem, which has a strong crack-tip stress singularity. The third problem is the commonly encountered bonded composite joints, which has a complex solution structure with moderate orders of stress singularities.
Future singularity avoidance in phantom dark energy models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haro, Jaume de, E-mail: jaime.haro@upc.edu
2012-07-01
Different approaches to quantum cosmology are studied in order to deal with the future singularity avoidance problem. Our results show that these future singularities will persist but could take different forms. As an example we have studied the big rip which appear when one considers the state equation P = ωρ with ω < −1, showing that it does not disappear in modified gravity. On the other hand, it is well-known that quantum geometric effects (holonomy corrections) in loop quantum cosmology introduce a quadratic modification, namely proportional to ρ{sup 2}, in Friedmann's equation that replace the big rip by amore » non-singular bounce. However this modified Friedmann equation could have been obtained in an inconsistent way, what means that the obtained results from this equation, in particular singularity avoidance, would be incorrect. In fact, we will show that instead of a non-singular bounce, the big rip singularity would be replaced, in loop quantum cosmology, by other kind of singularity.« less
Loop quantum cosmology and singularities.
Struyve, Ward
2017-08-15
Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.
New singularities in unexpected places
NASA Astrophysics Data System (ADS)
Barrow, John D.; Graham, Alexander A. H.
2015-09-01
Spacetime singularities have been discovered which are physically much weaker than those predicted by the classical singularity theorems. Geodesics evolve through them and they only display infinities in the derivatives of their curvature invariants. So far, these singularities have appeared to require rather exotic and unphysical matter for their occurrence. Here, we show that a large class of singularities of this form can be found in a simple Friedmann cosmology containing only a scalar-field with a power-law self-interaction potential. Their existence challenges several preconceived ideas about the nature of spacetime singularities and has an impact upon the end of inflation in the early universe.
Exotic singularities and spatially curved loop quantum cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Parampreet; Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5; Vidotto, Francesca
2011-03-15
We investigate the occurrence of various exotic spacelike singularities in the past and the future evolution of k={+-}1 Friedmann-Robertson-Walker model and loop quantum cosmology using a sufficiently general phenomenological model for the equation of state. We highlight the nontrivial role played by the intrinsic curvature for these singularities and the new physics which emerges at the Planck scale. We show that quantum gravity effects generically resolve all strong curvature singularities including big rip and big freeze singularities. The weak singularities, which include sudden and big brake singularities, are ignored by quantum gravity when spatial curvature is negative, as was previouslymore » found for the spatially flat model. Interestingly, for the spatially closed model there exist cases where weak singularities may be resolved when they occur in the past evolution. The spatially closed model exhibits another novel feature. For a particular class of equation of state, this model also exhibits an additional physical branch in loop quantum cosmology, a baby universe separated from the parent branch. Our analysis generalizes previous results obtained on the resolution of strong curvature singularities in flat models to isotropic spacetimes with nonzero spatial curvature.« less
Singular spectrum and singular entropy used in signal processing of NC table
NASA Astrophysics Data System (ADS)
Wang, Linhong; He, Yiwen
2011-12-01
NC (numerical control) table is a complex dynamic system. The dynamic characteristics caused by backlash, friction and elastic deformation among each component are so complex that they have become the bottleneck of enhancing the positioning accuracy, tracking accuracy and dynamic behavior of NC table. This paper collects vibration acceleration signals from NC table, analyzes the signals with SVD (singular value decomposition) method, acquires the singular spectrum and calculates the singular entropy of the signals. The signal characteristics and their regulations of NC table are revealed via the characteristic quantities such as singular spectrum, singular entropy etc. The steep degrees of singular spectrums can be used to discriminate complex degrees of signals. The results show that the signals in direction of driving axes are the simplest and the signals in perpendicular direction are the most complex. The singular entropy values can be used to study the indetermination of signals. The results show that the signals of NC table are not simple signal nor white noise, the entropy values in direction of driving axe are lower, the entropy values increase along with the increment of driving speed and the entropy values at the abnormal working conditions such as resonance or creeping etc decrease obviously.
Geometric Methods for Infinite-Dimensional Dynamical Systems
2012-08-27
singular perturbation theory , nonlinear optic and traveling waves. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...participants, but no registration fee was charged. The 14 (long) plenary talks and the eight (short) topical talks were held in the lecture hall of...afternoon about open problems and important mathematical techniques, as well as a reception Friday evening, both of which were attended by all
The accurate solution of Poisson's equation by expansion in Chebyshev polynomials
NASA Technical Reports Server (NTRS)
Haidvogel, D. B.; Zang, T.
1979-01-01
A Chebyshev expansion technique is applied to Poisson's equation on a square with homogeneous Dirichlet boundary conditions. The spectral equations are solved in two ways - by alternating direction and by matrix diagonalization methods. Solutions are sought to both oscillatory and mildly singular problems. The accuracy and efficiency of the Chebyshev approach compare favorably with those of standard second- and fourth-order finite-difference methods.
Continuations of the nonlinear Schrödinger equation beyond the singularity
NASA Astrophysics Data System (ADS)
Fibich, G.; Klein, M.
2011-07-01
We present four continuations of the critical nonlinear Schrödinger equation (NLS) beyond the singularity: (1) a sub-threshold power continuation, (2) a shrinking-hole continuation for ring-type solutions, (3) a vanishing nonlinear-damping continuation and (4) a complex Ginzburg-Landau (CGL) continuation. Using asymptotic analysis, we explicitly calculate the limiting solutions beyond the singularity. These calculations show that for generic initial data that lead to a loglog collapse, the sub-threshold power limit is a Bourgain-Wang solution, both before and after the singularity, and the vanishing nonlinear-damping and CGL limits are a loglog solution before the singularity, and have an infinite-velocity expanding core after the singularity. Our results suggest that all NLS continuations share the universal feature that after the singularity time Tc, the phase of the singular core is only determined up to multiplication by eiθ. As a result, interactions between post-collapse beams (filaments) become chaotic. We also show that when the continuation model leads to a point singularity and preserves the NLS invariance under the transformation t → -t and ψ → ψ*, the singular core of the weak solution is symmetric with respect to Tc. Therefore, the sub-threshold power and the shrinking-hole continuations are symmetric with respect to Tc, but continuations which are based on perturbations of the NLS equation are generically asymmetric.
Dynamical singularities for complex initial conditions and the motion at a real separatrix.
Shnerb, Tamar; Kay, K G
2006-04-01
This work investigates singularities occurring at finite real times in the classical dynamics of one-dimensional double-well systems with complex initial conditions. The objective is to understand the relationship between these singularities and the behavior of the systems for real initial conditions. An analytical treatment establishes that the dynamics of a quartic double well system possesses a doubly infinite sequence of singularities. These are associated with initial conditions that converge to those for the real separatrix as the singularity time becomes infinite. This confluence of singularities is shown to lead to the unstable behavior that characterizes the real motion at the separatrix. Numerical calculations confirm the existence of a large number of singularities converging to the separatrix for this and two additional double-well systems. The approach of singularities to the real axis is of particular interest since such behavior has been related to the formation of chaos in nonintegrable systems. The properties of the singular trajectories which cause this convergence to the separatrix are identified. The hyperbolic fixed point corresponding to the potential energy maximum, responsible for the characteristic motion at a separatrix, also plays a critical role in the formation of the complex singularities by delaying trajectories and then deflecting them into asymptotic regions of space from where they are directly repelled to infinity in a finite time.
Topological resolution of gauge theory singularities
NASA Astrophysics Data System (ADS)
Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo
2013-08-01
Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.
7 CFR 46.1 - Words in singular form.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Words in singular form. 46.1 Section 46.1 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Words in singular form. Words in this part in the singular form shall be deemed to import the plural...
7 CFR 61.1 - Words in singular form.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Words in singular form. 61.1 Section 61.1 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Words in singular form. Words used in the regulations in this subpart in the singular form shall be...
NASA Technical Reports Server (NTRS)
Constantinescu, George S.; Lele, S. K.
2001-01-01
Numerical methods for solving the flow equations in cylindrical or spherical coordinates should be able to capture the behavior of the exact solution near the regions where the particular form of the governing equations is singular. In this work we focus on the treatment of these numerical singularities for finite-differences methods by reinterpreting the regularity conditions developed in the context of pseudo-spectral methods. A generally applicable numerical method for treating the singularities present at the polar axis, when nonaxisymmetric flows are solved in cylindrical, coordinates using highly accurate finite differences schemes (e.g., Pade schemes) on non-staggered grids, is presented. Governing equations for the flow at the polar axis are derived using series expansions near r=0. The only information needed to calculate the coefficients in these equations are the values of the flow variables and their radial derivatives at the previous iteration (or time) level. These derivatives, which are multi-valued at the polar axis, are calculated without dropping the accuracy of the numerical method using a mapping of the flow domain from (0,R)*(0,2pi) to (-R,R)*(0,pi), where R is the radius of the computational domain. This allows the radial derivatives to be evaluated using high-order differencing schemes (e.g., compact schemes) at points located on the polar axis. The proposed technique is illustrated by results from simulations of laminar-forced jets and turbulent compressible jets using large eddy simulation (LES) methods. In term of the general robustness of the numerical method and smoothness of the solution close to the polar axis, the present results compare very favorably to similar calculations in which the equations are solved in Cartesian coordinates at the polar axis, or in which the singularity is removed by employing a staggered mesh in the radial direction without a mesh point at r=0, following the method proposed recently by Mohseni and Colonius (1). Extension of the method described here for incompressible flows or for any other set of equations that are solved on a non-staggered mesh in cylindrical or spherical coordinates with finite-differences schemes of various level of accuracy is immediate.
The Friedmann-Lemaître-Robertson-Walker Big Bang Singularities are Well Behaved
NASA Astrophysics Data System (ADS)
Stoica, Ovidiu Cristinel
2016-01-01
We show that the Big Bang singularity of the Friedmann-Lemaître-Robertson-Walker model does not raise major problems to General Relativity. We prove a theorem showing that the Einstein equation can be written in a non-singular form, which allows the extension of the spacetime before the Big Bang. The physical interpretation of the fields used is discussed. These results follow from our research on singular semi-Riemannian geometry and singular General Relativity.
Subspace techniques to remove artifacts from EEG: a quantitative analysis.
Teixeira, A R; Tome, A M; Lang, E W; Martins da Silva, A
2008-01-01
In this work we discuss and apply projective subspace techniques to both multichannel as well as single channel recordings. The single-channel approach is based on singular spectrum analysis(SSA) and the multichannel approach uses the extended infomax algorithm which is implemented in the opensource toolbox EEGLAB. Both approaches will be evaluated using artificial mixtures of a set of selected EEG signals. The latter were selected visually to contain as the dominant activity one of the characteristic bands of an electroencephalogram (EEG). The evaluation is performed both in the time and frequency domain by using correlation coefficients and coherence function, respectively.
Extension of the N-point Padé approximants solution of the Eliashberg equations to T ˜ T c
NASA Astrophysics Data System (ADS)
Leavens, C. R.; Ritchie, D. S.
1985-01-01
Vidberg and Serene introduced a very useful technique for calculating the low temperature (T « T c) gap function of a superconductor which bypasses the real-frequency singular integral equations of Eliashberg. Blashke and Blocksdorf recognized and resolved a difficulty with the technique thereby extending it to higher temperatures. We present a much simpler method of doing essentially the same thing and, for a strong-coupling superconductor at a temperature near T c, compare the gap functions calculated using these methods with the accurate one computed directly from the real-frequency equations.
Treatment of singularities in a middle-crack tension specimen
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Raju, I. S.
1990-01-01
A three-dimensional finite-element analysis of a middle-crack tension specimen subjected to mode I loading was performed to study the stress singularity along the crack front. The specimen was modeled using 20-node isoparametric elements with collapsed nonsingular elements at the crack front. The displacements and stresses from the analysis were used to estimate the power of singularities, by a log-log regression analysis, along the crack front. Analyses showed that finite-sized cracked bodies have two singular stress fields. Because of two singular stress fields near the free surface and the classical square root singularity elsewhere, the strain energy release rate appears to be an appropriate parameter all along the crack front.
Semiclassical analysis of spectral singularities and their applications in optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mostafazadeh, Ali
2011-08-15
Motivated by possible applications of spectral singularities in optics, we develop a semiclassical method of computing spectral singularities. We use this method to examine the spectral singularities of a planar slab gain medium whose gain coefficient varies due to the exponential decay of the intensity of the pumping beam inside the medium. For both singly and doublypumped samples, we obtain universal upper bounds on the decay constant beyond which no lasing occurs. Furthermore, we show that the dependence of the wavelength of the spectral singularities on the value of the decay constant is extremely mild. This is an indication ofmore » the stability of optical spectral singularities.« less
Cusp singularities in f(R) gravity: pros and cons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pisin; Yeom, Dong-han
We investigate cusp singularities in f(R) gravity, especially for Starobinsky and Hu-Sawicki dark energy models. We illustrate that, by using double-null numerical simulations, a cusp singularity can be triggered by gravitational collapses. This singularity can be cured by adding a quadratic term, but this causes a Ricci scalar bump that can be observed by an observer outside the event horizon. Comparing with cosmological parameters, it seems that it would be difficult to see super-Planckian effects by astrophysical experiments. On the other hand, at once there exists a cusp singularity, it can be a mechanism to realize a horizon scale curvaturemore » singularity that can be interpreted by a firewall.« less
Propagation of the Lissajous singularity dipole emergent from non-paraxial polychromatic beams
NASA Astrophysics Data System (ADS)
Haitao, Chen; Gao, Zenghui; Wang, Wanqing
2017-06-01
The propagation of the Lissajous singularity dipole (LSD) emergent from the non-paraxial polychromatic beams is studied. It is found that the handedness reversal of Lissajous singularities, the change in the shape of Lissajous figures, as well as the creation and annihilation of the LSD may take place by varying the propagation distance, off-axis parameter, wavelength, or amplitude factor. Comparing with the LSD emergent from paraxial polychromatic beams, the output field of non-paraxial polychromatic beams is more complicated, which results in some richer dynamic behaviors of Lissajous singularities, such as more Lissajous singularities and no vanishing of a single Lissajous singularity at the plane z>0.
Entangled singularity patterns of photons in Ince-Gauss modes
NASA Astrophysics Data System (ADS)
Krenn, Mario; Fickler, Robert; Huber, Marcus; Lapkiewicz, Radek; Plick, William; Ramelow, Sven; Zeilinger, Anton
2013-01-01
Photons with complex spatial mode structures open up possibilities for new fundamental high-dimensional quantum experiments and for novel quantum information tasks. Here we show entanglement of photons with complex vortex and singularity patterns called Ince-Gauss modes. In these modes, the position and number of singularities vary depending on the mode parameters. We verify two-dimensional and three-dimensional entanglement of Ince-Gauss modes. By measuring one photon and thereby defining its singularity pattern, we nonlocally steer the singularity structure of its entangled partner, while the initial singularity structure of the photons is undefined. In addition we measure an Ince-Gauss specific quantum-correlation function with possible use in future quantum communication protocols.
Classical and quantum Big Brake cosmology for scalar field and tachyonic models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamenshchik, A. Yu.; Manti, S.
We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bangmore » and Big Crunch singularities are not traversable.« less
Quantum healing of spacetime singularities: A review
NASA Astrophysics Data System (ADS)
Konkowski, D. A.; Helliwell, T. M.
2018-02-01
Singularities are commonplace in general relativistic spacetimes. It is natural to hope that they might be “healed” (or resolved) by the inclusion of quantum mechanics, either in the theory itself (quantum gravity) or, more modestly, in the description of the spacetime geodesic paths used to define them. We focus here on the latter, mainly using a procedure proposed by Horowitz and Marolf to test whether singularities in broad classes of spacetimes can be resolved by replacing geodesic paths with quantum wave packets. We list the spacetime singularities that various authors have studied in this context, and distinguish those which are healed quantum mechanically (QM) from those which remain singular. Finally, we mention some alternative approaches to healing singularities.
Weighted low-rank sparse model via nuclear norm minimization for bearing fault detection
NASA Astrophysics Data System (ADS)
Du, Zhaohui; Chen, Xuefeng; Zhang, Han; Yang, Boyuan; Zhai, Zhi; Yan, Ruqiang
2017-07-01
It is a fundamental task in the machine fault diagnosis community to detect impulsive signatures generated by the localized faults of bearings. The main goal of this paper is to exploit the low-rank physical structure of periodic impulsive features and further establish a weighted low-rank sparse model for bearing fault detection. The proposed model mainly consists of three basic components: an adaptive partition window, a nuclear norm regularization and a weighted sequence. Firstly, due to the periodic repetition mechanism of impulsive feature, an adaptive partition window could be designed to transform the impulsive feature into a data matrix. The highlight of partition window is to accumulate all local feature information and align them. Then, all columns of the data matrix share similar waveforms and a core physical phenomenon arises, i.e., these singular values of the data matrix demonstrates a sparse distribution pattern. Therefore, a nuclear norm regularization is enforced to capture that sparse prior. However, the nuclear norm regularization treats all singular values equally and thus ignores one basic fact that larger singular values have more information volume of impulsive features and should be preserved as much as possible. Therefore, a weighted sequence with adaptively tuning weights inversely proportional to singular amplitude is adopted to guarantee the distribution consistence of large singular values. On the other hand, the proposed model is difficult to solve due to its non-convexity and thus a new algorithm is developed to search one satisfying stationary solution through alternatively implementing one proximal operator operation and least-square fitting. Moreover, the sensitivity analysis and selection principles of algorithmic parameters are comprehensively investigated through a set of numerical experiments, which shows that the proposed method is robust and only has a few adjustable parameters. Lastly, the proposed model is applied to the wind turbine (WT) bearing fault detection and its effectiveness is sufficiently verified. Compared with the current popular bearing fault diagnosis techniques, wavelet analysis and spectral kurtosis, our model achieves a higher diagnostic accuracy.
Edward, Joseph; Aziz, Mubarak A; Madhu Usha, Arjun; Narayanan, Jyothi K
2017-12-01
Extractions are routine procedures in dental surgery. Traditional extraction techniques use a combination of severing the periodontal attachment, luxation with an elevator, and removal with forceps. A new technique of extraction of maxillary third molar is introduced in this study-Joedds technique, which is compared with the conventional technique. One hundred people were included in the study, the people were divided into two groups by means of simple random sampling. In one group conventional technique of maxillary third molar extraction was used and on second Joedds technique was used. Statistical analysis was carried out with student's t test. Analysis of 100 patients based on parameters showed that the novel joedds technique had minimal trauma to surrounding tissues, less tuberosity and root fractures and the time taken for extraction was <2 min while compared to other group of patients. This novel technique has proved to be better than conventional third molar extraction technique, with minimal complications. If Proper selection of cases and right technique are used.
Singularities in water waves and Rayleigh-Taylor instability
NASA Technical Reports Server (NTRS)
Tanveer, S.
1991-01-01
Singularities in inviscid two-dimensional finite-amplitude water waves and inviscid Rayleigh-Taylor instability are discussed. For the deep water gravity waves of permanent form, through a combination of analytical and numerical methods, results describing the precise form, number, and location of singularities in the unphysical domain as the wave height is increased are presented. It is shown how the information on the singularity in the unphysical region has the same form as for deep water waves. However, associated with such a singularity is a series of image singularities at increasing distances from the physical plane with possibly different behavior. Furthermore, for the Rayleigh-Taylor problem of motion of fluid over a vacuum and for the unsteady water wave problem, integro-differential equations valid in the unphysical region are derived, and how these equations can give information on the nature of singularities for arbitrary initial conditions is shown.
Topological resolution of gauge theory singularities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo
2013-08-21
Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit themore » singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.« less
Genericity Distinctions and the Interpretation of Determiners in Second Language Acquisition
ERIC Educational Resources Information Center
Ionin, Tania; Montrul, Silvina; Kim, Ji-Hye; Philippov, Vadim
2011-01-01
English uses three types of generic NPs: bare plurals ("Lions are dangerous"), definite singulars ("The lion is dangerous"), and indefinite singulars ("A lion is dangerous"). These three NP types are not interchangeable: definite singulars and bare plurals can have generic reference at the NP-level, while indefinite singulars are compatible only…
7 CFR 900.36 - Words in the singular form.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.36 Section 900.36 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Marketing Orders § 900.36 Words in the singular form. Words in this subpart in the singular form shall be...
7 CFR 900.100 - Words in the singular form.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.100 Section 900.100 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Words in the singular form. Words in this subpart in the singular form shall be deemed to import the...
7 CFR 900.1 - Words in the singular form.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.1 Section 900.1 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Words in the singular form. Words in this subpart in the singular form shall be deemed to import the...
7 CFR 900.50 - Words in the singular form.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.50 Section 900.50 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Words in the singular form. Words in this subpart in the singular form shall be deemed to import the...
7 CFR 900.20 - Words in the singular form.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.20 Section 900.20 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... § 900.20 Words in the singular form. Words in this subpart in the singular form shall be deemed to...
7 CFR 1200.50 - Words in the singular form.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 10 2010-01-01 2010-01-01 false Words in the singular form. 1200.50 Section 1200.50 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING....50 Words in the singular form. Words in this subpart in the singular form shall be deemed to import...
Singularities in the classical Rayleigh-Taylor flow - Formation and subsequent motion
NASA Technical Reports Server (NTRS)
Tanveer, S.
1993-01-01
The creation and subsequent motion of singularities of solution to classical Rayleigh-Taylor flow (two dimensional inviscid, incompressible fluid over a vacuum) are discussed. For a specific set of initial conditions, we give analytical evidence to suggest the instantaneous formation of one or more singularities at specific points in the unphysical plane, whose locations depend sensitively on small changes in initial conditions in the physical domain. One-half power singularities are created in accordance with an earlier conjecture; however, depending on initial conditions, other forms of singularities are also possible. For a specific initial condition, we follow a numerical procedure in the unphysical plane to compute the motion of a one-half singularity. This computation confirms our previous conjecture that the approach of a one-half singularity towards the physical domain corresponds to the development of a spike at the physical interface. Under some assumptions that appear to be consistent with numerical calculations, we present analytical evidence to suggest that a singularity of the one-half type cannot impinge the physical domain in finite time.
Singularities in the classical Rayleigh-Taylor flow: Formation and subsequent motion
NASA Technical Reports Server (NTRS)
Tanveer, S.
1992-01-01
The creation and subsequent motion of singularities of solution to classical Rayleigh-Taylor flow (two dimensional inviscid, incompressible fluid over a vacuum) are discussed. For a specific set of initial conditions, we give analytical evidence to suggest the instantaneous formation of one or more singularities at specific points in the unphysical plane, whose locations depend sensitively on small changes in initial conditions in the physical domain. One-half power singularities are created in accordance with an earlier conjecture; however, depending on initial conditions, other forms of singularities are also possible. For a specific initial condition, we follow a numerical procedure in the unphysical plane to compute the motion of a one-half singularity. This computation confirms our previous conjecture that the approach of a one-half singularity towards the physical domain corresponds to the development of a spike at the physical interface. Under some assumptions that appear to be consistent with numerical calculations, we present analytical evidence to suggest that a singularity of the one-half type cannot impinge the physical domain in finite time.
A frequency domain radar interferometric imaging (FII) technique based on high-resolution methods
NASA Astrophysics Data System (ADS)
Luce, H.; Yamamoto, M.; Fukao, S.; Helal, D.; Crochet, M.
2001-01-01
In the present work, we propose a frequency-domain interferometric imaging (FII) technique for a better knowledge of the vertical distribution of the atmospheric scatterers detected by MST radars. This is an extension of the dual frequency-domain interferometry (FDI) technique to multiple frequencies. Its objective is to reduce the ambiguity (resulting from the use of only two adjacent frequencies), inherent with the FDI technique. Different methods, commonly used in antenna array processing, are first described within the context of application to the FII technique. These methods are the Fourier-based imaging, the Capon's and the singular value decomposition method used with the MUSIC algorithm. Some preliminary simulations and tests performed on data collected with the middle and upper atmosphere (MU) radar (Shigaraki, Japan) are also presented. This work is a first step in the developments of the FII technique which seems to be very promising.
{lambda} elements for one-dimensional singular problems with known strength of singularity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, K.K.; Surana, K.S.
1996-10-01
This paper presents a new and general procedure for designing special elements called {lambda} elements for one dimensional singular problems where the strength of the singularity is know. The {lambda} elements presented here are of type C{sup 0}. These elements also provide inter-element C{sup 0} continuity with p-version elements. The {lambda} elements do not require a precise knowledge of the extent of singular zone, i.e., their use may be extended beyond the singular zone. When {lambda} elements are used at the singularity, a singular problem behaves like a smooth problem thereby eliminating the need for h, p-adaptive processes all together.more » One dimensional steady state radial flow of an upper convected Maxwell fluid is considered as a sample problem. Least squares approach (or least squares finite element formulation: LSFEF) is used to construct the integral form (error functional I) from the differential equations. Numerical results presented for radially inward flow with inner radius r{sub i} = 0.1, 0.01, 0.001, 0.0001, 0.00001, and Deborah number of 2 (De = 2) demonstrate the accuracy, faster convergence of the iterative solution procedure, faster convergence rate of the error functional and mesh independent characteristics of the {lambda} elements regardless of the severity of the singularity.« less
Tangled nonlinear driven chain reactions of all optical singularities
NASA Astrophysics Data System (ADS)
Vasil'ev, V. I.; Soskin, M. S.
2012-03-01
Dynamics of polarization optical singularities chain reactions in generic elliptically polarized speckle fields created in photorefractive crystal LiNbO3 was investigated in details Induced speckle field develops in the tens of minutes scale due to photorefractive 'optical damage effect' induced by incident beam of He-Ne laser. It was shown that polarization singularities develop through topological chain reactions of developing speckle fields driven by photorefractive nonlinearities induced by incident laser beam. All optical singularities (C points, optical vortices, optical diabolos,) are defined by instantaneous topological structure of the output wavefront and are tangled by singular optics lows. Therefore, they have develop in tangled way by six topological chain reactions driven by nonlinear processes in used nonlinear medium (photorefractive LiNbO3:Fe in our case): C-points and optical diabolos for right (left) polarized components domains with orthogonally left (right) polarized optical vortices underlying them. All elements of chain reactions consist from loop and chain links when nucleated singularities annihilated directly or with alien singularities in 1:9 ratio. The topological reason of statistics was established by low probability of far enough separation of born singularities pair from existing neighbor singularities during loop trajectories. Topology of developing speckle field was measured and analyzed by dynamic stokes polarimetry with few seconds' resolution. The hierarchy of singularities govern scenario of tangled chain reactions was defined. The useful space-time data about peculiarities of optical damage evolution were obtained from existence and parameters of 'islands of stability' in developing speckle fields.
Metric dimensional reduction at singularities with implications to Quantum Gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoica, Ovidiu Cristinel, E-mail: holotronix@gmail.com
2014-08-15
A series of old and recent theoretical observations suggests that the quantization of gravity would be feasible, and some problems of Quantum Field Theory would go away if, somehow, the spacetime would undergo a dimensional reduction at high energy scales. But an identification of the deep mechanism causing this dimensional reduction would still be desirable. The main contribution of this article is to show that dimensional reduction effects are due to General Relativity at singularities, and do not need to be postulated ad-hoc. Recent advances in understanding the geometry of singularities do not require modification of General Relativity, being justmore » non-singular extensions of its mathematics to the limit cases. They turn out to work fine for some known types of cosmological singularities (black holes and FLRW Big-Bang), allowing a choice of the fundamental geometric invariants and physical quantities which remain regular. The resulting equations are equivalent to the standard ones outside the singularities. One consequence of this mathematical approach to the singularities in General Relativity is a special, (geo)metric type of dimensional reduction: at singularities, the metric tensor becomes degenerate in certain spacetime directions, and some properties of the fields become independent of those directions. Effectively, it is like one or more dimensions of spacetime just vanish at singularities. This suggests that it is worth exploring the possibility that the geometry of singularities leads naturally to the spontaneous dimensional reduction needed by Quantum Gravity. - Highlights: • The singularities we introduce are described by finite geometric/physical objects. • Our singularities are accompanied by dimensional reduction effects. • They affect the metric, the measure, the topology, the gravitational DOF (Weyl = 0). • Effects proposed in other approaches to Quantum Gravity are obtained naturally. • The geometric dimensional reduction obtained opens new ways for Quantum Gravity.« less
A new classification scheme of plastic wastes based upon recycling labels.
Özkan, Kemal; Ergin, Semih; Işık, Şahin; Işıklı, Idil
2015-01-01
Since recycling of materials is widely assumed to be environmentally and economically beneficial, reliable sorting and processing of waste packaging materials such as plastics is very important for recycling with high efficiency. An automated system that can quickly categorize these materials is certainly needed for obtaining maximum classification while maintaining high throughput. In this paper, first of all, the photographs of the plastic bottles have been taken and several preprocessing steps were carried out. The first preprocessing step is to extract the plastic area of a bottle from the background. Then, the morphological image operations are implemented. These operations are edge detection, noise removal, hole removing, image enhancement, and image segmentation. These morphological operations can be generally defined in terms of the combinations of erosion and dilation. The effect of bottle color as well as label are eliminated using these operations. Secondly, the pixel-wise intensity values of the plastic bottle images have been used together with the most popular subspace and statistical feature extraction methods to construct the feature vectors in this study. Only three types of plastics are considered due to higher existence ratio of them than the other plastic types in the world. The decision mechanism consists of five different feature extraction methods including as Principal Component Analysis (PCA), Kernel PCA (KPCA), Fisher's Linear Discriminant Analysis (FLDA), Singular Value Decomposition (SVD) and Laplacian Eigenmaps (LEMAP) and uses a simple experimental setup with a camera and homogenous backlighting. Due to the giving global solution for a classification problem, Support Vector Machine (SVM) is selected to achieve the classification task and majority voting technique is used as the decision mechanism. This technique equally weights each classification result and assigns the given plastic object to the class that the most classification results agree on. The proposed classification scheme provides high accuracy rate, and also it is able to run in real-time applications. It can automatically classify the plastic bottle types with approximately 90% recognition accuracy. Besides this, the proposed methodology yields approximately 96% classification rate for the separation of PET or non-PET plastic types. It also gives 92% accuracy for the categorization of non-PET plastic types into HPDE or PP. Copyright © 2014 Elsevier Ltd. All rights reserved.
Spatiotemporal stochastic models for earth science and engineering applications
NASA Astrophysics Data System (ADS)
Luo, Xiaochun
1998-12-01
Spatiotemporal processes occur in many areas of earth sciences and engineering. However, most of the available theoretical tools and techniques of space-time daft processing have been designed to operate exclusively in time or in space, and the importance of spatiotemporal variability was not fully appreciated until recently. To address this problem, a systematic framework of spatiotemporal random field (S/TRF) models for geoscience/engineering applications is presented and developed in this thesis. The space-tune continuity characterization is one of the most important aspects in S/TRF modelling, where the space-time continuity is displayed with experimental spatiotemporal variograms, summarized in terms of space-time continuity hypotheses, and modelled using spatiotemporal variogram functions. Permissible spatiotemporal covariance/variogram models are addressed through permissibility criteria appropriate to spatiotemporal processes. The estimation of spatiotemporal processes is developed in terms of spatiotemporal kriging techniques. Particular emphasis is given to the singularity analysis of spatiotemporal kriging systems. The impacts of covariance, functions, trend forms, and data configurations on the singularity of spatiotemporal kriging systems are discussed. In addition, the tensorial invariance of universal spatiotemporal kriging systems is investigated in terms of the space-time trend. The conditional simulation of spatiotemporal processes is proposed with the development of the sequential group Gaussian simulation techniques (SGGS), which is actually a series of sequential simulation algorithms associated with different group sizes. The simulation error is analyzed with different covariance models and simulation grids. The simulated annealing technique honoring experimental variograms, is also proposed, providing a way of conditional simulation without the covariance model fitting which is prerequisite for most simulation algorithms. The proposed techniques were first applied for modelling of the pressure system in a carbonate reservoir, and then applied for modelling of springwater contents in the Dyle watershed. The results of these case studies as well as the theory suggest that these techniques are realistic and feasible.
Spectral singularities and Bragg scattering in complex crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longhi, S.
2010-02-15
Spectral singularities that spoil the completeness of Bloch-Floquet states may occur in non-Hermitian Hamiltonians with complex periodic potentials. Here an equivalence is established between spectral singularities in complex crystals and secularities that arise in Bragg diffraction patterns. Signatures of spectral singularities in a scattering process with wave packets are elucidated for a PT-symmetric complex crystal.
On the splash and splat singularities for the one-phase inhomogeneous Muskat Problem
NASA Astrophysics Data System (ADS)
Córdoba, Diego; Pernas-Castaño, Tania
2017-10-01
In this paper, we study finite time splash and splat singularities formation for the interface of one fluid in a porous media with two different permeabilities. We prove that the smoothness of the interface breaks down in finite time into a splash singularity but this is not going to happen into a splat singularity.
Classical stability of sudden and big rip singularities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrow, John D.; Lip, Sean Z. W.
2009-08-15
We introduce a general characterization of sudden cosmological singularities and investigate the classical stability of homogeneous and isotropic cosmological solutions of all curvatures containing these singularities to small scalar, vector, and tensor perturbations using gauge-invariant perturbation theory. We establish that sudden singularities at which the scale factor, expansion rate, and density are finite are stable except for a set of special parameter values. We also apply our analysis to the stability of Big Rip singularities and find the conditions for their stability against small scalar, vector, and tensor perturbations.
Singularity embedding method in potential flow calculations
NASA Technical Reports Server (NTRS)
Jou, W. H.; Huynh, H.
1982-01-01
The so-called H-type mesh is used in a finite-element (or finite-volume) calculation of the potential flow past an airfoil. Due to coordinate singularity at the leading edge, a special singular trial function is used for the elements neighboring the leading edge. The results using the special singular elements are compared to those using the regular elements. It is found that the unreasonable pressure distribution obtained by the latter is removed by the embedding of the singular element. Suggestions to extend the present method to transonic cases are given.
Contracting singular horseshoe
NASA Astrophysics Data System (ADS)
Morales, C. A.; San Martín, B.
2017-11-01
We suggest a notion of hyperbolicity adapted to the geometric Rovella attractor (Robinson 2012 An Introduction to Dynamical Systems—Continuous and Discrete (Pure and Applied Undergraduate Texts vol 19) 2nd edn (Providence, RI: American Mathematical Society)) . More precisely, we call a partially hyperbolic set asymptotically sectional-hyperbolic if its singularities are hyperbolic and if its central subbundle is asymptotically sectional expanding outside the stable manifolds of the singularities. We prove that there are highly chaotic flows with Rovella-like singularities exhibiting this kind of hyperbolicity. We shall call them contracting singular horseshoes.
Null cosmological singularities and free strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, K.
2010-03-15
We continue exploring free strings in the background of null Kasner-like cosmological singularities, following K. Narayan, arXiv:0904.4532. We study the free string Schrodinger wave functional along the lines of K. Narayan, arXiv:0807.1517. We find the wave functional to be nonsingular in the vicinity of singularities whose Kasner exponents satisfy certain relations. We compare this with the description in other variables. We then study certain regulated versions of these singularities where the singular region is replaced by a substringy but nonsingular region and study the string spectra in these backgrounds. The string modes can again be solved for exactly, giving somemore » insight into how string oscillator states get excited near the singularity.« less
Probing the degenerate states of V-point singularities.
Ram, B S Bhargava; Sharma, Anurag; Senthilkumaran, Paramasivam
2017-09-15
V-points are polarization singularities in spatially varying linearly polarized optical fields and are characterized by the Poincare-Hopf index η. Each V-point singularity is a superposition of two oppositely signed orbital angular momentum states in two orthogonal spin angular momentum states. Hence, a V-point singularity has zero net angular momentum. V-points with given |η| have the same (amplitude) intensity distribution but have four degenerate polarization distributions. Each of these four degenerate states also produce identical diffraction patterns. Hence to distinguish these degenerate states experimentally, we present in this Letter a method involving a combination of polarization transformation and diffraction. This method also shows the possibility of using polarization singularities in place of phase singularities in optical communication and quantum information processing.
NASA Astrophysics Data System (ADS)
Liu, Pusheng; Lü, Baida
2007-04-01
By using the vectorial Debye diffraction theory, phase singularities of high numerical aperture (NA) dark-hollow Gaussian beams in the focal region are studied. The dependence of phase singularities on the truncation parameter δ and semi-aperture angle α (or equally, NA) is illustrated numerically. A comparison of phase singularities of high NA dark-hollow Gaussian beams with those of scalar paraxial Gaussian beams and high NA Gaussian beams is made. For high NA dark-hollow Gaussian beams the beam order n additionally affects the spatial distribution of phase singularities, and there exist phase singularities outside the focal plane, which may be created or annihilated by variation of the semi-aperture angle in a certain region.
Singularity: Scientific containers for mobility of compute.
Kurtzer, Gregory M; Sochat, Vanessa; Bauer, Michael W
2017-01-01
Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science.
Singularity: Scientific containers for mobility of compute
Kurtzer, Gregory M.; Bauer, Michael W.
2017-01-01
Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science. PMID:28494014
Managing focal fields of vector beams with multiple polarization singularities.
Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Gan, Xuetao; Zhao, Jianlin
2016-11-10
We explore the tight focusing behavior of vector beams with multiple polarization singularities, and analyze the influences of the number, position, and topological charge of the singularities on the focal fields. It is found that the ellipticity of the local polarization states at the focal plane could be determined by the spatial distribution of the polarization singularities of the vector beam. When the spatial location and topological charge of singularities have even-fold rotation symmetry, the transverse fields at the focal plane are locally linearly polarized. Otherwise, the polarization state becomes a locally hybrid one. By appropriately arranging the distribution of the polarization singularities in the vector beam, the polarization distributions of the focal fields could be altered while the intensity maintains unchanged.
Pseudo-spectral methods applied to gravitational collapse.
NASA Astrophysics Data System (ADS)
Bonazzola, S.; Marck, J.-A.
The authors present codes for solving Newtonian gravitational collapse in spherical coordinates for the spherical, axial and true 3 D cases. The pseudo-spectral techniques are used. All quantities are expanded in Chebychev or Legendre polynomials or Fourier series for the periodic parts. The codes are able to handle in a rigorous way the pseudo-singularities τ = 0 and θ = 0, π. Illustrative results for each of the three cases are given.
European Science Notes Information Bulletin Reports on Current European/ Middle Eastern Science
1988-07-01
41 Recently concluded and planned experiments are described which arc based on static Kerr effect dis- persion- spectroscopy , optical Kerr effect...studies, and both electric and magnetic resonance 6 molecular beam spectroscopy . These advanced techniques are used to measure with great precision...simuhItio , using thrcc-dimcn- flight using temperature-sensitive films and infrared sional singularities in a panel ncthod. camecras placed on either side
Numerical methods in Markov chain modeling
NASA Technical Reports Server (NTRS)
Philippe, Bernard; Saad, Youcef; Stewart, William J.
1989-01-01
Several methods for computing stationary probability distributions of Markov chains are described and compared. The main linear algebra problem consists of computing an eigenvector of a sparse, usually nonsymmetric, matrix associated with a known eigenvalue. It can also be cast as a problem of solving a homogeneous singular linear system. Several methods based on combinations of Krylov subspace techniques are presented. The performance of these methods on some realistic problems are compared.
ERIC Educational Resources Information Center
Marcovitz, Alan B., Ed.
The method of phase-plane presentation as an educational tool in the study of the dynamic behavior of systems is discussed. In the treatment of nonlinear or piecewise-linear systems, the phase-plane portrait is used to exhibit the nature of singular points, regions of stability, and switching lines to aid comprehension. A technique is described by…
NASA Astrophysics Data System (ADS)
Tufillaro, Nicholas B.; Abbott, Tyler A.; Griffiths, David J.
1984-10-01
We examine the motion of an Atwood's Machine in which one of the masses is allowed to swing in a plane. Computer studies reveal a rich variety of trajectories. The orbits are classified (bounded, periodic, singular, and terminating), and formulas for the critical mass ratios are developed. Perturbative techniques yield good approximations to the computer-generated trajectories. The model constitutes a simple example of a nonlinear dynamical system with two degrees of freedom.
Basso, Lorenzo; Dittmaier, Stefan; Huss, Alexander; Oggero, Luisa
We present the extension of two general algorithms for the treatment of infrared singularities arising in electroweak corrections to decay processes at next-to-leading order: the dipole subtraction formalism and the one-cutoff slicing method. The former is extended to the case of decay kinematics which has not been considered in the literature so far. The latter is generalised to production and decay processes with more than two charged particles, where new "surface" terms arise. Arbitrary patterns of massive and massless external particles are considered, including the treatment of infrared singularities in dimensional or mass regularisation. As an application of the two techniques we present the calculation of the next-to-leading order QCD and electroweak corrections to the top-quark decay width including all off-shell and decay effects of intermediate [Formula: see text] bosons. The result, e.g., represents a building block of a future calculation of NLO electroweak effects to off-shell top-quark pair ([Formula: see text]) production. Moreover, this calculation can serve as the first step towards an event generator for top-quark decays at next-to-leading order accuracy, which can be used to attach top-quark decays to complicated many-particle top-quark processes, such as for [Formula: see text] or [Formula: see text].
NASA Astrophysics Data System (ADS)
Loredana Soran, Maria; Codruta Cobzac, Simona; Varodi, Codruta; Lung, Ildiko; Surducan, Emanoil; Surducan, Vasile
2009-08-01
Three different techniques (maceration, sonication and extraction in microwave field) were used for extraction of essential oils from Ocimum basilicum L. The extracts were analyzed by TLC/HPTLC technique and the fingerprint informations were obtained. The GC-FID was used to characterized the extraction efficiency and for identify the terpenic bioactive compounds. The most efficient extraction technique was maceration followed by microwave and ultrasound. The best extraction solvent system was ethyl ether + ethanol (1:1, v/v). The main compounds identified in Ocimum basilicum L. extracts were: α and β-pinene (mixture), limonene, citronellol, and geraniol.
Loop quantum cosmology scalar field models
NASA Astrophysics Data System (ADS)
Kleidis, K.; Oikonomou, V. K.
In this work, we use the Loop Quantum Cosmology (LQC) modified scalar-tensor reconstruction techniques in order to investigate how bouncing and inflationary cosmologies can be realized. With regard to the inflationary cosmologies, we shall be interested in realizing the intermediate inflation and the Type IV singular inflation, while with regard to bouncing cosmologies, we shall realize the superbounce and the symmetric bounce. In all the cases, we shall find the kinetic term of the LQC holonomy corrected scalar-tensor theory and the corresponding scalar potential. In addition, we shall include a study of the effective Equation of State (EoS), emphasizing at the early- and late-time eras. As we demonstrate, in some cases it is possible to have a nearly de Sitter EoS at the late-time era, a result that could be interpreted as the description of a late-time acceleration era. Also, in all cases we shall examine the dynamical stability of the LQC holonomy corrected scalar-tensor theory, and we shall confront the results with those coming from the corresponding classical dynamical stability theory. The most appealing cosmological scenario is that of a Type IV singular inflationary scenario, in which the singularity may occur at the late-time era. As we demonstrate, for this model, during the dark energy era, a transition from non-phantom to a phantom dark energy era occurs.
Li, Xiaofan; Nie, Qing
2009-07-01
Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratures along with an extrapolation technique, leading to an arbitrarily high-order quadrature; in addition, a high-order (temporal) integration factor method, based on explicit representation of the mean curvature, is used to reduce the stability constraint on time-step. To apply this method to a periodic (in axial direction) and axi-symmetric elastically stressed cylinder, we also present a fast and accurate summation method for the periodic Green's functions of isotropic elasticity. Using the high-order boundary integral method, we demonstrate that in absence of elasticity the cylinder surface pinches in finite time at the axis of the symmetry and the universal cone angle of the pinching is found to be consistent with the previous studies based on a self-similar assumption. In the presence of elastic stress, we show that a finite time, geometrical singularity occurs well before the cylindrical solid collapses onto the axis of symmetry, and the angle of the corner singularity on the cylinder surface is also estimated.
Lateral control system design for VTOL landing on a DD963 in high sea states. M.S. Thesis
NASA Technical Reports Server (NTRS)
Bodson, M.
1982-01-01
The problem of designing lateral control systems for the safe landing of VTOL aircraft on small ships is addressed. A ship model is derived. The issues of estimation and prediction of ship motions are discussed, using optimal linear linear estimation techniques. The roll motion is the most important of the lateral motions, and it is found that it can be predicted for up to 10 seconds in perfect conditions. The automatic landing of the VTOL aircraft is considered, and a lateral controller, defined as a ship motion tracker, is designed, using optimal control techniqes. The tradeoffs between the tracking errors and the control authority are obtained. The important couplings between the lateral motions and controls are demonstrated, and it is shown that the adverse couplings between the sway and the roll motion at the landing pad are significant constraints in the tracking of the lateral ship motions. The robustness of the control system, including the optimal estimator, is studied, using the singular values analysis. Through a robustification procedure, a robust control system is obtained, and the usefulness of the singular values to define stability margins that take into account general types of unstructured modelling errors is demonstrated. The minimal destabilizing perturbations indicated by the singular values analysis are interpreted and related to the multivariable Nyquist diagrams.
NASA Astrophysics Data System (ADS)
Cecinati, F.; Wani, O.; Rico-Ramirez, M. A.
2017-11-01
Merging radar and rain gauge rainfall data is a technique used to improve the quality of spatial rainfall estimates and in particular the use of Kriging with External Drift (KED) is a very effective radar-rain gauge rainfall merging technique. However, kriging interpolations assume Gaussianity of the process. Rainfall has a strongly skewed, positive, probability distribution, characterized by a discontinuity due to intermittency. In KED rainfall residuals are used, implicitly calculated as the difference between rain gauge data and a linear function of the radar estimates. Rainfall residuals are non-Gaussian as well. The aim of this work is to evaluate the impact of applying KED to non-Gaussian rainfall residuals, and to assess the best techniques to improve Gaussianity. We compare Box-Cox transformations with λ parameters equal to 0.5, 0.25, and 0.1, Box-Cox with time-variant optimization of λ, normal score transformation, and a singularity analysis technique. The results suggest that Box-Cox with λ = 0.1 and the singularity analysis is not suitable for KED. Normal score transformation and Box-Cox with optimized λ, or λ = 0.25 produce satisfactory results in terms of Gaussianity of the residuals, probability distribution of the merged rainfall products, and rainfall estimate quality, when validated through cross-validation. However, it is observed that Box-Cox transformations are strongly dependent on the temporal and spatial variability of rainfall and on the units used for the rainfall intensity. Overall, applying transformations results in a quantitative improvement of the rainfall estimates only if the correct transformations for the specific data set are used.
Torres-Pérez, Mónica I; Jiménez-Velez, Braulio D; Mansilla-Rivera, Imar; Rodríguez-Sierra, Carlos J
2005-03-01
The effect that three extraction techniques (e.g., Soxhlet, ultrasound and microwave-assisted extraction) have on the toxicity, as measured by submitochondrial particle (SMP) and Microtox assays, of organic extracts was compared from three sources of airborne particulate matter (APM). The extraction technique influenced the toxicity response of APM extracts and it was dependent on the bioassay method, and APM sample source. APM extracts from microwave-assisted extraction (MAE) were similar or more toxic than the conventional extraction techniques of Soxhlet and ultrasound, thus, providing an alternate extraction method. The microwave extraction technique has the advantage of using less solvent volume, less extraction time, and the capacity to simultaneously extract twelve samples. The ordering of APM toxicity was generally urban dust > diesel dust > PM10 (particles with diameter < 10 microm), thus, reflecting different chemical composition of the samples. This study is the first to report the suitability of two standard in-vitro bioassays for the future toxicological characterization of APM collected from Puerto Rico, with the SMP generally showing better sensitivity to the well-known Microtox bioassay.
Singular perturbation and time scale approaches in discrete control systems
NASA Technical Reports Server (NTRS)
Naidu, D. S.; Price, D. B.
1988-01-01
After considering a singularly perturbed discrete control system, a singular perturbation approach is used to obtain outer and correction subsystems. A time scale approach is then applied via block diagonalization transformations to decouple the system into slow and fast subsystems. To a zeroth-order approximation, the singular perturbation and time-scale approaches are found to yield equivalent results.
Overcoming Robot-Arm Joint Singularities
NASA Technical Reports Server (NTRS)
Barker, L. K.; Houck, J. A.
1986-01-01
Kinematic equations allow arm to pass smoothly through singular region. Report discusses mathematical singularities in equations of robotarm control. Operator commands robot arm to move in direction relative to its own axis system by specifying velocity in that direction. Velocity command then resolved into individual-joint rotational velocities in robot arm to effect motion. However, usual resolved-rate equations become singular when robot arm is straightened.
7 CFR 900.80 - Words in the singular form.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.80 Section 900.80....C. 608b(b) and 7 U.S.C. 608e Covering Fruits, Vegetables, and Nuts § 900.80 Words in the singular form. Words in this subpart in the singular form shall be deemed to import the plural, and vice versa...
NASA Technical Reports Server (NTRS)
Wang, S. S.; Choi, I.
1983-01-01
The fundamental mechanics of delamination in fiber composite laminates is studied. Mathematical formulation of the problem is based on laminate anisotropic elasticity theory and interlaminar fracture mechanics concepts. Stress singularities and complete solution structures associated with general composite delaminations are determined. For a fully open delamination with traction-free surfaces, oscillatory stress singularities always appear, leading to physically inadmissible field solutions. A refined model is introduced by considering a partially closed delamination with crack surfaces in finite-length contact. Stress singularities associated with a partially closed delamination having frictional crack-surface contact are determined, and are found to be diferent from the inverse square-root one of the frictionless-contact case. In the case of a delamination with very small area of crack closure, a simplified model having a square-root stress singularity is employed by taking the limit of the partially closed delamination. The possible presence of logarithmic-type stress singularity is examined; no logarithmic singularity of any kind is found in the composite delamination problem. Numerical examples of dominant stress singularities are shown for delaminations having crack-tip closure with different frictional coefficients between general (1) and (2) graphite-epoxy composites.
Singular trajectories: space-time domain topology of developing speckle fields
NASA Astrophysics Data System (ADS)
Vasil'ev, Vasiliy; Soskin, Marat S.
2010-02-01
It is shown the space-time dynamics of optical singularities is fully described by singularities trajectories in space-time domain, or evolution of transverse coordinates(x, y) in some fixed plane z0. The dynamics of generic developing speckle fields was realized experimentally by laser induced scattering in LiNbO3:Fe photorefractive crystal. The space-time trajectories of singularities can be divided topologically on two classes with essentially different scenario and duration. Some of them (direct topological reactions) consist from nucleation of singularities pair at some (x, y, z0, t) point, their movement and annihilation. They possess form of closed loops with relatively short time of existence. Another much more probable class of trajectories are chain topological reactions. Each of them consists from sequence of links, i.e. of singularities nucleation in various points (xi yi, ti) and following annihilation of both singularities in other space-time points with alien singularities of opposite topological indices. Their topology and properties are established. Chain topological reactions can stop on the borders of a developing speckle field or go to infinity. Examples of measured both types of topological reactions for optical vortices (polarization C points) in scalar (elliptically polarized) natural developing speckle fields are presented.
New classification methods on singularity of mechanism
NASA Astrophysics Data System (ADS)
Luo, Jianguo; Han, Jianyou
2010-07-01
Based on the analysis of base and methods of singularity of mechanism, four methods obtained according to the factors of moving states of mechanism and cause of singularity and property of linear complex of singularity and methods in studying singularity, these bases and methods can't reflect the direct property and systematic property and controllable property of the structure of mechanism in macro, thus can't play an excellent role in guiding to evade the configuration before the appearance of singularity. In view of the shortcomings of forementioned four bases and methods, six new methods combined with the structure and exterior phenomena and motion control of mechanism directly and closely, classfication carried out based on the factors of moving base and joint component and executor and branch and acutating source and input parameters, these factors display the systemic property in macro, excellent guiding performance can be expected in singularity evasion and machine design and machine control based on these new bases and methods.
NASA Technical Reports Server (NTRS)
Bedrossian, Nazareth Sarkis
1987-01-01
The correspondence between robotic manipulators and single gimbal Control Moment Gyro (CMG) systems was exploited to aid in the understanding and design of single gimbal CMG Steering laws. A test for null motion near a singular CMG configuration was derived which is able to distinguish between escapable and unescapable singular states. Detailed analysis of the Jacobian matrix null-space was performed and results were used to develop and test a variety of single gimbal CMG steering laws. Computer simulations showed that all existing singularity avoidance methods are unable to avoid Elliptic internal singularities. A new null motion algorithm using the Moore-Penrose pseudoinverse, however, was shown by simulation to avoid Elliptic type singularities under certain conditions. The SR-inverse, with appropriate null motion was proposed as a general approach to singularity avoidance, because of its ability to avoid singularities through limited introduction of torque error. Simulation results confirmed the superior performance of this method compared to the other available and proposed pseudoinverse-based Steering laws.
NASA Astrophysics Data System (ADS)
Zhang, Dashan; Guo, Jie; Jin, Yi; Zhu, Chang'an
2017-09-01
High-speed cameras provide full field measurement of structure motions and have been applied in nondestructive testing and noncontact structure monitoring. Recently, a phase-based method has been proposed to extract sound-induced vibrations from phase variations in videos, and this method provides insights into the study of remote sound surveillance and material analysis. An efficient singular value decomposition (SVD)-based approach is introduced to detect sound-induced subtle motions from pixel intensities in silent high-speed videos. A high-speed camera is initially applied to capture a video of the vibrating objects stimulated by sound fluctuations. Then, subimages collected from a small region on the captured video are reshaped into vectors and reconstructed to form a matrix. Orthonormal image bases (OIBs) are obtained from the SVD of the matrix; available vibration signal can then be obtained by projecting subsequent subimages onto specific OIBs. A simulation test is initiated to validate the effectiveness and efficiency of the proposed method. Two experiments are conducted to demonstrate the potential applications in sound recovery and material analysis. Results show that the proposed method efficiently detects subtle motions from the video.
Bound states in the continuum and polarization singularities in periodic arrays of dielectric rods
NASA Astrophysics Data System (ADS)
Bulgakov, Evgeny N.; Maksimov, Dmitrii N.
2017-12-01
We consider optical bound states in the continuum (BICs) in periodic arrays of dielectric rods. The full classification of BICs in the above system is provided, including the modes propagating along the axes of the rods and bidirectional BICs propagating both along the axes of the rods and the axis of periodicity. It is shown that the leaky zones supporting the BICs generally have elliptically polarized far-field radiation patterns, with the polarization ellipses collapsing on approach to the BICs in momentum space. That allowed us to apply the concept of polarization singularities and demonstrate that the BICs possess a topological charge defined as the winding number of the polarization direction [Phys. Rev. Lett. 113, 257401 (2014), 10.1103/PhysRevLett.113.257401]. It is found that the evolution of the BICs, including their creation and annihilation, under variation of geometric parameters is controlled by the topological charge. Three scenarios of such evolution for different leaky zones are described. Finally, it is shown that the topological properties of the BICs can be extracted from transmission spectra when the system is illuminated by a plane wave of circular polarization.
Critical Evaluation of Soil Pore Water Extraction Methods on a Natural Soil
NASA Astrophysics Data System (ADS)
Orlowski, Natalie; Pratt, Dyan; Breuer, Lutz; McDonnell, Jeffrey
2017-04-01
Soil pore water extraction is an important component in ecohydrological studies for the measurement of δ2H and δ18O. The effect of pore water extraction technique on resultant isotopic signature is poorly understood. Here we present results of an intercomparison of commonly applied lab-based soil water extraction techniques on a natural soil: high pressure mechanical squeezing, centrifugation, direct vapor equilibration, microwave extraction, and two types of cryogenic extraction systems. We applied these extraction methods to a natural summer-dry (gravimetric water contents ranging from 8% to 15%) glacio-lacustrine, moderately fine textured clayey soil; excavated in 10 cm sampling increments to a depth of 1 meter. Isotope results were analyzed via OA-ICOS and compared for each extraction technique that produced liquid water. From our previous intercomparison study among the same extraction techniques but with standard soils, we discovered that extraction methods are not comparable. We therefore tested the null hypothesis that all extraction techniques would be able to replicate the natural evaporation front in a comparable manner occurring in a summer-dry soil. Our results showed that the extraction technique utilized had a significant effect on the soil water isotopic composition. High pressure mechanical squeezing and vapor equilibration techniques produced similar results with similarly sloped evaporation lines. Due to the nature of soil properties and dryness, centrifugation was unsuccessful in obtaining pore water for isotopic analysis. Cryogenic extraction on both tested techniques produced similar results to each other on a similar sloping evaporation line, but dissimilar with depth.
Infinite derivative gravity: non-singular cosmology & blackhole solutions
NASA Astrophysics Data System (ADS)
Mazumdar, A.
Both Einstein’s theory of General Relativity and Newton’s theory of gravity possess a short distance and small time scale catastrophe. The blackhole singularity and cosmological Big Bang singularity problems highlight that current theories of gravity are incomplete description at early times and small distances. I will discuss how one can potentially resolve these fundamental problems at a classical level and quantum level. In particular, I will discuss infinite derivative theories of gravity, where gravitational interactions become weaker in the ultraviolet, and therefore resolving some of the classical singularities, such as Big Bang and Schwarzschild singularity for compact non-singular objects with mass up to 1025 grams. In this lecture, I will discuss quantum aspects of infinite derivative gravity and discuss few aspects which can make the theory asymptotically free in the UV.
Three dimensional canonical singularity and five dimensional N = 1 SCFT
NASA Astrophysics Data System (ADS)
Xie, Dan; Yau, Shing-Tung
2017-06-01
We conjecture that every three dimensional canonical singularity defines a five dimensional N = 1 SCFT. Flavor symmetry can be found from singularity structure: non-abelian flavor symmetry is read from the singularity type over one dimensional singular locus. The dimension of Coulomb branch is given by the number of compact crepant divisors from a crepant resolution of singularity. The detailed structure of Coulomb branch is described as follows: a) a chamber of Coulomb branch is described by a crepant resolution, and this chamber is given by its Nef cone and the prepotential is computed from triple intersection numbers; b) Crepant resolution is not unique and different resolutions are related by flops; Nef cones from crepant resolutions form a fan which is claimed to be the full Coulomb branch.
Sharp bounds for singular values of fractional integral operators
NASA Astrophysics Data System (ADS)
Burman, Prabir
2007-03-01
From the results of Dostanic [M.R. Dostanic, Asymptotic behavior of the singular values of fractional integral operators, J. Math. Anal. Appl. 175 (1993) 380-391] and Vu and Gorenflo [Kim Tuan Vu, R. Gorenflo, Singular values of fractional and Volterra integral operators, in: Inverse Problems and Applications to Geophysics, Industry, Medicine and Technology, Ho Chi Minh City, 1995, Ho Chi Minh City Math. Soc., Ho Chi Minh City, 1995, pp. 174-185] it is known that the jth singular value of the fractional integral operator of order [alpha]>0 is approximately ([pi]j)-[alpha] for all large j. In this note we refine this result by obtaining sharp bounds for the singular values and use these bounds to show that the jth singular value is ([pi]j)-[alpha][1+O(j-1)].
Diffraction of V-point singularities through triangular apertures.
Ram, B S Bhargava; Sharma, Anurag; Senthilkumaran, P
2017-05-01
In this paper we present experimental studies on diffraction of V-point singularities through equilateral and isosceles right triangular apertures. When V-point index, also called Poincare-Hopf index (η), of the optical field is +1, the diffraction disintegrates it into two monstars/lemons. When V-point index η is -1, diffraction produces two stars. The diffraction pattern, unlike phase singularity, is insensitive to polarity of the polarization singularity and the intensity pattern remains invariant. Higher order V-point singularities are generated using Sagnac interferometer and it is observed that the diffraction disintegrates them into lower order C-points.
NASA Astrophysics Data System (ADS)
Guo, Jinyun; Li, Wudong; Chang, Xiaotao; Zhu, Guangbin; Liu, Xin; Guo, Bin
2018-04-01
Water resource management is crucial for the economic and social development of Xinjiang, an arid area located in the Northwest China. In this paper, the time variations of gravity recovery and climate experiment (GRACE)-derived monthly gravity field models from 2003 January to 2013 December are analysed to study the terrestrial water storage (TWS) changes in Xinjiang using the multichannel singular spectrum analysis (MSSA) with a Gaussian smoothing radius of 400 km. As an extended singular spectrum analysis (SSA), MSSA is more flexible to deal with multivariate time-series in terms of estimating periodic components and trend, reducing noise and identifying patterns of similar spatiotemporal behaviour thanks to the data-adaptive nature of the base functions. Combining MSSA and Gaussian filter can not only obviously remove the north-south striping errors in the GRACE solutions but also reduce the leakage errors, which can increase the signal-to-noise ratio by comparing with the traditional procedure, that is, empirical decorrelation method followed with the Gaussian filtering. The spatiotemporal characteristics of TWS changes in Xinjiang were validated against the Global Land Dynamics Assimilation System, the Climate Prediction Center and in-situ precipitation data. The water storage in Xinjiang shows the relatively large fluctuation from 2003 January to 2013 December, with a drop from 2006 January to 2008 December due to the drought event and an obvious rise from 2009 January to 2010 December because of the high precipitation. Spatially, the TWS has been increasing in the south Xinjiang, but decreasing in the north Xinjiang. The minimum rate of water storage change is -4.4 mm yr-1 occurring in the central Tianshan Mountain.
Preliminary results in large bone segmentation from 3D freehand ultrasound
NASA Astrophysics Data System (ADS)
Fanti, Zian; Torres, Fabian; Arámbula Cosío, Fernando
2013-11-01
Computer Assisted Orthopedic Surgery (CAOS) requires a correct registration between the patient in the operating room and the virtual models representing the patient in the computer. In order to increase the precision and accuracy of the registration a set of new techniques that eliminated the need to use fiducial markers have been developed. The majority of these newly developed registration systems are based on costly intraoperative imaging systems like Computed Tomography (CT scan) or Magnetic resonance imaging (MRI). An alternative to these methods is the use of an Ultrasound (US) imaging system for the implementation of a more cost efficient intraoperative registration solution. In order to develop the registration solution with the US imaging system, the bone surface is segmented in both preoperative and intraoperative images, and the registration is done using the acquire surface. In this paper, we present the a preliminary results of a new approach to segment bone surface from ultrasound volumes acquired by means 3D freehand ultrasound. The method is based on the enhancement of the voxels that belongs to surface and its posterior segmentation. The enhancement process is based on the information provided by eigenanalisis of the multiscale 3D Hessian matrix. The preliminary results shows that from the enhance volume the final bone surfaces can be extracted using a singular value thresholding.
Naked shell singularities on the brane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seahra, Sanjeev S.
By utilizing nonstandard slicings of 5-dimensional Schwarzschild and Schwarzschild-AdS manifolds based on isotropic coordinates, we generate static and spherically-symmetric braneworld spacetimes containing shell-like naked null singularities. For planar slicings, we find that the brane-matter sourcing the solution is a perfect fluid with an exotic equation of state and a pressure singularity where the brane crosses the bulk horizon. From a relativistic point of view, such a singularity is required to maintain matter infinitesimally above the surface of a black hole. From the point of view of the AdS/CFT conjecture, the singular horizon can be seen as one possible quantum correctionmore » to a classical black hole geometry. Various generalizations of planar slicings are also considered for a Ricci-flat bulk, and we find that singular horizons and exotic matter distributions are common features.« less
Experimental verification of free-space singular boundary conditions in an invisibility cloak
NASA Astrophysics Data System (ADS)
Wu, Qiannan; Gao, Fei; Song, Zhengyong; Lin, Xiao; Zhang, Youming; Chen, Huanyang; Zhang, Baile
2016-04-01
A major issue in invisibility cloaking, which caused intense mathematical discussions in the past few years but still remains physically elusive, is the plausible singular boundary conditions associated with the singular metamaterials at the inner boundary of an invisibility cloak. The perfect cloaking phenomenon, as originally proposed by Pendry et al for electromagnetic waves, cannot be treated as physical before a realistic inner boundary of a cloak is demonstrated. Although a recent demonstration has been done in a waveguide environment, the exotic singular boundary conditions should apply to a general environment as in free space. Here we fabricate a metamaterial surface that exhibits the singular boundary conditions and demonstrate its performance in free space. Particularly, the phase information of waves reflected from this metamaterial surface is explicitly measured, confirming the singular responses of boundary conditions for an invisibility cloak.
Inclined edge crack in two bonded elastic quarter planes under out-of-plane loading
NASA Astrophysics Data System (ADS)
Hwang, E. H.; Choi, S. R.; Earmme, Y. Y.
1992-08-01
The problem of the interfacial edge crack in which the crack-inclination angle = zero is solved analytically by means of the Wiener-Hopf technique with the Mellin transform. The results are found to confirm the result by Bassani and Erdogan (1979) showing that there is no stress singularity for the interface perpendicular to the free boundary at the junction with a straight inclined interface with no crack.
Inverse Problems and Imaging (Pitman Research Notes in Mathematics Series Number 245)
1991-01-01
Multiparamcter spectral theory in Hilbert space functional differential cquations B D Sleeman F Kappel and W Schappacher 24 Mathematical modelling...techniques 49 Sequence spaces R Aris W 11 Ruckle 25 Singular points of smooth mappings 50 Recent contributions to nonlinear C G Gibson partial...of convergence in the central limit T Husain theorem 86 Hamilton-Jacobi equations in Hilbert spaces Peter Hall V Barbu and G Da Prato 63 Solution of
New method for detecting singularities in experimental incompressible flows
NASA Astrophysics Data System (ADS)
Kuzzay, Denis; Saw, Ewe-Wei; Martins, Fabio J. W. A.; Faranda, Davide; Foucaut, Jean-Marc; Daviaud, François; Dubrulle, Bérengère
2017-06-01
We introduce two new criteria based on the work of Duchon and Robert (2000 Nonlinearity 13 249) and Eyink (2006 Phys. Rev. E 74 066302), which allow for the local detection of Navier-Stokes singularities in experimental flows. We discuss the difference between non-dissipative or dissipative Euler quasi-singularities and genuine Navier-Stokes dissipative singularites, and classify them with respect to their Hölder exponent h. We show that our criteria allow us to detect areas in a flow where the velocity field is no more regular than Hölder continuous with some Hölder exponent h ≤slant 1/2 . We illustrate our discussion using classical tomographic particle image velocimetry (TPIV) measurements obtained inside a high Reynolds number flow generated in the boundary layer of a wind tunnel. Our study shows that, in order to detect singularities or quasi-singularities, one does not need to have access to the whole velocity field inside a volume, but can instead look for them from stereoscopic PIV data on a plane. We also provide a discussion about the link between areas detected by our criteria and areas corresponding to large vorticity. We argue that this link might provide either a clue about the genesis of these quasi-singularities or a way to discriminate dissipative Euler quasi-singularities and genuine Navier-Stokes singularities.
NASA Technical Reports Server (NTRS)
Wang, S. S.; Choi, I.
1983-01-01
The fundamental mechanics of delamination in fiber composite laminates is studied. Mathematical formulation of the problem is based on laminate anisotropic elasticity theory and interlaminar fracture mechanics concepts. Stress singularities and complete solution structures associated with general composite delaminations are determined. For a fully open delamination with traction-free surfaces, oscillatory stress singularities always appear, leading to physically inadmissible field solutions. A refined model is introduced by considering a partially closed delamination with crack surfaces in finite-length contact. Stress singularities associated with a partially closed delamination having frictional crack-surface contact are determined, and are found to be different from the inverse square-root one of the frictionless-contact case. In the case of a delamination with very small area of crack closure, a simplified model having a square-root stress singularity is employed by taking the limit of the partially closed delamination. The possible presence of logarithmic-type stress singularity is examined; no logarithmic singularity of any kind is found in the composite delamination problem. Numerical examples of dominant stress singularities are shown for delaminations having crack-tip closure with different frictional coefficients between general (1) and (2) graphite-epoxy composites. Previously announced in STAR as N84-13221
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufmann, Ralph M., E-mail: rkaufman@math.purdue.edu; Khlebnikov, Sergei, E-mail: skhleb@physics.purdue.edu; Wehefritz-Kaufmann, Birgit, E-mail: ebkaufma@math.purdue.edu
2012-11-15
Motivated by the Double Gyroid nanowire network we develop methods to detect Dirac points and classify level crossings, aka. singularities in the spectrum of a family of Hamiltonians. The approach we use is singularity theory. Using this language, we obtain a characterization of Dirac points and also show that the branching behavior of the level crossings is given by an unfolding of A{sub n} type singularities. Which type of singularity occurs can be read off a characteristic region inside the miniversal unfolding of an A{sub k} singularity. We then apply these methods in the setting of families of graph Hamiltonians,more » such as those for wire networks. In the particular case of the Double Gyroid we analytically classify its singularities and show that it has Dirac points. This indicates that nanowire systems of this type should have very special physical properties. - Highlights: Black-Right-Pointing-Pointer New method for analytically finding Dirac points. Black-Right-Pointing-Pointer Novel relation of level crossings to singularity theory. Black-Right-Pointing-Pointer More precise version of the von-Neumann-Wigner theorem for arbitrary smooth families of Hamiltonians of fixed size. Black-Right-Pointing-Pointer Analytical proof of the existence of Dirac points for the Gyroid wire network.« less
Harmonic analysis of electric locomotive and traction power system based on wavelet singular entropy
NASA Astrophysics Data System (ADS)
Dun, Xiaohong
2018-05-01
With the rapid development of high-speed railway and heavy-haul transport, the locomotive and traction power system has become the main harmonic source of China's power grid. In response to this phenomenon, the system's power quality issues need timely monitoring, assessment and governance. Wavelet singular entropy is an organic combination of wavelet transform, singular value decomposition and information entropy theory, which combines the unique advantages of the three in signal processing: the time-frequency local characteristics of wavelet transform, singular value decomposition explores the basic modal characteristics of data, and information entropy quantifies the feature data. Based on the theory of singular value decomposition, the wavelet coefficient matrix after wavelet transform is decomposed into a series of singular values that can reflect the basic characteristics of the original coefficient matrix. Then the statistical properties of information entropy are used to analyze the uncertainty of the singular value set, so as to give a definite measurement of the complexity of the original signal. It can be said that wavelet entropy has a good application prospect in fault detection, classification and protection. The mat lab simulation shows that the use of wavelet singular entropy on the locomotive and traction power system harmonic analysis is effective.
A technique for plasma velocity-space cross-correlation
NASA Astrophysics Data System (ADS)
Mattingly, Sean; Skiff, Fred
2018-05-01
An advance in experimental plasma diagnostics is presented and used to make the first measurement of a plasma velocity-space cross-correlation matrix. The velocity space correlation function can detect collective fluctuations of plasmas through a localized measurement. An empirical decomposition, singular value decomposition, is applied to this Hermitian matrix in order to obtain the plasma fluctuation eigenmode structure on the ion distribution function. A basic theory is introduced and compared to the modes obtained by the experiment. A full characterization of these modes is left for future work, but an outline of this endeavor is provided. Finally, the requirements for this experimental technique in other plasma regimes are discussed.
Discovery of Newer Therapeutic Leads for Prostate Cancer
2009-06-01
promising plant extracts and then prepare large-scale quantities of the plant extracts using supercritical fluid extraction techniques and use this...quantities of the plant extracts using supercritical fluid extraction techniques. Large scale plant collections were conducted for 14 of the top 20...material for bioassay-guided fractionation of the biologically active constituents using modern chromatography techniques. The chemical structures of
Cicchetti, Esmeralda; Chaintreau, Alain
2009-06-01
Accelerated solvent extraction (ASE) of vanilla beans has been optimized using ethanol as a solvent. A theoretical model is proposed to account for this multistep extraction. This allows the determination, for the first time, of the total amount of analytes initially present in the beans and thus the calculation of recoveries using ASE or any other extraction technique. As a result, ASE and Soxhlet extractions have been determined to be efficient methods, whereas recoveries are modest for maceration techniques and depend on the solvent used. Because industrial extracts are obtained by many different procedures, including maceration in various solvents, authenticating vanilla extracts using quantitative ratios between the amounts of vanilla flavor constituents appears to be unreliable. When authentication techniques based on isotopic ratios are used, ASE is a valid sample preparation technique because it does not induce isotopic fractionation.
Mostafazadeh, Ali
2009-06-05
Spectral singularities are spectral points that spoil the completeness of the eigenfunctions of certain non-Hermitian Hamiltonian operators. We identify spectral singularities of complex scattering potentials with the real energies at which the reflection and transmission coefficients tend to infinity, i.e., they correspond to resonances having a zero width. We show that a waveguide modeled using such a potential operates like a resonator at the frequencies of spectral singularities. As a concrete example, we explore the spectral singularities of an imaginary PT-symmetric barrier potential and demonstrate the above resonance phenomenon for a certain electromagnetic waveguide.
Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oshemkov, Andrey A
2010-10-06
A complete invariant is constructed that is a solution of the problem of semilocal classification of saddle singularities of integrable Hamiltonian systems. Namely, a certain combinatorial object (an f{sub n}-graph) is associated with every nondegenerate saddle singularity of rank zero; as a result, the problem of semilocal classification of saddle singularities of rank zero is reduced to the problem of enumeration of the f{sub n}-graphs. This enables us to describe a simple algorithm for obtaining the lists of saddle singularities of rank zero for a given number of degrees of freedom and a given complexity. Bibliography: 24 titles.
Boundary-layer effects in composite laminates: Free-edge stress singularities, part 6
NASA Technical Reports Server (NTRS)
Wanag, S. S.; Choi, I.
1981-01-01
A rigorous mathematical model was obtained for the boundary-layer free-edge stress singularity in angleplied and crossplied fiber composite laminates. The solution was obtained using a method consisting of complex-variable stress function potentials and eigenfunction expansions. The required order of the boundary-layer stress singularity is determined by solving the transcendental characteristic equation obtained from the homogeneous solution of the partial differential equations. Numerical results obtained show that the boundary-layer stress singularity depends only upon material elastic constants and fiber orientation of the adjacent plies. For angleplied and crossplied laminates the order of the singularity is weak in general.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mostafazadeh, Ali
2009-06-05
Spectral singularities are spectral points that spoil the completeness of the eigenfunctions of certain non-Hermitian Hamiltonian operators. We identify spectral singularities of complex scattering potentials with the real energies at which the reflection and transmission coefficients tend to infinity, i.e., they correspond to resonances having a zero width. We show that a waveguide modeled using such a potential operates like a resonator at the frequencies of spectral singularities. As a concrete example, we explore the spectral singularities of an imaginary PT-symmetric barrier potential and demonstrate the above resonance phenomenon for a certain electromagnetic waveguide.
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Kim, Hye-Young; Junkins, John L.
2003-01-01
A new star pattern recognition method is developed using singular value decomposition of a measured unit column vector matrix in a measurement frame and the corresponding cataloged vector matrix in a reference frame. It is shown that singular values and right singular vectors are invariant with respect to coordinate transformation and robust under uncertainty. One advantage of singular value comparison is that a pairing process for individual measured and cataloged stars is not necessary, and the attitude estimation and pattern recognition process are not separated. An associated method for mission catalog design is introduced and simulation results are presented.
NASA Astrophysics Data System (ADS)
Fang, Longjie; Zhang, Xicheng; Zuo, Haoyi; Pang, Lin; Yang, Zuogang; Du, Jinglei
2018-06-01
A method of selecting appropriate singular values of the transmission matrix to improve the precision of incident wavefront retrieval in focusing light through scattering media is proposed. The optimal singular values selected by this method can reduce the degree of ill-conditionedness of the transmission matrix effectively, which indicates that the incident wavefront retrieved from the optimal set of singular values is more accurate than the incident wavefront retrieved from other sets of singular values. The validity of this method is verified by numerical simulation and actual measurements of the incident wavefront of coherent light through ground glass.
Xu, Chi; Fernando, Nalin S; Zollner, Stefan; Kouvetakis, John; Menéndez, José
2017-06-30
Phase-filling singularities in the optical response function of highly doped (>10^{19} cm^{-3}) germanium are theoretically predicted and experimentally confirmed using spectroscopic ellipsometry. Contrary to direct-gap semiconductors, which display the well-known Burstein-Moss phenomenology upon doping, the critical point in the joint density of electronic states associated with the partially filled conduction band in n-Ge corresponds to the so-called E_{1} and E_{1}+Δ_{1} transitions, which are two-dimensional in character. As a result of this reduced dimensionality, there is no edge shift induced by Pauli blocking. Instead, one observes the "original" critical point (shifted only by band gap renormalization) and an additional feature associated with the level occupation discontinuity at the Fermi level. The experimental observation of this feature is made possible by the recent development of low-temperature, in situ doping techniques that allow the fabrication of highly doped films with exceptionally flat doping profiles.
Boundary layer thermal stresses in angle-ply composite laminates, part 1. [graphite-epoxy composites
NASA Technical Reports Server (NTRS)
Wang, S. S.; Choi, I.
1981-01-01
Thermal boundary-layer stresses (near free edges) and displacements were determined by a an eigenfunction expansion technique and the establishment of an appropriate particular solution. Current solutions in the region away from the singular domain (free edge) are found to be excellent agreement with existing approximate numerical results. As the edge is approached, the singular term controls the near field behavior of the boundary layer. Results are presented for cases of various angle-ply graphite/epoxy laminates with (theta/-theta/theta/theta) configurations. These results show high interlaminar (through-the-thickness) stresses. Thermal boundary-layer thicknesses of different composite systems are determined by examining the strain energy density distribution in composites. It is shown that the boundary-layer thickness depends on the degree of anisotropy of each individual lamina, thermomechanical properties of each ply, and the relative thickness of adjacent layers. The interlaminar thermal stresses are compressive with increasing temperature. The corresponding residual stresses are tensile and may enhance interply delaminations.
Plates and shells containing a surface crack under general loading conditions
NASA Technical Reports Server (NTRS)
Joseph, Paul F.; Erdogan, Fazil
1986-01-01
The severity of the underlying assumptions of the line-spring model (LSM) are such that verification with three-dimensional solutions is necessary. Such comparisons show that the model is quite accurate, and therefore, its use in extensive parameter studies is justified. Investigations into the endpoint behavior of the line-spring model have led to important conclusions about the ability of the model to predict stresses in front of the crack tip. An important application of the LSM was to solve the contact plate bending problem. Here the flexibility of the model to allow for any crack shape is exploited. The use of displacement quantities as unknowns in the formulation of the problem leads to strongly singular integral equations, rather than singular integral equations which result from using displacement derivatives. The collocation method of solving the integral equations was found to be better and more convenient than the quadrature technique. Orthogonal polynomials should be used as fitting functions when using the LSM as opposed to simpler functions such as power series.
A hybrid perturbation Galerkin technique with applications to slender body theory
NASA Technical Reports Server (NTRS)
Geer, James F.; Andersen, Carl M.
1989-01-01
A two-step hybrid perturbation-Galerkin method to solve a variety of applied mathematics problems which involve a small parameter is presented. The method consists of: (1) the use of a regular or singular perturbation method to determine the asymptotic expansion of the solution in terms of the small parameter; (2) construction of an approximate solution in the form of a sum of the perturbation coefficient functions multiplied by (unknown) amplitudes (gauge functions); and (3) the use of the classical Bubnov-Galerkin method to determine these amplitudes. This hybrid method has the potential of overcoming some of the drawbacks of the perturbation method and the Bubnov-Galerkin method when they are applied by themselves, while combining some of the good features of both. The proposed method is applied to some singular perturbation problems in slender body theory. The results obtained from the hybrid method are compared with approximate solutions obtained by other methods, and the degree of applicability of the hybrid method to broader problem areas is discussed.
A hybrid perturbation Galerkin technique with applications to slender body theory
NASA Technical Reports Server (NTRS)
Geer, James F.; Andersen, Carl M.
1987-01-01
A two step hybrid perturbation-Galerkin method to solve a variety of applied mathematics problems which involve a small parameter is presented. The method consists of: (1) the use of a regular or singular perturbation method to determine the asymptotic expansion of the solution in terms of the small parameter; (2) construction of an approximate solution in the form of a sum of the perturbation coefficient functions multiplied by (unknown) amplitudes (gauge functions); and (3) the use of the classical Bubnov-Galerkin method to determine these amplitudes. This hybrid method has the potential of overcoming some of the drawbacks of the perturbation method and the Bubnov-Galerkin method when they are applied by themselves, while combining some of the good features of both. The proposed method is applied to some singular perturbation problems in slender body theory. The results obtained from the hybrid method are compared with approximate solutions obtained by other methods, and the degree of applicability of the hybrid method to broader problem areas is discussed.
NASA Technical Reports Server (NTRS)
Smith, Ralph C.
1994-01-01
A Galerkin method for systems of PDE's in circular geometries is presented with motivating problems being drawn from structural, acoustic, and structural acoustic applications. Depending upon the application under consideration, piecewise splines or Legendre polynomials are used when approximating the system dynamics with modifications included to incorporate the analytic solution decay near the coordinate singularity. This provides an efficient method which retains its accuracy throughout the circular domain without degradation at singularity. Because the problems under consideration are linear or weakly nonlinear with constant or piecewise constant coefficients, transform methods for the problems are not investigated. While the specific method is developed for the two dimensional wave equations on a circular domain and the equation of transverse motion for a thin circular plate, examples demonstrating the extension of the techniques to a fully coupled structural acoustic system are used to illustrate the flexibility of the method when approximating the dynamics of more complex systems.
A robust adaptive observer for a class of singular nonlinear uncertain systems
NASA Astrophysics Data System (ADS)
Arefinia, Elaheh; Talebi, Heidar Ali; Doustmohammadi, Ali
2017-05-01
This paper proposes a robust adaptive observer for a class of singular nonlinear non-autonomous uncertain systems with unstructured unknown system and derivative matrices, and unknown bounded nonlinearities. Unlike many existing observers, no strong assumption such as Lipschitz condition is imposed on the recommended system. An augmented system is constructed, and the unknown bounds are calculated online using adaptive bounding technique. Considering the continuous nonlinear gain removes the chattering which may appear in practical applications such as analysis of electrical circuits and estimation of interaction force in beating heart robotic-assisted surgery. Moreover, a simple yet precise structure is attained which is easy to implement in many systems with significant uncertainties. The existence conditions of the standard form observer are obtained in terms of linear matrix inequality and the constrained generalised Sylvester's equations, and global stability is ensured. Finally, simulation results are obtained to evaluate the performance of the proposed estimator and demonstrate the effectiveness of the developed scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smirnov, A. G., E-mail: smirnov@lpi.ru
2015-12-15
We develop a general technique for finding self-adjoint extensions of a symmetric operator that respects a given set of its symmetries. Problems of this type naturally arise when considering two- and three-dimensional Schrödinger operators with singular potentials. The approach is based on constructing a unitary transformation diagonalizing the symmetries and reducing the initial operator to the direct integral of a suitable family of partial operators. We prove that symmetry preserving self-adjoint extensions of the initial operator are in a one-to-one correspondence with measurable families of self-adjoint extensions of partial operators obtained by reduction. The general scheme is applied to themore » three-dimensional Aharonov-Bohm Hamiltonian describing the electron in the magnetic field of an infinitely thin solenoid. We construct all self-adjoint extensions of this Hamiltonian, invariant under translations along the solenoid and rotations around it, and explicitly find their eigenfunction expansions.« less
NASA Astrophysics Data System (ADS)
Chung, Woon-Kwan; Park, Hyong-Hu; Im, In-Chul; Lee, Jae-Seung; Goo, Eun-Hoe; Dong, Kyung-Rae
2012-09-01
This paper proposes a computer-aided diagnosis (CAD) system based on texture feature analysis and statistical wavelet transformation technology to diagnose fatty liver disease with computed tomography (CT) imaging. In the target image, a wavelet transformation was performed for each lesion area to set the region of analysis (ROA, window size: 50 × 50 pixels) and define the texture feature of a pixel. Based on the extracted texture feature values, six parameters (average gray level, average contrast, relative smoothness, skewness, uniformity, and entropy) were determined to calculate the recognition rate for a fatty liver. In addition, a multivariate analysis of the variance (MANOVA) method was used to perform a discriminant analysis to verify the significance of the extracted texture feature values and the recognition rate for a fatty liver. According to the results, each texture feature value was significant for a comparison of the recognition rate for a fatty liver ( p < 0.05). Furthermore, the F-value, which was used as a scale for the difference in recognition rates, was highest in the average gray level, relatively high in the skewness and the entropy, and relatively low in the uniformity, the relative smoothness and the average contrast. The recognition rate for a fatty liver had the same scale as that for the F-value, showing 100% (average gray level) at the maximum and 80% (average contrast) at the minimum. Therefore, the recognition rate is believed to be a useful clinical value for the automatic detection and computer-aided diagnosis (CAD) using the texture feature value. Nevertheless, further study on various diseases and singular diseases will be needed in the future.
Singular spectrum analysis of sleep EEG in insomnia.
Aydın, Serap; Saraoǧlu, Hamdi Melih; Kara, Sadık
2011-08-01
In the present study, the Singular Spectrum Analysis (SSA) is applied to sleep EEG segments collected from healthy volunteers and patients diagnosed by either psycho physiological insomnia or paradoxical insomnia. Then, the resulting singular spectra computed for both C3 and C4 recordings are assigned as the features to the Artificial Neural Network (ANN) architectures for EEG classification in diagnose. In tests, singular spectrum of particular sleep stages such as awake, REM, stage1 and stage2, are considered. Three clinical groups are successfully classified by using one hidden layer ANN architecture with respect to their singular spectra. The results show that the SSA can be applied to sleep EEG series to support the clinical findings in insomnia if ten trials are available for the specific sleep stages. In conclusion, the SSA can detect the oscillatory variations on sleep EEG. Therefore, different sleep stages meet different singular spectra. In addition, different healthy conditions generate different singular spectra for each sleep stage. In summary, the SSA can be proposed for EEG discrimination to support the clinical findings for psycho-psychological disorders.
The strong energy condition and the S-brane singularity problem
NASA Astrophysics Data System (ADS)
McInnes, Brett
2003-06-01
Recently it has been argued that, because tachyonic matter satisfies the Strong Energy Condition [SEC], there is little hope of avoiding the singularities which plague S-Brane spacetimes. Meanwhile, however, Townsend and Wohlfarth have suggested an ingenious way of circumventing the SEC in such situations, and other suggestions for actually violating it in the S-Brane context have recently been proposed. Of course, the natural context for discussions of [effective or actual] violations of the SEC is the theory of asymptotically deSitter spacetimes, which tend to be less singular than ordinary FRW spacetimes. However, while violating or circumventing the SEC is necessary if singularities are to be avoided, it is not at all clear that it is sufficient. That is, we can ask: would an asymptotically deSitter S-brane spacetime be non-singular? We show that this is difficult to achieve; this result is in the spirit of the recently proved "S-brane singularity theorem". Essentially our results suggest that circumventing or violating the SEC may not suffice to solve the S-Brane singularity problem, though we do propose two ways of avoiding this conclusion.
Dynamic Singularity Spectrum Distribution of Sea Clutter
NASA Astrophysics Data System (ADS)
Xiong, Gang; Yu, Wenxian; Zhang, Shuning
2015-12-01
The fractal and multifractal theory have provided new approaches for radar signal processing and target-detecting under the background of ocean. However, the related research mainly focuses on fractal dimension or multifractal spectrum (MFS) of sea clutter. In this paper, a new dynamic singularity analysis method of sea clutter using MFS distribution is developed, based on moving detrending analysis (DMA-MFSD). Theoretically, we introduce the time information by using cyclic auto-correlation of sea clutter. For transient correlation series, the instantaneous singularity spectrum based on multifractal detrending moving analysis (MF-DMA) algorithm is calculated, and the dynamic singularity spectrum distribution of sea clutter is acquired. In addition, we analyze the time-varying singularity exponent ranges and maximum position function in DMA-MFSD of sea clutter. For the real sea clutter data, we analyze the dynamic singularity spectrum distribution of real sea clutter in level III sea state, and conclude that the radar sea clutter has the non-stationary and time-varying scale characteristic and represents the time-varying singularity spectrum distribution based on the proposed DMA-MFSD method. The DMA-MFSD will also provide reference for nonlinear dynamics and multifractal signal processing.
Enviromentally Sound Timber Extracting Techniques for Small Tree Harvesting
Lihai Wang
1999-01-01
Due to large area disturbed and great deal of energy cost during-its operations, introducing or applying the appropriate timber extracting techniques could significantly reduce the impact of timber extraction operations to forest environment while pursuing the reasonable operation costs. Four environmentally sound timber extraction techniques for small tree harvesting...
Soil solution extraction techniques for microbial ecotoxicity testing: a comparative evaluation.
Tiensing, T; Preston, S; Strachan, N; Paton, G I
2001-02-01
The suitability of two different techniques (centrifugation and Rhizon sampler) for obtaining the interstitial pore water of soil (soil solution), integral to the ecotoxicity assessment of metal contaminated soil, were investigated by combining chemical analyses and a luminescence-based microbial biosensor. Two different techniques, centrifugation and Rhizon sampler, were used to extract the soil solution from Insch (a loamy sand) and Boyndie (a sandy loam) soils, which had been amended with different concentrations of Zn and Cd. The concentrations of dissolved organic carbon (DOC), major anions (F- , CI-, NO3, SO4(2-)) and major cations (K+, Mg2+, Ca2+) in the soil solutions varied depending on the extraction technique used. Overall, the concentrations of Zn and Cd were significantly higher in the soil solution extracted using the centrifugation technique compared with that extracted using the Rhizon sampler technique. Furthermore, the differences observed between the two extraction techniques depended on the type of soil from which the solution was being extracted. The luminescence-based biosensor Escherichia coli HB101 pUCD607 was shown to respond to the free metal concentrations in the soil solutions and showed that different toxicities were associated with each soil, depending on the technique used to extract the soil solution. This study highlights the need to characterise the type of extraction technique used to obtain the soil solution for ecotoxicity testing in order that a representative ecotoxicity assessment can be carried out.
Singularity computations. [finite element methods for elastoplastic flow
NASA Technical Reports Server (NTRS)
Swedlow, J. L.
1978-01-01
Direct descriptions of the structure of a singularity would describe the radial and angular distributions of the field quantities as explicitly as practicable along with some measure of the intensity of the singularity. This paper discusses such an approach based on recent development of numerical methods for elastoplastic flow. Attention is restricted to problems where one variable or set of variables is finite at the origin of the singularity but a second set is not.
Transmutation of planar media singularities in a conformal cloak.
Liu, Yichao; Mukhtar, Musawwadah; Ma, Yungui; Ong, C K
2013-11-01
Invisibility cloaking based on optical transformation involves materials singularity at the branch cut points. Many interesting optical devices, such as the Eaton lens, also require planar media index singularities in their implementation. We show a method to transmute two singularities simultaneously into harmless topological defects formed by anisotropic permittivity and permeability tensors. Numerical simulation is performed to verify the functionality of the transmuted conformal cloak consisting of two kissing Maxwell fish eyes.
Tailoring Eigenmodes at Spectral Singularities in Graphene-based PT Systems.
Zhang, Weixuan; Wu, Tong; Zhang, Xiangdong
2017-09-12
The spectral singularity existing in PT-synthetic plasmonic system has been widely investigated. Only lasing-mode can be excited resulting from the passive characteristic of metallic materials. Here, we investigated the spectral singularity in the hybrid structure composed of the photoexcited graphene and one-dimensional PT-diffractive grating. In this system, both lasing- and absorption-modes can be excited with the surface conductivity of photoexcited graphene being loss and gain, respectively. Remarkably, the spectral singularity will disappear with the optically pumped graphene to be lossless. In particular, we find that spectral singularities can exhibit symmetry-modes, when the loss and gain of the grating is unbalanced. Meanwhile, by tuning the loss (gain) of graphene and non-PT diffraction grating, lasing- and absorption-modes can also be excited. We hope that tunable optical modes at spectral singularities can have some applications in designing novel surface-enhanced spectroscopies and plasmon lasers.
Stress singularities at the vertex of a cylindrically anisotropic wedge
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.; Boduroglu, H.
1980-01-01
The plane elasticity problem for a cylindrically anisotropic solid is formulated. The form of the solution for an infinite wedge shaped domain with various homogeneous boundary conditions is derived and the nature of the stress singularity at the vertex of the wedge is studied. The characteristic equations giving the stress singularity and the angular distribution of the stresses around the vertex of the wedge are obtained for three standard homogeneous boundary conditions. The numerical examples show that the singular behavior of the stresses around the vertex of an anisotropic wedge may be significantly different from that of the isotropic material. Some of the results which may be of practical importance are that for a half plane the stress state at r = 0 may be singular and for a crack the power of stress singularity may be greater or less than 1/2.
Stanley Corrsin Award Talk: The role of singularities in hydrodynamics
NASA Astrophysics Data System (ADS)
Eggers, Jens
2017-11-01
If a tap is opened slowly, a drop will form. The separation of the drop is described by a singularity of the Navier-Stokes equation with a free surface. Shock waves are singular solutions of the equations of ideal, compressible hydrodynamics. These examples show that singularities are characteristic for the tendency of the hydrodynamic equations to develop small scale features spontaneously, starting from smooth initial conditions. As a result, new structures are created, which form the building blocks of more complicated flows. The mathematical structure of singularities is self-similar, and their characteristics are fixed by universal properties. This will be illustrated by physical examples, as well as by applications to engineering problems such as printing, coating, or air entrainment. Finally, more recent developments will be discussed: the increasing complexity underlying the self-similar behavior of some singularities, and the spatial structure of shock waves.
Particle creation by naked singularities in higher dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyamoto, Umpei; Nemoto, Hiroya; Shimano, Masahiro
Recently, the possibility was pointed out by one of the present authors and his collaborators that an effective naked singularity referred to as ''a visible border of spacetime'' is generated by high-energy particle collision in the context of large extra dimensions or TeV-scale gravity. In this paper, we investigate the particle creation by a naked singularity in general dimensions, while adopting a model in which a marginally naked singularity forms in the collapse of a homothetic lightlike pressureless fluid. We find that the spectrum deviates from that of Hawking radiation due to scattering near the singularity but can be recastmore » in quasithermal form. The temperature is always higher than that of Hawking radiation of a same-mass black hole, and can be arbitrarily high depending on a parameter in the model. This implies that, in principle, the naked singularity may be distinguished from a black hole in collider experiments.« less
NASA Technical Reports Server (NTRS)
Mukhopadhyay, V.; Newsom, J. R.
1982-01-01
A stability margin evaluation method in terms of simultaneous gain and phase changes in all loops of a multiloop system is presented. A universal gain-phase margin evaluation diagram is constructed by generalizing an existing method using matrix singular value properties. Using this diagram and computing the minimum singular value of the system return difference matrix over the operating frequency range, regions of guaranteed stability margins can be obtained. Singular values are computed for a wing flutter suppression and a drone lateral attitude control problem. The numerical results indicate that this method predicts quite conservative stability margins. In the second example if the eigenvalue magnitude is used instead of the singular value, as a measure of nearness to singularity, more realistic stability margins are obtained. However, this relaxed measure generally cannot guarantee global stability.
NASA Astrophysics Data System (ADS)
Batubara, I.; Suparto, I. H.; Wulandari, N. S.
2017-03-01
Guava leaves contain various compounds that have biological activity such as kaempferol and quercetin as anticancer. Twelve extraction techniques were performed to obtain the best extraction technique to isolate kaempferol and quercetin from the guava leaves. Toxicity of extracts was tested against Artemia salina larvae. All extracts were toxic (LC50 value less than 1000 ppm) except extract of direct soxhletation on guava leaves, and extract of sonication and soxhletation using n-hexane. The extract with high content of total phenols and total flavonoids, low content of tannins, intense color of spot on thin layer chromatogram was selected for high performance liquid chromatography analysis. Direct sonication of guava leaves was chosen as the best extraction technique with kampferol and quercetin content of 0.02% and 2.15%, respectively. In addition to high content of kaempferol and quercetin, direct sonication was chosen due to the shortest extraction time, lesser impurities and high toxicity.
The Production of FRW Universe and Decay to Particles in Multiverse
NASA Astrophysics Data System (ADS)
Ghaffary, Tooraj
2017-09-01
In this study, first, it will be shown that as the Hubble parameter, " H", increases the production cross section for closed and flat Universes increases rapidly at smaller values of " H" and becomes constant for higher values of " H". However in the case of open Universe, the production cross section has been encountered a singularity. Before this singularity, as the H parameter increases, the cross section increases, for smaller H, ( H < 2.5), exhibits a turn-over at moderate values of H, (2.5 < H < 3.5), decreases for larger amount of H After that and for a special value of H, the cross section has been encountered with a singularity. Although the cross section cannot be defined at this singularity but before and after this point, it is certainly equal to zero. After this singularity, the cross section increases rapidly, when H increases. It is shown that if the production cross section of Universe happens before this singularity, it can't achieve to higher values of Hubble parameter after singularity. More over if the production cross section of Universe situates after the singularity, it won't get access to values of Hubble parameter less than the singularity. After that the thermal distribution for particles inside the FRW Universes are obtained. It is found that a large amount of particles are produced near apparent horizon due to their variety in their energy and their probabilities. Finally, comparing the particle production cross sections for flat, closed and open Universes, it is concluded that as the value of k increases, the cross section decreases.
Constraints on Stress Components at the Internal Singular Point of an Elastic Compound Structure
NASA Astrophysics Data System (ADS)
Pestrenin, V. M.; Pestrenina, I. V.
2017-03-01
The classical analytical and numerical methods for investigating the stress-strain state (SSS) in the vicinity of a singular point consider the point as a mathematical one (having no linear dimensions). The reliability of the solution obtained by such methods is valid only outside a small vicinity of the singular point, because the macroscopic equations become incorrect and microscopic ones have to be used to describe the SSS in this vicinity. Also, it is impossible to set constraint or to formulate solutions in stress-strain terms for a mathematical point. These problems do not arise if the singular point is identified with the representative volume of material of the structure studied. In authors' opinion, this approach is consistent with the postulates of continuum mechanics. In this case, the formulation of constraints at a singular point and their investigation becomes an independent problem of mechanics for bodies with singularities. This method was used to explore constraints at an internal singular point (representative volume) of a compound wedge and a compound rib. It is shown that, in addition to the constraints given in the classical approach, there are also constraints depending on the macroscopic parameters of constituent materials. These constraints turn the problems of deformable bodies with an internal singular point into nonclassical ones. Combinations of material parameters determine the number of additional constraints and the critical stress state at the singular point. Results of this research can be used in the mechanics of composite materials and fracture mechanics and in studying stress concentrations in composite structural elements.
Song, Min; Yu, Hwanjo; Han, Wook-Shin
2011-11-24
Protein-protein interaction (PPI) extraction has been a focal point of many biomedical research and database curation tools. Both Active Learning and Semi-supervised SVMs have recently been applied to extract PPI automatically. In this paper, we explore combining the AL with the SSL to improve the performance of the PPI task. We propose a novel PPI extraction technique called PPISpotter by combining Deterministic Annealing-based SSL and an AL technique to extract protein-protein interaction. In addition, we extract a comprehensive set of features from MEDLINE records by Natural Language Processing (NLP) techniques, which further improve the SVM classifiers. In our feature selection technique, syntactic, semantic, and lexical properties of text are incorporated into feature selection that boosts the system performance significantly. By conducting experiments with three different PPI corpuses, we show that PPISpotter is superior to the other techniques incorporated into semi-supervised SVMs such as Random Sampling, Clustering, and Transductive SVMs by precision, recall, and F-measure. Our system is a novel, state-of-the-art technique for efficiently extracting protein-protein interaction pairs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandel, Ilya
The most promising way to compute the gravitational waves emitted by binary black holes (BBHs) in their last dozen orbits, where post-Newtonian techniques fail, is a quasistationary approximation introduced by Detweiler and being pursued by Price and others. In this approximation the outgoing gravitational waves at infinity and downgoing gravitational waves at the holes' horizons are replaced by standing waves so as to guarantee that the spacetime has a helical Killing vector field. Because the horizon generators will not, in general, be tidally locked to the holes' orbital motion, the standing waves will destroy the horizons, converting the black holesmore » into naked singularities that resemble black holes down to near the horizon radius. This paper uses a spherically symmetric, scalar-field model problem to explore in detail the following BBH issues: (i) The destruction of a horizon by the standing waves. (ii) The accuracy with which the resulting naked singularity resembles a black hole. (iii) The conversion of the standing-wave spacetime (with a destroyed horizon) into a spacetime with downgoing waves by the addition of a 'radiation-reaction field'. (iv) The accuracy with which the resulting downgoing waves agree with the downgoing waves of a true black-hole spacetime (with horizon). The model problem used to study these issues consists of a Schwarzschild black hole endowed with spherical standing waves of a scalar field, whose wave frequency and near-horizon energy density are chosen to match those of the standing gravitational waves of the BBH quasistationary approximation. It is found that the spacetime metric of the singular, standing-wave spacetime, and its radiation-reaction-field-constructed downgoing waves are quite close to those for a Schwarzschild black hole with downgoing waves--sufficiently close to make the BBH quasistationary approximation look promising for non-tidally-locked black holes.« less
Redundant single gimbal control moment gyroscope singularity analysis
NASA Technical Reports Server (NTRS)
Bedrossian, Nazareth S.; Paradiso, Joseph; Bergmann, Edward V.; Rowell, Derek
1990-01-01
The robotic manipulator is proposed as the mechanical analog to single gimbal control moment gyroscope systems, and it is shown that both systems share similar difficulties with singular configurations. This analogy is used to group gimbal angles corresponding to any momentum state into different families. The singularity problem associated with these systems is examined in detail. In particular, a method is presented to test for the possibility of nontorque-producing gimbal motion at a singular configuration, as well as to determine the admissible motions in the case when this is possible. Sufficient conditions are derived for instances where the singular system can be reconfigured into a nonsingular state by these nontorque-producing motions.
Brzezicki, Samuel J.
2017-01-01
An analytical method to find the flow generated by the basic singularities of Stokes flow in a wedge of arbitrary angle is presented. Specifically, we solve a biharmonic equation for the stream function of the flow generated by a point stresslet singularity and satisfying no-slip boundary conditions on the two walls of the wedge. The method, which is readily adapted to any other singularity type, takes full account of any transcendental singularities arising at the corner of the wedge. The approach is also applicable to problems of plane strain/stress of an elastic solid where the biharmonic equation also governs the Airy stress function. PMID:28690412
Crowdy, Darren G; Brzezicki, Samuel J
2017-06-01
An analytical method to find the flow generated by the basic singularities of Stokes flow in a wedge of arbitrary angle is presented. Specifically, we solve a biharmonic equation for the stream function of the flow generated by a point stresslet singularity and satisfying no-slip boundary conditions on the two walls of the wedge. The method, which is readily adapted to any other singularity type, takes full account of any transcendental singularities arising at the corner of the wedge. The approach is also applicable to problems of plane strain/stress of an elastic solid where the biharmonic equation also governs the Airy stress function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maldacena, Juan; Simmons-Duffin, David; Zhiboedov, Alexander
Here, we consider Lorentzian correlators of local operators. In perturbation theory, singularities occur when we can draw a position-space Landau diagram with null lines. In theories with gravity duals, we can also draw Landau diagrams in the bulk. We also argue that certain singularities can arise only from bulk diagrams, not from boundary diagrams. As has been previously observed, these singularities are a clear diagnostic of bulk locality. We analyze some properties of these perturbative singularities and discuss their relation to the OPE and the dimensions of double-trace operators. In the exact nonperturbative theory, we expect no singularity at thesemore » locations. Finally, we prove this statement in 1+1 dimensions by CFT methods.« less
Maldacena, Juan; Simmons-Duffin, David; Zhiboedov, Alexander
2017-01-03
Here, we consider Lorentzian correlators of local operators. In perturbation theory, singularities occur when we can draw a position-space Landau diagram with null lines. In theories with gravity duals, we can also draw Landau diagrams in the bulk. We also argue that certain singularities can arise only from bulk diagrams, not from boundary diagrams. As has been previously observed, these singularities are a clear diagnostic of bulk locality. We analyze some properties of these perturbative singularities and discuss their relation to the OPE and the dimensions of double-trace operators. In the exact nonperturbative theory, we expect no singularity at thesemore » locations. Finally, we prove this statement in 1+1 dimensions by CFT methods.« less
NASA Technical Reports Server (NTRS)
Bedrossian, Nazareth S.; Paradiso, Joseph; Bergmann, Edward V.; Rowell, Derek
1990-01-01
Two steering laws are presented for single-gimbal control moment gyroscopes. An approach using the Moore-Penrose pseudoinverse with a nondirectional null-motion algorithm is shown by example to avoid internal singularities for unidirectional torque commands, for which existing algorithms fail. Because this is still a tangent-based approach, however, singularity avoidance cannot be guaranteed. The singularity robust inverse is introduced as an alternative to the pseudoinverse for computing torque-producing gimbal rates near singular states. This approach, coupled with the nondirectional null algorithm, is shown by example to provide better steering law performance by allowing torque errors to be produced in the vicinity of singular states.
EVALUATION OF ANALYTICAL METHODS FOR DETERMINING PESTICIDES IN BABY FOOD
Three extraction methods and two detection techniques for determining pesticides in baby food were evaluated. The extraction techniques examined were supercritical fluid extraction (SFE), enhanced solvent extraction (ESE), and solid phase extraction (SPE). The detection techni...
Ultrahigh pressure extraction of bioactive compounds from plants-A review.
Xi, Jun
2017-04-13
Extraction of bioactive compounds from plants is one of the most important research areas for pharmaceutical and food industries. Conventional extraction techniques are usually associated with longer extraction times, lower yields, more organic solvent consumption, and poor extraction efficiency. A novel extraction technique, ultrahigh pressure extraction, has been developed for the extraction of bioactive compounds from plants, in order to shorten the extraction time, decrease the solvent consumption, increase the extraction yields, and enhance the quality of extracts. The mild processing temperature of ultrahigh pressure extraction may lead to an enhanced extraction of thermolabile bioactive ingredients. A critical review is conducted to introduce the different aspects of ultrahigh pressure extraction of plants bioactive compounds, including principles and mechanisms, the important parameters influencing its performance, comparison of ultrahigh pressure extraction with other extraction techniques, advantages, and disadvantages. The future opportunities of ultrahigh pressure extraction are also discussed.
Observer-dependent sign inversions of polarization singularities.
Freund, Isaac
2014-10-15
We describe observer-dependent sign inversions of the topological charges of vector field polarization singularities: C points (points of circular polarization), L points (points of linear polarization), and two virtually unknown singularities we call γ(C) and α(L) points. In all cases, the sign of the charge seen by an observer can change as she changes the direction from which she views the singularity. Analytic formulas are given for all C and all L point sign inversions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez-Jambrina, L.
2010-12-15
In this paper we characterize barotropic index singularities of homogeneous isotropic cosmological models [M. P. Dabrowski and T. Denkiewicz, Phys. Rev. D 79, 063521 (2009).]. They are shown to appear in cosmologies for which the scale factor is analytical with a Taylor series in which the linear and quadratic terms are absent. Though the barotropic index of the perfect fluid is singular, the singularities are weak, as it happens for other models for which the density and the pressure are regular.
Optical spectral singularities as threshold resonances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mostafazadeh, Ali
2011-04-15
Spectral singularities are among generic mathematical features of complex scattering potentials. Physically they correspond to scattering states that behave like zero-width resonances. For a simple optical system, we show that a spectral singularity appears whenever the gain coefficient coincides with its threshold value and other parameters of the system are selected properly. We explore a concrete realization of spectral singularities for a typical semiconductor gain medium and propose a method of constructing a tunable laser that operates at threshold gain.
Green bio-oil extraction for oil crops
NASA Astrophysics Data System (ADS)
Zainab, H.; Nurfatirah, N.; Norfaezah, A.; Othman, H.
2016-06-01
The move towards a green bio-oil extraction technique is highlighted in this paper. The commonly practised organic solvent oil extraction technique could be replaced with a modified microwave extraction. Jatropha seeds (Jatropha curcas) were used to extract bio-oil. Clean samples were heated in an oven at 110 ° C for 24 hours to remove moisture content and ground to obtain particle size smaller than 500μm. Extraction was carried out at different extraction times 15 min, 30 min, 45 min, 60 min and 120 min to determine oil yield. The biooil yield obtained from microwave assisted extraction system at 90 minutes was 36% while that from soxhlet extraction for 6 hours was 42%. Bio-oil extracted using the microwave assisted extraction (MAE) system could enhance yield of bio-oil compared to soxhlet extraction. The MAE extraction system is rapid using only water as solvent which is a nonhazardous, environment-friendly technique compared to soxhlet extraction (SE) method using hexane as solvent. Thus, this is a green technique of bio-oil extraction using only water as extractant. Bio-oil extraction from the pyrolysis of empty fruit bunch (EFB), a biomass waste from oil palm crop, was enhanced using a biocatalyst derived from seashell waste. Oil yield for non-catalytic extraction was 43.8% while addition of seashell based biocatalyst was 44.6%. Oil yield for non-catalytic extraction was 43.8% while with addition of seashell-based biocatalyst was 44.6%. The pH of bio-oil increased from 3.5 to 4.3. The viscosity of bio-oil obtained by catalytic means increased from 20.5 to 37.8 cP. A rapid and environment friendly extraction technique is preferable to enhance bio-oil yield. The microwave assisted approach is a green, rapid and environmental friendly extraction technique for the production of bio-oil bearing crops.
Sweet Structural Signatures Unveiled in Ketohexoses.
Bermúdez, Celina; Peña, Isabel; Mata, Santiago; Alonso, José L
2016-11-14
The conformational behaviour of naturally occurring ketohexoses has been revealed in a supersonic expansion by Fourier transform microwave spectroscopy coupled with a laser ablation source. Three, two and one conformers of d-tagatose, d-psicose and l-sorbose, respectively, have been identified by their rotational constants extracted from the analysis of the spectra. Singular structural signatures involving the hydroxyl groups OH (1) and OH (2) have been disentangled from the intricate intramolecular hydrogen bond networks stabilising the most abundant conformers. The present results place the old Shallenberger and Kier sweetness theories on a firmer footing. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deriving amplitude equations for weakly-nonlinear oscillators and their generalizations
NASA Astrophysics Data System (ADS)
O'Malley, Robert E., Jr.; Williams, David B.
2006-06-01
Results by physicists on renormalization group techniques have recently sparked interest in the singular perturbations community of applied mathematicians. The survey paper, [Phys. Rev. E 54(1) (1996) 376-394], by Chen et al. demonstrated that many problems which applied mathematicians solve using disparate methods can be solved using a single approach. Analysis of that renormalization group method by Mudavanhu and O'Malley [Stud. Appl. Math. 107(1) (2001) 63-79; SIAM J. Appl. Math. 63(2) (2002) 373-397], among others, indicates that the technique can be streamlined. This paper carries that analysis several steps further to present an amplitude equation technique which is both well adapted for use with a computer algebra system and easy to relate to the classical methods of averaging and multiple scales.
Adaptive Control of a Transport Aircraft Using Differential Thrust
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan
2009-01-01
The paper presents an adaptive control technique for a damaged large transport aircraft subject to unknown atmospheric disturbances such as wind gust or turbulence. It is assumed that the damage results in vertical tail loss with no rudder authority, which is replaced with a differential thrust input. The proposed technique uses the adaptive prediction based control design in conjunction with the time scale separation principle, based on the singular perturbation theory. The application of later is necessitated by the fact that the engine response to a throttle command is substantially slow that the angular rate dynamics of the aircraft. It is shown that this control technique guarantees the stability of the closed-loop system and the tracking of a given reference model. The simulation example shows the benefits of the approach.
NASA Astrophysics Data System (ADS)
Cheng, Boyang; Jin, Longxu; Li, Guoning
2018-06-01
Visible light and infrared images fusion has been a significant subject in imaging science. As a new contribution to this field, a novel fusion framework of visible light and infrared images based on adaptive dual-channel unit-linking pulse coupled neural networks with singular value decomposition (ADS-PCNN) in non-subsampled shearlet transform (NSST) domain is present in this paper. First, the source images are decomposed into multi-direction and multi-scale sub-images by NSST. Furthermore, an improved novel sum modified-Laplacian (INSML) of low-pass sub-image and an improved average gradient (IAVG) of high-pass sub-images are input to stimulate the ADS-PCNN, respectively. To address the large spectral difference between infrared and visible light and the occurrence of black artifacts in fused images, a local structure information operator (LSI), which comes from local area singular value decomposition in each source image, is regarded as the adaptive linking strength that enhances fusion accuracy. Compared with PCNN models in other studies, the proposed method simplifies certain peripheral parameters, and the time matrix is utilized to decide the iteration number adaptively. A series of images from diverse scenes are used for fusion experiments and the fusion results are evaluated subjectively and objectively. The results of the subjective and objective evaluation show that our algorithm exhibits superior fusion performance and is more effective than the existing typical fusion techniques.
MULTIPOLE GRAVITATIONAL LENSING AND HIGH-ORDER PERTURBATIONS ON THE QUADRUPOLE LENS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Z.; Lin, W. P.; Li, G. L.
2013-03-10
An arbitrary surface mass density of the gravitational lens can be decomposed into multipole components. We simulate the ray tracing for the multipolar mass distribution of the generalized Singular Isothermal Sphere model based on deflection angles, which are analytically calculated. The magnification patterns in the source plane are then derived from an inverse shooting technique. As has been found, the caustics of odd mode lenses are composed of two overlapping layers for some lens models. When a point source traverses this kind of overlapping caustics, the image numbers change by {+-}4, rather than {+-}2. There are two kinds of causticmore » images. One is the critical curve and the other is the transition locus. It is found that the image number of the fold is exactly the average value of image numbers on two sides of the fold, while the image number of the cusp is equal to the smaller one. We also focus on the magnification patterns of the quadrupole (m = 2) lenses under the perturbations of m = 3, 4, and 5 mode components and found that one, two, and three butterfly or swallowtail singularities can be produced, respectively. With the increasing intensity of the high-order perturbations, the singularities grow up to bring sixfold image regions. If these perturbations are large enough to let two or three of the butterflies or swallowtails make contact, then eightfold or tenfold image regions can be produced as well. The possible astronomical applications are discussed.« less
Singularity-free dislocation dynamics with strain gradient elasticity
NASA Astrophysics Data System (ADS)
Po, Giacomo; Lazar, Markus; Seif, Dariush; Ghoniem, Nasr
2014-08-01
The singular nature of the elastic fields produced by dislocations presents conceptual challenges and computational difficulties in the implementation of discrete dislocation-based models of plasticity. In the context of classical elasticity, attempts to regularize the elastic fields of discrete dislocations encounter intrinsic difficulties. On the other hand, in gradient elasticity, the issue of singularity can be removed at the outset and smooth elastic fields of dislocations are available. In this work we consider theoretical and numerical aspects of the non-singular theory of discrete dislocation loops in gradient elasticity of Helmholtz type, with interest in its applications to three dimensional dislocation dynamics (DD) simulations. The gradient solution is developed and compared to its singular and non-singular counterparts in classical elasticity using the unified framework of eigenstrain theory. The fundamental equations of curved dislocation theory are given as non-singular line integrals suitable for numerical implementation using fast one-dimensional quadrature. These include expressions for the interaction energy between two dislocation loops and the line integral form of the generalized solid angle associated with dislocations having a spread core. The single characteristic length scale of Helmholtz elasticity is determined from independent molecular statics (MS) calculations. The gradient solution is implemented numerically within our variational formulation of DD, with several examples illustrating the viability of the non-singular solution. The displacement field around a dislocation loop is shown to be smooth, and the loop self-energy non-divergent, as expected from atomic configurations of crystalline materials. The loop nucleation energy barrier and its dependence on the applied shear stress are computed and shown to be in good agreement with atomistic calculations. DD simulations of Lome-Cottrell junctions in Al show that the strength of the junction and its configuration are easily obtained, without ad-hoc regularization of the singular fields. Numerical convergence studies related to the implementation of the non-singular theory in DD are presented.
Silver nano fabrication using leaf disc of Passiflora foetida Linn
NASA Astrophysics Data System (ADS)
Lade, Bipin D.; Patil, Anita S.
2017-06-01
The main purpose of the experiment is to develop a greener low cost SNP fabrication steps using factories of secondary metabolites from Passiflora leaf extract. Here, the leaf extraction process is omitted, and instead a leaf disc was used for stable SNP fabricated by optimizing parameters such as a circular leaf disc of 2 cm (1, 2, 3, 4, 5) instead of leaf extract and grade of pH (7, 8, 9, 11). The SNP synthesis reaction is tried under room temperature, sun, UV and dark condition. The leaf disc preparation steps are also discussed in details. The SNP obtained using (1 mM: 100 ml AgNO3+ singular leaf disc: pH 9, 11) is applied against featured room temperature and sun condition. The UV spectroscopic analysis confirms that sun rays synthesized SNP yields stable nano particles. The FTIR analysis confirms a large number of functional groups such as alkanes, alkyne, amines, aliphatic amine, carboxylic acid; nitro-compound, alcohol, saturated aldehyde and phenols involved in reduction of silver salt to zero valent ions. The leaf disc mediated synthesis of silver nanoparticles, minimizes leaf extract preparation step and eligible for stable SNP synthesis. The methods sun and room temperature based nano particles synthesized within 10 min would be use certainly for antimicrobial activity.
2010-06-01
artificial agents, their limited scope and singular purpose lead us to believe that human-machine trust will be very portable. That is, if one operator... Artificial Intelligence Review 2(2), 1988. [E88] M.R. Endsley. Situation awareness global assessment technique (SAGAT). In Proceedings of the National...1995. [F98] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, Addison- Wesley, 1998. [NP01] I. Niles and A
NASA Technical Reports Server (NTRS)
Ryan, M. P., Jr.
1971-01-01
The investigation of expanding, rotating, shearing Bianchi type IX universes is extended to the most general case possible. Use is made of the techniques of Arnowitt et al. (1962). It is shown that the conclusion reached by Arnowitt et al. regarding the small effect of rotation on the singularity of type IX universes is true in general. The superspace approach to the motion of the universe is discussed in an appendix.
NASA Technical Reports Server (NTRS)
Williams, Robert L., III
1992-01-01
This paper presents three methods to solve the inverse position kinematics position problem of the double universal joint attached to a manipulator: (1) an analytical solution for two specific cases; (2) an approximate closed form solution based on ignoring the wrist offset; and (3) an iterative method which repeats closed form position and orientation calculations until the solution is achieved. Several manipulators are used to demonstrate the solution methods: cartesian, cylindrical, spherical, and an anthropomorphic articulated arm, based on the Flight Telerobotic Servicer (FTS) arm. A singularity analysis is presented for the double universal joint wrist attached to the above manipulator arms. While the double universal joint wrist standing alone is singularity-free in orientation, the singularity analysis indicates the presence of coupled position/orientation singularities of the spherical and articulated manipulators with the wrist. The cartesian and cylindrical manipulators with the double universal joint wrist were found to be singularity-free. The methods of this paper can be implemented in a real-time controller for manipulators with the double universal joint wrist. Such mechanically dextrous systems could be used in telerobotic and industrial applications, but further work is required to avoid the singularities.
Quantum singularities in (2+1) dimensional matter coupled black hole spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unver, O.; Gurtug, O.
2010-10-15
Quantum singularities considered in the 3D Banados-Teitelboim-Zanelli (BTZ) spacetime by Pitelli and Letelier [Phys. Rev. D 77, 124030 (2008)] is extended to charged BTZ and 3D Einstein-Maxwell-dilaton gravity spacetimes. The occurrence of naked singularities in the Einstein-Maxwell extension of the BTZ spacetime both in linear and nonlinear electrodynamics as well as in the Einstein-Maxwell-dilaton gravity spacetimes are analyzed with the quantum test fields obeying the Klein-Gordon and Dirac equations. We show that with the inclusion of the matter fields, the conical geometry near r=0 is removed and restricted classes of solutions are admitted for the Klein-Gordon and Dirac equations. Hence,more » the classical central singularity at r=0 turns out to be quantum mechanically singular for quantum particles obeying the Klein-Gordon equation but nonsingular for fermions obeying the Dirac equation. Explicit calculations reveal that the occurrence of the timelike naked singularities in the considered spacetimes does not violate the cosmic censorship hypothesis as far as the Dirac fields are concerned. The role of horizons that clothes the singularity in the black hole cases is replaced by repulsive potential barrier against the propagation of Dirac fields.« less
Multivalued classical mechanics arising from singularity loops in complex time
NASA Astrophysics Data System (ADS)
Koch, Werner; Tannor, David J.
2018-02-01
Complex-valued classical trajectories in complex time encounter singular times at which the momentum diverges. A closed time contour around such a singular time may result in final values for q and p that differ from their initial values. In this work, we develop a calculus for determining the exponent and prefactor of the asymptotic time dependence of p from the singularities of the potential as the singularity time is approached. We identify this exponent with the number of singularity loops giving distinct solutions to Hamilton's equations of motion. The theory is illustrated for the Eckart, Coulomb, Morse, and quartic potentials. Collectively, these potentials illustrate a wide variety of situations: poles and essential singularities at finite and infinite coordinate values. We demonstrate quantitative agreement between analytical and numerical exponents and prefactors, as well as the connection between the exponent and the time circuit count. This work provides the theoretical underpinnings for the choice of time contours described in the studies of Doll et al. [J. Chem. Phys. 58(4), 1343-1351 (1973)] and Petersen and Kay [J. Chem. Phys. 141(5), 054114 (2014)]. It also has implications for wavepacket reconstruction from complex classical trajectories when multiple branches of trajectories are involved.
NASA Astrophysics Data System (ADS)
Pan, Supriya
2018-01-01
Cosmological models with time-dependent Λ (read as Λ(t)) have been investigated widely in the literature. Models that solve background dynamics analytically are of special interest. Additionally, the allowance of past or future singularities at finite cosmic time in a specific model signals for a generic test on its viabilities with the current observations. Following these, in this work we consider a variety of Λ(t) models focusing on their evolutions and singular behavior. We found that a series of models in this class can be exactly solved when the background universe is described by a spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) line element. The solutions in terms of the scale factor of the FLRW universe offer different universe models, such as power-law expansion, oscillating, and the singularity free universe. However, we also noticed that a large number of the models in this series permit past or future cosmological singularities at finite cosmic time. At last we close the work with a note that the avoidance of future singularities is possible for certain models under some specific restrictions.
Observational constraints on cosmological future singularities
NASA Astrophysics Data System (ADS)
Beltrán Jiménez, Jose; Lazkoz, Ruth; Sáez-Gómez, Diego; Salzano, Vincenzo
2016-11-01
In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such a kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolution regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H( z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behavior of the Hubble factor). We show that, for our family of parameterizations, the lower bound for the singularity time cannot be smaller than about 1.2 times the age of the universe, what roughly speaking means {˜ }2.8 Gyrs from the present time.
Through Wall Radar Classification of Human Micro-Doppler Using Singular Value Decomposition Analysis
Ritchie, Matthew; Ash, Matthew; Chen, Qingchao; Chetty, Kevin
2016-01-01
The ability to detect the presence as well as classify the activities of individuals behind visually obscuring structures is of significant benefit to police, security and emergency services in many situations. This paper presents the analysis from a series of experimental results generated using a through-the-wall (TTW) Frequency Modulated Continuous Wave (FMCW) C-Band radar system named Soprano. The objective of this analysis was to classify whether an individual was carrying an item in both hands or not using micro-Doppler information from a FMCW sensor. The radar was deployed at a standoff distance, of approximately 0.5 m, outside a residential building and used to detect multiple people walking within a room. Through the application of digital filtering, it was shown that significant suppression of the primary wall reflection is possible, significantly enhancing the target signal to clutter ratio. Singular Value Decomposition (SVD) signal processing techniques were then applied to the micro-Doppler signatures from different individuals. Features from the SVD information have been used to classify whether the person was carrying an item or walking free handed. Excellent performance of the classifier was achieved in this challenging scenario with accuracies up to 94%, suggesting that future through wall radar sensors may have the ability to reliably recognize many different types of activities in TTW scenarios using these techniques. PMID:27589760
Ritchie, Matthew; Ash, Matthew; Chen, Qingchao; Chetty, Kevin
2016-08-31
The ability to detect the presence as well as classify the activities of individuals behind visually obscuring structures is of significant benefit to police, security and emergency services in many situations. This paper presents the analysis from a series of experimental results generated using a through-the-wall (TTW) Frequency Modulated Continuous Wave (FMCW) C-Band radar system named Soprano. The objective of this analysis was to classify whether an individual was carrying an item in both hands or not using micro-Doppler information from a FMCW sensor. The radar was deployed at a standoff distance, of approximately 0.5 m, outside a residential building and used to detect multiple people walking within a room. Through the application of digital filtering, it was shown that significant suppression of the primary wall reflection is possible, significantly enhancing the target signal to clutter ratio. Singular Value Decomposition (SVD) signal processing techniques were then applied to the micro-Doppler signatures from different individuals. Features from the SVD information have been used to classify whether the person was carrying an item or walking free handed. Excellent performance of the classifier was achieved in this challenging scenario with accuracies up to 94%, suggesting that future through wall radar sensors may have the ability to reliably recognize many different types of activities in TTW scenarios using these techniques.
ERIC Educational Resources Information Center
Hofmann, Richard J.
1978-01-01
A general factor analysis computer algorithm is briefly discussed. The algorithm is highly transportable with minimum limitations on the number of observations. Both singular and non-singular data can be analyzed. (Author/JKS)
Simulation of generation and dynamics of polarization singularities with circular Airy beams.
Ye, Dong; Peng, Xinyu; Zhou, Muchun; Xin, Yu; Song, Minmin
2017-11-01
The generation and dynamics of polarization singularities have been underresearched for years, while the focusing property of the topological configuration has not been explored much. In this paper, we simulated the generation of low-order polarization singularities with a circular Airy beam and explored the focusing property of the synthetic light field during propagation due to the autofocusing of the component. Our work researched the focusing properties of the polarization singularity configuration, which may help to develop its application prospect.
Wave-front singularities for two-dimensional anisotropic elastic waves.
NASA Technical Reports Server (NTRS)
Payton, R. G.
1972-01-01
Wavefront singularities for the displacement functions, associated with the radiation of linear elastic waves from a point source embedded in a finitely strained two-dimensional elastic solid, are examined in detail. It is found that generally the singularities are of order d to the -1/2 power, where d measures distance away from the front. However, in certain exceptional cases singularities of order d to the -n power, where n = 1/4, 2/3, 3/4, may be encountered.