Phononic band gaps and phase singularities in the ultrasonic response from toughened composites
NASA Astrophysics Data System (ADS)
Smith, Robert A.; Nelson, Luke J.; Mienczakowski, Martin J.
2018-04-01
Ultrasonic 3D characterization of ply-level features in layered composites, such as out-of-plane wrinkles and ply drops, is now possible with carefully applied analytic-signal analysis. Study of instantaneous amplitude, phase and frequency in the ultrasonic response has revealed some interesting effects, which become more problematic for 3D characterization as the inter-ply resin-layer thicknesses increase. In modern particle-toughened laminates, the thicker resin layers cause phase singularities to be observed; these are locations where the instantaneous amplitude is zero, so the instantaneous phase is undefined. The depth at which these occur has been observed experimentally to vary with resin- layer thickness, such that a phase-singularity surface is formed; beyond this surface, the ultrasonic response is reduced and significantly more difficult to interpret, so a method for removing the effect would be advantageous. The underlying physics has been studied using an analytical one-dimensional multi-layer model. This has been sufficient to determine that the cause is linked to a phononic band gap in the ultrasound transmitted through multiple equally-spaced partial reflectors. As a result, the phase singularity also depends on input-pulse center frequency and bandwidth. Various methods for overcoming the confusing effects in the data have been proposed and subsequently investigated using the analytical model. This paper will show experimental and modelled evidence of phase-singularities and phase-singularity surfaces, as well as the success of methods for reducing their effects.
Short-time quantum dynamics of sharp boundaries potentials
NASA Astrophysics Data System (ADS)
Granot, Er'el; Marchewka, Avi
2015-02-01
Despite the high prevalence of singular potential in general, and rectangular potentials in particular, in applied scattering models, to date little is known about their short time effects. The reason is that singular potentials cause a mixture of complicated local as well as non-local effects. The object of this work is to derive a generic method to calculate analytically the short-time impact of any singular potential. In this paper it is shown that the scattering of a smooth wavefunction on a singular potential is totally equivalent, in the short-time regime, to the free propagation of a singular wavefunction. However, the latter problem was totally addressed analytically in Ref. [7]. Therefore, this equivalency can be utilized in solving analytically the short time dynamics of any smooth wavefunction at the presence of a singular potentials. In particular, with this method the short-time dynamics of any problem where a sharp boundaries potential (e.g., a rectangular barrier) is turned on instantaneously can easily be solved analytically.
The geometry of singularities and the black hole information paradox
NASA Astrophysics Data System (ADS)
Stoica, O. C.
2015-07-01
The information loss occurs in an evaporating black hole only if the time evolution ends at the singularity. But as we shall see, the black hole solutions admit analytical extensions beyond the singularities, to globally hyperbolic solutions. The method used is similar to that for the apparent singularity at the event horizon, but at the singularity, the resulting metric is degenerate. When the metric is degenerate, the covariant derivative, the curvature, and the Einstein equation become singular. However, recent advances in the geometry of spacetimes with singular metric show that there are ways to extend analytically the Einstein equation and other field equations beyond such singularities. This means that the information can get out of the singularity. In the case of charged black holes, the obtained solutions have nonsingular electromagnetic field. As a bonus, if particles are such black holes, spacetime undergoes dimensional reduction effects like those required by some approaches to perturbative Quantum Gravity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loizu, J., E-mail: joaquim.loizu@ipp.mpg.de; Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton New Jersey 08543; Hudson, S.
2015-02-15
Using the recently developed multiregion, relaxed MHD (MRxMHD) theory, which bridges the gap between Taylor's relaxation theory and ideal MHD, we provide a thorough analytical and numerical proof of the formation of singular currents at rational surfaces in non-axisymmetric ideal MHD equilibria. These include the force-free singular current density represented by a Dirac δ-function, which presumably prevents the formation of islands, and the Pfirsch-Schlüter 1/x singular current, which arises as a result of finite pressure gradient. An analytical model based on linearized MRxMHD is derived that can accurately (1) describe the formation of magnetic islands at resonant rational surfaces, (2)more » retrieve the ideal MHD limit where magnetic islands are shielded, and (3) compute the subsequent formation of singular currents. The analytical results are benchmarked against numerical simulations carried out with a fully nonlinear implementation of MRxMHD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufmann, Ralph M., E-mail: rkaufman@math.purdue.edu; Khlebnikov, Sergei, E-mail: skhleb@physics.purdue.edu; Wehefritz-Kaufmann, Birgit, E-mail: ebkaufma@math.purdue.edu
2012-11-15
Motivated by the Double Gyroid nanowire network we develop methods to detect Dirac points and classify level crossings, aka. singularities in the spectrum of a family of Hamiltonians. The approach we use is singularity theory. Using this language, we obtain a characterization of Dirac points and also show that the branching behavior of the level crossings is given by an unfolding of A{sub n} type singularities. Which type of singularity occurs can be read off a characteristic region inside the miniversal unfolding of an A{sub k} singularity. We then apply these methods in the setting of families of graph Hamiltonians,more » such as those for wire networks. In the particular case of the Double Gyroid we analytically classify its singularities and show that it has Dirac points. This indicates that nanowire systems of this type should have very special physical properties. - Highlights: Black-Right-Pointing-Pointer New method for analytically finding Dirac points. Black-Right-Pointing-Pointer Novel relation of level crossings to singularity theory. Black-Right-Pointing-Pointer More precise version of the von-Neumann-Wigner theorem for arbitrary smooth families of Hamiltonians of fixed size. Black-Right-Pointing-Pointer Analytical proof of the existence of Dirac points for the Gyroid wire network.« less
Kotlyar, Victor V; Almazov, Anton A; Khonina, Svetlana N; Soifer, Victor A; Elfstrom, Henna; Turunen, Jari
2005-05-01
We deduce and study an analytical expression for Fresnel diffraction of a plane wave by a spiral phase plate (SPP) that imparts an arbitrary-order phase singularity on the light field. Estimates for the optical vortex radius that depends on the singularity's integer order n (also termed topological charge, or order of the dislocation) have been derived. The near-zero vortex intensity is shown to be proportional to rho2n, where p is the radial coordinate. Also, an analytical expression for Fresnel diffraction of the Gaussian beam by a SPP with nth-order singularity is analyzed. The far-field intensity distribution is derived. The radius of maximal intensity is shown to depend on the singularity number. The behavior of the Gaussian beam intensity after a SPP with second-order singularity (n = 2) is studied in more detail. The parameters of the light beams generated numerically with the Fresnel transform and via analytical formulas are in good agreement. In addition, the light fields with first- and second-order singularities were generated by a 32-level SPP fabricated on the resist by use of the electron-beam lithography technique.
Brzezicki, Samuel J.
2017-01-01
An analytical method to find the flow generated by the basic singularities of Stokes flow in a wedge of arbitrary angle is presented. Specifically, we solve a biharmonic equation for the stream function of the flow generated by a point stresslet singularity and satisfying no-slip boundary conditions on the two walls of the wedge. The method, which is readily adapted to any other singularity type, takes full account of any transcendental singularities arising at the corner of the wedge. The approach is also applicable to problems of plane strain/stress of an elastic solid where the biharmonic equation also governs the Airy stress function. PMID:28690412
Crowdy, Darren G; Brzezicki, Samuel J
2017-06-01
An analytical method to find the flow generated by the basic singularities of Stokes flow in a wedge of arbitrary angle is presented. Specifically, we solve a biharmonic equation for the stream function of the flow generated by a point stresslet singularity and satisfying no-slip boundary conditions on the two walls of the wedge. The method, which is readily adapted to any other singularity type, takes full account of any transcendental singularities arising at the corner of the wedge. The approach is also applicable to problems of plane strain/stress of an elastic solid where the biharmonic equation also governs the Airy stress function.
On spinodal points and Lee-Yang edge singularities
NASA Astrophysics Data System (ADS)
An, X.; Mesterházy, D.; Stephanov, M. A.
2018-03-01
We address a number of outstanding questions associated with the analytic properties of the universal equation of state of the φ4 theory, which describes the critical behavior of the Ising model and ubiquitous critical points of the liquid–gas type. We focus on the relation between spinodal points that limit the domain of metastability for temperatures below the critical temperature, i.e. T < Tc , and Lee-Yang edge singularities that restrict the domain of analyticity around the point of zero magnetic field H for T > Tc . The extended analyticity conjecture (due to Fonseca and Zamolodchikov) posits that, for T < Tc , the Lee-Yang edge singularities are the closest singularities to the real H axis. This has interesting implications, in particular, that the spinodal singularities must lie off the real H axis for d < 4 , in contrast to the commonly known result of the mean-field approximation. We find that the parametric representation of the Ising equation of state obtained in the \\renewcommandε{\\varepsilon} \
Singularities in the classical Rayleigh-Taylor flow - Formation and subsequent motion
NASA Technical Reports Server (NTRS)
Tanveer, S.
1993-01-01
The creation and subsequent motion of singularities of solution to classical Rayleigh-Taylor flow (two dimensional inviscid, incompressible fluid over a vacuum) are discussed. For a specific set of initial conditions, we give analytical evidence to suggest the instantaneous formation of one or more singularities at specific points in the unphysical plane, whose locations depend sensitively on small changes in initial conditions in the physical domain. One-half power singularities are created in accordance with an earlier conjecture; however, depending on initial conditions, other forms of singularities are also possible. For a specific initial condition, we follow a numerical procedure in the unphysical plane to compute the motion of a one-half singularity. This computation confirms our previous conjecture that the approach of a one-half singularity towards the physical domain corresponds to the development of a spike at the physical interface. Under some assumptions that appear to be consistent with numerical calculations, we present analytical evidence to suggest that a singularity of the one-half type cannot impinge the physical domain in finite time.
Singularities in the classical Rayleigh-Taylor flow: Formation and subsequent motion
NASA Technical Reports Server (NTRS)
Tanveer, S.
1992-01-01
The creation and subsequent motion of singularities of solution to classical Rayleigh-Taylor flow (two dimensional inviscid, incompressible fluid over a vacuum) are discussed. For a specific set of initial conditions, we give analytical evidence to suggest the instantaneous formation of one or more singularities at specific points in the unphysical plane, whose locations depend sensitively on small changes in initial conditions in the physical domain. One-half power singularities are created in accordance with an earlier conjecture; however, depending on initial conditions, other forms of singularities are also possible. For a specific initial condition, we follow a numerical procedure in the unphysical plane to compute the motion of a one-half singularity. This computation confirms our previous conjecture that the approach of a one-half singularity towards the physical domain corresponds to the development of a spike at the physical interface. Under some assumptions that appear to be consistent with numerical calculations, we present analytical evidence to suggest that a singularity of the one-half type cannot impinge the physical domain in finite time.
Deformation of extremal black holes from stringy interactions
NASA Astrophysics Data System (ADS)
Chen, Baoyi; Stein, Leo C.
2018-04-01
Black holes are a powerful setting for studying general relativity and theories beyond GR. However, analytical solutions for rotating black holes in beyond-GR theories are difficult to find because of the complexity of such theories. In this paper, we solve for the deformation to the near-horizon extremal Kerr metric due to two example string-inspired beyond-GR theories: Einstein-dilaton-Gauss-Bonnet and dynamical Chern-Simons theory. We accomplish this by making use of the enhanced symmetry group of NHEK and the weak-coupling limit of EdGB and dCS. We find that the EdGB metric deformation has a curvature singularity, while the dCS metric is regular. From these solutions, we compute orbital frequencies, horizon areas, and entropies. This sets the stage for analytically understanding the microscopic origin of black hole entropy in beyond-GR theories.
Analytic structure of the S-matrix for singular quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camblong, Horacio E.; Epele, Luis N.; Fanchiotti, Huner
2015-06-15
The analytic structure of the S-matrix of singular quantum mechanics is examined within a multichannel framework, with primary focus on its dependence with respect to a parameter (Ω) that determines the boundary conditions. Specifically, a characterization is given in terms of salient mathematical and physical properties governing its behavior. These properties involve unitarity and associated current-conserving Wronskian relations, time-reversal invariance, and Blaschke factorization. The approach leads to an interpretation of effective nonunitary solutions in singular quantum mechanics and their determination from the unitary family.
The gravitational potential of axially symmetric bodies from a regularized green kernel
NASA Astrophysics Data System (ADS)
Trova, A.; Huré, J.-M.; Hersant, F.
2011-12-01
The determination of the gravitational potential inside celestial bodies (rotating stars, discs, planets, asteroids) is a common challenge in numerical Astrophysics. Under axial symmetry, the potential is classically found from a two-dimensional integral over the body's meridional cross-section. Because it involves an improper integral, high accuracy is generally difficult to reach. We have discovered that, for homogeneous bodies, the singular Green kernel can be converted into a regular kernel by direct analytical integration. This new kernel, easily managed with standard techniques, opens interesting horizons, not only for numerical calculus but also to generate approximations, in particular for geometrically thin discs and rings.
A note on singularities of the 3-D Euler equation
NASA Technical Reports Server (NTRS)
Tanveer, S.
1994-01-01
In this paper, we consider analytic initial conditions with finite energy, whose complex spatial continuation is a superposition of a smooth background flow and a singular field. Through explicit calculation in the complex plane, we show that under some assumptions, the solution to the 3-D Euler equation ceases to be analytic in the real domain in finite time.
Singular eigenstates in the even(odd) length Heisenberg spin chain
NASA Astrophysics Data System (ADS)
Ranjan Giri, Pulak; Deguchi, Tetsuo
2015-05-01
We study the implications of the regularization for the singular solutions on the even(odd) length spin-1/2 XXX chains in some specific down-spin sectors. In particular, the analytic expressions of the Bethe eigenstates for three down-spin sector have been obtained along with their numerical forms in some fixed length chains. For an even-length chain if the singular solutions \\{{{λ }α }\\} are invariant under the sign changes of their rapidities \\{{{λ }α }\\}=\\{-{{λ }α }\\}, then the Bethe ansatz equations are reduced to a system of (M-2)/2((M-3)/2) equations in an even (odd) down-spin sector. For an odd N length chain in the three down-spin sector, it has been analytically shown that there exist singular solutions in any finite length of the spin chain of the form N=3(2k+1) with k=1,2,3,\\cdots . It is also shown that there exist no singular solutions in the four down-spin sector for some odd-length spin-1/2 XXX chains.
Zhang, Yongtao; Cui, Yan; Wang, Fei; Cai, Yangjian
2015-05-04
We have investigated the correlation singularities, coherence vortices of two-point correlation function in a partially coherent vector beam with initially radial polarization, i.e., partially coherent radially polarized (PCRP) beam. It is found that these singularities generally occur during free space propagation. Analytical formulae for characterizing the dynamics of the correlation singularities on propagation are derived. The influence of the spatial coherence length of the beam on the evolution properties of the correlation singularities and the conditions for creation and annihilation of the correlation singularities during propagation have been studied in detail based on the derived formulae. Some interesting results are illustrated. These correlation singularities have implication for interference experiments with a PCRP beam.
Collisional evolution - an analytical study for the non steady-state mass distribution.
NASA Astrophysics Data System (ADS)
Vieira Martins, R.
1999-05-01
To study the collisional evolution of asteroidal groups one can use an analytical solution for the self-similar collision cascades. This solution is suitable to study the steady-state mass distribution of the collisional fragmentation. However, out of the steady-state conditions, this solution is not satisfactory for some values of the collisional parameters. In fact, for some values for the exponent of the mass distribution power law of an asteroidal group and its relation to the exponent of the function which describes "how rocks break" the author arrives at singular points for the equation which describes the collisional evolution. These singularities appear since some approximations are usually made in the laborious evaluation of many integrals that appear in the analytical calculations. They concern the cutoff for the smallest and the largest bodies. These singularities set some restrictions to the study of the analytical solution for the collisional equation. To overcome these singularities the author performed an algebraic computation considering the smallest and the largest bodies and he obtained the analytical expressions for the integrals that describe the collisional evolution without restriction on the parameters. However, the new distribution is more sensitive to the values of the collisional parameters. In particular the steady-state solution for the differential mass distribution has exponents slightly different from 11/6 for the usual parameters in the asteroid belt. The sensitivity of this distribution with respect to the parameters is analyzed for the usual values in the asteroidal groups. With an expression for the mass distribution without singularities, one can evaluate also its time evolution. The author arrives at an analytical expression given by a power series of terms constituted by a small parameter multiplied by the mass to an exponent, which depends on the initial power law distribution. This expression is a formal solution for the equation which describes the collisional evolution.
Cusp singularities in f(R) gravity: pros and cons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pisin; Yeom, Dong-han
We investigate cusp singularities in f(R) gravity, especially for Starobinsky and Hu-Sawicki dark energy models. We illustrate that, by using double-null numerical simulations, a cusp singularity can be triggered by gravitational collapses. This singularity can be cured by adding a quadratic term, but this causes a Ricci scalar bump that can be observed by an observer outside the event horizon. Comparing with cosmological parameters, it seems that it would be difficult to see super-Planckian effects by astrophysical experiments. On the other hand, at once there exists a cusp singularity, it can be a mechanism to realize a horizon scale curvaturemore » singularity that can be interpreted by a firewall.« less
Observer-dependent sign inversions of polarization singularities.
Freund, Isaac
2014-10-15
We describe observer-dependent sign inversions of the topological charges of vector field polarization singularities: C points (points of circular polarization), L points (points of linear polarization), and two virtually unknown singularities we call γ(C) and α(L) points. In all cases, the sign of the charge seen by an observer can change as she changes the direction from which she views the singularity. Analytic formulas are given for all C and all L point sign inversions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez-Jambrina, L.
2010-12-15
In this paper we characterize barotropic index singularities of homogeneous isotropic cosmological models [M. P. Dabrowski and T. Denkiewicz, Phys. Rev. D 79, 063521 (2009).]. They are shown to appear in cosmologies for which the scale factor is analytical with a Taylor series in which the linear and quadratic terms are absent. Though the barotropic index of the perfect fluid is singular, the singularities are weak, as it happens for other models for which the density and the pressure are regular.
Symmetry breaking and singularity structure in Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Commeford, K. A.; Garcia-March, M. A.; Ferrando, A.; Carr, Lincoln D.
2012-08-01
We determine the trajectories of vortex singularities that arise after a single vortex is broken by a discretely symmetric impulse in the context of Bose-Einstein condensates in a harmonic trap. The dynamics of these singularities are analyzed to determine the form of the imprinted motion. We find that the symmetry-breaking process introduces two effective forces: a repulsive harmonic force that causes the daughter trajectories to be ejected from the parent singularity and a Magnus force that introduces a torque about the axis of symmetry. For the analytical noninteracting case we find that the parent singularity is reconstructed from the daughter singularities after one period of the trapping frequency. The interactions between singularities in the weakly interacting system do not allow the parent vortex to be reconstructed. Analytic trajectories were compared to the actual minima of the wave function, showing less than 0.5% error for an impulse strength of v=0.00005. We show that these solutions are valid within the impulse regime for various impulse strengths using numerical integration of the Gross-Pitaevskii equation. We also show that the actual duration of the symmetry-breaking potential does not significantly change the dynamics of the system as long as the strength is below v=0.0005.
NASA Astrophysics Data System (ADS)
Difilippo, Felix C.
2012-09-01
Within the context of general relativity theory we calculate, analytically, scattering signatures around a gravitational singularity: angular and time distributions of scattered massive objects and photons and the time and space modulation of Doppler effects. Additionally, the scattering and absorption cross sections for the gravitational interactions are calculated. The results of numerical simulations of the trajectories are compared with the analytical results.
Singularities in x-ray spectra of metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahan, G.D.
1987-08-01
The x-ray spectroscopies discussed are absorption, emission, and photoemission. The singularities show up in each of them in a different manner. In absorption and emission they show up as power law singularities at the thresholds frequencies. This review will emphasize two themes. First a simple model is proposed to describe this phenomena, which is now called the MND model after MAHAN-NOZIERES-DeDOMINICIS. Exact analytical solutions are now available for this model for the three spectroscopies discussed above. These analytical models can be evaluated numerically in a simple way. The second theme of this review is that great care must be usedmore » when comparing the theory to experiment. A number of factors influence the edge shapes in x-ray spectroscopy. The edge singularities play an important role, and are observed in many matals. Quantitative fits of the theory to experiment require the consideration of other factors. 51 refs.« less
Naked singularity, firewall, and Hawking radiation.
Zhang, Hongsheng
2017-06-21
Spacetime singularity has always been of interest since the proof of the Penrose-Hawking singularity theorem. Naked singularity naturally emerges from reasonable initial conditions in the collapsing process. A recent interesting approach in black hole information problem implies that we need a firewall to break the surplus entanglements among the Hawking photons. Classically, the firewall becomes a naked singularity. We find some vacuum analytical solutions in R n -gravity of the firewall-type and use these solutions as concrete models to study the naked singularities. By using standard quantum theory, we investigate the Hawking radiation emitted from the black holes with naked singularities. Here we show that the singularity itself does not destroy information. A unitary quantum theory works well around a firewall-type singularity. We discuss the validity of our result in general relativity. Further our result demonstrates that the temperature of the Hawking radiation still can be expressed in the form of the surface gravity divided by 2π. This indicates that a naked singularity may not compromise the Hakwing evaporation process.
Singular perturbation analysis of AOTV-related trajectory optimization problems
NASA Technical Reports Server (NTRS)
Calise, Anthony J.; Bae, Gyoung H.
1990-01-01
The problem of real time guidance and optimal control of Aeroassisted Orbit Transfer Vehicles (AOTV's) was addressed using singular perturbation theory as an underlying method of analysis. Trajectories were optimized with the objective of minimum energy expenditure in the atmospheric phase of the maneuver. Two major problem areas were addressed: optimal reentry, and synergetic plane change with aeroglide. For the reentry problem, several reduced order models were analyzed with the objective of optimal changes in heading with minimum energy loss. It was demonstrated that a further model order reduction to a single state model is possible through the application of singular perturbation theory. The optimal solution for the reduced problem defines an optimal altitude profile dependent on the current energy level of the vehicle. A separate boundary layer analysis is used to account for altitude and flight path angle dynamics, and to obtain lift and bank angle control solutions. By considering alternative approximations to solve the boundary layer problem, three guidance laws were derived, each having an analytic feedback form. The guidance laws were evaluated using a Maneuvering Reentry Research Vehicle model and all three laws were found to be near optimal. For the problem of synergetic plane change with aeroglide, a difficult terminal boundary layer control problem arises which to date is found to be analytically intractable. Thus a predictive/corrective solution was developed to satisfy the terminal constraints on altitude and flight path angle. A composite guidance solution was obtained by combining the optimal reentry solution with the predictive/corrective guidance method. Numerical comparisons with the corresponding optimal trajectory solutions show that the resulting performance is very close to optimal. An attempt was made to obtain numerically optimized trajectories for the case where heating rate is constrained. A first order state variable inequality constraint was imposed on the full order AOTV point mass equations of motion, using a simple aerodynamic heating rate model.
Grigoriev, K S; Ryzhikov, P S; Cherepetskaya, E B; Makarov, V A
2017-10-16
The components of electric field of the third harmonic beam, generated in isotropic medium with cubic nonlinearity by a monochromatic light beam carrying polarization singularity of an arbitrary type, are found analytically. The relation between C-points characteristics in the fundamental and signal beams are determined, as well as the impact of the phase mismatch on the shape of the C-lines.
NASA Astrophysics Data System (ADS)
Frauendiener, Jörg; Hennig, Jörg
2018-03-01
We extend earlier numerical and analytical considerations of the conformally invariant wave equation on a Schwarzschild background from the case of spherically symmetric solutions, discussed in Frauendiener and Hennig (2017 Class. Quantum Grav. 34 045005), to the case of general, nonsymmetric solutions. A key element of our approach is the modern standard representation of spacelike infinity as a cylinder. With a decomposition into spherical harmonics, we reduce the four-dimensional wave equation to a family of two-dimensional equations. These equations can be used to study the behaviour at the cylinder, where the solutions turn out to have, in general, logarithmic singularities at infinitely many orders. We derive regularity conditions that may be imposed on the initial data, in order to avoid the first singular terms. We then demonstrate that the fully pseudospectral time evolution scheme can be applied to this problem leading to a highly accurate numerical reconstruction of the nonsymmetric solutions. We are particularly interested in the behaviour of the solutions at future null infinity, and we numerically show that the singularities spread to null infinity from the critical set, where the cylinder approaches null infinity. The observed numerical behaviour is consistent with similar logarithmic singularities found analytically on the critical set. Finally, we demonstrate that even solutions with singularities at low orders can be obtained with high accuracy by virtue of a coordinate transformation that converts solutions with logarithmic singularities into smooth solutions.
Numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity
NASA Astrophysics Data System (ADS)
Korepanov, V. V.; Matveenko, V. P.; Fedorov, A. Yu.; Shardakov, I. N.
2013-07-01
An algorithm for the numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity is considered. The algorithm is based on separation of a power-law dependence from the finite-element solution in a neighborhood of singular points in the domain under study, where singular solutions are possible. The obtained power-law dependencies allow one to conclude whether the stresses have singularities and what the character of these singularities is. The algorithm was tested for problems of classical elasticity by comparing the stress singularity exponents obtained by the proposed method and from known analytic solutions. Problems with various cases of singular points, namely, body surface points at which either the smoothness of the surface is violated, or the type of boundary conditions is changed, or distinct materials are in contact, are considered as applications. The stress singularity exponents obtained by using the models of classical and asymmetric elasticity are compared. It is shown that, in the case of cracks, the stress singularity exponents are the same for the elasticity models under study, but for other cases of singular points, the stress singularity exponents obtained on the basis of asymmetric elasticity have insignificant quantitative distinctions from the solutions of the classical elasticity.
On the singular perturbations for fractional differential equation.
Atangana, Abdon
2014-01-01
The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method.
NASA Astrophysics Data System (ADS)
Jitomirskaya, S.; Marx, C. A.
2012-11-01
We show how to extend (and with what limitations) Avila's global theory of analytic SL(2,C) cocycles to families of cocycles with singularities. This allows us to develop a strategy to determine the Lyapunov exponent for the extended Harper's model, for all values of parameters and all irrational frequencies. In particular, this includes the self-dual regime for which even heuristic results did not previously exist in physics literature. The extension of Avila's global theory is also shown to imply continuous behavior of the LE on the space of analytic {M_2({C})}-cocycles. This includes rational approximation of the frequency, which so far has not been available.
Singularities in water waves and Rayleigh-Taylor instability
NASA Technical Reports Server (NTRS)
Tanveer, S.
1991-01-01
Singularities in inviscid two-dimensional finite-amplitude water waves and inviscid Rayleigh-Taylor instability are discussed. For the deep water gravity waves of permanent form, through a combination of analytical and numerical methods, results describing the precise form, number, and location of singularities in the unphysical domain as the wave height is increased are presented. It is shown how the information on the singularity in the unphysical region has the same form as for deep water waves. However, associated with such a singularity is a series of image singularities at increasing distances from the physical plane with possibly different behavior. Furthermore, for the Rayleigh-Taylor problem of motion of fluid over a vacuum and for the unsteady water wave problem, integro-differential equations valid in the unphysical region are derived, and how these equations can give information on the nature of singularities for arbitrary initial conditions is shown.
Interface with weakly singular points always scatter
NASA Astrophysics Data System (ADS)
Li, Long; Hu, Guanghui; Yang, Jiansheng
2018-07-01
Assume that a bounded scatterer is embedded into an infinite homogeneous isotropic background medium in two dimensions. The refractive index function is supposed to be piecewise constant. If the scattering interface contains a weakly singular point, we prove that the scattered field cannot vanish identically. This implies the absence of non-scattering energies for piecewise analytic interfaces with one singular point. Local uniqueness is obtained for shape identification problems in inverse medium scattering with a single far-field pattern.
Weak solutions of the three-dimensional vorticity equation with vortex singularities
NASA Technical Reports Server (NTRS)
Winckelmans, G.; Leonard, A.
1988-01-01
The extension of the concept of vortex singularities, developed by Saffman and Meiron (1986) for the case of two-dimensional point vortices in an incompressible vortical flow, to the three-dimensional case of vortex sticks (vortons) is investigated analytically. The derivation of the governing equations is explained, and it is demonstrated that the formulation obtained conserves total vorticity and is a weak solution of the vorticity equation, making it an appropriate means for representing three-dimensional vortical flows with limited numbers of vortex singularities.
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Mukhopadhyay, V.
1983-01-01
A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two-input/two-output drone flight control system.
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Mukhopadhyay, V.
1983-01-01
A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two output drone flight control system.
On the Singular Perturbations for Fractional Differential Equation
Atangana, Abdon
2014-01-01
The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method. PMID:24683357
NASA Technical Reports Server (NTRS)
Zimmerle, D.; Bernhard, R. J.
1985-01-01
An alternative method for performing singular boundary element integrals for applications in linear acoustics is discussed. The method separates the integral of the characteristic solution into a singular and nonsingular part. The singular portion is integrated with a combination of analytic and numerical techniques while the nonsingular portion is integrated with standard Gaussian quadrature. The method may be generalized to many types of subparametric elements. The integrals over elements containing the root node are considered, and the characteristic solution for linear acoustic problems are examined. The method may be generalized to most characteristic solutions.
Maximal volume behind horizons without curvature singularity
NASA Astrophysics Data System (ADS)
Wang, Shao-Jun; Guo, Xin-Xuan; Wang, Towe
2018-01-01
The black hole information paradox is related to the area of event horizon, and potentially to the volume and singularity behind it. One example is the complexity/volume duality conjectured by Stanford and Susskind. Accepting the proposal of Christodoulou and Rovelli, we calculate the maximal volume inside regular black holes, which are free of curvature singularity, in asymptotically flat and anti-de Sitter spacetimes respectively. The complexity/volume duality is then applied to anti-de Sitter regular black holes. We also present an analytical expression for the maximal volume outside the de Sitter horizon.
Inflation and acceleration of the universe by nonlinear magnetic monopole fields
NASA Astrophysics Data System (ADS)
Övgün, A.
2017-02-01
Despite impressive phenomenological success, cosmological models are incomplete without an understanding of what happened at the big bang singularity. Maxwell electrodynamics, considered as a source of the classical Einstein field equations, leads to the singular isotropic Friedmann solutions. In the context of Friedmann-Robertson-Walker (FRW) spacetime, we show that singular behavior does not occur for a class of nonlinear generalizations of the electromagnetic theory for strong fields. A new mathematical model is proposed for which the analytical nonsingular extension of FRW solutions is obtained by using the nonlinear magnetic monopole fields.
The strong energy condition and the S-brane singularity problem
NASA Astrophysics Data System (ADS)
McInnes, Brett
2003-06-01
Recently it has been argued that, because tachyonic matter satisfies the Strong Energy Condition [SEC], there is little hope of avoiding the singularities which plague S-Brane spacetimes. Meanwhile, however, Townsend and Wohlfarth have suggested an ingenious way of circumventing the SEC in such situations, and other suggestions for actually violating it in the S-Brane context have recently been proposed. Of course, the natural context for discussions of [effective or actual] violations of the SEC is the theory of asymptotically deSitter spacetimes, which tend to be less singular than ordinary FRW spacetimes. However, while violating or circumventing the SEC is necessary if singularities are to be avoided, it is not at all clear that it is sufficient. That is, we can ask: would an asymptotically deSitter S-brane spacetime be non-singular? We show that this is difficult to achieve; this result is in the spirit of the recently proved "S-brane singularity theorem". Essentially our results suggest that circumventing or violating the SEC may not suffice to solve the S-Brane singularity problem, though we do propose two ways of avoiding this conclusion.
Collisional evolution - an analytical study for the nonsteady-state mass distribution
NASA Astrophysics Data System (ADS)
Martins, R. Vieira
1999-05-01
To study the collisional evolution of asteroidal groups we can use an analytical solutionfor the self-similar collision cascades. This solution is suitable to study the steady-state massdistribution of the collisional fragmentation. However, out of the steady-state conditions, thissolution is not satisfactory for some values of the collisional parameters. In fact, for some valuesfor the exponent of the mass distribution power law of an asteroidal group and its relation to theexponent of the function which describes how rocks break we arrive at singular points for theequation which describes the collisional evolution. These singularities appear since someapproximations are usually made in the laborious evaluation of many integrals that appear in theanalytical calculations. They concern the cutoff for the smallest and the largest bodies. Thesesingularities set some restrictions to the study of the analytical solution for the collisionalequation. To overcome these singularities we performed an algebraic computationconsidering the smallest and the largest bodies and we obtained the analytical expressions for theintegrals that describe the collisional evolution without restriction on the parameters. However,the new distribution is more sensitive to the values of the collisional parameters. In particular thesteady-state solution for the differential mass distribution has exponents slightly different from11⧸6 for the usual parameters in the Asteroid Belt. The sensitivity of this distribution with respectto the parameters is analyzed for the usual values in the asteroidal groups. With anexpression for the mass distribution without singularities, we can evaluate also its time evolution.We arrive at an analytical expression given by a power series of terms constituted by a smallparameter multiplied by the mass to an exponent, which depends on the initial power lawdistribution. This expression is a formal solution for the equation which describes the collisionalevolution. Furthermore, the first-order term for this solution is the time rate of the distribution atthe initial time. In particular the solution shows the fundamental importance played by theexponent of the power law initial condition in the evolution of the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adachi, Satoshi; Toda, Mikito; Kubotani, Hiroto
The fixed-trace ensemble of random complex matrices is the fundamental model that excellently describes the entanglement in the quantum states realized in a coupled system by its strongly chaotic dynamical evolution [see H. Kubotani, S. Adachi, M. Toda, Phys. Rev. Lett. 100 (2008) 240501]. The fixed-trace ensemble fully takes into account the conservation of probability for quantum states. The present paper derives for the first time the exact analytical formula of the one-body distribution function of singular values of random complex matrices in the fixed-trace ensemble. The distribution function of singular values (i.e. Schmidt eigenvalues) of a quantum state ismore » so important since it describes characteristics of the entanglement in the state. The derivation of the exact analytical formula utilizes two recent achievements in mathematics, which appeared in 1990s. The first is the Kaneko theory that extends the famous Selberg integral by inserting a hypergeometric type weight factor into the integrand to obtain an analytical formula for the extended integral. The second is the Petkovsek-Wilf-Zeilberger theory that calculates definite hypergeometric sums in a closed form.« less
Notes on the boundaries of quadrature domains
NASA Astrophysics Data System (ADS)
Verma, Kaushal
2018-03-01
We highlight an intrinsic connection between classical quadrature domains and the well-studied theme of removable singularities of analytic sets in several complex variables. Exploiting this connection provides a new framework to recover several basic properties of such domains, namely the algebraicity of their boundary, a better understanding of the associated defining polynomial and the possible boundary singularities that can occur.
Analytic Evolution of Singular Distribution Amplitudes in QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tandogan Kunkel, Asli
2014-08-01
Distribution amplitudes (DAs) are the basic functions that contain information about the quark momentum. DAs are necessary to describe hard exclusive processes in quantum chromodynamics. We describe a method of analytic evolution of DAs that have singularities such as nonzero values at the end points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a at (constant) DA, antisymmetric at DA, and then use the method for evolution of the two-photon generalized distribution amplitude. Our approach to DA evolution has advantages over the standardmore » method of expansion in Gegenbauer polynomials [1, 2] and over a straightforward iteration of an initial distribution with evolution kernel. Expansion in Gegenbauer polynomials requires an infinite number of terms in order to accurately reproduce functions in the vicinity of singular points. Straightforward iteration of an initial distribution produces logarithmically divergent terms at each iteration. In our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve. Afterwards, in order to get precise results, only one or two iterations are needed.« less
Analytic wave solution with helicon and Trivelpiece-Gould modes in an annular plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlsson, Johan; Pavarin, Daniele; Walker, Mitchell
2009-11-26
Helicon sources in an annular configuration have applications for plasma thrusters. The theory of Klozenberg et al.[J. P. Klozenberg B. McNamara and P. C. Thonemann, J. Fluid Mech. 21(1965) 545-563] for the propagation and absorption of helicon and Trivelpiece-Gould modes in a cylindrical plasma has been generalized for annular plasmas. Analytic solutions are found also in the annular case, but in the presence of both helicon and Trivelpiece-Gould modes, a heterogeneous linear system of equations must be solved to match the plasma and inner and outer vacuum solutions. The linear system can be ill-conditioned or even exactly singular, leading tomore » a dispersion relation with a discrete set of discontinuities. The coefficients for the analytic solution are calculated by solving the linear system with singular-value decomposition.« less
An analytic formula for H-infinity norm sensitivity with applications to control system design
NASA Technical Reports Server (NTRS)
Giesy, Daniel P.; Lim, Kyong B.
1992-01-01
An analytic formula for the sensitivity of singular value peak variation with respect to parameter variation is derived. As a corollary, the derivative of the H-infinity norm of a stable transfer function with respect to a parameter is presented. It depends on some of the first two derivatives of the transfer function with respect to frequency and the parameter. For cases when the transfer function has a linear system realization whose matrices depend on the parameter, analytic formulas for these first two derivatives are derived, and an efficient algorithm for calculating them is discussed. Examples are given which provide numerical verification of the H-infinity norm sensitivity formula and which demonstrate its utility in designing control systems satisfying H-infinity norm constraints. In the appendix, derivative formulas for singular values are paraphrased.
New conformal mapping for adaptive resolving of the complex singularities of Stokes wave
Dyachenko, Sergey A.; A. Silantyev, Denis
2017-01-01
A new highly efficient method is developed for computation of travelling periodic waves (Stokes waves) on the free surface of deep water. A convergence of numerical approximation is determined by the complex singularities above the free surface for the analytical continuation of the travelling wave into the complex plane. An auxiliary conformal mapping is introduced which moves singularities away from the free surface thus dramatically speeding up numerical convergence by adapting the numerical grid for resolving singularities while being consistent with the fluid dynamics. The efficiency of that conformal mapping is demonstrated for the Stokes wave approaching the limiting Stokes wave (the wave of the greatest height) which significantly expands the family of numerically accessible solutions. It allows us to provide a detailed study of the oscillatory approach of these solutions to the limiting wave. Generalizations of the conformal mapping to resolve multiple singularities are also introduced. PMID:28690418
New conformal mapping for adaptive resolving of the complex singularities of Stokes wave.
Lushnikov, Pavel M; Dyachenko, Sergey A; A Silantyev, Denis
2017-06-01
A new highly efficient method is developed for computation of travelling periodic waves (Stokes waves) on the free surface of deep water. A convergence of numerical approximation is determined by the complex singularities above the free surface for the analytical continuation of the travelling wave into the complex plane. An auxiliary conformal mapping is introduced which moves singularities away from the free surface thus dramatically speeding up numerical convergence by adapting the numerical grid for resolving singularities while being consistent with the fluid dynamics. The efficiency of that conformal mapping is demonstrated for the Stokes wave approaching the limiting Stokes wave (the wave of the greatest height) which significantly expands the family of numerically accessible solutions. It allows us to provide a detailed study of the oscillatory approach of these solutions to the limiting wave. Generalizations of the conformal mapping to resolve multiple singularities are also introduced.
A novel finite element analysis of three-dimensional circular crack
NASA Astrophysics Data System (ADS)
Ping, X. C.; Wang, C. G.; Cheng, L. P.
2018-06-01
A novel singular element containing a part of the circular crack front is established to solve the singular stress fields of circular cracks by using the numerical series eigensolutions of singular stress fields. The element is derived from the Hellinger-Reissner variational principle and can be directly incorporated into existing 3D brick elements. The singular stress fields are determined as the system unknowns appearing as displacement nodal values. The numerical studies are conducted to demonstrate the simplicity of the proposed technique in handling fracture problems of circular cracks. The usage of the novel singular element can avoid mesh refinement near the crack front domain without loss of calculation accuracy and velocity of convergence. Compared with the conventional finite element methods and existing analytical methods, the present method is more suitable for dealing with complicated structures with a large number of elements.
Caustic Singularities Of High-Gain, Dual-Shaped Reflectors
NASA Technical Reports Server (NTRS)
Galindo, Victor; Veruttipong, Thavath W.; Imbriale, William A.; Rengarajan, Sambiam
1991-01-01
Report presents study of some sources of error in analysis, by geometric theory of diffraction (GTD), of performance of high-gain, dual-shaped antenna reflector. Study probes into underlying analytic causes of singularity, with view toward devising and testing practical methods to avoid problems caused by singularity. Hybrid physical optics (PO) approach used to study near-field spillover or noise-temperature characteristics of high-gain relector antenna efficiently and accurately. Report illustrates this approach and underlying principles by presenting numerical results, for both offset and symmetrical reflector systems, computed by GTD, PO, and PO/GO methods.
Wave Geometry: a Plurality of Singularities
NASA Astrophysics Data System (ADS)
Berry, M. V.
Five interconnected wave singularities are discussed: phase monopoles, at eigenvalue degeneracies in parameter space, where the 2-form generating the geomeeic phase is singular, phase dislocations, at zeros of complex wavefunctions in position space, where different wavefronts (surfaces of constant phase) meet; caustics, that is envelopes (foci) of families of classical paths or geometrical rays, where real rays are born violently and which are complementary to dislocations; Stokes sets, at which a complex ray is born gently where it is maximally dominated by another ray; and complex degeneracies, which are the sources of adiabatic quantum transtions in analytic Hamiltonians.
On the Analytical and Numerical Properties of the Truncated Laplace Transform II
2015-05-29
La,b)∗ ◦ La,b) (un)) (t) = ∫ b a 1 t+ s un(s)ds = α 2 nun (t). (32) Similarly, the left singular functions vn of La,b are eigenfunctions of the...odd in the sense that Un(s) = (−1) nUn (−s). (83) 3.5 Decay of the coefficients Since the left singular function vn (defined in (27)) is a smooth...is associated with the right singular function un via (41) and (42) and it is studied in [12]. Lemma 3.13. Suppose that un be the n+ 1-th right
Breakdown of a 2D Heteroclinic Connection in the Hopf-Zero Singularity (I)
NASA Astrophysics Data System (ADS)
Baldomá, I.; Castejón, O.; Seara, T. M.
2018-04-01
In this paper we study a beyond all orders phenomenon which appears in the analytic unfoldings of the Hopf-zero singularity. It consists in the breakdown of a two-dimensional heteroclinic surface which exists in the truncated normal form of this singularity at any order. The results in this paper are twofold: on the one hand, we give results for generic unfoldings which lead to sharp exponentially small upper bounds of the difference between these manifolds. On the other hand, we provide asymptotic formulas for this difference by means of the Melnikov function for some non-generic unfoldings.
NASA Astrophysics Data System (ADS)
Okulov, A. Yu.
2010-10-01
The interaction of the two counter-propagating ultrashort laser pulses with singular wavefronts in the thin slice of the underdense plasma is considered. It is shown that ion-acoustic wave is excited via Brillouin three-wave resonance by corkscrew interference pattern of paraxial singular laser beams. The orbital angular momentum carried by light is transferred to plasma ion-acoustic vortex. The rotation of the density perturbations of electron fluid is the cause of helical current which produces the kilogauss axial quasi-static magnetic field. The exact analytical configurations are presented for an ion-acoustic current field and magnetic induction. The range of experimentally accessible parameters is evaluated.
Forbidden tangential orbit transfers between intersecting Keplerian orbits
NASA Technical Reports Server (NTRS)
Burns, Rowland E.
1990-01-01
The classical problem of tangential impulse transfer between coplanar Keplerian orbits is addressed. A completely analytic solution which does not rely on sequential calculation is obtained and this solution is used to demonstrate that certain initially chosen angles can produce singularities in the parameters of the transfer orbit. A necessary and sufficient condition for such singularities is that the initial and final orbits intersect.
Dynamical singularities for complex initial conditions and the motion at a real separatrix.
Shnerb, Tamar; Kay, K G
2006-04-01
This work investigates singularities occurring at finite real times in the classical dynamics of one-dimensional double-well systems with complex initial conditions. The objective is to understand the relationship between these singularities and the behavior of the systems for real initial conditions. An analytical treatment establishes that the dynamics of a quartic double well system possesses a doubly infinite sequence of singularities. These are associated with initial conditions that converge to those for the real separatrix as the singularity time becomes infinite. This confluence of singularities is shown to lead to the unstable behavior that characterizes the real motion at the separatrix. Numerical calculations confirm the existence of a large number of singularities converging to the separatrix for this and two additional double-well systems. The approach of singularities to the real axis is of particular interest since such behavior has been related to the formation of chaos in nonintegrable systems. The properties of the singular trajectories which cause this convergence to the separatrix are identified. The hyperbolic fixed point corresponding to the potential energy maximum, responsible for the characteristic motion at a separatrix, also plays a critical role in the formation of the complex singularities by delaying trajectories and then deflecting them into asymptotic regions of space from where they are directly repelled to infinity in a finite time.
Applying the method of fundamental solutions to harmonic problems with singular boundary conditions
NASA Astrophysics Data System (ADS)
Valtchev, Svilen S.; Alves, Carlos J. S.
2017-07-01
The method of fundamental solutions (MFS) is known to produce highly accurate numerical results for elliptic boundary value problems (BVP) with smooth boundary conditions, posed in analytic domains. However, due to the analyticity of the shape functions in its approximation basis, the MFS is usually disregarded when the boundary functions possess singularities. In this work we present a modification of the classical MFS which can be applied for the numerical solution of the Laplace BVP with Dirichlet boundary conditions exhibiting jump discontinuities. In particular, a set of harmonic functions with discontinuous boundary traces is added to the MFS basis. The accuracy of the proposed method is compared with the results form the classical MFS.
Ideal evolution of magnetohydrodynamic turbulence when imposing Taylor-Green symmetries.
Brachet, M E; Bustamante, M D; Krstulovic, G; Mininni, P D; Pouquet, A; Rosenberg, D
2013-01-01
We investigate the ideal and incompressible magnetohydrodynamic (MHD) equations in three space dimensions for the development of potentially singular structures. The methodology consists in implementing the fourfold symmetries of the Taylor-Green vortex generalized to MHD, leading to substantial computer time and memory savings at a given resolution; we also use a regridding method that allows for lower-resolution runs at early times, with no loss of spectral accuracy. One magnetic configuration is examined at an equivalent resolution of 6144(3) points and three different configurations on grids of 4096(3) points. At the highest resolution, two different current and vorticity sheet systems are found to collide, producing two successive accelerations in the development of small scales. At the latest time, a convergence of magnetic field lines to the location of maximum current is probably leading locally to a strong bending and directional variability of such lines. A novel analytical method, based on sharp analysis inequalities, is used to assess the validity of the finite-time singularity scenario. This method allows one to rule out spurious singularities by evaluating the rate at which the logarithmic decrement of the analyticity-strip method goes to zero. The result is that the finite-time singularity scenario cannot be ruled out, and the singularity time could be somewhere between t=2.33 and t=2.70. More robust conclusions will require higher resolution runs and grid-point interpolation measurements of maximum current and vorticity.
Yau, Stephen S.-T.
1983-01-01
A natural mapping from the set of complex analytic isolated hypersurface singularities to the set of finite dimensional Lie algebras is first defined. It is proven that the image under this natural mapping is contained in the set of solvable Lie algebras. This approach gives rise to a continuous inequivalent family of finite dimensional representations of a solvable Lie algebra. PMID:16593401
Electrostatic forces in the Poisson-Boltzmann systems
NASA Astrophysics Data System (ADS)
Xiao, Li; Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray
2013-09-01
Continuum modeling of electrostatic interactions based upon numerical solutions of the Poisson-Boltzmann equation has been widely used in structural and functional analyses of biomolecules. A limitation of the numerical strategies is that it is conceptually difficult to incorporate these types of models into molecular mechanics simulations, mainly because of the issue in assigning atomic forces. In this theoretical study, we first derived the Maxwell stress tensor for molecular systems obeying the full nonlinear Poisson-Boltzmann equation. We further derived formulations of analytical electrostatic forces given the Maxwell stress tensor and discussed the relations of the formulations with those published in the literature. We showed that the formulations derived from the Maxwell stress tensor require a weaker condition for its validity, applicable to nonlinear Poisson-Boltzmann systems with a finite number of singularities such as atomic point charges and the existence of discontinuous dielectric as in the widely used classical piece-wise constant dielectric models.
NASA Technical Reports Server (NTRS)
Williams, Robert L., III
1992-01-01
This paper presents three methods to solve the inverse position kinematics position problem of the double universal joint attached to a manipulator: (1) an analytical solution for two specific cases; (2) an approximate closed form solution based on ignoring the wrist offset; and (3) an iterative method which repeats closed form position and orientation calculations until the solution is achieved. Several manipulators are used to demonstrate the solution methods: cartesian, cylindrical, spherical, and an anthropomorphic articulated arm, based on the Flight Telerobotic Servicer (FTS) arm. A singularity analysis is presented for the double universal joint wrist attached to the above manipulator arms. While the double universal joint wrist standing alone is singularity-free in orientation, the singularity analysis indicates the presence of coupled position/orientation singularities of the spherical and articulated manipulators with the wrist. The cartesian and cylindrical manipulators with the double universal joint wrist were found to be singularity-free. The methods of this paper can be implemented in a real-time controller for manipulators with the double universal joint wrist. Such mechanically dextrous systems could be used in telerobotic and industrial applications, but further work is required to avoid the singularities.
Multivalued classical mechanics arising from singularity loops in complex time
NASA Astrophysics Data System (ADS)
Koch, Werner; Tannor, David J.
2018-02-01
Complex-valued classical trajectories in complex time encounter singular times at which the momentum diverges. A closed time contour around such a singular time may result in final values for q and p that differ from their initial values. In this work, we develop a calculus for determining the exponent and prefactor of the asymptotic time dependence of p from the singularities of the potential as the singularity time is approached. We identify this exponent with the number of singularity loops giving distinct solutions to Hamilton's equations of motion. The theory is illustrated for the Eckart, Coulomb, Morse, and quartic potentials. Collectively, these potentials illustrate a wide variety of situations: poles and essential singularities at finite and infinite coordinate values. We demonstrate quantitative agreement between analytical and numerical exponents and prefactors, as well as the connection between the exponent and the time circuit count. This work provides the theoretical underpinnings for the choice of time contours described in the studies of Doll et al. [J. Chem. Phys. 58(4), 1343-1351 (1973)] and Petersen and Kay [J. Chem. Phys. 141(5), 054114 (2014)]. It also has implications for wavepacket reconstruction from complex classical trajectories when multiple branches of trajectories are involved.
NASA Astrophysics Data System (ADS)
Pan, Supriya
2018-01-01
Cosmological models with time-dependent Λ (read as Λ(t)) have been investigated widely in the literature. Models that solve background dynamics analytically are of special interest. Additionally, the allowance of past or future singularities at finite cosmic time in a specific model signals for a generic test on its viabilities with the current observations. Following these, in this work we consider a variety of Λ(t) models focusing on their evolutions and singular behavior. We found that a series of models in this class can be exactly solved when the background universe is described by a spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) line element. The solutions in terms of the scale factor of the FLRW universe offer different universe models, such as power-law expansion, oscillating, and the singularity free universe. However, we also noticed that a large number of the models in this series permit past or future cosmological singularities at finite cosmic time. At last we close the work with a note that the avoidance of future singularities is possible for certain models under some specific restrictions.
A singularity free analytical solution of artificial satellite motion with drag
NASA Technical Reports Server (NTRS)
Mueller, A.
1978-01-01
An analytical satellite theory based on the regular, canonical Poincare-Similar (PS phi) elements is described along with an accurate density model which can be implemented into the drag theory. A computationally efficient manner in which to expand the equations of motion into a fourier series is discussed.
Luo, Yamei; Gao, Zenghui; Tang, Bihua; Lü, Baida
2013-08-01
Based on the vector Fresnel diffraction integrals, analytical expressions for the electric and magnetic components of first-order Laguerre-Gaussian beams diffracted at a half-plane screen are derived and used to study the electric and magnetic polarization singularities in the diffraction field for both two- and three-dimensional (2D and 3D) cases. It is shown that there exist 2D and 3D electric and magnetic polarization singularities in the diffraction field, which do not coincide each other in general. By suitably varying the waist width ratio, off-axis displacement parameter, amplitude ratio, or propagation distance, the motion, pair-creation, and annihilation of circular polarization singularities, and the motion of linear polarization singularities take place in 2D and 3D electric and magnetic fields. The V point, at which two circular polarization singularities with the same topological charge but opposite handedness collide, appears in the 2D electric field under certain conditions in the diffraction field and free-space propagation. A comparison with the free-space propagation is also made.
Singular-Arc Time-Optimal Trajectory of Aircraft in Two-Dimensional Wind Field
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2006-01-01
This paper presents a study of a minimum time-to-climb trajectory analysis for aircraft flying in a two-dimensional altitude dependent wind field. The time optimal control problem possesses a singular control structure when the lift coefficient is taken as a control variable. A singular arc analysis is performed to obtain an optimal control solution on the singular arc. Using a time-scale separation with the flight path angle treated as a fast state, the dimensionality of the optimal control solution is reduced by eliminating the lift coefficient control. A further singular arc analysis is used to decompose the original optimal control solution into the flight path angle solution and a trajectory solution as a function of the airspeed and altitude. The optimal control solutions for the initial and final climb segments are computed using a shooting method with known starting values on the singular arc The numerical results of the shooting method show that the optimal flight path angle on the initial and final climb segments are constant. The analytical approach provides a rapid means for analyzing a time optimal trajectory for aircraft performance.
Burton-Miller-type singular boundary method for acoustic radiation and scattering
NASA Astrophysics Data System (ADS)
Fu, Zhuo-Jia; Chen, Wen; Gu, Yan
2014-08-01
This paper proposes the singular boundary method (SBM) in conjunction with Burton and Miller's formulation for acoustic radiation and scattering. The SBM is a strong-form collocation boundary discretization technique using the singular fundamental solutions, which is mathematically simple, easy-to-program, meshless and introduces the concept of source intensity factors (SIFs) to eliminate the singularities of the fundamental solutions. Therefore, it avoids singular numerical integrals in the boundary element method (BEM) and circumvents the troublesome placement of the fictitious boundary in the method of fundamental solutions (MFS). In the present method, we derive the SIFs of exterior Helmholtz equation by means of the SIFs of exterior Laplace equation owing to the same order of singularities between the Laplace and Helmholtz fundamental solutions. In conjunction with the Burton-Miller formulation, the SBM enhances the quality of the solution, particularly in the vicinity of the corresponding interior eigenfrequencies. Numerical illustrations demonstrate efficiency and accuracy of the present scheme on some benchmark examples under 2D and 3D unbounded domains in comparison with the analytical solutions, the boundary element solutions and Dirichlet-to-Neumann finite element solutions.
Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dain, Sergio; Ortiz, Omar E.; Facultad de Matematica, Astronomia y Fisica, FaMAF, Universidad Nacional de Cordoba, Instituto de Fisica Enrique Gaviola, IFEG, CONICET, Ciudad Universitaria
2010-02-15
For axially symmetric solutions of Einstein equations there exists a gauge which has the remarkable property that the total mass can be written as a conserved, positive definite, integral on the spacelike slices. The mass integral provides a nonlinear control of the variables along the whole evolution. In this gauge, Einstein equations reduce to a coupled hyperbolic-elliptic system which is formally singular at the axis. As a first step in analyzing this system of equations we study linear perturbations on a flat background. We prove that the linear equations reduce to a very simple system of equations which provide, thoughmore » the mass formula, useful insight into the structure of the full system. However, the singular behavior of the coefficients at the axis makes the study of this linear system difficult from the analytical point of view. In order to understand the behavior of the solutions, we study the numerical evolution of them. We provide strong numerical evidence that the system is well-posed and that its solutions have the expected behavior. Finally, this linear system allows us to formulate a model problem which is physically interesting in itself, since it is connected with the linear stability of black hole solutions in axial symmetry. This model can contribute significantly to solve the nonlinear problem and at the same time it appears to be tractable.« less
Fermi-edge singularity and the functional renormalization group
NASA Astrophysics Data System (ADS)
Kugler, Fabian B.; von Delft, Jan
2018-05-01
We study the Fermi-edge singularity, describing the response of a degenerate electron system to optical excitation, in the framework of the functional renormalization group (fRG). Results for the (interband) particle-hole susceptibility from various implementations of fRG (one- and two-particle-irreducible, multi-channel Hubbard–Stratonovich, flowing susceptibility) are compared to the summation of all leading logarithmic (log) diagrams, achieved by a (first-order) solution of the parquet equations. For the (zero-dimensional) special case of the x-ray-edge singularity, we show that the leading log formula can be analytically reproduced in a consistent way from a truncated, one-loop fRG flow. However, reviewing the underlying diagrammatic structure, we show that this derivation relies on fortuitous partial cancellations special to the form of and accuracy applied to the x-ray-edge singularity and does not generalize.
Leading singularities and off-shell conformal integrals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drummond, James; Duhr, Claude; Eden, Burkhard
2013-08-29
The three-loop four-point function of stress-tensor multiplets in N=4 super Yang-Mills theory contains two so far unknown, off-shell, conformal integrals, in addition to the known, ladder-type integrals. In our paper we evaluate the unknown integrals, thus obtaining the three-loop correlation function analytically. The integrals have the generic structure of rational functions multiplied by (multiple) polylogarithms. We use the idea of leading singularities to obtain the rational coefficients, the symbol — with an appropriate ansatz for its structure — as a means of characterising multiple polylogarithms, and the technique of asymptotic expansion of Feynman integrals to obtain the integrals in certainmore » limits. The limiting behaviour uniquely fixes the symbols of the integrals, which we then lift to find the corresponding polylogarithmic functions. The final formulae are numerically confirmed. Furthermore, we develop techniques that can be applied more generally, and we illustrate this by analytically evaluating one of the integrals contributing to the same four-point function at four loops. This example shows a connection between the leading singularities and the entries of the symbol.« less
Analytically solvable model of an electronic Mach-Zehnder interferometer
NASA Astrophysics Data System (ADS)
Ngo Dinh, Stéphane; Bagrets, Dmitry A.; Mirlin, Alexander D.
2013-05-01
We consider a class of models of nonequilibrium electronic Mach-Zehnder interferometers built on integer quantum Hall edges states. The models are characterized by the electron-electron interaction being restricted to the inner part of the interferometer and transmission coefficients of the quantum quantum point contacts, defining the interferometer, which may take arbitrary values from zero to one. We establish an exact solution of these models in terms of single-particle quantities, determinants and resolvents of Fredholm integral operators. In the general situation, the results can be obtained numerically. In the case of strong charging interaction, the operators acquire the block Toeplitz form. Analyzing the corresponding Riemann-Hilbert problem, we reduce the result to certain singular single-channel determinants (which are a generalization of Toeplitz determinants with Fisher-Hartwig singularities) and obtain an analytic result for the interference current (and, in particular, for the visibility of Aharonov-Bohm oscillations). Our results, which are in good agreement with experimental observations, show an intimate connection between the observed “lobe” structure in the visibility of Aharonov-Bohm oscillations and multiple branches in the asymptotics of singular integral determinants.
General method of solving the Schroedinger equation of atoms and molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakatsuji, Hiroshi
2005-12-15
We propose a general method of solving the Schroedinger equation of atoms and molecules. We first construct the wave function having the exact structure, using the ICI (iterative configuration or complement interaction) method and then optimize the variables involved by the variational principle. Based on the scaled Schroedinger equation and related principles, we can avoid the singularity problem of atoms and molecules and formulate a general method of calculating the exact wave functions in an analytical expansion form. We choose initial function {psi}{sub 0} and scaling g function, and then the ICI method automatically generates the wave function that hasmore » the exact structure by using the Hamiltonian of the system. The Hamiltonian contains all the information of the system. The free ICI method provides a flexible and variationally favorable procedure of constructing the exact wave function. We explain the computational procedure of the analytical ICI method routinely performed in our laboratory. Simple examples are given using hydrogen atom for the nuclear singularity case, the Hooke's atom for the electron singularity case, and the helium atom for both cases.« less
NASA Astrophysics Data System (ADS)
Albaba, Adel; Lambert, Stéphane; Faug, Thierry
2018-05-01
The present paper investigates the mean impact force exerted by a granular mass flowing down an incline and impacting a rigid wall of semi-infinite height. First, this granular flow-wall interaction problem is modeled by numerical simulations based on the discrete element method (DEM). These DEM simulations allow computing the depth-averaged quantities—thickness, velocity, and density—of the incoming flow and the resulting mean force on the rigid wall. Second, that problem is described by a simple analytic solution based on a depth-averaged approach for a traveling compressible shock wave, whose volume is assumed to shrink into a singular surface, and which coexists with a dead zone. It is shown that the dead-zone dynamics and the mean force on the wall computed from DEM can be reproduced reasonably well by the analytic solution proposed over a wide range of slope angle of the incline. These results are obtained by feeding the analytic solution with the thickness, the depth-averaged velocity, and the density averaged over a certain distance along the incline rather than flow quantities taken at a singular section before the jump, thus showing that the assumption of a shock wave volume shrinking into a singular surface is questionable. The finite length of the traveling wave upstream of the grains piling against the wall must be considered. The sensitivity of the model prediction to that sampling length remains complicated, however, which highlights the need of further investigation about the properties and the internal structure of the propagating granular wave.
Matrix Sturm-Liouville equation with a Bessel-type singularity on a finite interval
NASA Astrophysics Data System (ADS)
Bondarenko, Natalia
2017-03-01
The matrix Sturm-Liouville equation on a finite interval with a Bessel-type singularity in the end of the interval is studied. Special fundamental systems of solutions for this equation are constructed: analytic Bessel-type solutions with the prescribed behavior at the singular point and Birkhoff-type solutions with the known asymptotics for large values of the spectral parameter. The asymptotic formulas for Stokes multipliers, connecting these two fundamental systems of solutions, are derived. We also set boundary conditions and obtain asymptotic formulas for the spectral data (the eigenvalues and the weight matrices) of the boundary value problem. Our results will be useful in the theory of direct and inverse spectral problems.
k-essence in the DGP brane-world cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouhmadi-Lopez, Mariam; Chimento, Luis P.
We analyze a Dvali-Gabadadze-Porrati (DGP) brane filled with a k-essence field and assume the k field evolving linearly with the cosmic time of the brane. We then solve analytically the Friedmann equation and deduce the different behavior of the brane at the low- and the high-energy regimes. The asymptotic behavior can be quite different involving accelerating branes, big bangs, big crunches, big rips, or quiescent singularities. The latter correspond to a type of sudden singularity.
Singular-value decomposition of a tomosynthesis system
Burvall, Anna; Barrett, Harrison H.; Myers, Kyle J.; Dainty, Christopher
2010-01-01
Tomosynthesis is an emerging technique with potential to replace mammography, since it gives 3D information at a relatively small increase in dose and cost. We present an analytical singular-value decomposition of a tomosynthesis system, which provides the measurement component of any given object. The method is demonstrated on an example object. The measurement component can be used as a reconstruction of the object, and can also be utilized in future observer studies of tomosynthesis image quality. PMID:20940966
Edge Singularities and Quasilong-Range Order in Nonequilibrium Steady States.
De Nardis, Jacopo; Panfil, Miłosz
2018-05-25
The singularities of the dynamical response function are one of the most remarkable effects in many-body interacting systems. However in one dimension these divergences only exist strictly at zero temperature, making their observation very difficult in most cold atomic experimental settings. Moreover the presence of a finite temperature destroys another feature of one-dimensional quantum liquids: the real space quasilong-range order in which the spatial correlation functions exhibit power-law decay. We consider a nonequilibrium protocol where two interacting Bose gases are prepared either at different temperatures or chemical potentials and then joined. We show that the nonequilibrium steady state emerging at large times around the junction displays edge singularities in the response function and quasilong-range order.
Edge Singularities and Quasilong-Range Order in Nonequilibrium Steady States
NASA Astrophysics Data System (ADS)
De Nardis, Jacopo; Panfil, Miłosz
2018-05-01
The singularities of the dynamical response function are one of the most remarkable effects in many-body interacting systems. However in one dimension these divergences only exist strictly at zero temperature, making their observation very difficult in most cold atomic experimental settings. Moreover the presence of a finite temperature destroys another feature of one-dimensional quantum liquids: the real space quasilong-range order in which the spatial correlation functions exhibit power-law decay. We consider a nonequilibrium protocol where two interacting Bose gases are prepared either at different temperatures or chemical potentials and then joined. We show that the nonequilibrium steady state emerging at large times around the junction displays edge singularities in the response function and quasilong-range order.
Quantum Backreaction on Three-Dimensional Black Holes and Naked Singularities.
Casals, Marc; Fabbri, Alessandro; Martínez, Cristián; Zanelli, Jorge
2017-03-31
We analytically investigate backreaction by a quantum scalar field on two rotating Bañados-Teitelboim-Zanelli (BTZ) geometries: that of a black hole and that of a naked singularity. In the former case, we explore the quantum effects on various regions of relevance for a rotating black hole space-time. We find that the quantum effects lead to a growth of both the event horizon and the radius of the ergosphere, and to a reduction of the angular velocity, compared to the unperturbed values. Furthermore, they give rise to the formation of a curvature singularity at the Cauchy horizon and show no evidence of the appearance of a superradiant instability. In the case of a naked singularity, we find that quantum effects lead to the formation of a horizon that shields it, thus supporting evidence for the rôle of quantum mechanics as a cosmic censor in nature.
NASA Astrophysics Data System (ADS)
Ng, C. S.; Bhattacharjee, A.
1996-08-01
A sufficient condition is obtained for the development of a finite-time singularity in a highly symmetric Euler flow, first proposed by Kida [J. Phys. Soc. Jpn. 54, 2132 (1995)] and recently simulated by Boratav and Pelz [Phys. Fluids 6, 2757 (1994)]. It is shown that if the second-order spatial derivative of the pressure (pxx) is positive following a Lagrangian element (on the x axis), then a finite-time singularity must occur. Under some assumptions, this Lagrangian sufficient condition can be reduced to an Eulerian sufficient condition which requires that the fourth-order spatial derivative of the pressure (pxxxx) at the origin be positive for all times leading up to the singularity. Analytical as well as direct numerical evaluation over a large ensemble of initial conditions demonstrate that for fixed total energy, pxxxx is predominantly positive with the average value growing with the numbers of modes.
Singularity and Bohm criterion in hot positive ion species in the electronegative ion sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aslaninejad, Morteza; Yasserian, Kiomars
2016-05-15
The structure of the discharge for a magnetized electronegative ion source with two species of positive ions is investigated. The thermal motion of hot positive ions and the singularities involved with it are taken into account. By analytical solution of the neutral region, the location of the singular point and also the values of the plasma parameter such as electric potential and ion density at the singular point are obtained. A generalized Bohm criterion is recovered and discussed. In addition, for the non-neutral solution, the numerical method is used. In contrast with cold ion plasma, qualitative changes are observed. Themore » parameter space region within which oscillations in the density and potential can be observed has been scanned and discussed. The space charge behavior in the vicinity of edge of the ion sources has also been discussed in detail.« less
NASA Astrophysics Data System (ADS)
Balusu, K.; Huang, H.
2017-04-01
A combined dislocation fan-finite element (DF-FE) method is presented for efficient and accurate simulation of dislocation nodal forces in 3D elastically anisotropic crystals with dislocations intersecting the free surfaces. The finite domain problem is decomposed into half-spaces with singular traction stresses, an infinite domain, and a finite domain with non-singular traction stresses. As such, the singular and non-singular parts of the traction stresses are addressed separately; the dislocation fan (DF) method is introduced to balance the singular traction stresses in the half-spaces while the finite element method (FEM) is employed to enforce the non-singular boundary conditions. The accuracy and efficiency of the DF method is demonstrated using a simple isotropic test case, by comparing it with the analytical solution as well as the FEM solution. The DF-FE method is subsequently used for calculating the dislocation nodal forces in a finite elastically anisotropic crystal, which produces dislocation nodal forces that converge rapidly with increasing mesh resolutions. In comparison, the FEM solution fails to converge, especially for nodes closer to the surfaces.
NASA Technical Reports Server (NTRS)
Podhorodeski, R. P.; Fenton, R. G.; Goldenberg, A. A.
1989-01-01
Using a method based upon resolving joint velocities using reciprocal screw quantities, compact analytical expressions are generated for the inverse solution of the joint rates of a seven revolute (spherical-revolute-spherical) manipulator. The method uses a sequential decomposition of screw coordinates to identify reciprocal screw quantities used in the resolution of a particular joint rate solution, and also to identify a Jacobian null-space basis used for the direct solution of optimal joint rates. The results of the screw decomposition are used to study special configurations of the manipulator, generating expressions for the inverse velocity solution for all non-singular configurations of the manipulator, and identifying singular configurations and their characteristics. Two functions are therefore served: a new general method for the solution of the inverse velocity problem is presented; and complete analytical expressions are derived for the resolution of the joint rates of a seven degree of freedom manipulator useful for telerobotic and industrial robotic application.
Singular value decomposition for the truncated Hilbert transform
NASA Astrophysics Data System (ADS)
Katsevich, A.
2010-11-01
Starting from a breakthrough result by Gelfand and Graev, inversion of the Hilbert transform became a very important tool for image reconstruction in tomography. In particular, their result is useful when the tomographic data are truncated and one deals with an interior problem. As was established recently, the interior problem admits a stable and unique solution when some a priori information about the object being scanned is available. The most common approach to solving the interior problem is based on converting it to the Hilbert transform and performing analytic continuation. Depending on what type of tomographic data are available, one gets different Hilbert inversion problems. In this paper, we consider two such problems and establish singular value decomposition for the operators involved. We also propose algorithms for performing analytic continuation.
An Analytical Singularity-Free Solution to the J2 Perturbation Problem
NASA Technical Reports Server (NTRS)
Bond, V. R.
1979-01-01
The development of a singularity-free solution of the J2 problem in satellite theory is presented. The procedure resembles that of Lyndane who rederives Brouwer's satellite theory using Poincare elements. A comparable procedure is used in this report in which the satellite theory of Scheifele, who used elements similar to the Delaunay elements but in the extended phase space, is rederived using Poincare elements also in the extended phase space. Only the short-period effects due to J2 are included.
Confining potential in momentum space
NASA Technical Reports Server (NTRS)
Norbury, John W.; Kahana, David E.; Maung, Khin Maung
1992-01-01
A method is presented for the solution in momentum space of the bound state problem with a linear potential in r space. The potential is unbounded at large r leading to a singularity at small q. The singularity is integrable, when regulated by exponentially screening the r-space potential, and is removed by a subtraction technique. The limit of zero screening is taken analytically, and the numerical solution of the subtracted integral equation gives eigenvalues and wave functions in good agreement with position space calculations.
NASA Astrophysics Data System (ADS)
Nakazato, Hana; Yamagishi, Yuki; Okumura, Ko
2018-05-01
In hydrodynamic topological transitions, one mass of fluid breaks into two or two merge into one. For example, in honey-drop formation when honey is dripping from a spoon, honey is extended to separate into two masses as the liquid neck bridging them thins down to the micron scale. At the moment when the topology changes due to the breakup, physical observables such as surface curvature locally diverge. Such singular dynamics has widely attracted physicists, revealing universality in self-similar dynamics, which shares much in common with critical phenomena in thermodynamics. Many experimental examples have been found, including an electric spout and vibration-induced jet eruption. However, only a few cases have been physically understood on the basis of equations that govern the singular dynamics and even in such a case the physical understanding is mathematically complicated, inevitably involving delicate numerical calculations. Here we study the breakup of air film entrained by a solid disk into viscous liquid in a confined space, which leads to formation, thinning, and breakup of the neck of air. As a result, we unexpectedly find that equations governing the neck dynamics can be solved analytically by virtue of two remarkable experimental features: Only a single length scale linearly dependent on time remains near the singularity and two universal scaling functions describing the singular neck shape and velocity field are both analytic. The present solvable case would be essential for a better understanding of the singular dynamics and will help reveal the physics of unresolved examples intimately related to daily-life phenomena and diverse practical applications.
Singularities in Dromo formulation. Analysis of deep flybys
NASA Astrophysics Data System (ADS)
Roa, Javier; Sanjurjo-Rivo, Manuel; Peláez, Jesús
2015-08-01
The singularities in Dromo are characterized in this paper, both from an analytical and a numerical perspective. When the angular momentum vanishes, Dromo may encounter a singularity in the evolution equations. The cancellation of the angular momentum occurs in very specific situations and may be caused by the action of strong perturbations. The gravitational attraction of a perturbing planet may lead to rapid changes in the angular momentum of the particle. In practice, this situation may be encountered during deep planetocentric flybys. The performance of Dromo is evaluated in different scenarios. First, Dromo is validated for integrating the orbit of Near Earth Asteroids. Resulting errors are of the order of the diameter of the asteroid. Second, a set of theoretical flybys are designed for analyzing the performance of the formulation in the vicinity of the singularity. New sets of Dromo variables are proposed in order to minimize the dependency of Dromo on the angular momentum. A slower time scale is introduced, leading to a more stable description of the flyby phase. Improvements in the overall performance of the algorithm are observed when integrating orbits close to the singularity.
NASA Astrophysics Data System (ADS)
Zeng, Huihui
2017-10-01
For the gas-vacuum interface problem with physical singularity and the sound speed being {C^{{1}/{2}}}-Hölder continuous near vacuum boundaries of the isentropic compressible Euler equations with damping, the global existence of smooth solutions and the convergence to Barenblatt self-similar solutions of the corresponding porous media equation are proved in this paper for spherically symmetric motions in three dimensions; this is done by overcoming the analytical difficulties caused by the coordinate's singularity near the center of symmetry, and the physical vacuum singularity to which standard methods of symmetric hyperbolic systems do not apply. Various weights are identified to resolve the singularity near the vacuum boundary and the center of symmetry globally in time. The results obtained here contribute to the theory of global solutions to vacuum boundary problems of compressible inviscid fluids, for which the currently available results are mainly for the local-in-time well-posedness theory, and also to the theory of global smooth solutions of dissipative hyperbolic systems which fail to be strictly hyperbolic.
Leblond, Frederic; Tichauer, Kenneth M.; Pogue, Brian W.
2010-01-01
The spatial resolution and recovered contrast of images reconstructed from diffuse fluorescence tomography data are limited by the high scattering properties of light propagation in biological tissue. As a result, the image reconstruction process can be exceedingly vulnerable to inaccurate prior knowledge of tissue optical properties and stochastic noise. In light of these limitations, the optimal source-detector geometry for a fluorescence tomography system is non-trivial, requiring analytical methods to guide design. Analysis of the singular value decomposition of the matrix to be inverted for image reconstruction is one potential approach, providing key quantitative metrics, such as singular image mode spatial resolution and singular data mode frequency as a function of singular mode. In the present study, these metrics are used to analyze the effects of different sources of noise and model errors as related to image quality in the form of spatial resolution and contrast recovery. The image quality is demonstrated to be inherently noise-limited even when detection geometries were increased in complexity to allow maximal tissue sampling, suggesting that detection noise characteristics outweigh detection geometry for achieving optimal reconstructions. PMID:21258566
Constraints on Stress Components at the Internal Singular Point of an Elastic Compound Structure
NASA Astrophysics Data System (ADS)
Pestrenin, V. M.; Pestrenina, I. V.
2017-03-01
The classical analytical and numerical methods for investigating the stress-strain state (SSS) in the vicinity of a singular point consider the point as a mathematical one (having no linear dimensions). The reliability of the solution obtained by such methods is valid only outside a small vicinity of the singular point, because the macroscopic equations become incorrect and microscopic ones have to be used to describe the SSS in this vicinity. Also, it is impossible to set constraint or to formulate solutions in stress-strain terms for a mathematical point. These problems do not arise if the singular point is identified with the representative volume of material of the structure studied. In authors' opinion, this approach is consistent with the postulates of continuum mechanics. In this case, the formulation of constraints at a singular point and their investigation becomes an independent problem of mechanics for bodies with singularities. This method was used to explore constraints at an internal singular point (representative volume) of a compound wedge and a compound rib. It is shown that, in addition to the constraints given in the classical approach, there are also constraints depending on the macroscopic parameters of constituent materials. These constraints turn the problems of deformable bodies with an internal singular point into nonclassical ones. Combinations of material parameters determine the number of additional constraints and the critical stress state at the singular point. Results of this research can be used in the mechanics of composite materials and fracture mechanics and in studying stress concentrations in composite structural elements.
Maslov indices, Poisson brackets, and singular differential forms
NASA Astrophysics Data System (ADS)
Esterlis, I.; Haggard, H. M.; Hedeman, A.; Littlejohn, R. G.
2014-06-01
Maslov indices are integers that appear in semiclassical wave functions and quantization conditions. They are often notoriously difficult to compute. We present methods of computing the Maslov index that rely only on typically elementary Poisson brackets and simple linear algebra. We also present a singular differential form, whose integral along a curve gives the Maslov index of that curve. The form is closed but not exact, and transforms by an exact differential under canonical transformations. We illustrate the method with the 6j-symbol, which is important in angular-momentum theory and in quantum gravity.
Linear, multivariable robust control with a mu perspective
NASA Technical Reports Server (NTRS)
Packard, Andy; Doyle, John; Balas, Gary
1993-01-01
The structured singular value is a linear algebra tool developed to study a particular class of matrix perturbation problems arising in robust feedback control of multivariable systems. These perturbations are called linear fractional, and are a natural way to model many types of uncertainty in linear systems, including state-space parameter uncertainty, multiplicative and additive unmodeled dynamics uncertainty, and coprime factor and gap metric uncertainty. The structured singular value theory provides a natural extension of classical SISO robustness measures and concepts to MIMO systems. The structured singular value analysis, coupled with approximate synthesis methods, make it possible to study the tradeoff between performance and uncertainty that occurs in all feedback systems. In MIMO systems, the complexity of the spatial interactions in the loop gains make it difficult to heuristically quantify the tradeoffs that must occur. This paper examines the role played by the structured singular value (and its computable bounds) in answering these questions, as well as its role in the general robust, multivariable control analysis and design problem.
NASA Astrophysics Data System (ADS)
Tran, A. B.; Vu, M. N.; Nguyen, S. T.; Dong, T. Q.; Le-Nguyen, K.
2018-02-01
This paper presents analytical solutions to heat transfer problems around a crack and derive an adaptive model for effective thermal conductivity of cracked materials based on singular integral equation approach. Potential solution of heat diffusion through two-dimensional cracked media, where crack filled by air behaves as insulator to heat flow, is obtained in a singular integral equation form. It is demonstrated that the temperature field can be described as a function of temperature and rate of heat flow on the boundary and the temperature jump across the cracks. Numerical resolution of this boundary integral equation allows determining heat conduction and effective thermal conductivity of cracked media. Moreover, writing this boundary integral equation for an infinite medium embedding a single crack under a far-field condition allows deriving the closed-form solution of temperature discontinuity on the crack and particularly the closed-form solution of temperature field around the crack. These formulas are then used to establish analytical effective medium estimates. Finally, the comparison between the developed numerical and analytical solutions allows developing an adaptive model for effective thermal conductivity of cracked media. This model takes into account both the interaction between cracks and the percolation threshold.
NASA Astrophysics Data System (ADS)
Geng, Weihua; Zhao, Shan
2017-12-01
We present a new Matched Interface and Boundary (MIB) regularization method for treating charge singularity in solvated biomolecules whose electrostatics are described by the Poisson-Boltzmann (PB) equation. In a regularization method, by decomposing the potential function into two or three components, the singular component can be analytically represented by the Green's function, while other components possess a higher regularity. Our new regularization combines the efficiency of two-component schemes with the accuracy of the three-component schemes. Based on this regularization, a new MIB finite difference algorithm is developed for solving both linear and nonlinear PB equations, where the nonlinearity is handled by using the inexact-Newton's method. Compared with the existing MIB PB solver based on a three-component regularization, the present algorithm is simpler to implement by circumventing the work to solve a boundary value Poisson equation inside the molecular interface and to compute related interface jump conditions numerically. Moreover, the new MIB algorithm becomes computationally less expensive, while maintains the same second order accuracy. This is numerically verified by calculating the electrostatic potential and solvation energy on the Kirkwood sphere on which the analytical solutions are available and on a series of proteins with various sizes.
Quasi-linear diffusion coefficients for highly oblique whistler mode waves
NASA Astrophysics Data System (ADS)
Albert, J. M.
2017-05-01
Quasi-linear diffusion coefficients are considered for highly oblique whistler mode waves, which exhibit a singular "resonance cone" in cold plasma theory. The refractive index becomes both very large and rapidly varying as a function of wave parameters, making the diffusion coefficients difficult to calculate and to characterize. Since such waves have been repeatedly observed both outside and inside the plasmasphere, this problem has received renewed attention. Here the diffusion equations are analytically treated in the limit of large refractive index μ. It is shown that a common approximation to the refractive index allows the associated "normalization integral" to be evaluated in closed form and that this can be exploited in the numerical evaluation of the exact expression. The overall diffusion coefficient formulas for large μ are then reduced to a very simple form, and the remaining integral and sum over resonances are approximated analytically. These formulas are typically written for a modeled distribution of wave magnetic field intensity, but this may not be appropriate for highly oblique whistlers, which become quasi-electrostatic. Thus, the analysis is also presented in terms of wave electric field intensity. The final results depend strongly on the maximum μ (or μ∥) used to model the wave distribution, so realistic determination of these limiting values becomes paramount.
McCollom, Brittany A; Collis, Jon M
2014-09-01
A normal mode solution to the ocean acoustic problem of the Pekeris waveguide with an elastic bottom using a Green's function formulation for a compressional wave point source is considered. Analytic solutions to these types of waveguide propagation problems are strongly dependent on the eigenvalues of the problem; these eigenvalues represent horizontal wavenumbers, corresponding to propagating modes of energy. The eigenvalues arise as singularities in the inverse Hankel transform integral and are specified by roots to a characteristic equation. These roots manifest themselves as poles in the inverse transform integral and can be both subtle and difficult to determine. Following methods previously developed [S. Ivansson et al., J. Sound Vib. 161 (1993)], a root finding routine has been implemented using the argument principle. Using the roots to the characteristic equation in the Green's function formulation, full-field solutions are calculated for scenarios where an acoustic source lies in either the water column or elastic half space. Solutions are benchmarked against laboratory data and existing numerical solutions.
On Rosen's theory of gravity and cosmology
NASA Technical Reports Server (NTRS)
Barnes, R. C.
1980-01-01
Formal similarities between general relativity and Rosen's bimetric theory of gravity were used to analyze various bimetric cosmologies. The following results were found: (1) physically plausible model universes which have a flat static background metric, have a Robertson-Walker fundamental metric, and which allow co-moving coordinates do not exist in bimetric cosmology. (2) it is difficult to use the Robertson-Walker metric for both the background metric (gamma mu nu) and the fundamental metric tensor of Riemannian geometry( g mu nu) and require that g mu nu and gamma mu nu have different time dependences. (3) A consistency relation for using co-moving coordinates in bimetric cosmology was derived. (4) Certain spatially flat bimetric cosmologies of Babala were tested for the presence of particle horizons. (5) An analytic solution for Rosen's k = +1 model was found. (6) Rosen's singularity free k = +1 model arises from what appears to be an arbitary choice for the time dependent part of gamma mu nu.
Analysis of singular interface stresses in dissimilar material joints for plasma facing components
NASA Astrophysics Data System (ADS)
You, J. H.; Bolt, H.
2001-10-01
Duplex joint structures are typical material combinations for the actively cooled plasma facing components of fusion devices. The structural integrity under the incident heat loads from the plasma is one of the most crucial issues in the technology of these components. The most critical domain in a duplex joint component is the free surface edge of the bond interface between heterogeneous materials. This is due to the fact that the thermal stress usually shows a singular intensification in this region. If the plasma facing armour tile consists of a brittle material, the existence of the stress singularity can be a direct cause of failure. The present work introduces a comprehensive analytical tool to estimate the impact of the stress singularity for duplex PFC design and quantifies the relative stress intensification in various materials joints by use of a model formulated by Munz and Yang. Several candidate material combinations of plasma facing armour and metallic heat sink are analysed and the results are compared with each other.
Singular boundary method for wave propagation analysis in periodic structures
NASA Astrophysics Data System (ADS)
Fu, Zhuojia; Chen, Wen; Wen, Pihua; Zhang, Chuanzeng
2018-07-01
A strong-form boundary collocation method, the singular boundary method (SBM), is developed in this paper for the wave propagation analysis at low and moderate wavenumbers in periodic structures. The SBM is of several advantages including mathematically simple, easy-to-program, meshless with the application of the concept of origin intensity factors in order to eliminate the singularity of the fundamental solutions and avoid the numerical evaluation of the singular integrals in the boundary element method. Due to the periodic behaviors of the structures, the SBM coefficient matrix can be represented as a block Toeplitz matrix. By employing three different fast Toeplitz-matrix solvers, the computational time and storage requirements are significantly reduced in the proposed SBM analysis. To demonstrate the effectiveness of the proposed SBM formulation for wave propagation analysis in periodic structures, several benchmark examples are presented and discussed The proposed SBM results are compared with the analytical solutions, the reference results and the COMSOL software.
Treatment of charge singularities in implicit solvent models.
Geng, Weihua; Yu, Sining; Wei, Guowei
2007-09-21
This paper presents a novel method for solving the Poisson-Boltzmann (PB) equation based on a rigorous treatment of geometric singularities of the dielectric interface and a Green's function formulation of charge singularities. Geometric singularities, such as cusps and self-intersecting surfaces, in the dielectric interfaces are bottleneck in developing highly accurate PB solvers. Based on an advanced mathematical technique, the matched interface and boundary (MIB) method, we have recently developed a PB solver by rigorously enforcing the flux continuity conditions at the solvent-molecule interface where geometric singularities may occur. The resulting PB solver, denoted as MIBPB-II, is able to deliver second order accuracy for the molecular surfaces of proteins. However, when the mesh size approaches half of the van der Waals radius, the MIBPB-II cannot maintain its accuracy because the grid points that carry the interface information overlap with those that carry distributed singular charges. In the present Green's function formalism, the charge singularities are transformed into interface flux jump conditions, which are treated on an equal footing as the geometric singularities in our MIB framework. The resulting method, denoted as MIBPB-III, is able to provide highly accurate electrostatic potentials at a mesh as coarse as 1.2 A for proteins. Consequently, at a given level of accuracy, the MIBPB-III is about three times faster than the APBS, a recent multigrid PB solver. The MIBPB-III has been extensively validated by using analytically solvable problems, molecular surfaces of polyatomic systems, and 24 proteins. It provides reliable benchmark numerical solutions for the PB equation.
Treatment of charge singularities in implicit solvent models
NASA Astrophysics Data System (ADS)
Geng, Weihua; Yu, Sining; Wei, Guowei
2007-09-01
This paper presents a novel method for solving the Poisson-Boltzmann (PB) equation based on a rigorous treatment of geometric singularities of the dielectric interface and a Green's function formulation of charge singularities. Geometric singularities, such as cusps and self-intersecting surfaces, in the dielectric interfaces are bottleneck in developing highly accurate PB solvers. Based on an advanced mathematical technique, the matched interface and boundary (MIB) method, we have recently developed a PB solver by rigorously enforcing the flux continuity conditions at the solvent-molecule interface where geometric singularities may occur. The resulting PB solver, denoted as MIBPB-II, is able to deliver second order accuracy for the molecular surfaces of proteins. However, when the mesh size approaches half of the van der Waals radius, the MIBPB-II cannot maintain its accuracy because the grid points that carry the interface information overlap with those that carry distributed singular charges. In the present Green's function formalism, the charge singularities are transformed into interface flux jump conditions, which are treated on an equal footing as the geometric singularities in our MIB framework. The resulting method, denoted as MIBPB-III, is able to provide highly accurate electrostatic potentials at a mesh as coarse as 1.2Å for proteins. Consequently, at a given level of accuracy, the MIBPB-III is about three times faster than the APBS, a recent multigrid PB solver. The MIBPB-III has been extensively validated by using analytically solvable problems, molecular surfaces of polyatomic systems, and 24 proteins. It provides reliable benchmark numerical solutions for the PB equation.
Interplay between gravity and quintessence: a set of new GR solutions
NASA Astrophysics Data System (ADS)
Chernin, Arthur D.; Santiago, David I.; Silbergleit, Alexander S.
2002-02-01
A set of new exact analytical general relativity (GR) solutions with time-dependent and spatially inhomogeneous quintessence demonstrate (1) a static non-empty space-time with a horizon-type singular surface; (2) time-dependent spatially homogeneous `spheres' which are completely different in geometry from the Friedmann isotropic models; (3) infinitely strong anti-gravity at a `true' singularity where the density is infinitely large. It is also found that (4) the GR solutions allow for an extreme `density-free' form of energy that can generate regular space-time geometries.
Calculating corner singularities by boundary integral equations.
Shi, Hualiang; Lu, Ya Yan; Du, Qiang
2017-06-01
Accurate numerical solutions for electromagnetic fields near sharp corners and edges are important for nanophotonics applications that rely on strong near fields to enhance light-matter interactions. For cylindrical structures, the singularity exponents of electromagnetic fields near sharp edges can be solved analytically, but in general the actual fields can only be calculated numerically. In this paper, we use a boundary integral equation method to compute electromagnetic fields near sharp edges, and construct the leading terms in asymptotic expansions based on numerical solutions. Our integral equations are formulated for rescaled unknown functions to avoid unbounded field components, and are discretized with a graded mesh and properly chosen quadrature schemes. The numerically found singularity exponents agree well with the exact values in all the test cases presented here, indicating that the numerical solutions are accurate.
Singularity resolution in string theory and new quantum condensed matter phases
NASA Astrophysics Data System (ADS)
Fidkowski, Lukasz
2007-12-01
In the first part of this thesis (chapters 1 through 4) we study singularity resolution in string theory. We employ an array of techniques, including the AdS-CFT correspondence, exact solvability of low dimensional models, and supersymmetry. We are able to detect a signature of the black hole singularity by analytically continuing certain AdS-CFT correlators. Also in AdS-CFT, we are able to study a D-brane snapping transition on both sides of the correspondence. In the second part (chapters 5 through 7) we study topological phases in condensed matter systems. We investigate theoretical lattice models realizing such phases, use these to derive nontrivial mathematical physics results, and study an idealized quantum interferometer designed to detect such a phase in quantum Hall systems.
Parametrization of local CR automorphisms by finite jets and applications
NASA Astrophysics Data System (ADS)
Lamel, Bernhard; Mir, Nordine
2007-04-01
For any real-analytic hypersurface Msubset {C}^N , which does not contain any complex-analytic subvariety of positive dimension, we show that for every point pin M the local real-analytic CR automorphisms of M fixing p can be parametrized real-analytically by their ell_p jets at p . As a direct application, we derive a Lie group structure for the topological group operatorname{Aut}(M,p) . Furthermore, we also show that the order ell_p of the jet space in which the group operatorname{Aut}(M,p) embeds can be chosen to depend upper-semicontinuously on p . As a first consequence, it follows that given any compact real-analytic hypersurface M in {C}^N , there exists an integer k depending only on M such that for every point pin M germs at p of CR diffeomorphisms mapping M into another real-analytic hypersurface in {C}^N are uniquely determined by their k -jet at that point. Another consequence is the following boundary version of H. Cartan's uniqueness theorem: given any bounded domain Ω with smooth real-analytic boundary, there exists an integer k depending only on partial Ω such that if H\\colon Ωto Ω is a proper holomorphic mapping extending smoothly up to partial Ω near some point pin partial Ω with the same k -jet at p with that of the identity mapping, then necessarily H=Id . Our parametrization theorem also holds for the stability group of any essentially finite minimal real-analytic CR manifold of arbitrary codimension. One of the new main tools developed in the paper, which may be of independent interest, is a parametrization theorem for invertible solutions of a certain kind of singular analytic equations, which roughly speaking consists of inverting certain families of parametrized maps with singularities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ndong, Mamadou; Lauvergnat, David; Nauts, André
2013-11-28
We present new techniques for an automatic computation of the kinetic energy operator in analytical form. These techniques are based on the use of the polyspherical approach and are extended to take into account Cartesian coordinates as well. An automatic procedure is developed where analytical expressions are obtained by symbolic calculations. This procedure is a full generalization of the one presented in Ndong et al., [J. Chem. Phys. 136, 034107 (2012)]. The correctness of the new implementation is analyzed by comparison with results obtained from the TNUM program. We give several illustrations that could be useful for users of themore » code. In particular, we discuss some cyclic compounds which are important in photochemistry. Among others, we show that choosing a well-adapted parameterization and decomposition into subsystems can allow one to avoid singularities in the kinetic energy operator. We also discuss a relation between polyspherical and Z-matrix coordinates: this comparison could be helpful for building an interface between the new code and a quantum chemistry package.« less
NASA Technical Reports Server (NTRS)
Barker, L. K.; Houck, J. A.; Carzoo, S. W.
1984-01-01
An operator commands a robot hand to move in a certain direction relative to its own axis system by specifying a velocity in that direction. This velocity command is then resolved into individual joint rotational velocities in the robot arm to effect the motion. However, the usual resolved-rate equations become singular when the robot arm is straightened. To overcome this elbow joint singularity, equations were developed which allow continued translational control of the robot hand even though the robot arm is (or is nearly) fully extended. A feature of the equations near full arm extension is that an operator simply extends and retracts the robot arm to reverse the direction of the elbow bend (difficult maneuver for the usual resolved-rate equations). Results show successful movement of a graphically simulated robot arm.
Singularities of Floquet scattering and tunneling
NASA Astrophysics Data System (ADS)
Landa, H.
2018-04-01
We study quasibound states and scattering with short-range potentials in three dimensions, subject to an axial periodic driving. We find that poles of the scattering S matrix can cross the real energy axis as a function of the drive amplitude, making the S matrix nonanalytic at a singular point. For the corresponding quasibound states that can tunnel out of (or get captured within) a potential well, this results in a discontinuous jump in both the angular momentum and energy of emitted (absorbed) waves. We also analyze elastic and inelastic scattering of slow particles in the time-dependent potential. For a drive amplitude at the singular point, there is a total absorption of incoming low-energy (s wave) particles and their conversion to high-energy outgoing (mostly p ) waves. We examine the relation of such Floquet singularities, lacking in an effective time-independent approximation, with well-known "spectral singularities" (or "exceptional points"). These results are based on an analytic approach for obtaining eigensolutions of time-dependent periodic Hamiltonians with mixed cylindrical and spherical symmetry, and apply broadly to particles interacting via power-law forces and subject to periodic fields, e.g., co-trapped ions and atoms.
Gravitational lensing by rotating naked singularities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyulchev, Galin N.; Yazadjiev, Stoytcho S.; Institut fuer Theoretische Physik, Universitaet Goettingen, Friedrich-Hund-Platz 1, D-37077 Goettingen
We model massive compact objects in galactic nuclei as stationary, axially symmetric naked singularities in the Einstein-massless scalar field theory and study the resulting gravitational lensing. In the weak deflection limit we study analytically the position of the two weak field images, the corresponding signed and absolute magnifications as well as the centroid up to post-Newtonian order. We show that there are static post-Newtonian corrections to the signed magnification and their sum as well as to the critical curves, which are functions of the scalar charge. The shift of the critical curves as a function of the lens angular momentummore » is found, and it is shown that they decrease slightly for the weakly naked and vastly for the strongly naked singularities with the increase of the scalar charge. The pointlike caustics drift away from the optical axis and do not depend on the scalar charge. In the strong deflection limit approximation, we compute numerically the position of the relativistic images and their separability for weakly naked singularities. All of the lensing quantities are compared to particular cases as Schwarzschild and Kerr black holes as well as Janis-Newman-Winicour naked singularities.« less
Signal evaluations using singular value decomposition for Thomson scattering diagnostics.
Tojo, H; Yamada, I; Yasuhara, R; Yatsuka, E; Funaba, H; Hatae, T; Hayashi, H; Itami, K
2014-11-01
This paper provides a novel method for evaluating signal intensities in incoherent Thomson scattering diagnostics. A double-pass Thomson scattering system, where a laser passes through the plasma twice, generates two scattering pulses from the plasma. Evaluations of the signal intensities in the spectrometer are sometimes difficult due to noise and stray light. We apply the singular value decomposition method to Thomson scattering data with strong noise components. Results show that the average accuracy of the measured electron temperature (Te) is superior to that of temperature obtained using a low-pass filter (<20 MHz) or without any filters.
Signal evaluations using singular value decomposition for Thomson scattering diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tojo, H., E-mail: tojo.hiroshi@jaea.go.jp; Yatsuka, E.; Hatae, T.
2014-11-15
This paper provides a novel method for evaluating signal intensities in incoherent Thomson scattering diagnostics. A double-pass Thomson scattering system, where a laser passes through the plasma twice, generates two scattering pulses from the plasma. Evaluations of the signal intensities in the spectrometer are sometimes difficult due to noise and stray light. We apply the singular value decomposition method to Thomson scattering data with strong noise components. Results show that the average accuracy of the measured electron temperature (T{sub e}) is superior to that of temperature obtained using a low-pass filter (<20 MHz) or without any filters.
Rotation forms and local Hamiltonian monodromy
NASA Astrophysics Data System (ADS)
Efstathiou, K.; Giacobbe, A.; Mardešić, P.; Sugny, D.
2017-02-01
The monodromy of torus bundles associated with completely integrable systems can be computed using geometric techniques (constructing homology cycles) or analytic arguments (computing discontinuities of abelian integrals). In this article, we give a general approach to the computation of monodromy that resembles the analytical one, reducing the problem to the computation of residues of polar 1-forms. We apply our technique to three celebrated examples of systems with monodromy (the champagne bottle, the spherical pendulum, the hydrogen atom) and to the case of non-degenerate focus-focus singularities, re-obtaining the classical results. An advantage of this approach is that the residue-like formula can be shown to be local in a neighborhood of a singularity, hence allowing the definition of monodromy also in the case of non-compact fibers. This idea has been introduced in the literature under the name of scattering monodromy. We prove the coincidence of the two definitions with the monodromy of an appropriately chosen compactification.
Non-homogeneous harmonic analysis: 16 years of development
NASA Astrophysics Data System (ADS)
Volberg, A. L.; Èiderman, V. Ya
2013-12-01
This survey contains results and methods in the theory of singular integrals, a theory which has been developing dramatically in the last 15-20 years. The central (although not the only) topic of the paper is the connection between the analytic properties of integrals and operators with Calderón-Zygmund kernels and the geometric properties of the measures. The history is traced of the classical Painlevé problem of describing removable singularities of bounded analytic functions, which has provided a strong incentive for the development of this branch of harmonic analysis. The progress of recent decades has largely been based on the creation of an apparatus for dealing with non-homogeneous measures, and much attention is devoted to this apparatus here. Several open questions are stated, first and foremost in the multidimensional case, where the method of curvature of a measure is not available. Bibliography: 128 titles.
NASA Astrophysics Data System (ADS)
Li, Z. B.; Liu, Y. M.; Yao, D. X.; Bao, C. G.
2017-07-01
Under the Thomas-Fermi approximation, an approach is proposed to solve the coupled Gross-Pitaevskii equations (CGP) for the two-species Bose-Einstein condensate analytically. The essence of this approach is to find out the building blocks to build the solution. By introducing the weighted strengths, relatively simpler analytical solutions have been obtained. A number of formulae have been deduced to relate the parameters when the system is experimentally tuned at various status. These formulae demonstrate the combined effect of the parameters, and are useful for the evaluation of their magnitudes. The whole parameter space is divided into zones, where each supports a specific phase. All the boundaries separating these zones have analytical expressions. Based on the division, the phase diagrams against any set of parameters can be plotted. In addition, by introducing a model for the asymmetric states, the total energies of the lowest symmetric and asymmetric states have been compared. Thereby, in which case the former will be replaced by the latter has been evaluated. The CGP can be written in a matrix form. For repulsive inter-species interaction V AB , when the parameters vary and cross over the singular point of the matrix, a specific state transition will happen and the total energy of the lowest symmetric state will increase remarkably. This provides an excellent opportunity for the lowest asymmetric state to emerge as the ground state. For attractive V AB , when the parameters tend to a singular point, the system will tend to collapse. The effects caused by the singular points have been particularly studied.
ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu Zhe; Lin, W. P.; Yang Xiaofeng, E-mail: chuzhe@shao.ac.cn, E-mail: linwp@shao.ac.cn
Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. Wemore » find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.« less
Non-Singular Dislocation Elastic Fields and Linear Elastic Fracture Mechanics
NASA Astrophysics Data System (ADS)
Korsunsky, Alexander M.
2010-03-01
One of the hallmarks of the traditional linear elastic fracture mechanics (LEFM) is the presence of an (integrable) inverse square root singularity of strains and stresses in the vicinity of the crack tip. It is the presence of this singularity that necessitates the introduction of the concepts of stress intensity factor (and its critical value, the fracture toughness) and the energy release rate (and material toughness). This gives rise to the Griffith theory of strength that includes, apart from applied stresses, the considerations of defect size and geometry. A highly successful framework for the solution of crack problems, particularly in the two-dimensional case, due to Muskhelishvili (1953), Bilby and Eshelby (1968) and others, relies on the mathematical concept of dislocation. Special analytical and numerical methods of dealing with the characteristic 1/r (Cauchy) singularity occupy a prominent place within this theory. Recently, in a different context of dislocation dynamics simulations, Cai et al. (2006) proposed a novel means of removing the singularity associated with the dislocation core, by introducing a blunting radius parameter a into the expressions for elastic fields. Here, using the example of two-dimensional elasticity, we demonstrate how the adoption of the similar mathematically expedient tool leads naturally to a non-singular formulation of fracture mechanics problems. This opens an efficient means of treating a variety of crack problems.
CP Symmetry, Lee-Yang zeros and Phase Transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguado, M.; Asorey, M.
2011-05-23
We analyze the analytic properties of {theta}-vacuum in QCD and its connection with spontaneous symmetry breaking of CP symmetry. A loss of analyticity in the {theta}-vacuum energy density can only be due to the accumulation of Lee-Yang zeros at some real values of {theta}. In the case of first order transitions these singularities are always associated to and cusp singularities and never to or cusps, which in the case {theta} = 0 are incompatible with the Vafa-Witten diamagnetic inequality This fact provides a key missing link in the Vafa-Witten proof of parity symmetry conservation in vector-like gauge theories like QCD.more » The argument is very similar to that used in the derivation of Bank-Casher formula for chiral symmetry breaking. However, the and behavior does not exclude the existence of a first phase transition at {theta} = {pi}, where a and cusp singularity is not forbidden by any inequality; in this case the topological charge condensate is proportional to the density of Lee-Yang zeros at {theta} = {pi}. Moreover, Lee-Yang zeros could give rise to a second order phase transition at {theta} = 0, which might be very relevant for the interpretation of the anomalous behavior of the topological susceptibility in the CP{sup 1} sigma model.« less
Aircraft Range Optimization Using Singular Perturbations
NASA Technical Reports Server (NTRS)
Oconnor, Joseph Taffe
1973-01-01
An approximate analytic solution is developed for the problem of maximizing the range of an aircraft for a fixed end state. The problem is formulated as a singular perturbation and solved by matched inner and outer asymptotic expansions and the minimum principle of Pontryagin. Cruise in the stratosphere, and on transition to and from cruise at constant Mach number are discussed. The state vector includes altitude, flight path angle, and mass. Specific fuel consumption becomes a linear function of power approximating that of the cruise values. Cruise represents the outer solution; altitude and flight path angle are constants, and only mass changes. Transitions between cruise and the specified initial and final conditions correspond to the inner solutions. The mass is constant and altitude and velocity vary. A solution is developed which is valid for cruise but which is not for the initial and final conditions. Transforming of the independent variable near the initial and final conditions result in solutions which are valid for the two inner solutions but not for cruise. The inner solutions can not be obtained without simplifying the state equations. The singular perturbation approach overcomes this difficulty. A quadratic approximation of the state equations is made. The resulting problem is solved analytically, and the two inner solutions are matched to the outer solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parfenov, O.G.
1994-12-25
We discuss three results. The first exhibits the order of decrease of the s-values as a function of the CR-dimension of a compact set on which we approximate the class of analytic functions being studied. The second is an asymptotic formula for the case when the domain of analyticity and the compact set are Reinhart domains. The third is the computation of the s-values of a special operator that is of interest for approximation theory on one-dimensional manifolds.
Numerical proof for chemostat chaos of Shilnikov's type.
Deng, Bo; Han, Maoan; Hsu, Sze-Bi
2017-03-01
A classical chemostat model is considered that models the cycling of one essential abiotic element or nutrient through a food chain of three trophic levels. The long-time behavior of the model was known to exhibit complex dynamics more than 20 years ago. It is still an open problem to prove the existence of chaos analytically. In this paper, we aim to solve the problem numerically. In our approach, we introduce an artificial singular parameter to the model and construct singular homoclinic orbits of the saddle-focus type which is known for chaos generation. From the configuration of the nullclines of the equations that generates the singular homoclinic orbits, a shooting algorithm is devised to find such Shilnikov saddle-focus homoclinic orbits numerically which in turn imply the existence of chaotic dynamics for the original chemostat model.
Vafa-Witten theorem and Lee-Yang singularities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguado, M.; Asorey, M.
2009-12-15
We prove the analyticity of the finite volume QCD partition function for complex values of the {theta}-vacuum parameter. The absence of singularities different from Lee-Yang zeros only permits and cusp singularities in the vacuum energy density and never or cusps. This fact together with the Vafa-Witten diamagnetic inequality implies the vanishing of the density of Lee-Yang zeros at {theta}=0 and has an important consequence: the absence of a first order phase transition at {theta}=0. The result provides a key missing link in the Vafa-Witten proof of parity symmetry conservation in vectorlike gauge theories and follows from renormalizability, unitarity, positivity, andmore » existence of Bogomol'nyi-Prasad-Sommerfield bounds. Generalizations of this theorem to other physical systems are also discussed, with particular interest focused on the nonlinear CP{sup N} sigma model.« less
Heating of the corona by magnetic singularities
NASA Technical Reports Server (NTRS)
Antiochos, Spiro K.
1990-01-01
Theoretical models of current-sheet formation and magnetic heating in the solar corona are examined analytically. The role of photospheric connectivity in determining the topology of the coronal magnetic field and its equilibrium properties is explored; nonequilibrium models of current-sheet formation (assuming an initially well connected field) are described; and particular attention is given to models with discontinuous connectivity, where magnetic singularities arise from smooth footpoint motions. It is shown that current sheets arise from connectivities in which the photospheric flux structure is complex, with three or more polarity regions and a magnetic null point within the corona.
Diffraction of Nondiverging Bessel Beams by Fork-Shaped and Rectilinear Grating
NASA Astrophysics Data System (ADS)
Janicijevic, Ljiljana; Topuzoski, Suzana
2007-04-01
We present an investigation about Fresnel diffraction of Bessel beams, propagating as nondiverging within a distance Ln, with or without phase singularities, by rectilinear and fork-shaped gratings. The common general transmission function of these gratings is defined and specialized for three different cases: binary amplitude gratings, amplitude holograms and their phase versions. Solving the Fresnel diffraction integral in cylindrical coordinates, we obtain analytical expressions for the diffracted wave amplitude for all types of proposed gratings, and make conclusions about the existence of phase singularities and corresponding topological charges in the created by the gratings beams of different diffraction orders.
Algorithms for computing the geopotential using a simple density layer
NASA Technical Reports Server (NTRS)
Morrison, F.
1976-01-01
Several algorithms have been developed for computing the potential and attraction of a simple density layer. These are numerical cubature, Taylor series, and a mixed analytic and numerical integration using a singularity-matching technique. A computer program has been written to combine these techniques for computing the disturbing acceleration on an artificial earth satellite. A total of 1640 equal-area, constant surface density blocks on an oblate spheroid are used. The singularity-matching algorithm is used in the subsatellite region, Taylor series in the surrounding zone, and numerical cubature on the rest of the earth.
NASA Astrophysics Data System (ADS)
Zubarev, N. M.; Kochurin, E. A.
2018-03-01
Nonlinear dynamics of the interface of dielectric liquids under the conditions of suppression of the Kelvin-Helmholz instability by a tangential electric field has been investigated. Two broad classes of exact analytical solutions to the equations of motion describing the evolution of spatially localized and periodic interface perturbations have been found. Both classes of solutions tend to the formation of strong singularities: interface discontinuities with formally infinite amplitudes. The discontinuity sign is determined by the sign of liquid velocity jump at the interface.
Singular perturbations with boundary conditions and the Casimir effect in the half space
NASA Astrophysics Data System (ADS)
Albeverio, S.; Cognola, G.; Spreafico, M.; Zerbini, S.
2010-06-01
We study the self-adjoint extensions of a class of nonmaximal multiplication operators with boundary conditions. We show that these extensions correspond to singular rank 1 perturbations (in the sense of Albeverio and Kurasov [Singular Perturbations of Differential Operaters (Cambridge University Press, Cambridge, 2000)]) of the Laplace operator, namely, the formal Laplacian with a singular delta potential, on the half space. This construction is the appropriate setting to describe the Casimir effect related to a massless scalar field in the flat space-time with an infinite conducting plate and in the presence of a pointlike "impurity." We use the relative zeta determinant (as defined in the works of Müller ["Relative zeta functions, relative determinants and scattering theory," Commun. Math. Phys. 192, 309 (1998)] and Spreafico and Zerbini ["Finite temperature quantum field theory on noncompact domains and application to delta interactions," Rep. Math. Phys. 63, 163 (2009)]) in order to regularize the partition function of this model. We study the analytic extension of the associated relative zeta function, and we present explicit results for the partition function and for the Casimir force.
NASA Astrophysics Data System (ADS)
Su, Y.; Ong, E. T.; Lee, K. H.
2002-05-01
The past decade has seen an accelerated growth of technology in the field of microelectromechanical systems (MEMS). The development of MEMS products has generated the need for efficient analytical and simulation methods for minimizing the requirement for actual prototyping. The boundary element method is widely used in the electrostatic analysis for MEMS devices. However, singular elements are needed to accurately capture the behavior at singular regions, such as sharp corners and edges, where standard elements fail to give an accurate result. The manual classification of boundary elements based on their singularity conditions is an immensely laborious task, especially when the boundary element model is large. This process can be automated by querying the geometric model of the MEMS device for convex edges based on geometric information of the model. The associated nodes of the boundary elements on these edges can then be retrieved. The whole process is implemented in the MSC/PATRAN platform using the Patran Command Language (the source code is available as supplementary data in the electronic version of this journal issue).
NASA Technical Reports Server (NTRS)
Farassat, F.; Farris, Mark
1999-01-01
There are several approaches to the prediction of the noise from sources on high speed surfaces. Two of these are the Kirchhoff and the Ffowcs williams-Hawkings methods. It can be shown that both of these methods depend on the solution of the wave equation with mathematically similar inhomogeneous source terms. Two subsonic solutions known as Formulation 1 and 1A of Langley are simple and efficient for noise prediction. The supersonic solution known as Formulation 3 is very complicated and difficult to code. Because of the complexity of the result, the computation time is longer than the subsonic formulas. Furthermore, it is difficult to assess the accuracy of noise prediction. We have been searching for a new and simpler supersonic formulation without these shortcomings. In the last AIAA Aeroacoustics Conference in Toulouse, Farassat, Dunn and Brentner presented a paper in which such a result was presented and called Formulation 4 of Langley. In this paper we will present two analytic tests of the validity this Formulation: 1) the noise from dipole distribution on the unit circle whose strength varies radially with the square of the distance from the center and 2) the noise from dipole distribution on the unit sphere whose strength varies with the cosine of the angle from the polar axis. We will discuss the question of singularities of Formulation 4.
NASA Astrophysics Data System (ADS)
Wang, Xin; Gao, Jun; Fan, Zhiguo; Roberts, Nicholas W.
2016-06-01
We present a computationally inexpensive analytical model for simulating celestial polarization patterns in variable conditions. We combine both the singularity theory of Berry et al (2004 New J. Phys. 6 162) and the intensity model of Perez et al (1993 Sol. Energy 50 235-245) such that our single model describes three key sets of data: (1) the overhead distribution of the degree of polarization as well as the existence of neutral points in the sky; (2) the change in sky polarization as a function of the turbidity of the atmosphere; and (3) sky polarization patterns as a function of wavelength, calculated in this work from the ultra-violet to the near infra-red. To verify the performance of our model we generate accurate reference data using a numerical radiative transfer model and statistical comparisons between these two methods demonstrate no significant difference in almost all situations. The development of our analytical model provides a novel method for efficiently calculating the overhead skylight polarization pattern. This provides a new tool of particular relevance for our understanding of animals that use the celestial polarization pattern as a source of visual information.
Klassen, Tara L.; von Rüden, Eva-Lotta; Drabek, Janice; Noebels, Jeffrey L.; Goldman, Alica M.
2013-01-01
Genetic testing and research have increased the demand for high-quality DNA that has traditionally been obtained by venipuncture. However, venous blood collection may prove difficult in special populations and when large-scale specimen collection or exchange is prerequisite for international collaborative investigations. Guthrie/FTA card–based blood spots, buccal scrapes, and finger nail clippings are DNA-containing specimens that are uniquely accessible and thus attractive as alternative tissue sources (ATS). The literature details a variety of protocols for extraction of nucleic acids from a singular ATS type, but their utility has not been systematically analyzed in comparison with conventional sources such as venous blood. Additionally, the efficacy of each protocol is often equated with the overall nucleic acid yield but not with the analytical performance of the DNA during mutation detection. Together with a critical in-depth literature review of published extraction methods, we developed and evaluated an all-inclusive approach for serial, systematic, and direct comparison of DNA utility from multiple biological samples. Our results point to the often underappreciated value of these alternative tissue sources and highlight ways to maximize the ATS-derived DNA for optimal quantity, quality, and utility as a function of extraction method. Our comparative analysis clarifies the value of ATS in genomic analysis projects for population-based screening, diagnostics, molecular autopsy, medico-legal investigations, or multi-organ surveys of suspected mosaicisms. PMID:22796560
NASA Astrophysics Data System (ADS)
Abdulhameed, M.; Vieru, D.; Roslan, R.
2017-10-01
This paper investigates the electro-magneto-hydrodynamic flow of the non-Newtonian behavior of biofluids, with heat transfer, through a cylindrical microchannel. The fluid is acted by an arbitrary time-dependent pressure gradient, an external electric field and an external magnetic field. The governing equations are considered as fractional partial differential equations based on the Caputo-Fabrizio time-fractional derivatives without singular kernel. The usefulness of fractional calculus to study fluid flows or heat and mass transfer phenomena was proven. Several experimental measurements led to conclusion that, in such problems, the models described by fractional differential equations are more suitable. The most common time-fractional derivative used in Continuum Mechanics is Caputo derivative. However, two disadvantages appear when this derivative is used. First, the definition kernel is a singular function and, secondly, the analytical expressions of the problem solutions are expressed by generalized functions (Mittag-Leffler, Lorenzo-Hartley, Robotnov, etc.) which, generally, are not adequate to numerical calculations. The new time-fractional derivative Caputo-Fabrizio, without singular kernel, is more suitable to solve various theoretical and practical problems which involve fractional differential equations. Using the Caputo-Fabrizio derivative, calculations are simpler and, the obtained solutions are expressed by elementary functions. Analytical solutions of the biofluid velocity and thermal transport are obtained by means of the Laplace and finite Hankel transforms. The influence of the fractional parameter, Eckert number and Joule heating parameter on the biofluid velocity and thermal transport are numerically analyzed and graphic presented. This fact can be an important in Biochip technology, thus making it possible to use this analysis technique extremely effective to control bioliquid samples of nanovolumes in microfluidic devices used for biological analysis and medical diagnosis.
Spherically symmetric vacuum solutions arising from trace dynamics modifications to gravitation
NASA Astrophysics Data System (ADS)
Adler, Stephen L.; Ramazanoğlu, Fethi M.
2015-12-01
We derive the equations governing static, spherically symmetric vacuum solutions to the Einstein equations, as modified by the frame-dependent effective action (derived from trace dynamics) that gives an alternative explanation of the origin of "dark energy". We give analytic and numerical results for the solutions of these equations, first in polar coordinates, and then in isotropic coordinates. General features of the static case are that: (i) there is no horizon, since g00 is nonvanishing for finite values of the polar radius, and only vanishes (in isotropic coordinates) at the internal singularity, (ii) the Ricci scalar R vanishes identically, and (iii) there is a physical singularity at cosmological distances. The large distance singularity may be an artifact of the static restriction, since we find that the behavior at large distances is altered in a time-dependent solution using the McVittie Ansatz.
Study on the Strength of GFRP/Stainless Steel Adhesive Joints Reinforced with Glass Mat
NASA Astrophysics Data System (ADS)
Iwasa, Masaaki
The adhesive strengths of glass fiber reinforced plastics/metal adhesive joints reinforced with glass mat under tensile shear loads and tensile loads were investigated analytically and experimentally. First, the stress singularity parameters of the bonding edges were analyzed by FEM for various types of adhesive joints reinforced with glass mat. The shear stress and normal stress distributions near the bonding edge can be expressed by two stress singularity parameters. Second, tensile shear tests were performed on taper lap joint and taper lap joint reinforced with glass mat and tensile tests were performed on T-type adhesive joint and T-type adhesive joint reinforced with glass mat. The relationships between the loads and the crosshead displacements were measured. We concluded that reinforcing adhesive joints has a greater effect on strength under tensile load than under tensile shear load. The adhesive joints strength reinforced with glass mat can be evaluated by using stress singularity parameters.
A well-posed numerical method to track isolated conformal map singularities in Hele-Shaw flow
NASA Technical Reports Server (NTRS)
Baker, Gregory; Siegel, Michael; Tanveer, Saleh
1995-01-01
We present a new numerical method for calculating an evolving 2D Hele-Shaw interface when surface tension effects are neglected. In the case where the flow is directed from the less viscous fluid into the more viscous fluid, the motion of the interface is ill-posed; small deviations in the initial condition will produce significant changes in the ensuing motion. This situation is disastrous for numerical computation, as small round-off errors can quickly lead to large inaccuracies in the computed solution. Our method of computation is most easily formulated using a conformal map from the fluid domain into a unit disk. The method relies on analytically continuing the initial data and equations of motion into the region exterior to the disk, where the evolution problem becomes well-posed. The equations are then numerically solved in the extended domain. The presence of singularities in the conformal map outside of the disk introduces specific structures along the fluid interface. Our method can explicitly track the location of isolated pole and branch point singularities, allowing us to draw connections between the development of interfacial patterns and the motion of singularities as they approach the unit disk. In particular, we are able to relate physical features such as finger shape, side-branch formation, and competition between fingers to the nature and location of the singularities. The usefulness of this method in studying the formation of topological singularities (self-intersections of the interface) is also pointed out.
Fast-slow asymptotic for semi-analytical ignition criteria in FitzHugh-Nagumo system.
Bezekci, B; Biktashev, V N
2017-09-01
We study the problem of initiation of excitation waves in the FitzHugh-Nagumo model. Our approach follows earlier works and is based on the idea of approximating the boundary between basins of attraction of propagating waves and of the resting state as the stable manifold of a critical solution. Here, we obtain analytical expressions for the essential ingredients of the theory by singular perturbation using two small parameters, the separation of time scales of the activator and inhibitor and the threshold in the activator's kinetics. This results in a closed analytical expression for the strength-duration curve.
2015-05-01
high-demand degrees and skills, essential concepts and methodologies, and required programming languages and product knowledge Benefits • Gained...According to ·finance report I’BM Corp. ’s EPS increased by according corporation Increase 10.1% preposition noun( singular ) noun( sing ,ular...used for other languages too (e.g. French, Spanish, etc.) Need to identify phrasal expressions by scanning minimum number of tokens I Need to
Asymptotic analysis of corona discharge from thin electrodes
NASA Technical Reports Server (NTRS)
Durbin, P. A.
1986-01-01
The steady discharge of a high-voltage corona is analyzed as a singular perturbation problem. The small parameter is the ratio of the length of the ionization region to the total gap length. By this method, current versus voltage characteristics can be calculated analytically.
Simple and Efficient Numerical Evaluation of Near-Hypersingular Integrals
NASA Technical Reports Server (NTRS)
Fink, Patrick W.; Wilton, Donald R.; Khayat, Michael A.
2007-01-01
Recently, significant progress has been made in the handling of singular and nearly-singular potential integrals that commonly arise in the Boundary Element Method (BEM). To facilitate object-oriented programming and handling of higher order basis functions, cancellation techniques are favored over techniques involving singularity subtraction. However, gradients of the Newton-type potentials, which produce hypersingular kernels, are also frequently required in BEM formulations. As is the case with the potentials, treatment of the near-hypersingular integrals has proven more challenging than treating the limiting case in which the observation point approaches the surface. Historically, numerical evaluation of these near-hypersingularities has often involved a two-step procedure: a singularity subtraction to reduce the order of the singularity, followed by a boundary contour integral evaluation of the extracted part. Since this evaluation necessarily links basis function, Green s function, and the integration domain (element shape), the approach ill fits object-oriented programming concepts. Thus, there is a need for cancellation-type techniques for efficient numerical evaluation of the gradient of the potential. Progress in the development of efficient cancellation-type procedures for the gradient potentials was recently presented. To the extent possible, a change of variables is chosen such that the Jacobian of the transformation cancels the singularity. However, since the gradient kernel involves singularities of different orders, we also require that the transformation leaves remaining terms that are analytic. The terms "normal" and "tangential" are used herein with reference to the source element. Also, since computational formulations often involve the numerical evaluation of both potentials and their gradients, it is highly desirable that a single integration procedure efficiently handles both.
Quantum square-well with logarithmic central spike
NASA Astrophysics Data System (ADS)
Znojil, Miloslav; Semorádová, Iveta
2018-01-01
Singular repulsive barrier V (x) = -gln(|x|) inside a square-well is interpreted and studied as a linear analog of the state-dependent interaction ℒeff(x) = -gln[ψ∗(x)ψ(x)] in nonlinear Schrödinger equation. In the linearized case, Rayleigh-Schrödinger perturbation theory is shown to provide a closed-form spectrum at sufficiently small g or after an amendment of the unperturbed Hamiltonian. At any spike strength g, the model remains solvable numerically, by the matching of wave functions. Analytically, the singularity is shown regularized via the change of variables x = expy which interchanges the roles of the asymptotic and central boundary conditions.
NASA Astrophysics Data System (ADS)
Shaik, Vaseem A.; Ardekani, Arezoo M.
2017-11-01
In this work we derive the image flow fields for point force singularities placed outside a stationary drop covered with an insoluble, nondiffusing, and incompressible surfactant. We assume the interface to be Newtonian and use the Boussinesq-Scriven constitutive law for the interfacial stress tensor. We use this analytical solution to investigate two different problems. First, we derive the mobility matrix for two drops of arbitrary sizes covered with an incompressible surfactant. In the second example, we calculate the velocity of a swimming microorganism (modeled as a Stokes dipole) outside a drop covered with an incompressible surfactant.
Stochastic theory of log-periodic patterns
NASA Astrophysics Data System (ADS)
Canessa, Enrique
2000-12-01
We introduce an analytical model based on birth-death clustering processes to help in understanding the empirical log-periodic corrections to power law scaling and the finite-time singularity as reported in several domains including rupture, earthquakes, world population and financial systems. In our stochastic theory log-periodicities are a consequence of transient clusters induced by an entropy-like term that may reflect the amount of co-operative information carried by the state of a large system of different species. The clustering completion rates for the system are assumed to be given by a simple linear death process. The singularity at t0 is derived in terms of birth-death clustering coefficients.
Recording 2-D Nutation NQR Spectra by Random Sampling Method
Sinyavsky, Nikolaj; Jadzyn, Maciej; Ostafin, Michal; Nogaj, Boleslaw
2010-01-01
The method of random sampling was introduced for the first time in the nutation nuclear quadrupole resonance (NQR) spectroscopy where the nutation spectra show characteristic singularities in the form of shoulders. The analytic formulae for complex two-dimensional (2-D) nutation NQR spectra (I = 3/2) were obtained and the condition for resolving the spectral singularities for small values of an asymmetry parameter η was determined. Our results show that the method of random sampling of a nutation interferogram allows significant reduction of time required to perform a 2-D nutation experiment and does not worsen the spectral resolution. PMID:20949121
Analytical potential-density pairs for bars
NASA Astrophysics Data System (ADS)
Vogt, D.; Letelier, P. S.
2010-11-01
An identity that relates multipolar solutions of the Einstein equations to Newtonian potentials of bars with linear densities proportional to Legendre polynomials is used to construct analytical potential-density pairs of infinitesimally thin bars with a given linear density profile. By means of a suitable transformation, softened bars that are free of singularities are also obtained. As an application we study the equilibrium points and stability for the motion of test particles in the gravitational field for three models of rotating bars.
Asymptotic Linearity of Optimal Control Modification Adaptive Law with Analytical Stability Margins
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2010-01-01
Optimal control modification has been developed to improve robustness to model-reference adaptive control. For systems with linear matched uncertainty, optimal control modification adaptive law can be shown by a singular perturbation argument to possess an outer solution that exhibits a linear asymptotic property. Analytical expressions of phase and time delay margins for the outer solution can be obtained. Using the gradient projection operator, a free design parameter of the adaptive law can be selected to satisfy stability margins.
NASA Astrophysics Data System (ADS)
Raj, Xavier James
2016-07-01
Accurate orbit prediction of an artificial satellite under the influence of air drag is one of the most difficult and untraceable problem in orbital dynamics. The orbital decay of these satellites is mainly controlled by the atmospheric drag effects. The effects of the atmosphere are difficult to determine, since the atmospheric density undergoes large fluctuations. The classical Newtonian equations of motion, which is non linear is not suitable for long-term integration. Many transformations have emerged in the literature to stabilize the equations of motion either to reduce the accumulation of local numerical errors or allowing the use of large integration step sizes, or both in the transformed space. One such transformation is known as KS transformation by Kustaanheimo and Stiefel, who regularized the nonlinear Kepler equations of motion and reduced it into linear differential equations of a harmonic oscillator of constant frequency. The method of KS total energy element equations has been found to be a very powerful method for obtaining numerical as well as analytical solution with respect to any type of perturbing forces, as the equations are less sensitive to round off and truncation errors. The uniformly regular KS canonical equations are a particular canonical form of the KS differential equations, where all the ten KS Canonical elements αi and βi are constant for unperturbed motion. These equations permit the uniform formulation of the basic laws of elliptic, parabolic and hyperbolic motion. Using these equations, developed analytical solution for short term orbit predictions with respect to Earth's zonal harmonic terms J2, J3, J4. Further, these equations were utilized to include the canonical forces and analytical theories with air drag were developed for low eccentricity orbits (e < 0.2) with different atmospheric models. Using uniformly regular KS canonical elements developed analytical theory for high eccentricity (e > 0.2) orbits by assuming the atmosphere to be oblate only. In this paper a new non-singular analytical theory is developed for the motion of high eccentricity satellite orbits with oblate diurnally varying atmosphere in terms of the uniformly regular KS canonical elements. The analytical solutions are generated up to fourth-order terms using a new independent variable and c (a small parameter dependent on the flattening of the atmosphere). Due to symmetry, only two of the nine equations need to be solved analytically to compute the state vector and change in energy at the end of each revolution. The theory is developed on the assumption that density is constant on the surfaces of spheroids of fixed ellipticity ɛ (equal to the Earth's ellipticity, 0.00335) whose axes coincide with the Earth's axis. Numerical experimentation with the analytical solution for a wide range of perigee height, eccentricity, and orbital inclination has been carried out up to 100 revolutions. Comparisons are made with numerically integrated values and found that they match quite well. Effectiveness of the present analytical solutions will be demonstrated by comparing the results with other analytical solutions in the literature.
Inverting dedevelopment: geometric singularity theory in embryology
NASA Astrophysics Data System (ADS)
Bookstein, Fred L.; Smith, Bradley R.
2000-10-01
The diffeomorphism model so useful in the biomathematics of normal morphological variability and disease is inappropriate for applications in embryogenesis, where whole coordinate patches are created out of single points. For this application we need a suitable algebra for the creation of something from nothing in a carefully organized geometry: a formalism for parameterizing discrete nondifferentiabilities of invertible functions on Rk, k $GTR 1. One easy way to begin is via the inverse of the development map - call it the dedevelopment map, the deformation backwards in time. Extrapolated, this map will inevitably have singularities at which its derivative is zero. When the dedevelopment map is inverted to face forward in time, the singularities become appropriately isolated infinities of derivative. We have recently introduced growth visualizations via extrapolations to the isolated singularities at which only one directional derivative is zero. Maps inverse to these create new coordinate patches directionally rather than radically. The most generic singularity that suits this purpose is the crease f(x,y) equals (x,x2y+y3), which has already been applied in morphometrics for the description of focal morphogenetic phenomena. We apply it to embryogenesis in the form of its analytic inverse, and demonstrate its power using a priceless new data set of mouse embryos imaged in 3D by micro-MR with voxels smaller than 100micrometers 3.
Extended Rindler spacetime and a new multiverse structure
NASA Astrophysics Data System (ADS)
Araya, Ignacio J.; Bars, Itzhak
2018-04-01
This is the first of a series of papers in which we use analyticity properties of quantum fields propagating on a spacetime to uncover a new multiverse geometry when the classical geometry has horizons and/or singularities. The nature and origin of the "multiverse" idea presented in this paper, that is shared by the fields in the standard model coupled to gravity, are different from other notions of a multiverse. Via analyticity we are able to establish definite relations among the universes. In this paper we illustrate these properties for the extended Rindler space, while black hole spacetime and the cosmological geometry of mini-superspace (see Appendix B) will appear in later papers. In classical general relativity, extended Rindler space is equivalent to flat Minkowski space; it consists of the union of the four wedges in (u ,v ) light-cone coordinates as in Fig. 1. In quantum mechanics, the wavefunction is an analytic function of (u ,v ) that is sensitive to branch points at the horizons u =0 or v =0 , with branch cuts attached to them. The wave function is uniquely defined by analyticity on an infinite number of sheets in the cut analytic (u ,v ) spacetime. This structure is naturally interpreted as an infinite stack of identical Minkowski geometries, or "universes", connected to each other by analyticity across branch cuts, such that each sheet represents a different Minkowski universe when (u ,v ) are analytically continued to the real axis on any sheet. We show in this paper that, in the absence of interactions, information does not flow from one Rindler sheet to another. By contrast, for an eternal black hole spacetime, which may be viewed as a modification of Rindler that includes gravitational interactions, analyticity shows how information is "lost" due to a flow to other universes, enabled by an additional branch point and cut due to the black hole singularity.
Imaging a non-singular rotating black hole at the center of the Galaxy
NASA Astrophysics Data System (ADS)
Lamy, F.; Gourgoulhon, E.; Paumard, T.; Vincent, F. H.
2018-06-01
We show that the rotating generalization of Hayward’s non-singular black hole previously studied in the literature is geodesically incomplete, and that its straightforward extension leads to a singular spacetime. We present another extension, which is devoid of any curvature singularity. The obtained metric depends on three parameters and, depending on their values, yields an event horizon or not. These two regimes, named respectively regular rotating Hayward black hole and naked rotating wormhole, are studied both numerically and analytically. In preparation for the upcoming results of the Event Horizon Telescope, the images of an accretion torus around Sgr A*, the supermassive object at the center of the Galaxy, are computed. These images contain, even in the absence of a horizon, a central faint region which bears a resemblance to the shadow of Kerr black holes and emphasizes the difficulty of claiming the existence of an event horizon from the analysis of strong-field images. The frequencies of the co- and contra-rotating orbits at the innermost stable circular orbit (ISCO) in this geometry are also computed, in the hope that quasi-periodic oscillations may permit to compare this model with Kerr’s black hole on observational grounds.
Inflection point caustic problems and solutions for high-gain dual-shaped reflectors
NASA Technical Reports Server (NTRS)
Galindo-Israel, Victor; Veruttipong, Thavath; Imbriale, William; Rengarajan, Sembiam
1990-01-01
The singular nature of the uniform geometrical theory of diffraction (UTD) subreflector scattered field at the vicinity of the main reflector edge (for a high-gain antenna design) is investigated. It is shown that the singularity in the UTD edge-diffracted and slope-diffracted fields is due to the reflection distance parameter approaching infinity in the transition functions. While the geometrical optics (GO) and UTD edge-diffracted fields exhibit singularities of the same order, the edge slope-diffracted field singularity is more significant and is substantial for greater subreflector edge tapers. The diffraction analysis of such a subreflector in the vicinity of the main reflector edge has been carried out efficiently and accurately by a stationary phase evaluation of the phi-integral, whereas the theta-integral is carried out numerically. Computational results from UTD and physical optics (PO) analysis of a 34-m ground station dual-shaped reflector confirm the analytical formulations for both circularly symmetric and offset asymmetric subreflectors. It is concluded that the proposed PO(theta)GO(phi) technique can be used to study the spillover or noise temperature characteristics of a high-gain reflector antenna efficiently and accurately.
A well-posed numerical method to track isolated conformal map singularities in Hele-Shaw flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, G.; Siegel, M.; Tanveer, S.
1995-09-01
We present a new numerical method for calculating an evolving 2D Hele-Shaw interface when surface tension effects are neglected. In the case where the flow is directed from the less viscous fluid into the more viscous fluid, the motion of the interface is ill-posed; small deviations in the initial condition will produce significant changes in the ensuing motion. The situation is disastrous for numerical computation, as small roundoff errors can quickly lead to large inaccuracies in the computed solution. Our method of computation is most easily formulated using a conformal map from the fluid domain into a unit disk. Themore » method relies on analytically continuing the initial data and equations of motion into the region exterior to the disk, where the evolution problem becomes well-posed. The equations are then numerically solved in the extended domain. The presence of singularities in the conformal map outside of the disk introduces specific structures along the fluid interface. Our method can explicitly track the location of isolated pole and branch point singularities, allowing us to draw connections between the development of interfacial patterns and the motion of singularities as they approach the unit disk. In particular, we are able to relate physical features such as finger shape, side-branch formation, and competition between fingers to the nature and location of the singularities. The usefulness of this method in studying the formation of topological singularities (self-intersections of the interface) is also pointed out. 47 refs., 10 figs., 1 tab.« less
Data Mining in Earth System Science (DMESS 2011)
Forrest M. Hoffman; J. Walter Larson; Richard Tran Mills; Bhorn-Gustaf Brooks; Auroop R. Ganguly; William Hargrove; et al
2011-01-01
From field-scale measurements to global climate simulations and remote sensing, the growing body of very large and long time series Earth science data are increasingly difficult to analyze, visualize, and interpret. Data mining, information theoretic, and machine learning techniquesâsuch as cluster analysis, singular value decomposition, block entropy, Fourier and...
Chinese Learning Styles: Blending Confucian and Western Theories
ERIC Educational Resources Information Center
Corcoran, Charles
2014-01-01
The multitude of philosophies that currently exists in workforce education in China makes it difficult to decide on a singular theoretical foundation. Therefore, it seems most prudent to begin with those theories that align with Confucian values as well as include humanistic, pragmatist, behaviorist, and other elements. Such a theoretical base,…
Singular perturbation of smoothly evolving Hele-Shaw solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siegel, M.; Tanveer, S.
1996-01-01
We present analytical scaling results, confirmed by accurate numerics, to show that there exists a class of smoothly evolving zero surface tension solutions to the Hele-Shaw problem that are significantly perturbed by an arbitrarily small amount of surface tension in order one time. {copyright} {ital 1996 The American Physical Society.}
Fast analytical spectral filtering methods for magnetic resonance perfusion quantification.
Reddy, Kasireddy V; Mitra, Abhishek; Yalavarthy, Phaneendra K
2016-08-01
The deconvolution in the perfusion weighted imaging (PWI) plays an important role in quantifying the MR perfusion parameters. The PWI application to stroke and brain tumor studies has become a standard clinical practice. The standard approach for this deconvolution is oscillatory-limited singular value decomposition (oSVD) and frequency domain deconvolution (FDD). The FDD is widely recognized as the fastest approach currently available for deconvolution of MR perfusion data. In this work, two fast deconvolution methods (namely analytical fourier filtering and analytical showalter spectral filtering) are proposed. Through systematic evaluation, the proposed methods are shown to be computationally efficient and quantitatively accurate compared to FDD and oSVD.
Approximate analytic solutions to 3D unconfined groundwater flow within regional 2D models
NASA Astrophysics Data System (ADS)
Luther, K.; Haitjema, H. M.
2000-04-01
We present methods for finding approximate analytic solutions to three-dimensional (3D) unconfined steady state groundwater flow near partially penetrating and horizontal wells, and for combining those solutions with regional two-dimensional (2D) models. The 3D solutions use distributed singularities (analytic elements) to enforce boundary conditions on the phreatic surface and seepage faces at vertical wells, and to maintain fixed-head boundary conditions, obtained from the 2D model, at the perimeter of the 3D model. The approximate 3D solutions are analytic (continuous and differentiable) everywhere, including on the phreatic surface itself. While continuity of flow is satisfied exactly in the infinite 3D flow domain, water balance errors can occur across the phreatic surface.
NASA Astrophysics Data System (ADS)
Kitahara, Teppei; Nierste, Ulrich; Tremper, Paul
2016-12-01
The standard analytic solution of the renormalization group (RG) evolution for the Δ S = 1 Wilson coefficients involves several singularities, which complicate analytic solutions. In this paper we derive a singularity-free solution of the next-to-leading order (NLO) RG equations, which greatly facilitates the calculation of ɛ K ' , the measure of direct CP violation in K → ππ decays. Using our new RG evolution and the latest lattice results for the hadronic matrix elements, we calculate the ratio ɛ K ' /ɛ K (with ɛ K quantifying indirect CP violation) in the Standard Model (SM) at NLO to ɛ K ' /ɛ K = (1.06 ± 5.07) × 10- 4, which is 2 .8 σ below the experimental value. We also present the evolution matrix in the high-energy regime for calculations of new physics contributions and derive easy-to-use approximate formulae. We find that the RG amplification of new-physics contributions to Wilson coefficients of the electroweak penguin operators is further enhanced by the NLO corrections: if the new contribution is generated at the scale of 1-10 TeV, the RG evolution between the new-physics scale and the electroweak scale enhances these coefficients by 50-100%. Our solution contains a term of order α EM 2 / α s 2 , which is numerically unimportant for the SM case but should be included in studies of high-scale new-physics.
Generation of phase edge singularities by coplanar three-beam interference and their detection.
Patorski, Krzysztof; Sluzewski, Lukasz; Trusiak, Maciej; Pokorski, Krzysztof
2017-02-06
In recent years singular optics has gained considerable attention in science and technology. Up to now optical vortices (phase point dislocations) have been of main interest. This paper presents the first general analysis of formation of phase edge singularities by coplanar three-beam interference. They can be generated, for example, by three-slit interference or self-imaging in the Fresnel diffraction field of a sinusoidal grating. We derive a general condition for the ratio of amplitudes of interfering beams resulting in phase edge dislocations, lateral separation of dislocations depends on this ratio as well. Analytically derived properties are corroborated by numerical and experimental studies. We develop a simple, robust, common path optical self-imaging configuration aided by a coherent tilted reference wave and spatial filtering. Finally, we propose an automatic fringe pattern analysis technique for detecting phase edge dislocations, based on the continuous wavelet transform. Presented studies open new possibilities for developing grating based sensing techniques for precision metrology of very small phase differences.
Numerical methods for coupled fracture problems
NASA Astrophysics Data System (ADS)
Viesca, Robert C.; Garagash, Dmitry I.
2018-04-01
We consider numerical solutions in which the linear elastic response to an opening- or sliding-mode fracture couples with one or more processes. Classic examples of such problems include traction-free cracks leading to stress singularities or cracks with cohesive-zone strength requirements leading to non-singular stress distributions. These classical problems have characteristic square-root asymptotic behavior for stress, relative displacement, or their derivatives. Prior work has shown that such asymptotics lead to a natural quadrature of the singular integrals at roots of Chebyhsev polynomials of the first, second, third, or fourth kind. We show that such quadratures lead to convenient techniques for interpolation, differentiation, and integration, with the potential for spectral accuracy. We further show that these techniques, with slight amendment, may continue to be used for non-classical problems which lack the classical asymptotic behavior. We consider solutions to example problems of both the classical and non-classical variety (e.g., fluid-driven opening-mode fracture and fault shear rupture driven by thermal weakening), with comparisons to analytical solutions or asymptotes, where available.
Singular Hopf bifurcation in a differential equation with large state-dependent delay
Kozyreff, G.; Erneux, T.
2014-01-01
We study the onset of sustained oscillations in a classical state-dependent delay (SDD) differential equation inspired by control theory. Owing to the large delays considered, the Hopf bifurcation is singular and the oscillations rapidly acquire a sawtooth profile past the instability threshold. Using asymptotic techniques, we explicitly capture the gradual change from nearly sinusoidal to sawtooth oscillations. The dependence of the delay on the solution can be either linear or nonlinear, with at least quadratic dependence. In the former case, an asymptotic connection is made with the Rayleigh oscillator. In the latter, van der Pol’s equation is derived for the small-amplitude oscillations. SDD differential equations are currently the subject of intense research in order to establish or amend general theorems valid for constant-delay differential equation, but explicit analytical construction of solutions are rare. This paper illustrates the use of singular perturbation techniques and the unusual way in which solvability conditions can arise for SDD problems with large delays. PMID:24511255
Singular Hopf bifurcation in a differential equation with large state-dependent delay.
Kozyreff, G; Erneux, T
2014-02-08
We study the onset of sustained oscillations in a classical state-dependent delay (SDD) differential equation inspired by control theory. Owing to the large delays considered, the Hopf bifurcation is singular and the oscillations rapidly acquire a sawtooth profile past the instability threshold. Using asymptotic techniques, we explicitly capture the gradual change from nearly sinusoidal to sawtooth oscillations. The dependence of the delay on the solution can be either linear or nonlinear, with at least quadratic dependence. In the former case, an asymptotic connection is made with the Rayleigh oscillator. In the latter, van der Pol's equation is derived for the small-amplitude oscillations. SDD differential equations are currently the subject of intense research in order to establish or amend general theorems valid for constant-delay differential equation, but explicit analytical construction of solutions are rare. This paper illustrates the use of singular perturbation techniques and the unusual way in which solvability conditions can arise for SDD problems with large delays.
NASA Astrophysics Data System (ADS)
Wu, Sheng-Jhih; Chu, Moody T.
2017-08-01
An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, and analytic gradient flow is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing-Thompson, and Weyl-Horn theorems concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values. The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are at general locations.
J functions for the process ud→WA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardin, D. Yu., E-mail: bardin@nu.jinr.ru; Kalinovskaya, L. V., E-mail: kalinov@mail.cern.ch; Uglov, E. D., E-mail: e.uglov@gmail.com
In this paper we present a description of the universal approach for analytic calculations for a certain class of J functions for six topologies of the boxes for the process ud → WA. These functions J arise at the reduction of the infrared divergent box diagrams. The standard Passarino–Veltman reduction of the four-point box diagram with an internal photon line connecting two external lines on the mass shell leads to infrared-divergent and mass-singular D{sub 0} functions. In the system SANC a systematic procedure is adopted to separate both types of singularities into the simplest objects, namely C{sub 0} functions. Themore » functions J, in turn, are represented as certain linear combinations of the standard D{sub 0} and C{sub 0} functions. The subtracted J functions are free of both types of singularities and are expressed as explicit and compact linear combinations of dilogarithm functions. We present extensive comparisons of numerical results of SANC with those obtained with the aid of the LoopTools package.« less
The numerical calculation of laminar boundary-layer separation
NASA Technical Reports Server (NTRS)
Klineberg, J. M.; Steger, J. L.
1974-01-01
Iterative finite-difference techniques are developed for integrating the boundary-layer equations, without approximation, through a region of reversed flow. The numerical procedures are used to calculate incompressible laminar separated flows and to investigate the conditions for regular behavior at the point of separation. Regular flows are shown to be characterized by an integrable saddle-type singularity that makes it difficult to obtain numerical solutions which pass continuously into the separated region. The singularity is removed and continuous solutions ensured by specifying the wall shear distribution and computing the pressure gradient as part of the solution. Calculated results are presented for several separated flows and the accuracy of the method is verified. A computer program listing and complete solution case are included.
NASA Astrophysics Data System (ADS)
Ward, Thomas
2017-11-01
The radial squeezing and de-wetting of a thin film of viscous shear thinning fluid filling the gap between parallel plane walls is examined both experimentally and theoretically for gap spacing much smaller than the capillary length. The interaction between motion of fluid in the gap driven by squeezing or de-wetting and surface tension is parameterized by a dimensionless variable, F, that is the ratio of the constant force supplied by the top plate (either positive or negative) to surface tension at the drop's circumference. Furthermore, the dimensionless form of the rate equation for the gap's motion reveals a time scale that is dependent on the drop volume when analyzed for a power law shear thinning fluid. In the de-wetting problem the analytical solution reveals the formation of a singularity, leading to capillary adhesion, as the gap spacing approaches a critical value that depends on F and the contact angle. Experiments are performed to test the analytical predictions for both squeezing, and de-wetting in the vicinity of the singularity.
Stability effects of singularities in force-controlled robotic assist devices
NASA Astrophysics Data System (ADS)
Luecke, Greg R.
2002-02-01
Force feedback is being used as an interface between humans and material handling equipment to provide an intuitive method to control large and bulky payloads. Powered actuation in the lift assist device compensates for the inertial characteristics of the manipulator and the payload to provide effortless control and handling of manufacturing parts, components, and assemblies. The use of these Intelligent Assist Devices (IAD) is being explored to prevent worker injury, enhance material handling performance, and increase productivity in the workplace. The IAD also provides the capability to shape and control motion in the workspace during routine operations. Virtual barriers can be developed to protect fixed objects in the workspace, and regions can be programmed that attract the work piece to a certain position and orientation. However, the robot is still under complete control of the human operator, with the trajectory being determined and commanded using the judgment of the operator to complete a given task. In many cases, the IAD is built in a configuration that may have singular points inside the workspace. These singularities can cause problems when the unstructured trajectory commands from the human cause interaction between the IAD and the virtual walls and fixtures at positions close to these singularities. The research presented here explores the stability effects of the interactions between the powered manipulator and the virtual surfaces when controlled by the operator. Because of the flexible nature of the human decisions determining the real time work piece paths, manipulator singularities that occur in conjunction with the virtual surfaces raise stability issues in the performance around these singularities. We examine these stability issues in the context of a particular IAD configuration, and present analytic results for the performance and stability of these systems in response to the real-time trajectory modification of the human operator.
Physics of singularities in pressure-impulse theory
NASA Astrophysics Data System (ADS)
Krechetnikov, R.
2018-05-01
The classical solution in the pressure-impulse theory for the inviscid, incompressible, and zero-surface-tension water impact of a flat plate at zero dead-rise angle exhibits both singular-in-time initial fluid acceleration, ∂v /∂ t |t =0˜δ (t ) , and a near-plate-edge spatial singularity in the velocity distribution, v ˜r-1 /2 , where r is the distance from the plate edge. The latter velocity divergence also leads to the interface being stretched infinitely right after the impact, which is another nonphysical artifact. From the point of view of matched asymptotic analysis, this classical solution is a singular limit when three physical quantities achieve limiting values: sound speed c0→∞ , fluid kinematic viscosity ν →0 , and surface tension σ →0 . This leaves open a question on how to resolve these singularities mathematically by including the neglected physical effects—compressibility, viscosity, and surface tension—first one by one and then culminating in the local compressible viscous solution valid for t →0 and r →0 , demonstrating a nontrivial flow structure that changes with the degree of the bulk compressibility. In the course of this study, by starting with the general physically relevant formulation of compressible viscous flow, we clarify the parameter range(s) of validity of the key analytical solutions including classical ones (inviscid incompressible and compressible, etc.) and understand the solution structure, its intermediate asymptotics nature, characteristics influencing physical processes, and the role of potential and rotational flow components. In particular, it is pointed out that sufficiently close to the plate edge surface tension must be taken into account. Overall, the idea is to highlight the interesting physics behind the singularities in the pressure-impulse theory.
Calculation of periodic flows in a continuously stratified fluid
NASA Astrophysics Data System (ADS)
Vasiliev, A.
2012-04-01
Analytic theory of disturbances generated by an oscillating compact source in a viscous continuously stratified fluid was constructed. Exact solution of the internal waves generation problem was constructed taking into account diffusivity effects. This analysis is based on set of fundamental equations of incompressible flows. The linearized problem of periodic flows in a continuously stratified fluid, generated by an oscillating part of the inclined plane was solved by methods of singular perturbation theory. A rectangular or disc placed on a sloping plane and oscillating linearly in an arbitrary direction was selected as a source of disturbances. The solutions include regularly perturbed on dissipative component functions describing internal waves and a family of singularly perturbed functions. One of the functions from the singular components family has an analogue in a homogeneous fluid that is a periodic or Stokes' flow. Its thickness is defined by a universal micro scale depending on kinematics viscosity coefficient and a buoyancy frequency with a factor depending on the wave slope. Other singular perturbed functions are specific for stratified flows. Their thickness are defined the diffusion coefficient, kinematic viscosity and additional factor depending on geometry of the problem. Fields of fluid density, velocity, vorticity, pressure, energy density and flux as well as forces acting on the source are calculated for different types of the sources. It is shown that most effective source of waves is the bi-piston. Complete 3D problem is transformed in various limiting cases that are into 2D problem for source in stratified or homogeneous fluid and the Stokes problem for an oscillating infinite plane. The case of the "critical" angle that is equality of the emitting surface and the wave cone slope angles needs in separate investigations. In this case, the number of singular component is saved. Patterns of velocity and density fields were constructed and analyzed by methods of computational mathematics. Singular components of the solution affect the flow pattern of the inhomogeneous stratified fluid, not only near the source of the waves, but at a large distance. Analytical calculations of the structure of wave beams are matched with laboratory experiments. Some deviations at large distances from the source are formed due to the contribution of background wave field associated with seiches in the laboratory tank. In number of the experiments vortices with closed contours were observed on some distances from the disk. The work was supported by Ministry of Education and Science RF (Goscontract No. 16.518.11.7059), experiments were performed on set up USU "HPC IPMec RAS".
NASA Astrophysics Data System (ADS)
Fang, M.; Hager, B. H.
2014-12-01
In geophysical applications the boundary element method (BEM) often carries the essential physics in addition to being an efficient numerical scheme. For use of the BEM in a self-gravitating uniform half-space, we made extra effort and succeeded in deriving the fundamental solution analytically in closed-form. A problem that goes deep into the heart of the classic BEM is encountered when we try to apply the new fundamental solution in BEM for deformation field induced by a magma chamber or a fluid-filled reservoir. The central issue of the BEM is the singular integral arising from determination of the boundary values. A widely employed technique is to rescale the singular boundary point into a small finite volume and then shrink it to extract the limits. This operation boils down to the calculation of the so-called C-matrix. Authors in the past take the liberty of either adding or subtracting a small volume. By subtracting a small volume, the C-matrix is (1/2)I on a smooth surface, where I is the identity matrix; by adding a small volume, we arrive at the same C-matrix in the form of I - (1/2)I. This evenness is a result of the spherical symmetry of Kelvin's fundamental solution employed. When the spherical symmetry is broken by gravity, the C-matrix is polarized. And we face the choice between right and wrong, for adding and subtracting a small volume yield different C-matrices. Close examination reveals that both derivations, addition and subtraction of a small volume, are ad hoc. To resolve the issue we revisit the Somigliana identity with a new derivation and careful step-by-step anatomy. The result proves that even though both adding and subtracting a small volume appear to twist the original boundary, only addition essentially modifies the original boundary and consequently modifies the physics of the original problem in a subtle way. The correct procedure is subtraction. We complete a new BEM theory by introducing in full analytical form what we call the singular stress tensor for the fundamental solution. We partition the stress tensor of the fundamental solution into a singular part and a regular part. In this way all singular integrals systematically shift into the easy singular stress tensor. Applications of this new BEM to deformation and gravitational perturbation induced by magma chambers of finite volume will be presented.
Anisotropic cosmological solutions in R + R^2 gravity
NASA Astrophysics Data System (ADS)
Müller, Daniel; Ricciardone, Angelo; Starobinsky, Alexei A.; Toporensky, Aleksey
2018-04-01
In this paper we investigate the past evolution of an anisotropic Bianchi I universe in R+R^2 gravity. Using the dynamical system approach we show that there exists a new two-parameter set of solutions that includes both an isotropic "false radiation" solution and an anisotropic generalized Kasner solution, which is stable. We derive the analytic behavior of the shear from a specific property of f( R) gravity and the analytic asymptotic form of the Ricci scalar when approaching the initial singularity. Finally, we numerically check our results.
An accurate boundary element method for the exterior elastic scattering problem in two dimensions
NASA Astrophysics Data System (ADS)
Bao, Gang; Xu, Liwei; Yin, Tao
2017-11-01
This paper is concerned with a Galerkin boundary element method solving the two dimensional exterior elastic wave scattering problem. The original problem is first reduced to the so-called Burton-Miller [1] boundary integral formulation, and essential mathematical features of its variational form are discussed. In numerical implementations, a newly-derived and analytically accurate regularization formula [2] is employed for the numerical evaluation of hyper-singular boundary integral operator. A new computational approach is employed based on the series expansions of Hankel functions for the computation of weakly-singular boundary integral operators during the reduction of corresponding Galerkin equations into a discrete linear system. The effectiveness of proposed numerical methods is demonstrated using several numerical examples.
NASA Astrophysics Data System (ADS)
Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil
2012-10-01
We study a model of a scalar field minimally coupled to gravity, with a specific potential energy for the scalar field, and include curvature and radiation as two additional parameters. Our goal is to obtain analytically the complete set of configurations of a homogeneous and isotropic universe as a function of time. This leads to a geodesically complete description of the Universe, including the passage through the cosmological singularities, at the classical level. We give all the solutions analytically without any restrictions on the parameter space of the model or initial values of the fields. We find that for generic solutions the Universe goes through a singular (zero-size) bounce by entering a period of antigravity at each big crunch and exiting from it at the following big bang. This happens cyclically again and again without violating the null-energy condition. There is a special subset of geodesically complete nongeneric solutions which perform zero-size bounces without ever entering the antigravity regime in all cycles. For these, initial values of the fields are synchronized and quantized but the parameters of the model are not restricted. There is also a subset of spatial curvature-induced solutions that have finite-size bounces in the gravity regime and never enter the antigravity phase. These exist only within a small continuous domain of parameter space without fine-tuning the initial conditions. To obtain these results, we identified 25 regions of a 6-parameter space in which the complete set of analytic solutions are explicitly obtained.
ERIC Educational Resources Information Center
Raymond, Chase Wesley
2014-01-01
This dissertation takes an ethnomethodologically-grounded, conversation-analytic approach in investigating the sequential deployment of linguistic resources in Spanish-language talk-in-interaction. Three sets of resources are examined: 2nd-person singular reference forms (tú, vos, usted), indicative/subjunctive verbal mood selection, and…
Resolution of seven-axis manipulator redundancy: A heuristic issue
NASA Technical Reports Server (NTRS)
Chen, I.
1990-01-01
An approach is presented for the resolution of the redundancy of a seven-axis manipulator arm from the AI and expert systems point of view. This approach is heuristic, analytical, and globally resolves the redundancy at the position level. When compared with other approaches, this approach has several improved performance capabilities, including singularity avoidance, repeatability, stability, and simplicity.
The exact solution of the monoenergetic transport equation for critical cylinders
NASA Technical Reports Server (NTRS)
Westfall, R. M.; Metcalf, D. R.
1972-01-01
An analytic solution for the critical, monoenergetic, bare, infinite cylinder is presented. The solution is obtained by modifying a previous development based on a neutron density transform and Case's singular eigenfunction method. Numerical results for critical radii and the neutron density as a function of position are included and compared with the results of other methods.
NASA Astrophysics Data System (ADS)
Apu, Md. Jakaria; Islam, Md. Shahidul
2016-07-01
Bi-material joint is often used in many advanced materials and structures. Determination of the bonding strength at the interface is very difficult because of the presence of the stress singularity. In this paper, the displacement and stress fields of a transversely isotropic bi-material joint around an interface edge are determined. Autodesk Simulation Mechanical 2015 is used to carry out the numerical computations. Stress and displacement fields demonstrate that the values near the edge of joint where the stress singularity occurs are larger than that at the inner portion. From the numerical results, it is suggested that de-bonding of the interface may occur at the interface edge of the joint due to the higher stress concentration at the free edge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stránský, Pavel; Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510, México, D.F.; Macek, Michal
2014-06-15
Quantum systems with a finite number of freedom degrees f develop robust singularities in the energy spectrum of excited states as the system’s size increases to infinity. We analyze the general form of these singularities for low f, particularly f=2, clarifying the relation to classical stationary points of the corresponding potential. Signatures in the smoothed energy dependence of the quantum state density and in the flow of energy levels with an arbitrary control parameter are described along with the relevant thermodynamical consequences. The general analysis is illustrated with specific examples of excited-state singularities accompanying the first-order quantum phase transition. --more » Highlights: •ESQPTs found in infinite-size limit of systems with low numbers of freedom degrees f. •ESQPTs related to non-analytical evolutions of classical phase–space properties. •ESQPT signatures analyzed for general f, particularly f=2, extending known case f=1. •ESQPT signatures identified in smoothened density and flow of energy spectrum. •ESQPTs shown to induce a new type of thermodynamic anomalies.« less
Fractional charge and inter-Landau-level states at points of singular curvature.
Biswas, Rudro R; Son, Dam Thanh
2016-08-02
The quest for universal properties of topological phases is fundamentally important because these signatures are robust to variations in system-specific details. Aspects of the response of quantum Hall states to smooth spatial curvature are well-studied, but challenging to observe experimentally. Here we go beyond this prevailing paradigm and obtain general results for the response of quantum Hall states to points of singular curvature in real space; such points may be readily experimentally actualized. We find, using continuum analytical methods, that the point of curvature binds an excess fractional charge and sequences of quantum states split away, energetically, from the degenerate bulk Landau levels. Importantly, these inter-Landau-level states are bound to the topological singularity and have energies that are universal functions of bulk parameters and the curvature. Our exact diagonalization of lattice tight-binding models on closed manifolds demonstrates that these results continue to hold even when lattice effects are significant. An important technological implication of these results is that these inter-Landau-level states, being both energetically and spatially isolated quantum states, are promising candidates for constructing qubits for quantum computation.
Nonlinear Interaction of Detuned Instability Waves in Boundary-Layer Transition: Amplitude Equations
NASA Technical Reports Server (NTRS)
Lee, Sang Soo
1998-01-01
The non-equilibrium critical-layer analysis of a system of frequency-detuned resonant-triads is presented. In this part of the analysis, the system of partial differential critical-layer equations derived in Part I is solved analytically to yield the amplitude equations which are analyzed using a combination of asymptotic and numerical methods. Numerical solutions of the inviscid non-equilibrium oblique-mode amplitude equations show that the frequency-detuned self-interaction enhances the growth of the lower-frequency oblique modes more than the higher-frequency ones. All amplitudes become singular at the same finite downstream position. The frequency detuning delays the occurrence of the singularity. The spanwise-periodic mean-flow distortion and low-frequency nonlinear modes are generated by the critical-layer interaction between frequency-detuned oblique modes. The nonlinear mean flow and higher harmonics as well as the primary instabilities become as large as the base mean flow in the inviscid wall layer in the downstream region where the distance from the singularity is of the order of the wavelength scale.
The heuristic-analytic theory of reasoning: extension and evaluation.
Evans, Jonathan St B T
2006-06-01
An extensively revised heuristic-analytic theory of reasoning is presented incorporating three principles of hypothetical thinking. The theory assumes that reasoning and judgment are facilitated by the formation of epistemic mental models that are generated one at a time (singularity principle) by preconscious heuristic processes that contextualize problems in such a way as to maximize relevance to current goals (relevance principle). Analytic processes evaluate these models but tend to accept them unless there is good reason to reject them (satisficing principle). At a minimum, analytic processing of models is required so as to generate inferences or judgments relevant to the task instructions, but more active intervention may result in modification or replacement of default models generated by the heuristic system. Evidence for this theory is provided by a review of a wide range of literature on thinking and reasoning.
NASA Astrophysics Data System (ADS)
Zheng, Jun; Han, Xinyue; Wang, ZhenTao; Li, Changfeng; Zhang, Jiazhong
2017-06-01
For about a century, people have been trying to seek for a globally convergent and closed analytical solution (CAS) of the Blasius Equation (BE). In this paper, we proposed a formally satisfied solution which could be parametrically expressed by two power series. Some analytical results of the laminar boundary layer of a flat plate, that were not analytically given in former studies, e.g. the thickness of the boundary layer and higher order derivatives, could be obtained based on the solution. Besides, the heat transfer in the laminar boundary layer of a flat plate with constant temperature could also be analytically formulated. Especially, the solution of the singular situation with Prandtl number Pr=0, which seems impossible to be analyzed in prior studies, could be given analytically. The method for finding the CAS of Blasius equation was also utilized in the problem of the boundary layer regulation through wall injection and slip velocity on the wall surface.
Etchepareborda, Pablo; Vadnjal, Ana Laura; Federico, Alejandro; Kaufmann, Guillermo H
2012-09-15
We evaluate the extension of the exact nonlinear reconstruction technique developed for digital holography to the phase-recovery problems presented by other optical interferometric methods, which use carrier modulation. It is shown that the introduction of an analytic wavelet analysis in the ridge of the cepstrum transformation corresponding to the analyzed interferogram can be closely related to the well-known wavelet analysis of the interferometric intensity. Subsequently, the phase-recovery process is improved. The advantages and limitations of this framework are analyzed and discussed using numerical simulations in singular scalar light fields and in temporal speckle pattern interferometry.
The resolvent of singular integral equations. [of kernel functions in mixed boundary value problems
NASA Technical Reports Server (NTRS)
Williams, M. H.
1977-01-01
The investigation reported is concerned with the construction of the resolvent for any given kernel function. In problems with ill-behaved inhomogeneous terms as, for instance, in the aerodynamic problem of flow over a flapped airfoil, direct numerical methods become very difficult. A description is presented of a solution method by resolvent which can be employed in such problems.
Chen, I L; Chen, J T; Kuo, S R; Liang, M T
2001-03-01
Integral equation methods have been widely used to solve interior eigenproblems and exterior acoustic problems (radiation and scattering). It was recently found that the real-part boundary element method (BEM) for the interior problem results in spurious eigensolutions if the singular (UT) or the hypersingular (LM) equation is used alone. The real-part BEM results in spurious solutions for interior problems in a similar way that the singular integral equation (UT method) results in fictitious solutions for the exterior problem. To solve this problem, a Combined Helmholtz Exterior integral Equation Formulation method (CHEEF) is proposed. Based on the CHEEF method, the spurious solutions can be filtered out if additional constraints from the exterior points are chosen carefully. Finally, two examples for the eigensolutions of circular and rectangular cavities are considered. The optimum numbers and proper positions for selecting the points in the exterior domain are analytically studied. Also, numerical experiments were designed to verify the analytical results. It is worth pointing out that the nodal line of radiation mode of a circle can be rotated due to symmetry, while the nodal line of the rectangular is on a fixed position.
A steering law for a roof-type configuration for a single-gimbal control moment gyro system
NASA Technical Reports Server (NTRS)
Yoshikawa, T.
1974-01-01
Single-Gimbal Control Moment Gyro (SGCMG) systems have been investigated for attitude control of the Large Space Telescope (LST) and the High Energy Astronomy Observatory (HEAO). However, various proposed steering laws for the SGCMG systems thus far have some defects because of singular states of the system. In this report, a steering law for a roof-type SGCMG system is proposed which is based on a new momentum distribution scheme that makes all the singular states unstable. This momentum distribution scheme is formulated by a treatment of the system as a sampled-data system. From analytical considerations, it is shown that this steering law gives control performance which is satisfactory for practical applications. Results of the preliminary computer simulation entirely support this premise.
Efficient scheme for parametric fitting of data in arbitrary dimensions.
Pang, Ning-Ning; Tzeng, Wen-Jer; Kao, Hisen-Ching
2008-07-01
We propose an efficient scheme for parametric fitting expressed in terms of the Legendre polynomials. For continuous systems, our scheme is exact and the derived explicit expression is very helpful for further analytical studies. For discrete systems, our scheme is almost as accurate as the method of singular value decomposition. Through a few numerical examples, we show that our algorithm costs much less CPU time and memory space than the method of singular value decomposition. Thus, our algorithm is very suitable for a large amount of data fitting. In addition, the proposed scheme can also be used to extract the global structure of fluctuating systems. We then derive the exact relation between the correlation function and the detrended variance function of fluctuating systems in arbitrary dimensions and give a general scaling analysis.
Nonsingular solutions and instabilities in Einstein-scalar-Gauss-Bonnet cosmology
NASA Astrophysics Data System (ADS)
Sberna, Laura; Pani, Paolo
2017-12-01
It is generically believed that higher-order curvature corrections to the Einstein-Hilbert action might cure the curvature singularities that plague general relativity. Here we consider Einstein-scalar-Gauss-Bonnet gravity, the only four-dimensional, ghost-free theory with quadratic curvature terms. For any choice of the coupling function and of the scalar potential, we show that the theory does not allow for bouncing solutions in the flat and open Friedmann universe. For the case of a closed universe, using a reverse-engineering method, we explicitly provide a bouncing solution which is nevertheless linearly unstable in the scalar gravitational sector. Moreover, we show that the expanding, singularity-free, early-time cosmologies allowed in the theory are unstable. These results rely only on analyticity and finiteness of cosmological variables at early times.
NASA Astrophysics Data System (ADS)
Dewar, R. L.; Mills, R.; Hole, M. J.
2009-05-01
The celebration of Allan Kaufman's 80th birthday was an occasion to reflect on a career that has stimulated the mutual exchange of ideas (or memes in the terminology of Richard Dawkins) between many researchers. This paper will revisit a meme Allan encountered in his early career in magnetohydrodynamics, the continuation of a magnetohydrodynamic mode through a singularity, and will also mention other problems where Allan's work has had a powerful cross-fertilizing effect in plasma physics and other areas of physics and mathematics. To resolve the continuation problem we regularize the Newcomb equation, solve it in terms of Legendre functions of imaginary argument, and define the small weak solutions of the Newcomb equation as generalized functions in the manner of Lighthill, i.e. via a limiting sequence of analytic functions that connect smoothly across the singularity.
Narumi, Takayuki; Tokuyama, Michio
2017-03-01
For short-range attractive colloids, the phase diagram of the kinetic glass transition is studied by time-convolutionless mode-coupling theory (TMCT). Using numerical calculations, TMCT is shown to recover all the remarkable features predicted by the mode-coupling theory for attractive colloids: the glass-liquid-glass reentrant, the glass-glass transition, and the higher-order singularities. It is also demonstrated through the comparisons with the results of molecular dynamics for the binary attractive colloids that TMCT improves the critical values of the volume fraction. In addition, a schematic model of three control parameters is investigated analytically. It is thus confirmed that TMCT can describe the glass-glass transition and higher-order singularities even in such a schematic model.
Wavelets on the Group SO(3) and the Sphere S3
NASA Astrophysics Data System (ADS)
Bernstein, Swanhild
2007-09-01
The construction of wavelets relies on translations and dilations which are perfectly given in R. On the sphere translations can be considered as rotations but it difficult to say what are dilations. For the 2-dimensional sphere there exist two different approaches to obtain wavelets which are worth to be considered. The first concept goes back to Freeden and collaborators [2] which defines wavelets by means of kernels of spherical singular integrals. The other concept developed by Antoine and Vandergheynst and coworkers [3] is a purely group theoretical approach and defines dilations as dilations in the tangent plane. Surprisingly both concepts coincides for zonal functions. We will define wavelets on the 3-dimensional sphere by means of kernels of singular integrals and demonstrate that wavelets constructed by Antoine and Vandergheynst for zonal functions meet our definition.
Szidarovszky, Tamás; Császár, Attila G; Czakó, Gábor
2010-08-01
Several techniques of varying efficiency are investigated, which treat all singularities present in the triatomic vibrational kinetic energy operator given in orthogonal internal coordinates of the two distances-one angle type. The strategies are based on the use of a direct-product basis built from one-dimensional discrete variable representation (DVR) bases corresponding to the two distances and orthogonal Legendre polynomials, or the corresponding Legendre-DVR basis, corresponding to the angle. The use of Legendre functions ensures the efficient treatment of the angular singularity. Matrix elements of the singular radial operators are calculated employing DVRs using the quadrature approximation as well as special DVRs satisfying the boundary conditions and thus allowing for the use of exact DVR expressions. Potential optimized (PO) radial DVRs, based on one-dimensional Hamiltonians with potentials obtained by fixing or relaxing the two non-active coordinates, are also studied. The numerical calculations employed Hermite-DVR, spherical-oscillator-DVR, and Bessel-DVR bases as the primitive radial functions. A new analytical formula is given for the determination of the matrix elements of the singular radial operator using the Bessel-DVR basis. The usually claimed failure of the quadrature approximation in certain singular integrals is revisited in one and three dimensions. It is shown that as long as no potential optimization is carried out the quadrature approximation works almost as well as the exact DVR expressions. If wave functions with finite amplitude at the boundary are to be computed, the basis sets need to meet the required boundary conditions. The present numerical results also confirm that PO-DVRs should be constructed employing relaxed potentials and PO-DVRs can be useful for optimizing quadrature points for calculations applying large coordinate intervals and describing large-amplitude motions. The utility and efficiency of the different algorithms is demonstrated by the computation of converged near-dissociation vibrational energy levels for the H molecular ion.
Super-nodal methods for space-time kinetics
NASA Astrophysics Data System (ADS)
Mertyurek, Ugur
The purpose of this research has been to develop an advanced Super-Nodal method to reduce the run time of 3-D core neutronics models, such as in the NESTLE reactor core simulator and FORMOSA nuclear fuel management optimization codes. Computational performance of the neutronics model is increased by reducing the number of spatial nodes used in the core modeling. However, as the number of spatial nodes decreases, the error in the solution increases. The Super-Nodal method reduces the error associated with the use of coarse nodes in the analyses by providing a new set of cross sections and ADFs (Assembly Discontinuity Factors) for the new nodalization. These so called homogenization parameters are obtained by employing consistent collapsing technique. During this research a new type of singularity, namely "fundamental mode singularity", is addressed in the ANM (Analytical Nodal Method) solution. The "Coordinate Shifting" approach is developed as a method to address this singularity. Also, the "Buckling Shifting" approach is developed as an alternative and more accurate method to address the zero buckling singularity, which is a more common and well known singularity problem in the ANM solution. In the course of addressing the treatment of these singularities, an effort was made to provide better and more robust results from the Super-Nodal method by developing several new methods for determining the transverse leakage and collapsed diffusion coefficient, which generally are the two main approximations in the ANM methodology. Unfortunately, the proposed new transverse leakage and diffusion coefficient approximations failed to provide a consistent improvement to the current methodology. However, improvement in the Super-Nodal solution is achieved by updating the homogenization parameters at several time points during a transient. The update is achieved by employing a refinement technique similar to pin-power reconstruction. A simple error analysis based on the relative residual in the 3-D few group diffusion equation at the fine mesh level is also introduced in this work.
Algebraic approach to solve ttbar dilepton equations
NASA Astrophysics Data System (ADS)
Sonnenschein, Lars
2006-01-01
The set of non-linear equations describing the Standard Model kinematics of the top quark an- tiqark production system in the dilepton decay channel has at most a four-fold ambiguity due to two not fully reconstructed neutrinos. Its most precise and robust solution is of major importance for measurements of top quark properties like the top quark mass and t t spin correlations. Simple algebraic operations allow to transform the non-linear equations into a system of two polynomial equations with two unknowns. These two polynomials of multidegree eight can in turn be an- alytically reduced to one polynomial with one unknown by means of resultants. The obtained univariate polynomial is of degree sixteen and the coefficients are free of any singularity. The number of its real solutions is determined analytically by means of Sturm’s theorem, which is as well used to isolate each real solution into a unique pairwise disjoint interval. The solutions are polished by seeking the sign change of the polynomial in a given interval through binary brack- eting. Further a new Ansatz - exploiting an accidental cancelation in the process of transforming the equations - is presented. It permits to transform the initial system of equations into two poly- nomial equations with two unknowns. These two polynomials of multidegree two can be reduced to one univariate polynomial of degree four by means of resultants. The obtained quartic equation can be solved analytically. The analytical solution has singularities which can be circumvented by the algebraic approach described above.
Optimal guidance law development for an advanced launch system
NASA Technical Reports Server (NTRS)
Calise, Anthony J.; Leung, Martin S. K.
1995-01-01
The objective of this research effort was to develop a real-time guidance approach for launch vehicles ascent to orbit injection. Various analytical approaches combined with a variety of model order and model complexity reduction have been investigated. Singular perturbation methods were first attempted and found to be unsatisfactory. The second approach based on regular perturbation analysis was subsequently investigated. It also fails because the aerodynamic effects (ignored in the zero order solution) are too large to be treated as perturbations. Therefore, the study demonstrates that perturbation methods alone (both regular and singular perturbations) are inadequate for use in developing a guidance algorithm for the atmospheric flight phase of a launch vehicle. During a second phase of the research effort, a hybrid analytic/numerical approach was developed and evaluated. The approach combines the numerical methods of collocation and the analytical method of regular perturbations. The concept of choosing intelligent interpolating functions is also introduced. Regular perturbation analysis allows the use of a crude representation for the collocation solution, and intelligent interpolating functions further reduce the number of elements without sacrificing the approximation accuracy. As a result, the combined method forms a powerful tool for solving real-time optimal control problems. Details of the approach are illustrated in a fourth order nonlinear example. The hybrid approach is then applied to the launch vehicle problem. The collocation solution is derived from a bilinear tangent steering law, and results in a guidance solution for the entire flight regime that includes both atmospheric and exoatmospheric flight phases.
{lambda} elements for singular problems in CFD: Viscoelastic fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, K.K.; Surana, K.S.
1996-10-01
This paper presents two dimensional {lambda} element formulation for viscoelastic fluid flow containing point singularities in the flow field. The flow of viscoelastic fluid even without singularities are a difficult class of problems for increasing Deborah number or Weissenburg number due to increased dominance of convective terms and thus increased hyperbolicity. In the present work the equations of fluid motion and the constitutive laws are recast in the form of a first order system of coupled equations with the use of auxiliary variables. The velocity, pressure and stresses are interpolated using equal order C{sup 0} {lambda} element approximations. The Leastmore » Squares Finite Element Method (LSFEM) is used to construct the integral form (error functional I) corresponding to these equations. The error functional is constructed by taking the integrated sum of the squares of the errors or residuals (over the whole discretization) resulting when the element approximation is substituted into these equations. The conditions resulting from the minimization of the error functional are satisfied by using Newton`s method with line search. LSFEM has much superior performance when dealing with non-linear and convection dominated problems.« less
van der Waals model for the surface tension of liquid 4He near the λ point
NASA Astrophysics Data System (ADS)
Tavan, Paul; Widom, B.
1983-01-01
We develop a phenomenological model of the 4He liquid-vapor interface. With it we calculate the surface tension of liquid helium near the λ point and compare with the experimental measurements by Magerlein and Sanders. The model is a form of the van der Waals surface-tension theory, extended to apply to a phase equilibrium in which the simultaneous variation of two order parameters-here the superfluid order parameter and the total density-is essential. The properties of the model are derived analytically above the λ point and numerically below it. Just below the λ point the superfluid order parameter is found to approach its bulk-superfluid-phase value very slowly with distance on the liquid side of the interface (the characteristic distance being the superfluid coherence length), and to vanish rapidly with distance on the vapor side, while the total density approaches its bulk-phase values rapidly and nearly symmetrically on the two sides. Below the λ point the surface tension has a |ɛ|32 singularity (ɛ~T-Tλ) arising from the temperature dependence of the spatially varying superfluid order parameter. This is the mean-field form of the more general |ɛ|μ singularity predicted by Sobyanin and by Hohenberg, in which μ (which is in reality close to 1.35 at the λ point of helium) is the exponent with which the interfacial tension between two critical phases vanishes. Above the λ point the surface tension in this model is analytic in ɛ. A singular term |ɛ|μ may in reality be present in the surface tension above as well as below the λ point, although there should still be a pronounced asymmetry. The variation with temperature of the model surface tension is overall much like that in experiment.
Post detonation nuclear forensics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Jay
2014-05-09
The problem of working backwards from the debris of a nuclear explosion to attempt to attribute the event to a particular actor is singularly difficult technically. However, moving from physical information of any certainty through the political steps that would lead to national action presents daunting policy questions as well. This monograph will outline the operational and physical components of this problem and suggest the difficulty of the policy questions that remain.
3D Imaging with Holographic Tomography
NASA Astrophysics Data System (ADS)
Sheppard, Colin J. R.; Kou, Shan Shan
2010-04-01
There are two main types of tomography that enable the 3D internal structures of objects to be reconstructed from scattered data. The commonly known computerized tomography (CT) give good results in the x-ray wavelength range where the filtered back-projection theorem and Radon transform can be used. These techniques rely on the Fourier projection-slice theorem where rays are considered to propagate straight through the object. Another type of tomography called `diffraction tomography' applies in applications in optics and acoustics where diffraction and scattering effects must be taken into account. The latter proves to be a more difficult problem, as light no longer travels straight through the sample. Holographic tomography is a popular way of performing diffraction tomography and there has been active experimental research on reconstructing complex refractive index data using this approach recently. However, there are two distinct ways of doing tomography: either by rotation of the object or by rotation of the illumination while fixing the detector. The difference between these two setups is intuitive but needs to be quantified. From Fourier optics and information transformation point of view, we use 3D transfer function analysis to quantitatively describe how spatial frequencies of the object are mapped to the Fourier domain. We first employ a paraxial treatment by calculating the Fourier transform of the defocused OTF. The shape of the calculated 3D CTF for tomography, by scanning the illumination in one direction only, takes on a form that we might call a 'peanut,' compared to the case of object rotation, where a diablo is formed, the peanut exhibiting significant differences and non-isotropy. In particular, there is a line singularity along one transverse direction. Under high numerical aperture conditions, the paraxial treatment is not accurate, and so we make use of 3D analytical geometry to calculate the behaviour in the non-paraxial case. This time, we obtain a similar peanut, but without the line singularity.
A singularity free analytical solution of artificial satellite motion with drag
NASA Technical Reports Server (NTRS)
Scheifele, G.; Mueller, A. C.; Starke, S. E.
1977-01-01
The connection between the existing Delaunay-Similar and Poincare-Similar satellite theories in the true anomaly version is outlined for the J(2) perturbation and the new drag approach. An overall description of the concept of the approach is given while the necessary expansions and the procedure to arrive at the computer program for the canonical forces is delineated. The procedure for the analytical integration of these developed equations is described. In addition, some numerical results are given. The computer program for the algebraic multiplication of the Fourier series which creates the FORTRAN coding in an automatic manner is described and documented.
Cosmological bouncing solutions in extended teleparallel gravity theories
NASA Astrophysics Data System (ADS)
de la Cruz-Dombriz, Álvaro; Farrugia, Gabriel; Said, Jackson Levi; Gómez, Diego Sáez-Chillón
2018-05-01
In the context of extended teleparallel gravity theories with a 3 +1 -dimensional Gauss-Bonnet analog term, we address the possibility of these theories reproducing several well-known cosmological bouncing scenarios in a four-dimensional Friedmann-Lemaître-Robertson-Walker geometry. We study which types of gravitational Lagrangians are capable of reconstructing bouncing solutions provided by analytical expressions for symmetric, oscillatory, superbounce, matter bounce, and singular bounce. Some of the Lagrangians discovered are analytical at the origin, having both Minkowski and Schwarzschild vacuum solutions. All these results open up the possibility for such theories to be competitive candidates of extended theories of gravity in cosmological scales.
Evidence for a nonplanar amplituhedron
Bern, Zvi; Herrmann, Enrico; Litsey, Sean; ...
2016-06-17
The scattering amplitudes of planar N = 4 super-Yang-Mills exhibit a number of remarkable analytic structures, including dual conformal symmetry and logarithmic singularities of integrands. The amplituhedron is a geometric construction of the integrand that incorporates these structures. This geometric construction further implies the amplitude is fully specified by constraining it to vanish on spurious residues. By writing the amplitude in a dlog basis, we provide nontrivial evidence that these analytic properties and “zero conditions” carry over into the nonplanar sector. Finally, this suggests that the concept of the amplituhedron can be extended to the nonplanar sector of N =more » 4 super-Yang-Mills theory.« less
Wave propagation in metamaterials mimicking the topology of a cosmic string
NASA Astrophysics Data System (ADS)
Fernández-Núñez, Isabel; Bulashenko, Oleg
2018-04-01
We study the interference and diffraction of light when it propagates through a metamaterial medium mimicking the spacetime of a cosmic string—a topological defect with curvature singularity. The phenomenon may look like a gravitational analogue of the Aharonov-Bohm effect, since the light propagates in a region where the Riemann tensor vanishes, being nonetheless affected by the non-zero curvature confined to the string core. We carry out the full-wave numerical simulation of the metamaterial medium and give the analytical interpretation of the results by use of the asymptotic theory of diffraction, which turns out to be in excellent agreement. In particular, we show that the main features of wave propagation in a medium with conical singularity can be explained by four-wave interference involving two geometrical optics and two diffracted waves.
Mathematical analysis of the 1D model and reconstruction schemes for magnetic particle imaging
NASA Astrophysics Data System (ADS)
Erb, W.; Weinmann, A.; Ahlborg, M.; Brandt, C.; Bringout, G.; Buzug, T. M.; Frikel, J.; Kaethner, C.; Knopp, T.; März, T.; Möddel, M.; Storath, M.; Weber, A.
2018-05-01
Magnetic particle imaging (MPI) is a promising new in vivo medical imaging modality in which distributions of super-paramagnetic nanoparticles are tracked based on their response in an applied magnetic field. In this paper we provide a mathematical analysis of the modeled MPI operator in the univariate situation. We provide a Hilbert space setup, in which the MPI operator is decomposed into simple building blocks and in which these building blocks are analyzed with respect to their mathematical properties. In turn, we obtain an analysis of the MPI forward operator and, in particular, of its ill-posedness properties. We further get that the singular values of the MPI core operator decrease exponentially. We complement our analytic results by some numerical studies which, in particular, suggest a rapid decay of the singular values of the MPI operator.
Solution of Grad-Shafranov equation by the method of fundamental solutions
NASA Astrophysics Data System (ADS)
Nath, D.; Kalra, M. S.; Kalra
2014-06-01
In this paper we have used the Method of Fundamental Solutions (MFS) to solve the Grad-Shafranov (GS) equation for the axisymmetric equilibria of tokamak plasmas with monomial sources. These monomials are the individual terms appearing on the right-hand side of the GS equation if one expands the nonlinear terms into polynomials. Unlike the Boundary Element Method (BEM), the MFS does not involve any singular integrals and is a meshless boundary-alone method. Its basic idea is to create a fictitious boundary around the actual physical boundary of the computational domain. This automatically removes the involvement of singular integrals. The results obtained by the MFS match well with the earlier results obtained using the BEM. The method is also applied to Solov'ev profiles and it is found that the results are in good agreement with analytical results.
Second-order relativistic corrections for the S(L=0) states in one- and two-electron atomic systems
NASA Astrophysics Data System (ADS)
Frolov, A. M.; Mitelut, C. C.; Zhong, Z.
2005-01-01
An analytical approach is developed to compute the first- (similar to alpha(2)) and second-order (similar to alpha(4)) relativistic corrections in one- and two-electron atomic systems. The approach is based on the reduction of all operators to divergent (singular) and nondivergent (regular) parts. Then, we show that all the divergent parts from the differentmatrix elements cancel each other. The remaining expression contains only regular operators and its expectation value can be easily computed. Analysis of the S(L = 0) states in such systems is of specific interest since the corresponding operators for these states contain a large number of singularities. For one-electron systems the computed relativistic corrections coincide exactly with the appropriate result that follows from the Taylor expansion of the relativistic (i.e., Dirac) energy. We also discuss an alternative approach that allows one to cancel all singularities by using the so-called operator-compensation technique. This second approach is found to be very effective in applications of more complex systems, such as helium-like atoms and ions, H-2(+)-like ions, and some exotic three-body systems.
Kunnari, Sari; Savinainen-Makkonen, Tuula; Leonard, Laurence B.; Mäkinen, Leena; Tolonen, Anna-Kaisa
2015-01-01
Children with specific language impairment (SLI) have difficulty expressing subject-verb agreement. However, in many languages, tense is fused with agreement, making it difficult to attribute the problem to agreement in particular. In Finnish, negative markers are function words that agree with the subject in person and number but do not express tense, providing an opportunity to assess the status of agreement in a more straightforward way. Fifteen Finnish-speaking preschoolers with SLI, 15 age controls, and 15 younger controls responded to items requiring negative markers in first person singular and plural, and third person singular and plural. The children with SLI were less accurate than both typically developing groups. However, their problems were limited to particular person-number combinations. Furthermore, the children with SLI appeared to have difficulty selecting the form of the lexical verb that should accompany the negative marker, suggesting that agreement was not the sole difficulty. PMID:24588468
Splitting of Van Hove singularities in slightly twisted bilayer graphene
NASA Astrophysics Data System (ADS)
Li, Si-Yu; Liu, Ke-Qin; Yin, Long-Jing; Wang, Wen-Xiao; Yan, Wei; Yang, Xu-Qin; Yang, Jun-Kai; Liu, Haiwen; Jiang, Hua; He, Lin
2017-10-01
A variety of new and interesting electronic properties have been predicted in graphene monolayer doped to Van Hove singularities (VHSs) of its density of state. However, tuning the Fermi energy to reach a VHS of graphene by either gating or chemical doping is prohibitively difficult, owing to their large energy distance (˜3 eV). This difficulty can be easily overcome in twisted bilayer graphene (TBG). By introducing a small twist angle between two adjacent graphene sheets, we are able to generate two low-energy VHSs arbitrarily approaching the Fermi energy. Here, we report experimental studies of electronic properties around the VHSs of a slightly TBG through scanning tunneling microscopy measurements. The split of the VHSs is observed and the spatial symmetry breaking of electronic states around the VHSs is directly visualized. These exotic results provide motivation for further theoretical and experimental studies of graphene systems around the VHSs.
Oxygen Measurements in Liposome Encapsulated Hemoglobin
NASA Astrophysics Data System (ADS)
Phiri, Joshua Benjamin
Liposome encapsulated hemoglobins (LEH's) are of current interest as blood substitutes. An analytical methodology for rapid non-invasive measurements of oxygen in artificial oxygen carriers is examined. High resolution optical absorption spectra are calculated by means of a one dimensional diffusion approximation. The encapsulated hemoglobin is prepared from fresh defibrinated bovine blood. Liposomes are prepared from hydrogenated soy phosphatidylcholine (HSPC), cholesterol and dicetylphosphate using a bath sonication method. An integrating sphere spectrophotometer is employed for diffuse optics measurements. Data is collected using an automated data acquisition system employing lock-in -amplifiers. The concentrations of hemoglobin derivatives are evaluated from the corresponding extinction coefficients using a numerical technique of singular value decomposition, and verification of the results is done using Monte Carlo simulations. In situ measurements are required for the determination of hemoglobin derivatives because most encapsulation methods invariably lead to the formation of methemoglobin, a nonfunctional form of hemoglobin. The methods employed in this work lead to high resolution absorption spectra of oxyhemoglobin and other derivatives in red blood cells and liposome encapsulated hemoglobin (LEH). The analysis using singular value decomposition method offers a quantitative means of calculating the fractions of oxyhemoglobin and other hemoglobin derivatives in LEH samples. The analytical methods developed in this work will become even more useful when production of LEH as a blood substitute is scaled up to large volumes.
Numerically stable formulas for a particle-based explicit exponential integrator
NASA Astrophysics Data System (ADS)
Nadukandi, Prashanth
2015-05-01
Numerically stable formulas are presented for the closed-form analytical solution of the X-IVAS scheme in 3D. This scheme is a state-of-the-art particle-based explicit exponential integrator developed for the particle finite element method. Algebraically, this scheme involves two steps: (1) the solution of tangent curves for piecewise linear vector fields defined on simplicial meshes and (2) the solution of line integrals of piecewise linear vector-valued functions along these tangent curves. Hence, the stable formulas presented here have general applicability, e.g. exact integration of trajectories in particle-based (Lagrangian-type) methods, flow visualization and computer graphics. The Newton form of the polynomial interpolation definition is used to express exponential functions of matrices which appear in the analytical solution of the X-IVAS scheme. The divided difference coefficients in these expressions are defined in a piecewise manner, i.e. in a prescribed neighbourhood of removable singularities their series approximations are computed. An optimal series approximation of divided differences is presented which plays a critical role in this methodology. At least ten significant decimal digits in the formula computations are guaranteed to be exact using double-precision floating-point arithmetic. The worst case scenarios occur in the neighbourhood of removable singularities found in fourth-order divided differences of the exponential function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rycroft, Chris H.; Bazant, Martin Z.
An advection-diffusion-limited dissolution model of an object being eroded by a two-dimensional potential flow is presented. By taking advantage of the conformal invariance of the model, a numerical method is introduced that tracks the evolution of the object boundary in terms of a time-dependent Laurent series. Simulations of a variety of dissolving objects are shown, which shrink and collapse to a single point in finite time. The simulations reveal a surprising exact relationship, whereby the collapse point is the root of a non-Analytic function given in terms of the flow velocity and the Laurent series coefficients describing the initial shape.more » This result is subsequently derived using residue calculus. The structure of the non-Analytic function is examined for three different test cases, and a practical approach to determine the collapse point using a generalized Newton-Raphson root-finding algorithm is outlined. These examples also illustrate the possibility that the model breaks down in finite time prior to complete collapse, due to a topological singularity, as the dissolving boundary overlaps itself rather than breaking up into multiple domains (analogous to droplet pinch-off in fluid mechanics). In conclusion, the model raises fundamental mathematical questions about broken symmetries in finite-Time singularities of both continuous and stochastic dynamical systems.« less
Asymmetric collapse by dissolution or melting in a uniform flow
Bazant, Martin Z.
2016-01-01
An advection–diffusion-limited dissolution model of an object being eroded by a two-dimensional potential flow is presented. By taking advantage of the conformal invariance of the model, a numerical method is introduced that tracks the evolution of the object boundary in terms of a time-dependent Laurent series. Simulations of a variety of dissolving objects are shown, which shrink and collapse to a single point in finite time. The simulations reveal a surprising exact relationship, whereby the collapse point is the root of a non-analytic function given in terms of the flow velocity and the Laurent series coefficients describing the initial shape. This result is subsequently derived using residue calculus. The structure of the non-analytic function is examined for three different test cases, and a practical approach to determine the collapse point using a generalized Newton–Raphson root-finding algorithm is outlined. These examples also illustrate the possibility that the model breaks down in finite time prior to complete collapse, due to a topological singularity, as the dissolving boundary overlaps itself rather than breaking up into multiple domains (analogous to droplet pinch-off in fluid mechanics). The model raises fundamental mathematical questions about broken symmetries in finite-time singularities of both continuous and stochastic dynamical systems. PMID:26997890
Asymmetric collapse by dissolution or melting in a uniform flow
Rycroft, Chris H.; Bazant, Martin Z.
2016-01-06
An advection-diffusion-limited dissolution model of an object being eroded by a two-dimensional potential flow is presented. By taking advantage of the conformal invariance of the model, a numerical method is introduced that tracks the evolution of the object boundary in terms of a time-dependent Laurent series. Simulations of a variety of dissolving objects are shown, which shrink and collapse to a single point in finite time. The simulations reveal a surprising exact relationship, whereby the collapse point is the root of a non-Analytic function given in terms of the flow velocity and the Laurent series coefficients describing the initial shape.more » This result is subsequently derived using residue calculus. The structure of the non-Analytic function is examined for three different test cases, and a practical approach to determine the collapse point using a generalized Newton-Raphson root-finding algorithm is outlined. These examples also illustrate the possibility that the model breaks down in finite time prior to complete collapse, due to a topological singularity, as the dissolving boundary overlaps itself rather than breaking up into multiple domains (analogous to droplet pinch-off in fluid mechanics). In conclusion, the model raises fundamental mathematical questions about broken symmetries in finite-Time singularities of both continuous and stochastic dynamical systems.« less
Combining local scaling and global methods to detect soil pore space
NASA Astrophysics Data System (ADS)
Martin-Sotoca, Juan Jose; Saa-Requejo, Antonio; Grau, Juan B.; Tarquis, Ana M.
2017-04-01
The characterization of the spatial distribution of soil pore structures is essential to obtain different parameters that will influence in several models related to water flow and/or microbial growth processes. The first step in pore structure characterization is obtaining soil images that best approximate reality. Over the last decade, major technological advances in X-ray computed tomography (CT) have allowed for the investigation and reconstruction of natural porous media architectures at very fine scales. The subsequent step is delimiting the pore structure (pore space) from the CT soil images applying a thresholding. Many times we could find CT-scan images that show low contrast at the solid-void interface that difficult this step. Different delimitation methods can result in different spatial distributions of pores influencing the parameters used in the models. Recently, new local segmentation method using local greyscale value (GV) concentration variabilities, based on fractal concepts, has been presented. This method creates singularity maps to measure the GV concentration at each point. The C-A method was combined with the singularity map approach (Singularity-CA method) to define local thresholds that can be applied to binarize CT images. Comparing this method with classical methods, such as Otsu and Maximum Entropy, we observed that more pores can be detected mainly due to its ability to amplify anomalous concentrations. However, it delineated many small pores that were incorrect. In this work, we present an improve version of Singularity-CA method that avoid this problem basically combining it with the global classical methods. References Martín-Sotoca, J.J., A. Saa-Requejo, J.B. Grau, A.M. Tarquis. New segmentation method based on fractal properties using singularity maps. Geoderma, 287, 40-53, 2017. Martín-Sotoca, J.J, A. Saa-Requejo, J.B. Grau, A.M. Tarquis. Local 3D segmentation of soil pore space based on fractal properties using singularity maps. Geoderma, http://dx.doi.org/10.1016/j.geoderma.2016.11.029. Torre, Iván G., Juan C. Losada and A.M. Tarquis. Multiscaling properties of soil images. Biosystems Engineering, http://dx.doi.org/10.1016/j.biosystemseng.2016.11.006.
Accelerated Seismic Release and Related Aspects of Seismicity Patterns on Earthquake Faults
NASA Astrophysics Data System (ADS)
Ben-Zion, Y.; Lyakhovsky, V.
2001-05-01
Observational studies indicate that large earthquakes are sometimes preceded by phases of accelerated seismic release (ASR) characterized by cumulative Benioff strain following a power law time-to-failure relation with a term (tf - t)m, where tf is the failure time of the large event and observed values of m are close to 0.3. We discuss properties of ASR and related aspects of seismicity patterns associated with several theoretical frameworks, with a focus on models of heterogeneous faults in continuum solids. Using stress and earthquake histories simulated by the model of Ben-Zion (1996) for a discrete fault with quenched heterogeneities in a 3D elastic half space, we show that large model earthquakes are associated with non-repeating cyclical establishment and destruction of long-range stress correlations, accompanied by non-stationary cumulative Benioff strain release. We then analyze results associated with a regional lithospheric model consisting of a seismogenic upper crust governed by the damage rheology of Lyakhovsky et al. (1997) over a viscoelastic substrate. We demonstrate analytically for a simplified 1D case that the employed damage rheology leads to a singular power law equation for strain proportional to (tf - t)-1/3, and a non-singular power law relation for cumulative Benioff strain proportional to (tf - t)1/3. A simple approximate generalization of the latter for regional cumulative Benioff strain is obtained by adding to the result a linear function of time representing a stationary background release. To go beyond the analytical expectations, we examine results generated by various realizations of the regional lithospheric model producing seismicity following the characteristic frequency-size statistics, Gutenberg-Richter power law distribution, and mode switching activity. We find that phases of ASR exist only when the seismicity preceding a given large event has broad frequency-size statistics. In such cases the simulated ASR phases can be fitted well by the singular analytical relation with m = -1/3, the non-singular equation with m = 0.2, and the generalized version of the latter including a linear term with m = 1/3. The obtained good fits with all three relations highlight the difficulty of deriving reliable information on functional forms and parameter values from such data sets. The activation process in the simulated ASR phases is found to be accommodated both by increasing rates of moderate events and increasing average event size, with the former starting a few years earlier than the latter. The lack of ASR in portions of the seismicity not having broad frequency-size statistics may explain why some large earthquakes are preceded by ASR and other are not.
Radar Imaging of Spheres in 3D using MUSIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambers, D H; Berryman, J G
2003-01-21
We have shown that multiple spheres can be imaged by linear and planar EM arrays using only one component of polarization. The imaging approach involves calculating the SVD of the scattering response matrix, selecting a subset of singular values that represents noise, and evaluating the MUSIC functional. The noise threshold applied to the spectrum of singular values for optimal performance is typically around 1%. The resulting signal subspace includes more than one singular value per sphere. The presence of reflections from the ground improves height localization, even for a linear array parallel to the ground. However, the interference between directmore » and reflected energy modulates the field, creating periodic nulls that can obscure targets in typical images. These nulls are largely eliminated by normalizing the MUSIC functional with the broadside beam pattern of the array. The resulting images show excellent localization for 1 and 2 spheres. The performance for the 3 sphere configurations are complicated by shadowing effects and the greater range of the 3rd sphere in case 2. Two of the three spheres are easily located by MUSIC but the third is difficult to distinguish from other local maxima of the complex imaging functional. Improvement is seen when the linear array is replace with a planar array, which increases the effective aperture height. Further analysis of the singular values and their relationship to modes of scattering from the spheres, as well as better ways to exploit polarization, should improve performance. Work along these lines is currently being pursued by the authors.« less
Attitude Estimation or Quaternion Estimation?
NASA Technical Reports Server (NTRS)
Markley, F. Landis
2003-01-01
The attitude of spacecraft is represented by a 3x3 orthogonal matrix with unity determinant, which belongs to the three-dimensional special orthogonal group SO(3). The fact that all three-parameter representations of SO(3) are singular or discontinuous for certain attitudes has led to the use of higher-dimensional nonsingular parameterizations, especially the four-component quaternion. In attitude estimation, we are faced with the alternatives of using an attitude representation that is either singular or redundant. Estimation procedures fall into three broad classes. The first estimates a three-dimensional representation of attitude deviations from a reference attitude parameterized by a higher-dimensional nonsingular parameterization. The deviations from the reference are assumed to be small enough to avoid any singularity or discontinuity of the three-dimensional parameterization. The second class, which estimates a higher-dimensional representation subject to enough constraints to leave only three degrees of freedom, is difficult to formulate and apply consistently. The third class estimates a representation of SO(3) with more than three dimensions, treating the parameters as independent. We refer to the most common member of this class as quaternion estimation, to contrast it with attitude estimation. We analyze the first and third of these approaches in the context of an extended Kalman filter with simplified kinematics and measurement models.
Triangle singularities and XYZ quarkonium peaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szczepaniak, Adam P.
2015-06-01
We discuss analytical properties of partial waves derived from projection of a 4-legged amplitude with crossed-channel exchanges in the kinematic region of the direct channel that corresponds to the XYZ peaks in charmonium and bottomonium. We show that in general partial waves can develop anomalous branch points in the vicinity of the direct channel physical region. In a specific case, when these branch points lie on the opposite side of the unitary cut they pinch the integration contour in a dispersion relation and if the pinch happens close to threshold, the normal threshold cusp is enhanced. We show that this effect only occurs if masses of resonances in the crossed channel are in a specific, narrow range. We estimate the size of threshold enhancements originating from these anomalous singularities in reactions where themore » $$Z_c(3900)$$ and the $$Z_b(10610)$$ peaks have been observed.« less
Strehl ratio: a tool for optimizing optical nulls and singularities.
Hénault, François
2015-07-01
In this paper a set of radial and azimuthal phase functions are reviewed that have a null Strehl ratio, which is equivalent to generating a central extinction in the image plane of an optical system. The study is conducted in the framework of Fraunhofer scalar diffraction, and is oriented toward practical cases where optical nulls or singularities are produced by deformable mirrors or phase plates. The identified solutions reveal unexpected links with the zeros of type-J Bessel functions of integer order. They include linear azimuthal phase ramps giving birth to an optical vortex, azimuthally modulated phase functions, and circular phase gratings (CPGs). It is found in particular that the CPG radiometric efficiency could be significantly improved by the null Strehl ratio condition. Simple design rules for rescaling and combining the different phase functions are also defined. Finally, the described analytical solutions could also serve as starting points for an automated searching software tool.
A new approach to the effect of sound on vortex dynamics
NASA Technical Reports Server (NTRS)
Lund, Fernando; Zabusky, Norman J.
1987-01-01
Analytical results are presented on the effect of acoustic radiation on three-dimensional vortex motions in a homogeneous, slightly compressible, inviscid fluid. The flow is considered as linear and irrotational everywhere except inside a very thin cylindrical core region around the vortex filament. In the outside region, a velocity potential is introduced that must be multivalued, and it is shown how to compute this scalar potential if the motion of the vortex filament is prescribed. To find the motion of this singularity in an external potential flow, a variational principle involving a volume integral that must exclude the singular region is considered. A functional of the external potential and vortex filament position is obtained whose extrema give equations to determine the sought-after evolution. Thus, a generalization of the Biot-Savart law to flows with constant sound speed at low Mach number is obtained.
On kinetics of a dynamically unbalanced rotator with sliding friction in supports
NASA Astrophysics Data System (ADS)
Chistyakov, Viktor V.
2018-05-01
The dynamics is analytically and numerically modelled for both free and forced rotations of a rigid body around the central but non-principal vertical axis Oz under action of dry friction forces in plain bearings and heel supports in combination with other dissipative and conservative axial torques. The inertia forces due to D'Alembert principle cause the supports' reactions and hence the decelerating friction torque depending on not only angular speed but acceleration too. This dependence makes the dynamical equations not resolved with regard to the senior derivative and ambiguous, and being thus resolved they have an irrational or singular right hand side. This irrationality/singularity results in their featured solutions or paradoxical absence of those in frames of absolutely rigid body approach. The kinetics obtained is analyzed and compared with the standard ones of rotation under action of conservative elastic and drag torques.
Trajectory phase transitions and dynamical Lee-Yang zeros of the Glauber-Ising chain.
Hickey, James M; Flindt, Christian; Garrahan, Juan P
2013-07-01
We examine the generating function of the time-integrated energy for the one-dimensional Glauber-Ising model. At long times, the generating function takes on a large-deviation form and the associated cumulant generating function has singularities corresponding to continuous trajectory (or "space-time") phase transitions between paramagnetic trajectories and ferromagnetically or antiferromagnetically ordered trajectories. In the thermodynamic limit, the singularities make up a whole curve of critical points in the complex plane of the counting field. We evaluate analytically the generating function by mapping the generator of the biased dynamics to a non-Hermitian Hamiltonian of an associated quantum spin chain. We relate the trajectory phase transitions to the high-order cumulants of the time-integrated energy which we use to extract the dynamical Lee-Yang zeros of the generating function. This approach offers the possibility to detect continuous trajectory phase transitions from the finite-time behavior of measurable quantities.
Solez, Kim; Bernier, Ashlyn; Crichton, Joel; Graves, Heather; Kuttikat, Preeti; Lockwood, Ross; Marovitz, William F; Monroe, Damon; Pallen, Mark; Pandya, Shawna; Pearce, David; Saleh, Abdullah; Sandhu, Neelam; Sergi, Consolato; Tuszynski, Jack; Waugh, Earle; White, Jonathan; Woodside, Michael; Wyndham, Roger; Zaiane, Osmar; Zakus, David
2013-09-09
The "technological singularity" is defined as that putative point in time forecasted to occur in the mid twenty-first century when machines will become smarter than humans, leading humans and machines to merge. It is hypothesized that this event will have a profound influence on medicine and population health. This work describes a new course on Technology and the Future of Medicine developed by a diverse, multi-disciplinary group of faculty members at a Canadian university. The course began as a continuous professional learning course and was later established as a recognized graduate course. We describe the philosophy of the course, the barriers encountered in course development, and some of the idiosyncratic solutions that were developed to overcome these, including the use of YouTube audience retention analytics. We hope that this report might provide a useful template for other institutions attempting to set up similar programs.
TOPICS IN THEORY OF GENERALIZED PARTON DISTRIBUTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radyushkin, Anatoly V.
Several topics in the theory of generalized parton distributions (GPDs) are reviewed. First, we give a brief overview of the basics of the theory of generalized parton distributions and their relationship with simpler phenomenological functions, viz. form factors, parton densities and distribution amplitudes. Then, we discuss recent developments in building models for GPDs that are based on the formalism of double distributions (DDs). A special attention is given to a careful analysis of the singularity structure of DDs. The DD formalism is applied to construction of a model GPDs with a singular Regge behavior. Within the developed DD-based approach, wemore » discuss the structure of GPD sum rules. It is shown that separation of DDs into the so-called ``plus'' part and the $D$-term part may be treated as a renormalization procedure for the GPD sum rules. This approach is compared with an alternative prescription based on analytic regularization.« less
Alien calculus and a Schwinger-Dyson equation: two-point function with a nonperturbative mass scale
NASA Astrophysics Data System (ADS)
Bellon, Marc P.; Clavier, Pierre J.
2018-02-01
Starting from the Schwinger-Dyson equation and the renormalization group equation for the massless Wess-Zumino model, we compute the dominant nonperturbative contributions to the anomalous dimension of the theory, which are related by alien calculus to singularities of the Borel transform on integer points. The sum of these dominant contributions has an analytic expression. When applied to the two-point function, this analysis gives a tame evolution in the deep euclidean domain at this approximation level, making doubtful the arguments on the triviality of the quantum field theory with positive β -function. On the other side, we have a singularity of the propagator for timelike momenta of the order of the renormalization group invariant scale of the theory, which has a nonperturbative relationship with the renormalization point of the theory. All these results do not seem to have an interpretation in terms of semiclassical analysis of a Feynman path integral.
Realization of non-holonomic constraints and singular perturbation theory for plane dumbbells
NASA Astrophysics Data System (ADS)
Koshkin, Sergiy; Jovanovic, Vojin
2017-10-01
We study the dynamics of pairs of connected masses in the plane, when nonholonomic (knife-edge) constraints are realized by forces of viscous friction, in particular its relation to constrained dynamics, and its approximation by the method of matching asymptotics of singular perturbation theory when the mass to friction ratio is taken as the small parameter. It turns out that long term behaviors of the frictional and constrained systems may differ dramatically no matter how small the perturbation is, and when this happens is not determined by any transparent feature of the equations of motion. The choice of effective time scales for matching asymptotics is also subtle and non-obvious, and secular terms appearing in them can not be dealt with by the classical methods. Our analysis is based on comparison to analytic solutions, and we present a reduction procedure for plane dumbbells that leads to them in some cases.
Asymptotically locally Euclidean/Kaluza-Klein stationary vacuum black holes in five dimensions
NASA Astrophysics Data System (ADS)
Khuri, Marcus; Weinstein, Gilbert; Yamada, Sumio
2018-05-01
We produce new examples, both explicit and analytical, of bi-axisymmetric stationary vacuum black holes in five dimensions. A novel feature of these solutions is that they are asymptotically locally Euclidean, in which spatial cross-sections at infinity have lens space L(p,q) topology, or asymptotically Kaluza-Klein so that spatial cross-sections at infinity are topologically S^1× S^2. These are nondegenerate black holes of cohomogeneity 2, with any number of horizon components, where the horizon cross-section topology is any one of the three admissible types: S^3, S^1× S^2, or L(p,q). Uniqueness of these solutions is also established. Our method is to solve the relevant harmonic map problem with prescribed singularities, having target symmetric space SL(3,{R})/SO(3). In addition, we analyze the possibility of conical singularities and find a large family for which geometric regularity is guaranteed.
General relativity: An erfc metric
NASA Astrophysics Data System (ADS)
Plamondon, Réjean
2018-06-01
This paper proposes an erfc potential to incorporate in a symmetric metric. One key feature of this model is that it relies on the existence of an intrinsic physical constant σ, a star-specific proper length that scales all its surroundings. Based thereon, the new metric is used to study the space-time geometry of a static symmetric massive object, as seen from its interior. The analytical solutions to the Einstein equation are presented, highlighting the absence of singularities and discontinuities in such a model. The geodesics are derived in their second- and first-order differential formats. Recalling the slight impact of the new model on the classical general relativity tests in the solar system, a number of facts and open problems are briefly revisited on the basis of a heuristic definition of σ. A special attention is given to gravitational collapses and non-singular black holes.
NASA Astrophysics Data System (ADS)
Xie, Dexuan
2014-10-01
The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model in the calculation of electrostatic potential energy for biomolecules in ionic solvent, but its numerical solution remains a challenge due to its strong singularity and nonlinearity caused by its singular distribution source terms and exponential nonlinear terms. To effectively deal with such a challenge, in this paper, new solution decomposition and minimization schemes are proposed, together with a new PBE analysis on solution existence and uniqueness. Moreover, a PBE finite element program package is developed in Python based on the FEniCS program library and GAMer, a molecular surface and volumetric mesh generation program package. Numerical tests on proteins and a nonlinear Born ball model with an analytical solution validate the new solution decomposition and minimization schemes, and demonstrate the effectiveness and efficiency of the new PBE finite element program package.
NASA Astrophysics Data System (ADS)
Shao, S.; Gao, Z.
2017-10-01
Stability of active disturbance rejection control (ADRC) is analysed in the presence of unknown, nonlinear, and time-varying dynamics. In the framework of singular perturbations, the closed-loop error dynamics are semi-decoupled into a relatively slow subsystem (the feedback loop) and a relatively fast subsystem (the extended state observer), respectively. It is shown, analytically and geometrically, that there exists a unique exponential stable solution if the size of the initial observer error is sufficiently small, i.e. in the same order of the inverse of the observer bandwidth. The process of developing the uniformly asymptotic solution of the system reveals the condition on the stability of the ADRC and the relationship between the rate of change in the total disturbance and the size of the estimation error. The differentiability of the total disturbance is the only assumption made.
Periastron shift for a spinning test particle around naked singularities
NASA Astrophysics Data System (ADS)
Mukherjee, Sajal
2018-06-01
In the present article, we investigate the Periastron precession for a spinning test particle moving in nearly circular orbits around naked singularities. We consider two well-known solutions that can produce a spacetime with naked singularity—(a) first, the Reissner-Nordström metric, which is a static charged solution with spherical symmetry, and (b) second, the stationary, axisymmetric Kerr metric. For simplicity, we only consider the motion confined on the equatorial plane in both these cases and solve exactly the Mathisson-Papapetrou equations. In addition, we analytically compute the Periastron precession within the framework of linear spin approximation. The inclusion of the spin parameter modifies the results with nonspinning particles and also reflects some interesting properties of the naked geometries. Furthermore, we carried out a numerical approach without any assumptions to probe the large order spin values. The implication of the spin-curvature coupling in connection with the naked geometries is also discussed.
Numerical studies of the Bethe-Salpeter equation for a two-fermion bound state
NASA Astrophysics Data System (ADS)
de Paula, W.; Frederico, T.; Salmè, G.; Viviani, M.
2018-03-01
Some recent advances on the solution of the Bethe-Salpeter equation (BSE) for a two-fermion bound system directly in Minkowski space are presented. The calculations are based on the expression of the Bethe-Salpeter amplitude in terms of the so-called Nakanishi integral representation and on the light-front projection (i.e. the integration of the light-front variable k - = k 0 - k 3). The latter technique allows for the analytically exact treatment of the singularities plaguing the two-fermion BSE in Minkowski space. The good agreement observed between our results and those obtained using other existing numerical methods, based on both Minkowski and Euclidean space techniques, fully corroborate our analytical treatment.
Exact solution for an optimal impermeable parachute problem
NASA Astrophysics Data System (ADS)
Lupu, Mircea; Scheiber, Ernest
2002-10-01
In the paper there are solved direct and inverse boundary problems and analytical solutions are obtained for optimization problems in the case of some nonlinear integral operators. It is modeled the plane potential flow of an inviscid, incompressible and nonlimited fluid jet, witch encounters a symmetrical, curvilinear obstacle--the deflector of maximal drag. There are derived integral singular equations, for direct and inverse problems and the movement in the auxiliary canonical half-plane is obtained. Next, the optimization problem is solved in an analytical manner. The design of the optimal airfoil is performed and finally, numerical computations concerning the drag coefficient and other geometrical and aerodynamical parameters are carried out. This model corresponds to the Helmholtz impermeable parachute problem.
2011-09-01
by a single mean equinoctial element set . EGP Orbit Determination Test Cases Rev 25 14 All of the EGP test cases employ the same observation...the non-singular equinoctial mean elements is more linear and this has positive implications for orbit determination processes based on the semi...by a single mean equinoctial element set . 5. CONCLUSIONS The GTDS Semi-analytical Satellite Theory (DSST) architecture has been extended to
Inclined edge crack in two bonded elastic quarter planes under out-of-plane loading
NASA Astrophysics Data System (ADS)
Hwang, E. H.; Choi, S. R.; Earmme, Y. Y.
1992-08-01
The problem of the interfacial edge crack in which the crack-inclination angle = zero is solved analytically by means of the Wiener-Hopf technique with the Mellin transform. The results are found to confirm the result by Bassani and Erdogan (1979) showing that there is no stress singularity for the interface perpendicular to the free boundary at the junction with a straight inclined interface with no crack.
An analytical solution for Dean flow in curved ducts with rectangular cross section
NASA Astrophysics Data System (ADS)
Norouzi, M.; Biglari, N.
2013-05-01
In this paper, a full analytical solution for incompressible flow inside the curved ducts with rectangular cross-section is presented for the first time. The perturbation method is applied to solve the governing equations and curvature ratio is considered as the perturbation parameter. The previous perturbation solutions are usually restricted to the flow in curved circular or annular pipes related to the overly complex form of solutions or singularity situation for flow in curved ducts with non-circular shapes of cross section. This issue specifies the importance of analytical studies in the field of Dean flow inside the non-circular ducts. In this study, the main flow velocity, stream function of lateral velocities (secondary flows), and flow resistance ratio in rectangular curved ducts are obtained analytically. The effect of duct curvature and aspect ratio on flow field is investigated as well. Moreover, it is important to mention that the current analytical solution is able to simulate the Taylor-Görtler and Dean vortices (vortices in stable and unstable situations) in curved channels.
Spontaneous emission in the presence of a realistically sized cylindrical waveguide
NASA Astrophysics Data System (ADS)
Dung, Ho Trung
2016-02-01
Various quantities characterizing the spontaneous emission process of a dipole emitter including the emission rate and the emission pattern can be expressed in terms of the Green tensor of the surrounding environment. By expanding the Green tensor around some analytically known background one as a Born series, and truncating it under appropriate conditions, complicated boundaries can be tackled with ease. However, when the emitter is embedded in the medium, even the calculation of the first-order term in the Born series is problematic because of the presence of a singularity. We show how to eliminate this singularity for a medium of arbitrary size and shape by expanding around the bulk medium rather than vacuum. In the highly symmetric configuration of an emitter located on the axis of a realistically sized cylinder, it is shown that the singularity can be removed by changing the integral variables and then the order of integration. Using both methods, we investigate the spontaneous emission rate of an initially excited two-level dipole emitter, embedded in a realistically sized cylinder, which can be a common optical fiber in the long-length limit and a disk in the short-length limit. The spatial distribution of the emitted light is calculated using the Born-expansion approach, and local-field corrections to the spontaneous emission rate are briefly discussed.
Luzanov, A V
2008-09-07
The Wigner function for the pure quantum states is used as an integral kernel of the non-Hermitian operator K, to which the standard singular value decomposition (SVD) is applied. It provides a set of the squared singular values treated as probabilities of the individual phase-space processes, the latter being described by eigenfunctions of KK(+) (for coordinate variables) and K(+)K (for momentum variables). Such a SVD representation is employed to obviate the well-known difficulties in the definition of the phase-space entropy measures in terms of the Wigner function that usually allows negative values. In particular, the new measures of nonclassicality are constructed in the form that automatically satisfies additivity for systems composed of noninteracting parts. Furthermore, the emphasis is given on the geometrical interpretation of the full entropy measure as the effective phase-space volume in the Wigner picture of quantum mechanics. The approach is exemplified by considering some generic vibrational systems. Specifically, for eigenstates of the harmonic oscillator and a superposition of coherent states, the singular value spectrum is evaluated analytically. Numerical computations are given for the nonlinear problems (the Morse and double well oscillators, and the Henon-Heiles system). We also discuss the difficulties in implementation of a similar technique for electronic problems.
Performance Analysis of ICA in Sensor Array
Cai, Xin; Wang, Xiang; Huang, Zhitao; Wang, Fenghua
2016-01-01
As the best-known scheme in the field of Blind Source Separation (BSS), Independent Component Analysis (ICA) has been intensively used in various domains, including biomedical and acoustics applications, cooperative or non-cooperative communication, etc. While sensor arrays are involved in most of the applications, the influence on the performance of ICA of practical factors therein has not been sufficiently investigated yet. In this manuscript, the issue is researched by taking the typical antenna array as an illustrative example. Factors taken into consideration include the environment noise level, the properties of the array and that of the radiators. We analyze the analytic relationship between the noise variance, the source variance, the condition number of the mixing matrix and the optimal signal to interference-plus-noise ratio, as well as the relationship between the singularity of the mixing matrix and practical factors concerned. The situations where the mixing process turns (nearly) singular have been paid special attention to, since such circumstances are critical in applications. Results and conclusions obtained should be instructive when applying ICA algorithms on mixtures from sensor arrays. Moreover, an effective countermeasure against the cases of singular mixtures has been proposed, on the basis of previous analysis. Experiments validating the theoretical conclusions as well as the effectiveness of the proposed scheme have been included. PMID:27164100
Li, Zhigang; Wang, Qiaoyun; Lv, Jiangtao; Ma, Zhenhe; Yang, Linjuan
2015-06-01
Spectroscopy is often applied when a rapid quantitative analysis is required, but one challenge is the translation of raw spectra into a final analysis. Derivative spectra are often used as a preliminary preprocessing step to resolve overlapping signals, enhance signal properties, and suppress unwanted spectral features that arise due to non-ideal instrument and sample properties. In this study, to improve quantitative analysis of near-infrared spectra, derivatives of noisy raw spectral data need to be estimated with high accuracy. A new spectral estimator based on singular perturbation technique, called the singular perturbation spectra estimator (SPSE), is presented, and the stability analysis of the estimator is given. Theoretical analysis and simulation experimental results confirm that the derivatives can be estimated with high accuracy using this estimator. Furthermore, the effectiveness of the estimator for processing noisy infrared spectra is evaluated using the analysis of beer spectra. The derivative spectra of the beer and the marzipan are used to build the calibration model using partial least squares (PLS) modeling. The results show that the PLS based on the new estimator can achieve better performance compared with the Savitzky-Golay algorithm and can serve as an alternative choice for quantitative analytical applications.
NASA Technical Reports Server (NTRS)
Schmidt, R. F.
1987-01-01
This document discusses the determination of caustic surfaces in terms of rays, reflectors, and wavefronts. Analytical caustics are obtained as a family of lines, a set of points, and several types of equations for geometries encountered in optics and microwave applications. Standard methods of differential geometry are applied under different approaches: directly to reflector surfaces, and alternatively, to wavefronts, to obtain analytical caustics of two sheets or branches. Gauss/Seidel aberrations are introduced into the wavefront approach, forcing the retention of all three coefficients of both the first- and the second-fundamental forms of differential geometry. An existing method for obtaining caustic surfaces through exploitation of the singularities in flux density is examined, and several constant-intensity contour maps are developed using only the intrinsic Gaussian, mean, and normal curvatures of the reflector. Numerous references are provided for extending the material of the present document to the morphologies of caustics and their associated diffraction patterns.
Intrinsic character of Stokes matrices
NASA Astrophysics Data System (ADS)
Gagnon, Jean-François; Rousseau, Christiane
2017-02-01
Two germs of linear analytic differential systems x k + 1Y‧ = A (x) Y with a non-resonant irregular singularity are analytically equivalent if and only if they have the same eigenvalues and equivalent collections of Stokes matrices. The Stokes matrices are the transition matrices between sectors on which the system is analytically equivalent to its formal normal form. Each sector contains exactly one separating ray for each pair of eigenvalues. A rotation in S allows supposing that R+ lies in the intersection of two sectors. Reordering of the coordinates of Y allows ordering the real parts of the eigenvalues, thus yielding triangular Stokes matrices. However, the choice of the rotation in x is not canonical. In this paper we establish how the collection of Stokes matrices depends on this rotation, and hence on a chosen order of the projection of the eigenvalues on a line through the origin.
Miller, Tyler M; Geraci, Lisa
2016-05-01
People may change their memory predictions after retrieval practice using naïve theories of memory and/or by using subjective experience - analytic and non-analytic processes respectively. The current studies disentangled contributions of each process. In one condition, learners studied paired-associates, made a memory prediction, completed a short-run of retrieval practice and made a second prediction. In another condition, judges read about a yoked learners' retrieval practice performance but did not participate in retrieval practice and therefore, could not use non-analytic processes for the second prediction. In Study 1, learners reduced their predictions following moderately difficult retrieval practice whereas judges increased their predictions. In Study 2, learners made lower adjusted predictions than judges following both easy and difficult retrieval practice. In Study 3, judge-like participants used analytic processes to report adjusted predictions. Overall, the results suggested non-analytic processes play a key role for participants to reduce their predictions after retrieval practice. Copyright © 2016 Elsevier Inc. All rights reserved.
Orbital theory in terms of KS elements with luni-solar perturbations
NASA Astrophysics Data System (ADS)
Sellamuthu, Harishkumar; Sharma, Ram
2016-07-01
Precise orbit computation of Earth orbiting satellites is essential for efficient mission planning of planetary exploration, navigation and satellite geodesy. The third-body perturbations of the Sun and the Moon predominantly affect the satellite motion in the high altitude and elliptical orbits, where the effect of atmospheric drag is negligible. The physics of the luni-solar gravity effect on Earth satellites have been studied extensively over the years. The combined luni-solar gravitational attraction will induce a cumulative effect on the dynamics of satellite orbits, which mainly oscillates the perigee altitude. Though accurate orbital parameters are computed by numerical integration with respect to complex force models, analytical theories are highly valued for the manifold of solutions restricted to relatively simple force models. During close approach, the classical equations of motion in celestial mechanics are almost singular and they are unstable for long-term orbit propagation. A new singularity-free analytical theory in terms of KS (Kustaanheimo and Stiefel) regular elements with respect to luni-solar perturbation is developed. These equations are regular everywhere and eccentric anomaly is the independent variable. Plataforma Solar de Almería (PSA) algorithm and a Fourier series algorithm are used to compute the accurate positions of the Sun and the Moon, respectively. Numerical studies are carried out for wide range of initial parameters and the analytical solutions are found to be satisfactory when compared with numerically integrated values. The symmetrical nature of the equations allows only two of the nine equations to be solved for computing the state vectors and the time. Only a change in the initial conditions is required to solve the other equations. This theory will find multiple applications including on-board software packages and for mission analysis purposes.
Solutions to the 1d Klein Gordon equation with cut-off Coulomb potentials
NASA Astrophysics Data System (ADS)
Hall, Richard L.
2007-12-01
In a recent paper by Barton [G. Barton, J. Phys. A: Math. Gen. 40 (2007) 1011], the 1-dimensional Klein Gordon equation was solved analytically for the non-singular Coulomb-like potential V(|x|)=-α/(|x|+a). In the present Letter, these results are completely confirmed by a numerical formulation that also allows a solution for an alternative cut-off Coulomb potential V(|x|)=-α/|x|, |x|>a, and otherwise V(|x|)=-α/a.
Multicritical points of the O(N) scalar theory in 2 < d < 4 for large N
NASA Astrophysics Data System (ADS)
Katsis, A.; Tetradis, N.
2018-05-01
We solve analytically the renormalization-group equation for the potential of the O (N)-symmetric scalar theory in the large-N limit and in dimensions 2 < d < 4, in order to look for nonperturbative fixed points that were found numerically in a recent study. We find new real solutions with singularities in the higher derivatives of the potential at its minimum, and complex solutions with branch cuts along the negative real axis.
Pattern selection and tip perturbations in the Saffman-Taylor problem
NASA Technical Reports Server (NTRS)
Hong, D. C.; Langer, J. S.
1987-01-01
An analytic approach to the Saffman-Taylor problem of predicting the width of a viscous finger in a Hele-Shaw cell is presented. The first purpose is to provide a systematic description of the way in which the singular perturbation introduced by capillary forces leads to a solvability mechanism for pattern selection. It is then shown how recent experimental observations by Couder et al. (1986) may be interpreted in terms suggested by this mechanism.
Heat capacity of a self-gravitating spherical shell of radiations
NASA Astrophysics Data System (ADS)
Kim, Hyeong-Chan
2017-10-01
We study the heat capacity of a static system of self-gravitating radiations analytically in the context of general relativity. To avoid the complexity due to a conical singularity at the center, we excise the central part and replace it with a regular spherically symmetric distribution of matters of which specifications we are not interested in. We assume that the mass inside the inner boundary and the locations of the inner and the outer boundaries are given. Then, we derive a formula relating the variations of physical parameters at the outer boundary with those at the inner boundary. Because there is only one free variation at the inner boundary, the variations at the outer boundary are related, which determines the heat capacity. To get an analytic form for the heat capacity, we use the thermodynamic identity δ Srad=β δ Mrad additionally, which is derived from the variational relation of the entropy formula with the restriction that the mass inside the inner boundary does not change. Even if the radius of the inner boundary of the shell goes to zero, in the presence of a central conical singularity, the heat capacity does not go to the form of the regular sphere. An interesting discovery is that another legitimate temperature can be defined at the inner boundary which is different from the asymptotic one β-1.
Aerodynamic parameter studies and sensitivity analysis for rotor blades in axial flight
NASA Technical Reports Server (NTRS)
Chiu, Y. Danny; Peters, David A.
1991-01-01
The analytical capability is offered for aerodynamic parametric studies and sensitivity analyses of rotary wings in axial flight by using a 3-D undistorted wake model in curved lifting line theory. The governing equations are solved by both the Multhopp Interpolation technique and the Vortex Lattice method. The singularity from the bound vortices is eliminated through the Hadamard's finite part concept. Good numerical agreement between both analytical methods and finite differences methods are found. Parametric studies were made to assess the effects of several shape variables on aerodynamic loads. It is found, e.g., that a rotor blade with out-of-plane and inplane curvature can theoretically increase lift in the inboard and outboard regions respectively without introducing an additional induced drag.
Exact solution for the Poisson field in a semi-infinite strip.
Cohen, Yossi; Rothman, Daniel H
2017-04-01
The Poisson equation is associated with many physical processes. Yet exact analytic solutions for the two-dimensional Poisson field are scarce. Here we derive an analytic solution for the Poisson equation with constant forcing in a semi-infinite strip. We provide a method that can be used to solve the field in other intricate geometries. We show that the Poisson flux reveals an inverse square-root singularity at a tip of a slit, and identify a characteristic length scale in which a small perturbation, in a form of a new slit, is screened by the field. We suggest that this length scale expresses itself as a characteristic spacing between tips in real Poisson networks that grow in response to fluxes at tips.
Application of the boundary integral method to immiscible displacement problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masukawa, J.; Horne, R.N.
1988-08-01
This paper presents an application of the boundary integral method (BIM) to fluid displacement problems to demonstrate its usefulness in reservoir simulation. A method for solving two-dimensional (2D), piston-like displacement for incompressible fluids with good accuracy has been developed. Several typical example problems with repeated five-spot patterns were solved for various mobility ratios. The solutions were compared with the analytical solutions to demonstrate accuracy. Singularity programming was found to be a major advantage in handling flow in the vicinity of wells. The BIM was found to be an excellent way to solve immiscible displacement problems. Unlike analytic methods, it canmore » accommodate complex boundary shapes and does not suffer from numerical dispersion at the front.« less
Signals: Applying Academic Analytics
ERIC Educational Resources Information Center
Arnold, Kimberly E.
2010-01-01
Academic analytics helps address the public's desire for institutional accountability with regard to student success, given the widespread concern over the cost of higher education and the difficult economic and budgetary conditions prevailing worldwide. Purdue University's Signals project applies the principles of analytics widely used in…
NASA Astrophysics Data System (ADS)
Ortiz, Néstor; Sarbach, Olivier
2018-01-01
We analyze the stability of the Cauchy horizon associated with a globally naked, shell-focussing singularity arising from the complete gravitational collapse of a spherical dust cloud. In a previous work, we have studied the dynamics of spherical test scalar fields on such a background. In particular, we proved that such fields cannot develop any divergences which propagate along the Cauchy horizon. In the present work, we extend our analysis to the more general case of test fields without symmetries and to linearized gravitational perturbations with odd parity. To this purpose, we first consider test fields possessing a divergence-free stress-energy tensor satisfying the dominant energy condition, and we prove that a suitable energy norm is uniformly bounded in the domain of dependence of the initial slice. In particular, this result implies that free-falling observers co-moving with the dust particles measure a finite energy of the field, even as they cross the Cauchy horizon at points lying arbitrarily close to the central singularity. Next, for the case of Klein–Gordon fields, we derive point-wise bounds from our energy estimates which imply that the scalar field cannot diverge at the Cauchy horizon, except possibly at the central singular point. Finally, we analyze the behaviour of odd-parity, linear gravitational and dust perturbations of the collapsing spacetime. Similarly to the scalar field case, we prove that the relevant gauge-invariant combinations of the metric perturbations stay bounded away from the central singularity, implying that no divergences can propagate in the vacuum region. Our results are in accordance with previous numerical studies and analytic work in the self-similar case.
SENR /NRPy + : Numerical relativity in singular curvilinear coordinate systems
NASA Astrophysics Data System (ADS)
Ruchlin, Ian; Etienne, Zachariah B.; Baumgarte, Thomas W.
2018-03-01
We report on a new open-source, user-friendly numerical relativity code package called SENR /NRPy + . Our code extends previous implementations of the BSSN reference-metric formulation to a much broader class of curvilinear coordinate systems, making it ideally suited to modeling physical configurations with approximate or exact symmetries. In the context of modeling black hole dynamics, it is orders of magnitude more efficient than other widely used open-source numerical relativity codes. NRPy + provides a Python-based interface in which equations are written in natural tensorial form and output at arbitrary finite difference order as highly efficient C code, putting complex tensorial equations at the scientist's fingertips without the need for an expensive software license. SENR provides the algorithmic framework that combines the C codes generated by NRPy + into a functioning numerical relativity code. We validate against two other established, state-of-the-art codes, and achieve excellent agreement. For the first time—in the context of moving puncture black hole evolutions—we demonstrate nearly exponential convergence of constraint violation and gravitational waveform errors to zero as the order of spatial finite difference derivatives is increased, while fixing the numerical grids at moderate resolution in a singular coordinate system. Such behavior outside the horizons is remarkable, as numerical errors do not converge to zero near punctures, and all points along the polar axis are coordinate singularities. The formulation addresses such coordinate singularities via cell-centered grids and a simple change of basis that analytically regularizes tensor components with respect to the coordinates. Future plans include extending this formulation to allow dynamical coordinate grids and bispherical-like distribution of points to efficiently capture orbiting compact binary dynamics.
On the Convergence of Stresses in Fretting Fatigue
Pereira, Kyvia; Bordas, Stephane; Tomar, Satyendra; Trobec, Roman; Depolli, Matjaz; Kosec, Gregor; Abdel Wahab, Magd
2016-01-01
Fretting is a phenomenon that occurs at the contacts of surfaces that are subjected to oscillatory relative movement of small amplitudes. Depending on service conditions, fretting may significantly reduce the service life of a component due to fretting fatigue. In this regard, the analysis of stresses at contact is of great importance for predicting the lifetime of components. However, due to the complexity of the fretting phenomenon, analytical solutions are available for very selective situations and finite element (FE) analysis has become an attractive tool to evaluate stresses and to study fretting problems. Recent laboratory studies in fretting fatigue suggested the presence of stress singularities in the stick-slip zone. In this paper, we constructed finite element models, with different element sizes, in order to verify the existence of stress singularity under fretting conditions. Based on our results, we did not find any singularity for the considered loading conditions and coefficients of friction. Since no singularity was found, the present paper also provides some comments regarding the convergence rate. Our analyses showed that the convergence rate in stress components depends on coefficient of friction, implying that this rate also depends on the loading condition. It was also observed that errors can be relatively high for cases with a high coefficient of friction, suggesting the importance of mesh refinement in these situations. Although the accuracy of the FE analysis is very important for satisfactory predictions, most of the studies in the literature rarely provide information regarding the level of error in simulations. Thus, some recommendations of mesh sizes for those who wish to perform FE analysis of fretting problems are provided for different levels of accuracy. PMID:28773760
Maximally slicing a black hole.
NASA Technical Reports Server (NTRS)
Estabrook, F.; Wahlquist, H.; Christensen, S.; Dewitt, B.; Smarr, L.; Tsiang, E.
1973-01-01
Analytic and computer-derived solutions are presented of the problem of slicing the Schwarzschild geometry into asymptotically flat, asymptotically static, maximal spacelike hypersurfaces. The sequence of hypersurfaces advances forward in time in both halves (u greater than or equal to 0, u less than or equal to 0) of the Kruskal diagram, tending asymptotically to the hypersurface r = 3/2 M and avoiding the singularity at r = 0. Maximality is therefore a potentially useful condition to impose in obtaining computer solutions of Einstein's equations.
Vortex motion in doubly connected domains
NASA Astrophysics Data System (ADS)
Zannetti, L.; Gallizio, F.; Ottino, G. M.
The unsteady two-dimensional rotational flow past doubly connected domains is analytically addressed. By concentrating the vorticity in point vortices, the flow is modelled as a potential flow with point singularities. The dependence of the complex potential on time is defined according to the Kelvin theorem. The general case of non-null circulations around the solid bodies is discussed. Vortex shedding and time evolution of the circulation past a two-element airfoil and past a two-bladed Darrieus turbine are presented as physically coherent examples.
Beyond single-stream with the Schrödinger method
NASA Astrophysics Data System (ADS)
Uhlemann, Cora; Kopp, Michael
2016-10-01
We investigate large scale structure formation of collisionless dark matter in the phase space description based on the Vlasov-Poisson equation. We present the Schrödinger method, originally proposed by \\cite{WK93} as numerical technique based on the Schrödinger Poisson equation, as an analytical tool which is superior to the common standard pressureless fluid model. Whereas the dust model fails and develops singularities at shell crossing the Schrödinger method encompasses multi-streaming and even virialization.
1982-09-01
212 Integrals," Marseille, France, 4y 22-26. 1978) (PublIshed Mengel , Marc, "On Singular Characteristic Initial Value In Springer Verleg Lecture...at the Annual PP 228 meeting of he Anmrican Society for Information Science held Mengel , Marc, "Relaxation at Critical Points: Deterministic In San...Instabilities." PP 258 24 pp., Doec 1978 (Published In Journal of Chemical Physics, Mengel , Marc S. and Thames, Jees A., Jr.. "Analytical Vol. 69, NO. 8. Oct
Black doctors and discrimination under South Africa's apartheid regime.
Digby, Anne
2013-04-01
This article discusses an under-researched group and provides an analytical overview of the comparative experiences of African, Indian and Coloured doctors at South African universities during the apartheid era. It probes diversity of experience in training and practice as well as gendered differentiation amongst black students before going on to discuss the careers and political activism of black doctors as well as the impact of recent transformational change on their position. It briefly assesses how singular this South African experience was.
NASA Technical Reports Server (NTRS)
Callegari, A. J.
1979-01-01
A nonlinear theory for sound propagation in variable area ducts carrying a nearly sonic flow is presented. Linear acoustic theory is shown to be singular and the detailed nature of the singularity is used to develop the correct nonlinear theory. The theory is based on a quasi-one dimensional model. It is derived by the method of matched asymptotic expansions. In a nearly chocked flow, the theory indicates the following processes to be acting: a transonic trapping of upstream propagating sound causing an intensification of this sound in the throat region of the duct; generation of superharmonics and an acoustic streaming effect; development of shocks in the acoustic quantities near the throat. Several specific problems are solved analytically and numerical parameter studies are carried out. Results indicate that appreciable acoustic power is shifted to higher harmonics as shocked conditions are approached. The effect of the throat Mach number on the attenuation of upstream propagating sound excited by a fixed source is also determined.
Robust Fault Detection for Aircraft Using Mixed Structured Singular Value Theory and Fuzzy Logic
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G.
2000-01-01
The purpose of fault detection is to identify when a fault or failure has occurred in a system such as an aircraft or expendable launch vehicle. The faults may occur in sensors, actuators, structural components, etc. One of the primary approaches to model-based fault detection relies on analytical redundancy. That is the output of a computer-based model (actually a state estimator) is compared with the sensor measurements of the actual system to determine when a fault has occurred. Unfortunately, the state estimator is based on an idealized mathematical description of the underlying plant that is never totally accurate. As a result of these modeling errors, false alarms can occur. This research uses mixed structured singular value theory, a relatively recent and powerful robustness analysis tool, to develop robust estimators and demonstrates the use of these estimators in fault detection. To allow qualitative human experience to be effectively incorporated into the detection process fuzzy logic is used to predict the seriousness of the fault that has occurred.
Certain bright soliton interactions of the Sasa-Satsuma equation in a monomode optical fiber
NASA Astrophysics Data System (ADS)
Liu, Lei; Tian, Bo; Chai, Han-Peng; Yuan, Yu-Qiang
2017-03-01
Under investigation in this paper is the Sasa-Satsuma equation, which describes the propagation of ultrashort pulses in a monomode fiber with the third-order dispersion, self-steepening, and stimulated Raman scattering effects. Based on the known bilinear forms, through the modified expanded formulas and symbolic computation, we construct the bright two-soliton solutions. Through classifying the interactions under different parameter conditions, we reveal six cases of interactions between the two solitons via an asymptotic analysis. With the help of the analytic and graphic analysis, we find that such interactions are different from those of the nonlinear Schrödinger equation and Hirota equation. When those solitons interact with each other, the singular-I soliton is shape-preserving, while the singular-II and nonsingular solitons may be shape preserving or shape changing. Such elastic and inelastic interaction phenomena in a scalar equation might enrich the knowledge of soliton behavior, which could be expected to be experimentally observed.
Certain bright soliton interactions of the Sasa-Satsuma equation in a monomode optical fiber.
Liu, Lei; Tian, Bo; Chai, Han-Peng; Yuan, Yu-Qiang
2017-03-01
Under investigation in this paper is the Sasa-Satsuma equation, which describes the propagation of ultrashort pulses in a monomode fiber with the third-order dispersion, self-steepening, and stimulated Raman scattering effects. Based on the known bilinear forms, through the modified expanded formulas and symbolic computation, we construct the bright two-soliton solutions. Through classifying the interactions under different parameter conditions, we reveal six cases of interactions between the two solitons via an asymptotic analysis. With the help of the analytic and graphic analysis, we find that such interactions are different from those of the nonlinear Schrödinger equation and Hirota equation. When those solitons interact with each other, the singular-I soliton is shape-preserving, while the singular-II and nonsingular solitons may be shape preserving or shape changing. Such elastic and inelastic interaction phenomena in a scalar equation might enrich the knowledge of soliton behavior, which could be expected to be experimentally observed.
NASA Astrophysics Data System (ADS)
Hoh, H. J.; Xiao, Z. M.; Luo, J.
2010-09-01
An analytical investigation on the plastic zone size of a crack near a coated circular inclusion under three different loading conditions of uniaxial tension, uniform tension and pure shear was carried out. Both the crack and coated circular inclusion are embedded in an infinite matrix, with the crack oriented along the radial direction of the inclusion. In the solution procedure, the crack is simulated as a continuous distribution of edge dislocations. With the Dugdale model of small-scale yielding [J. Mech. Phys. Solids 8 (1960) p. 100], two thin strips of yielded plastic zones are introduced at both crack tips. Using the solution for a coated circular inclusion interacting with a single dislocation as the Green's function, the physical problem is formulated into a set of singular integral equations. Using the method of Erdogan and Gupta [Q. J. Appl. Math. 29 (1972) p. 525] and iterative numerical procedures, the singular integral equations are solved numerically for the plastic zone sizes and crack tip opening displacement.
NASA Astrophysics Data System (ADS)
Ali Shah, Nehad; Mahsud, Yasir; Ali Zafar, Azhar
2017-10-01
This article introduces a theoretical study for unsteady free convection flow of an incompressible viscous fluid. The fluid flows near an isothermal vertical plate. The plate has a translational motion with time-dependent velocity. The equations governing the fluid flow are expressed in fractional differential equations by using a newly defined time-fractional Caputo-Fabrizio derivative without singular kernel. Explicit solutions for velocity, temperature and solute concentration are obtained by applying the Laplace transform technique. As the fractional parameter approaches to one, solutions for the ordinary fluid model are extracted from the general solutions of the fractional model. The results showed that, for the fractional model, the obtained solutions for velocity, temperature and concentration exhibit stationary jumps discontinuity across the plane at t=0 , while the solutions are continuous functions in the case of the ordinary model. Finally, numerical results for flow features at small-time are illustrated through graphs for various pertinent parameters.
NASA Technical Reports Server (NTRS)
Smith, Ralph C.
1994-01-01
A Galerkin method for systems of PDE's in circular geometries is presented with motivating problems being drawn from structural, acoustic, and structural acoustic applications. Depending upon the application under consideration, piecewise splines or Legendre polynomials are used when approximating the system dynamics with modifications included to incorporate the analytic solution decay near the coordinate singularity. This provides an efficient method which retains its accuracy throughout the circular domain without degradation at singularity. Because the problems under consideration are linear or weakly nonlinear with constant or piecewise constant coefficients, transform methods for the problems are not investigated. While the specific method is developed for the two dimensional wave equations on a circular domain and the equation of transverse motion for a thin circular plate, examples demonstrating the extension of the techniques to a fully coupled structural acoustic system are used to illustrate the flexibility of the method when approximating the dynamics of more complex systems.
NASA Astrophysics Data System (ADS)
Chekhov, Leonid; Mazzocco, Marta
2010-11-01
In this communication, by using Teichmüller theory of a sphere with four holes/orbifold points, we obtain a system of flat coordinates on the general affine cubic surface having a D4 singularity at the origin. We show that the Goldman bracket on the geodesic functions on the four-holed/orbifold sphere coincides with the Etingof-Ginzburg Poisson bracket on the affine D4 cubic. We prove that this bracket is the image under the Riemann-Hilbert map of the Poisson-Lie bracket on \\oplus _{1}^3\\mathfrak {sl}^\\ast (2,{{\\bb C}}) . We realize the action of the mapping class group by the action of the braid group on the geodesic functions. This action coincides with the procedure of analytic continuation of solutions of the sixth Painlevé equation. Finally, we produce the explicit quantization of the Goldman bracket on the geodesic functions on the four-holed/orbifold sphere and of the braid group action.
Geometric and electrostatic modeling using molecular rigidity functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Xia, Kelin; Wei, Guowei
Geometric and electrostatic modeling is an essential component in computational biophysics and molecular biology. Commonly used geometric representations admit geometric singularities such as cusps, tips and self-intersecting facets that lead to computational instabilities in the molecular modeling. Our present work explores the use of flexibility and rigidity index (FRI), which has a proved superiority in protein B-factor prediction, for biomolecular geometric representation and associated electrostatic analysis. FRI rigidity surfaces are free of geometric singularities. We propose a rigidity based Poisson–Boltzmann equation for biomolecular electrostatic analysis. These approaches to surface and electrostatic modeling are validated by a set of 21 proteins.more » Our results are compared with those of established methods. Finally, being smooth and analytically differentiable, FRI rigidity functions offer excellent curvature analysis, which characterizes concave and convex regions on protein surfaces. Polarized curvatures constructed by using the product of minimum curvature and electrostatic potential is shown to predict potential protein–ligand binding sites.« less
Inverse Jacobi multiplier as a link between conservative systems and Poisson structures
NASA Astrophysics Data System (ADS)
García, Isaac A.; Hernández-Bermejo, Benito
2017-08-01
Some aspects of the relationship between conservativeness of a dynamical system (namely the preservation of a finite measure) and the existence of a Poisson structure for that system are analyzed. From the local point of view, due to the flow-box theorem we restrict ourselves to neighborhoods of singularities. In this sense, we characterize Poisson structures around the typical zero-Hopf singularity in dimension 3 under the assumption of having a local analytic first integral with non-vanishing first jet by connecting with the classical Poincaré center problem. From the global point of view, we connect the property of being strictly conservative (the invariant measure must be positive) with the existence of a Poisson structure depending on the phase space dimension. Finally, weak conservativeness in dimension two is introduced by the extension of inverse Jacobi multipliers as weak solutions of its defining partial differential equation and some of its applications are developed. Examples including Lotka-Volterra systems, quadratic isochronous centers, and non-smooth oscillators are provided.
Solutions with throats in Hořava gravity with cosmological constant
NASA Astrophysics Data System (ADS)
Bellorín, Jorge; Restuccia, Alvaro; Sotomayor, Adrián
2016-10-01
By combining analytical and numerical methods, we find that the solutions of the complete Hořava theory with negative cosmological constant that satisfy the conditions of staticity, spherical symmetry and vanishing of the shift function are two kinds of geometry: (i) a solution with two sides joined by a throat and (ii) a single side with a naked singularity at the origin. We study the second-order effective action. We consider the case when the coupling constant of the (∂ln N)2 term, which is the unique deviation from general relativity (GR) in the effective action, is small. At one side, the solution with the throat acquires a kind of deformed anti-de Sitter (AdS) asymptotia and at the other side, there is an asymptotic essential singularity. The deformation of AdS essentially means that the lapse function N diverges asymptotically a bit faster than AdS. This can also be interpreted as an anisotropic Lifshitz scaling that the solutions acquire asymptotically.
Asymptotic behavior of solutions of the renormalization group K-epsilon turbulence model
NASA Technical Reports Server (NTRS)
Yakhot, A.; Staroselsky, I.; Orszag, S. A.
1994-01-01
Presently, the only efficient way to calculate turbulent flows in complex geometries of engineering interest is to use Reynolds-average Navier-Stokes (RANS) equations. As compared to the original Navier-Stokes problem, these RANS equations posses much more complicated nonlinear structure and may exhibit far more complex nonlinear behavior. In certain cases, the asymptotic behavior of such models can be studied analytically which, aside from being an interesting fundamental problem, is important for better understanding of the internal structure of the models as well as to improve their performances. The renormalization group (RNG) K-epsilon turbulence model, derived directly from the incompresible Navier-Stokes equations, is analyzed. It has already been used to calculate a variety of turbulent and transitional flows in complex geometries. For large values of the RNG viscosity parameter, the model may exhibit singular behavior. In the form of the RNG K-epsilon model that avoids the use of explicit wall functions, a = 1, so the RNG viscosity parameter must be smaller than 23.62 to avoid singularities.
Geometric and electrostatic modeling using molecular rigidity functions
Mu, Lin; Xia, Kelin; Wei, Guowei
2017-03-01
Geometric and electrostatic modeling is an essential component in computational biophysics and molecular biology. Commonly used geometric representations admit geometric singularities such as cusps, tips and self-intersecting facets that lead to computational instabilities in the molecular modeling. Our present work explores the use of flexibility and rigidity index (FRI), which has a proved superiority in protein B-factor prediction, for biomolecular geometric representation and associated electrostatic analysis. FRI rigidity surfaces are free of geometric singularities. We propose a rigidity based Poisson–Boltzmann equation for biomolecular electrostatic analysis. These approaches to surface and electrostatic modeling are validated by a set of 21 proteins.more » Our results are compared with those of established methods. Finally, being smooth and analytically differentiable, FRI rigidity functions offer excellent curvature analysis, which characterizes concave and convex regions on protein surfaces. Polarized curvatures constructed by using the product of minimum curvature and electrostatic potential is shown to predict potential protein–ligand binding sites.« less
NASA Astrophysics Data System (ADS)
Khechai, Abdelhak; Tati, Abdelouahab; Guettala, Abdelhamid
2017-05-01
In this paper, an effort is made to understand the effects of geometric singularities on the load bearing capacity and stress distribution in thin laminated plates. Composite plates with variously shaped cutouts are frequently used in both modern and classical aerospace, mechanical and civil engineering structures. Finite element investigation is undertaken to show the effect of geometric singularities on stress distribution. In this study, the stress concentration factors (SCFs) in cross-and-angle-ply laminated as well as in isotropic plates subjected to uniaxial loading are studied using a quadrilateral finite element of four nodes with thirty-two degrees-of-freedom per element. The varying parameters such as the cutout shape and hole sizes (a/b) are considered. The numerical results obtained by the present element are compared favorably with those obtained using the finite element software Freefem++ and the analytic findings published in literature, which demonstrates the accuracy of the present element. Freefem++ is open source software based on the finite element method, which could be helpful to study and improving the analyses of the stress distribution in composite plates with cutouts. The Freefem++ and the quadrilateral finite element formulations will be given in the beginning of this paper. Finally, to show the effect of the fiber orientation angle and anisotropic modulus ratio on the (SCF), number of figures are given for various ratio (a/b).
Singular effective slip length for longitudinal flow over a dense bubble mattress
NASA Astrophysics Data System (ADS)
Schnitzer, Ory
2016-09-01
We consider the effective hydrophobicity of a periodically grooved surface immersed in liquid, with trapped shear-free bubbles protruding between the no-slip ridges at a π /2 contact angle. Specifically, we carry out a singular-perturbation analysis in the limit ɛ ≪1 where the bubbles are closely spaced, finding the effective slip length (normalized by the bubble radius) for longitudinal flow along the ridges as π /√{2 ɛ }-(12 /π ) ln2 +(13 π /24 ) √{2 ɛ }+o (√{ɛ }) , the small parameter ɛ being the planform solid fraction. The square-root divergence highlights the strong hydrophobic character of this configuration; this leading singular term (along with the third term) follows from a local lubrication-like analysis of the gap regions between the bubbles, together with general matching considerations and a global conservation relation. The O (1 ) constant term is found by matching with a leading-order solution in the outer region, where the bubbles appear to be touching. We find excellent agreement between our slip-length formula and a numerical scheme recently derived using a unified-transform method [Crowdy, IMA J. Appl. Math. 80, 1902 (2015), 10.1093/imamat/hxv019]. The comparison demonstrates that our asymptotic formula, together with the diametric dilute-limit approximation [Crowdy, J. Fluid Mech. 791, R7 (2016), 10.1017/jfm.2016.88], provides an elementary analytical description for essentially arbitrary no-slip fractions.
Coppi, B.; Basu, B.; Fletcher, A.
2017-05-31
In the context of a two-fluid theory of magnetic reconnection, when the longitudinal electron thermal conductivity is relatively large, the perturbed electron temperature tends to become singular in the presence of a reconnected field component and an electron temperature gradient. A finite transverse thermal diffusivity removes this singularity while a finite ‘inductivity’ can remove the singularity of the relevant plasma displacement. Then (i) a new ‘magneto-thermal’ reconnection producing mode, is found with characteristic widths of the reconnection layer remaining significant even when the macroscopic distances involved are very large; (ii) the mode phase velocities can be both in the directionmore » of the electron diamagnetic velocity as well in the opposite (ion) direction. A numerical solution of the complete set of equations has been carried out with a simplified analytical reformulation of the problem. A sequence of processes is analyzed to point out that high-energy particle populations can be produced as a result of reconnection events. These processes involve mode-particle resonances transferring energy of the reconnecting mode to a superthermal ion population and the excitation of lower hybrid waves that can lead to a significant superthermal electron population. The same modes excited in axisymmetric (e.g. toroidal) confinement configurations can extract angular momentum from the main body of the plasma column and thereby sustain a local ‘spontaneous rotation’ of it.« less
On the Lagrangian description of unsteady boundary-layer separation. I - General theory
NASA Technical Reports Server (NTRS)
Van Dommelen, Leon L.; Cowley, Stephen J.
1990-01-01
Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.
On the Lagrangian description of unsteady boundary layer separation. Part 1: General theory
NASA Technical Reports Server (NTRS)
Vandommelen, Leon L.; Cowley, Stephen J.
1989-01-01
Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.
Weighted low-rank sparse model via nuclear norm minimization for bearing fault detection
NASA Astrophysics Data System (ADS)
Du, Zhaohui; Chen, Xuefeng; Zhang, Han; Yang, Boyuan; Zhai, Zhi; Yan, Ruqiang
2017-07-01
It is a fundamental task in the machine fault diagnosis community to detect impulsive signatures generated by the localized faults of bearings. The main goal of this paper is to exploit the low-rank physical structure of periodic impulsive features and further establish a weighted low-rank sparse model for bearing fault detection. The proposed model mainly consists of three basic components: an adaptive partition window, a nuclear norm regularization and a weighted sequence. Firstly, due to the periodic repetition mechanism of impulsive feature, an adaptive partition window could be designed to transform the impulsive feature into a data matrix. The highlight of partition window is to accumulate all local feature information and align them. Then, all columns of the data matrix share similar waveforms and a core physical phenomenon arises, i.e., these singular values of the data matrix demonstrates a sparse distribution pattern. Therefore, a nuclear norm regularization is enforced to capture that sparse prior. However, the nuclear norm regularization treats all singular values equally and thus ignores one basic fact that larger singular values have more information volume of impulsive features and should be preserved as much as possible. Therefore, a weighted sequence with adaptively tuning weights inversely proportional to singular amplitude is adopted to guarantee the distribution consistence of large singular values. On the other hand, the proposed model is difficult to solve due to its non-convexity and thus a new algorithm is developed to search one satisfying stationary solution through alternatively implementing one proximal operator operation and least-square fitting. Moreover, the sensitivity analysis and selection principles of algorithmic parameters are comprehensively investigated through a set of numerical experiments, which shows that the proposed method is robust and only has a few adjustable parameters. Lastly, the proposed model is applied to the wind turbine (WT) bearing fault detection and its effectiveness is sufficiently verified. Compared with the current popular bearing fault diagnosis techniques, wavelet analysis and spectral kurtosis, our model achieves a higher diagnostic accuracy.
Teaching Analytical Chemistry to Pharmacy Students: A Combined, Iterative Approach
ERIC Educational Resources Information Center
Masania, Jinit; Grootveld, Martin; Wilson, Philippe B.
2018-01-01
Analytical chemistry has often been a difficult subject to teach in a classroom or lecture-based context. Numerous strategies for overcoming the inherently practical-based difficulties have been suggested, each with differing pedagogical theories. Here, we present a combined approach to tackling the problem of teaching analytical chemistry, with…
Verifiable Adaptive Control with Analytical Stability Margins by Optimal Control Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2010-01-01
This paper presents a verifiable model-reference adaptive control method based on an optimal control formulation for linear uncertain systems. A predictor model is formulated to enable a parameter estimation of the system parametric uncertainty. The adaptation is based on both the tracking error and predictor error. Using a singular perturbation argument, it can be shown that the closed-loop system tends to a linear time invariant model asymptotically under an assumption of fast adaptation. A stability margin analysis is given to estimate a lower bound of the time delay margin using a matrix measure method. Using this analytical method, the free design parameter n of the optimal control modification adaptive law can be determined to meet a specification of stability margin for verification purposes.
The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications
NASA Technical Reports Server (NTRS)
Bravo, Ramiro H.; Chen, Ching-Jen
1992-01-01
In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.
Approximate isotropic cloak for the Maxwell equations
NASA Astrophysics Data System (ADS)
Ghosh, Tuhin; Tarikere, Ashwin
2018-05-01
We construct a regular isotropic approximate cloak for the Maxwell system of equations. The method of transformation optics has enabled the design of electromagnetic parameters that cloak a region from external observation. However, these constructions are singular and anisotropic, making practical implementation difficult. Thus, regular approximations to these cloaks have been constructed that cloak a given region to any desired degree of accuracy. In this paper, we show how to construct isotropic approximations to these regularized cloaks using homogenization techniques so that one obtains cloaking of arbitrary accuracy with regular and isotropic parameters.
Analytic Expressions for the Gravity Gradient Tensor of 3D Prisms with Depth-Dependent Density
NASA Astrophysics Data System (ADS)
Jiang, Li; Liu, Jie; Zhang, Jianzhong; Feng, Zhibing
2017-12-01
Variable-density sources have been paid more attention in gravity modeling. We conduct the computation of gravity gradient tensor of given mass sources with variable density in this paper. 3D rectangular prisms, as simple building blocks, can be used to approximate well 3D irregular-shaped sources. A polynomial function of depth can represent flexibly the complicated density variations in each prism. Hence, we derive the analytic expressions in closed form for computing all components of the gravity gradient tensor due to a 3D right rectangular prism with an arbitrary-order polynomial density function of depth. The singularity of the expressions is analyzed. The singular points distribute at the corners of the prism or on some of the lines through the edges of the prism in the lower semi-space containing the prism. The expressions are validated, and their numerical stability is also evaluated through numerical tests. The numerical examples with variable-density prism and basin models show that the expressions within their range of numerical stability are superior in computational accuracy and efficiency to the common solution that sums up the effects of a collection of uniform subprisms, and provide an effective method for computing gravity gradient tensor of 3D irregular-shaped sources with complicated density variation. In addition, the tensor computed with variable density is different in magnitude from that with constant density. It demonstrates the importance of the gravity gradient tensor modeling with variable density.
NASA Astrophysics Data System (ADS)
Penoyre, Zephyr; Haiman, Zoltán
2018-01-01
In symmetric gravitating systems experiencing rapid mass-loss, particle orbits change almost instantaneously, which can lead to the development of a sharply contoured density profile, including singular caustics for collisionless systems. This framework can be used to model a variety of dynamical systems, such as accretion discs following a massive black hole merger and dwarf galaxies following violent early star formation feedback. Particle interactions in the high-density peaks seem a promising source of observable signatures of these mass-loss events (i.e. a possible EM counterpart for black hole mergers or strong gamma-ray emission from dark matter annihilation around young galaxies), because the interaction rate depends on the square of the density. We study post-mass-loss density profiles, both analytic and numerical, in idealized cases and present arguments and methods to extend to any general system. An analytic derivation is presented for particles on Keplerian orbits responding to a drop in the central mass. We argue that this case, with initially circular orbits, gives the most sharply contoured profile possible. We find that despite the presence of a set of singular caustics, the total particle interaction rate is reduced compared to the unperturbed system; this is a result of the overall expansion of the system dominating over the steep caustics. Finally, we argue that this result holds more generally, and the loss of central mass decreases the particle interaction rate in any physical system.
Scale Invariance in Landscape Evolution Models Using Stream Power Laws
NASA Astrophysics Data System (ADS)
Kwang, J. S.; Parker, G.
2014-12-01
Landscape evolution models (LEM) commonly utilize stream power laws to simulate river incision with formulations such as E = KAmSn, where E is a vertical incision rate [L/T], K is an erodibility constant [L1-2m/T], A is an upstream drainage area [L2], S is a local channel gradient [-], and m and n are positive exponents that describe the basin hydrology. In our reduced complexity model, the landscape approached equilibrium by balancing an incision rate with a constant, uniform, vertical rock uplift rate at every location in the landscape. From our simulations, for a combination of m and n, the landscape exhibited scale invariance. That is, regardless of the size and scale of the basin, the relief and vertical structure of the landscape remained constant. Therefore, the relief and elevation profile of the landscape at equilibrium were only dependent on the coefficients for erodibility and uplift and an equation that described how upstream area, A, increased as the length of a stream increased. In our analytical 1D models, we utilized two equations that described upslope area, (a) A = Bl, where B is the profile width [L], and l is the stream length from the ridge [L] and (b) A = Clh, Hack's Law, where C is a constant [L2-h] and h is a positive exponent. With these equations, (a) m = n and (b) hm = n resulted in scale invariance. In our numerical 2D models, the relationship between A and l was inherent in the actual structure of the drainage network. From our numerical 2D results, scale invariance occurred when 2m = n. Additionally, using reasonable values from the literature for exponents, n, m and h, resulted in singularities at the ridges in the landscape, which caused truncation error. In consequence, the elevation of the ridge increased as the number of grid cells in the domain increased in the numerical model, and the model was unable to converge. These singularities at the ridges appeared when (a) m ≥ n and (b) hm ≥ n in the analytical model and 2m ≥ n in the numerical model. Here we present (1) 1D analytical solutions and (2) 2D numerical solutions that demonstrate scale invariance in LEMs and (3) the consequences of the singularity in 2D LEM numerical simulations. These results will help provide insight about the structure and dynamics of landscapes and drainage networks and shed light on geomorphological empirical relationships.
Modeling of the Global Water Cycle - Analytical Models
Yongqiang Liu; Roni Avissar
2005-01-01
Both numerical and analytical models of coupled atmosphere and its underlying ground components (land, ocean, ice) are useful tools for modeling the global and regional water cycle. Unlike complex three-dimensional climate models, which need very large computing resources and involve a large number of complicated interactions often difficult to interpret, analytical...
Philippe, Franck D; Prada, Claire; de Rosny, Julien; Clorennec, Dominique; Minonzio, Jean-Gabriel; Fink, Mathias
2008-08-01
This paper reports the results of an investigation into extracting of the backscattered frequency signature of a target in a waveguide. Retrieving the target signature is difficult because it is blurred by waveguide reflections and modal interference. It is shown that the decomposition of the time-reversal operator method provides a solution to this problem. Using a modal theory, this paper shows that the first singular value associated with a target is proportional to the backscattering form function. It is linked to the waveguide geometry through a factor that weakly depends on frequency as long as the target is far from the boundaries. Using the same approach, the second singular value is shown to be proportional to the second derivative of the angular form function which is a relevant parameter for target identification. Within this framework the coupling between two targets is considered. Small scale experimental studies are performed in the 3.5 MHz frequency range for 3 mm spheres in a 28 mm deep and 570 mm long waveguide and confirm the theoretical results.
Coarse graining the distribution function of cold dark matter - II
NASA Astrophysics Data System (ADS)
Henriksen, R. N.
2004-12-01
We study analytically the coarse- and fine-grained distribution function (DF) established by the self-similar infall of collisionless matter. We find this function explicitly for isotropic and spherically symmetric systems in terms of cosmological initial conditions. The coarse-grained function is structureless and steady but the familiar phase-space sheet substructure is recovered in the fine-grained limit. By breaking the self-similarity of the halo infall we are able to argue for a central density flattening. In addition there will be an edge steepening. The best-fitting analytic density function is likely to be provided by a high-order polytrope fit smoothly to an outer power law of index -3 for isolated systems. There may be a transition to a -4 power law in the outer regions of tidally truncated systems. As we find that the central flattening is progressive in time, dynamically young systems such as galaxy clusters may well possess a Navarro, Frenk and White type density profile, while primordial dwarf galaxies, for example, are expected to have cores. This progressive flattening is expected to end either in the non-singular isothermal sphere, or in the non-singular metastable polytropic cores; as the DFs associated with each of these arise naturally in the bulk halo during the infall. We suggest, based on previous studies of the evolution of de-stabilized polytropes, that a collisionless system may pass through a family of polytropes of increasing order, finally approaching the limit of the non-singular isothermal sphere, if the `violent' collective relaxation is frequently re-excited by `merger' events. Thus central dominant (cD) galaxies, and indeed all bright galaxies that have grown in this fashion, should be in polytropic states. Our results suggest that no physics beyond that of wave-particle scattering is necessary to explain the nature of dark matter density profiles. However, this may be assisted by the scattering of particles from the centre of the system by the infall of dwarf galaxies, galactic nuclei or black holes (e.g. Nakano & Makino), all of which would restart pure dynamical relaxation.
Solvable model of spiral wave chimeras.
Martens, Erik A; Laing, Carlo R; Strogatz, Steven H
2010-01-29
Spiral waves are ubiquitous in two-dimensional systems of chemical or biological oscillators coupled locally by diffusion. At the center of such spirals is a phase singularity, a topological defect where the oscillator amplitude drops to zero. But if the coupling is nonlocal, a new kind of spiral can occur, with a circular core consisting of desynchronized oscillators running at full amplitude. Here, we provide the first analytical description of such a spiral wave chimera and use perturbation theory to calculate its rotation speed and the size of its incoherent core.
On the solution of integral equations with a generalized Cauchy kernel
NASA Technical Reports Server (NTRS)
Kaya, A. C.; Erdogan, F.
1987-01-01
A numerical technique is developed analytically to solve a class of singular integral equations occurring in mixed boundary-value problems for nonhomogeneous elastic media with discontinuities. The approach of Kaya and Erdogan (1987) is extended to treat equations with generalized Cauchy kernels, reformulating the boundary-value problems in terms of potentials as the unknown functions. The numerical implementation of the solution is discussed, and results for an epoxy-Al plate with a crack terminating at the interface and loading normal to the crack are presented in tables.
NASA Technical Reports Server (NTRS)
Turc, Catalin; Anand, Akash; Bruno, Oscar; Chaubell, Julian
2011-01-01
We present a computational methodology (a novel Nystrom approach based on use of a non-overlapping patch technique and Chebyshev discretizations) for efficient solution of problems of acoustic and electromagnetic scattering by open surfaces. Our integral equation formulations (1) Incorporate, as ansatz, the singular nature of open-surface integral-equation solutions, and (2) For the Electric Field Integral Equation (EFIE), use analytical regularizes that effectively reduce the number of iterations required by iterative linear-algebra solution based on Krylov-subspace iterative solvers.
NASA Astrophysics Data System (ADS)
Herold, Elisabeth; Hellmann, Robert; Wagner, Joachim
2017-11-01
We provide analytical expressions for the second virial coefficients of differently shaped hard solids of revolution in dependence on their aspect ratio. The second virial coefficients of convex hard solids, which are the orientational averages of the mutual excluded volume, are derived from volume, surface, and mean radii of curvature employing the Isihara-Hadwiger theorem. Virial coefficients of both prolate and oblate hard solids of revolution are investigated in dependence on their aspect ratio. The influence of one- and two-dimensional removable singularities of the surface curvature to the mutual excluded volume is analyzed. The virial coefficients of infinitely thin oblate and infinitely long prolate particles are compared, and analytical expressions for their ratios are derived. Beyond their dependence on the aspect ratio, the second virial coefficients are influenced by the detailed geometry of the particles.
Herold, Elisabeth; Hellmann, Robert; Wagner, Joachim
2017-11-28
We provide analytical expressions for the second virial coefficients of differently shaped hard solids of revolution in dependence on their aspect ratio. The second virial coefficients of convex hard solids, which are the orientational averages of the mutual excluded volume, are derived from volume, surface, and mean radii of curvature employing the Isihara-Hadwiger theorem. Virial coefficients of both prolate and oblate hard solids of revolution are investigated in dependence on their aspect ratio. The influence of one- and two-dimensional removable singularities of the surface curvature to the mutual excluded volume is analyzed. The virial coefficients of infinitely thin oblate and infinitely long prolate particles are compared, and analytical expressions for their ratios are derived. Beyond their dependence on the aspect ratio, the second virial coefficients are influenced by the detailed geometry of the particles.
NASA Astrophysics Data System (ADS)
Kozlov, Alexander; Nikulin, Alexei
2017-01-01
The reliability and accuracy of GPS attitude determination are still the main relevant theoretical questions in this particular field of study. While the first one derives from the probabilistic nature of phase ambiguity resolution algorithms, outlier measurement detection and effectiveness of multipath reduction, the second is additionally affected by geometric properties of the GNSS antenna configuration. Being trivial in two-antenna system, the relation between GPS attitude determination accuracy and antenna spatial layout becomes much less intuitive for multi-antenna configurations, and seems to have been examined analytically in some specific cases only. For example, most of research papers in the field use Euler angles as attitude representation, which have singularity in some cases, and consider the number of antennas of not more than four. We present some further investigation in this area.
NASA Astrophysics Data System (ADS)
da Silva Fernandes, S.; das Chagas Carvalho, F.; Bateli Romão, J. V.
2018-04-01
A numerical-analytical procedure based on infinitesimal canonical transformations is developed for computing optimal time-fixed low-thrust limited power transfers (no rendezvous) between coplanar orbits with small eccentricities in an inverse-square force field. The optimization problem is formulated as a Mayer problem with a set of non-singular orbital elements as state variables. Second order terms in eccentricity are considered in the development of the maximum Hamiltonian describing the optimal trajectories. The two-point boundary value problem of going from an initial orbit to a final orbit is solved by means of a two-stage Newton-Raphson algorithm which uses an infinitesimal canonical transformation. Numerical results are presented for some transfers between circular orbits with moderate radius ratio, including a preliminary analysis of Earth-Mars and Earth-Venus missions.
What is the right formalism to search for resonances?
NASA Astrophysics Data System (ADS)
Mikhasenko, M.; Pilloni, A.; Nys, J.; Albaladejo, M.; Fernández-Ramírez, C.; Jackura, A.; Mathieu, V.; Sherrill, N.; Skwarnicki, T.; Szczepaniak, A. P.
2018-03-01
Hadron decay chains constitute one of the main sources of information on the QCD spectrum. We discuss the differences between several partial wave analysis formalisms used in the literature to build the amplitudes. We match the helicity amplitudes to the covariant tensor basis. Hereby, we pay attention to the analytical properties of the amplitudes and separate singularities of kinematical and dynamical nature. We study the analytical properties of the spin-orbit (LS) formalism, and some of the covariant tensor approaches. In particular, we explicitly build the amplitudes for the B→ ψ π K and B→ \\bar{D}π π decays, and show that the energy dependence of the covariant approach is model dependent. We also show that the usual recursive construction of covariant tensors explicitly violates crossing symmetry, which would lead to different resonance parameters extracted from scattering and decay processes.
Extended nonlinear feedback model for describing episodes of high inflation
NASA Astrophysics Data System (ADS)
Szybisz, Martín A.; Szybisz, Leszek
2017-01-01
An extension of the nonlinear feedback (NLF) formalism to describe regimes of hyper- and high-inflation in economy is proposed in the present work. In the NLF model the consumer price index (CPI) exhibits a finite time singularity of the type 1 /(tc - t) (1 - β) / β, with β > 0, predicting a blow up of the economy at a critical time tc. However, this model fails in determining tc in the case of weak hyperinflation regimes like, e.g., that occurred in Israel. To overcome this trouble, the NLF model is extended by introducing a parameter γ, which multiplies all terms with past growth rate index (GRI). In this novel approach the solution for CPI is also analytic being proportional to the Gaussian hypergeometric function 2F1(1 / β , 1 / β , 1 + 1 / β ; z) , where z is a function of β, γ, and tc. For z → 1 this hypergeometric function diverges leading to a finite time singularity, from which a value of tc can be determined. This singularity is also present in GRI. It is shown that the interplay between parameters β and γ may produce phenomena of multiple equilibria. An analysis of the severe hyperinflation occurred in Hungary proves that the novel model is robust. When this model is used for examining data of Israel a reasonable tc is got. High-inflation regimes in Mexico and Iceland, which exhibit weaker inflations than that of Israel, are also successfully described.
MULTIPOLE GRAVITATIONAL LENSING AND HIGH-ORDER PERTURBATIONS ON THE QUADRUPOLE LENS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Z.; Lin, W. P.; Li, G. L.
2013-03-10
An arbitrary surface mass density of the gravitational lens can be decomposed into multipole components. We simulate the ray tracing for the multipolar mass distribution of the generalized Singular Isothermal Sphere model based on deflection angles, which are analytically calculated. The magnification patterns in the source plane are then derived from an inverse shooting technique. As has been found, the caustics of odd mode lenses are composed of two overlapping layers for some lens models. When a point source traverses this kind of overlapping caustics, the image numbers change by {+-}4, rather than {+-}2. There are two kinds of causticmore » images. One is the critical curve and the other is the transition locus. It is found that the image number of the fold is exactly the average value of image numbers on two sides of the fold, while the image number of the cusp is equal to the smaller one. We also focus on the magnification patterns of the quadrupole (m = 2) lenses under the perturbations of m = 3, 4, and 5 mode components and found that one, two, and three butterfly or swallowtail singularities can be produced, respectively. With the increasing intensity of the high-order perturbations, the singularities grow up to bring sixfold image regions. If these perturbations are large enough to let two or three of the butterflies or swallowtails make contact, then eightfold or tenfold image regions can be produced as well. The possible astronomical applications are discussed.« less
Confidentiality with respect to third parties: a psychoanalytic view.
Furlong, Allannah
2005-04-01
It is assumed that confidentiality is not one singular ethical entity but a conglomerate of quite different issues depending upon clinical context and the sector of information sharing at stake. The focus here is on how to think psychoanalytically about requests for information from third parties (payers, courts, public security). Defining confidentiality as a promise to 'never tell anything' outside of the relationship omits evaluation of the impact of the third's listening on the combined freedom of thought and freedom of speech in analyst and analysand. Circulation of information outside the dyad need not be toxic, need not disrupt the analytic couple's openness to new meaning. Key to contamination and inhibition of analytic work is whether or not disclosure serves an analytic end. Current defense of confidentiality relies heavily on the models of protection of privacy and professional secrecy, which, though useful and relevant, fail to encompass the transitional, intersubjective space engendered by the analytic process. Suggestions are made for alternate sources of paradigms better suited to represent the latter. Offered for discussion is a draft of a confidentiality policy with respect to third parties that is informed by psychoanalytic theory and clinical practice rather than by local legal jurisdiction or original disciplines' ethics codes.
Query Optimization in Distributed Databases.
1982-10-01
general, the strategy a31 a11 a 3 is more time comsuming than the strategy a, a, and sually we do not use it. Since the semijoin of R.XJ> RS requires...analytic behavior of those heuristic algorithms. Although some analytic results of worst case and average case analysis are difficult to obtain, some...is the study of the analytic behavior of those heuristic algorithms. Although some analytic results of worst case and average case analysis are
On information loss in AdS 3/CFT 2
Fitzpatrick, A. Liam; Kaplan, Jared; Li, Daliang; ...
2016-05-18
We discuss information loss from black hole physics in AdS 3, focusing on two sharp signatures infecting CFT 2 correlators at large central charge c: ‘forbidden singularities’ arising from Euclidean-time periodicity due to the effective Hawking temperature, and late-time exponential decay in the Lorentzian region. We study an infinite class of examples where forbidden singularities can be resolved by non-perturbative effects at finite c, and we show that the resolution has certain universal features that also apply in the general case. Analytically continuing to the Lorentzian regime, we find that the non-perturbative effects that resolve forbidden singularities qualitatively change themore » behavior of correlators at times t ~S BH, the black hole entropy. This may resolve the exponential decay of correlators at late times in black hole backgrounds. By Borel resumming the 1/c expansion of exact examples, we explicitly identify ‘information-restoring’ effects from heavy states that should correspond to classical solutions in AdS 3. Lastly, our results suggest a line of inquiry towards a more precise formulation of the gravitational path integral in AdS 3.« less
Attitude guidance and tracking for spacecraft with two reaction wheels
NASA Astrophysics Data System (ADS)
Biggs, James D.; Bai, Yuliang; Henninger, Helen
2018-04-01
This paper addresses the guidance and tracking problem for a rigid-spacecraft using two reaction wheels (RWs). The guidance problem is formulated as an optimal control problem on the special orthogonal group SO(3). The optimal motion is solved analytically as a function of time and is used to reduce the original guidance problem to one of computing the minimum of a nonlinear function. A tracking control using two RWs is developed that extends previous singular quaternion stabilisation controls to tracking controls on the rotation group. The controller is proved to locally asymptotically track the generated reference motions using Lyapunov's direct method. Simulations of a 3U CubeSat demonstrate that this tracking control is robust to initial rotation errors and angular velocity errors in the controlled axis. For initial angular velocity errors in the uncontrolled axis and under significant disturbances the control fails to track. However, the singular tracking control is combined with a nano-magnetic torquer which simply damps the angular velocity in the uncontrolled axis and is shown to provide a practical control method for tracking in the presence of disturbances and initial condition errors.
Confined disclinations: exterior versus material constraints in developable thin elastic sheets.
Efrati, Efi; Pocivavsek, Luka; Meza, Ruben; Lee, Ka Yee C; Witten, Thomas A
2015-02-01
We examine the shape change of a thin disk with an inserted wedge of material when it is pushed against a plane, using analytical, numerical, and experimental methods. Such sheets occur in packaging, surgery, and nanotechnology. We approximate the sheet as having vanishing strain, so that it takes a conical form in which straight generators converge to a disclination singularity. Then, its shape is that which minimizes elastic bending energy alone. Real sheets are expected to approach this limiting shape as their thickness approaches zero. The planar constraint forces a sector of the sheet to buckle into the third dimension. We find that the unbuckled sector is precisely semicircular, independent of the angle δ of the inserted wedge. We generalize the analysis to include conical as well as planar constraints and thereby establish a law of corresponding states for shallow cones of slope ε and thin wedges. In this regime, the single parameter δ/ε^{2} determines the shape. We discuss the singular limit in which the cone becomes a plane, and the unexpected slow convergence to the semicircular buckling observed in real sheets.
Confined disclinations: Exterior versus material constraints in developable thin elastic sheets
NASA Astrophysics Data System (ADS)
Efrati, Efi; Pocivavsek, Luka; Meza, Ruben; Lee, Ka Yee C.; Witten, Thomas A.
2015-02-01
We examine the shape change of a thin disk with an inserted wedge of material when it is pushed against a plane, using analytical, numerical, and experimental methods. Such sheets occur in packaging, surgery, and nanotechnology. We approximate the sheet as having vanishing strain, so that it takes a conical form in which straight generators converge to a disclination singularity. Then, its shape is that which minimizes elastic bending energy alone. Real sheets are expected to approach this limiting shape as their thickness approaches zero. The planar constraint forces a sector of the sheet to buckle into the third dimension. We find that the unbuckled sector is precisely semicircular, independent of the angle δ of the inserted wedge. We generalize the analysis to include conical as well as planar constraints and thereby establish a law of corresponding states for shallow cones of slope ɛ and thin wedges. In this regime, the single parameter δ /ɛ2 determines the shape. We discuss the singular limit in which the cone becomes a plane, and the unexpected slow convergence to the semicircular buckling observed in real sheets.
Multi-domain boundary element method for axi-symmetric layered linear acoustic systems
NASA Astrophysics Data System (ADS)
Reiter, Paul; Ziegelwanger, Harald
2017-12-01
Homogeneous porous materials like rock wool or synthetic foam are the main tool for acoustic absorption. The conventional absorbing structure for sound-proofing consists of one or multiple absorbers placed in front of a rigid wall, with or without air-gaps in between. Various models exist to describe these so called multi-layered acoustic systems mathematically for incoming plane waves. However, there is no efficient method to calculate the sound field in a half space above a multi layered acoustic system for an incoming spherical wave. In this work, an axi-symmetric multi-domain boundary element method (BEM) for absorbing multi layered acoustic systems and incoming spherical waves is introduced. In the proposed BEM formulation, a complex wave number is used to model absorbing materials as a fluid and a coordinate transformation is introduced which simplifies singular integrals of the conventional BEM to non-singular radial and angular integrals. The radial and angular part are integrated analytically and numerically, respectively. The output of the method can be interpreted as a numerical half space Green's function for grounds consisting of layered materials.
Supercritical flow past a symmetrical bicircular arc airfoil
NASA Technical Reports Server (NTRS)
Holt, Maurice; Yew, Khoy Chuah
1989-01-01
A numerical scheme is developed for computing steady supercritical flow about symmetrical airfoils, applying it to an ellipse for zero angle of attack. An algorithmic description of this new scheme is presented. Application to a symmetrical bicircular arc airfoil is also proposed. The flow field before the shock is region 1. For transonic flow, singularity can be avoided by integrating the resulting ordinary differential equations away from the body. Region 2 contains the shock which will be located by shock fitting techniques. The shock divides region 2 into supersonic and subsonic regions and there is no singularity problem in this case. The Method of Lines is used in this region and it is advantageous to integrate the resulting ordinary differential equation along the body for shock fitting. Coaxial coordinates have to be used for the bicircular arc airfoil so that boundary values on the airfoil body can be taken with one direction of the coaxial coordinates fixed. To avoid taking boundary values at + or - infinity in the coaxial co-ordinary system, approximate analytical representation of the flow field near the tips of the airfoil is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auluck, S. K. H., E-mail: skhauluck@gmail.com
2015-11-15
The Gratton-Vargas snowplow model, recently revisited and expanded [S. K. H. Auluck, Phys. Plasmas 20, 112501 (2013)], has given rise to significant new insights into some aspects of the Dense Plasma Focus (DPF), in spite of being a purely kinematic description having no reference to plasma phenomena. It is able to provide a good fit to the experimental current waveforms in at least 4 large facilities. It has been used for construction of a local curvilinear frame of reference, in which conservation laws for mass, momentum, and energy can be reduced to effectively-one-dimensional hyperbolic conservation law equations. Its utility inmore » global parameter optimization of device parameters has been demonstrated. These features suggest that the Gratton-Vargas model deserves a closer look at its supposed limitations near the singular phase of the DPF. This paper presents a discussion of its development near the device axis, based on the original work of Gratton and Vargas, with some differences. It is shown that the Gratton-Vargas partial differential equation has solutions for times after the current singularity, which exhibit an expanding bounded volume (which can serve as model of an expanding plasma column) and decreasing dynamic inductance of the discharge, in spite of having no built-in hydrodynamics. This enables the model to qualitatively reproduce the characteristic shape of the current derivative in DPF experiments without reference to any plasma phenomena, such as instabilities, anomalous resistance, or reflection of hydrodynamic shock wave from the axis. The axial propagation of the solution exhibits a power-law dependence on the dimensionless time starting from the time of singularity, which is similar to the power-law relations predicted by theory of point explosions in ideal gases and which has also been observed experimentally.« less
NASA Astrophysics Data System (ADS)
Hu, Xian-Quan; Luo, Guang; Cui, Li-Peng; Li, Fang-Yu; Niu, Lian-Bin
2009-03-01
The analytic solution of the radial Schrödinger equation is studied by using the tight coupling condition of several positive-power and inverse-power potential functions in this article. Furthermore, the precisely analytic solutions and the conditions that decide the existence of analytic solution have been searched when the potential of the radial Schrödinger equation is V(r) = α1r8 + α2r3 + α3r2 + β3r-1 + β2r-3 + β1r-4. Generally speaking, there is only an approximate solution, but not analytic solution for Schrödinger equation with several potentials' superposition. However, the conditions that decide the existence of analytic solution have been found and the analytic solution and its energy level structure are obtained for the Schrödinger equation with the potential which is motioned above in this paper. According to the single-value, finite and continuous standard of wave function in a quantum system, the authors firstly solve the asymptotic solution through the radial coordinate r → and r → 0; secondly, they make the asymptotic solutions combining with the series solutions nearby the neighborhood of irregular singularities; and then they compare the power series coefficients, deduce a series of analytic solutions of the stationary state wave function and corresponding energy level structure by tight coupling among the coefficients of potential functions for the radial Schrödinger equation; and lastly, they discuss the solutions and make conclusions.
NASA Astrophysics Data System (ADS)
Ceccobello, C.; Cavecchi, Y.; Heemskerk, M. H. M.; Markoff, S.; Polko, P.; Meier, D.
2018-02-01
The paradigm in which magnetic fields play a crucial role in launching/collimating outflows in many astrophysical objects continues to gain support. However, semi-analytical models including the effect of magnetic fields on the dynamics and morphology of jets are still missing due to the intrinsic difficulties in integrating the equations describing a collimated, relativistic flow in the presence of gravity. Only few solutions have been found so far, due to the highly non-linear character of the equations together with the need to blindly search for singularities. These numerical problems prevented a full exploration of the parameter space. We present a new integration scheme to solve r-self-similar, stationary, axisymmetric magnetohydrodynamic (MHD) equations describing collimated, relativistic outflows crossing smoothly all the singular points (Alfvén point and modified slow/fast points). For the first time, we are able to integrate from the disc mid-plane to downstream of the modified fast point. We discuss an ensemble of jet solutions, emphasizing trends and features that can be compared to observables. We present, for the first time with a semi-analytical MHD model, solutions showing counter-rotation of the jet for a substantial fraction of its extent. We find diverse jet configurations with bulk Lorentz factors up to 10 and potential sites for recollimation between 103 and 107 gravitational radii. Such extended coverage of the intervals of quantities, such as magnetic-to-thermal energy ratios at the base or the heights/widths of the recollimation region, makes our solutions suitable for application to many different systems where jets are launched.
Synthesis of Feedback Controller for Chaotic Systems by Means of Evolutionary Techniques
NASA Astrophysics Data System (ADS)
Senkerik, Roman; Oplatkova, Zuzana; Zelinka, Ivan; Davendra, Donald; Jasek, Roman
2011-06-01
This research deals with a synthesis of control law for three selected discrete chaotic systems by means of analytic programming. The novality of the approach is that a tool for symbolic regression—analytic programming—is used for such kind of difficult problem. The paper consists of the descriptions of analytic programming as well as chaotic systems and used cost function. For experimentation, Self-Organizing Migrating Algorithm (SOMA) with analytic programming was used.
Single Molecule Detection in Living Biological Cells using Carbon Nanotube Optical Probes
NASA Astrophysics Data System (ADS)
Strano, Michael
2009-03-01
Nanoscale sensing elements offer promise for single molecule analyte detection in physically or biologically constrained environments. Molecular adsorption can be amplified via modulation of sharp singularities in the electronic density of states that arise from 1D quantum confinement [1]. Single-walled carbon nanotubes (SWNT), as single molecule optical sensors [2-3], offer unique advantages such as photostable near-infrared (n-IR) emission for prolonged detection through biological media, single-molecule sensitivity and, nearly orthogonal optical modes for signal transduction that can be used to identify distinct classes of analytes. Selective binding to the SWNT surface is difficult to engineer [4]. In this lecture, we will briefly review the immerging field of fluorescent diagnostics using band gap emission from SWNT. In recent work, we demonstrate that even a single pair of SWNT provides at least four optical modes that can be modulated to uniquely fingerprint chemical agents by the degree to which they alter either the emission band intensity or wavelength. We validate this identification method in vitro by demonstrating detection and identification of six genotoxic analytes, including chemotherapeutic drugs and reactive oxygen species (ROS), which are spectroscopically differentiated into four distinct classes. We also demonstrate single-molecule sensitivity in detecting hydrogen peroxide, one of the most common genotoxins and an important cellular signal. Finally, we employ our sensing and fingerprinting method of these analytes in real time within live 3T3 cells, demonstrating the first multiplexed optical detection from a nanoscale biosensor and the first label-free tool to optically discriminate between genotoxins. We will also discuss our recent efforts to fabricate biomedical sensors for real time detection of glucose and other important physiologically relevant analytes in-vivo. The response of embedded SWNT in a swellable hydrogel construct to osmotic pressure gradients will be discussed, as well as its potential as a unique transduction mechanism for a new class of implantable sensors. [4pt] [1] Saito, R., Dresselhaus, G. & Dresselhaus, M. S. Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998). [0pt] [2] Barone, P. W., Baik, S., Heller, D. A. & Strano, M. S. Near-Infrared Optical Sensors Based on Single-Walled Carbon Nanotubes. Nature Materials 4, 86-92 (2005). [0pt] [3] Jeng, E. S., Moll, A. E., Roy, A. C., Gastala, J. B. & Strano, M. S. Detection of DNA hybridization using the near infrared band-gap fluorescence of single-walled carbon nanotubes. Nano Letters 6, 371-375 (2006). [0pt] [4] Heller, D. A. et al. Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311, 508-511 (2006).
The Semantics of Plurals: A Defense of Singularism
ERIC Educational Resources Information Center
Florio, Salvatore
2010-01-01
In this dissertation, I defend "semantic singularism", which is the view that syntactically plural terms, such as "they" or "Russell and Whitehead", are semantically singular. A semantically singular term is a term that denotes a single entity. Semantic singularism is to be distinguished from "syntactic singularism", according to which…
Ground-state magnetization of the Ising spin glass: A recursive numerical method and Chen-Ma scaling
NASA Astrophysics Data System (ADS)
Sepehrinia, Reza; Chalangari, Fartash
2018-03-01
The ground-state properties of quasi-one-dimensional (Q1D) Ising spin glass are investigated using an exact numerical approach and analytical arguments. A set of coupled recursive equations for the ground-state energy are introduced and solved numerically. For various types of coupling distribution, we obtain accurate results for magnetization, particularly in the presence of a weak external magnetic field. We show that in the weak magnetic field limit, similar to the 1D model, magnetization exhibits a singular power-law behavior with divergent susceptibility. Remarkably, the spectrum of magnetic exponents is markedly different from that of the 1D system even in the case of two coupled chains. The magnetic exponent makes a crossover from being dependent on a distribution function to a constant value independent of distribution. We provide an analytic theory for these observations by extending the Chen-Ma argument to the Q1D case. We derive an analytical formula for the exponent which is in perfect agreement with the numerical results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Mohammad, E-mail: mohammadhasan786@gmail.com; Ghatak, Ananya, E-mail: gananya04@gmail.com; Mandal, Bhabani Prasad, E-mail: bhabani.mandal@gmail.com
2014-05-15
We consider a non-Hermitian medium with a gain and loss symmetric, exponentially damped potential distribution to demonstrate different scattering features analytically. The condition for critical coupling (CC) for unidirectional wave and coherent perfect absorption (CPA) for bidirectional waves are obtained analytically for this system. The energy points at which total absorption occurs are shown to be the spectral singular points for the time reversed system. The possible energies at which CC occurs for left and right incidence are different. We further obtain periodic intervals with increasing periodicity of energy for CC and CPA to occur in this system. -- Highlights:more » •Energy ranges for CC and CPA are obtained explicitly for complex WS potential. •Analytical conditions for CC and CPA for PT symmetric WS potential are obtained. •Conditions for left and right CC are shown to be different. •Conditions for CC and CPA are shown to be that of SS for the time reversed system. •Our model shows the great flexibility of frequencies for CC and CPA.« less
Nonlinear feedback control for high alpha flight
NASA Technical Reports Server (NTRS)
Stalford, Harold
1990-01-01
Analytical aerodynamic models are derived from a high alpha 6 DOF wind tunnel model. One detail model requires some interpolation between nonlinear functions of alpha. One analytical model requires no interpolation and as such is a completely continuous model. Flight path optimization is conducted on the basic maneuvers: half-loop, 90 degree pitch-up, and level turn. The optimal control analysis uses the derived analytical model in the equations of motion and is based on both moment and force equations. The maximum principle solution for the half-loop is poststall trajectory performing the half-loop in 13.6 seconds. The agility induced by thrust vectoring capability provided a minimum effect on reducing the maneuver time. By means of thrust vectoring control the 90 degrees pitch-up maneuver can be executed in a small place over a short time interval. The agility capability of thrust vectoring is quite beneficial for pitch-up maneuvers. The level turn results are based currently on only outer layer solutions of singular perturbation. Poststall solutions provide high turn rates but generate higher losses of energy than that of classical sustained solutions.
NASA Astrophysics Data System (ADS)
Xie, Wen-Jie; Jiang, Zhi-Qiang; Gu, Gao-Feng; Xiong, Xiong; Zhou, Wei-Xing
2015-10-01
Many complex systems generate multifractal time series which are long-range cross-correlated. Numerous methods have been proposed to characterize the multifractal nature of these long-range cross correlations. However, several important issues about these methods are not well understood and most methods consider only one moment order. We study the joint multifractal analysis based on partition function with two moment orders, which was initially invented to investigate fluid fields, and derive analytically several important properties. We apply the method numerically to binomial measures with multifractal cross correlations and bivariate fractional Brownian motions without multifractal cross correlations. For binomial multifractal measures, the explicit expressions of mass function, singularity strength and multifractal spectrum of the cross correlations are derived, which agree excellently with the numerical results. We also apply the method to stock market indexes and unveil intriguing multifractality in the cross correlations of index volatilities.
What is the right formalism to search for resonances?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhasenko, M.; Pilloni, A.; Nys, J.
Hmore » adron decay chains constitute one of the main sources of information on the QCD spectrum. We discuss the differences between several partial wave analysis formalisms used in the literature to build the amplitudes. We match the helicity amplitudes to the covariant tensor basis. ereby, we pay attention to the analytical properties of the amplitudes and separate singularities of kinematical and dynamical nature. We study the analytical properties of the spin-orbit (LS) formalism, and some of the covariant tensor approaches. In particular, we explicitly build the amplitudes for the B → ψ π K and B → D ¯ π π decays, and show that the energy dependence of the covariant approach is model dependent. We also show that the usual recursive construction of covariant tensors explicitly violates crossing symmetry, which would lead to different resonance parameters extracted from scattering and decay processes.« less
What is the right formalism to search for resonances?
Mikhasenko, M.; Pilloni, A.; Nys, J.; ...
2018-03-17
Hmore » adron decay chains constitute one of the main sources of information on the QCD spectrum. We discuss the differences between several partial wave analysis formalisms used in the literature to build the amplitudes. We match the helicity amplitudes to the covariant tensor basis. ereby, we pay attention to the analytical properties of the amplitudes and separate singularities of kinematical and dynamical nature. We study the analytical properties of the spin-orbit (LS) formalism, and some of the covariant tensor approaches. In particular, we explicitly build the amplitudes for the B → ψ π K and B → D ¯ π π decays, and show that the energy dependence of the covariant approach is model dependent. We also show that the usual recursive construction of covariant tensors explicitly violates crossing symmetry, which would lead to different resonance parameters extracted from scattering and decay processes.« less
Pinching solutions of slender cylindrical jets
NASA Technical Reports Server (NTRS)
Papageorgiou, Demetrios T.; Orellana, Oscar
1993-01-01
Simplified equations for slender jets are derived for a circular jet of one fluid flowing into an ambient second fluid, the flow being confined in a circular tank. Inviscid flows are studied which include both surface tension effects and Kelvin-Helmholtz instability. For slender jets a coupled nonlinear system of equations is found for the jet shape and the axial velocity jump across it. The equations can break down after a finite time and similarity solutions are constructed, and studied analytically and numerically. The break-ups found pertain to the jet pinching after a finite time, without violation of the slender jet ansatz. The system is conservative and admissible singular solutions are those which conserve the total energy, mass, and momentum. Such solutions are constructed analytically and numerically, and in the case of vortex sheets with no surface tension certain solutions are given in closed form.
Evaluation of a Singular Value Decomposition Approach for Impact Dynamic Data Correlation
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Lyle, Karen H.; Lessard, Wendy B.
2003-01-01
Impact dynamic tests are used in the automobile and aircraft industries to assess survivability of occupants during crash, to assert adequacy of the design, and to gain federal certification. Although there is no substitute for experimental tests, analytical models are often developed and used to study alternate test conditions, to conduct trade-off studies, and to improve designs. To validate results from analytical predictions, test and analysis results must be compared to determine the model adequacy. The mathematical approach evaluated in this paper decomposes observed time responses into dominant deformation shapes and their corresponding contribution to the measured response. To correlate results, orthogonality of test and analysis shapes is used as a criterion. Data from an impact test of a composite fuselage is used and compared to finite element predictions. In this example, the impact response was decomposed into multiple shapes but only two dominant shapes explained over 85% of the measured response
Topological defects in alternative theories to cosmic inflation and string cosmology
NASA Astrophysics Data System (ADS)
Alexander, Stephon H. S.
The physics of the Early Universe is described in terms of the inflationary paradigm, which is based on a marriage between Einstein's general theory of relativity minimally coupled to quantum field theory. Inflation was posed to solve some of the outstanding problems of the Standard Big Bang Cosmology (SBB) such as the horizon, formation of structure and monopole problems. Despite its observational and theoretical successes, inflation is plagued with fine tuning and initial singularity problems. On the other hand, superstring/M theory, a theory of quantum gravity, possesses symmetries which naturally avoid space-time singularities. This thesis investigates alternative theories to cosmic inflation for solving the initial singularity, horizon and monopole problems, making use of topological defects. It was proposed by Dvali, Liu and Vaschaspati that the monopole problem can be solved without inflation if domain walls "sweep" up the monopoles in the early universe, thus reducing their number density significantly. Necessary for this mechanism to work is the presence of an attractive force between the monopole and the domain wall as well as a channel for the monopole's unwinding. We show numerically and analytically in two field theory models that for global defects the attraction is a universal result but the unwinding is model specific. The second part of this thesis investigates a string/M theory inspired model for solving the horizon problem. It was proposed by Moffat, Albrecht and Magueijo that the horizon problem is solved with a "phase transition" associated with a varying speed of light before the surface of last scattering. We provide a string/M theory mechanism based on assuming that our space-time is a D-3 brane probing a bulk supergravity black hole bulk background. This mechanism provides the necessary time variation of the velocity of light to solve the horizon problem. We suggest a mechanism which stablilizes the speed of light on the D-3 brane. We finally address the cosmological initial singularity problem using the target space duality inherent in string/M theory. It was suggested by Brandenberger and Vafa that superstring theory can solve the singularity problem and in addition explain why only three spatial dimensions can become large. We show that under specific conditions this mechanism still persists when including the effects of D-branes.
Singularities in Optimal Structural Design
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Guptill, J. D.; Berke, L.
1992-01-01
Singularity conditions that arise during structural optimization can seriously degrade the performance of the optimizer. The singularities are intrinsic to the formulation of the structural optimization problem and are not associated with the method of analysis. Certain conditions that give rise to singularities have been identified in earlier papers, encompassing the entire structure. Further examination revealed more complex sets of conditions in which singularities occur. Some of these singularities are local in nature, being associated with only a segment of the structure. Moreover, the likelihood that one of these local singularities may arise during an optimization procedure can be much greater than that of the global singularity identified earlier. Examples are provided of these additional forms of singularities. A framework is also given in which these singularities can be recognized. In particular, the singularities can be identified by examination of the stress displacement relations along with the compatibility conditions and/or the displacement stress relations derived in the integrated force method of structural analysis.
Singularities in optimal structural design
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Guptill, J. D.; Berke, L.
1992-01-01
Singularity conditions that arise during structural optimization can seriously degrade the performance of the optimizer. The singularities are intrinsic to the formulation of the structural optimization problem and are not associated with the method of analysis. Certain conditions that give rise to singularities have been identified in earlier papers, encompassing the entire structure. Further examination revealed more complex sets of conditions in which singularities occur. Some of these singularities are local in nature, being associated with only a segment of the structure. Moreover, the likelihood that one of these local singularities may arise during an optimization procedure can be much greater than that of the global singularity identified earlier. Examples are provided of these additional forms of singularities. A framework is also given in which these singularities can be recognized. In particular, the singularities can be identified by examination of the stress displacement relations along with the compatibility conditions and/or the displacement stress relations derived in the integrated force method of structural analysis.
Naked singularity resolution in cylindrical collapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurita, Yasunari; Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502; Nakao, Ken-ichi
In this paper, we study the gravitational collapse of null dust in cylindrically symmetric spacetime. The naked singularity necessarily forms at the symmetry axis. We consider the situation in which null dust is emitted again from the naked singularity formed by the collapsed null dust and investigate the backreaction by this emission for the naked singularity. We show a very peculiar but physically important case in which the same amount of null dust as that of the collapsed one is emitted from the naked singularity as soon as the ingoing null dust hits the symmetry axis and forms the nakedmore » singularity. In this case, although this naked singularity satisfies the strong curvature condition by Krolak (limiting focusing condition), geodesics which hit the singularity can be extended uniquely across the singularity. Therefore, we may say that the collapsing null dust passes through the singularity formed by itself and then leaves for infinity. Finally, the singularity completely disappears and the flat spacetime remains.« less
NASA Astrophysics Data System (ADS)
Morales-Delgado, V. F.; Gómez-Aguilar, J. F.; Taneco-Hernandez, M. A.
2017-12-01
In this work we propose fractional differential equations for the motion of a charged particle in electric, magnetic and electromagnetic fields. Exact solutions are obtained for the fractional differential equations by employing the Laplace transform method. The temporal fractional differential equations are considered in the Caputo-Fabrizio-Caputo and Atangana-Baleanu-Caputo sense. Application examples consider constant, ramp and harmonic fields. In addition, we present numerical results for different values of the fractional order. In all cases, when α = 1, we recover the standard electrodynamics.
NASA Astrophysics Data System (ADS)
Zverev, V. V.; Izmozherov, I. M.; Filippov, B. N.
2018-02-01
Three-dimensional computer simulation of dynamic processes in a moving domain boundary separating domains in a soft magnetic uniaxial film with planar anisotropy is performed by numerical solution of Landau-Lifshitz-Gilbert equations. The developed visualization methods are used to establish the connection between the motion of surface vortices and antivortices, singular (Bloch) points, and core lines of intrafilm vortex structures. A relation between the character of magnetization dynamics and the film thickness is found. The analytical models of spatial vortex structures for imitation of topological properties of the structures observed in micromagnetic simulation are constructed.
NASA Astrophysics Data System (ADS)
Grigoryan, M. S.
2018-04-01
This paper considers two connected contact problems on the interaction of stringers with an elastic semi-infinite plate. In the first problem, an elastic half-infinite continuous plate is reinforced on its boundary by two identical stringers exposed to a tensile external force. In the second problem, in the presence of the same stringers, the plate contains a collinear system of cracks on its vertical axis. The solution of both problems is reduced to the solution of singular integral equations (SIE) that are solved by a known numerical-analytical method.
Trajectory optimization and guidance law development for national aerospace plane applications
NASA Technical Reports Server (NTRS)
Calise, A. J.; Flandro, G. A.; Corban, J. E.
1988-01-01
The work completed to date is comprised of the following: a simple vehicle model representative of the aerospace plane concept in the hypersonic flight regime, fuel-optimal climb profiles for the unconstrained and dynamic pressure constrained cases generated using a reduced order dynamic model, an analytic switching condition for transition to rocket powered flight as orbital velocity is approached, simple feedback guidance laws for both the unconstrained and dynamic pressure constrained cases derived via singular perturbation theory and a nonlinear transformation technique, and numerical simulation results for ascent to orbit in the dynamic pressure constrained case.
On the Support of Minimizers of Causal Variational Principles
NASA Astrophysics Data System (ADS)
Finster, Felix; Schiefeneder, Daniela
2013-11-01
A class of causal variational principles on a compact manifold is introduced and analyzed both numerically and analytically. It is proved under general assumptions that the support of a minimizing measure is either completely timelike, or it is singular in the sense that its interior is empty. In the examples of the circle, the sphere and certain flag manifolds, the general results are supplemented by a more detailed and explicit analysis of the minimizers. On the sphere, we get a connection to packing problems and the Tammes distribution. Moreover, the minimal action is estimated from above and below.
Hierarchical Poly Tree Configurations for the Solution of Dynamically Refined Finte Element Models
NASA Technical Reports Server (NTRS)
Gute, G. D.; Padovan, J.
1993-01-01
This paper demonstrates how a multilevel substructuring technique, called the Hierarchical Poly Tree (HPT), can be used to integrate a localized mesh refinement into the original finite element model more efficiently. The optimal HPT configurations for solving isoparametrically square h-, p-, and hp-extensions on single and multiprocessor computers is derived. In addition, the reduced number of stiffness matrix elements that must be stored when employing this type of solution strategy is quantified. Moreover, the HPT inherently provides localize 'error-trapping' and a logical, efficient means with which to isolate physically anomalous and analytically singular behavior.
The Analytic Hierarchy Process and Participatory Decisionmaking
Daniel L. Schmoldt; Daniel L. Peterson; Robert L. Smith
1995-01-01
Managing natural resource lands requires social, as well as biophysical, considerations. Unfortunately, it is extremely difficult to accurately assess and quantify changing social preferences, and to aggregate conflicting opinions held by diverse social groups. The Analytic Hierarchy Process (AHP) provides a systematic, explicit, rigorous, and robust mechanism for...
Daily rainfall forecasting for one year in a single run using Singular Spectrum Analysis
NASA Astrophysics Data System (ADS)
Unnikrishnan, Poornima; Jothiprakash, V.
2018-06-01
Effective modelling and prediction of smaller time step rainfall is reported to be very difficult owing to its highly erratic nature. Accurate forecast of daily rainfall for longer duration (multi time step) may be exceptionally helpful in the efficient planning and management of water resources systems. Identification of inherent patterns in a rainfall time series is also important for an effective water resources planning and management system. In the present study, Singular Spectrum Analysis (SSA) is utilized to forecast the daily rainfall time series pertaining to Koyna watershed in Maharashtra, India, for 365 days after extracting various components of the rainfall time series such as trend, periodic component, noise and cyclic component. In order to forecast the time series for longer time step (365 days-one window length), the signal and noise components of the time series are forecasted separately and then added together. The results of the study show that the method of SSA could extract the various components of the time series effectively and could also forecast the daily rainfall time series for longer duration such as one year in a single run with reasonable accuracy.
Cycle of phase, coherence and polarization singularities in Young's three-pinhole experiment.
Pang, Xiaoyan; Gbur, Greg; Visser, Taco D
2015-12-28
It is now well-established that a variety of singularities can be characterized and observed in optical wavefields. It is also known that these phase singularities, polarization singularities and coherence singularities are physically related, but the exact nature of their relationship is still somewhat unclear. We show how a Young-type three-pinhole interference experiment can be used to create a continuous cycle of transformations between classes of singularities, often accompanied by topological reactions in which different singularities are created and annihilated. This arrangement serves to clarify the relationships between the different singularity types, and provides a simple tool for further exploration.
On important precursor of singular optics (tutorial)
NASA Astrophysics Data System (ADS)
Polyanskii, Peter V.; Felde, Christina V.; Bogatyryova, Halina V.; Konovchuk, Alexey V.
2018-01-01
The rise of singular optics is usually associated with the seminal paper by J. F. Nye and M. V. Berry [Proc. R. Soc. Lond. A, 336, 165-189 (1974)]. Intense development of this area of modern photonics has started since the early eighties of the XX century due to invention of the interfrence technique for detection and diagnostics of phase singularities, such as optical vortices in complex speckle-structured light fields. The next powerful incentive for formation of singular optics into separate area of the science on light was connectected with discovering of very practical technique for creation of singular optical beams of various kinds on the base of computer-generated holograms. In the eghties and ninetieth of the XX century, singular optics evolved, almost entirely, under the approximation of complete coherency of light field. Only at the threshold of the XXI century, it has been comprehended that the singular-optics approaches can be fruitfully expanded onto partially spatially coherent, partially polarized and polychromatic light fields supporting singularities of new kinds, that has been resulted in establishing of correlation singular optics. Here we show that correlation singular optics has much deeper roots, ascending to "pre-singular" and even pre-laser epoch and associated with the concept of partial coherence and polarization. It is remarcable that correlation singular optics in its present interpretation has forestalled the standard coherent singular optics. This paper is timed to the sixtieth anniversary of the most profound precursor of modern correlation singular optics [J. Opt. Soc. Am., 47, 895-902 (1957)].
Enabling Analytics on Sensitive Medical Data with Secure Multi-Party Computation.
Veeningen, Meilof; Chatterjea, Supriyo; Horváth, Anna Zsófia; Spindler, Gerald; Boersma, Eric; van der Spek, Peter; van der Galiën, Onno; Gutteling, Job; Kraaij, Wessel; Veugen, Thijs
2018-01-01
While there is a clear need to apply data analytics in the healthcare sector, this is often difficult because it requires combining sensitive data from multiple data sources. In this paper, we show how the cryptographic technique of secure multi-party computation can enable such data analytics by performing analytics without the need to share the underlying data. We discuss the issue of compliance to European privacy legislation; report on three pilots bringing these techniques closer to practice; and discuss the main challenges ahead to make fully privacy-preserving data analytics in the medical sector commonplace.
Triangular dislocation: an analytical, artefact-free solution
NASA Astrophysics Data System (ADS)
Nikkhoo, Mehdi; Walter, Thomas R.
2015-05-01
Displacements and stress-field changes associated with earthquakes, volcanoes, landslides and human activity are often simulated using numerical models in an attempt to understand the underlying processes and their governing physics. The application of elastic dislocation theory to these problems, however, may be biased because of numerical instabilities in the calculations. Here, we present a new method that is free of artefact singularities and numerical instabilities in analytical solutions for triangular dislocations (TDs) in both full-space and half-space. We apply the method to both the displacement and the stress fields. The entire 3-D Euclidean space {R}3 is divided into two complementary subspaces, in the sense that in each one, a particular analytical formulation fulfils the requirements for the ideal, artefact-free solution for a TD. The primary advantage of the presented method is that the development of our solutions involves neither numerical approximations nor series expansion methods. As a result, the final outputs are independent of the scale of the input parameters, including the size and position of the dislocation as well as its corresponding slip vector components. Our solutions are therefore well suited for application at various scales in geoscience, physics and engineering. We validate the solutions through comparison to other well-known analytical methods and provide the MATLAB codes.
Evolution of singularities in a partially coherent vortex beam.
van Dijk, Thomas; Visser, Taco D
2009-04-01
We study the evolution of phase singularities and coherence singularities in a Laguerre-Gauss beam that is rendered partially coherent by letting it pass through a spatial light modulator. The original beam has an on-axis minumum of intensity--a phase singularity--that transforms into a maximum of the far-field intensity. In contrast, although the original beam has no coherence singularities, such singularities are found to develop as the beam propagates. This disappearance of one kind of singularity and the gradual appearance of another is illustrated with numerical examples.
[Ethics, empiricism and uncertainty].
Porz, R; Zimmermann, H; Exadaktylos, A K
2011-01-01
Accidents can lead to difficult boundary situations. Such situations often take place in the emergency units. The medical team thus often and inevitably faces professional uncertainty in their decision-making. It is essential to communicate these uncertainties within the medical team, instead of downplaying or overriding existential hurdles in decision-making. Acknowledging uncertainties might lead to alert and prudent decisions. Thus uncertainty can have ethical value in treatment or withdrawal of treatment. It does not need to be covered in evidence-based arguments, especially as some singular situations of individual tragedies cannot be grasped in terms of evidence-based medicine. © Georg Thieme Verlag KG Stuttgart · New York.
[A little story of microsurgery].
Qassemyar, Q
2014-10-01
It is difficult to write about the history of microsurgery because many things have already been said. Exhaustive lists of names, dates and "first clinical" are available but some details may be more relevant to appreciate the human adventure that represents microsurgery. Its finality is a precise, methodical and rigorous technical procedure but its origin is audacity, imagination and force of conviction. What seems a priori a paradox is the singularity of a speciality whose applications have forever changed the face of reconstructive surgery. So, some details are reported and are basis of reflection about this great surgical advance. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
On the Weyl curvature hypothesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoica, Ovidiu Cristinel, E-mail: holotronix@gmail.com
2013-11-15
The Weyl curvature hypothesis of Penrose attempts to explain the high homogeneity and isotropy, and the very low entropy of the early universe, by conjecturing the vanishing of the Weyl tensor at the Big-Bang singularity. In previous papers it has been proposed an equivalent form of Einstein’s equation, which extends it and remains valid at an important class of singularities (including in particular the Schwarzschild, FLRW, and isotropic singularities). Here it is shown that if the Big-Bang singularity is from this class, it also satisfies the Weyl curvature hypothesis. As an application, we study a very general example of cosmologicalmore » models, which generalizes the FLRW model by dropping the isotropy and homogeneity constraints. This model also generalizes isotropic singularities, and a class of singularities occurring in Bianchi cosmologies. We show that the Big-Bang singularity of this model is of the type under consideration, and satisfies therefore the Weyl curvature hypothesis. -- Highlights: •The singularities we introduce are described by finite geometric/physical objects. •Our singularities have smooth Riemann and Weyl curvatures. •We show they satisfy Penrose’s Weyl curvature hypothesis (Weyl=0 at singularities). •Examples: FLRW, isotropic singularities, an extension of Schwarzschild’s metric. •Example: a large class of singularities which may be anisotropic and inhomogeneous.« less
A Fast SVD-Hidden-nodes based Extreme Learning Machine for Large-Scale Data Analytics.
Deng, Wan-Yu; Bai, Zuo; Huang, Guang-Bin; Zheng, Qing-Hua
2016-05-01
Big dimensional data is a growing trend that is emerging in many real world contexts, extending from web mining, gene expression analysis, protein-protein interaction to high-frequency financial data. Nowadays, there is a growing consensus that the increasing dimensionality poses impeding effects on the performances of classifiers, which is termed as the "peaking phenomenon" in the field of machine intelligence. To address the issue, dimensionality reduction is commonly employed as a preprocessing step on the Big dimensional data before building the classifiers. In this paper, we propose an Extreme Learning Machine (ELM) approach for large-scale data analytic. In contrast to existing approaches, we embed hidden nodes that are designed using singular value decomposition (SVD) into the classical ELM. These SVD nodes in the hidden layer are shown to capture the underlying characteristics of the Big dimensional data well, exhibiting excellent generalization performances. The drawback of using SVD on the entire dataset, however, is the high computational complexity involved. To address this, a fast divide and conquer approximation scheme is introduced to maintain computational tractability on high volume data. The resultant algorithm proposed is labeled here as Fast Singular Value Decomposition-Hidden-nodes based Extreme Learning Machine or FSVD-H-ELM in short. In FSVD-H-ELM, instead of identifying the SVD hidden nodes directly from the entire dataset, SVD hidden nodes are derived from multiple random subsets of data sampled from the original dataset. Comprehensive experiments and comparisons are conducted to assess the FSVD-H-ELM against other state-of-the-art algorithms. The results obtained demonstrated the superior generalization performance and efficiency of the FSVD-H-ELM. Copyright © 2016 Elsevier Ltd. All rights reserved.
Resolution of quantum singularities
NASA Astrophysics Data System (ADS)
Konkowski, Deborah; Helliwell, Thomas
2017-01-01
A review of quantum singularities in static and conformally static spacetimes is given. A spacetime is said to be quantum mechanically non-singular if a quantum wave packet does not feel, in some sense, the presence of a singularity; mathematically, this means that the wave operator is essentially self-adjoint on the space of square integrable functions. Spacetimes with classical mild singularities (quasiregular ones) to spacetimes with classical strong curvature singularities have been tested. Here we discuss the similarities and differences between classical singularities that are healed quantum mechanically and those that are not. Possible extensions of the mathematical technique to more physically realistic spacetimes are discussed.
Enhancing reproducibility in scientific computing: Metrics and registry for Singularity containers.
Sochat, Vanessa V; Prybol, Cameron J; Kurtzer, Gregory M
2017-01-01
Here we present Singularity Hub, a framework to build and deploy Singularity containers for mobility of compute, and the singularity-python software with novel metrics for assessing reproducibility of such containers. Singularity containers make it possible for scientists and developers to package reproducible software, and Singularity Hub adds automation to this workflow by building, capturing metadata for, visualizing, and serving containers programmatically. Our novel metrics, based on custom filters of content hashes of container contents, allow for comparison of an entire container, including operating system, custom software, and metadata. First we will review Singularity Hub's primary use cases and how the infrastructure has been designed to support modern, common workflows. Next, we conduct three analyses to demonstrate build consistency, reproducibility metric and performance and interpretability, and potential for discovery. This is the first effort to demonstrate a rigorous assessment of measurable similarity between containers and operating systems. We provide these capabilities within Singularity Hub, as well as the source software singularity-python that provides the underlying functionality. Singularity Hub is available at https://singularity-hub.org, and we are excited to provide it as an openly available platform for building, and deploying scientific containers.
Enhancing reproducibility in scientific computing: Metrics and registry for Singularity containers
Prybol, Cameron J.; Kurtzer, Gregory M.
2017-01-01
Here we present Singularity Hub, a framework to build and deploy Singularity containers for mobility of compute, and the singularity-python software with novel metrics for assessing reproducibility of such containers. Singularity containers make it possible for scientists and developers to package reproducible software, and Singularity Hub adds automation to this workflow by building, capturing metadata for, visualizing, and serving containers programmatically. Our novel metrics, based on custom filters of content hashes of container contents, allow for comparison of an entire container, including operating system, custom software, and metadata. First we will review Singularity Hub’s primary use cases and how the infrastructure has been designed to support modern, common workflows. Next, we conduct three analyses to demonstrate build consistency, reproducibility metric and performance and interpretability, and potential for discovery. This is the first effort to demonstrate a rigorous assessment of measurable similarity between containers and operating systems. We provide these capabilities within Singularity Hub, as well as the source software singularity-python that provides the underlying functionality. Singularity Hub is available at https://singularity-hub.org, and we are excited to provide it as an openly available platform for building, and deploying scientific containers. PMID:29186161
Big bounce with finite-time singularity: The F(R) gravity description
NASA Astrophysics Data System (ADS)
Odintsov, S. D.; Oikonomou, V. K.
An alternative to the Big Bang cosmologies is obtained by the Big Bounce cosmologies. In this paper, we study a bounce cosmology with a Type IV singularity occurring at the bouncing point in the context of F(R) modified gravity. We investigate the evolution of the Hubble radius and we examine the issue of primordial cosmological perturbations in detail. As we demonstrate, for the singular bounce, the primordial perturbations originating from the cosmological era near the bounce do not produce a scale-invariant spectrum and also the short wavelength modes after these exit the horizon, do not freeze, but grow linearly with time. After presenting the cosmological perturbations study, we discuss the viability of the singular bounce model, and our results indicate that the singular bounce must be combined with another cosmological scenario, or should be modified appropriately, in order that it leads to a viable cosmology. The study of the slow-roll parameters leads to the same result indicating that the singular bounce theory is unstable at the singularity point for certain values of the parameters. We also conformally transform the Jordan frame singular bounce, and as we demonstrate, the Einstein frame metric leads to a Big Rip singularity. Therefore, the Type IV singularity in the Jordan frame becomes a Big Rip singularity in the Einstein frame. Finally, we briefly study a generalized singular cosmological model, which contains two Type IV singularities, with quite appealing features.
The magnetic field of a permanent hollow cylindrical magnet
NASA Astrophysics Data System (ADS)
Reich, Felix A.; Stahn, Oliver; Müller, Wolfgang H.
2016-09-01
Based on the rational version of M AXWELL's equations according to T RUESDELL and T OUPIN or KOVETZ, cf. (Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000; Truesdell and Toupin in Handbuch der Physik, Bd. III/1, Springer, Berlin, pp 226-793; appendix, pp 794-858, 2000), we present, for stationary processes, a closed-form solution for the magnetic flux density of a hollow cylindrical magnet. Its magnetization is constant in axial direction. We consider M AXWELL's equations in regular and singular points that are obtained by rational electrodynamics, adapted to stationary processes. The magnetic flux density is calculated analytically by means of a vector potential. We obtain a solution in terms of complete elliptic integrals. Therefore, numerical evaluation can be performed in a computationally efficient manner. The solution is written in dimensionless form and can easily be applied to cylinders of arbitrary shape. The relation between the magnetic flux density and the magnetic field is linear, and an explicit relation for the field is presented. With a slight modification the result can be used to obtain the field of a solid cylindrical magnet. The mathematical structure of the solution and, in particular, singularities are discussed.
Bridges, Thomas J.
2016-01-01
Multiphase wavetrains are multiperiodic travelling waves with a set of distinct wavenumbers and distinct frequencies. In conservative systems, such families are associated with the conservation of wave action or other conservation law. At generic points (where the Jacobian of the wave action flux is non-degenerate), modulation of the wavetrain leads to the dispersionless multiphase conservation of wave action. The main result of this paper is that modulation of the multiphase wavetrain, when the Jacobian of the wave action flux vector is singular, morphs the vector-valued conservation law into the scalar Korteweg–de Vries (KdV) equation. The coefficients in the emergent KdV equation have a geometrical interpretation in terms of projection of the vector components of the conservation law. The theory herein is restricted to two phases to simplify presentation, with extensions to any finite dimension discussed in the concluding remarks. Two applications of the theory are presented: a coupled nonlinear Schrödinger equation and two-layer shallow-water hydrodynamics with a free surface. Both have two-phase solutions where criticality and the properties of the emergent KdV equation can be determined analytically. PMID:28119546
Computational approach to compact Riemann surfaces
NASA Astrophysics Data System (ADS)
Frauendiener, Jörg; Klein, Christian
2017-01-01
A purely numerical approach to compact Riemann surfaces starting from plane algebraic curves is presented. The critical points of the algebraic curve are computed via a two-dimensional Newton iteration. The starting values for this iteration are obtained from the resultants with respect to both coordinates of the algebraic curve and a suitable pairing of their zeros. A set of generators of the fundamental group for the complement of these critical points in the complex plane is constructed from circles around these points and connecting lines obtained from a minimal spanning tree. The monodromies are computed by solving the defining equation of the algebraic curve on collocation points along these contours and by analytically continuing the roots. The collocation points are chosen to correspond to Chebychev collocation points for an ensuing Clenshaw-Curtis integration of the holomorphic differentials which gives the periods of the Riemann surface with spectral accuracy. At the singularities of the algebraic curve, Puiseux expansions computed by contour integration on the circles around the singularities are used to identify the holomorphic differentials. The Abel map is also computed with the Clenshaw-Curtis algorithm and contour integrals. As an application of the code, solutions to the Kadomtsev-Petviashvili equation are computed on non-hyperelliptic Riemann surfaces.
Estimability of geodetic parameters from space VLBI observables
NASA Technical Reports Server (NTRS)
Adam, Jozsef
1990-01-01
The feasibility of space very long base interferometry (VLBI) observables for geodesy and geodynamics is investigated. A brief review of space VLBI systems from the point of view of potential geodetic application is given. A selected notational convention is used to jointly treat the VLBI observables of different types of baselines within a combined ground/space VLBI network. The basic equations of the space VLBI observables appropriate for convariance analysis are derived and included. The corresponding equations for the ground-to-ground baseline VLBI observables are also given for a comparison. The simplified expression of the mathematical models for both space VLBI observables (time delay and delay rate) include the ground station coordinates, the satellite orbital elements, the earth rotation parameters, the radio source coordinates, and clock parameters. The observation equations with these parameters were examined in order to determine which of them are separable or nonseparable. Singularity problems arising from coordinate system definition and critical configuration are studied. Linear dependencies between partials are analytically derived. The mathematical models for ground-space baseline VLBI observables were tested with simulation data in the frame of some numerical experiments. Singularity due to datum defect is confirmed.
Cross-talk between topological defects in different fields revealed by nematic microfluidics
Giomi, Luca; Kos, Žiga; Ravnik, Miha
2017-01-01
Topological defects are singularities in material fields that play a vital role across a range of systems: from cosmic microwave background polarization to superconductors and biological materials. Although topological defects and their mutual interactions have been extensively studied, little is known about the interplay between defects in different fields—especially when they coevolve—within the same physical system. Here, using nematic microfluidics, we study the cross-talk of topological defects in two different material fields—the velocity field and the molecular orientational field. Specifically, we generate hydrodynamic stagnation points of different topological charges at the center of star-shaped microfluidic junctions, which then interact with emergent topological defects in the orientational field of the nematic director. We combine experiments and analytical and numerical calculations to show that a hydrodynamic singularity of a given topological charge can nucleate a nematic defect of equal topological charge and corroborate this by creating −1, −2, and −3 topological defects in four-, six-, and eight-arm junctions. Our work is an attempt toward understanding materials that are governed by distinctly multifield topology, where disparate topology-carrying fields are coupled and concertedly determine the material properties and response. PMID:28674012
Predictive models for moving contact line flows
NASA Technical Reports Server (NTRS)
Rame, Enrique; Garoff, Stephen
2003-01-01
Modeling flows with moving contact lines poses the formidable challenge that the usual assumptions of Newtonian fluid and no-slip condition give rise to a well-known singularity. This singularity prevents one from satisfying the contact angle condition to compute the shape of the fluid-fluid interface, a crucial calculation without which design parameters such as the pressure drop needed to move an immiscible 2-fluid system through a solid matrix cannot be evaluated. Some progress has been made for low Capillary number spreading flows. Combining experimental measurements of fluid-fluid interfaces very near the moving contact line with an analytical expression for the interface shape, we can determine a parameter that forms a boundary condition for the macroscopic interface shape when Ca much les than l. This parameter, which plays the role of an "apparent" or macroscopic dynamic contact angle, is shown by the theory to depend on the system geometry through the macroscopic length scale. This theoretically established dependence on geometry allows this parameter to be "transferable" from the geometry of the measurement to any other geometry involving the same material system. Unfortunately this prediction of the theory cannot be tested on Earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maeda, Hideki; Department of Physics, International Christian University, 3-10-2 Osawa, Mitaka-shi, Tokyo 181-8585; Graduate School of Science and Engineering, Waseda University, Tokyo 169-8555
We use a combination of numerical and analytical methods, exploiting the equations derived in a preceding paper, to classify all spherically symmetric self-similar solutions which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=({gamma}-1){mu} with 0<{gamma}<2/3. The expansion of the Friedmann universe is accelerated in this case. We find a one-parameter family of self-similar solutions representing a black hole embedded in a Friedmann background. This suggests that, in contrast to the positive pressure case, black holes in a universe with dark energy can grow as fast as the Hubble horizon if they aremore » not too large. There are also self-similar solutions which contain a central naked singularity with negative mass and solutions which represent a Friedmann universe connected to either another Friedmann universe or some other cosmological model. The latter are interpreted as self-similar cosmological white hole or wormhole solutions. The throats of these wormholes are defined as two-dimensional spheres with minimal area on a spacelike hypersurface and they are all nontraversable because of the absence of a past null infinity.« less
Modifying PASVART to solve singular nonlinear 2-point boundary problems
NASA Technical Reports Server (NTRS)
Fulton, James P.
1988-01-01
To study the buckling and post-buckling behavior of shells and various other structures, one must solve a nonlinear 2-point boundary problem. Since closed-form analytic solutions for such problems are virtually nonexistent, numerical approximations are inevitable. This makes the availability of accurate and reliable software indispensable. In a series of papers Lentini and Pereyra, expanding on the work of Keller, developed PASVART: an adaptive finite difference solver for nonlinear 2-point boundary problems. While the program does produce extremely accurate solutions with great efficiency, it is hindered by a major limitation. PASVART will only locate isolated solutions of the problem. In buckling problems, the solution set is not unique. It will contain singular or bifurcation points, where different branches of the solution set may intersect. Thus, PASVART is useless precisely when the problem becomes interesting. To resolve this deficiency we propose a modification of PASVART that will enable the user to perform a more complete bifurcation analysis. PASVART would be combined with the Thurston bifurcation solution: as adaptation of Newton's method that was motivated by the work of Koiter 3 are reinterpreted in terms of an iterative computational method by Thurston.
Gravity–capillary waves in finite depth on flows of constant vorticity
Hsu, Hung-Chu; Francius, Marc; Kharif, Christian
2016-01-01
This paper considers two-dimensional periodic gravity–capillary waves propagating steadily in finite depth on a linear shear current (constant vorticity). A perturbation series solution for steady periodic waves, accurate up to the third order, is derived using a classical Stokes expansion procedure, which allows us to include surface tension effects in the analysis of wave–current interactions in the presence of constant vorticity. The analytical results are then compared with numerical computations with the full equations. The main results are (i) the phase velocity is strongly dependent on the value of the vorticity; (ii) the singularities (Wilton singularities) in the Stokes expansion in powers of wave amplitude that correspond to a Bond number of 1/2 and 1/3, which are the consequences of the non-uniformity in the ordering of the Fourier coefficients, are found to be influenced by vorticity; (iii) different surface profiles of capillary–gravity waves are computed and the effect of vorticity on those profiles is shown to be important, in particular that the solutions exhibit type-2-like wave features, characterized by a secondary maximum on the surface profile with a trough between the two maxima. PMID:27956873
Singularity in structural optimization
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Guptill, J. D.; Berke, L.
1993-01-01
The conditions under which global and local singularities may arise in structural optimization are examined. Examples of these singularities are presented, and a framework is given within which the singularities can be recognized. It is shown, in particular, that singularities can be identified through the analysis of stress-displacement relations together with compatibility conditions or the displacement-stress relations derived by the integrated force method of structural analysis. Methods of eliminating the effects of singularities are suggested and illustrated numerically.
ERIC Educational Resources Information Center
Christie, Pam
2016-01-01
Reflecting on South African experience, this paper develops an analytical framework using the work of Henri Lefebvre and Nancy Fraser to understand why socially just arrangements may be so difficult to achieve in post-conflict reconstruction. The paper uses Lefebvre's analytic to trace three sets of entangled practices…
ERIC Educational Resources Information Center
He, Yi; Swenson, Sandra; Lents, Nathan
2012-01-01
Educational technology has enhanced, even revolutionized, pedagogy in many areas of higher education. This study examines the incorporation of video tutorials as a supplement to learning in an undergraduate analytical chemistry course. The concepts and problems in which students faced difficulty were first identified by assessing students'…
NASA Technical Reports Server (NTRS)
Khayat, Michael A.; Wilton, Donald R.; Fink, Patrick W.
2007-01-01
Simple and efficient numerical procedures using singularity cancellation methods are presented for evaluating singular and near-singular potential integrals. Four different transformations are compared and the advantages of the Radial-angular transform are demonstrated. A method is then described for optimizing this integration scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasil'ev, Vasilii I; Soskin, M S
2013-02-28
A natural singular dynamics of elliptically polarised speckle-fields induced by the 'optical damage' effect in a photorefractive crystal of lithium niobate by a passing beam of a helium - neon laser is studied by the developed methods of singular optics. For the polarisation singularities (C points), a new class of chain reactions, namely, singular chain reactions are discovered and studied. It is shown that they obey the topological charge and sum Poincare index conservation laws. In addition, they exist for all the time of crystal irradiation. They consist of a series of interlocking chains, where singularity pairs arising in amore » chain annihilate with singularities from neighbouring independently created chains. Less often singular 'loop' reactions are observed where arising pairs of singularities annihilate after reversible transformations in within the boundaries of a single speckle. The type of a singular reaction is determined by a topology and dynamics of the speckles, in which the reactions are developing. (laser optics 2012)« less
Can accretion disk properties observationally distinguish black holes from naked singularities?
NASA Astrophysics Data System (ADS)
Kovács, Z.; Harko, T.
2010-12-01
Naked singularities are hypothetical astrophysical objects, characterized by a gravitational singularity without an event horizon. Penrose has proposed a conjecture, according to which there exists a cosmic censor who forbids the occurrence of naked singularities. Distinguishing between astrophysical black holes and naked singularities is a major challenge for present day observational astronomy. In the context of stationary and axially symmetrical geometries, a possibility of differentiating naked singularities from black holes is through the comparative study of thin accretion disks properties around rotating naked singularities and Kerr-type black holes, respectively. In the present paper, we consider accretion disks around axially-symmetric rotating naked singularities, obtained as solutions of the field equations in the Einstein-massless scalar field theory. A first major difference between rotating naked singularities and Kerr black holes is in the frame dragging effect, the angular velocity of a rotating naked singularity being inversely proportional to its spin parameter. Because of the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution and equilibrium radiation spectrum) are different for these two classes of compact objects, consequently giving clear observational signatures that could discriminate between black holes and naked singularities. For specific values of the spin parameter and of the scalar charge, the energy flux from the disk around a rotating naked singularity can exceed by several orders of magnitude the flux from the disk of a Kerr black hole. In addition to this, it is also shown that the conversion efficiency of the accreting mass into radiation by rotating naked singularities is always higher than the conversion efficiency for black holes, i.e., naked singularities provide a much more efficient mechanism for converting mass into radiation than black holes. Thus, these observational signatures may provide the necessary tools from clearly distinguishing rotating naked singularities from Kerr-type black holes.
Are Singularities Integral to General Theory of Relativity?
NASA Astrophysics Data System (ADS)
Krori, K.; Dutta, S.
2011-11-01
Since the 1960s the general relativists have been deeply obsessed with the possibilities of GTR singularities - blackhole as well as cosmological singularities. Senovilla, for the first time, followed by others, showed that there are cylindrically symmetric cosmological space-times which are free of singularities. On the other hand, Krori et al. have presently shown that spherically symmetric cosmological space-times - which later reduce to FRW space-times may also be free of singularities. Besides, Mitra has in the mean-time come forward with some realistic calculations which seem to rule out the possibility of a blackhole singularity. So whether singularities are integral to GTR seems to come under a shadow.
Comptonization in Ultra-Strong Magnetic Fields: Numerical Solution to the Radiative Transfer Problem
NASA Technical Reports Server (NTRS)
Ceccobello, C.; Farinelli, R.; Titarchuk, L.
2014-01-01
We consider the radiative transfer problem in a plane-parallel slab of thermal electrons in the presence of an ultra-strong magnetic field (B approximately greater than B(sub c) approx. = 4.4 x 10(exp 13) G). Under these conditions, the magnetic field behaves like a birefringent medium for the propagating photons, and the electromagnetic radiation is split into two polarization modes, ordinary and extraordinary, that have different cross-sections. When the optical depth of the slab is large, the ordinary-mode photons are strongly Comptonized and the photon field is dominated by an isotropic component. Aims. The radiative transfer problem in strong magnetic fields presents many mathematical issues and analytical or numerical solutions can be obtained only under some given approximations. We investigate this problem both from the analytical and numerical point of view, provide a test of the previous analytical estimates, and extend these results with numerical techniques. Methods. We consider here the case of low temperature black-body photons propagating in a sub-relativistic temperature plasma, which allows us to deal with a semi-Fokker-Planck approximation of the radiative transfer equation. The problem can then be treated with the variable separation method, and we use a numerical technique to find solutions to the eigenvalue problem in the case of a singular kernel of the space operator. The singularity of the space kernel is the result of the strong angular dependence of the electron cross-section in the presence of a strong magnetic field. Results. We provide the numerical solution obtained for eigenvalues and eigenfunctions of the space operator, and the emerging Comptonization spectrum of the ordinary-mode photons for any eigenvalue of the space equation and for energies significantly lesser than the cyclotron energy, which is on the order of MeV for the intensity of the magnetic field here considered. Conclusions. We derived the specific intensity of the ordinary photons, under the approximation of large angle and large optical depth. These assumptions allow the equation to be treated using a diffusion-like approximation.
On the dynamic singularities in the control of free-floating space manipulators
NASA Technical Reports Server (NTRS)
Papadopoulos, E.; Dubowsky, S.
1989-01-01
It is shown that free-floating space manipulator systems have configurations which are dynamically singular. At a dynamically singular position, the manipulator is unable to move its end effector in some direction. This problem appears in any free-floating space manipulator system that permits the vehicle to move in response to manipulator motion without correction from the vehicle's attitude control system. Dynamic singularities are functions of the dynamic properties of the system; their existence and locations cannot be predicted solely from the kinematic structure of the manipulator, unlike the singularities for fixed base manipulators. It is also shown that the location of these dynamic singularities in the workplace is dependent upon the path taken by the manipulator in reaching them. Dynamic singularities must be considered in the control, planning and design of free-floating space manipulator systems. A method for calculating these dynamic singularities is presented, and it is shown that the system parameters can be selected to reduce the effect of dynamic singularities on a system's performance.
NASA Astrophysics Data System (ADS)
Pozrikidis, C.
1997-01-01
We consider the analytic structure of interfaces in several families of steady and unsteady two-dimensional Stokes flows, focusing on the formation of corners and cusps. Previous experimental and theoretical studies have suggested that, without surface tension, the interfaces spontaneously develop such singular points. We investigate whether and how corners and cusps actually develop in a time-dependent flow, and assess the stability of stationary cusped shapes predicted by previous authors. The motion of the interfaces is computed with high resolution using a boundary integral method for three families of flows. In the case of a bubble that is subjected to the family of straining flows devised by Antanovskii, we find that a stationary cusped shape is not likely to occur as the asymptotic limit of a transient deformation. Instead, the pointed ends of the bubble disintegrate in a process that is reminiscent of tip streaming. In the case of the flow due to an array of point-source dipoles immersed beneath a free surface, which is the periodic version of a flow proposed by Jeong & Moffatt, we find evidence that a cusped shape indeed arises as the result of a transient deformation. In the third part of the numerical study, we show that, under certain conditions, the free surface of a liquid film that is levelling under the action of gravity on a horizontal or slightly inclined surface develops an evolving corner or cusp. In certain cases, the film engulfs a small air bubble of ambient fluid to obtain a composite shape. The structure of a corner or a cusp in an unsteady flow does not have a unique shape, as it does at steady state. In all cases, a small amount of surface tension is able to prevent the formation of a singularity, but replacing the inviscid gas with a viscous liquid does not have a smoothing effect. The ability of the thin-film lubrication equation to produce mathematical singularities at the free surface of a levelling film is also discussed.
NASA Astrophysics Data System (ADS)
Charlemagne, S.; Ture Savadkoohi, A.; Lamarque, C.-H.
2018-07-01
The continuous approximation is used in this work to describe the dynamics of a nonlinear chain of light oscillators coupled to a linear main system. A general methodology is applied to an example where the chain has local nonlinear restoring forces. The slow invariant manifold is detected at fast time scale. At slow time scale, equilibrium and singular points are sought around this manifold in order to predict periodic regimes and strongly modulated responses of the system. Analytical predictions are in good accordance with numerical results and represent a potent tool for designing nonlinear chains for passive control purposes.
Axisymmetric bubble pinch-off at high Reynolds numbers.
Gordillo, J M; Sevilla, A; Rodríguez-Rodríguez, J; Martínez-Bazán, C
2005-11-04
Analytical considerations and potential-flow numerical simulations of the pinch-off of bubbles at high Reynolds numbers reveal that the bubble minimum radius, rn, decreases as tau proportional to r2n sqrt[1lnr2n], where tau is the time to break up, when the local shape of the bubble near the singularity is symmetric. However, if the gas convective terms in the momentum equation become of the order of those of the liquid, the bubble shape is no longer symmetric and the evolution of the neck changes to a rn proportional to tau1/3 power law. These findings are verified experimentally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savel'ev, A. M.; Starik, A. M.
2009-02-15
The contributions of van der Waals, Coulomb, and polarization interactions between nanometersized particles to the particle coagulation rate in both free-molecular and continuum regimes are analyzed for particle charges of various magnitudes and signs. Analytical expressions are obtained for the coagulation rate constant between particles whose interaction in the free-molecular regime is described by a singular potential. It is shown that van der Waals and polarization forces significantly increase the coagulation rate between a neutral and a charged particle (by a factor of up to 10) and can even suppress the Coulomb repulsion between like-charged particles of widely different sizes.
Method for discovering relationships in data by dynamic quantum clustering
Weinstein, Marvin; Horn, David
2017-05-09
Data clustering is provided according to a dynamical framework based on quantum mechanical time evolution of states corresponding to data points. To expedite computations, we can approximate the time-dependent Hamiltonian formalism by a truncated calculation within a set of Gaussian wave-functions (coherent states) centered around the original points. This allows for analytic evaluation of the time evolution of all such states, opening up the possibility of exploration of relationships among data-points through observation of varying dynamical-distances among points and convergence of points into clusters. This formalism may be further supplemented by preprocessing, such as dimensional reduction through singular value decomposition and/or feature filtering.
Method for discovering relationships in data by dynamic quantum clustering
Weinstein, Marvin; Horn, David
2014-10-28
Data clustering is provided according to a dynamical framework based on quantum mechanical time evolution of states corresponding to data points. To expedite computations, we can approximate the time-dependent Hamiltonian formalism by a truncated calculation within a set of Gaussian wave-functions (coherent states) centered around the original points. This allows for analytic evaluation of the time evolution of all such states, opening up the possibility of exploration of relationships among data-points through observation of varying dynamical-distances among points and convergence of points into clusters. This formalism may be further supplemented by preprocessing, such as dimensional reduction through singular value decomposition and/or feature filtering.
A new approach to the Schrödinger equation with rational potentials
NASA Astrophysics Data System (ADS)
Dong, Ming-de; Chu, Jue-Hui
1984-04-01
A new analytic theory is established for the Schrödinger equation with a rational potential, including a complete classification of the regular eigenfunctions into three different types, an exact method of obtaining wavefunctions, an explicit formulation of the spectral equation (3 x 3 determinant) etc. All representations are exhibited in a unifying way via function-theoretic methods and therefore given in explicit form, in contrast to the prevailing discussion appealing to perturbation or variation methods or continued-fraction techniques. The irregular eigenfunctions at infinity can be obtained analogously and will be discussed separately as another solvable case for singular potentials.
Power-law scaling of extreme dynamics near higher-order exceptional points
NASA Astrophysics Data System (ADS)
Zhong, Q.; Christodoulides, D. N.; Khajavikhan, M.; Makris, K. G.; El-Ganainy, R.
2018-02-01
We investigate the extreme dynamics of non-Hermitian systems near higher-order exceptional points in photonic networks constructed using the bosonic algebra method. We show that strong power oscillations for certain initial conditions can occur as a result of the peculiar eigenspace geometry and its dimensionality collapse near these singularities. By using complementary numerical and analytical approaches, we show that, in the parity-time (PT ) phase near exceptional points, the logarithm of the maximum optical power amplification scales linearly with the order of the exceptional point. We focus in our discussion on photonic systems, but we note that our results apply to other physical systems as well.
Factor Analytic Approach to Transitive Text Mining using Medline Descriptors
NASA Astrophysics Data System (ADS)
Stegmann, J.; Grohmann, G.
Matrix decomposition methods were applied to examples of noninteractive literature sets sharing implicit relations. Document-by-term matrices were created from downloaded PubMed literature sets, the terms being the Medical Subject Headings (MeSH descriptors) assigned to the documents. The loadings of the factors derived from singular value or eigenvalue matrix decomposition were sorted according to absolute values and subsequently inspected for positions of terms relevant to the discovery of hidden connections. It was found that only a small number of factors had to be screened to find key terms in close neighbourhood, being separated by a small number of terms only.
Expressions for tidal conversion at seafloor topography using physical space integrals
NASA Astrophysics Data System (ADS)
Schorghofer, Norbert
2010-12-01
The barotropic tide interacts with seafloor topography to generate internal gravity waves. Equations for streamfunction and power conversion are derived in terms of integrals over the topography in spatial coordinates. The slope of the topography does not need to be small. Explicit equations are derived up to second order in slope for general topography, and conversion by a bell-shaped topography is calculated analytically to this order. A concise formalism using Hilbert transforms is developed, the minimally converting topographic shape is discussed, and a numerical scheme for the evaluation of power conversion is designed that robustly deals with the singular integrand.
NASA Astrophysics Data System (ADS)
García, Isaac A.; Llibre, Jaume; Maza, Susanna
2018-06-01
In this work we consider real analytic functions , where , Ω is a bounded open subset of , is an interval containing the origin, are parameters, and ε is a small parameter. We study the branching of the zero-set of at multiple points when the parameter ε varies. We apply the obtained results to improve the classical averaging theory for computing T-periodic solutions of λ-families of analytic T-periodic ordinary differential equations defined on , using the displacement functions defined by these equations. We call the coefficients in the Taylor expansion of in powers of ε the averaged functions. The main contribution consists in analyzing the role that have the multiple zeros of the first non-zero averaged function. The outcome is that these multiple zeros can be of two different classes depending on whether the zeros belong or not to the analytic set defined by the real variety associated to the ideal generated by the averaged functions in the Noetheriang ring of all the real analytic functions at . We bound the maximum number of branches of isolated zeros that can bifurcate from each multiple zero z 0. Sometimes these bounds depend on the cardinalities of minimal bases of the former ideal. Several examples illustrate our results and they are compared with the classical theory, branching theory and also under the light of singularity theory of smooth maps. The examples range from polynomial vector fields to Abel differential equations and perturbed linear centers.
Integrated Analytic and Linearized Inverse Kinematics for Precise Full Body Interactions
NASA Astrophysics Data System (ADS)
Boulic, Ronan; Raunhardt, Daniel
Despite the large success of games grounded on movement-based interactions the current state of full body motion capture technologies still prevents the exploitation of precise interactions with complex environments. This paper focuses on ensuring a precise spatial correspondence between the user and the avatar. We build upon our past effort in human postural control with a Prioritized Inverse Kinematics framework. One of its key advantage is to ease the dynamic combination of postural and collision avoidance constraints. However its reliance on a linearized approximation of the problem makes it vulnerable to the well-known full extension singularity of the limbs. In such context the tracking performance is reduced and/or less believable intermediate postural solutions are produced. We address this issue by introducing a new type of analytic constraint that smoothly integrates within the prioritized Inverse Kinematics framework. The paper first recalls the background of full body 3D interactions and the advantages and drawbacks of the linearized IK solution. Then the Flexion-EXTension constraint (FLEXT in short) is introduced for the partial position control of limb-like articulated structures. Comparative results illustrate the interest of this new type of integrated analytical and linearized IK control.
Electronic Structure and Properties of Deformed Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Yang, Liu; Arnold, Jim (Technical Monitor)
2001-01-01
A theoretical framework based on Huckel tight-binding model has been formulated to analyze the electronic structure of carbon nanotubes under uniform deformation. The model successfully quantifies the dispersion relation, density of states and bandgap change of nanotubes under uniform stretching, compression, torsion and bending. Our analysis shows that the shifting of the Fermi point away from the Brillouin zone vertices is the key reason for these changes. As a result of this shifting, the electronic structure of deformed carbon nanotubes varies dramatically depending on their chirality and deformation mode. Treating the Fermi point as a function of strain and tube chirality, the analytical solution preserves the concise form of undeformed carbon nanotubes. It predicts the shifting, merging and splitting of the Van Hove singularities in the density of states and the zigzag pattern of bandgap change under strains. Four orbital tight-binding simulations of carbon nanotubes under uniform stretching, compression, torsion and bending have been performed to verify the analytical solution. Extension to more complex systems are being performed to relate this analytical solution to the spectroscopic characterization, device performance and proposed quantum structures induced by the deformation. The limitations of this model will also be discussed.
NASA Astrophysics Data System (ADS)
Krishnan, Karthik; Reddy, Kasireddy V.; Ajani, Bhavya; Yalavarthy, Phaneendra K.
2017-02-01
CT and MR perfusion weighted imaging (PWI) enable quantification of perfusion parameters in stroke studies. These parameters are calculated from the residual impulse response function (IRF) based on a physiological model for tissue perfusion. The standard approach for estimating the IRF is deconvolution using oscillatory-limited singular value decomposition (oSVD) or Frequency Domain Deconvolution (FDD). FDD is widely recognized as the fastest approach currently available for deconvolution of CT Perfusion/MR PWI. In this work, three faster methods are proposed. The first is a direct (model based) crude approximation to the final perfusion quantities (Blood flow, Blood volume, Mean Transit Time and Delay) using the Welch-Satterthwaite approximation for gamma fitted concentration time curves (CTC). The second method is a fast accurate deconvolution method, we call Analytical Fourier Filtering (AFF). The third is another fast accurate deconvolution technique using Showalter's method, we call Analytical Showalter's Spectral Filtering (ASSF). Through systematic evaluation on phantom and clinical data, the proposed methods are shown to be computationally more than twice as fast as FDD. The two deconvolution based methods, AFF and ASSF, are also shown to be quantitatively accurate compared to FDD and oSVD.
Gravitational lensing by an ensemble of isothermal galaxies
NASA Technical Reports Server (NTRS)
Katz, Neal; Paczynski, Bohdan
1987-01-01
Calculation of 28,000 models of gravitational lensing of a distant quasar by an ensemble of randomly placed galaxies, each having a singular isothermal mass distribuiton, is reported. The average surface mass density was 0.2 of the critical value in all models. It is found that the surface mass density averaged over the area of the smallest circle that encompasses the multiple images is 0.82, only slightly smaller than expected from a simple analytical model of Turner et al. (1984). The probability of getting multiple images is also as large as expected analytically. Gravitational lensing is dominated by the matter in the beam; i.e., by the beam convergence. The cases where the multiple imaging is due to asymmetry in mass distribution (i.e., due to shear) are very rare. Therefore, the observed gravitational-lens candidates for which no lensing object has been detected between the images cannot be a result of asymmetric mass distribution outside the images, at least in a model with randomly distributed galaxies. A surprisingly large number of large separations between the multiple images is found: up to 25 percent of multiple images have their angular separation 2 to 4 times larger than expected in a simple analytical model.
NASA Astrophysics Data System (ADS)
Shock, Jonathan P.
2006-10-01
Two points on the Coulomb branch of Script N = 4 super Yang Mills are investigated using their supergravity duals. By switching on condensates for the scalars in the Script N = 4 multiplet with a form which preserves a subgroup of the original R-symmetry, disk and sphere configurations of D3-branes are formed in the dual supergravity background. The analytic, canonical metric for these geometries is formulated and the singularity structure is studied. Quarks are introduced into the corresponding field theories using D7-brane probes and the meson spectrum is calculated. For one of the condensate configurations, a mass gap is found and shown analytically to be present in the massless limit. It is also found that there is a stepped spectrum with eigenstate degeneracy in the limit of small quark masses and this result is shown analytically. In the second, similar deformation it is necessary to understand the full D3-D7 brane interaction to study the limit of small quark masses. For quark masses larger than the condensate scale the spectrum is calculated and shown to be discrete as expected.
Finite element techniques applied to cracks interacting with selected singularities
NASA Technical Reports Server (NTRS)
Conway, J. C.
1975-01-01
The finite-element method for computing the extensional stress-intensity factor for cracks approaching selected singularities of varied geometry is described. Stress-intensity factors are generated using both displacement and J-integral techniques, and numerical results are compared to those obtained experimentally in a photoelastic investigation. The selected singularities considered are a colinear crack, a circular penetration, and a notched circular penetration. Results indicate that singularities greatly influence the crack-tip stress-intensity factor as the crack approaches the singularity. In addition, the degree of influence can be regulated by varying the overall geometry of the singularity. Local changes in singularity geometry have little effect on the stress-intensity factor for the cases investigated.
The effect of spherical aberration on the phase singularities of focused dark-hollow Gaussian beams
NASA Astrophysics Data System (ADS)
Luo, Yamei; Lü, Baida
2009-06-01
The phase singularities of focused dark-hollow Gaussian beams in the presence of spherical aberration are studied. It is shown that the evolution behavior of phase singularities of focused dark-hollow Gaussian beams in the focal region depends not only on the truncation parameter and beam order, but also on the spherical aberration. The spherical aberration leads to an asymmetric spatial distribution of singularities outside the focal plane and to a shift of singularities near the focal plane. The reorganization process of singularities and spatial distribution of singularities are additionally dependent on the sign of the spherical aberration. The results are illustrated by numerical examples.
Asymptotics of bivariate generating functions with algebraic singularities
NASA Astrophysics Data System (ADS)
Greenwood, Torin
Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of uni- variate generating functions with algebraic singularities. Gao and Richmond (1992) and Hwang (1996, 1998) extended these results to classes of multivariate generating functions, in both cases by reducing to the univariate case. Pemantle and Wilson (2013) outlined new multivariate ana- lytic techniques and used them to analyze the coefficients of rational generating functions. After overviewing these methods, we use them to find asymptotic formulae for the coefficients of a broad class of bivariate generating functions with algebraic singularities. Beginning with the Cauchy integral formula, we explicity deform the contour of integration so that it hugs a set of critical points. The asymptotic contribution to the integral comes from analyzing the integrand near these points, leading to explicit asymptotic formulae. Next, we use this formula to analyze an example from current research. In the following chapter, we apply multivariate analytic techniques to quan- tum walks. Bressler and Pemantle (2007) found a (d + 1)-dimensional rational generating function whose coefficients described the amplitude of a particle at a position in the integer lattice after n steps. Here, the minimal critical points form a curve on the (d + 1)-dimensional unit torus. We find asymptotic formulae for the amplitude of a particle in a given position, normalized by the number of steps n, as n approaches infinity. Each critical point contributes to the asymptotics for a specific normalized position. Using Groebner bases in Maple again, we compute the explicit locations of peak amplitudes. In a scaling window of size the square root of n near the peaks, each amplitude is asymptotic to an Airy function.
Unidirectional spectral singularities.
Ramezani, Hamidreza; Li, Hao-Kun; Wang, Yuan; Zhang, Xiang
2014-12-31
We propose a class of spectral singularities emerging from the coincidence of two independent singularities with highly directional responses. These spectral singularities result from resonance trapping induced by the interplay between parity-time symmetry and Fano resonances. At these singularities, while the system is reciprocal in terms of a finite transmission, a simultaneous infinite reflection from one side and zero reflection from the opposite side can be realized.
Hydrodynamic escape from planetary atmospheres
NASA Astrophysics Data System (ADS)
Tian, Feng
Hydrodynamic escape is an important process in the formation and evolution of planetary atmospheres. Due to the existence of a singularity point near the transonic point, it is difficult to find transonic steady state solutions by solving the time-independent hydrodynamic equations. In addition to that, most previous works assume that all energy driving the escape flow is deposited in one narrow layer. This assumption not only results in less accurate solutions to the hydrodynamic escape problem, but also makes it difficult to include other chemical and physical processes in the hydrodynamic escape models. In this work, a numerical model describing the transonic hydrodynamic escape from planetary atmospheres is developed. A robust solution technique is used to solve the time dependent hydrodynamic equations. The method has been validated in an isothermal atmosphere where an analytical solution is available. The hydrodynamic model is applied to 3 cases: hydrogen escape from small orbit extrasolar planets, hydrogen escape from a hydrogen rich early Earth's atmosphere, and nitrogen/methane escape from Pluto's atmosphere. Results of simulations on extrasolar planets are in good agreement with the observations of the transiting extrasolar planet HD209458b. Hydrodynamic escape of hydrogen from other hypothetical close-in extrasolar planets are simulated and the influence of hydrogen escape on the long-term evolution of these extrasolar planets are discussed. Simulations on early Earth suggest that hydrodynamic escape of hydrogen from a hydrogen rich early Earth's atmosphere is about two orders magnitude slower than the diffusion limited escape rate. A hydrogen rich early Earth's atmosphere could have been maintained by the balance between the hydrogen escape and the supply of hydrogen into the atmosphere by volcanic outgassing. Origin of life may have occurred in the organic soup ocean created by the efficient formation of prebiotic molecules in the hydrogen rich early Earth's atmosphere. Simulations show that hydrodynamic escape of nitrogen from Pluto is able to remove a ~3 km layer of ice over the age of the solar system. The escape flux of neutral nitrogen may interact with the solar wind at Pluto's orbit and may be detected by the New Horizon mission.
Understanding Singular Vectors
ERIC Educational Resources Information Center
James, David; Botteron, Cynthia
2013-01-01
matrix yields a surprisingly simple, heuristical approximation to its singular vectors. There are correspondingly good approximations to the singular values. Such rules of thumb provide an intuitive interpretation of the singular vectors that helps explain why the SVD is so…
Designing for Student-Facing Learning Analytics
ERIC Educational Resources Information Center
Kitto, Kirsty; Lupton, Mandy; Davis, Kate; Waters, Zak
2017-01-01
Despite a narrative that sees learning analytics (LA) as a field that aims to enhance student learning, few student-facing solutions have emerged. This can make it difficult for educators to imagine how data can be used in the classroom, and in turn diminishes the promise of LA as an enabler for encouraging important skills such as sense-making,…
Tachyon field in loop quantum cosmology: An example of traversable singularity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Lifang; Zhu Jianyang
2009-06-15
Loop quantum cosmology (LQC) predicts a nonsingular evolution of the universe through a bounce in the high energy region. But LQC has an ambiguity about the quantization scheme. Recently, the authors in [Phys. Rev. D 77, 124008 (2008)] proposed a new quantization scheme. Similar to others, this new quantization scheme also replaces the big bang singularity with the quantum bounce. More interestingly, it introduces a quantum singularity, which is traversable. We investigate this novel dynamics quantitatively with a tachyon scalar field, which gives us a concrete example. Our result shows that our universe can evolve through the quantum singularity regularly,more » which is different from the classical big bang singularity. So this singularity is only a weak singularity.« less
Adequate mathematical modelling of environmental processes
NASA Astrophysics Data System (ADS)
Chashechkin, Yu. D.
2012-04-01
In environmental observations and laboratory visualization both large scale flow components like currents, jets, vortices, waves and a fine structure are registered (different examples are given). The conventional mathematical modeling both analytical and numerical is directed mostly on description of energetically important flow components. The role of a fine structures is still remains obscured. A variety of existing models makes it difficult to choose the most adequate and to estimate mutual assessment of their degree of correspondence. The goal of the talk is to give scrutiny analysis of kinematics and dynamics of flows. A difference between the concept of "motion" as transformation of vector space into itself with a distance conservation and the concept of "flow" as displacement and rotation of deformable "fluid particles" is underlined. Basic physical quantities of the flow that are density, momentum, energy (entropy) and admixture concentration are selected as physical parameters defined by the fundamental set which includes differential D'Alembert, Navier-Stokes, Fourier's and/or Fick's equations and closing equation of state. All of them are observable and independent. Calculations of continuous Lie groups shown that only the fundamental set is characterized by the ten-parametric Galilelian groups reflecting based principles of mechanics. Presented analysis demonstrates that conventionally used approximations dramatically change the symmetries of the governing equations sets which leads to their incompatibility or even degeneration. The fundamental set is analyzed taking into account condition of compatibility. A high order of the set indicated on complex structure of complete solutions corresponding to physical structure of real flows. Analytical solutions of a number problems including flows induced by diffusion on topography, generation of the periodic internal waves a compact sources in week-dissipative media as well as numerical solutions of the same problems are constructed. They include regular perturbed function describing large scale component and a rich family of singular perturbed function corresponding to fine flow components. Solutions are compared with data of laboratory experiments performed on facilities USU "HPC IPMec RAS" under support of Ministry of Education and Science RF (Goscontract No. 16.518.11.7059). Related problems of completeness and accuracy of laboratory and environmental measurements are discussed.
Slow Invariant Manifolds in Chemically Reactive Systems
NASA Astrophysics Data System (ADS)
Paolucci, Samuel; Powers, Joseph M.
2006-11-01
The scientific design of practical gas phase combustion devices has come to rely on the use of mathematical models which include detailed chemical kinetics. Such models intrinsically admit a wide range of scales which renders their accurate numerical approximation difficult. Over the past decade, rational strategies, such as Intrinsic Low Dimensional Manifolds (ILDM) or Computational Singular Perturbations (CSP), for equilibrating fast time scale events have been successfully developed, though their computation can be challenging and their accuracy in most cases uncertain. Both are approximations to the preferable slow invariant manifold which best describes how the system evolves in the long time limit. Strategies for computing the slow invariant manifold are examined, and results are presented for practical combustion systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, Y.; Horwitz, L. P.; Eisenberg, E.
We discuss the quantum Lax-Phillips theory of scattering and unstable systems. In this framework, the decay of an unstable system is described by a semigroup. The spectrum of the generator of the semigroup corresponds to the singularities of the Lax-Phillips S-matrix. In the case of discrete (complex) spectrum of the generator of the semigroup, associated with resonances, the decay law is exactly exponential. The states corresponding to these resonances (eigenfunctions of the generator of the semigroup) lie in the Lax-Phillips Hilbert space, and therefore all physical properties of the resonant states can be computed. We show that the Lax-Phillips S-matrixmore » is unitarily related to the S-matrix of standard scattering theory by a unitary transformation parametrized by the spectral variable σ of the Lax-Phillips theory. Analytic continuation in σ has some of the properties of a method developed some time ago for application to dilation analytic potentials. We work out an illustrative example using a Lee-Friedrichs model for the underlying dynamical system.« less
Methods for analysis of cracks in three-dimensional solids
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1984-01-01
Various analytical and numerical methods used to evaluate the stress intensity factors for cracks in three-dimensional (3-D) solids are reviewed. Classical exact solutions and many of the approximate methods used in 3-D analyses of cracks are reviewed. The exact solutions for embedded elliptic cracks in infinite solids are discussed. The approximate methods reviewed are the finite element methods, the boundary integral equation (BIE) method, the mixed methods (superposition of analytical and finite element method, stress difference method, discretization-error method, alternating method, finite element-alternating method), and the line-spring model. The finite element method with singularity elements is the most widely used method. The BIE method only needs modeling of the surfaces of the solid and so is gaining popularity. The line-spring model appears to be the quickest way to obtain good estimates of the stress intensity factors. The finite element-alternating method appears to yield the most accurate solution at the minimum cost.
Two dimensional model for coherent synchrotron radiation
NASA Astrophysics Data System (ADS)
Huang, Chengkun; Kwan, Thomas J. T.; Carlsten, Bruce E.
2013-01-01
Understanding coherent synchrotron radiation (CSR) effects in a bunch compressor requires an accurate model accounting for the realistic beam shape and parameters. We extend the well-known 1D CSR analytic model into two dimensions and develop a simple numerical model based on the Liénard-Wiechert formula for the CSR field of a coasting beam. This CSR numerical model includes the 2D spatial dependence of the field in the bending plane and is accurate for arbitrary beam energy. It also removes the singularity in the space charge field calculation present in a 1D model. Good agreement is obtained with 1D CSR analytic result for free electron laser (FEL) related beam parameters but it can also give a more accurate result for low-energy/large spot size beams and off-axis/transient fields. This 2D CSR model can be used for understanding the limitation of various 1D models and for benchmarking fully electromagnetic multidimensional particle-in-cell simulations for self-consistent CSR modeling.
Situating beyond the social: understanding the role of materiality in Danish nursing education.
Soffer, Ann Katrine B
2016-10-01
Situated learning serves as an analytical framework for learning in a community of practice and has been widely used to understand the learning process that is entailed in becoming a nurse. Yet in this paper, the difficulties encountered with the original notion of situated learning once it is applied to contemporary Danish nursing education are introduced. One issue that has arisen is the analytical requirement for an educational program to be a homogeneous, singular, and social phenomenon thereby discounting the varied and different sites and materialities found within nursing education. By using the materiality of the hospital bed as an empirical example of the way materiality also shapes practices, an alternative understanding of situated participation can emerge. This approach allows different sites and materialities to be conceptualized as equally genuine parts of the situated leaning framework. I suggest the notion of multi-configured learning, which captures the heterogeneity and materiality encountered during ethnographic fieldwork at a Danish nursing school.
Nonperturbative Quantum Physics from Low-Order Perturbation Theory.
Mera, Héctor; Pedersen, Thomas G; Nikolić, Branislav K
2015-10-02
The Stark effect in hydrogen and the cubic anharmonic oscillator furnish examples of quantum systems where the perturbation results in a certain ionization probability by tunneling processes. Accordingly, the perturbed ground-state energy is shifted and broadened, thus acquiring an imaginary part which is considered to be a paradigm of nonperturbative behavior. Here we demonstrate how the low order coefficients of a divergent perturbation series can be used to obtain excellent approximations to both real and imaginary parts of the perturbed ground state eigenenergy. The key is to use analytic continuation functions with a built-in singularity structure within the complex plane of the coupling constant, which is tailored by means of Bender-Wu dispersion relations. In the examples discussed the analytic continuation functions are Gauss hypergeometric functions, which take as input fourth order perturbation theory and return excellent approximations to the complex perturbed eigenvalue. These functions are Borel consistent and dramatically outperform widely used Padé and Borel-Padé approaches, even for rather large values of the coupling constant.
Singularities in loop quantum cosmology.
Cailleteau, Thomas; Cardoso, Antonio; Vandersloot, Kevin; Wands, David
2008-12-19
We show that simple scalar field models can give rise to curvature singularities in the effective Friedmann dynamics of loop quantum cosmology (LQC). We find singular solutions for spatially flat Friedmann-Robertson-Walker cosmologies with a canonical scalar field and a negative exponential potential, or with a phantom scalar field and a positive potential. While LQC avoids big bang or big rip type singularities, we find sudden singularities where the Hubble rate is bounded, but the Ricci curvature scalar diverges. We conclude that the effective equations of LQC are not in themselves sufficient to avoid the occurrence of curvature singularities.
NASA Technical Reports Server (NTRS)
Sidi, A.; Israeli, M.
1986-01-01
High accuracy numerical quadrature methods for integrals of singular periodic functions are proposed. These methods are based on the appropriate Euler-Maclaurin expansions of trapezoidal rule approximations and their extrapolations. They are used to obtain accurate quadrature methods for the solution of singular and weakly singular Fredholm integral equations. Such periodic equations are used in the solution of planar elliptic boundary value problems, elasticity, potential theory, conformal mapping, boundary element methods, free surface flows, etc. The use of the quadrature methods is demonstrated with numerical examples.
Detecting weak position fluctuations from encoder signal using singular spectrum analysis.
Xu, Xiaoqiang; Zhao, Ming; Lin, Jing
2017-11-01
Mechanical fault or defect will cause some weak fluctuations to the position signal. Detection of such fluctuations via encoders can help determine the health condition and performance of the machine, and offer a promising alternative to the vibration-based monitoring scheme. However, besides the interested fluctuations, encoder signal also contains a large trend and some measurement noise. In applications, the trend is normally several orders larger than the concerned fluctuations in magnitude, which makes it difficult to detect the weak fluctuations without signal distortion. In addition, the fluctuations can be complicated and amplitude modulated under non-stationary working condition. To overcome this issue, singular spectrum analysis (SSA) is proposed for detecting weak position fluctuations from encoder signal in this paper. It enables complicated encode signal to be reduced into several interpretable components including a trend, a set of periodic fluctuations and noise. A numerical simulation is given to demonstrate the performance of the method, it shows that SSA outperforms empirical mode decomposition (EMD) in terms of capability and accuracy. Moreover, linear encoder signals from a CNC machine tool are analyzed to determine the magnitudes and sources of fluctuations during feed motion. The proposed method is proven to be feasible and reliable for machinery condition monitoring. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Jain, Anil K; Feng, Jianjiang
2011-01-01
Latent fingerprint identification is of critical importance to law enforcement agencies in identifying suspects: Latent fingerprints are inadvertent impressions left by fingers on surfaces of objects. While tremendous progress has been made in plain and rolled fingerprint matching, latent fingerprint matching continues to be a difficult problem. Poor quality of ridge impressions, small finger area, and large nonlinear distortion are the main difficulties in latent fingerprint matching compared to plain or rolled fingerprint matching. We propose a system for matching latent fingerprints found at crime scenes to rolled fingerprints enrolled in law enforcement databases. In addition to minutiae, we also use extended features, including singularity, ridge quality map, ridge flow map, ridge wavelength map, and skeleton. We tested our system by matching 258 latents in the NIST SD27 database against a background database of 29,257 rolled fingerprints obtained by combining the NIST SD4, SD14, and SD27 databases. The minutiae-based baseline rank-1 identification rate of 34.9 percent was improved to 74 percent when extended features were used. In order to evaluate the relative importance of each extended feature, these features were incrementally used in the order of their cost in marking by latent experts. The experimental results indicate that singularity, ridge quality map, and ridge flow map are the most effective features in improving the matching accuracy.
Educational Reform as a Dynamic System of Problems and Solutions: Towards an Analytic Instrument
ERIC Educational Resources Information Center
Luttenberg, Johan; Carpay, Thérèse; Veugelers, Wiel
2013-01-01
Large-scale educational reforms are difficult to realize and often fail. In the literature, the course of reform and problems associated with this are frequently discussed. The explanations and recommendations then provided are so diverse that it is difficult to gain a comprehensive overview of what factors are at play and how to take them into…
Singularity analysis: theory and further developments
NASA Astrophysics Data System (ADS)
Cheng, Qiuming
2015-04-01
Since the concept of singularity and local singularity analysis method (LSA) were originally proposed by the author for characterizing the nonlinear property of hydrothermal mineralization processes, the local singularity analysis technique has been successfully applied for identification of geochemical and geophysical anomalies related to various types of mineral deposits. It has also been shown that the singularity is the generic property of singular geo-processes which result in anomalous amounts of energy release or material accumulation within a narrow spatial-temporal interval. In the current paper we introduce several new developments about singularity analysis. First is a new concept of 'fractal density' which describes the singularity of complex phenomena of fractal nature. While the ordinary density possesses a unit of ratio of mass and volume (e.g. g/cm3, kg/m3) or ratio of energy over volume or time (e.g. J/cm3, w/L3, w/s), the fractal density has a unit of ratio of mass over fractal set or energy over fractal set (e.g. g/cmα, kg/mα, J/ mα, w/Lα, where α can be a non-integer). For the matter with fractal density (a non-integer α), the ordinary density of the phenomena (mass or energy) no longer exists and depicts singularity. We demonstrate that most of extreme geo-processes occurred in the earth crust originated from cascade earth dynamics (mental convection, plate tectonics, orogeny and weathering etc) may cause fractal density of mass accumulation or energy release. The examples to be used to demonstrate the concepts of fractal density and singularity are earthquakes, floods, volcanos, hurricanes, heat flow over oceanic ridge, hydrothermal mineralization in orogenic belt, and anomalies in regolith over mine caused by ore and toxic elements vertical migration. Other developments of singularity theory and methodologies including singular Kriging and singularity weights of evidence model for information integration will also be introduced.
A Generalized Method of Image Analysis from an Intercorrelation Matrix which May Be Singular.
ERIC Educational Resources Information Center
Yanai, Haruo; Mukherjee, Bishwa Nath
1987-01-01
This generalized image analysis method is applicable to singular and non-singular correlation matrices (CMs). Using the orthogonal projector and a weaker generalized inverse matrix, image and anti-image covariance matrices can be derived from a singular CM. (SLD)
Li, Lifeng
2012-04-01
I extend a previous work [J. Opt. Soc. Am. A, 738 (2011)] on field singularities at lossless metal-dielectric right-angle edges and their ramifications to the numerical modeling of gratings to the case of arbitrary metallic wedge angles. Simple criteria are given that allow one knowing the lossless permittivities and the arbitrary wedge angles to determine if the electric field at the edges is nonsingular, can be regularly singular, or can be irregularly singular without calculating the singularity exponent. Furthermore, the knowledge of the singularity type enables one to predict immediately if a numerical method that uses Fourier expansions of the transverse electric field components at the edges will converge or not without making any numerical tests. All conclusions of the previous work about the general relationships between field singularities, Fourier representation of singular fields, and convergence of numerical methods for modeling lossless metal-dielectric gratings have been reconfirmed.
Elasticity solutions for a class of composite laminate problems with stress singularities
NASA Technical Reports Server (NTRS)
Wang, S. S.
1983-01-01
A study on the fundamental mechanics of fiber-reinforced composite laminates with stress singularities is presented. Based on the theory of anisotropic elasticity and Lekhnitskii's complex-variable stress potentials, a system of coupled governing partial differential equations are established. An eigenfunction expansion method is introduced to determine the orders of stress singularities in composite laminates with various geometric configurations and material systems. Complete elasticity solutions are obtained for this class of singular composite laminate mechanics problems. Homogeneous solutions in eigenfunction series and particular solutions in polynomials are presented for several cases of interest. Three examples are given to illustrate the method of approach and the basic nature of the singular laminate elasticity solutions. The first problem is the well-known laminate free-edge stress problem, which has a rather weak stress singularity. The second problem is the important composite delamination problem, which has a strong crack-tip stress singularity. The third problem is the commonly encountered bonded composite joints, which has a complex solution structure with moderate orders of stress singularities.
Future singularity avoidance in phantom dark energy models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haro, Jaume de, E-mail: jaime.haro@upc.edu
2012-07-01
Different approaches to quantum cosmology are studied in order to deal with the future singularity avoidance problem. Our results show that these future singularities will persist but could take different forms. As an example we have studied the big rip which appear when one considers the state equation P = ωρ with ω < −1, showing that it does not disappear in modified gravity. On the other hand, it is well-known that quantum geometric effects (holonomy corrections) in loop quantum cosmology introduce a quadratic modification, namely proportional to ρ{sup 2}, in Friedmann's equation that replace the big rip by amore » non-singular bounce. However this modified Friedmann equation could have been obtained in an inconsistent way, what means that the obtained results from this equation, in particular singularity avoidance, would be incorrect. In fact, we will show that instead of a non-singular bounce, the big rip singularity would be replaced, in loop quantum cosmology, by other kind of singularity.« less
Loop quantum cosmology and singularities.
Struyve, Ward
2017-08-15
Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.
New singularities in unexpected places
NASA Astrophysics Data System (ADS)
Barrow, John D.; Graham, Alexander A. H.
2015-09-01
Spacetime singularities have been discovered which are physically much weaker than those predicted by the classical singularity theorems. Geodesics evolve through them and they only display infinities in the derivatives of their curvature invariants. So far, these singularities have appeared to require rather exotic and unphysical matter for their occurrence. Here, we show that a large class of singularities of this form can be found in a simple Friedmann cosmology containing only a scalar-field with a power-law self-interaction potential. Their existence challenges several preconceived ideas about the nature of spacetime singularities and has an impact upon the end of inflation in the early universe.
Exotic singularities and spatially curved loop quantum cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Parampreet; Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5; Vidotto, Francesca
2011-03-15
We investigate the occurrence of various exotic spacelike singularities in the past and the future evolution of k={+-}1 Friedmann-Robertson-Walker model and loop quantum cosmology using a sufficiently general phenomenological model for the equation of state. We highlight the nontrivial role played by the intrinsic curvature for these singularities and the new physics which emerges at the Planck scale. We show that quantum gravity effects generically resolve all strong curvature singularities including big rip and big freeze singularities. The weak singularities, which include sudden and big brake singularities, are ignored by quantum gravity when spatial curvature is negative, as was previouslymore » found for the spatially flat model. Interestingly, for the spatially closed model there exist cases where weak singularities may be resolved when they occur in the past evolution. The spatially closed model exhibits another novel feature. For a particular class of equation of state, this model also exhibits an additional physical branch in loop quantum cosmology, a baby universe separated from the parent branch. Our analysis generalizes previous results obtained on the resolution of strong curvature singularities in flat models to isotropic spacetimes with nonzero spatial curvature.« less
Singular spectrum and singular entropy used in signal processing of NC table
NASA Astrophysics Data System (ADS)
Wang, Linhong; He, Yiwen
2011-12-01
NC (numerical control) table is a complex dynamic system. The dynamic characteristics caused by backlash, friction and elastic deformation among each component are so complex that they have become the bottleneck of enhancing the positioning accuracy, tracking accuracy and dynamic behavior of NC table. This paper collects vibration acceleration signals from NC table, analyzes the signals with SVD (singular value decomposition) method, acquires the singular spectrum and calculates the singular entropy of the signals. The signal characteristics and their regulations of NC table are revealed via the characteristic quantities such as singular spectrum, singular entropy etc. The steep degrees of singular spectrums can be used to discriminate complex degrees of signals. The results show that the signals in direction of driving axes are the simplest and the signals in perpendicular direction are the most complex. The singular entropy values can be used to study the indetermination of signals. The results show that the signals of NC table are not simple signal nor white noise, the entropy values in direction of driving axe are lower, the entropy values increase along with the increment of driving speed and the entropy values at the abnormal working conditions such as resonance or creeping etc decrease obviously.
Continuations of the nonlinear Schrödinger equation beyond the singularity
NASA Astrophysics Data System (ADS)
Fibich, G.; Klein, M.
2011-07-01
We present four continuations of the critical nonlinear Schrödinger equation (NLS) beyond the singularity: (1) a sub-threshold power continuation, (2) a shrinking-hole continuation for ring-type solutions, (3) a vanishing nonlinear-damping continuation and (4) a complex Ginzburg-Landau (CGL) continuation. Using asymptotic analysis, we explicitly calculate the limiting solutions beyond the singularity. These calculations show that for generic initial data that lead to a loglog collapse, the sub-threshold power limit is a Bourgain-Wang solution, both before and after the singularity, and the vanishing nonlinear-damping and CGL limits are a loglog solution before the singularity, and have an infinite-velocity expanding core after the singularity. Our results suggest that all NLS continuations share the universal feature that after the singularity time Tc, the phase of the singular core is only determined up to multiplication by eiθ. As a result, interactions between post-collapse beams (filaments) become chaotic. We also show that when the continuation model leads to a point singularity and preserves the NLS invariance under the transformation t → -t and ψ → ψ*, the singular core of the weak solution is symmetric with respect to Tc. Therefore, the sub-threshold power and the shrinking-hole continuations are symmetric with respect to Tc, but continuations which are based on perturbations of the NLS equation are generically asymmetric.
Topological resolution of gauge theory singularities
NASA Astrophysics Data System (ADS)
Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo
2013-08-01
Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.
7 CFR 46.1 - Words in singular form.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Words in singular form. 46.1 Section 46.1 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Words in singular form. Words in this part in the singular form shall be deemed to import the plural...
7 CFR 61.1 - Words in singular form.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Words in singular form. 61.1 Section 61.1 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Words in singular form. Words used in the regulations in this subpart in the singular form shall be...
The Friedmann-Lemaître-Robertson-Walker Big Bang Singularities are Well Behaved
NASA Astrophysics Data System (ADS)
Stoica, Ovidiu Cristinel
2016-01-01
We show that the Big Bang singularity of the Friedmann-Lemaître-Robertson-Walker model does not raise major problems to General Relativity. We prove a theorem showing that the Einstein equation can be written in a non-singular form, which allows the extension of the spacetime before the Big Bang. The physical interpretation of the fields used is discussed. These results follow from our research on singular semi-Riemannian geometry and singular General Relativity.
Duan, Wentao; Wang, Wei; Das, Sambeeta; Yadav, Vinita; Mallouk, Thomas E; Sen, Ayusman
2015-01-01
Synthetic nano- and microscale machines move autonomously in solution or drive fluid flows by converting sources of energy into mechanical work. Their sizes are comparable to analytes (sub-nano- to microscale), and they respond to signals from each other and their surroundings, leading to emergent collective behavior. These machines can potentially enable hitherto difficult analytical applications. In this article, we review the development of different classes of synthetic nano- and micromotors and pumps and indicate their possible applications in real-time in situ chemical sensing, on-demand directional transport, cargo capture and delivery, as well as analyte isolation and separation.
Evolution and dynamics of a matter creation model
NASA Astrophysics Data System (ADS)
Pan, S.; de Haro, J.; Paliathanasis, A.; Slagter, R. J.
2016-08-01
In a flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry, we consider the expansion of the universe powered by the gravitationally induced `adiabatic' matter creation. To demonstrate how matter creation works well with the expanding universe, we have considered a general creation rate and analysed this rate in the framework of dynamical analysis. The dynamical analysis hints the presence of a non-singular universe (without the big bang singularity) with two successive accelerated phases, one at the very early phase of the universe (I.e. inflation), and the other one describes the current accelerating universe, where this early, late accelerated phases are associated with an unstable fixed point (I.e. repeller) and a stable fixed point (attractor), respectively. We have described this phenomena by analytic solutions of the Hubble function and the scale factor of the FLRW universe. Using Jacobi last multiplier method, we have found a Lagrangian for this matter creation rate describing this scenario of the universe. To match with our early physics results, we introduce an equivalent dynamics driven by a single scalar field, discuss the associated observable parameters and compare them with the latest Planck data sets. Finally, introducing the teleparallel modified gravity, we have established an equivalent gravitational theory in the framework of matter creation.
Spectral Characteristics of the Unitary Critical Almost-Mathieu Operator
NASA Astrophysics Data System (ADS)
Fillman, Jake; Ong, Darren C.; Zhang, Zhenghe
2017-04-01
We discuss spectral characteristics of a one-dimensional quantum walk whose coins are distributed quasi-periodically. The unitary update rule of this quantum walk shares many spectral characteristics with the critical Almost-Mathieu Operator; however, it possesses a feature not present in the Almost-Mathieu Operator, namely singularity of the associated cocycles (this feature is, however, present in the so-called Extended Harper's Model). We show that this operator has empty absolutely continuous spectrum and that the Lyapunov exponent vanishes on the spectrum; hence, this model exhibits Cantor spectrum of zero Lebesgue measure for all irrational frequencies and arbitrary phase, which in physics is known as Hofstadter's butterfly. In fact, we will show something stronger, namely, that all spectral parameters in the spectrum are of critical type, in the language of Avila's global theory of analytic quasiperiodic cocycles. We further prove that it has empty point spectrum for each irrational frequency and away from a frequency-dependent set of phases having Lebesgue measure zero. The key ingredients in our proofs are an adaptation of Avila's Global Theory to the present setting, self-duality via the Fourier transform, and a Johnson-type theorem for singular dynamically defined CMV matrices which characterizes their spectra as the set of spectral parameters at which the associated cocycles fail to admit a dominated splitting.
New fundamental parameters for attitude representation
NASA Astrophysics Data System (ADS)
Patera, Russell P.
2017-08-01
A new attitude parameter set is developed to clarify the geometry of combining finite rotations in a rotational sequence and in combining infinitesimal angular increments generated by angular rate. The resulting parameter set of six Pivot Parameters represents a rotation as a great circle arc on a unit sphere that can be located at any clocking location in the rotation plane. Two rotations are combined by linking their arcs at either of the two intersection points of the respective rotation planes. In a similar fashion, linking rotational increments produced by angular rate is used to derive the associated kinematical equations, which are linear and have no singularities. Included in this paper is the derivation of twelve Pivot Parameter elements that represent all twelve Euler Angle sequences, which enables efficient conversions between Pivot Parameters and any Euler Angle sequence. Applications of this new parameter set include the derivation of quaternions and the quaternion composition rule, as well as, the derivation of the analytical solution to time dependent coning motion. The relationships between Pivot Parameters and traditional parameter sets are included in this work. Pivot Parameters are well suited for a variety of aerospace applications due to their effective composition rule, singularity free kinematic equations, efficient conversion to and from Euler Angle sequences and clarity of their geometrical foundation.
Numerical relativity in spherical coordinates with the Einstein Toolkit
NASA Astrophysics Data System (ADS)
Mewes, Vassilios; Zlochower, Yosef; Campanelli, Manuela; Ruchlin, Ian; Etienne, Zachariah B.; Baumgarte, Thomas W.
2018-04-01
Numerical relativity codes that do not make assumptions on spatial symmetries most commonly adopt Cartesian coordinates. While these coordinates have many attractive features, spherical coordinates are much better suited to take advantage of approximate symmetries in a number of astrophysical objects, including single stars, black holes, and accretion disks. While the appearance of coordinate singularities often spoils numerical relativity simulations in spherical coordinates, especially in the absence of any symmetry assumptions, it has recently been demonstrated that these problems can be avoided if the coordinate singularities are handled analytically. This is possible with the help of a reference-metric version of the Baumgarte-Shapiro-Shibata-Nakamura formulation together with a proper rescaling of tensorial quantities. In this paper we report on an implementation of this formalism in the Einstein Toolkit. We adapt the Einstein Toolkit infrastructure, originally designed for Cartesian coordinates, to handle spherical coordinates, by providing appropriate boundary conditions at both inner and outer boundaries. We perform numerical simulations for a disturbed Kerr black hole, extract the gravitational wave signal, and demonstrate that the noise in these signals is orders of magnitude smaller when computed on spherical grids rather than Cartesian grids. With the public release of our new Einstein Toolkit thorns, our methods for numerical relativity in spherical coordinates will become available to the entire numerical relativity community.
NASA Technical Reports Server (NTRS)
Hu, Fang Q.
1994-01-01
It is known that the exact analytic solutions of wave scattering by a circular cylinder, when they exist, are not in a closed form but in infinite series which converges slowly for high frequency waves. In this paper, we present a fast number solution for the scattering problem in which the boundary integral equations, reformulated from the Helmholtz equation, are solved using a Fourier spectral method. It is shown that the special geometry considered here allows the implementation of the spectral method to be simple and very efficient. The present method differs from previous approaches in that the singularities of the integral kernels are removed and dealt with accurately. The proposed method preserves the spectral accuracy and is shown to have an exponential rate of convergence. Aspects of efficient implementation using FFT are discussed. Moreover, the boundary integral equations of combined single and double-layer representation are used in the present paper. This ensures the uniqueness of the numerical solution for the scattering problem at all frequencies. Although a strongly singular kernel is encountered for the Neumann boundary conditions, we show that the hypersingularity can be handled easily in the spectral method. Numerical examples that demonstrate the validity of the method are also presented.
Treatment of singularities in a middle-crack tension specimen
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Raju, I. S.
1990-01-01
A three-dimensional finite-element analysis of a middle-crack tension specimen subjected to mode I loading was performed to study the stress singularity along the crack front. The specimen was modeled using 20-node isoparametric elements with collapsed nonsingular elements at the crack front. The displacements and stresses from the analysis were used to estimate the power of singularities, by a log-log regression analysis, along the crack front. Analyses showed that finite-sized cracked bodies have two singular stress fields. Because of two singular stress fields near the free surface and the classical square root singularity elsewhere, the strain energy release rate appears to be an appropriate parameter all along the crack front.
Semiclassical analysis of spectral singularities and their applications in optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mostafazadeh, Ali
2011-08-15
Motivated by possible applications of spectral singularities in optics, we develop a semiclassical method of computing spectral singularities. We use this method to examine the spectral singularities of a planar slab gain medium whose gain coefficient varies due to the exponential decay of the intensity of the pumping beam inside the medium. For both singly and doublypumped samples, we obtain universal upper bounds on the decay constant beyond which no lasing occurs. Furthermore, we show that the dependence of the wavelength of the spectral singularities on the value of the decay constant is extremely mild. This is an indication ofmore » the stability of optical spectral singularities.« less
Propagation of the Lissajous singularity dipole emergent from non-paraxial polychromatic beams
NASA Astrophysics Data System (ADS)
Haitao, Chen; Gao, Zenghui; Wang, Wanqing
2017-06-01
The propagation of the Lissajous singularity dipole (LSD) emergent from the non-paraxial polychromatic beams is studied. It is found that the handedness reversal of Lissajous singularities, the change in the shape of Lissajous figures, as well as the creation and annihilation of the LSD may take place by varying the propagation distance, off-axis parameter, wavelength, or amplitude factor. Comparing with the LSD emergent from paraxial polychromatic beams, the output field of non-paraxial polychromatic beams is more complicated, which results in some richer dynamic behaviors of Lissajous singularities, such as more Lissajous singularities and no vanishing of a single Lissajous singularity at the plane z>0.
Entangled singularity patterns of photons in Ince-Gauss modes
NASA Astrophysics Data System (ADS)
Krenn, Mario; Fickler, Robert; Huber, Marcus; Lapkiewicz, Radek; Plick, William; Ramelow, Sven; Zeilinger, Anton
2013-01-01
Photons with complex spatial mode structures open up possibilities for new fundamental high-dimensional quantum experiments and for novel quantum information tasks. Here we show entanglement of photons with complex vortex and singularity patterns called Ince-Gauss modes. In these modes, the position and number of singularities vary depending on the mode parameters. We verify two-dimensional and three-dimensional entanglement of Ince-Gauss modes. By measuring one photon and thereby defining its singularity pattern, we nonlocally steer the singularity structure of its entangled partner, while the initial singularity structure of the photons is undefined. In addition we measure an Ince-Gauss specific quantum-correlation function with possible use in future quantum communication protocols.
Classical and quantum Big Brake cosmology for scalar field and tachyonic models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamenshchik, A. Yu.; Manti, S.
We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bangmore » and Big Crunch singularities are not traversable.« less
Quantum healing of spacetime singularities: A review
NASA Astrophysics Data System (ADS)
Konkowski, D. A.; Helliwell, T. M.
2018-02-01
Singularities are commonplace in general relativistic spacetimes. It is natural to hope that they might be “healed” (or resolved) by the inclusion of quantum mechanics, either in the theory itself (quantum gravity) or, more modestly, in the description of the spacetime geodesic paths used to define them. We focus here on the latter, mainly using a procedure proposed by Horowitz and Marolf to test whether singularities in broad classes of spacetimes can be resolved by replacing geodesic paths with quantum wave packets. We list the spacetime singularities that various authors have studied in this context, and distinguish those which are healed quantum mechanically (QM) from those which remain singular. Finally, we mention some alternative approaches to healing singularities.
Topological resolution of gauge theory singularities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo
2013-08-21
Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit themore » singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.« less
Genericity Distinctions and the Interpretation of Determiners in Second Language Acquisition
ERIC Educational Resources Information Center
Ionin, Tania; Montrul, Silvina; Kim, Ji-Hye; Philippov, Vadim
2011-01-01
English uses three types of generic NPs: bare plurals ("Lions are dangerous"), definite singulars ("The lion is dangerous"), and indefinite singulars ("A lion is dangerous"). These three NP types are not interchangeable: definite singulars and bare plurals can have generic reference at the NP-level, while indefinite singulars are compatible only…
7 CFR 900.36 - Words in the singular form.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.36 Section 900.36 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Marketing Orders § 900.36 Words in the singular form. Words in this subpart in the singular form shall be...
7 CFR 900.100 - Words in the singular form.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.100 Section 900.100 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Words in the singular form. Words in this subpart in the singular form shall be deemed to import the...
7 CFR 900.1 - Words in the singular form.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.1 Section 900.1 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Words in the singular form. Words in this subpart in the singular form shall be deemed to import the...
7 CFR 900.50 - Words in the singular form.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.50 Section 900.50 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Words in the singular form. Words in this subpart in the singular form shall be deemed to import the...
7 CFR 900.20 - Words in the singular form.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.20 Section 900.20 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... § 900.20 Words in the singular form. Words in this subpart in the singular form shall be deemed to...
7 CFR 1200.50 - Words in the singular form.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 10 2010-01-01 2010-01-01 false Words in the singular form. 1200.50 Section 1200.50 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING....50 Words in the singular form. Words in this subpart in the singular form shall be deemed to import...
Stokesian dynamics of pill-shaped Janus particles with stick and slip boundary conditions
NASA Astrophysics Data System (ADS)
Sun, Qiang; Klaseboer, Evert; Khoo, Boo Cheong; Chan, Derek Y. C.
2013-04-01
We study the forces and torques experienced by pill-shaped Janus particles of different aspect ratios where half of the surface obeys the no-slip boundary condition and the other half obeys the Navier slip condition of varying slip lengths. Using a recently developed boundary integral formulation whereby the traditional singular behavior of this approach is removed analytically, we quantify the strength of the forces and torques experienced by such particles in a uniform flow field in the Stokes regime. Depending on the aspect ratio and the slip length, the force transverse to the flow direction can change sign. This is a novel property unique to the Janus nature of the particles.
Optimal guidance law development for an advanced launch system
NASA Technical Reports Server (NTRS)
Calise, Anthony J.; Hodges, Dewey H.; Leung, Martin S.; Bless, Robert R.
1991-01-01
The proposed investigation on a Matched Asymptotic Expansion (MAE) method was carried out. It was concluded that the method of MAE is not applicable to launch vehicle ascent trajectory optimization due to a lack of a suitable stretched variable. More work was done on the earlier regular perturbation approach using a piecewise analytic zeroth order solution to generate a more accurate approximation. In the meantime, a singular perturbation approach using manifold theory is also under current investigation. Work on a general computational environment based on the use of MACSYMA and the weak Hamiltonian finite element method continued during this period. This methodology is capable of the solution of a large class of optimal control problems.
Time-dependent mean-field theory for x-ray near-edge spectroscopy
NASA Astrophysics Data System (ADS)
Bertsch, G. F.; Lee, A. J.
2014-02-01
We derive equations of motion for calculating the near-edge x-ray absorption spectrum in molecules and condensed matter, based on a two-determinant approximation and Dirac's variational principle. The theory provides an exact solution for the linear response when the Hamiltonian or energy functional has only diagonal interactions in some basis. We numerically solve the equations to compare with the Mahan-Nozières-De Dominicis theory of the edge singularity in metallic conductors. Our extracted power-law exponents are similar to those of the analytic theory, but are not in quantitative agreement. The calculational method can be readily generalized to treat Kohn-Sham Hamiltonians with electron-electron interactions derived from correlation-exchange potentials.
Aerodynamics Via Acoustics: Application of Acoustic Formulas for Aerodynamic Calculations
NASA Technical Reports Server (NTRS)
Farassat, F.; Myers, M. K.
1986-01-01
Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.
Hyperasymptotics and quark-hadron duality violations in QCD
NASA Astrophysics Data System (ADS)
Boito, Diogo; Caprini, Irinel; Golterman, Maarten; Maltman, Kim; Peris, Santiago
2018-03-01
We investigate the origin of the quark-hadron duality-violating terms in the expansion of the QCD two-point vector correlation function at large energies in the complex q2 plane. Starting from the dispersive representation for the associated polarization, the analytic continuation of the operator product expansion from the Euclidean to the Minkowski region is performed by means of a generalized Borel-Laplace transform, borrowing techniques from hyperasymptotics. We establish a connection between singularities in the Borel plane and quark-hadron duality-violating contributions. Starting with the assumption that for QCD at Nc=∞ the spectrum approaches a Regge trajectory at large energy, we obtain an expression for quark-hadron duality violations at large, but finite Nc.
Extreme-value statistics of work done in stretching a polymer in a gradient flow.
Vucelja, M; Turitsyn, K S; Chertkov, M
2015-02-01
We analyze the statistics of work generated by a gradient flow to stretch a nonlinear polymer. We obtain the large deviation function (LDF) of the work in the full range of appropriate parameters by combining analytical and numerical tools. The LDF shows two distinct asymptotes: "near tails" are linear in work and dominated by coiled polymer configurations, while "far tails" are quadratic in work and correspond to preferentially fully stretched polymers. We find the extreme value statistics of work for several singular elastic potentials, as well as the mean and the dispersion of work near the coil-stretch transition. The dispersion shows a maximum at the transition.
Finite element modeling of frictionally restrained composite interfaces
NASA Technical Reports Server (NTRS)
Ballarini, Roberto; Ahmed, Shamim
1989-01-01
The use of special interface finite elements to model frictional restraint in composite interfaces is described. These elements simulate Coulomb friction at the interface, and are incorporated into a standard finite element analysis of a two-dimensional isolated fiber pullout test. Various interfacial characteristics, such as the distribution of stresses at the interface, the extent of slip and delamination, load diffusion from fiber to matrix, and the amount of fiber extraction or depression are studied for different friction coefficients. The results are compared to those obtained analytically using a singular integral equation approach, and those obtained by assuming a constant interface shear strength. The usefulness of these elements in micromechanical modeling of fiber-reinforced composite materials is highlighted.
Couple stresses and the fracture of rock.
Atkinson, Colin; Coman, Ciprian D; Aldazabal, Javier
2015-03-28
An assessment is made here of the role played by the micropolar continuum theory on the cracked Brazilian disc test used for determining rock fracture toughness. By analytically solving the corresponding mixed boundary-value problems and employing singular-perturbation arguments, we provide closed-form expressions for the energy release rate and the corresponding stress-intensity factors for both mode I and mode II loading. These theoretical results are augmented by a set of fracture toughness experiments on both sandstone and marble rocks. It is further shown that the morphology of the fracturing process in our centrally pre-cracked circular samples correlates very well with discrete element simulations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
A spatially homogeneous and isotropic Einstein-Dirac cosmology
NASA Astrophysics Data System (ADS)
Finster, Felix; Hainzl, Christian
2011-04-01
We consider a spatially homogeneous and isotropic cosmological model where Dirac spinors are coupled to classical gravity. For the Dirac spinors we choose a Hartree-Fock ansatz where all one-particle wave functions are coherent and have the same momentum. If the scale function is large, the universe behaves like the classical Friedmann dust solution. If however the scale function is small, quantum effects lead to oscillations of the energy-momentum tensor. It is shown numerically and proven analytically that these quantum oscillations can prevent the formation of a big bang or big crunch singularity. The energy conditions are analyzed. We prove the existence of time-periodic solutions which go through an infinite number of expansion and contraction cycles.
A Method to Solve Interior and Exterior Camera Calibration Parameters for Image Resection
NASA Technical Reports Server (NTRS)
Samtaney, Ravi
1999-01-01
An iterative method is presented to solve the internal and external camera calibration parameters, given model target points and their images from one or more camera locations. The direct linear transform formulation was used to obtain a guess for the iterative method, and herein lies one of the strengths of the present method. In all test cases, the method converged to the correct solution. In general, an overdetermined system of nonlinear equations is solved in the least-squares sense. The iterative method presented is based on Newton-Raphson for solving systems of nonlinear algebraic equations. The Jacobian is analytically derived and the pseudo-inverse of the Jacobian is obtained by singular value decomposition.
NASA Astrophysics Data System (ADS)
Doha, E. H.; Abd-Elhameed, W. M.; Youssri, Y. H.
2013-10-01
In this paper, we present a new second kind Chebyshev (S2KC) operational matrix of derivatives. With the aid of S2KC, an algorithm is described to obtain numerical solutions of a class of linear and nonlinear Lane-Emden type singular initial value problems (IVPs). The idea of obtaining such solutions is essentially based on reducing the differential equation with its initial conditions to a system of algebraic equations. Two illustrative examples concern relevant physical problems (the Lane-Emden equations of the first and second kind) are discussed to demonstrate the validity and applicability of the suggested algorithm. Numerical results obtained are comparing favorably with the analytical known solutions.
Gimbal-Angle Vectors of the Nonredundant CMG Cluster
NASA Astrophysics Data System (ADS)
Lee, Donghun; Bang, Hyochoong
2018-05-01
This paper deals with the method using the preferred gimbal angles of a control moment gyro (CMG) cluster for controlling spacecraft attitude. To apply the method to the nonredundant CMG cluster, analytical gimbal-angle solutions for the zero angular momentum state are derived, and the gimbal-angle vectors for the nonzero angular momentum states are studied by a numerical method. It will be shown that the number of the gimbal-angle vectors is determined from the given skew angle and the angular momentum state of the CMG cluster. Through numerical examples, it is shown that the method using the preferred gimbal-angle is an efficient approach to avoid internal singularities for the nonredundant CMG cluster.
Boundary regularized integral equation formulation of the Helmholtz equation in acoustics.
Sun, Qiang; Klaseboer, Evert; Khoo, Boo-Cheong; Chan, Derek Y C
2015-01-01
A boundary integral formulation for the solution of the Helmholtz equation is developed in which all traditional singular behaviour in the boundary integrals is removed analytically. The numerical precision of this approach is illustrated with calculation of the pressure field owing to radiating bodies in acoustic wave problems. This method facilitates the use of higher order surface elements to represent boundaries, resulting in a significant reduction in the problem size with improved precision. Problems with extreme geometric aspect ratios can also be handled without diminished precision. When combined with the CHIEF method, uniqueness of the solution of the exterior acoustic problem is assured without the need to solve hypersingular integrals.
Boundary regularized integral equation formulation of the Helmholtz equation in acoustics
Sun, Qiang; Klaseboer, Evert; Khoo, Boo-Cheong; Chan, Derek Y. C.
2015-01-01
A boundary integral formulation for the solution of the Helmholtz equation is developed in which all traditional singular behaviour in the boundary integrals is removed analytically. The numerical precision of this approach is illustrated with calculation of the pressure field owing to radiating bodies in acoustic wave problems. This method facilitates the use of higher order surface elements to represent boundaries, resulting in a significant reduction in the problem size with improved precision. Problems with extreme geometric aspect ratios can also be handled without diminished precision. When combined with the CHIEF method, uniqueness of the solution of the exterior acoustic problem is assured without the need to solve hypersingular integrals. PMID:26064591
{lambda} elements for one-dimensional singular problems with known strength of singularity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, K.K.; Surana, K.S.
1996-10-01
This paper presents a new and general procedure for designing special elements called {lambda} elements for one dimensional singular problems where the strength of the singularity is know. The {lambda} elements presented here are of type C{sup 0}. These elements also provide inter-element C{sup 0} continuity with p-version elements. The {lambda} elements do not require a precise knowledge of the extent of singular zone, i.e., their use may be extended beyond the singular zone. When {lambda} elements are used at the singularity, a singular problem behaves like a smooth problem thereby eliminating the need for h, p-adaptive processes all together.more » One dimensional steady state radial flow of an upper convected Maxwell fluid is considered as a sample problem. Least squares approach (or least squares finite element formulation: LSFEF) is used to construct the integral form (error functional I) from the differential equations. Numerical results presented for radially inward flow with inner radius r{sub i} = 0.1, 0.01, 0.001, 0.0001, 0.00001, and Deborah number of 2 (De = 2) demonstrate the accuracy, faster convergence of the iterative solution procedure, faster convergence rate of the error functional and mesh independent characteristics of the {lambda} elements regardless of the severity of the singularity.« less
Tangled nonlinear driven chain reactions of all optical singularities
NASA Astrophysics Data System (ADS)
Vasil'ev, V. I.; Soskin, M. S.
2012-03-01
Dynamics of polarization optical singularities chain reactions in generic elliptically polarized speckle fields created in photorefractive crystal LiNbO3 was investigated in details Induced speckle field develops in the tens of minutes scale due to photorefractive 'optical damage effect' induced by incident beam of He-Ne laser. It was shown that polarization singularities develop through topological chain reactions of developing speckle fields driven by photorefractive nonlinearities induced by incident laser beam. All optical singularities (C points, optical vortices, optical diabolos,) are defined by instantaneous topological structure of the output wavefront and are tangled by singular optics lows. Therefore, they have develop in tangled way by six topological chain reactions driven by nonlinear processes in used nonlinear medium (photorefractive LiNbO3:Fe in our case): C-points and optical diabolos for right (left) polarized components domains with orthogonally left (right) polarized optical vortices underlying them. All elements of chain reactions consist from loop and chain links when nucleated singularities annihilated directly or with alien singularities in 1:9 ratio. The topological reason of statistics was established by low probability of far enough separation of born singularities pair from existing neighbor singularities during loop trajectories. Topology of developing speckle field was measured and analyzed by dynamic stokes polarimetry with few seconds' resolution. The hierarchy of singularities govern scenario of tangled chain reactions was defined. The useful space-time data about peculiarities of optical damage evolution were obtained from existence and parameters of 'islands of stability' in developing speckle fields.
Waska, R T
1999-01-01
Certain patients, through projective identification and splitting mechanisms, test the boundaries of the analytic situation. These patients are usually experiencing overwhelming paranoid-schizoid anxieties and view the object as ruthless and persecutory. Using a Kleinian perspective, the author advocates greater analytic flexibility with these difficult patients who seem unable to use the standard analytic environment. The concept of self-disclosure is examined, and the author discusses certain technical situations where self-disclosure may be helpful. (The Journal of Psychotherapy Practice and Research 1999; 8:225-233)
Food Adulteration in Switzerland: From 'Ravioli' over 'Springbok' to 'Disco Sushi'.
Hubner, Philipp
2016-01-01
The driving force behind food adulteration is monetary profit and this has remained unchanged for at least the last hundred years. Food adulterations were and still are difficult to uncover because they occur mostly in an unpredictable and unexpected way. Very often food falsifiers take advantage of modern technology in such a way that food adulterations are difficult or sometimes even impossible to detect. Targets for food adulteration were and still are highly priced food items such as spirits, meat, seafood and olive oil. Although difficult to detect, food adulterations were in the past strong driving forces for the development of adequate detection methods in the official food control laboratories and for the enforcement of the food law. A very prominent example in this context is the 'Ravioli scandal' in Switzerland in the late 1970s which showed that cheap second-class meat could be processed into products without being discovered for long time. As a consequence the official food control laboratories in Switzerland were reinforced with more laboratory equipment and technical staff. With the introduction of new detection principles such as DNA-based analytical methods new kinds of food adulteration could and can be uncovered. Analytical methods have their limits and in some cases of food fraud there are no analytical means to detect them. In such cases the examination of trade by checking of accounts is the method of choice.
Metric dimensional reduction at singularities with implications to Quantum Gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoica, Ovidiu Cristinel, E-mail: holotronix@gmail.com
2014-08-15
A series of old and recent theoretical observations suggests that the quantization of gravity would be feasible, and some problems of Quantum Field Theory would go away if, somehow, the spacetime would undergo a dimensional reduction at high energy scales. But an identification of the deep mechanism causing this dimensional reduction would still be desirable. The main contribution of this article is to show that dimensional reduction effects are due to General Relativity at singularities, and do not need to be postulated ad-hoc. Recent advances in understanding the geometry of singularities do not require modification of General Relativity, being justmore » non-singular extensions of its mathematics to the limit cases. They turn out to work fine for some known types of cosmological singularities (black holes and FLRW Big-Bang), allowing a choice of the fundamental geometric invariants and physical quantities which remain regular. The resulting equations are equivalent to the standard ones outside the singularities. One consequence of this mathematical approach to the singularities in General Relativity is a special, (geo)metric type of dimensional reduction: at singularities, the metric tensor becomes degenerate in certain spacetime directions, and some properties of the fields become independent of those directions. Effectively, it is like one or more dimensions of spacetime just vanish at singularities. This suggests that it is worth exploring the possibility that the geometry of singularities leads naturally to the spontaneous dimensional reduction needed by Quantum Gravity. - Highlights: • The singularities we introduce are described by finite geometric/physical objects. • Our singularities are accompanied by dimensional reduction effects. • They affect the metric, the measure, the topology, the gravitational DOF (Weyl = 0). • Effects proposed in other approaches to Quantum Gravity are obtained naturally. • The geometric dimensional reduction obtained opens new ways for Quantum Gravity.« less
Recent Transonic Flutter Investigations for Wings and External Stores
1983-01-01
and difficult method? In the early days of high-speed air- craft design . the aeroelastician realized that non -compressible aerodynamic theory and... experimental aeroelastic model program that would provide insight into the effects of Reynolds number and angle of attack on various airfoil designs regarding...investigation is carried out both experimentally and analytically. The analytic modelling will be described in a later section. The flutter calculations
Spectral singularities and Bragg scattering in complex crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longhi, S.
2010-02-15
Spectral singularities that spoil the completeness of Bloch-Floquet states may occur in non-Hermitian Hamiltonians with complex periodic potentials. Here an equivalence is established between spectral singularities in complex crystals and secularities that arise in Bragg diffraction patterns. Signatures of spectral singularities in a scattering process with wave packets are elucidated for a PT-symmetric complex crystal.
On the splash and splat singularities for the one-phase inhomogeneous Muskat Problem
NASA Astrophysics Data System (ADS)
Córdoba, Diego; Pernas-Castaño, Tania
2017-10-01
In this paper, we study finite time splash and splat singularities formation for the interface of one fluid in a porous media with two different permeabilities. We prove that the smoothness of the interface breaks down in finite time into a splash singularity but this is not going to happen into a splat singularity.
Classical stability of sudden and big rip singularities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrow, John D.; Lip, Sean Z. W.
2009-08-15
We introduce a general characterization of sudden cosmological singularities and investigate the classical stability of homogeneous and isotropic cosmological solutions of all curvatures containing these singularities to small scalar, vector, and tensor perturbations using gauge-invariant perturbation theory. We establish that sudden singularities at which the scale factor, expansion rate, and density are finite are stable except for a set of special parameter values. We also apply our analysis to the stability of Big Rip singularities and find the conditions for their stability against small scalar, vector, and tensor perturbations.
Singularity embedding method in potential flow calculations
NASA Technical Reports Server (NTRS)
Jou, W. H.; Huynh, H.
1982-01-01
The so-called H-type mesh is used in a finite-element (or finite-volume) calculation of the potential flow past an airfoil. Due to coordinate singularity at the leading edge, a special singular trial function is used for the elements neighboring the leading edge. The results using the special singular elements are compared to those using the regular elements. It is found that the unreasonable pressure distribution obtained by the latter is removed by the embedding of the singular element. Suggestions to extend the present method to transonic cases are given.
Naked singularities are not singular in distorted gravity
NASA Astrophysics Data System (ADS)
Garattini, Remo; Majumder, Barun
2014-07-01
We compute the Zero Point Energy (ZPE) induced by a naked singularity with the help of a reformulation of the Wheele-DeWitt equation. A variational approach is used for the calculation with Gaussian Trial Wave Functionals. The one loop contribution of the graviton to the ZPE is extracted keeping under control the UltraViolet divergences by means of a distorted gravitational field. Two examples of distortion are taken under consideration: Gravity's Rainbow and Noncommutative Geometry. Surprisingly, we find that the ZPE is no more singular when we approach the singularity.
Contracting singular horseshoe
NASA Astrophysics Data System (ADS)
Morales, C. A.; San Martín, B.
2017-11-01
We suggest a notion of hyperbolicity adapted to the geometric Rovella attractor (Robinson 2012 An Introduction to Dynamical Systems—Continuous and Discrete (Pure and Applied Undergraduate Texts vol 19) 2nd edn (Providence, RI: American Mathematical Society)) . More precisely, we call a partially hyperbolic set asymptotically sectional-hyperbolic if its singularities are hyperbolic and if its central subbundle is asymptotically sectional expanding outside the stable manifolds of the singularities. We prove that there are highly chaotic flows with Rovella-like singularities exhibiting this kind of hyperbolicity. We shall call them contracting singular horseshoes.
Null cosmological singularities and free strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, K.
2010-03-15
We continue exploring free strings in the background of null Kasner-like cosmological singularities, following K. Narayan, arXiv:0904.4532. We study the free string Schrodinger wave functional along the lines of K. Narayan, arXiv:0807.1517. We find the wave functional to be nonsingular in the vicinity of singularities whose Kasner exponents satisfy certain relations. We compare this with the description in other variables. We then study certain regulated versions of these singularities where the singular region is replaced by a substringy but nonsingular region and study the string spectra in these backgrounds. The string modes can again be solved for exactly, giving somemore » insight into how string oscillator states get excited near the singularity.« less
Probing the degenerate states of V-point singularities.
Ram, B S Bhargava; Sharma, Anurag; Senthilkumaran, Paramasivam
2017-09-15
V-points are polarization singularities in spatially varying linearly polarized optical fields and are characterized by the Poincare-Hopf index η. Each V-point singularity is a superposition of two oppositely signed orbital angular momentum states in two orthogonal spin angular momentum states. Hence, a V-point singularity has zero net angular momentum. V-points with given |η| have the same (amplitude) intensity distribution but have four degenerate polarization distributions. Each of these four degenerate states also produce identical diffraction patterns. Hence to distinguish these degenerate states experimentally, we present in this Letter a method involving a combination of polarization transformation and diffraction. This method also shows the possibility of using polarization singularities in place of phase singularities in optical communication and quantum information processing.
NASA Astrophysics Data System (ADS)
Liu, Pusheng; Lü, Baida
2007-04-01
By using the vectorial Debye diffraction theory, phase singularities of high numerical aperture (NA) dark-hollow Gaussian beams in the focal region are studied. The dependence of phase singularities on the truncation parameter δ and semi-aperture angle α (or equally, NA) is illustrated numerically. A comparison of phase singularities of high NA dark-hollow Gaussian beams with those of scalar paraxial Gaussian beams and high NA Gaussian beams is made. For high NA dark-hollow Gaussian beams the beam order n additionally affects the spatial distribution of phase singularities, and there exist phase singularities outside the focal plane, which may be created or annihilated by variation of the semi-aperture angle in a certain region.
Singularity: Scientific containers for mobility of compute.
Kurtzer, Gregory M; Sochat, Vanessa; Bauer, Michael W
2017-01-01
Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science.
Singularity: Scientific containers for mobility of compute
Kurtzer, Gregory M.; Bauer, Michael W.
2017-01-01
Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science. PMID:28494014
Managing focal fields of vector beams with multiple polarization singularities.
Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Gan, Xuetao; Zhao, Jianlin
2016-11-10
We explore the tight focusing behavior of vector beams with multiple polarization singularities, and analyze the influences of the number, position, and topological charge of the singularities on the focal fields. It is found that the ellipticity of the local polarization states at the focal plane could be determined by the spatial distribution of the polarization singularities of the vector beam. When the spatial location and topological charge of singularities have even-fold rotation symmetry, the transverse fields at the focal plane are locally linearly polarized. Otherwise, the polarization state becomes a locally hybrid one. By appropriately arranging the distribution of the polarization singularities in the vector beam, the polarization distributions of the focal fields could be altered while the intensity maintains unchanged.
Analytic properties for the honeycomb lattice Green function at the origin
NASA Astrophysics Data System (ADS)
Joyce, G. S.
2018-05-01
The analytic properties of the honeycomb lattice Green function are investigated, where is a complex variable which lies in a plane. This double integral defines a single-valued analytic function provided that a cut is made along the real axis from w = ‑3 to . In order to analyse the behaviour of along the edges of the cut it is convenient to define the limit function where . It is shown that and can be evaluated exactly for all in terms of various hypergeometric functions, where the argument function is always real-valued and rational. The second-order linear Fuchsian differential equation satisfied by is also used to derive series expansions for and which are valid in the neighbourhood of the regular singular points and . Integral representations are established for and , where with . In particular, it is proved that where J 0(z) and Y 0(z) denote Bessel functions of the first and second kind, respectively. The results derived in the paper are utilized to evaluate the associated logarithmic integral where w lies in the cut plane. A new set of orthogonal polynomials which are connected with the honeycomb lattice Green function are also briefly discussed. Finally, a link between and the theory of Pearson random walks in a plane is established.
Layover and shadow detection based on distributed spaceborne single-baseline InSAR
NASA Astrophysics Data System (ADS)
Huanxin, Zou; Bin, Cai; Changzhou, Fan; Yun, Ren
2014-03-01
Distributed spaceborne single-baseline InSAR is an effective technique to get high quality Digital Elevation Model. Layover and Shadow are ubiquitous phenomenon in SAR images because of geometric relation of SAR imaging. In the signal processing of single-baseline InSAR, the phase singularity of Layover and Shadow leads to the phase difficult to filtering and unwrapping. This paper analyzed the geometric and signal model of the Layover and Shadow fields. Based on the interferometric signal autocorrelation matrix, the paper proposed the signal number estimation method based on information theoretic criteria, to distinguish Layover and Shadow from normal InSAR fields. The effectiveness and practicability of the method proposed in the paper are validated in the simulation experiments and theoretical analysis.
Singular perturbation and time scale approaches in discrete control systems
NASA Technical Reports Server (NTRS)
Naidu, D. S.; Price, D. B.
1988-01-01
After considering a singularly perturbed discrete control system, a singular perturbation approach is used to obtain outer and correction subsystems. A time scale approach is then applied via block diagonalization transformations to decouple the system into slow and fast subsystems. To a zeroth-order approximation, the singular perturbation and time-scale approaches are found to yield equivalent results.
Overcoming Robot-Arm Joint Singularities
NASA Technical Reports Server (NTRS)
Barker, L. K.; Houck, J. A.
1986-01-01
Kinematic equations allow arm to pass smoothly through singular region. Report discusses mathematical singularities in equations of robotarm control. Operator commands robot arm to move in direction relative to its own axis system by specifying velocity in that direction. Velocity command then resolved into individual-joint rotational velocities in robot arm to effect motion. However, usual resolved-rate equations become singular when robot arm is straightened.
7 CFR 900.80 - Words in the singular form.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.80 Section 900.80....C. 608b(b) and 7 U.S.C. 608e Covering Fruits, Vegetables, and Nuts § 900.80 Words in the singular form. Words in this subpart in the singular form shall be deemed to import the plural, and vice versa...
NASA Technical Reports Server (NTRS)
Wang, S. S.; Choi, I.
1983-01-01
The fundamental mechanics of delamination in fiber composite laminates is studied. Mathematical formulation of the problem is based on laminate anisotropic elasticity theory and interlaminar fracture mechanics concepts. Stress singularities and complete solution structures associated with general composite delaminations are determined. For a fully open delamination with traction-free surfaces, oscillatory stress singularities always appear, leading to physically inadmissible field solutions. A refined model is introduced by considering a partially closed delamination with crack surfaces in finite-length contact. Stress singularities associated with a partially closed delamination having frictional crack-surface contact are determined, and are found to be diferent from the inverse square-root one of the frictionless-contact case. In the case of a delamination with very small area of crack closure, a simplified model having a square-root stress singularity is employed by taking the limit of the partially closed delamination. The possible presence of logarithmic-type stress singularity is examined; no logarithmic singularity of any kind is found in the composite delamination problem. Numerical examples of dominant stress singularities are shown for delaminations having crack-tip closure with different frictional coefficients between general (1) and (2) graphite-epoxy composites.
Singular trajectories: space-time domain topology of developing speckle fields
NASA Astrophysics Data System (ADS)
Vasil'ev, Vasiliy; Soskin, Marat S.
2010-02-01
It is shown the space-time dynamics of optical singularities is fully described by singularities trajectories in space-time domain, or evolution of transverse coordinates(x, y) in some fixed plane z0. The dynamics of generic developing speckle fields was realized experimentally by laser induced scattering in LiNbO3:Fe photorefractive crystal. The space-time trajectories of singularities can be divided topologically on two classes with essentially different scenario and duration. Some of them (direct topological reactions) consist from nucleation of singularities pair at some (x, y, z0, t) point, their movement and annihilation. They possess form of closed loops with relatively short time of existence. Another much more probable class of trajectories are chain topological reactions. Each of them consists from sequence of links, i.e. of singularities nucleation in various points (xi yi, ti) and following annihilation of both singularities in other space-time points with alien singularities of opposite topological indices. Their topology and properties are established. Chain topological reactions can stop on the borders of a developing speckle field or go to infinity. Examples of measured both types of topological reactions for optical vortices (polarization C points) in scalar (elliptically polarized) natural developing speckle fields are presented.
New classification methods on singularity of mechanism
NASA Astrophysics Data System (ADS)
Luo, Jianguo; Han, Jianyou
2010-07-01
Based on the analysis of base and methods of singularity of mechanism, four methods obtained according to the factors of moving states of mechanism and cause of singularity and property of linear complex of singularity and methods in studying singularity, these bases and methods can't reflect the direct property and systematic property and controllable property of the structure of mechanism in macro, thus can't play an excellent role in guiding to evade the configuration before the appearance of singularity. In view of the shortcomings of forementioned four bases and methods, six new methods combined with the structure and exterior phenomena and motion control of mechanism directly and closely, classfication carried out based on the factors of moving base and joint component and executor and branch and acutating source and input parameters, these factors display the systemic property in macro, excellent guiding performance can be expected in singularity evasion and machine design and machine control based on these new bases and methods.
NASA Technical Reports Server (NTRS)
Bedrossian, Nazareth Sarkis
1987-01-01
The correspondence between robotic manipulators and single gimbal Control Moment Gyro (CMG) systems was exploited to aid in the understanding and design of single gimbal CMG Steering laws. A test for null motion near a singular CMG configuration was derived which is able to distinguish between escapable and unescapable singular states. Detailed analysis of the Jacobian matrix null-space was performed and results were used to develop and test a variety of single gimbal CMG steering laws. Computer simulations showed that all existing singularity avoidance methods are unable to avoid Elliptic internal singularities. A new null motion algorithm using the Moore-Penrose pseudoinverse, however, was shown by simulation to avoid Elliptic type singularities under certain conditions. The SR-inverse, with appropriate null motion was proposed as a general approach to singularity avoidance, because of its ability to avoid singularities through limited introduction of torque error. Simulation results confirmed the superior performance of this method compared to the other available and proposed pseudoinverse-based Steering laws.
Infinite derivative gravity: non-singular cosmology & blackhole solutions
NASA Astrophysics Data System (ADS)
Mazumdar, A.
Both Einstein’s theory of General Relativity and Newton’s theory of gravity possess a short distance and small time scale catastrophe. The blackhole singularity and cosmological Big Bang singularity problems highlight that current theories of gravity are incomplete description at early times and small distances. I will discuss how one can potentially resolve these fundamental problems at a classical level and quantum level. In particular, I will discuss infinite derivative theories of gravity, where gravitational interactions become weaker in the ultraviolet, and therefore resolving some of the classical singularities, such as Big Bang and Schwarzschild singularity for compact non-singular objects with mass up to 1025 grams. In this lecture, I will discuss quantum aspects of infinite derivative gravity and discuss few aspects which can make the theory asymptotically free in the UV.
Three dimensional canonical singularity and five dimensional N = 1 SCFT
NASA Astrophysics Data System (ADS)
Xie, Dan; Yau, Shing-Tung
2017-06-01
We conjecture that every three dimensional canonical singularity defines a five dimensional N = 1 SCFT. Flavor symmetry can be found from singularity structure: non-abelian flavor symmetry is read from the singularity type over one dimensional singular locus. The dimension of Coulomb branch is given by the number of compact crepant divisors from a crepant resolution of singularity. The detailed structure of Coulomb branch is described as follows: a) a chamber of Coulomb branch is described by a crepant resolution, and this chamber is given by its Nef cone and the prepotential is computed from triple intersection numbers; b) Crepant resolution is not unique and different resolutions are related by flops; Nef cones from crepant resolutions form a fan which is claimed to be the full Coulomb branch.
Sharp bounds for singular values of fractional integral operators
NASA Astrophysics Data System (ADS)
Burman, Prabir
2007-03-01
From the results of Dostanic [M.R. Dostanic, Asymptotic behavior of the singular values of fractional integral operators, J. Math. Anal. Appl. 175 (1993) 380-391] and Vu and Gorenflo [Kim Tuan Vu, R. Gorenflo, Singular values of fractional and Volterra integral operators, in: Inverse Problems and Applications to Geophysics, Industry, Medicine and Technology, Ho Chi Minh City, 1995, Ho Chi Minh City Math. Soc., Ho Chi Minh City, 1995, pp. 174-185] it is known that the jth singular value of the fractional integral operator of order [alpha]>0 is approximately ([pi]j)-[alpha] for all large j. In this note we refine this result by obtaining sharp bounds for the singular values and use these bounds to show that the jth singular value is ([pi]j)-[alpha][1+O(j-1)].
NASA Astrophysics Data System (ADS)
Faug, Thierry
2017-04-01
The Rankine-Hugoniot jump conditions traditionally describe the theoretical relationship between the equilibrium state on both sides of a shock-wave. They are based on the crucial assumption that the length-scale needed to adjust the equilibrium state upstream of the shock to downstream of it is too small to be of significance to the problem. They are often used with success to describe the shock-waves in a number of applications found in both fluid and solid mechanics. However, the relations based on jump conditions at singular surfaces may fail to capture some features of the shock-waves formed in complex materials, such as granular matter. This study addresses the particular problem of compressible shock-waves formed in flows of dry granular materials down a slope. This problem is for instance relevant to full-scale geophysical granular flows in interaction with natural obstacles or man-made structures, such as topographical obstacles or mitigation dams respectively. Steady-state jumps formed in granular flows and travelling shock-waves produced at the impact of a granular avalanche-flow with a rigid wall are considered. For both situations, new analytical relations which do not consider that the granular shock-wave shrinks into a singular surface are derived, by using balance equations in their depth-averaged forms for mass and momentum. However, these relations need additional inputs that are closure relations for the size and the shape of the shock-wave, and a relevant constitutive friction law. Small-scale laboratory tests and numerical simulations based on the discrete element method are shortly presented and used to infer crucial information needed for the closure relations. This allows testing some predictive aspects of the simple analytical approach proposed for both steady-state and travelling shock-waves formed in free-surface flows of dry granular materials down a slope.
NASA Astrophysics Data System (ADS)
Echeverria, Fernando
I study three different topics in general relativity. The first study investigates the accuracy with which the mass and angular momentum of a black hole can be determined by measurements of gravitational waves from the hole, using a gravitational-wave detector. The black hole is assumed to have been strongly perturbed and the detector measures the waves produced by its resulting vibration and ring-down. The uncertainties in the measured parameters arise from the noise present in the detector. It is found that the faster the hole rotates, the more accurate the measurements will be, with the uncertainty in the angular momentum decreasing rapidly with increasing rotation speed. The second study is an analysis of the gravitational collapse of an infinitely long, cylindrical dust shell, an idealization of more realistic, finite-length bodies. It is found that the collapse evolves into a naked singularity in finite time. Analytical expressions for the variables describing the collapse are found at late times, near the singularity. The collapse is also followed, with a numerical simulation, from the start until very close to the singularity. The singularity is found to be strong, in the sense that an observer riding on the shell will be infinitely stretched in one direction and infinitely compressed in another. The gravitational waves emitted from the collapse are also analyzed. The last study focuses on the consequences of the existence of closed time like curves in a worm hole space time. One might expect that such curves might cause a system with apparently well-posed initial conditions to have no self-consistent evolution. We study the case of a classical particle with a hard-sphere potential, focusing attention on initial conditions for which the evolution, if followed naively, is self-inconsistent: the ball travels to the past through the worm hole colliding with its younger self, preventing itself from entering the worm hole. We find, surprisingly, that for all such 'dangerous' initial conditions, there are an infinite number of self-consistent solutions. We also find that for many non-dangerous initial conditions, there also exist an infinity of possible evolutions.
Diffraction of V-point singularities through triangular apertures.
Ram, B S Bhargava; Sharma, Anurag; Senthilkumaran, P
2017-05-01
In this paper we present experimental studies on diffraction of V-point singularities through equilateral and isosceles right triangular apertures. When V-point index, also called Poincare-Hopf index (η), of the optical field is +1, the diffraction disintegrates it into two monstars/lemons. When V-point index η is -1, diffraction produces two stars. The diffraction pattern, unlike phase singularity, is insensitive to polarity of the polarization singularity and the intensity pattern remains invariant. Higher order V-point singularities are generated using Sagnac interferometer and it is observed that the diffraction disintegrates them into lower order C-points.
Approximate method for calculating a thickwalled cylinder with rigidly clamped ends
NASA Astrophysics Data System (ADS)
Andreev, Vladimir
2018-03-01
Numerous papers dealing with the calculations of cylindrical bodies [1 -8 and others] have shown that analytic and numerical-analytical solutions in both homogeneous and inhomogeneous thick-walled shells can be obtained quite simply, using expansions in Fourier series on trigonometric functions, if the ends are hinged movable (sliding support). It is much more difficult to solve the problem of calculating shells with builtin ends.
NASA Technical Reports Server (NTRS)
Fink, P. W.; Khayat, M. A.; Wilton, D. R.
2005-01-01
It is known that higher order modeling of the sources and the geometry in Boundary Element Modeling (BEM) formulations is essential to highly efficient computational electromagnetics. However, in order to achieve the benefits of hIgher order basis and geometry modeling, the singular and near-singular terms arising in BEM formulations must be integrated accurately. In particular, the accurate integration of near-singular terms, which occur when observation points are near but not on source regions of the scattering object, has been considered one of the remaining limitations on the computational efficiency of integral equation methods. The method of singularity subtraction has been used extensively for the evaluation of singular and near-singular terms. Piecewise integration of the source terms in this manner, while manageable for bases of constant and linear orders, becomes unwieldy and prone to error for bases of higher order. Furthermore, we find that the singularity subtraction method is not conducive to object-oriented programming practices, particularly in the context of multiple operators. To extend the capabilities, accuracy, and maintainability of general-purpose codes, the subtraction method is being replaced in favor of the purely numerical quadrature schemes. These schemes employ singularity cancellation methods in which a change of variables is chosen such that the Jacobian of the transformation cancels the singularity. An example of the sin,oularity cancellation approach is the Duffy method, which has two major drawbacks: 1) In the resulting integrand, it produces an angular variation about the singular point that becomes nearly-singular for observation points close to an edge of the parent element, and 2) it appears not to work well when applied to nearly-singular integrals. Recently, the authors have introduced the transformation u(x(prime))= sinh (exp -1) x(prime)/Square root of ((y prime (exp 2))+ z(exp 2) for integrating functions of the form I = Integral of (lambda(r(prime))((e(exp -jkR))/(4 pi R) d D where A (r (prime)) is a vector or scalar basis function and R = Square root of( (x(prime)(exp2) + (y(prime)(exp2) + z(exp 2)) is the distance between source and observation points. This scheme has all of the advantages of the Duffy method while avoiding the disadvantages listed above. In this presentation we will survey similar approaches for handling singular and near-singular terms for kernels with 1/R(exp 2) type behavior, addressing potential pitfalls and offering techniques to efficiently handle special cases.
Protostellar Collapse with a Shock
NASA Technical Reports Server (NTRS)
Tsai, John C.; Hsu, Juliana J.
1995-01-01
We reexamine both numerically and analytically the collapse of the singular isothermal sphere in the context of low-mass star formation. We consider the case where the onset of collapse is initiated by some arbitrary process which is accompanied by a central output of either heat or kinetic energy. We find two classes of numerical solutions describing this manner of collapse. The first approaches in time the expansion wave solution of Shu, while the second class is characterized by an ever-decreasing central accretion rate and the presence of an outwardly propagating weak shock. The collapse solution which represents the dividing case between these two classes is determined analytically by a similarity analysis. This solution shares with the expansion wave solution the properties that the gas remains stationary with an r(exp -2) density profile at large radius and that, at small radius, the gas free-falls onto a nascent core at a constant rate which depends only on the isothermal sound speed. This accretion rate is a factor of approx. 0.1 that predicted by the expansion wave solution. This reduction is due in part to the presence of a weak shock which propagates outward at 1.26 times the sound speed. Gas in the postshock region first moves out subsonically but is then decelerated and begins to collapse. The existence of two classes of numerical collapse solutions is explained in terms of the instability to radial perturbations of the analytic solution. Collapse occurring in the manner described by some of our solutions would eventually unbind a finite-sized core. However, this does not constitute a violation of the instability properties of the singular isothermal sphere which is unstable both to collapse and to expansion. To emphasize this, we consider a purely expanding solution for isothermal spheres. This solution is found to be self-similar and results in a uniform density core in the central regions of the gas. Our solutions may be relevant to the 'luminosity' problem of protostellar cores since the predicted central accretion rates are significantly reduced relative to that of the expansion wave solution. Furthermore, our calculations indicate that star-forming cloud cores are not very tightly bound and that modest disturbances can easily result in both termination of infall and dispersal of unaccreted material.
Protostellar Collapse with a Shock
NASA Technical Reports Server (NTRS)
Tsai, John C.; Hsu, Juliana J. L.
1995-01-01
We reexamine both numerically and analytically the collapse of the singular isothermal sphere in the context of low-mass star formation. We consider the case where the onset of collapse is initiated by some arbitrary process which is accompanied by a central output of either heat or kinetic energy. We find two classes of numerical solutions describing this manner of collapse. The first approaches in time the expansion wave solution of Shu, while the second class is characterized by an ever-decreasing central accretion rate and the presence of an outwardly propagating weak shock. The collapse solution which represents the dividing case between these two classes is determined analytically by a similarity analysis. This solution shares with the expansion wave solution the properties that the gas remains stationary with an r(sup -2) density profile at large radius and that, at small radius, the gas free-falls onto a nascent core at a constant rate which depends only on the isothermal sound speed. This accretion rate is a factor of approx. 0.1 that predicted by the expansion wave solution. This reduction is due in part to the presence of a weak shock which propagates outward at 1.26 times the sound speed. Gas in the postshock region first moves out subsonically but is then decelerated and begins to collapse. The existence of two classes of numerical collapse solutions is explained in terms of the instability to radial perturbations of the analytic solution. Collapse occurring in the manner described by some of our solutions would eventually unbind a finite-sized core. However, this does not constitute a violation of the instability properties of the singular isothermal sphere which is unstable both to collapse and to expansion. To emphasize this, we consider a purely expanding solution for isothermal spheres. This solution is found to be self-similar and results in a uniform density core in the central regions of the gas. Our solutions may be relevant to the 'luminosity' problem of protostellar cores since the predicted central accretion rates are significantly reduced relative to that of the expansion wave solution. Furthermore, our calculations indicate that star-forming cloud cores are not very tightly bound and that modest disturbances can easily result in both termination of infall and dispersal of unaccreted material.
Approximate Solution to the Angular Speeds of a Nearly-Symmetric Mass-Varying Cylindrical Body
NASA Astrophysics Data System (ADS)
Nanjangud, Angadh; Eke, Fidelis
2017-06-01
This paper examines the rotational motion of a nearly axisymmetric rocket type system with uniform burn of its propellant. The asymmetry comes from a slight difference in the transverse principal moments of inertia of the system, which then results in a set of nonlinear equations of motion even when no external torque is applied to the system. It is often difficult, or even impossible, to generate analytic solutions for such equations; closed form solutions are even more difficult to obtain. In this paper, a perturbation-based approach is employed to linearize the equations of motion and generate analytic solutions. The solutions for the variables of transverse motion are analytic and a closed-form solution to the spin rate is suggested. The solutions are presented in a compact form that permits rapid computation. The approximate solutions are then applied to the torque-free motion of a typical solid rocket system and the results are found to agree with those obtained from the numerical solution of the full non-linear equations of motion of the mass varying system.
NASA Astrophysics Data System (ADS)
Wang, L.-P.; Ochoa-Rodríguez, S.; Onof, C.; Willems, P.
2015-09-01
Gauge-based radar rainfall adjustment techniques have been widely used to improve the applicability of radar rainfall estimates to large-scale hydrological modelling. However, their use for urban hydrological applications is limited as they were mostly developed based upon Gaussian approximations and therefore tend to smooth off so-called "singularities" (features of a non-Gaussian field) that can be observed in the fine-scale rainfall structure. Overlooking the singularities could be critical, given that their distribution is highly consistent with that of local extreme magnitudes. This deficiency may cause large errors in the subsequent urban hydrological modelling. To address this limitation and improve the applicability of adjustment techniques at urban scales, a method is proposed herein which incorporates a local singularity analysis into existing adjustment techniques and allows the preservation of the singularity structures throughout the adjustment process. In this paper the proposed singularity analysis is incorporated into the Bayesian merging technique and the performance of the resulting singularity-sensitive method is compared with that of the original Bayesian (non singularity-sensitive) technique and the commonly used mean field bias adjustment. This test is conducted using as case study four storm events observed in the Portobello catchment (53 km2) (Edinburgh, UK) during 2011 and for which radar estimates, dense rain gauge and sewer flow records, as well as a recently calibrated urban drainage model were available. The results suggest that, in general, the proposed singularity-sensitive method can effectively preserve the non-normality in local rainfall structure, while retaining the ability of the original adjustment techniques to generate nearly unbiased estimates. Moreover, the ability of the singularity-sensitive technique to preserve the non-normality in rainfall estimates often leads to better reproduction of the urban drainage system's dynamics, particularly of peak runoff flows.
Naked shell singularities on the brane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seahra, Sanjeev S.
By utilizing nonstandard slicings of 5-dimensional Schwarzschild and Schwarzschild-AdS manifolds based on isotropic coordinates, we generate static and spherically-symmetric braneworld spacetimes containing shell-like naked null singularities. For planar slicings, we find that the brane-matter sourcing the solution is a perfect fluid with an exotic equation of state and a pressure singularity where the brane crosses the bulk horizon. From a relativistic point of view, such a singularity is required to maintain matter infinitesimally above the surface of a black hole. From the point of view of the AdS/CFT conjecture, the singular horizon can be seen as one possible quantum correctionmore » to a classical black hole geometry. Various generalizations of planar slicings are also considered for a Ricci-flat bulk, and we find that singular horizons and exotic matter distributions are common features.« less
Experimental verification of free-space singular boundary conditions in an invisibility cloak
NASA Astrophysics Data System (ADS)
Wu, Qiannan; Gao, Fei; Song, Zhengyong; Lin, Xiao; Zhang, Youming; Chen, Huanyang; Zhang, Baile
2016-04-01
A major issue in invisibility cloaking, which caused intense mathematical discussions in the past few years but still remains physically elusive, is the plausible singular boundary conditions associated with the singular metamaterials at the inner boundary of an invisibility cloak. The perfect cloaking phenomenon, as originally proposed by Pendry et al for electromagnetic waves, cannot be treated as physical before a realistic inner boundary of a cloak is demonstrated. Although a recent demonstration has been done in a waveguide environment, the exotic singular boundary conditions should apply to a general environment as in free space. Here we fabricate a metamaterial surface that exhibits the singular boundary conditions and demonstrate its performance in free space. Particularly, the phase information of waves reflected from this metamaterial surface is explicitly measured, confirming the singular responses of boundary conditions for an invisibility cloak.
Waska, Robert T.
1999-01-01
Certain patients, through projective identification and splitting mechanisms, test the boundaries of the analytic situation. These patients are usually experiencing overwhelming paranoid-schizoid anxieties and view the object as ruthless and persecutory. Using a Kleinian perspective, the author advocates greater analytic flexibility with these difficult patients who seem unable to use the standard analytic environment. The concept of self-disclosure is examined, and the author discusses certain technical situations where self-disclosure may be helpful.(The Journal of Psychotherapy Practice and Research 1999; 8:225–233) PMID:10413442
New method for detecting singularities in experimental incompressible flows
NASA Astrophysics Data System (ADS)
Kuzzay, Denis; Saw, Ewe-Wei; Martins, Fabio J. W. A.; Faranda, Davide; Foucaut, Jean-Marc; Daviaud, François; Dubrulle, Bérengère
2017-06-01
We introduce two new criteria based on the work of Duchon and Robert (2000 Nonlinearity 13 249) and Eyink (2006 Phys. Rev. E 74 066302), which allow for the local detection of Navier-Stokes singularities in experimental flows. We discuss the difference between non-dissipative or dissipative Euler quasi-singularities and genuine Navier-Stokes dissipative singularites, and classify them with respect to their Hölder exponent h. We show that our criteria allow us to detect areas in a flow where the velocity field is no more regular than Hölder continuous with some Hölder exponent h ≤slant 1/2 . We illustrate our discussion using classical tomographic particle image velocimetry (TPIV) measurements obtained inside a high Reynolds number flow generated in the boundary layer of a wind tunnel. Our study shows that, in order to detect singularities or quasi-singularities, one does not need to have access to the whole velocity field inside a volume, but can instead look for them from stereoscopic PIV data on a plane. We also provide a discussion about the link between areas detected by our criteria and areas corresponding to large vorticity. We argue that this link might provide either a clue about the genesis of these quasi-singularities or a way to discriminate dissipative Euler quasi-singularities and genuine Navier-Stokes singularities.
NASA Technical Reports Server (NTRS)
Wang, S. S.; Choi, I.
1983-01-01
The fundamental mechanics of delamination in fiber composite laminates is studied. Mathematical formulation of the problem is based on laminate anisotropic elasticity theory and interlaminar fracture mechanics concepts. Stress singularities and complete solution structures associated with general composite delaminations are determined. For a fully open delamination with traction-free surfaces, oscillatory stress singularities always appear, leading to physically inadmissible field solutions. A refined model is introduced by considering a partially closed delamination with crack surfaces in finite-length contact. Stress singularities associated with a partially closed delamination having frictional crack-surface contact are determined, and are found to be different from the inverse square-root one of the frictionless-contact case. In the case of a delamination with very small area of crack closure, a simplified model having a square-root stress singularity is employed by taking the limit of the partially closed delamination. The possible presence of logarithmic-type stress singularity is examined; no logarithmic singularity of any kind is found in the composite delamination problem. Numerical examples of dominant stress singularities are shown for delaminations having crack-tip closure with different frictional coefficients between general (1) and (2) graphite-epoxy composites. Previously announced in STAR as N84-13221
Harmonic analysis of electric locomotive and traction power system based on wavelet singular entropy
NASA Astrophysics Data System (ADS)
Dun, Xiaohong
2018-05-01
With the rapid development of high-speed railway and heavy-haul transport, the locomotive and traction power system has become the main harmonic source of China's power grid. In response to this phenomenon, the system's power quality issues need timely monitoring, assessment and governance. Wavelet singular entropy is an organic combination of wavelet transform, singular value decomposition and information entropy theory, which combines the unique advantages of the three in signal processing: the time-frequency local characteristics of wavelet transform, singular value decomposition explores the basic modal characteristics of data, and information entropy quantifies the feature data. Based on the theory of singular value decomposition, the wavelet coefficient matrix after wavelet transform is decomposed into a series of singular values that can reflect the basic characteristics of the original coefficient matrix. Then the statistical properties of information entropy are used to analyze the uncertainty of the singular value set, so as to give a definite measurement of the complexity of the original signal. It can be said that wavelet entropy has a good application prospect in fault detection, classification and protection. The mat lab simulation shows that the use of wavelet singular entropy on the locomotive and traction power system harmonic analysis is effective.
Mathematical and computational studies of equilibrium capillary free surfaces
NASA Technical Reports Server (NTRS)
Albright, N.; Chen, N. F.; Concus, P.; Finn, R.
1977-01-01
The results of several independent studies are presented. The general question is considered of whether a wetting liquid always rises higher in a small capillary tube than in a larger one, when both are dipped vertically into an infinite reservoir. An analytical investigation is initiated to determine the qualitative behavior of the family of solutions of the equilibrium capillary free-surface equation that correspond to rotationally symmetric pendent liquid drops and the relationship of these solutions to the singular solution, which corresponds to an infinite spike of liquid extending downward to infinity. The block successive overrelaxation-Newton method and the generalized conjugate gradient method are investigated for solving the capillary equation on a uniform square mesh in a square domain, including the case for which the solution is unbounded at the corners. Capillary surfaces are calculated on the ellipse, on a circle with reentrant notches, and on other irregularly shaped domains using JASON, a general purpose program for solving nonlinear elliptic equations on a nonuniform quadrilaterial mesh. Analytical estimates for the nonexistence of solutions of the equilibrium capillary free-surface equation on the ellipse in zero gravity are evaluated.
Bi-material plane with interface crack for the model of semi-linear material
NASA Astrophysics Data System (ADS)
Domanskaya, T. O.; Malkov, V. M.; Malkova, Yu. V.
2018-05-01
The singular plane problems of nonlinear elasticity (plane strain and plane stress) are considered for bi-material infinite plane with interface crack. The plane is formed of two half-planes. Mechanical properties of half-planes are described by the model of semi-linear material. Using model of this harmonic material has allowed to apply the theory of complex functions and to obtain exact analytical global solutions of some nonlinear problems. Among them the problem of bi-material plane with the stresses and strains jumps at an interface is considered. As an application of the problem of jumps, the problem of interface crack is solved. The values of nominal (Piola) and Cauchy stresses and displacements are founded. Based on the global solutions the asymptotic expansions are constructed for stresses and displacements in a vicinity of crack tip. As an example the case of a free crack in bi-material plane subjected to constant stresses at infinity is studied. As a special case, the analytical solution of the problem of a crack in a homogeneous plane is obtained from the problem for bi-material plane with interface crack.
Optimal control, optimization and asymptotic analysis of Purcell's microswimmer model
NASA Astrophysics Data System (ADS)
Wiezel, Oren; Or, Yizhar
2016-11-01
Purcell's swimmer (1977) is a classic model of a three-link microswimmer that moves by performing periodic shape changes. Becker et al. (2003) showed that the swimmer's direction of net motion is reversed upon increasing the stroke amplitude of joint angles. Tam and Hosoi (2007) used numerical optimization in order to find optimal gaits for maximizing either net displacement or Lighthill's energetic efficiency. In our work, we analytically derive leading-order expressions as well as next-order corrections for both net displacement and energetic efficiency of Purcell's microswimmer. Using these expressions enables us to explicitly show the reversal in direction of motion, as well as obtaining an estimate for the optimal stroke amplitude. We also find the optimal swimmer's geometry for maximizing either displacement or energetic efficiency. Additionally, the gait optimization problem is revisited and analytically formulated as an optimal control system with only two state variables, which can be solved using Pontryagin's maximum principle. It can be shown that the optimal solution must follow a "singular arc". Numerical solution of the boundary value problem is obtained, which exactly reproduces Tam and Hosoi's optimal gait.
Holographic stress-energy tensor near the Cauchy horizon inside a rotating black hole
NASA Astrophysics Data System (ADS)
Ishibashi, Akihiro; Maeda, Kengo; Mefford, Eric
2017-07-01
We investigate a stress-energy tensor for a conformal field theory (CFT) at strong coupling inside a small five-dimensional rotating Myers-Perry black hole with equal angular momenta by using the holographic method. As a gravitational dual, we perturbatively construct a black droplet solution by applying the "derivative expansion" method, generalizing the work of Haddad [Classical Quantum Gravity 29, 245001 (2012), 10.1088/0264-9381/29/24/245001] and analytically compute the holographic stress-energy tensor for our solution. We find that the stress-energy tensor is finite at both the future and past outer (event) horizons and that the energy density is negative just outside the event horizons due to the Hawking effect. Furthermore, we apply the holographic method to the question of quantum instability of the Cauchy horizon since, by construction, our black droplet solution also admits a Cauchy horizon inside. We analytically show that the null-null component of the holographic stress-energy tensor negatively diverges at the Cauchy horizon, suggesting that a singularity appears there, in favor of strong cosmic censorship.
Mostafazadeh, Ali
2009-06-05
Spectral singularities are spectral points that spoil the completeness of the eigenfunctions of certain non-Hermitian Hamiltonian operators. We identify spectral singularities of complex scattering potentials with the real energies at which the reflection and transmission coefficients tend to infinity, i.e., they correspond to resonances having a zero width. We show that a waveguide modeled using such a potential operates like a resonator at the frequencies of spectral singularities. As a concrete example, we explore the spectral singularities of an imaginary PT-symmetric barrier potential and demonstrate the above resonance phenomenon for a certain electromagnetic waveguide.
Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oshemkov, Andrey A
2010-10-06
A complete invariant is constructed that is a solution of the problem of semilocal classification of saddle singularities of integrable Hamiltonian systems. Namely, a certain combinatorial object (an f{sub n}-graph) is associated with every nondegenerate saddle singularity of rank zero; as a result, the problem of semilocal classification of saddle singularities of rank zero is reduced to the problem of enumeration of the f{sub n}-graphs. This enables us to describe a simple algorithm for obtaining the lists of saddle singularities of rank zero for a given number of degrees of freedom and a given complexity. Bibliography: 24 titles.
Boundary-layer effects in composite laminates: Free-edge stress singularities, part 6
NASA Technical Reports Server (NTRS)
Wanag, S. S.; Choi, I.
1981-01-01
A rigorous mathematical model was obtained for the boundary-layer free-edge stress singularity in angleplied and crossplied fiber composite laminates. The solution was obtained using a method consisting of complex-variable stress function potentials and eigenfunction expansions. The required order of the boundary-layer stress singularity is determined by solving the transcendental characteristic equation obtained from the homogeneous solution of the partial differential equations. Numerical results obtained show that the boundary-layer stress singularity depends only upon material elastic constants and fiber orientation of the adjacent plies. For angleplied and crossplied laminates the order of the singularity is weak in general.