NASA Astrophysics Data System (ADS)
Usman, Hazrat; Ali, Hafiz Muhammad; Arshad, Adeel; Ashraf, Muhammad Junaid; Khushnood, Shahab; Janjua, Muhammad Mansoor; Kazi, S. N.
2018-05-01
This experimental study determines and compares the thermal performance of unfinned and finned PCM based heat sinks. For the analysis considering pin-fins as thermal conductivity enhancer (TCE), triangular configuration is considered. It is further classified into inline and staggered pin-fin arrangements. Three popular variants of paraffin namely paraffin wax, RT-44 and RT-35HC are incorporated as phase change materials (PCMs) inside the heat sink. The volume fraction of pin-fins and PCMs are kept constant at 9% and 90% respectively. The heat input at the base of heat sinks ranges from 5 W to 8 W. The results are presented in two different cases, charging and discharging, and the analysis of temperature variation and comparison of fin arrangements in three different heat sinks with and without PCM. Further the enhancement ratios are determined to quantify the thermal performance in operation time of heat sink for passive cooling with the influence of PCMs and TCEs. The results suggest triangular inline pin-fin as the dominant heat sink geometry and RT-44 as the most efficient PCM for passive thermal management of electronic devices.
Optimal Location through Distributed Algorithm to Avoid Energy Hole in Mobile Sink WSNs
Qing-hua, Li; Wei-hua, Gui; Zhi-gang, Chen
2014-01-01
In multihop data collection sensor network, nodes near the sink need to relay on remote data and, thus, have much faster energy dissipation rate and suffer from premature death. This phenomenon causes energy hole near the sink, seriously damaging the network performance. In this paper, we first compute energy consumption of each node when sink is set at any point in the network through theoretical analysis; then we propose an online distributed algorithm, which can adjust sink position based on the actual energy consumption of each node adaptively to get the actual maximum lifetime. Theoretical analysis and experimental results show that the proposed algorithms significantly improve the lifetime of wireless sensor network. It lowers the network residual energy by more than 30% when it is dead. Moreover, the cost for moving the sink is relatively smaller. PMID:24895668
Genetic Algorithm Design of a 3D Printed Heat Sink
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Tong; Ozpineci, Burak; Ayers, Curtis William
2016-01-01
In this paper, a genetic algorithm- (GA-) based approach is discussed for designing heat sinks based on total heat generation and dissipation for a pre-specified size andshape. This approach combines random iteration processesand genetic algorithms with finite element analysis (FEA) to design the optimized heat sink. With an approach that prefers survival of the fittest , a more powerful heat sink can bedesigned which can cool power electronics more efficiently. Some of the resulting designs can only be 3D printed due totheir complexity. In addition to describing the methodology, this paper also includes comparisons of different cases to evaluate themore » performance of the newly designed heat sinkcompared to commercially available heat sinks.« less
Pallas, Benoît; Clément-Vidal, Anne; Rebolledo, Maria-Camila; Soulié, Jean-Christophe; Luquet, Delphine
2013-01-01
The ability to assimilate C and allocate non-structural carbohydrates (NSCs) to the most appropriate organs is crucial to maximize plant ecological or agronomic performance. Such C source and sink activities are differentially affected by environmental constraints. Under drought, plant growth is generally more sink than source limited as organ expansion or appearance rate is earlier and stronger affected than C assimilation. This favors plant survival and recovery but not always agronomic performance as NSC are stored rather than used for growth due to a modified metabolism in source and sink leaves. Such interactions between plant C and water balance are complex and plant modeling can help analyzing their impact on plant phenotype. This paper addresses the impact of trade-offs between C sink and source activities and plant production under drought, combining experimental and modeling approaches. Two contrasted monocotyledonous species (rice, oil palm) were studied. Experimentally, the sink limitation of plant growth under moderate drought was confirmed as well as the modifications in NSC metabolism in source and sink organs. Under severe stress, when C source became limiting, plant NSC concentration decreased. Two plant models dedicated to oil palm and rice morphogenesis were used to perform a sensitivity analysis and further explore how to optimize C sink and source drought sensitivity to maximize plant growth. Modeling results highlighted that optimal drought sensitivity depends both on drought type and species and that modeling is a great opportunity to analyze such complex processes. Further modeling needs and more generally the challenge of using models to support complex trait breeding are discussed. PMID:24204372
Numerical prediction of micro-channel LD heat sink operated with antifreeze based on CFD method
NASA Astrophysics Data System (ADS)
Liu, Gang; Liu, Yang; Wang, Chao; Wang, Wentao; Wang, Gang; Tang, Xiaojun
2014-12-01
To theoretically study the feasibility of antifreeze coolants applied as cooling fluids for high power LD heat sink, detailed Computational Fluid Dynamics (CFD) analysis of liquid cooled micro-channels heat sinks is presented. The performance operated with antifreeze coolant (ethylene glycol aqueous solution) compared with pure water are numerical calculated for the heat sinks with the same micro-channels structures. The maximum thermal resistance, total pressure loss (flow resistance), thermal resistance vs. flow-rate, and pressure loss vs. flow-rate etc. characteristics are numerical calculated. The results indicate that the type and temperature of coolants plays an important role on the performance of heat sinks. The whole thermal resistance and pressure loss of heat sinks increase significantly with antifreeze coolants compared with pure water mainly due to its relatively lower thermal conductivity and higher fluid viscosity. The thermal resistance and pressure loss are functions of the flow rate and operation temperature. Increasing of the coolant flow rate can reduce the thermal resistance of heat sinks; meanwhile increase the pressure loss significantly. The thermal resistance tends to a limit with increasing flow rate, while the pressure loss tends to increase exponentially with increasing flow rate. Low operation temperature chiefly increases the pressure loss rather than thermal resistance due to the remarkable increasing of fluid viscosity. The actual working point of the cooling circulation system can be determined on the basis of the pressure drop vs. flow rate curve for the micro-channel heat sink and that for the circulation system. In the same system, if the type or/and temperature of the coolant is changed, the working point is accordingly influenced, that is, working flow rate and pressure is changed simultaneously, due to which the heat sink performance is influenced. According to the numerical simulation results, if ethylene glycol aqueous solution is applied instead of pure water as the coolant under the same or a higher working temperature, the available output of optical power will decrease due to the worse heat sink performance; if applied under a lower working temperature(0 °C, -20 °C), although the heat sink performance become worse, however the temperature difference of heat transfer rises more significantly, the available output of optical power will increase on the contrary.
Investigation of internally finned LED heat sinks
NASA Astrophysics Data System (ADS)
Li, Bin; Xiong, Lun; Lai, Chuan; Tang, Yumei
2018-03-01
A novel heat sink is proposed, which is composed of a perforated cylinder and internally arranged fins. Numerical studies are performed on the natural convection heat transfer from internally finned heat sinks; experimental studies are carried out to validate the numerical results. To compare the thermal performances of internally finned heat sinks and externally finned heat sinks, the effects of the overall diameter, overall height, and installation direction on maximum temperature, air flow and heat transfer coefficient are investigated. The results demonstrate that internally finned heat sinks show better thermal performance than externally finned heat sinks; the maximum temperature of internally finned heat sinks decreases by up to 20% compared with the externally finned heat sinks. The existence of a perforated cylinder and the installation direction of the heat sink affect the thermal performance significantly; it is shown that the heat transfer coefficient of the heat sink with the perforated cylinder is improved greater than that with the imperforated cylinder by up to 34%, while reducing the mass of the heat sink by up to 13%. Project supported by the Scientific Research Fund of Sichuan Provincial Education Department (No. 18ZB0516) and the Sichuan University of Arts and Science (No. 2016KZ009Y).
SCODE: A Secure Coordination-Based Data Dissemination to Mobile Sinks in Sensor Networks
NASA Astrophysics Data System (ADS)
Hung, Lexuan; Lee, Sungyoung; Lee, Young-Koo; Lee, Heejo
For many sensor network applications such as military, homeland security, it is necessary for users (sinks) to access sensor networks while they are moving. However, sink mobility brings new challenges to secure routing in large-scale sensor networks. Mobile sinks have to constantly propagate their current location to all nodes, and these nodes need to exchange messages with each other so that the sensor network can establish and maintain a secure multi-hop path between a source node and a mobile sink. This causes significant computation and communication overhead for sensor nodes. Previous studies on sink mobility have mainly focused on efficiency and effectiveness of data dissemination without security consideration. In this paper, we propose a secure and energy-efficient data dissemination protocol — Secure COodination-based Data dissEmination (SCODE) — for mobile sinks in sensor networks. We take advantages of coordination networks (grid structure) based on Geographical Adaptive Fidelity (GAF) protocol to construct a secure and efficient routing path between sources and sinks. Our security analysis demonstrates that the proposed protocol can defend against common attacks in sensor network routing such as replay attacks, selective forwarding attacks, sinkhole and wormhole, Sybil attacks, HELLO flood attacks. Our performance evaluation both in mathematical analysis and simulation shows that the SCODE significantly reduces communication overhead and energy consumption while the latency is similar compared with the existing routing protocols, and it always delivers more than 90 percentage of packets successfully.
Structural Design and Analysis of a Light-Weight Laminated Composite Heat Sink for Spaceflight PWBs
NASA Technical Reports Server (NTRS)
Fan, Mark S.; Niemeyer, W. Lee
1997-01-01
In order to reduce the overall weight in spaceborne electronic systems, a conventional metallic heat sink typically used for double-sided printed wiring boards was suggested to be replaced by light-weight and high-strength laminated composite materials. Through technology validation assurance (TVA) approach, it has been successfully demonstrated that using laminated composite heat sink can not only reduce the weight of the heat sink by nearly 50%, but also significantly lower the internal thermally-induced stresses that are largely responsible for potential delamination under cyclic temperature variations. With composite heat sink, both thermal and dynamic performance of the double-sided printed wiring board (PWB) exceeds that of its counterpart with metallic heat sink. Also included in this work is the original contribution to the understanding of creep behavior of the worst-case leadless chip carrier (LCC) surface mount solder joint. This was identified as the interconnection most susceptible to thermal fatigue damage in the PWB assembly.
NASA Astrophysics Data System (ADS)
Kim, Younghyun; Sung, Yunsu; Yang, Jung-Tack; Choi, Woo-Young
2018-02-01
The characteristics of high-power broad-area laser diodes with the improved heat sinking structure are numerically analyzed by a technology computer-aided design based self-consistent electro-thermal-optical simulation. The high-power laser diodes consist of a separate confinement heterostructure of a compressively strained InGaAsP quantum well and GaInP optical cavity layers, and a 100-μm-wide rib and a 2000-μm long cavity. In order to overcome the performance deteriorations of high-power laser diodes caused by self-heating such as thermal rollover and thermal blooming, we propose the high-power broad-area laser diode with improved heat-sinking structure, which another effective heat-sinking path toward the substrate side is added by removing a bulk substrate. It is possible to obtain by removing a 400-μm-thick GaAs substrate with an AlAs sacrificial layer utilizing well-known epitaxial liftoff techniques. In this study, we present the performance improvement of the high-power laser diode with the heat-sinking structure by suppressing thermal effects. It is found that the lateral far-field angle as well as quantum well temperature is expected to be improved by the proposed heat-sinking structure which is required for high beam quality and optical output power, respectively.
On improving the performance of nonphotochemical quenching in CP29 light-harvesting antenna complex
NASA Astrophysics Data System (ADS)
Berman, Gennady P.; Nesterov, Alexander I.; Sayre, Richard T.; Still, Susanne
2016-03-01
We model and simulate the performance of charge-transfer in nonphotochemical quenching (NPQ) in the CP29 light-harvesting antenna-complex associated with photosystem II (PSII). The model consists of five discrete excitonic energy states and two sinks, responsible for the potentially damaging processes and charge-transfer channels, respectively. We demonstrate that by varying (i) the parameters of the chlorophyll-based dimer, (ii) the resonant properties of the protein-solvent environment interaction, and (iii) the energy transfer rates to the sinks, one can significantly improve the performance of the NPQ. Our analysis suggests strategies for improving the performance of the NPQ in response to environmental changes, and may stimulate experimental verification.
Forced-Convection, Liquid-Cooled, Microchannel Heat Sinks
1988-01-07
SINK PERFORMANCE 131 5.1 Purpose of the Experimental Investigation 131 5.2 Heat -Sink Fabrication 131 5.2.1 Manufacturing the Microchannels in Indium...the thermal performance of microchannel heat sinks. The methods of microchannel fabrication including precision sawing and orientation-dependent...could be lower than if the microchannel heat sink had been fabricated directly in the back of the IC chip! Figure 4-9 presents the thermal and fluid
Analysis of counter flow of corona wind for heat transfer enhancement
NASA Astrophysics Data System (ADS)
Shin, Dong Ho; Baek, Soo Hong; Ko, Han Seo
2018-03-01
A heat sink for cooling devices using the counter flow of a corona wind was developed in this study. Detailed information about the numerical investigations of forced convection using the corona wind was presented. The fins of the heat sink using the counter flow of a corona wind were also investigated. The corona wind generator with a wire-to-plate electrode arrangement was used for generating the counter flow to the fin. The compact and simple geometric characteristics of the corona wind generator facilitate the application of the heat sink using the counter flow, demonstrating the heat sink is effective for cooling electronic devices. Parametric studies were performed to analyze the effect of the counter flow on the fins. Also, the velocity and temperature were measured experimentally for the test mock-up of the heat sink with the corona wind generator to verify the numerical results. From a numerical study, the type of fin and its optimal height, length, and pitch were suggested for various heat fluxes. In addition, the correlations to calculate the mass of the developed heat sink and its cooling performance in terms of the heat transfer coefficient were derived. Finally, the cooling efficiencies corresponding to the mass, applied power, total size, and noise of the devices were compared with the existing commercial central processing unit (CPU) cooling devices with rotor fans. As a result, it was confirmed that the heat sink using the counter flow of the corona wind showed appropriate efficiencies for cooling electronic devices, and is a suitable replacement for the existing cooling device for high power electronics.
Light weight Heat-Sink, Based on Phase-Change-Material for a High powered - Time limited application
NASA Astrophysics Data System (ADS)
Leibovitz, Johnathan
2002-01-01
When designing components for an aerospace application, whether it is an aircraft, satellite, space station or a launcher - a major considered parameter is its weight . For a combat aircraft, an addition of such a lightweight Heat sink to a high power component, can extend significantly avionics performance at very high altitude - when cooling means are poor. When dealing with a satellite launcher, each pound saved from the launcher in favor of the satellite - may contribute, for instance, several months of satellite life. The solution presented in this paper deals with an electronic device producing high power, for limited time and requires relatively low temperature base plate. The requirements demand that a base plate temperature should not exceed 70°c while exposed to a heat- flux of about 1.5W/cm^2 from an electronic device, during approximately 14 minutes. The classical solution for this transient process requires an Aluminum block heat sink of about 1100 grams . The PCM based heat-sink gives the solution for this case with about 400 grams only with a compact package. It also includes an option for cooling the system by forced convection (and in principle by radiation), when those means of heat dissipation - are available. The work includes a thermal analysis for the Aluminum - PCM heat sink and a series of validation tests of a model. The paper presents results of the analysis and results of the tests, including comparison to the classical robust solution. A parametric performance envelope for customizing to other potential applications is presented as well.
Chen, Jiehui; Salim, Mariam B; Matsumoto, Mitsuji
2010-01-01
Wireless Sensor Networks (WSNs) designed for mission-critical applications suffer from limited sensing capacities, particularly fast energy depletion. Regarding this, mobile sinks can be used to balance the energy consumption in WSNs, but the frequent location updates of the mobile sinks can lead to data collisions and rapid energy consumption for some specific sensors. This paper explores an optimal barrier coverage based sensor deployment for event driven WSNs where a dual-sink model was designed to evaluate the energy performance of not only static sensors, but Static Sink (SS) and Mobile Sinks (MSs) simultaneously, based on parameters such as sensor transmission range r and the velocity of the mobile sink v, etc. Moreover, a MS mobility model was developed to enable SS and MSs to effectively collaborate, while achieving spatiotemporal energy performance efficiency by using the knowledge of the cumulative density function (cdf), Poisson process and M/G/1 queue. The simulation results verified that the improved energy performance of the whole network was demonstrated clearly and our eDSA algorithm is more efficient than the static-sink model, reducing energy consumption approximately in half. Moreover, we demonstrate that our results are robust to realistic sensing models and also validate the correctness of our results through extensive simulations.
Chen, Jiehui; Salim, Mariam B.; Matsumoto, Mitsuji
2010-01-01
Wireless Sensor Networks (WSNs) designed for mission-critical applications suffer from limited sensing capacities, particularly fast energy depletion. Regarding this, mobile sinks can be used to balance the energy consumption in WSNs, but the frequent location updates of the mobile sinks can lead to data collisions and rapid energy consumption for some specific sensors. This paper explores an optimal barrier coverage based sensor deployment for event driven WSNs where a dual-sink model was designed to evaluate the energy performance of not only static sensors, but Static Sink (SS) and Mobile Sinks (MSs) simultaneously, based on parameters such as sensor transmission range r and the velocity of the mobile sink v, etc. Moreover, a MS mobility model was developed to enable SS and MSs to effectively collaborate, while achieving spatiotemporal energy performance efficiency by using the knowledge of the cumulative density function (cdf), Poisson process and M/G/1 queue. The simulation results verified that the improved energy performance of the whole network was demonstrated clearly and our eDSA algorithm is more efficient than the static-sink model, reducing energy consumption approximately in half. Moreover, we demonstrate that our results are robust to realistic sensing models and also validate the correctness of our results through extensive simulations. PMID:22163503
On improving the performance of nonphotochemical quenching in CP29 light-harvesting antenna complex
Berman, Gennady Petrovich; Nesterov, Alexander I.; Sayre, Richard Thomas; ...
2016-02-02
In this study, we model and simulate the performance of charge-transfer in nonphotochemical quenching (NPQ) in the CP29 light-harvesting antenna-complex associated with photosystem II (PSII). The model consists of five discrete excitonic energy states and two sinks, responsible for the potentially damaging processes and charge-transfer channels, respectively. We demonstrate that by varying (i) the parameters of the chlorophyll-based dimer, (ii) the resonant properties of the protein-solvent environment interaction, and (iii) the energy transfer rates to the sinks, one can significantly improve the performance of the NPQ. In conclusion, our analysis suggests strategies for improving the performance of the NPQ inmore » response to environmental changes, and may stimulate experimental verification.« less
Thermodynamic Performance of the 3-Stage ADR for the Astro-H Soft X-Ray Spectrometer Instrument
NASA Technical Reports Server (NTRS)
Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theodore; DiPirro, Michael J.; Bialas, Thomas G.; Sneiderman, Gary A.; Porter, Frederick S.; Kelley, Richard L.
2015-01-01
The Soft X-ray Spectrometer (SXS) instrument[1] on Astro-H[2] will use a 3-stage ADR[3] to cool the microcalorimeter array to 50 mK. In the primary operating mode, two stages of the ADR cool the detectors using superfluid helium at =1.20 K as the heat sink[4]. In the secondary mode, which is activated when the liquid helium is depleted, the ADR uses a 4.5 K Joule-Thomson cooler as its heat sink. In this mode, all three stages operate together to continuously cool the (empty) helium tank and singleshot cool the detectors. The flight instrument - dewar, ADR, detectors and electronics - were integrated in 2014 and have since undergone extensive performance testing. This paper presents a thermodynamic analysis of the ADR's operation, including cooling capacity, heat rejection to the heat sinks, and various measures of efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishna Kota; Diana Sobers; Paul Kolodner
2012-04-01
The continued increase in electronic device packaging densities is placing ever more challenging performance requirements on air-cooled heat sinks. In cases where the state-of-the-art heat sink technology is unable of to meet these requirements, this often results in either a relaxation of design specifications, or the exploration of other thermal management technologies better able to handle high heat density applications, such as liquid cooling. Both of these approaches provide challenges to equipment designers, as relaxing requirements does not allow for a scale-able path to increased device densities and their associated functionality, while incorporating new thermal management technologies often requires majormore » hardware redesigns, which has significant cost implications. In this work, we explore the use of air-cooled heat sinks incorporating three-dimensional features, so-called three-dimensional heat sinks (3DHS), that enhance heat transfer through a number of different physical mechanisms, as an approach to further extending the limits of air cooling. An ultra low profile (5.7 mm) heat sink application is targeted due to the significant thermal challenges associated with restrictions on heat sink height. We also present details on a novel manufacturing method that has significant cost advantages over other fabrication methods such as investment casting and direct metal printing. Experiments on 3DHS and conventional heat sink are conducted in a wind tunnel test apparatus as a function of inlet air mass flow rate and flow bypass above the heat sinks. The experimental results show a strong correlation between heat sink permeability and thermal performance, as measured by heat sink thermal resistance versus ideal pumping power. The results also illustrate the important effects of flow bypass on heat sink performance. The best performing 3DHS design is observed to have up to a 19% improvement in thermal performance relative to a conventional parallel fin heat sink of the same form factor. Comparison of the experimental results with finite-volume simulations of the laminar, steady equations for mass, momentum and energy transport shows good agreement for heat sink thermal resistance and pressure drop across the heat sink. For the case where the fluid flow is modeled as transitional and steady, there is a greater discrepancy between simulations and experiments, suggesting that the experimental flow conditions are predominantly laminar.« less
Numerical study of metal foam heat sinks under uniform impinging flow
NASA Astrophysics Data System (ADS)
Andreozzi, A.; Bianco, N.; Iasiello, M.; Naso, V.
2017-01-01
The ever-increasing demand for performance improvement and miniaturization of electronics has led to a significant generation of waste heat that must be dissipated to ensure a reliable device operation. The miniaturization of the components complicates this task. In fact, reducing the heat transfer area, at the same required heat rate, it is necessary to increase the heat flux, so that the materials operate in a temperature range suitable to its proper functioning. Traditional heat sinks are no longer capable of dissipating the generated heat and innovative approaches are needed to address the emerging thermal management challenges. Recently, heat transfer in open-cell metal foams under an impinging jet has received attention due to the considerable heat transfer potential of combining two cooling technologies: impinging jet and porous medium. This paper presents a numerical study on Finned Metal Foam (FMF) and Metal Foam (MF) heat sinks under impinging air jet cooling. The analysis is carried out by means of the commercial software COMSOL Multiphysics®. The purpose is to analyze the thermal performance of the metal foam heat sink, finned or not, varying its geometric parameters. Results are presented in terms of predicted dissipated heat rate, convective heat transfer coefficient and pressure losses.
Thermodynamic performance of the 3-stage ADR for the Astro-H Soft-X-ray Spectrometer instrument
NASA Astrophysics Data System (ADS)
Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theodore; DiPirro, Michael J.; Bialas, Thomas G.; Sneiderman, Gary A.; Porter, Frederick S.; Kelley, Richard L.
2016-03-01
The Soft X-ray Spectrometer (SXS) instrument (Mitsuda et al., 2010) [1] on Astro-H (Takahashi et al., 2010) [2] will use a 3-stage ADR (Shirron et al., 2012) to cool the microcalorimeter array to 50 mK. In the primary operating mode, two stages of the ADR cool the detectors using superfluid helium at ⩽1.20 K as the heat sink (Fujimoto et al., 2010). In the secondary mode, which is activated when the liquid helium is depleted, the ADR uses a 4.5 K Joule-Thomson cooler as its heat sink. In this mode, all three stages operate together to continuously cool the (empty) helium tank and single-shot cool the detectors. The flight instrument - dewar, ADR, detectors and electronics - were integrated in 2014 and have since undergone extensive performance testing. This paper presents a thermodynamic analysis of the ADR's operation, including cooling capacity, heat rejection to the heat sinks, and various measures of efficiency.
Impingement thermal performance of perforated circular pin-fin heat sinks
NASA Astrophysics Data System (ADS)
Wen, Mao-Yu; Yeh, Cheng-Hsiung
2018-04-01
The study presents the experimental information on heat transfer performance of jet impingement cooling on circular pin- fin heat sinks with/without a hollow perforated base plate. Smoke flow visualization is also used to investigate the behavior of the complicated flow phenomena of the present heat sinks for this impingement cooling. The effects of flow Reynolds numbers (3458≤Re≤11,526), fin height, the geometry of the heat sinks (with/without a hollow perforated base plate), and jet-to-test heat sink placement (1 ≤ H/ d≤16) are examined. In addition, empirical correlation to estimate the heat transfer coefficient was also developed.
NASA Technical Reports Server (NTRS)
Faghri, A.; Cao, Y.; Buchko, M.
1991-01-01
Experimental profiles for heat pipe startup from the frozen state were obtained, using a high-temperature sodium/stainless steel pipe with multiple heat sources and sinks to investigate the startup behavior of the heat pipe for various heat loads and input locations, with both low and high heat rejection rates at the condensor. The experimental results of the performance characteristics for the continuum transient and steady-state operation of the heat pipe were analyzed, and the performance limits for operation with varying heat fluxes and location are determined.
Infrared evaluation of the heat-sink bipolar diathermy dissection technique.
Allan, J; Dusseldorp, J; Rabey, N G; Malata, C M; Goltsman, D; Phoon, A F
2015-08-01
The use of the bipolar diathermy dissection technique is widespread amongst surgeons performing flap perforator dissection and microvascular surgery. The 'heat-sink' modification uses a DeBakey forcep as a heat sinking interposition between the bipolar tip and the main (vascular or flap) pedicle aiming to protect it from the thermal effects of the bipolar diathermy. This study examines the thermal effects of bipolar cautery upon the microvasculature and investigates the efficacy of heat sinking as a thermally protective technique in microsurgical dissection. A chicken thigh microsurgical training model was used to examine the effects of bipolar cautery. The effects of bipolar were examined using high definition, real-time infrared thermographic imaging (FLIR Systems) and temperature quantitatively assessed at various distances away from the point of bipolar cautery. Comparison was made using the heat sink technique to determine if it conferred a thermoprotective effect compared to the standard technique without heat sink. Using paired t-test analysis (SPSS) the heat sink modification of the bipolar dissection technique was found to have a highly statistically significant effect (P < 0.000000001) in reducing the conductive temperature along the vascular pedicle. This protective effect kept temperatures comparable to controls. Bipolar cautery is an extremely safe method of electrosurgery, however when its use is required within 3 mm of important vascular architecture, the heat-sink method is a viable and easy technique to prevent thermal spread and limit potential coagulopathic changes. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk
2014-08-18
Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.
Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk
2014-01-01
Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption. PMID:25196015
NASA Astrophysics Data System (ADS)
Siyabi, Idris Al; Shanks, Katie; Mallick, Tapas; Sundaram, Senthilarasu
2017-09-01
Concentrator Photovoltaic (CPV) technology is increasingly being considered as an alternative option for solar electricity generation. However, increasing the light concentration ratio could decrease the system output power due to the increase in the temperature of the cells. The performance of a multi-layer microchannel heat sink configuration was evaluated using numerical analysis. In this analysis, three dimensional incompressible laminar steady flow model was solved numerically. An electrical and thermal solar cell model was coupled for solar cell temperature and efficiency calculations. Thermal resistance, solar cell temperature and pumping power were used for the system efficiency evaluation. An increase in the number of microchannel layers exhibited the best overall performance in terms of the thermal resistance, solar cell temperature uniformity and pressure drop. The channel height and width has no effect on the solar cell maximum temperature. However, increasing channel height leads to a reduction in the pressure drop and hence less fluid pumping power.
NASA Technical Reports Server (NTRS)
Snyder, J.; Lawrence, E. E.
2002-01-01
A suggested application of a thermoelectric generator is to exploit the natural temperature difference between the air and the soil to generate small amounts of electrical energy. Since the conversion efficiency of even the best thermoelectric generators available is very low, the performance of the heat sinks providing the heat flow is critical. By providing a constant heat input to various heat sinks, field tests of their thermal conductances in soil and in air were performed. Aprototype device without a thermoelectric generator was constructed, buried, and monitored to experimentally measure the heat flow achievable in such a system. Theoretical considerations for design and selection of improved heat sinks are also presented. In particular, the method of shape factoranalysis is used to give rough estimates and upper bounds for the thermal conductance of a passive heat sink buried in soil.
Thermodynamic Analysis of the 3-Stage ADR for the Astro-H Soft X-Ray Spectrometer Instrument
NASA Technical Reports Server (NTRS)
Shirron, Peter; Kimball, Mark; DiPirro, Michael; Bialas, Tom; Sneiderman, Gary; Porter, Scott; Kelley, Richard
2015-01-01
The Soft X-ray Spectrometer (SXS) instrument on Astro-H will use a 3-stage ADR to cool the microcalorimeter array to 50 mK. In the primary operating mode, two stages of the ADR cool the detectors using superfluid helium at 1.20 K as the heat sink. In the secondary mode, which is activated when the liquid helium is depleted, two of the stages continuously cool the (empty) helium tank using a 4.5 K Joule-Thomson cooler as the heat sink, and the third stage cools the detectors. In the design phase, a high-fidelity model of the ADR was developed in order to predict both the cooling capacity and heat rejection rates in both operating modes. The primary sources of heat flow are from the salt pills, hysteresis heat from the magnets and magnetic shields, and power dissipated by the heat switches. The flight instrument dewar, ADR, detectors and electronics were integrated in mid-2014 and have since undergone extensive performance testing, in part to validate the performance model. This paper will present the thermodynamic performance of the ADR, including cooling capacity, heat rejection to the heat sinks, and various measures of efficiency.
Hayat, Tasawar; Asad, Sadia; Mustafa, Meraj; Alsaedi, Ahmed
2014-01-01
This study investigates the unsteady flow of Powell-Eyring fluid past an inclined stretching sheet. Unsteadiness in the flow is due to the time-dependence of the stretching velocity and wall temperature. Mathematical analysis is performed in the presence of thermal radiation and non-uniform heat source/sink. The relevant boundary layer equations are reduced into self-similar forms by suitable transformations. The analytic solutions are constructed in a series form by homotopy analysis method (HAM). The convergence interval of the auxiliary parameter is obtained. Graphical results displaying the influence of interesting parameters are given. Numerical values of skin friction coefficient and local Nusselt number are computed and analyzed.
Billiet, Marijn; De Schampheleire, Sven; Huisseune, Henk; De Paepe, Michel
2015-10-09
Two differently-produced open-cell aluminum foams were compared to a commercially available finned heat sink. Further, an aluminum plate and block were tested as a reference. All heat sinks have the same base plate dimensions of four by six inches. The first foam was made by investment casting of a polyurethane preform and has a porosity of 0.946 and a pore density of 10 pores per linear inch. The second foam is manufactured by casting over a solvable core and has a porosity of 0.85 and a pore density of 2.5 pores per linear inch. The effects of orientation and radiative heat transfer are experimentally investigated. The heat sinks are tested in a vertical and horizontal orientation. The effect of radiative heat transfer is investigated by comparing a painted/anodized heat sink with an untreated one. The heat flux through the heat sink for a certain temperature difference between the environment and the heat sink's base plate is used as the performance indicator. For temperature differences larger than 30 °C, the finned heat sink outperforms the in-house-made aluminum foam heat sink on average by 17%. Furthermore, the in-house-made aluminum foam dissipates on average 12% less heat than the other aluminum foam for a temperature difference larger than 40 °C. By painting/anodizing the heat sinks, the heat transfer rate increased on average by 10% to 50%. Finally, the thermal performance of the horizontal in-house-made aluminum foam heat sink is up to 18% larger than the one of the vertical aluminum foam heat sink.
Applications of Endothermic Reaction Technology to the High Speed Civil Transport
NASA Technical Reports Server (NTRS)
Glickstein, Marvin R.; Spadaccini, Louis J.
1998-01-01
The success of strategies for controlling emissions and enhancing performance in High Speed Research applications may be Increased by more effective utilization of the heat sink afforded by the fuel in the vehicle thermal management system. This study quantifies the potential benefits associated with the use of supercritical preheating and endothermic cracking of let fuel prior to combustion to enhance the thermal management capabilities of the propulsion systems in the High Speed Civil Transport (HSCT). A fuel-cooled thermal management system, consisting of plate-fin heat exchangers and a small auxiliary compressor, is defined for the HSCT, Integrated with the engine, and an assessment of the effect on engine performance, weight, and operating cost is performed. The analysis indicates significant savings due a projected improvement in fuel economy, and the potential for additional benefit if the cycle is modified to take full advantage of all the heat sink available in the fuel.
Analysis on the Role of RSG-GAS Pool Cooling System during Partial Loss of Heat Sink Accident
NASA Astrophysics Data System (ADS)
Susyadi; Endiah, P. H.; Sukmanto, D.; Andi, S. E.; Syaiful, B.; Hendro, T.; Geni, R. S.
2018-02-01
RSG-GAS is a 30 MW reactor that is mostly used for radioisotope production and experimental activities. Recently, it is regularly operated at half of its capacity for efficiency reason. During an accident, especially loss of heat sink, the role of its pool cooling system is very important to dump decay heat. An analysis using single failure approach and partial modeling of RELAP5 performed by S. Dibyo, 2010 shows that there is no significant increase in the coolant temperature if this system is properly functioned. However lessons learned from the Fukushima accident revealed that an accident can happen due to multiple failures. Considering ageing of the reactor, in this research the role of pool cooling system is to be investigated for a partial loss of heat sink accident which is at the same time the protection system fails to scram the reactor when being operated at 15 MW. The purpose is to clarify the transient characteristics and the final state of the coolant temperature. The method used is by simulating the system in RELAP5 code. Calculation results shows the pool cooling systems reduce coolant temperature for about 1 K as compared without activating them. The result alsoreveals that when the reactor is being operated at half of its rated power, it is still in safe condition for a partial loss of heat sink accident without scram.
Bannon, Catherine C; Campbell, Douglas A
2017-01-01
Diatoms are marine primary producers that sink in part due to the density of their silica frustules. Sinking of these phytoplankters is crucial for both the biological pump that sequesters carbon to the deep ocean and for the life strategy of the organism. Sinking rates have been previously measured through settling columns, or with fluorimeters or video microscopy arranged perpendicularly to the direction of sinking. These side-view techniques require large volumes of culture, specialized equipment and are difficult to scale up to multiple simultaneous measures for screening. We established a method for parallel, large scale analysis of multiple phytoplankton sinking rates through top-view monitoring of chlorophyll a fluorescence in microtitre well plates. We verified the method through experimental analysis of known factors that influence sinking rates, including exponential versus stationary growth phase in species of different cell sizes; Thalassiosira pseudonana CCMP1335, chain-forming Skeletonema marinoi RO5A and Coscinodiscus radiatus CCMP312. We fit decay curves to an algebraic transform of the decrease in fluorescence signal as cells sank away from the fluorometer detector, and then used minimal mechanistic assumptions to extract a sinking rate (m d-1) using an RStudio script, SinkWORX. We thereby detected significant differences in sinking rates as larger diatom cells sank faster than smaller cells, and cultures in stationary phase sank faster than those in exponential phase. Our sinking rate estimates accord well with literature values from previously established methods. This well plate-based method can operate as a high throughput integrative phenotypic screen for factors that influence sinking rates including macromolecular allocations, nutrient availability or uptake rates, chain-length or cell size, degree of silification and progression through growth stages. Alternately the approach can be used to phenomically screen libraries of mutants.
NASA Astrophysics Data System (ADS)
Jean, Ming-Der; Lei, Peng-Da; Kong, Ling-Hua; Liu, Cheng-Wu
2018-05-01
This study optimizes the thermal dissipation ability of aluminum nitride (AlN) ceramics to increase the thermal performance of light-emitting diode (LED) modulus. AlN powders are deposited on heat sink as a heat interface material, using an electrostatic spraying process. The junction temperature of the heat sink is developed by response surface methodology based on Taguchi methods. In addition, the structure and properties of the AlN coating are examined using X-ray photoelectron spectroscopy (XPS). In the XPS analysis, the AlN sub-peaks are observed at 72.79 eV for Al2p and 398.88 eV for N1s, and an N1s sub-peak is assigned to N-O at 398.60eV and Al-N bonding at 395.95eV, which allows good thermal properties. The results have shown that the use of AlN ceramic material on a heat sink can enhance the thermal performance of LED modules. In addition, the percentage error between the predicted and experimental results compared the quadric model with between the linear and he interaction models was found to be within 7.89%, indicating that it was a good predictor. Accordingly, RSM can effectively enhance the thermal performance of an LED, and the beneficial heat dissipation effects for AlN are improved by electrostatic spraying.
An energy efficient multiple mobile sinks based routing algorithm for wireless sensor networks
NASA Astrophysics Data System (ADS)
Zhong, Peijun; Ruan, Feng
2018-03-01
With the fast development of wireless sensor networks (WSNs), more and more energy efficient routing algorithms have been proposed. However, one of the research challenges is how to alleviate the hot spot problem since nodes close to static sink (or base station) tend to die earlier than other sensors. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we mainly study the energy efficient routing method with multiple mobile sinks support. We divide the whole network into several clusters and study the influence of mobile sink number on network lifetime. Simulation results show that the best network performance appears when mobile sink number is about 3 under our simulation environment.
Wetlands as Sinks for Reactive Nitrogen at Continental and Global Scales: a Meta-Analysis
Wetlands perform physical and ecological functions that can result in valuable services to society and human well-being, including removal of reactive nitrogen (Nr) from surface water and groundwater. We compiled and analyzed published data from wetland studies worldwide to estim...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darcy, Eric; Keyser, Matthew
The Internal Short Circuit (ISC) device enables critical battery safety verification. With the aluminum interstitial heat sink between the cells, normal trigger cells cannot be driven into thermal runaway without excessive temperature bias of adjacent cells. With an implantable, on-demand ISC device, thermal runaway tests show that the conductive heat sinks protected adjacent cells from propagation. High heat dissipation and structural support of Al heat sinks show high promise for safer, higher performing batteries.
Heat sink effects on weld bead: VPPA process
NASA Technical Reports Server (NTRS)
Steranka, Paul O., Jr.
1990-01-01
An investigation into the heat sink effects due to weldment irregularities and fixtures used in the variable polarity plasma arc (VPPA) process was conducted. A basic two-dimensional model was created to represent the net heat sink effect of surplus material using Duhamel's theorem to superpose the effects of an infinite number of line heat sinks of variable strength. Parameters were identified that influence the importance of heat sink effects. A characteristic length, proportional to the thermal diffusivity of the weldment material divided by the weld torch travel rate, correlated with heat sinking observations. Four tests were performed on 2219-T87 aluminum plates to which blocks of excess material were mounted in order to demonstrate heat sink effects. Although the basic model overpredicted these effects, it correctly indicated the trends shown in the experimental study and is judged worth further refinement.
Heat sink effects on weld bead: VPPA process
NASA Technical Reports Server (NTRS)
Steranka, Paul O., Jr.
1989-01-01
An investigation into the heat sink effects due to weldment irregularities and fixtures used in the variable polarity plasma arc (VPPA) process was conducted. A basic two-dimensional model was created to represent the net heat sink effect of surplus material using Duhamel's theorem to superpose the effects of an infinite number of line heat sinks of variable strength. Parameters were identified that influence the importance of heat sink effects. A characteristic length, proportional to the thermal diffusivity of the weldment material divided by the weld torch travel rate, correlated with heat sinking observations. Four tests were performed on 2219-T87 aluminum plates to which blocks of excess material were mounted in order to demonstrate heat sink effects. Although the basic model overpredicted these effects, it correctly indicated the trends shown in the experimental study and is judged worth further refinement.
Investigation of Impact Jets Flow in Heat Sink Device of Closed-Circuit Cooling Systems
NASA Astrophysics Data System (ADS)
Tokarev, D. A.; Yenivatov, V. V.; Sokolov, S. S.; Erofeev, V. L.
2018-03-01
The flow simulations of impact jets in the heat sink device of the closed-circuit cooling systems are presented. The analysis of the rate of fluid flow in the heat sink device with the jet supply coolant is given.
Billiet, Marijn; De Schampheleire, Sven; Huisseune, Henk; De Paepe, Michel
2015-01-01
Two differently-produced open-cell aluminum foams were compared to a commercially available finned heat sink. Further, an aluminum plate and block were tested as a reference. All heat sinks have the same base plate dimensions of four by six inches. The first foam was made by investment casting of a polyurethane preform and has a porosity of 0.946 and a pore density of 10 pores per linear inch. The second foam is manufactured by casting over a solvable core and has a porosity of 0.85 and a pore density of 2.5 pores per linear inch. The effects of orientation and radiative heat transfer are experimentally investigated. The heat sinks are tested in a vertical and horizontal orientation. The effect of radiative heat transfer is investigated by comparing a painted/anodized heat sink with an untreated one. The heat flux through the heat sink for a certain temperature difference between the environment and the heat sink’s base plate is used as the performance indicator. For temperature differences larger than 30 ∘C, the finned heat sink outperforms the in-house-made aluminum foam heat sink on average by 17%. Furthermore, the in-house-made aluminum foam dissipates on average 12% less heat than the other aluminum foam for a temperature difference larger than 40 ∘C. By painting/anodizing the heat sinks, the heat transfer rate increased on average by 10% to 50%. Finally, the thermal performance of the horizontal in-house-made aluminum foam heat sink is up to 18% larger than the one of the vertical aluminum foam heat sink. PMID:28793601
Numerical Modeling and Optimization of Warm-water Heat Sinks
NASA Astrophysics Data System (ADS)
Hadad, Yaser; Chiarot, Paul
2015-11-01
For cooling in large data-centers and supercomputers, water is increasingly replacing air as the working fluid in heat sinks. Utilizing water provides unique capabilities; for example: higher heat capacity, Prandtl number, and convection heat transfer coefficient. The use of warm, rather than chilled, water has the potential to provide increased energy efficiency. The geometric and operating parameters of the heat sink govern its performance. Numerical modeling is used to examine the influence of geometry and operating conditions on key metrics such as thermal and flow resistance. This model also facilitates studies on cooling of electronic chip hot spots and failure scenarios. We report on the optimal parameters for a warm-water heat sink to achieve maximum cooling performance.
Transient performance and temperature field of a natural convection air dehumidifier loop
NASA Astrophysics Data System (ADS)
Fazilati, Mohammad Ali; Sedaghat, Ahmad; Alemrajabi, Ali-Akbar
2017-07-01
In this paper, transient performance of the previously introduced natural convection heat and mass transfer loop is investigated for an air dehumidifier system. The performance of the loop is studied in different conditions of heat source/heat sink temperature and different startup desiccant concentrations. Unlike conventional loops, it is observed that natural convection of the fluid originates from the heat sink towards the heat source. The proper operation of the cycle is highly dependent on the heat sink/heat source temperatures. To reduce the time constant of the system, a proper desiccant concentration should be adopted for charge of the loop.
Heat dissipation investigation of the internal heat sink geometry of a commercial available LED lamp
NASA Astrophysics Data System (ADS)
Lai, S. L.; Ong, N. R.; Kirtsaeng, S.; Sakuntasathien, S.; Alcain, J. B.; Sauli, Z.; Thangsi, K.; Retnasamy, V.
2017-09-01
Thermal issue is still the bottleneck of the LED to sustain their operational performance. LED lamp is vastly commercialized and has become the next generation of lighting source to substitute the conventional incandescent lamp. Thus, thermal management issue on LED lamp is important to maintain the device reliability. This study focuses on the modification of internal heat sink of the LED lamp which was considered and the thermal performance was investigated. Open source software, Salome and Elmer were used for this study. The result shows that larger surface area of heat sink has better heat dissipation performance.
NASA Astrophysics Data System (ADS)
Duangthongsuk, Weerapun; Wongwises, Somchai
2018-05-01
In this study, a comparison of the convective heat transfer, pressure drop, and performance index characteristics of heat sinks with a miniature circular pin-fin inline arrangement (MCFHS) and a zigzag flow channel with single cross-cut structures (CCZ-HS) is presented. SiO2-water nanofluids with different particle concentrations are used as the coolant. The effects of the heat sink type, particle concentration and fluid flow rate on the thermal and hydraulic performances are evaluated. The testing conditions are performed at the wall heat fluxes of 10 to 60 kW/m2 and at a mass flow rate ranging from 0.18 to 0.6 kg/s. The dimension of heat sinks is equally designed at 28 × 33 mm. The heat transfer area of MCFHS and of CCZ-HS is 1430 and 1238 mm2, respectively. Similarly, the hydraulic diameter of the flow channel of MCFHS and of CCZ-HS is 1.2 and 1.0 mm, respectively. The measured data indicate that the cooling performances of CCZ-HS are about 24-55% greater than that of MCFHS. The effects of the channel diameter and single cross-cut of the flow channel are more dominant than the effects of the fin structure and heat transfer area.
Enhanced heat sink with geometry induced wall-jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, Md. Mahamudul, E-mail: sohel0991@gmail.com; Tikadar, Amitav; Bari, Fazlul
Mini-channels embedded in solid matrix have already proven to be a very efficient way of electronic cooling. Traditional mini-channel heat sinks consist of single layer of parallel channels. Although mini-channel heat sink can achieve very high heat flux, its pumping requirement for circulating liquid through the channel increase very sharply as the flow velocity increases. The pumping requirements of the heat sink can be reduced by increasing its performance. In this paper a novel approach to increase the thermal performance of the mini-channel heat sink is proposed through geometry induced wall jet which is a passive technique. Geometric irregularities alongmore » the channel length causes abrupt pressure change between the channels which causes cross flow through the interconnections thus one channel faces suction and other channel jet action. This suction and jet action disrupts boundary layer causing enhanced heat transfer performance. A CFD model has been developed using commercially available software package FLUENT to evaluate the technique. A parametric study of the velocities and the effect of the position of the wall-jets have been performed. Significant reduction in thermal resistance has been observed for wall-jets, it is also observed that this reduction in thermal resistance is dependent on the position and shape of the wall jet.« less
NASA Astrophysics Data System (ADS)
Mesalhy, O. M.; El-Sayed, Mostafa M.
2015-06-01
Flow and heat transfer characteristics of a plate-fin heat sink cooled by a rectangular impinging jet with different cross-sectional area were studied experimentally and numerically. The study concentrated on investigating the effect of jet width, fin numbers, and fin heights on thermal performance. Entropy generation minimization method was used to define the optimum design and operating conditions. It is found that, the jet width that minimizes entropy generation changes with heat sink height and fin numbers.
Study on the effect of sink moving trajectory on wireless sensor networks
NASA Astrophysics Data System (ADS)
Zhong, Peijun; Ruan, Feng
2018-03-01
Wireless sensor networks are developing very fast in recent years, due to their wide potential applications. However there exists the so-called hot spot problem, namely the nodes close to static sink node tend to die earlier than other nodes since they have heavier burden to forward. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we make extensive experimental simulations for circular sensor network, with one mobile sink moving along different radius circumference. The whole network is divided into several clusters and there is one cluster head (CH) inside each cluster. The ordinary sensors communicate with CH and CHs construct a chain until the sink node. Simulation results show that the best network performance appears when sink moves along 0.25 R in terms of network lifetime.
Effect of Aerodynamic Design on Glider Performance
NASA Technical Reports Server (NTRS)
Lippisch, A
1935-01-01
The performance of a glider is determined by means of the velocity polar, which represents the connection between horizontal and sinking speed. The mean sinking speed for a given speed range can be determined on the basis of the velocity polar. These data form the basis for the most propitious design of a performance-type glider with a view to long-distance flight.
A Comprehensive Study of Data Collection Schemes Using Mobile Sinks in Wireless Sensor Networks
Khan, Abdul Waheed; Abdullah, Abdul Hanan; Anisi, Mohammad Hossein; Bangash, Javed Iqbal
2014-01-01
Recently sink mobility has been exploited in numerous schemes to prolong the lifetime of wireless sensor networks (WSNs). Contrary to traditional WSNs where sensory data from sensor field is ultimately sent to a static sink, mobile sink-based approaches alleviate energy-holes issues thereby facilitating balanced energy consumption among nodes. In mobility scenarios, nodes need to keep track of the latest location of mobile sinks for data delivery. However, frequent propagation of sink topological updates undermines the energy conservation goal and therefore should be controlled. Furthermore, controlled propagation of sinks' topological updates affects the performance of routing strategies thereby increasing data delivery latency and reducing packet delivery ratios. This paper presents a taxonomy of various data collection/dissemination schemes that exploit sink mobility. Based on how sink mobility is exploited in the sensor field, we classify existing schemes into three classes, namely path constrained, path unconstrained, and controlled sink mobility-based schemes. We also organize existing schemes based on their primary goals and provide a comparative study to aid readers in selecting the appropriate scheme in accordance with their particular intended applications and network dynamics. Finally, we conclude our discussion with the identification of some unresolved issues in pursuit of data delivery to a mobile sink. PMID:24504107
Performance Analysis of a Ground Source Heat Pump System Using Mine Water as Heat Sink and Source
Liu, Xiaobing; Malhotra, Mini; Walburger, Adam; ...
2016-06-01
This paper summarizes a case study of an innovative ground source heat pump (GSHP) system that uses flooded mines as a heat source and heat sink. This GSHP system provides space conditioning to a 56,000 sq ft 2(5,203 m 2) newly constructed research facility, in conjunction with supplementary existing steam heating and air-cooled chiller systems. Heat transfer performance and overall efficiency of the GSHP system were analysed using the available measured data from January through July 2014. The performance analysis identified some issues with using mine water for cooling and the integration of the GSHP system with the existing steammore » heating system. Recommendations were made to improve the control and operation of the GSHP system. These recommendations, in conjunction with the available measured data, were used to predict the annual energy use of the system. Finally, the energy and cost savings and CO 2 emission reduction potential of the GSHP system were estimated by comparing with a baseline scenario. This case study provides insights into the performance of and potential issues with the mine-water source heat pump system, which is relatively under-explored compared to other GSHP system designs and configurations.« less
Fusible heat sink for EVA thermal control
NASA Technical Reports Server (NTRS)
Roebelen, G. J., Jr.
1975-01-01
The preliminary design and analysis of a heat sink system utilizing a phase change slurry material to be used eventually for astronaut cooling during manned space missions is described. During normal use, excess heat in the liquid cooling garment coolant is transferred to a reusable/regenerable fusible heat sink. Recharge is accomplished by disconnecting the heat sink from the liquid cooling garment and placing it in an on board freezer for simultaneous slurry refreeze and power supply electrical rechange.
USDA-ARS?s Scientific Manuscript database
To determine the effects of feed pellet processing (extrusion and expansion-steam pelleting) and on feed physico-chemical characteristics, fecal stability, water quality, and growth performance in rainbow trout, three types of trout feed pellets (compressed sinking, extruded sinking, and extruded fl...
The effect of heat sinks in GTA microwelding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knorovsky, G.A.; Burchett, S.N.
1989-01-01
When miniature devices containing glass-to-metal seals are closure welded it is accepted practice to incorporate thermal heat sinks into the fixturing. This is intended to assure that the heat from gas tungsten arc (GTA) welding will not cause thermal stress-induced cracking of the seals and loss of hermeticity. The design of these heat sinks has never been systematically studied; instead only ''engineering horse sense'' has been applied. This practice has been successful in the past; however, the component being GTA welded have become smaller and more complex (i.e., more pins) and glass cracking problems are being encountered. The technology ofmore » producing glass seal-containing lids (called ''headers'') has benefited from finite element analyses in deciding how to optimally dimension pin-to-glass seal diameter ratios and glass-to-metal thickness ratios in order to minimize thermal stresses locked in during manufacture. It appeared likely that an analysts of the stresses generated by welding would also be beneficial. Recently, computer speed and code capabilities have increased to the point where finite element analysis of a close simulation of real hardware can be made, including the effect of external heat sinks. The work reported here involves an analysis (with some supporting experimental data) of a miniature thermal battery which encountered glass cracking problems. In the course of the analysis various heat sink practices were examined. Among other findings, through-thickness thermal gradients in a header with a heat sink were found to equal in-plane thermal gradients in a header without any heat sinking at the glass seal positions. Also noted were significant variations due to relatively minor changes in the weld preparation geometry. A summary of good practice for heat sinking will be presented. 4 refs., 6 figs., 2 tabs.« less
Heat Transfer Enhancement by Finned Heat Sinks with Micro-structured Roughness
NASA Astrophysics Data System (ADS)
Ventola, L.; Chiavazzo, E.; Calignano, F.; Manfredi, D.; Asinari, P.
2014-04-01
We investigated the benefits of micro-structured roughness on heat transfer performance of heat sinks, cooled by forced air. Heat sinks in aluminum alloy by direct metal laser sintering (DMLS) manufacturing technique were fabricated; values of the average surface roughness Ra from 1 to 25 microns (standard milling leads to roughness around 1 micron) under turbulent regimes (Reynolds number based on heating edge from 3000 to 17000) have been explored. An enhancement of 50% in thermal performances with regards to standard manufacturing was observed. This may open the way for huge boost in the technology of electronic cooling by DMLS.
An experimental and theoretical study of the flow phenomena within a vortex sink rate sensor
NASA Technical Reports Server (NTRS)
Goglia, G. L.; Patel, D. K.
1974-01-01
Tests were conducted to obtain a description of the flow field within a vortex sink rate sensor and to observe the influence of viscous effects on its performance. The characteristics of the sensor are described. The method for conducting the test is reported. It was determined that for a specific mass flow rate and the geometry of the vortex chamber, the flow in the vortex chamber was only affected, locally, by the size of the sink tube diameter. Within the sink tube, all three velocity components were found to be higher for the small sink tube diameters. As the speed of rotation of the sensor was increased, the tangential velocities within the vortex chamber, as well as in the sink tube, increased in proportion to the speed of rotation.
A fusible heat sink concept for extravehicular activity /EVA/ thermal control
NASA Technical Reports Server (NTRS)
Roebelen, G. J., Jr.
1976-01-01
This paper describes the preliminary design and analysis of a heat sink system, utilizing a phase change slurry material, to be used for astronaut and equipment cooling during manned space missions. During normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a regenerable fusible heat sink. Recharge is accomplished by disconnecting the heat sink from the liquid cooling garment and placing it in an onboard freezer for simultaneous slurry refreeze and power supply recharge.
Study of heat sink thermal protection systems for hypersonic research aircraft
NASA Technical Reports Server (NTRS)
Vahl, W. A.; Edwards, C. L. W.
1978-01-01
The feasibility of using a single metallic heat sink thermal protection system (TPS) over a projected flight test program for a hypersonic research vehicle was studied using transient thermal analyses and mission performance calculations. Four materials, aluminum, titanium, Lockalloy, and beryllium, as well as several combinations, were evaluated. Influence of trajectory parameters were considered on TPS and mission performance for both the clean vehicle configuration as well as with an experimental scramjet mounted. From this study it was concluded that a metallic heat sink TPS can be effectively employed for a hypersonic research airplane flight envelope which includes dash missions in excess of Mach 8 and 60 seconds of cruise at Mach numbers greater than 6. For best heat sink TPS match over the flight envelope, Lockalloy and titanium appear to be the most promising candidates
Schulte-Uebbing, Lena; de Vries, Wim
2018-02-01
Elevated nitrogen (N) deposition may increase net primary productivity in N-limited terrestrial ecosystems and thus enhance the terrestrial carbon (C) sink. To assess the magnitude of this N-induced C sink, we performed a meta-analysis on data from forest fertilization experiments to estimate N-induced C sequestration in aboveground tree woody biomass, a stable C pool with long turnover times. Our results show that boreal and temperate forests responded strongly to N addition and sequestered on average an additional 14 and 13 kg C per kg N in aboveground woody biomass, respectively. Tropical forests, however, did not respond significantly to N addition. The common hypothesis that tropical forests do not respond to N because they are phosphorus-limited could not be confirmed, as we found no significant response to phosphorus addition in tropical forests. Across climate zones, we found that young forests responded more strongly to N addition, which is important as many previous meta-analyses of N addition experiments rely heavily on data from experiments on seedlings and young trees. Furthermore, the C-N response (defined as additional mass unit of C sequestered per additional mass unit of N addition) was affected by forest productivity, experimental N addition rate, and rate of ambient N deposition. The estimated C-N responses from our meta-analysis were generally lower that those derived with stoichiometric scaling, dynamic global vegetation models, and forest growth inventories along N deposition gradients. We estimated N-induced global C sequestration in tree aboveground woody biomass by multiplying the C-N responses obtained from the meta-analysis with N deposition estimates per biome. We thus derived an N-induced global C sink of about 177 (112-243) Tg C/year in aboveground and belowground woody biomass, which would account for about 12% of the forest biomass C sink (1,400 Tg C/year). © 2017 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Patel, D. K.
1974-01-01
A description of the flow field within a vortex sink rate sensor was obtained, and the influence of viscous effects on its performance was observed. The sensor basically consisted of a vortex chamber and a sink tube. The vortex chamber consisted of two circular coaxial disks held apart, at their periphery, by a porous coupling. One circular disk had an opening to permit the mounting of the sink tube, in such a manner that the vortex chamber as well as the sink tube had a common axis of rotation. Air was supplied radially to the sensor through its porous coupling as the sensor was rotated at various speeds. Particular emphasis was directed toward an understanding of the flow field in the sink tube region. Thus velocity measurements at various stations along the length of the sink tube as well as along a given radius at any designated station were taken.
Strategies for a better performance of RPL under mobility in wireless sensor networks
NASA Astrophysics Data System (ADS)
Latib, Z. A.; Jamil, A.; Alduais, N. A. M.; Abdullah, J.; Audah, L. H. M.; Alias, R.
2017-09-01
A Wireless Sensor Network (WSN) is usually stationary, which the network comprises of static nodes. The increase demand for mobility in various applications such as environmental monitoring, medical, home automation, and military, raises the question how IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) would perform under these mobility applications. This paper aims to understand performance of RPL and come out with strategies for a better performance of RPL in mobility scenarios. Because of this, this paper evaluates the performance of the RPL protocol under three different scenarios: sink and sensor nodes are static, static sink and mobile sensor nodes, and sink and sensor nodes are mobile. The network scenarios are implemented in Cooja simulator. A WSN consists of 25 sensor nodes and one sink node is configured in the simulation environment. The simulation is varied over different packet rates and ContikiMAC's Clear Channel Assessment (CCA) rate. As the performance metric, RPL is evaluated in term of packet delivery ratio (PDR), power consumption and packet rates. The simulation results show RPL provides a poor PDR in the mobility scenarios when compared to the static scenario. In addition, RPL consumes more power and increases duty-cycle rate to support mobility when compared to the static scenario. Based on the findings, we suggest three strategies for a better performance of RPL in mobility scenarios. First, RPL should operates at a lower packet rates when implemented in the mobility scenarios. Second, RPL should be implemented with a higher duty-cycle rate. Lastly, the sink node should be positioned as much as possible in the center of the mobile network.
Development and Evaluation of a Sandia Cooler-based Refrigerator Condenser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Terry A.; Kariya, Harumichi Arthur; Leick, Michael T.
This report describes the first design of a refrigerator condenser using the Sandia Cooler, i.e. air - bearing supported rotating heat - sink impeller. The project included ba seline performance testing of a residential refrigerator, analysis and design development of a Sandia Cooler condenser assembly including a spiral channel baseplate, and performance measurement and validation of this condenser system as incorporated into the residential refrigerator. Comparable performance was achieved in a 60% smaller volume package. The improved modeling parameters can now be used to guide more optimized designs and more accurately predict performance.
Thermostructural Behavior of a Hypersonic Aircraft Sandwich Panel Subjected to Heating on One Side
NASA Technical Reports Server (NTRS)
Ko, William L.
1997-01-01
Thermostructural analysis was performed on a heated titanium honeycomb-core sandwich panel. The sandwich panel was supported at its four edges with spar-like substructures that acted as heat sinks, which are generally not considered in the classical analysis. One side of the panel was heated to high temperature to simulate aerodynamic heating during hypersonic flight. Two types of surface heating were considered: (1) flat-temperature profile, which ignores the effect of edge heat sinks, and (2) dome-shaped-temperature profile, which approximates the actual surface temperature distribution associated with the existence of edge heat sinks. The finite-element method was used to calculate the deformation field and thermal stress distributions in the face sheets and core of the sandwich panel. The detailed thermal stress distributions in the sandwich panel are presented, and critical stress regions are identified. The study shows how the magnitudes of those critical stresses and their locations change with different heating and edge conditions. This technical report presents comprehensive, three-dimensional graphical displays of thermal stress distributions in every part of a titanium honeycomb-core sandwich panel subjected to hypersonic heating on one side. The plots offer quick visualization of the structural response of the panel and are very useful for hot structures designers to identify the critical stress regions.
Campbell, Carlene E-A; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong
2011-01-01
The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives.
Multi-Channel Multi-Radio Using 802.11 Based Media Access for Sink Nodes in Wireless Sensor Networks
Campbell, Carlene E.-A.; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong
2011-01-01
The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives. PMID:22163883
Non-Ionic Highly Permeable Polymer Shells for Encapsulation of Living Cells
2011-05-01
I would like to thank Irina Drachuk for her extensive assistance in data collection and analysis , and Drs. Veronika Kozlovskaya and Olga Shchepelina...considered complete when the intensity of the photobleached region stabilized. The quantitative analysis was performed using ImageJ software, and curve...E., Tannin -protein complexes as radical scavengers and radical sinks. J Agric Food Chem 2001, 49 (10), 4917-23. 53. Lopes, G. K.; Schulman, H. M
Quasi-passive heat sink for high-power laser diodes
NASA Astrophysics Data System (ADS)
Vetrovec, John
2009-02-01
We report on a novel heat sink for high-power laser diodes offering unparalleled capacity in high-heat flux handling and temperature control. The heat sink uses a liquid coolant flowing at high speed in a miniature closed and sealed loop. Diode waste heat is received at high flux and transferred to environment, coolant fluid, heat pipe, or structure at a reduced flux. When pumping solid-state or alkali vapor lasers, diode wavelength can be electronically tuned to the absorption features of the laser gain medium. This paper presents the heat sink physics, engineering design, performance modeling, and configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Bingjing; Zhao, Jianlin, E-mail: jlzhao@nwpu.edu.cn; Wang, Jun
2013-11-21
We present a method for visually and quantitatively investigating the heat dissipation process of plate-fin heat sinks by using digital holographic interferometry. A series of phase change maps reflecting the temperature distribution and variation trend of the air field surrounding heat sink during the heat dissipation process are numerically reconstructed based on double-exposure holographic interferometry. According to the phase unwrapping algorithm and the derived relationship between temperature and phase change of the detection beam, the full-field temperature distributions are quantitatively obtained with a reasonably high measurement accuracy. And then the impact of heat sink's channel width on the heat dissipationmore » performance in the case of natural convection is analyzed. In addition, a comparison between simulation and experiment results is given to verify the reliability of this method. The experiment results certify the feasibility and validity of the presented method in full-field, dynamical, and quantitative measurement of the air field temperature distribution, which provides a basis for analyzing the heat dissipation performance of plate-fin heat sinks.« less
Multiscale Metabolic Modeling: Dynamic Flux Balance Analysis on a Whole-Plant Scale1[W][OPEN
Grafahrend-Belau, Eva; Junker, Astrid; Eschenröder, André; Müller, Johannes; Schreiber, Falk; Junker, Björn H.
2013-01-01
Plant metabolism is characterized by a unique complexity on the cellular, tissue, and organ levels. On a whole-plant scale, changing source and sink relations accompanying plant development add another level of complexity to metabolism. With the aim of achieving a spatiotemporal resolution of source-sink interactions in crop plant metabolism, a multiscale metabolic modeling (MMM) approach was applied that integrates static organ-specific models with a whole-plant dynamic model. Allowing for a dynamic flux balance analysis on a whole-plant scale, the MMM approach was used to decipher the metabolic behavior of source and sink organs during the generative phase of the barley (Hordeum vulgare) plant. It reveals a sink-to-source shift of the barley stem caused by the senescence-related decrease in leaf source capacity, which is not sufficient to meet the nutrient requirements of sink organs such as the growing seed. The MMM platform represents a novel approach for the in silico analysis of metabolism on a whole-plant level, allowing for a systemic, spatiotemporally resolved understanding of metabolic processes involved in carbon partitioning, thus providing a novel tool for studying yield stability and crop improvement. PMID:23926077
Roux, D; Aubier, B; Cochard, H; Quentin, R; van der Mee-Marquet, N
2013-10-01
Extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBLE) outbreaks in intensive care units (ICUs) associated with contaminated handwashing sinks have been reported. To conduct a regional study to assess whether handwashing sinks in 135 ICU patient rooms are a potential source of contamination, and to identify factors associated with an increased risk of sink contamination. A multicentre study was conducted in 13 ICUs, including microbiological testing for ESBLE contamination at 185 sinks. The micro-organisms isolated were analysed using randomly amplified polymorphic DNA analysis to assess clonal spread in ICUs. Data were collected to document the use of each sink, factors that may contribute to contamination of clinical areas near to the sinks, and routine cleansing procedures for the sinks. Fifty-seven sinks were contaminated (31%) with ESBLE, mostly Klebsiella (N = 33) and Enterobacter (N = 18). In two ICUs, a high contamination rate was associated with clonal spread of an epidemic isolate. Risk factors for contamination of and by handwashing sinks were frequent: 81 sinks (44%) were used for handwashing as well as the disposal of body fluids; splash risk was identified for 67 sinks (36%), among which 23 were contaminated by ESBLE. Routine sink disinfection was frequent (85%), mostly daily (75%), and involved quaternary ammonium compounds (41%) or bleach (21%). A lower sink contamination rate was significantly associated with use of the sink being restricted to handwashing and to daily sink disinfection using bleach. In ICUs, contaminated sinks are a potential source of ESBLE in the environment of the patient, a problem that may be underestimated by ICU teams. Relatively simple measures may result in a rapid improvement of the situation, and a significant decrease of the risk of exposure of ICU patients to multiresistant Enterobacteriaceae. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ming, Tingzhen; Cai, Cunjin; Yang, Wei; Shen, Wenqing; Gan, Ting
2018-06-01
With increasing heat fluxes caused by electronic components, dimples have attracted wide attention by researchers and have been applied to microchannel heat sink in modern advanced cooling technologies. In this work, the combination of dimples, impinging jets and microchannel heat sink was proposed to improve the heat transfer performance on a cooling surface with a constant heat flux 500 W/cm2. A mathematical model was advanced for numerically analyzing the fluid flow and heat transfer characteristics of a microchannel heat sink with impinging jets and dimples (MHSIJD), and the velocity distribution, pressure drop, and thermal performance of MHSIJD were analyzed by varying the radii of dimples. The results showed that the combination of dimples and MHSIJ can achieve excellent heat transfer performance; for the MHSIJD model in this work, the maximum and average temperatures can be as low as 320 K and 305 K, respectively when mass flow rate is 30 g/s; when dimple radius is larger than 0.195 mm, both the heat transfer coefficient and the overall performance h/ΔP of MHSIJD are higher than those of MHSIJ.
Multi-Source Cooperative Data Collection with a Mobile Sink for the Wireless Sensor Network.
Han, Changcai; Yang, Jinsheng
2017-10-30
The multi-source cooperation integrating distributed low-density parity-check codes is investigated to jointly collect data from multiple sensor nodes to the mobile sink in the wireless sensor network. The one-round and two-round cooperative data collection schemes are proposed according to the moving trajectories of the sink node. Specifically, two sparse cooperation models are firstly formed based on geographical locations of sensor source nodes, the impairment of inter-node wireless channels and moving trajectories of the mobile sink. Then, distributed low-density parity-check codes are devised to match the directed graphs and cooperation matrices related with the cooperation models. In the proposed schemes, each source node has quite low complexity attributed to the sparse cooperation and the distributed processing. Simulation results reveal that the proposed cooperative data collection schemes obtain significant bit error rate performance and the two-round cooperation exhibits better performance compared with the one-round scheme. The performance can be further improved when more source nodes participate in the sparse cooperation. For the two-round data collection schemes, the performance is evaluated for the wireless sensor networks with different moving trajectories and the variant data sizes.
Multi-Source Cooperative Data Collection with a Mobile Sink for the Wireless Sensor Network
Han, Changcai; Yang, Jinsheng
2017-01-01
The multi-source cooperation integrating distributed low-density parity-check codes is investigated to jointly collect data from multiple sensor nodes to the mobile sink in the wireless sensor network. The one-round and two-round cooperative data collection schemes are proposed according to the moving trajectories of the sink node. Specifically, two sparse cooperation models are firstly formed based on geographical locations of sensor source nodes, the impairment of inter-node wireless channels and moving trajectories of the mobile sink. Then, distributed low-density parity-check codes are devised to match the directed graphs and cooperation matrices related with the cooperation models. In the proposed schemes, each source node has quite low complexity attributed to the sparse cooperation and the distributed processing. Simulation results reveal that the proposed cooperative data collection schemes obtain significant bit error rate performance and the two-round cooperation exhibits better performance compared with the one-round scheme. The performance can be further improved when more source nodes participate in the sparse cooperation. For the two-round data collection schemes, the performance is evaluated for the wireless sensor networks with different moving trajectories and the variant data sizes. PMID:29084155
Great Basin NV Play Fairway Analysis - Carson Sink
Jim Faulds
2015-10-28
All datasets and products specific to the Carson Sink Basin. Includes a packed ArcMap (.mpk), individually zipped shapefiles, and a file geodatabase for the Carson Sink area; a GeoSoft Oasis montaj project containing GM-SYS 2D gravity profiles along the trace of our seismic reflection lines; a 3D model in EarthVision; spreadsheet of links to published maps; and spreadsheets of well data.
Umar, Amara; Javaid, Nadeem; Ahmad, Ashfaq; Khan, Zahoor Ali; Qasim, Umar; Alrajeh, Nabil; Hayat, Amir
2015-06-18
Performance enhancement of Underwater Wireless Sensor Networks (UWSNs) in terms of throughput maximization, energy conservation and Bit Error Rate (BER) minimization is a potential research area. However, limited available bandwidth, high propagation delay, highly dynamic network topology, and high error probability leads to performance degradation in these networks. In this regard, many cooperative communication protocols have been developed that either investigate the physical layer or the Medium Access Control (MAC) layer, however, the network layer is still unexplored. More specifically, cooperative routing has not yet been jointly considered with sink mobility. Therefore, this paper aims to enhance the network reliability and efficiency via dominating set based cooperative routing and sink mobility. The proposed work is validated via simulations which show relatively improved performance of our proposed work in terms the selected performance metrics.
An analysis of the carbon balance of the Arctic Basin from 1997 to 2006
McGuire, A.D.; Hayes, D.J.; Kicklighter, D.W.; Manizza, M.; Zhuang, Q.; Chen, M.; Follows, M.J.; Gurney, K.R.; McClelland, J.W.; Melillo, J.M.; Peterson, B.J.; Prinn, R.G.
2010-01-01
This study used several model-based tools to analyse the dynamics of the Arctic Basin between 1997 and 2006 as a linked system of land-ocean-atmosphere C exchange. The analysis estimates that terrestrial areas of the Arctic Basin lost 62.9 Tg C yr-1 and that the Arctic Ocean gained 94.1 Tg C yr-1. Arctic lands and oceans were a net CO2 sink of 108.9 Tg C yr-1, which is within the range of uncertainty in estimates from atmospheric inversions. Although both lands and oceans of the Arctic were estimated to be CO2 sinks, the land sink diminished in strength because of increased fire disturbance compared to previous decades, while the ocean sink increased in strength because of increased biological pump activity associated with reduced sea ice cover. Terrestrial areas of the Arctic were a net source of 41.5 Tg CH4 yr-1 that increased by 0.6 Tg CH4 yr-1 during the decade of analysis, a magnitude that is comparable with an atmospheric inversion of CH4. Because the radiative forcing of the estimated CH4 emissions is much greater than the CO2 sink, the analysis suggests that the Arctic Basin is a substantial net source of green house gas forcing to the climate system.
Evaluation of heat sink materials for thermal management of lithium batteries
NASA Astrophysics Data System (ADS)
Dimpault-Darcy, E. C.; Miller, K.
Aluminum, neopentyl glycol (NPG), and resins FT and KT are evaluated theoretically and experimentally as heat sink materials for lithium battery packs. The thermal performances of the two resins are compared in a thermal vacuum experiment. As solutions to the sublimation property were not immediately apparent, a theoretical comparison of the thermal performance of NPG versus KT, Al, and no material, is presented.
Evaluation of heat sink materials for thermal management of lithium batteries
NASA Technical Reports Server (NTRS)
Dimpault-Darcy, E. C.; Miller, K.
1988-01-01
Aluminum, neopentyl glycol (NPG), and resins FT and KT are evaluated theoretically and experimentally as heat sink materials for lithium battery packs. The thermal performances of the two resins are compared in a thermal vacuum experiment. As solutions to the sublimation property were not immediately apparent, a theoretical comparison of the thermal performance of NPG versus KT, Al, and no material, is presented.
NASA Astrophysics Data System (ADS)
Gong, Youguo; Hu, Min; Cheng, Yafang; Su, Hang; Yue, Dingli; Liu, Feng; Wiedensohler, A.; Wang, Zhibin; Kalesse, H.; Liu, Shang; Wu, Zhijun; Xiao, Kaitao; Mi, Puchun; Zhang, Yuanhang
The coagulation sink and its role in new particle formation are investigated based on data obtained during the PRIDE-PRD2004 campaign at Xinken of Pearl River Delta, China. Analysis of size distributions and mode contributions of the coagulation sink show that the observed higher load of accumulation mode particles impose a significant effect on the coagulation sink and result in higher coagulation sinks at Xinken despite of the lower total particle number compared with other areas. Hence it is concluded that the higher coagulation sink may depress the occurrence frequency of new particle formation events. The strategies targeting at controlling accumulation mode particles may have influences on the frequency of new particle formation events at this area. The factors affecting the coagulation sink are evaluated. The relatively lower ambient relative humidities may weaken the coagulation sink and facilitate the occurrence of new particle formation events during noontime, while the surmise of nucleation and growth involving organic matter may imply an actually higher coagulation sink than expected. These factors have a significant influence on the ultimate fate of the newly formed nuclei and new particle formation. A comparison of event and non-event days indicates that the coagulation sink is not the only decisive factor affecting new particle formation, other factors including the precursor vapors and photochemical activity are none the less important either. Competition of coagulation sink and high source rate leads to the occurrence of new particle formation events at Xinken.
Energy efficient sensor scheduling with a mobile sink node for the target tracking application.
Maheswararajah, Suhinthan; Halgamuge, Saman; Premaratne, Malin
2009-01-01
Measurement losses adversely affect the performance of target tracking. The sensor network's life span depends on how efficiently the sensor nodes consume energy. In this paper, we focus on minimizing the total energy consumed by the sensor nodes whilst avoiding measurement losses. Since transmitting data over a long distance consumes a significant amount of energy, a mobile sink node collects the measurements and transmits them to the base station. We assume that the default transmission range of the activated sensor node is limited and it can be increased to maximum range only if the mobile sink node is out-side the default transmission range. Moreover, the active sensor node can be changed after a certain time period. The problem is to select an optimal sensor sequence which minimizes the total energy consumed by the sensor nodes. In this paper, we consider two different problems depend on the mobile sink node's path. First, we assume that the mobile sink node's position is known for the entire time horizon and use the dynamic programming technique to solve the problem. Second, the position of the sink node is varied over time according to a known Markov chain, and the problem is solved by stochastic dynamic programming. We also present sub-optimal methods to solve our problem. A numerical example is presented in order to discuss the proposed methods' performance.
Energy Efficient Sensor Scheduling with a Mobile Sink Node for the Target Tracking Application
Maheswararajah, Suhinthan; Halgamuge, Saman; Premaratne, Malin
2009-01-01
Measurement losses adversely affect the performance of target tracking. The sensor network's life span depends on how efficiently the sensor nodes consume energy. In this paper, we focus on minimizing the total energy consumed by the sensor nodes whilst avoiding measurement losses. Since transmitting data over a long distance consumes a significant amount of energy, a mobile sink node collects the measurements and transmits them to the base station. We assume that the default transmission range of the activated sensor node is limited and it can be increased to maximum range only if the mobile sink node is out-side the default transmission range. Moreover, the active sensor node can be changed after a certain time period. The problem is to select an optimal sensor sequence which minimizes the total energy consumed by the sensor nodes. In this paper, we consider two different problems depend on the mobile sink node's path. First, we assume that the mobile sink node's position is known for the entire time horizon and use the dynamic programming technique to solve the problem. Second, the position of the sink node is varied over time according to a known Markov chain, and the problem is solved by stochastic dynamic programming. We also present sub-optimal methods to solve our problem. A numerical example is presented in order to discuss the proposed methods' performance PMID:22399934
Geospatial Analysis of Atmospheric Haze Effect by Source and Sink Landscape
NASA Astrophysics Data System (ADS)
Yu, T.; Xu, K.; Yuan, Z.
2017-09-01
Based on geospatial analysis model, this paper analyzes the relationship between the landscape patterns of source and sink in urban areas and atmospheric haze pollution. Firstly, the classification result and aerosol optical thickness (AOD) of Wuhan are divided into a number of square grids with the side length of 6 km, and the category level landscape indices (PLAND, PD, COHESION, LPI, FRAC_MN) and AOD of each grid are calculated. Then the source and sink landscapes of atmospheric haze pollution are selected based on the analysis of the correlation between landscape indices and AOD. Next, to make the following analysis more efficient, the indices selected before should be determined through the correlation coefficient between them. Finally, due to the spatial dependency and spatial heterogeneity of the data used in this paper, spatial autoregressive model and geo-weighted regression model are used to analyze atmospheric haze effect by source and sink landscape from the global and local level. The results show that the source landscape of atmospheric haze pollution is the building, and the sink landscapes are shrub and woodland. PLAND, PD and COHESION are suitable for describing the atmospheric haze effect by source and sink landscape. Comparing these models, the fitting effect of SLM, SEM and GWR is significantly better than that of OLS model. The SLM model is superior to the SEM model in this paper. Although the fitting effect of GWR model is more unsuited than that of SLM, the influence degree of influencing factors on atmospheric haze of different geography can be expressed clearer. Through the analysis results of these models, following conclusions can be summarized: Reducing the proportion of source landscape area and increasing the degree of fragmentation could cut down aerosol optical thickness; And distributing the source and sink landscape evenly and interspersedly could effectively reduce aerosol optical thickness which represents atmospheric haze pollution; For Wuhan City, the method of adjusting the built-up area slightly and planning the non-built-up areas reasonably can be taken to reduce atmospheric haze pollution.
NASA Technical Reports Server (NTRS)
Summers, D. P.
1999-01-01
An analysis of sources and sinks for ammonia and nitrite on the early Earth was conducted. Rates of formation and destruction, and steady state concentrations of both species were determined by steady state kinetics. The importance of the reaction of nitrite with ammonia on the feasibility of ammonia formation from nitrite was evaluated. The analysis considered conditions such as temperature, ferrous iron concentration, and pH. For sinks we considered the reduction of nitrite to ammonia, reaction between nitrite and ammonia, photochemical destruction of both species, and destruction at hydrothermal vents. Under most environmental conditions, the primary sink for nitrite is reduction to ammonia. The reaction between ammonia and nitrite is not an important sink for either nitrite or ammonia. Destruction at hydrothermal vents is important at acidic pH's and at low ferrous iron concentrations. Photochemical destruction, even in a worst case scenario, is unimportant under many conditions except possibly under acidic, low iron concentration, or low temperature conditions. The primary sink for ammonia is photochemical destruction in the atmosphere. Under acidic conditions, more of the ammonia is tied up as ammonium (reducing its vapor pressure and keeping it in solution) and hydrothermal destruction becomes more important.
Duan, Wei; Xu, Hongguo; Liu, Guotian; Fan, Peige; Liang, Zhenchang; Li, Shaohua
2016-01-01
Prunus persica fruits were removed from 1-year-old shoots to analysis photosynthesis, chlorophyll fluorescence and genes changes in leaves to low sink demand caused by fruit removal (-fruit) during the final stage of rapid fruit growth. A decline in net photosynthesis rate was observed, accompanied with a decrease in stomatal conductance. The intercellular CO2 concentrations and leaf temperature increased as compared with a normal fruit load (+fruit). Moreover, low sink demand significantly inhibited the donor side and the reaction center of photosystem II. 382 genes in leaf with an absolute fold change ≥1 change in expression level, representing 116 up- and 266 down-regulated genes except for unknown transcripts. Among these, 25 genes for photosynthesis were down-regulated, 69 stress and 19 redox related genes up-regulated under the low sink demand. These studies revealed high leaf temperature may result in a decline of net photosynthesis rate through down-regulation in photosynthetic related genes and up-regulation in redox and stress related genes, especially heat shock proteins genes. The complex changes in genes at the transcriptional level under low sink demand provided useful starting points for in-depth analyses of source-sink relationship in P. persica.
Effect of heavy oil on the development of the nervous system of floating and sinking teleost eggs.
Irie, Kouta; Kawaguchi, Masahumi; Mizuno, Kaori; Song, Jun-Young; Nakayama, Kei; Kitamura, Shin-Ichi; Murakami, Yasunori
2011-01-01
Heavy oil (HO) on the sea surface penetrates into fish eggs and prevents the normal morphogenesis. To identify the toxicological effects of HO in the context of the egg types, we performed exposure experiments using floating eggs and sinking eggs. In the course of development, HO-exposed embryos of floating eggs showed abnormal morphology, whereas early larva of the sinking eggs had almost normal morphology. However, the developing peripheral nervous system of sinking eggs showed abnormal projections. These findings suggest that HO exposed fishes have problems in the developing neurons, although they have no morphological malformations. Through these observations, we conclude that HO is strongly toxic to floating eggs in the morphogenesis, and also affect the neuron development in both floating and sinking eggs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Accurate Monitoring and Fault Detection in Wind Measuring Devices through Wireless Sensor Networks
Khan, Komal Saifullah; Tariq, Muhammad
2014-01-01
Many wind energy projects report poor performance as low as 60% of the predicted performance. The reason for this is poor resource assessment and the use of new untested technologies and systems in remote locations. Predictions about the potential of an area for wind energy projects (through simulated models) may vary from the actual potential of the area. Hence, introducing accurate site assessment techniques will lead to accurate predictions of energy production from a particular area. We solve this problem by installing a Wireless Sensor Network (WSN) to periodically analyze the data from anemometers installed in that area. After comparative analysis of the acquired data, the anemometers transmit their readings through a WSN to the sink node for analysis. The sink node uses an iterative algorithm which sequentially detects any faulty anemometer and passes the details of the fault to the central system or main station. We apply the proposed technique in simulation as well as in practical implementation and study its accuracy by comparing the simulation results with experimental results to analyze the variation in the results obtained from both simulation model and implemented model. Simulation results show that the algorithm indicates faulty anemometers with high accuracy and low false alarm rate when as many as 25% of the anemometers become faulty. Experimental analysis shows that anemometers incorporating this solution are better assessed and performance level of implemented projects is increased above 86% of the simulated models. PMID:25421739
Hung, Le Xuan; Canh, Ngo Trong; Lee, Sungyoung; Lee, Young-Koo; Lee, Heejo
2008-01-01
For many sensor network applications such as military or homeland security, it is essential for users (sinks) to access the sensor network while they are moving. Sink mobility brings new challenges to secure routing in large-scale sensor networks. Previous studies on sink mobility have mainly focused on efficiency and effectiveness of data dissemination without security consideration. Also, studies and experiences have shown that considering security during design time is the best way to provide security for sensor network routing. This paper presents an energy-efficient secure routing and key management for mobile sinks in sensor networks, called SCODEplus. It is a significant extension of our previous study in five aspects: (1) Key management scheme and routing protocol are considered during design time to increase security and efficiency; (2) The network topology is organized in a hexagonal plane which supports more efficiency than previous square-grid topology; (3) The key management scheme can eliminate the impacts of node compromise attacks on links between non-compromised nodes; (4) Sensor node deployment is based on Gaussian distribution which is more realistic than uniform distribution; (5) No GPS or like is required to provide sensor node location information. Our security analysis demonstrates that the proposed scheme can defend against common attacks in sensor networks including node compromise attacks, replay attacks, selective forwarding attacks, sinkhole and wormhole, Sybil attacks, HELLO flood attacks. Both mathematical and simulation-based performance evaluation show that the SCODEplus significantly reduces the communication overhead, energy consumption, packet delivery latency while it always delivers more than 97 percent of packets successfully. PMID:27873956
Hung, Le Xuan; Canh, Ngo Trong; Lee, Sungyoung; Lee, Young-Koo; Lee, Heejo
2008-12-03
For many sensor network applications such as military or homeland security, it is essential for users (sinks) to access the sensor network while they are moving. Sink mobility brings new challenges to secure routing in large-scale sensor networks. Previous studies on sink mobility have mainly focused on efficiency and effectiveness of data dissemination without security consideration. Also, studies and experiences have shown that considering security during design time is the best way to provide security for sensor network routing. This paper presents an energy-efficient secure routing and key management for mobile sinks in sensor networks, called SCODE plus . It is a significant extension of our previous study in five aspects: (1) Key management scheme and routing protocol are considered during design time to increase security and efficiency; (2) The network topology is organized in a hexagonal plane which supports more efficiency than previous square-grid topology; (3) The key management scheme can eliminate the impacts of node compromise attacks on links between non-compromised nodes; (4) Sensor node deployment is based on Gaussian distribution which is more realistic than uniform distribution; (5) No GPS or like is required to provide sensor node location information. Our security analysis demonstrates that the proposed scheme can defend against common attacks in sensor networks including node compromise attacks, replay attacks, selective forwarding attacks, sinkhole and wormhole, Sybil attacks, HELLO flood attacks. Both mathematical and simulation-based performance evaluation show that the SCODE plus significantly reduces the communication overhead, energy consumption, packet delivery latency while it always delivers more than 97 percent of packets successfully.
Experimental Investigations of Two-Phase Cooling in Microgap Channel
2011-04-25
several classification of micro to macro channel. In general, a microchannel is a channel for which the heat transfer characteristics deviate from...examined the heat transfer and fluid flow characteristics of two-phase flow in microchannels with hydraulic diameters of 150 - 450 micrometers for...inherent with two-phase microchannel heat sinks. Bar- Cohen and Rahim [5] performed a detailed analysis of microchannel /microgap heat transfer data
Heat Sink Welding for Preventing Hot Cracking in Alloy 2195 Intersection Welds: A Feasibility Study
NASA Technical Reports Server (NTRS)
Yang, Yu-Ping; Dong, Pingsha; Rogers, Patrick
2000-01-01
Two concepts, stationary cooling and trailing cooling, were proposed to prevent weld intersection cracking. Finite element analysis was used to demonstrate the potential effectiveness of those two concepts. Both stationary and trailing heat sink setups were proposed for preventing intersection cracking. The cooling media could be liquid nitrogen, or pressured air knife. Welding experiments on the small test panel with the localized heat sink confirmed the feasibility of using such a stationary cooling technique. The required cooling was achieved in this test panel. Systematic welding experiments should be conducted in the future to validate and refine the heat sink technique for preventing intersection cracking.
Topology optimisation for natural convection problems
NASA Astrophysics Data System (ADS)
Alexandersen, Joe; Aage, Niels; Andreasen, Casper Schousboe; Sigmund, Ole
2014-12-01
This paper demonstrates the application of the density-based topology optimisation approach for the design of heat sinks and micropumps based on natural convection effects. The problems are modelled under the assumptions of steady-state laminar flow using the incompressible Navier-Stokes equations coupled to the convection-diffusion equation through the Boussinesq approximation. In order to facilitate topology optimisation, the Brinkman approach is taken to penalise velocities inside the solid domain and the effective thermal conductivity is interpolated in order to accommodate differences in thermal conductivity of the solid and fluid phases. The governing equations are discretised using stabilised finite elements and topology optimisation is performed for two different problems using discrete adjoint sensitivity analysis. The study shows that topology optimisation is a viable approach for designing heat sink geometries cooled by natural convection and micropumps powered by natural convection.
NASA Astrophysics Data System (ADS)
Wilson, Jonathan; Kohlmann, Fabian; Nicoll, Graeme
2017-04-01
The source-to-sink mindset provides an important framework for the exploration geologist. It enables an integrated understanding of hinterland and basin, and can lead to subsurface risk mitigation, particularly with respect to predicting reservoir location and quality. Despite the numerous benefits associated with source-to-sink analysis, such studies are time-consuming to generate, encompassing a large array of disciplines and data, and are not routinely performed within the hydrocarbon industry. The discovery of several significant hydrocarbon fields along the equatorial West African margin has been followed by a series of expensive failures throughout the last decade associated with reservoir quality/presence. This paper discusses a case study focused on the equatorial West African margin, demonstrating how three well-known but effective approaches can be integrated to reconstruct source-to-sink relationships in an ancient sedimentary system, helping de-risk exploration efforts. The first step is to characterize the hinterland. To do this, detailed information was collected for two separate but interlinked datasets—mineral deposits and hard rock geochronology. Combined, these two datasets allow an understanding of the timing and nature of an areas tectonic evolution to be easily developed. The data can be used alongside stratigraphic data and geodynamic information from a plate tectonic model to reconstruct topography and bathymetry of the earth at different episodes of geological time. Paleo digital elevation models (PDEMs) give a first-order approximation of hinterland topography and therefore allow possible sediment source areas to be identified and potential sediment transport pathways to be visualized by means of the digital reconstruction of paleo-drainage networks and their attendant watersheds. This integrated global dataset of hinterland geochronology provides useful "source" information complemented by "sink" information contained within a detrital geochronology database. By combining these two datasets and matching the age populations, sediment provenance can be deduced and source-to-sink relationships can be unraveled. Sedimentary provenance analysis from detrital/hinterland geochronology, and the application of flow routing algorithms to PDEMs, allow for the physical limits of paleo-drainage basins to be reconstructed. Assessment of the nature and composition of the hinterland within individual paleo-drainage basins provides a useful means of predicting the quality of sediment in associated point-sourced depocentres along the margin. For example, the erosion of hinterlands with markedly different compositions can have dramatic effects on the quality of sediment delivered to the surrounding basins. Sediment transport pathways provided by PDEMs and detrital zircon geochronology provide a paleo-drainage network that can be further developed by exploiting power-law scaling relationships observed between source-to-sink systems (Somme et al. 2009). These relationships, and more general predictive models (e.g., Syvitski and Milliman 2007), allow for semiquantitative approximation of morphological and sedimentological parameters in both the source and sink domain and provide a useful means of verifying inferred drainage patterns. In frontier areas where subsurface constraint is sparse, an appreciation of sink characteristics, such as fan size and sediment flux are extremely valuable as a first-pass basin screening tool.
Did a "lucky shot" sink the submarine H.L. Hunley?
Lance, Rachel M; Warder, Henry; Bass, Cameron R Dale
2017-01-01
The H.L. Hunley was the first submarine to be successful in combat, sinking the Union vessel Housatonic outside Charleston Harbor in 1864 during the Civil War. However, despite marking a milestone in military history, little is known about this vessel or why it sank. One popular theory is the "lucky shot" theory: the hypothesis that small arms fire from the crew of the Housatonic may have sufficiently damaged the submarine to sink it. However, ballistic experiments with cast iron samples, analysis of historical experiments firing Civil War-era projectiles at cast iron samples, and calculation of the tidal currents and sinking trajectory of the submarine indicate that this theory is not likely. Based on our results, the "lucky shot" theory does not explain the sinking of the world's first successful combat submarine. Published by Elsevier B.V.
Tan, Z.; Liu, S.; Johnston, C.A.; Liu, J.; Tieszen, L.L.
2006-01-01
Our ability to forecast the role of ecosystem processes in mitigating global greenhouse effects relies on understanding the driving forces on terrestrial C dynamics. This study evaluated the controls on soil organic C (SOC) changes from 1973 to 2000 in the northwest Great Plains. SOC source-sink relationships were quantified using the General Ensemble Biogeochemical Modeling System (GEMS) based on 40 randomly located 10 × 10 km2 sample blocks. These sample blocks were aggregated into cropland, grassland, and forestland groups based on land cover composition within each sample block. Canonical correlation analysis indicated that SOC source-sink relationship from 1973 to 2000 was significantly related to the land cover type while the change rates mainly depended on the baseline SOC level and annual precipitation. Of all selected driving factors, the baseline SOC and nitrogen levels controlled the SOC change rates for the forestland and cropland groups, while annual precipitation determined the C source-sink relationship for the grassland group in which noticeable SOC sink strength was attributed to the conversion from cropped area to grass cover. Canonical correlation analysis also showed that grassland ecosystems are more complicated than others in the ecoregion, which may be difficult to identify on a field scale. Current model simulations need further adjustments to the model input variables for the grass cover-dominated ecosystems in the ecoregion.
Vortex-induced vibrations mitigation through a nonlinear energy sink
NASA Astrophysics Data System (ADS)
Dai, H. L.; Abdelkefi, A.; Wang, L.
2017-01-01
The passive suppression mechanism of the vortex-induced vibrations (VIV) of the cylinder by means of an essentially nonlinear element, the nonlinear energy sink (NES) is investigated. The flow-induced loads on the cylinder are modeled using a prevalent van der Pol oscillator which is experimentally validated, coupling to the structural vibrations in the presence of the NES structure. Based on the coupled nonlinear governing equations of motion, the performed analysis indicates that the mass and damping of NES have significant effects on the coupled frequency and damping of the aero-elastic system, leading to the shift of synchronization region and mitigation of vibration responses. It is demonstrated that the coupled system of flow-cylinder-NES behaves resonant interactions, showing periodic, aperiodic, and multiple stable responses which depend on the values of the NES parameters. In addition, it is found that the occurrence of multiple stable responses can enhance the nonlinear energy pumping effect, resulting in the increment of transferring energy from the flow via the cylinder to the NES, which is related to the essential nonlinearity of the sink stiffness. This results in a significant reduction in the VIV amplitudes of the primary circular cylinder for appropriate NES parameter values.
Sinks as integrative elements of the anthropogenic metabolism
NASA Astrophysics Data System (ADS)
Kral, Ulrich; Brunner, Paul H.
2015-04-01
The anthropogenic metabolism is an open system requiring exchange of materials and energy between the anthroposphere and the environment. Material and energy flows are taken from nature and become utilized by men. After utilization, the materials either remain in the anthroposphere as recycling products, or they leave the anthroposphere as waste and emission flows. To accommodate these materials without jeopardizing human and environmental health, limited natural sinks are available; thus, man-made sinks have to be provided where natural sinks are missing or overloaded. The oral presentation (1) suggests a coherent definition of the term "sink", encompassing natural and man-made processes, (2) presents a framework to analyse and evaluate anthropogenic material flows to sinks, based on the tool substance flow analysis and impact assessment methodology, and (3) applies the framework in a case study approach for selected substances such as Copper and Lead in Vienna and Perfluorooctane sulfonate in Switzerland. Finally, the numeric results are aggregated in terms of a new indicator that specifies on a regional scale which fractions of anthropogenic material flows to sinks are acceptable. The following results are obtained: In Vienna, 99% of Cu flows to natural and man-made sinks are in accordance with accepted standards. However, the 0.7% of Cu entering urban soils and the 0.3% entering receiving waters surpass the acceptable level. In the case of Pb, 92% of all flows into sinks prove to be acceptable, but 8% are disposed of in local landfills with limited capacity. For PFOS, 96% of all flows into sinks are acceptable. 4% cannot be evaluated due to a lack of normative criteria, despite posing a risk for human health and the environment. The case studies corroborate the need and constraints of sinks to accommodate inevitable anthropogenic material flows.
The effect of weight and drag on the sinking speed and lift/drag ratio of gliders
NASA Technical Reports Server (NTRS)
Kosin, R
1934-01-01
The most important factors in evaluating performance of gliders are minimum sinking speed and minimum gliding angle. To assure their optimum value the energy necessary for flight, that is, the energy of lift and friction must be kept very low, or in other words, weight and total drag which have a decisive effect on the sinking speed and on the gliding angle, must be kept to a minimum. How great the effect of a reduction of these two quantities will be shown in the following.
Experimental Optimisation of the Thermal Performance of Impinging Synthetic Jet Heat Sinks
NASA Astrophysics Data System (ADS)
Marron, Craig; Persoons, Tim
2014-07-01
Zero-net-mass flow synthetic jet devices offer a potential solution for energy- efficient cooling of medium power density electronic components. There remains an incomplete understanding of the interaction of these flows with extended surfaces, which prevents the wider implementation of these devices in the field. This study examines the effect of the main operating parameters on the heat transfer rate and electrical power consumption for a synthetic jet cooled heat sink. Three different heat sink geometries are tested. The results find that a modified sink with a 14 × 14 pin array with the central 6 × 6 pins removed provides superior cooling to either a fully pinned sink or flat plate. Furthermore each heat sink is found to have its own optimum jet orifice-to-sink spacing for heat transfer independent of flow conditions. The optimum heat transfer for the modified sink is H = 34 jet diameters. The effect of frequency on heat transfer is also studied. It is shown that heat transfer increases superlinearly with frequency at higher stroke lengths. The orientation of the impingement surface with respect to gravity has no effect on the heat transfer capabilities of the tested device. These tests are the starting point for further investigation into enhanced synthetic jet impingement surfaces. The equivalent axial fan cooled pinned heat sink (Malico Inc. MFP40- 18) has a thermal resistance of 1.93K/W at a fan power consumption of 0.12W. With the modified pinned heat sink, a synthetic jet at Re = 911, L0/D = 10, H/D = 30 provides a thermal resistance of 2.5K/W at the same power consumption.
Khan, Majid I; Gansterer, Wilfried N; Haring, Guenter
2013-05-15
Over the last decade a large number of routing protocols has been designed for achieving energy efficiency in data collecting wireless sensor networks. The drawbacks of using a static sink are well known. It has been argued in the literature that a mobile sink may improve the energy dissipation compared to a static one. Some authors focus on minimizing Emax , the maximum energy dissipation of any single node in the network, while others aim at minimizing Ebar , the average energy dissipation over all nodes. In our paper we take a more holistic view, considering both Emax and Ebar . The main contribution of this paper is to provide a simulation-based analysis of the energy efficiency of WSNs with static and mobile sinks. The focus is on two important configuration parameters: mobility path of the sink and duty cycling value of the nodes. On the one hand, it is well known that in the case of a mobile sink with fixed trajectory the choice of the mobility path influences energy efficiency. On the other hand, in some types of applications sensor nodes spend a rather large fraction of their total lifetime in idle mode, and therefore higher energy efficiency can be achieved by using the concept of reduced duty cycles. In particular, we quantitatively analyze the influence of duty cycling and the mobility radius of the sink as well as their interrelationship in terms of energy consumption for a well-defined model scenario. The analysis starts from general load considerations and is refined into a geometrical model. This model is validated by simulations which are more realistic in terms of duty cycling than previous work. It is illustrated that over all possible configuration scenarios in terms of duty cycle and mobility radius of the sink the energy dissipation in the WSN can vary up to a factor of nine in terms of Emax and up to a factor of 17 in terms of Ebar. It turns out that in general the choice of the duty cycle value is more important for achieving energy efficiency than the choice of the mobility radius of the sink. Moreover, for small values of the duty cycle, a static sink turns out to be optimal in terms of both Emax and Ebar . For larger values of the duty cycle, a mobile sink has advantages over a static sink, especially in terms of Emax . These insights into the basic interrelationship between duty cycle value and mobility radius of a mobile sink are relevant for energy efficient operation of homogeneous WSNs beyond our model scenario.
Enhancement of the forced convective heat transfer on mini pin fin heat sinks with micro spiral fins
NASA Astrophysics Data System (ADS)
Khonsue, Osot
2018-02-01
This research is an experimental study on the characteristics of heat transfer and pressure drop in mini heat sinks using air as the working fluid. The experiments were performed under a constant heat flux ranging from 9.132-13.698 kW/m2 and the air Reynolds number range 322-1982. Three different types of mini heat sinks were rectangle pin fins, cylindrical pin fins, and spiral pin fins with 36x28x9 mm and 5 mm fins high. There were 63 fins altogether and all were made of aluminum. The results showed that the characteristics of the temperature of heat sink of spiral pin fins was the least. Meanwhile the average heat transfer coefficient and Nusselt number of spiral pin fins were the most . Regarding the pressure drop, the rectangular pin fins was the least. The results of this study can be used to guide the design and development of electronic devices cooling system with forced convective heat transfer for higher performance in the future.
NASA Astrophysics Data System (ADS)
Raju, C. S. K.; Sanjeevi, P.; Raju, M. C.; Ibrahim, S. M.; Lorenzini, G.; Lorenzini, E.
2017-11-01
A theoretical analysis is performed for studying the flow and heat and mass transfer characteristics of Maxwell fluid over a cylinder with Cattaneo-Christov and non-uniform heat source/sink. The Brownian motion and thermophoresis parameters also considered into account. Numerical solutions are carried out by using Runge-Kutta-based shooting technique. The effects of various governing parameters on the flow and temperature profiles are demonstrated graphically. We also computed the friction factor coefficient, local Nusselt and Sherwood numbers for the permeable and impermeable flow over a cylinder cases. It is found that the rising values of Biot number, non-uniform heat source/sink and thermophoresis parameters reduce the rate of heat transfer. It is also found that the friction factor coefficient is high in impermeable flow over a cylinder case when compared with the permeable flow over a cylinder case.
The impact of agricultural soil erosion on the global carbon cycle
Van Oost, Kristof; Quine, T.A.; Govers, G.; De Gryze, S.; Six, J.; Harden, J.W.; Ritchie, J.C.; McCarty, G.W.; Heckrath, G.; Kosmas, C.; Giraldez, J.V.; Marques Da Silva, J.R.; Merckx, R.
2007-01-01
Agricultural soil erosion is thought to perturb the global carbon cycle, but estimates of its effect range from a source of 1 petagram per year -1 to a sink of the same magnitude. By using caesium-137 and carbon inventory measurements from a large-scale survey, we found consistent evidence for an erosion-induced sink of atmospheric carbon equivalent to approximately 26% of the carbon transported by erosion. Based on this relationship, we estimated a global carbon sink of 0.12 (range 0.06 to 0.27) petagrams of carbon per year-1 resulting from erosion in the world's agricultural landscapes. Our analysis directly challenges the view that agricultural erosion represents an important source or sink for atmospheric CO2.
Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming
2016-07-14
Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle's position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-10
...-FR- H.1, ``Response To Loss Of Secondary Heat Sink.'' The NRC does not consider implementing 2-FR-H.1 an OMA, as actions to establish reactor coolant system decay heat removal can be performed from the... status trees if Auxiliary Feed necessary to Pump Building. establish alternate secondary heat sink...
CFD analysis of aircraft fuel tanks thermal behaviour
NASA Astrophysics Data System (ADS)
Zilio, C.; Longo, G. A.; Pernigotto, G.; Chiacchio, F.; Borrelli, P.; D'Errico, E.
2017-11-01
This work is carried out within the FP7 European research project TOICA (Thermal Overall Integrated Conception of Aircraft, http://www.toica-fp7.eu/). One of the tasks foreseen for the TOICA project is the analysis of fuel tanks as possible heat sinks for future aircrafts. In particular, in the present paper, commercial regional aircraft is considered as case study and CFD analysis with the commercial code STAR-CCM+ is performed in order to identify the potential capability to use fuel stored in the tanks as a heat sink for waste heat dissipated by other systems. The complex physical phenomena that characterize the heat transfer inside liquid fuel, at the fuel-ullage interface and inside the ullage are outlined. Boundary conditions, including the effect of different ground and flight conditions, are implemented in the numerical simulation approach. The analysis is implemented for a portion of aluminium wing fuel tank, including the leading edge effects. Effect of liquid fuel transfer among different tank compartments and the air flow in the ullage is included. According to Fuel Tank Flammability Assessment Method (FTFAM) proposed by the Federal Aviation Administration, the results are exploited in terms of exponential time constants and fuel temperature difference to the ambient for the different cases investigated.
Design and experimental study of an integrated vapor chamber-thermal energy storage system
NASA Astrophysics Data System (ADS)
Kota, Krishna M.
Future defense, aerospace and automotive technologies involve electronic systems that release high pulsed waste heat like during high power microwave and laser diode applications in tactical and combat aircraft, and electrical and electronic systems in hybrid electric vehicles, which will require the development of an efficient thermal management system. A key design issue is the need for fast charging so as not to overheat the key components. The goal of this work is to study the fabrication and technology implementation feasibility of a novel high energy storage, high heat flux passive heat sink. Key focus is to verify by theory and experiments, the practicability of using phase change materials as a temporary storage of waste heat for heat sink applications. The reason for storing the high heat fluxes temporarily is to be able to reject the heat at the average level when the heat source is off. Accordingly, a concept of a dual latent heat sink intended for moderate to low thermal duty cycle electronic heat sink applications is presented. This heat sink design combines the features of a vapor chamber with rapid thermal energy storage employing graphite foam inside the heat storage facility along with phase change materials and is attractive owing to its passive operation unlike some of the current thermal management techniques for cooling of electronics employing forced air circulation or external heat exchangers. In addition to the concept, end-application dependent criteria to select an optimized design for this dual latent heat sink are presented. A thermal resistance concept based design tool/model has been developed to analyze and optimize the design for experiments. The model showed that it is possible to have a dual latent heat sink design capable of handling 7 MJ of thermal load at a heat flux of 500 W/cm2 (over an area of 100 cm 2) with a volume of 0.072 m3 and weighing about 57.5 kg. It was also found that with such high heat flux absorption capability, the proposed conceptual design could have a vapor-to-condenser temperature difference of less than 10°C with a volume storage density of 97 MJ/m 3 and a mass storage density of 0.122 MJ/kg. The effectiveness of this heat sink depends on the rapidness of the heat storage facility in the design during the pulse heat generation period of the duty cycle. Heat storage in this heat sink involves transient simultaneous laminar film condensation of vapor and melting of an encapsulated phase change material in graphite foam. Therefore, this conjugate heat transfer problem including the wall inertia effect is numerically analyzed and the effectiveness of the heat storage mechanism of the heat sink is verified. An effective heat capacity formulation is employed for modeling the phase change problem and is solved using finite element method. The results of the developed model showed that the concept is effective in preventing undue temperature rise of the heat source. Experiments are performed to investigate the fabrication and implementation feasibility and heat transfer performance for validating the objectives of the design, i.e., to show that the VCTES heat sink is practicable and using PCM helps in arresting the vapor temperature rise in the heat sink. For this purpose, a prototype version of the VCTES heat sink is fabricated and tested for thermal performance. The volume foot-print of the vapor chamber is about 6"X5"X2.5". A custom fabricated thermal energy storage setup is incorporated inside this vapor chamber. A heat flux of 40 W/cm2 is applied at the source as a pulse and convection cooling is used on the condenser surface. Experiments are done with and without using PCM in the thermal energy storage setup. It is found that using PCM as a second latent system in the setup helps in lowering the undue temperature rise of the heat sink system. It is also found that the thermal resistance between the vapor chamber and the thermal energy storage setup, the pool boiling resistance at the heat source in the vapor chamber, the condenser resistance during heat discharging were key parameters that affect the thermal performance. Some suggestions for future improvements in the design to ease its implementation and enhance the heat transfer of this novel heat sink are also presented.
Towards the theory of pollinator-mediated gene flow.
Cresswell, James E
2003-01-01
I present a new exposition of a model of gene flow by animal-mediated pollination between a source population and a sink population. The model's parameters describe two elements: (i) the expected portion of the source's paternity that extends to the sink population; and (ii) the dilution of this portion by within-sink pollinations. The model is termed the portion-dilution model (PDM). The PDM is a parametric restatement of the conventional view of animal-mediated pollination. In principle, it can be applied to plant species in general. I formulate a theoretical value of the portion parameter that maximizes gene flow and prescribe this as a benchmark against which to judge the performance of real systems. Existing foraging theory can be used in solving part of the PDM, but a theory for source-to-sink transitions by pollinators is currently elusive. PMID:12831465
Impacts of genetically engineered alterations in carbon sink pathways on photosynthetic performance
Holland, Steven C.; Artier, Juliana; Miller, Neil T.; ...
2016-10-05
Genetic engineering of photosynthetic organisms typically redirects native metabolism towards desirable products, which thereby represent new metabolic sinks. There is limited information on how these modifications impact the evolved mechanisms of photosynthetic energy metabolism and cellular growth. Two engineered strains of Synechocystis sp. PCC 6803 with altered carbon sink capacity were assayed for their photosynthetic and CO 2 concentrating mechanism properties in conditions of high and low inorganic carbon (Ci) availability. In the ΔglgC mutant, glycogen cannot be synthesized and a carbon sink pathway has been effectively removed. The JU547 strain has been engineered by integration of the Pseudomonas syringaemore » ethylene forming enzyme and provides a new sink. When cultured under high carbon conditions, ΔglgC displayed diminished photochemical efficiency, a more reduced NADPH pool, delayed initiation of the Calvin-Benson-Bassham cycle, and impairment of linear and cyclic electron flows. It also exhibited a large decrease in photochemical quenching indicative of the accumulation of Q A-, normally associated with a reduced PQ pool, but appears instead to be the result of an undefined dissipative mechanism to spill excess energy. In the case of carbon sink integration, JU547 displayed slightly more oxidized PQ and NADPH pools and increased rates of cyclic electron flow and an enhanced demand for inorganic carbon as suggested by increase in the expression of the bicarbonate transporter, SbtA. Overall, the results highlight the importance of the native regulatory network of autotrophic metabolism in governing photosynthetic performance and provide cogent examples of both predicable and difficult to predict phenotypic consequences upon installation of new pathways in autotrophs.« less
NASA Technical Reports Server (NTRS)
Matthews, Elaine; Walter, B.; Bogner, J.; Sarma, D.; Portmey, G.; Travis, Larry (Technical Monitor)
2001-01-01
In situ measurements of atmospheric methane concentrations begun in the early 1980s show decadal trends, as well as large interannual variations, in growth rate. Recent research indicates that while wetlands can explain several of the large growth anomalies for individual years, the decadal trend may be the combined effect of increasing sinks, due to increases in tropospheric OH, and stabilizing sources. We discuss new 20-year histories of annual, global source strengths for all major methane sources, i.e., natural wetlands, rice cultivation, ruminant animals, landfills, fossil fuels, and biomass burning. We also present estimates of the temporal pattern of the sink required to reconcile these sources and atmospheric concentrations over this time period. Analysis of the individual emission sources, together with model-derived estimates of the OH sink strength, indicates that the growth rate of atmospheric methane observed over the last 20 years can only be explained by a combination of changes in source emissions and an increasing tropospheric sink. Direct validation of the global sources and the terrestrial sink is not straightforward, in part because some sources/sinks are relatively small and diffuse (e.g., landfills and soil consumption), as well as because the atmospheric record integrates multiple and substantial sources and tropospheric sinks in regions such as the tropics. We discuss ways to develop and test criteria for rejecting and/or accepting a suite of scenarios for the methane budget.
NASA Technical Reports Server (NTRS)
Matthews, Elaine; Walter, B.; Bogner, J.; Sarma, D.; Portney, B.; Hansen, James (Technical Monitor)
2000-01-01
In situ measurements of atmospheric methane concentrations begun in the early 1980s show decadal trends, as well as large interannual variations, in growth rate. Recent research indicates that while wetlands can explain several of the large growth anomalies for individual years, the decadal trend may be the combined effect of increasing sinks, due to increases in tropospheric OH, and stabilizing sources. We discuss new 20-year histories of annual, global source strengths for all major methane sources, i.e., natural wetlands, rice cultivation, ruminant animals, landfills, fossil fuels, and biomass burning, and present estimates of the temporal pattern of the sink required to reconcile these sources and atmospheric concentrations over the time period. Analysis of the individual emission sources, together with model-derived estimates of the OH sink strength, indicates that the growth rate of atmospheric methane observed over the last 20 years can only be explained by a combination of changes in source emissions and an increasing tropospheric sink.
ρ resonance from the I = 1 ππ potential in lattice QCD
NASA Astrophysics Data System (ADS)
Kawai, Daisuke
2018-03-01
We calculate the phase shift for the I = 1 ππ scattering in 2+1 flavor lattice QCD at mπ = 410 MeV, using all-to-all propagators with the LapH smearing. We first investigate the sink operator independence of the I = 2 ππ scattering phase shift to estimate the systematics in the LapH smearing scheme in the HAL QCD method at mπ = 870 MeV. The difference in the scattering phase shift in this channel between the conventional point sink scheme and the smeared sink scheme is reasonably small as long as the next-toleading analysis is employed in the smeared sink scheme with larger smearing levels. We then extract the I = 1 ππ potential with the smeared sink operator, whose scattering phase shift shows a resonant behavior (ρ resonance). We also examine the pole of the S-matrix corresponding to the ρ resonance in the complex energy plane.
Thin Thermoelectric Generator System for Body Energy Harvesting
NASA Astrophysics Data System (ADS)
Settaluri, Krishna T.; Lo, Hsinyi; Ram, Rajeev J.
2012-06-01
Wearable thermoelectric generators (TEGs) harvest thermal energy generated by the body to generate useful electricity. The performance of these systems is limited by (1) the small working temperature differential between the body and ambient, (2) the desire to use natural air convection cooling on the cold side of the generator, and (3) the requirement for thin, lightweight systems that are comfortable for long-term use. Our work has focused on the design of the heat transfer system as part of the overall thermoelectric (TE) system. In particular, the small heat transfer coefficient for natural air convection results in a module thermal impedance that is smaller than that of the heat sink. In this heat-sink-limited regime, the thermal resistance of the generator should be optimized to match that of the heat sink to achieve the best performance. In addition, we have designed flat (1 mm thickness) copper heat spreaders to realize performance surpassing splayed pin heat sinks. Two-dimensional (2-D) heat spreading exploits the large surface area available in a wristband and allows patterned copper to efficiently cool the TE. A direct current (DC)/DC converter is integrated on the wristband. The system generates up to 28.5 μW/cm2 before the converter and 8.6 μW/cm2 after the converter, with 30% efficiency. It generates output of 4.15 V with overall thickness under 5 mm.
Performance of a Brayton power system with a space type radiator
NASA Technical Reports Server (NTRS)
Nussle, R. C.; Prok, G. M.; Fenn, D. B.
1974-01-01
Test results of an experimental investigation to measure Brayton engine performance while operating at the sink temperatures of a typical low earth orbit are presented. The results indicate that the radiator area was slightly oversized. The steady state and transient responses of the power system to the sink temperatures in orbit were measured. During the orbital operation, the engine did not reach the steady state operation of either sun or shade conditions. The alternator power variation during orbit was + or - 4 percent from its mean value of 9.3 kilowatts.
Long-term decline of the Amazon carbon sink.
Brienen, R J W; Phillips, O L; Feldpausch, T R; Gloor, E; Baker, T R; Lloyd, J; Lopez-Gonzalez, G; Monteagudo-Mendoza, A; Malhi, Y; Lewis, S L; Vásquez Martinez, R; Alexiades, M; Álvarez Dávila, E; Alvarez-Loayza, P; Andrade, A; Aragão, L E O C; Araujo-Murakami, A; Arets, E J M M; Arroyo, L; Aymard C, G A; Bánki, O S; Baraloto, C; Barroso, J; Bonal, D; Boot, R G A; Camargo, J L C; Castilho, C V; Chama, V; Chao, K J; Chave, J; Comiskey, J A; Cornejo Valverde, F; da Costa, L; de Oliveira, E A; Di Fiore, A; Erwin, T L; Fauset, S; Forsthofer, M; Galbraith, D R; Grahame, E S; Groot, N; Hérault, B; Higuchi, N; Honorio Coronado, E N; Keeling, H; Killeen, T J; Laurance, W F; Laurance, S; Licona, J; Magnussen, W E; Marimon, B S; Marimon-Junior, B H; Mendoza, C; Neill, D A; Nogueira, E M; Núñez, P; Pallqui Camacho, N C; Parada, A; Pardo-Molina, G; Peacock, J; Peña-Claros, M; Pickavance, G C; Pitman, N C A; Poorter, L; Prieto, A; Quesada, C A; Ramírez, F; Ramírez-Angulo, H; Restrepo, Z; Roopsind, A; Rudas, A; Salomão, R P; Schwarz, M; Silva, N; Silva-Espejo, J E; Silveira, M; Stropp, J; Talbot, J; ter Steege, H; Teran-Aguilar, J; Terborgh, J; Thomas-Caesar, R; Toledo, M; Torello-Raventos, M; Umetsu, R K; van der Heijden, G M F; van der Hout, P; Guimarães Vieira, I C; Vieira, S A; Vilanova, E; Vos, V A; Zagt, R J
2015-03-19
Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.
Zhu, Chuan; Zhang, Sai; Han, Guangjie; Jiang, Jinfang; Rodrigues, Joel J P C
2016-09-06
Mobile sink is widely used for data collection in wireless sensor networks. It can avoid 'hot spot' problems but energy consumption caused by multihop transmission is still inefficient in real-time application scenarios. In this paper, a greedy scanning data collection strategy (GSDCS) is proposed, and we focus on how to reduce routing energy consumption by shortening total length of routing paths. We propose that the mobile sink adjusts its trajectory dynamically according to the changes of network, instead of predetermined trajectory or random walk. Next, the mobile sink determines which area has more source nodes, then it moves toward this area. The benefit of GSDCS is that most source nodes are no longer needed to upload sensory data for long distances. Especially in event-driven application scenarios, when event area changes, the mobile sink could arrive at the new event area where most source nodes are located currently. Hence energy can be saved. Analytical and simulation results show that compared with existing work, our GSDCS has a better performance in specific application scenarios.
A new method to optimize natural convection heat sinks
NASA Astrophysics Data System (ADS)
Lampio, K.; Karvinen, R.
2017-08-01
The performance of a heat sink cooled by natural convection is strongly affected by its geometry, because buoyancy creates flow. Our model utilizes analytical results of forced flow and convection, and only conduction in a solid, i.e., the base plate and fins, is solved numerically. Sufficient accuracy for calculating maximum temperatures in practical applications is proved by comparing the results of our model with some simple analytical and computational fluid dynamics (CFD) solutions. An essential advantage of our model is that it cuts down on calculation CPU time by many orders of magnitude compared with CFD. The shorter calculation time makes our model well suited for multi-objective optimization, which is the best choice for improving heat sink geometry, because many geometrical parameters with opposite effects influence the thermal behavior. In multi-objective optimization, optimal locations of components and optimal dimensions of the fin array can be found by simultaneously minimizing the heat sink maximum temperature, size, and mass. This paper presents the principles of the particle swarm optimization (PSO) algorithm and applies it as a basis for optimizing existing heat sinks.
Zhu, Chuan; Zhang, Sai; Han, Guangjie; Jiang, Jinfang; Rodrigues, Joel J. P. C.
2016-01-01
Mobile sink is widely used for data collection in wireless sensor networks. It can avoid ‘hot spot’ problems but energy consumption caused by multihop transmission is still inefficient in real-time application scenarios. In this paper, a greedy scanning data collection strategy (GSDCS) is proposed, and we focus on how to reduce routing energy consumption by shortening total length of routing paths. We propose that the mobile sink adjusts its trajectory dynamically according to the changes of network, instead of predetermined trajectory or random walk. Next, the mobile sink determines which area has more source nodes, then it moves toward this area. The benefit of GSDCS is that most source nodes are no longer needed to upload sensory data for long distances. Especially in event-driven application scenarios, when event area changes, the mobile sink could arrive at the new event area where most source nodes are located currently. Hence energy can be saved. Analytical and simulation results show that compared with existing work, our GSDCS has a better performance in specific application scenarios. PMID:27608022
High-order scheme for the source-sink term in a one-dimensional water temperature model
Jing, Zheng; Kang, Ling
2017-01-01
The source-sink term in water temperature models represents the net heat absorbed or released by a water system. This term is very important because it accounts for solar radiation that can significantly affect water temperature, especially in lakes. However, existing numerical methods for discretizing the source-sink term are very simplistic, causing significant deviations between simulation results and measured data. To address this problem, we present a numerical method specific to the source-sink term. A vertical one-dimensional heat conduction equation was chosen to describe water temperature changes. A two-step operator-splitting method was adopted as the numerical solution. In the first step, using the undetermined coefficient method, a high-order scheme was adopted for discretizing the source-sink term. In the second step, the diffusion term was discretized using the Crank-Nicolson scheme. The effectiveness and capability of the numerical method was assessed by performing numerical tests. Then, the proposed numerical method was applied to a simulation of Guozheng Lake (located in central China). The modeling results were in an excellent agreement with measured data. PMID:28264005
High-order scheme for the source-sink term in a one-dimensional water temperature model.
Jing, Zheng; Kang, Ling
2017-01-01
The source-sink term in water temperature models represents the net heat absorbed or released by a water system. This term is very important because it accounts for solar radiation that can significantly affect water temperature, especially in lakes. However, existing numerical methods for discretizing the source-sink term are very simplistic, causing significant deviations between simulation results and measured data. To address this problem, we present a numerical method specific to the source-sink term. A vertical one-dimensional heat conduction equation was chosen to describe water temperature changes. A two-step operator-splitting method was adopted as the numerical solution. In the first step, using the undetermined coefficient method, a high-order scheme was adopted for discretizing the source-sink term. In the second step, the diffusion term was discretized using the Crank-Nicolson scheme. The effectiveness and capability of the numerical method was assessed by performing numerical tests. Then, the proposed numerical method was applied to a simulation of Guozheng Lake (located in central China). The modeling results were in an excellent agreement with measured data.
Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming
2016-01-01
Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle’s position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption. PMID:27428971
Phase Change Material Trade Study: A Comparison Between Wax and Water for Manned Spacecraft
NASA Technical Reports Server (NTRS)
Quinn, Gregory; Hodgson, Ed; Stephan, Ryan A,
2011-01-01
Phase change material heat sinks have been recognized as an important tool in optimizing thermal control systems for space exploration vehicles and habitats that must deal with widely varying thermal loads and environments. In order to better focus technology investment in this arena, NASA has supported a trade study with the objective of identifying where the best potential pay-off can be found among identified aqueous and paraffin wax phase change materials and phase change material heat sink design approaches. The study used a representative exploration mission with well understood parameters to support the trade. Additional sensitivity studies were performed to ensure the applicability of study results across varying systems and destinations. Results from the study indicate that replacing a wax PCM heat sink with a water ice PCM heat sink has the potential to decrease the equivalent system mass of the mission s vehicle through a combination of a smaller heat sink and a slight 5% increase in radiator size or the addition of a lightweight heat pump. An evaluation of existing and emerging PCM heat sink technologies indicates that further mass savings should be achievable through continued development of those technologies. The largest mass savings may be realized by eliminating the melting and freezing pressure of wax and water, respectively.
Wu, M S; Higuchi, W I; Fox, J L; Friedman, M
1976-01-01
The model given in this report and the rotating disk method provide a useful combination in the study of dental enamel and hydroxyapatite dissolution kinetics. The present approach is a significant improvement over earlier studies, and both the ionic activity product that governs the dissolution reaction and the apparent surface dissolution reaction rate constant may be simultaneously obtained. Thus, these investigations have established the baseline for the dissolution rate studies under sink conditions. Concurrent studies, under conditions where the acidic buffer mediums are partially saturated with respect to hydroxyapatite have shown another dissolution site for hydroxyapatite that operates at a higher ionic activity product but has a much smaller apparent surface reaction rate constant. This has raised the question of whether the presence of this second site may interfere with the proper theoretical analysis of the experimental results obtained under sink conditions. A preliminary analysis of the two-site model has shown that the dissolution kinetics of hydroxyapatite under sink conditions is almost completely governed by the sink condition site (KHAP = 10(-124.5), k' = 174) established in this report. The difference between the predicted dissolution rate for the one-site model and the two-site model are generally of the order of 4 to 5% where the experiments are conducted under sink conditions and over the range of variables covered in the present study.
Kumar, Varun; Shakher, Chandra
2015-02-20
This paper presents the results of experimental investigations about the heat dissipation process of plate fin heat sink using digital holographic interferometry. Visual inspection of reconstructed phase difference maps of the air field around the heat sink with and without electric power in the load resistor provides qualitative information about the variation of temperature and the heat dissipation process. Quantitative information about the temperature distribution is obtained from the relationship between the digitally reconstructed phase difference map of ambient air and heated air. Experimental results are presented for different current and voltage in the load resistor to investigate the heat dissipation process. The effect of fin spacing on the heat dissipation performance of the heat sink is also investigated in the case of natural heat convection. From experimental data, heat transfer parameters, such as local heat flux and convective heat transfer coefficients, are also calculated.
USDA-ARS?s Scientific Manuscript database
The seed coat is a vital tissue for directing the flow of photosynthate from source leaves to the embryo and cotyledons during seed development. By forming a sucrose gradient, the seed coat promotes transport of sugars from source leaves to seeds, thereby establishing sink strength. Understanding th...
The planetary distribution of heat sources and sinks during FGGE
NASA Technical Reports Server (NTRS)
Johnson, D. R.; Wei, M. Y.
1985-01-01
Heating distributions from analysis of the National Meteorological Center and European Center for Medium Range Weather Forecasts data sets; methods used and problems involved in the inference of diabatic heating; the relationship between differential heating and energy transport; and recommendations on the inference of heat soruces and heat sinks for the planetary show are discussed.
Schaefer, Markus K.; Hechavarría, Julio C.; Kössl, Manfred
2015-01-01
Current source density (CSD) analysis assesses spatiotemporal synaptic activations at somatic and/or dendritic levels in the form of depolarizing current sinks. Whereas many studies have focused on the short (<50 ms) latency sinks, associated with thalamocortical projections, sinks with longer latencies have received less attention. Here, we analyzed laminar CSD patterns for the first 600 ms after stimulus onset in the primary auditory cortex of Mongolian gerbils. By applying an algorithm for contour calculation, three distinct mid and four late evoked sinks were identified in layers I, III, Va, VIa, and VIb. Our results further showed that the patterns of intracortical information-flow remained qualitatively similar for low and for high sound pressure level stimuli at the characteristic frequency (CF) as well as for stimuli ± 1 octave from CF. There were, however, differences associated with the strength, vertical extent, onset latency, and duration of the sinks for the four stimulation paradigms used. Stimuli one octave above the most sensitive frequency evoked a new, and quite reliable, sink in layer Va whereas low level stimulation led to the disappearance of the layer VIb sink. These data indicate the presence of input sources specifically activated in response to level and/or frequency parameters. Furthermore, spectral integration above vs. below the CF of neurons is asymmetric as illustrated by CSD profiles. These results are important because synaptic feedback associated with mid and late sinks—beginning at 50 ms post stimulus latency—is likely crucial for response modulation resulting from higher order processes like memory, learning or cognitive control. PMID:26557058
NASA Technical Reports Server (NTRS)
Rakow, Allen L.
1995-01-01
A variety of technologies were analyzed for their potential to remove ethylene from the CELSS Biomass Production Chamber (BPC). During crop production (e.g., lettuce, wheat, soybean, potato) in the BPC ethylene can accumulate in the airspace and subsequently affect plant viability. The chief source of ethylene is the plants themselves which reside in plastic trays containing nutrient solution. The main sink for ethylene is chamber leakage. The removal technology can be employed when deleterious levels (e.g., 50 ppb for potato) of ethylene are exceeded in the BPC and perhaps to optimize the plant growth process once a better understanding is developed of the relationship between exogenous ethylene concentration and plant growth. The technologies examined were catalytic oxidation, molecular sieve, cryotrapping, permanganate absorption, and UV degradation. Upon analysis, permanganate was chosen as the most suitable method. Experimental data for ethylene removal by permanganate during potato production was analyzed in order to design a system for installation in the BPC air duct. In addition, an analysis of the impact on ethylene concentration in the BPC of integrating the Breadboard Scale Aerobic Bioreactor (BSAB) with the BPC was performed. The result indicates that this unit has no significant effect on the ethylene material balance as a source or sink.
Chrostowski, Michael; Salvi, Richard J.; Allman, Brian L.
2012-01-01
A high dose of sodium salicylate temporarily induces tinnitus, mild hearing loss, and possibly hyperacusis in humans and other animals. Salicylate has well-established effects on cochlear function, primarily resulting in the moderate reduction of auditory input to the brain. Despite decreased peripheral sensitivity and output, salicylate induces a paradoxical enhancement of the sound-evoked field potential at the level of the primary auditory cortex (A1). Previous electrophysiologic studies have begun to characterize changes in thalamorecipient layers of A1; however, A1 is a complex neural circuit with recurrent intracortical connections. To describe the effects of acute systemic salicylate treatment on both thalamic and intracortical sound-driven activity across layers of A1, we applied current-source density (CSD) analysis to field potentials sampled across cortical layers in the anesthetized rat. CSD maps were normally characterized by a large, short-latency, monosynaptic, thalamically driven sink in granular layers followed by a lower amplitude, longer latency, polysynaptic, intracortically driven sink in supragranular layers. Following systemic administration of salicylate, there was a near doubling of both granular and supragranular sink amplitudes at higher sound levels. The supragranular sink amplitude input/output function changed from becoming asymptotic at approximately 50 dB to sharply nonasymptotic, often dominating the granular sink amplitude at higher sound levels. The supragranular sink also exhibited a significant decrease in peak latency, reflecting an acceleration of intracortical processing of the sound-evoked response. Additionally, multiunit (MU) activity was altered by salicylate; the normally onset/sustained MU response type was transformed into a primarily onset response type in granular and infragranular layers. The results from CSD analysis indicate that salicylate significantly enhances sound-driven response via intracortical circuits. PMID:22496535
Pandey, Manish; Srivastava, Ashish Kumar; D'Souza, Stanislaus Francis; Penna, Suprasanna
2013-01-01
In the present agricultural scenario, the major thrust is to increase crop productivity so as to ensure sustainability. In an earlier study, foliar application of thiourea (TU; a non physiological thiol based ROS scavenger) has been demonstrated to enhance the stress tolerance and yield of different crops under field condition. Towards this endeavor, present work deals with the effect of TU on photosynthetic efficiency and source-to-sink relationship of Indian mustard (Brassica juncea) for understanding its mode of action. The application of TU increased the efficiency of both PSI and PSII photosystems and vegetative growth of plant. The comparative analysis of sucrose to starch ratio and expression level of sugar transporters confirmed the higher source and sink strength in response to TU treatment. The biochemical evidence in support of this was derived from higher activities of sucrose phosphate synthase and fructose-1,6-bis-phosphatase at source; and sucrose synthase and different classes of invertases at both source and sink. This indicated an overall increase in photoassimilate level at sink. An additional contribution through pod photosynthesis was confirmed through the analysis of phosphoenol pyruvate carboxylase enzyme activity and level of organic acids. The increased photoassimilate level was also co-ordinated with acetyl coA carboxylase mediated oil biosynthesis. All these changes were ultimately reflected in the form of 10 and 20% increase in total yield and oil content, respectively under TU treatment as compared to control. Additionally, no change was observed in oil composition of seeds derived from TU treated plants. The study thus signifies the co-ordinated regulation of key steps of photosynthesis and source-to-sink relationship through the external application of TU resulting in increased crop yield and oil content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Chase
A number of Department of Energy (DOE) science applications, involving exascale computing systems and large experimental facilities, are expected to generate large volumes of data, in the range of petabytes to exabytes, which will be transported over wide-area networks for the purpose of storage, visualization, and analysis. The objectives of this proposal are to (1) develop and test the component technologies and their synthesis methods to achieve source-to-sink high-performance flows, and (2) develop tools that provide these capabilities through simple interfaces to users and applications. In terms of the former, we propose to develop (1) optimization methods that align andmore » transition multiple storage flows to multiple network flows on multicore, multibus hosts; and (2) edge and long-haul network path realization and maintenance using advanced provisioning methods including OSCARS and OpenFlow. We also propose synthesis methods that combine these individual technologies to compose high-performance flows using a collection of constituent storage-network flows, and realize them across the storage and local network connections as well as long-haul connections. We propose to develop automated user tools that profile the hosts, storage systems, and network connections; compose the source-to-sink complex flows; and set up and maintain the needed network connections.« less
Comparison of performance of high-power mid-IR QCL modules in actively and passively cooled mode
NASA Astrophysics Data System (ADS)
Münzhuber, F.; Denzel, H.; Tholl, H. D.
2017-10-01
We report on the effects of active and passive cooling on the performance of high power mid-IR QCL modules (λ ≈ 3.9 μm) in quasi-cw mode. In active cooling mode, a thermo-electrical cooler attached with its hot side to a heat sink of constant temperature, a local thermometer in close proximity to the QCL chip (epi-down mounted) as well as a control unit has been used for temperature control of the QCL submount. In contrast, the passive cooling was performed by attaching the QCL module solely to the heat sink. Electro-optical light-current- (L-I-) curves are measured in a quasi-cw mode, from which efficiencies can be deduced. Waiving of the active cooling elements results in a drop of the maximum intensity of less than 5 %, compared to the case wherein the temperature of the submount is stabilized to the temperature of the heat sink. The application of a model of electro-optical performance to the data shows good agreement and captures the relevant observations. We further determine the heat resistance of the module and demonstrate that the system performance is not limited by the packaging of the module, but rather by the heat dissipation on the QCL chip itself.
Brankack, J; Stewart, M; Fox, S E
1993-07-02
Single-electrode depth profiles of the hippocampal EEG were made in urethane-anesthetized rats and rats trained in an alternating running/drinking task. Current source density (CSD) was computed from the voltage as a function of depth. A problem inherent to AC-coupled profiles was eliminated by incorporating sustained potential components of the EEG. 'AC' profiles force phasic current sinks to alternate with current sources at each lamina, changing the magnitude and even the sign of the computed membrane current. It was possible to include DC potentials in the profiles from anesthetized rats by using glass micropipettes for recording. A method of 'subtracting' profiles of the non-theta EEG from theta profiles was developed as an approach to including sustained potentials in recordings from freely-moving animals implanted with platinum electrodes. 'DC' profiles are superior to 'AC' profiles for analysis of EEG activity because 'DC'-CSD values can be considered correct in sign and more closely represent the actual membrane current magnitudes. Since hippocampal inputs are laminated, CSD analysis leads to straightforward predictions of the afferents involved. Theta-related activity in afferents from entorhinal neurons, hippocampal interneurons and ipsi- and contralateral hippocampal pyramids all appear to contribute to sources and sinks in CA1 and the dentate area. The largest theta-related generator was a sink at the fissure, having both phasic and tonic components. This sink may reflect activity in afferents from the lateral entorhinal cortex. The phase of the dentate mid-molecular sink suggests that medial entorhinal afferents drive the theta-related granule and pyramidal cell firing. The sustained components may be simply due to different average rates of firing during theta rhythm than during non-theta EEG in afferents whose firing rates are also phasically modulated.
Brayton heat exchange unit development program
NASA Technical Reports Server (NTRS)
Morse, C. J.; Richard, C. E.; Duncan, J. D.
1971-01-01
A Brayton Heat Exchanger Unit (BHXU), consisting of a recuperator, a heat sink heat exchanger and a gas ducting system, was designed, fabricated, and tested. The design was formulated to provide a high performance unit suitable for use in a long-life Brayton-cycle powerplant. A parametric analysis and design study was performed to establish the optimum component configurations to achieve low weight and size and high reliability, while meeting the requirements of high effectiveness and low pressure drop. Layout studies and detailed mechanical and structural design were performed to obtain a flight-type packaging arrangement. Evaluation testing was conducted from which it is estimated that near-design performance can be expected with the use of He-Xe as the working fluid.
Photodiodes for ten micrometer laser communication systems
NASA Technical Reports Server (NTRS)
Cohen, S. C.
1972-01-01
The performance is discussed of 10-micron mercury-cadmiumtelluride and lead-tin-telluride photodiodes in laser heterodyne communication systems. The dependence of detector quantum efficiency, resistance, frequency response, and signal-to-noise ratio on temperature, bias, and local oscillator power are examined. Included in the discussion is an analysis of the feasibility of high temperature operation, and ability of the detector to dissipate power to a heat sink is explored. Some aspects of direct detection response are considered and figures showing flux levels from a blackbody presented.
Alexa J. Dugan; Richard A. Birdsey; Sean P. Healey; Christopher Woodall; Fangmin Zhang; Jing M. Chen; Alexander Hernandez; James B. McCarter
2015-01-01
Forested lands, representing the largest terrestrial carbon sink in the United States, offset 16% of total U.S. carbon dioxide emissions through carbon sequestration. Meanwhile, this carbon sink is threatened by deforestation, climate change and natural disturbances. As a result, U.S. Forest Service policies require that National Forests assess baseline carbon stocks...
Method of Generating Transient Equivalent Sink and Test Target Temperatures for Swift BAT
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2004-01-01
The NASA Swift mission has a 600-km altitude and a 22 degrees maximum inclination. The sun angle varies from 45 degrees to 180 degrees in normal operation. As a result, environmental heat fluxes absorbed by the Burst Alert Telescope (BAT) radiator and loop heat pipe (LHP) compensation chambers (CCs) vary transiently. Therefore the equivalent sink temperatures for the radiator and CCs varies transiently. In thermal performance verification testing in vacuum, the radiator and CCs radiated heat to sink targets. This paper presents an analytical technique for generating orbit transient equivalent sink temperatures and a technique for generating transient sink target temperatures for the radiator and LHP CCs. Using these techniques, transient target temperatures for the radiator and LHP CCs were generated for three thermal environmental cases: worst hot case, worst cold case, and cooldown and warmup between worst hot case in sunlight and worst cold case in the eclipse, and three different heat transport values: 128 W, 255 W, and 382 W. The 128 W case assumed that the two LHPs transport 255 W equally to the radiator. The 255 W case assumed that one LHP fails so that the remaining LHP transports all the waste heat from the detector array to the radiator. The 382 W case assumed that one LHP fails so that the remaining LHP transports all the waste heat from the detector array to the radiator, and has a 50% design margin. All these transient target temperatures were successfully implemented in the engineering test unit (ETU) LHP and flight LHP thermal performance verification tests in vacuum.
Diamond Microchannel Heat Sink Designs For High Heat Flux Thermal Control
NASA Astrophysics Data System (ADS)
Corbin, Michael V.; DeBenedictis, Matthew M.; James, David B.; LeBlanc, Stephen P.; Paradis, Leo R.
2002-08-01
Directed energy weapons, wide band gap semiconductor based radars, and other powerful systems present significant thermal control challenges to component designers. heat Flux levels approaching 2000 W/cm(2) are encountered at the base of laser diodes, and levels as high as 500 WI /cm(2) are expected in laser slabs and power amplifier tube collectors. These impressive heat flux levels frequently combine with strict operating temperature requirements to further compound the thermal control problem. Many investigators have suggested the use of diamond heat spreaders to reduce flux levels at or near to its source, and some have suggested that diamond microchannel heat sinks ultimately may play a significant role in the solution of these problems. Design engineers at Raytheon Company have investigated the application of all-diamond microchannel heat sinks to representative high heat flux problems and have found the approach promising. Diamond microchannel fabrication feasibility has been demonstrated; integration into packaging systems and the accompanying material compatibility issues have been addressed; and thermal and hydrodynamic performance predictions have been made for selected, possible applications. An example of a practical, all diamond microchannel heat sink has been fabricated, and another is in process and will be performance tested. The heat sink assembly is made entirely of optical quality, CVD diamond and is of sufficient strength to withstand the thermal and pressure-induced mechanical loads associated with manufacture and use in tactical weapons environment. The work presented describes the development program's accomplishments to date, and highlights many of the areas for future study.
Enhanced parent selection algorithms in mintroute protocol
NASA Astrophysics Data System (ADS)
Kim, Ki-Il
2012-11-01
A low-rate, short-range wireless radio communication on a small device often hampers high reliability in wireless sensor networks. However, more applications are increasingly demanding high reliability. To meet this requirement, various approaches have been proposed in each viewpoint of layers. Among those, MintRoute is a well-known network layer approach to develop a new metric based on link quality for path selection towards the sink. By choosing the link with the highest measured value, it has a higher possibility to transmit a packet over the link without error. However, there are still several issues to be mentioned during operations. In this paper, we propose how to improve the MintRoute protocol through revised algorithms. They include a parent selection considering distance and level from the sink node, and a fast recovery method against failures. Simulations and analysis are performed by in order to validate the suitability of reduced end-to-end delay and fast recovery for failures, thus to enhance the reliability of communication.
Hayes, Daniel J.; McGuire, A. David; Kicklighter, David W.; Burnside , Todd J.; Melillo, Jerry M.
2010-01-01
Recent changes in climate, disturbance regimes and land use and management systems in Northern Eurasia have the potential to disrupt the terrestrial sink of atmospheric CO2 in a way that accelerates global climate change. To determine the recent trends in the carbon balance of the arctic and boreal ecosystems of this region, we performed a retrospective analysis of terrestrial carbon dynamics across northern Eurasia over a recent 10-year period using a terrestrial biogeochemical process model. The results of the simulations suggest a shift in direction of the net flux from the terrestrial sink of earlier decades to a net source on the order of 45 Tg C year−1between 1997 and 2006. The simulation framework and subsequent analyses presented in this study attribute this shift to a large loss of carbon from boreal forest ecosystems, which experienced a trend of decreasing precipitation and a large area burned during this time period.
On Connected Target k-Coverage in Heterogeneous Wireless Sensor Networks.
Yu, Jiguo; Chen, Ying; Ma, Liran; Huang, Baogui; Cheng, Xiuzhen
2016-01-15
Coverage and connectivity are two important performance evaluation indices for wireless sensor networks (WSNs). In this paper, we focus on the connected target k-coverage (CTC k) problem in heterogeneous wireless sensor networks (HWSNs). A centralized connected target k-coverage algorithm (CCTC k) and a distributed connected target k-coverage algorithm (DCTC k) are proposed so as to generate connected cover sets for energy-efficient connectivity and coverage maintenance. To be specific, our proposed algorithms aim at achieving minimum connected target k-coverage, where each target in the monitored region is covered by at least k active sensor nodes. In addition, these two algorithms strive to minimize the total number of active sensor nodes and guarantee that each sensor node is connected to a sink, such that the sensed data can be forwarded to the sink. Our theoretical analysis and simulation results show that our proposed algorithms outperform a state-of-art connected k-coverage protocol for HWSNs.
Heat sink effects in variable polarity plasma arc welding
NASA Technical Reports Server (NTRS)
Abdelmessih, Amanie N.
1991-01-01
The Space Shuttle External Tank is fabricated by the variable polarity plasma arc (VPPA) welding process. In VPPA welding, a noble gas, usually argon, is directed through an arc to emerge from the torch as a hot plasma jet. This jet is surrounded by a shielding gas, usually helium, to protect the weld from contamination with air. The high velocity, hot plasma jet completely penetrates the workpiece (resembling a line heat source) when operated in the 'keyhole' mode. The metal melts on touching the side of the jet, as the torch travels in the perpendicular direction to the direction of the jet, and melted metal moves around the plasma jet in the keyhole forming a puddle which solidifies behind the jet. Heat sink effects are observed when there are irregularities in the workpiece configuration, especially, if these irregularities are close to the weld bead. These heat sinks affect the geometry of the weld bead, i.e., in extreme cases they could cause defects such as incomplete fusion. Also, different fixtures seem to have varying heat sink effects. The objective of this research is to study the effect of irregularities in workpiece configuration and fixture differences (heat sink effects) on the weld bead geometry with the ultimate objective to compensate for the heat sink effects and achieve a perfect weld. Experiments were performed on different workpiece geometries and compared to approximate models.
Phase Change Material Trade Study: A Comparison Between Wax and Water for Manned Spacecraft
NASA Technical Reports Server (NTRS)
Quinn, Gregory; Hodgson, Ed; Stephan, Ryan
2010-01-01
Phase change material heat sinks have been recognized as an important tool in optimizing thermal control systems for space exploration vehicles and habitats that must deal with widely varying thermal loads and environments. In order to better focus technology investment in this arena, NASA has supported a trade study with the objective of identifying where the best potential pay-off can be found among identified aqueous and paraffin wax phase change materials and phase change material heat sink design approaches. The study used a representative exploration mission with well understood parameters to support the trade. Additional sensitivity studies were performed to ensure the applicability of study results across varying systems and destinations. Results from the study indicate that a water ice PCM heat sink has the potential to decrease the equivalent system mass of the mission s vehicle through a combination of a smaller heat sink and a slight 5% increase in radiator size or the addition of a lightweight heat pump. An evaluation of existing and emerging PCM heat sink technologies indicates that further significant mass savings should be achievable through continued development of those technologies. The largest mass savings may be realized by managing the location of the liquid and the solid in the heat sink to eliminate the melting and freezing pressure of wax and water, respectively, while also accommodating the high structural loads expected on future manned launch vehicles.
Thermal analysis of a diffusion bonded Er3+,Yb3+:glass/Co2+: MgAl2O4 microchip lasers
NASA Astrophysics Data System (ADS)
Belghachem, Nabil; Mlynczak, Jaroslaw; Kopczynski, krzysztof; Mierczyk, Zygmunt; Gawron, Michal
2016-10-01
The analysis of thermal effects in a diffusion bonded Er3+,Yb3+:glass/Co2+:MgAl2O4 microchip laser is presented. The analysis is performed for both wavelengths at 940 nm and at 975 nm as well as for two different sides of pumping, glass side and saturable absorber side. The heat sink effect of Co2+:MgAl2O4, as well as the impact of the thermal expansion and induced stress on the diffusion bonding are emphasised. The best configurations for reducing the temperature peaks, the Von Mises stresses on the diffusion bonding, and the thermal lensing are determined.
Shah, Dhaval A; Patel, Manan; Murdande, Sharad B; Dave, Rutesh H
2016-11-01
The purpose for the current research is to compare and evaluate physiochemical properties of spray-dried (SD) microcrystals (MCs), nanocrystals (NCs), and nanocrystals with a dispersion agent (NCm) from a poorly soluble compound. The characterization was carried out by performing size and surface analysis, interfacial tension (at particle moisture interface), and in-vitro drug dissolution rate experiments. Nanosuspensions were prepared by media milling and were spray-dried. The SD powders that were obtained were characterized morphologically using scanning electron microscopy (SEM), polarized light microscopy (PLM), and Flowchem. Solid-state characterization was performed using X-ray powder diffraction (XRPD), Fourier transfer infrared spectroscopy (FT-IR), and differential scanning calorimetry (DSC) for the identification of the crystalline nature of all the SD powders. The powders were characterized for their redispersion tendency in the water and in pH 1.2. Significant differences in redispersion were noted for both the NCs in both dissolution media. The interfacial tension for particle moisture interface was determined by applying the BET (Braunauer-Emmett-Teller) equation to the vapor sorption data. No significant reduction in the interfacial tension was observed between MCs and NCs; however, a significant reduction in the interfacial tension was observed for NCm at both 25 °C and 35 °C temperatures. The difference in interfacial tension and redispersion behavior can be attributed to a difference in the wetting tendency for all the SD powders. The dissolution studies were carried out under sink and under non-sink conditions. The non-sink dissolution approach was found suitable for quantification of the dissolution rate enhancement, and also for providing the rank order to the SD formulations.
Conceptual study of hypersonic airbreathing missiles
NASA Technical Reports Server (NTRS)
Hunt, J. L.; Lawing, P. L.; Marcum, D. C.; Cubbage, J. M.
1978-01-01
The purpose of this paper is to report recent results of an in-house conceptual study to evaluate the performance potential and research needs of airbreathing hypersonic missiles. An alkylated-borane (noncryogenic) fueled, dual-mode, ramjet/scramjet propulsion system structured with a Rene 41 inlet and a carbon-carbon combustor was assumed along with a Lockalloy heat sink fuselage structure and beryllium wings and control surfaces. Performance for an air-launched baseline missile with a 961 pound staging weight containing a 100 pound payload indicated excellent long range cruise, moderate acceleration and high maneuverability potential. A sizing study indicates that Mach 6 cruise ranges of the order of 2500 nautical miles for payloads of 300 pounds can be achieved with moderate size missile carry weights (9000 lbs.). Aerodynamic heating analyses indicate that unprotected heat-sink structures with internal insulation are feasible for ranges of several hundred miles. For ranges of several thousands of miles a multiwall radiation shield (Inconel/titanium) was selected for protection of the internally insulated heat sink structure.
NASA Astrophysics Data System (ADS)
Ferracci, Valerio; Archibald, Alexander T.; Pyle, John A.
2017-04-01
The removal of most trace gases emitted into the atmosphere is primarily initiated by reaction with the hydroxyl radical, OH. A number of field campaigns over the last two decades have observed the presence of a "missing" sink of the OH radical in a variety of regions across the planet, from urban areas to remote forests: comparison of the direct measurements of the OH loss rate, also known as total OH reactivity, with the sum of individual known OH sinks (obtained via the simultaneous detection of species such as volatile organic compounds and nitrogen oxides) indicated that, in some cases, up to 80% of the total OH loss rate was unaccounted for. The implications of this finding are significant, as a potentially major OH sink operating in the atmosphere is not currently accounted for in atmospheric models: the presence of an additional OH sink might, for instance, lead to an increase in the atmospheric lifetime of a number of trace species, including high-impact greenhouse gases such as methane. The only modelling of the total OH reactivity is currently performed on a regional scale; a thorough assessment of the impact of the missing sink on the chemistry and climate of the planet by global modelling is therefore highly desirable. In this work a chemistry-climate model (the Met Office's Unified Model with the United Kingdom Chemistry and Aerosols scheme, UM-UKCA) was used to calculate the total OH reactivity at the planetary boundary layer. The model output was validated against available field measurements to verify that the known OH sinks observed in the field were reproduced correctly by the model: a good agreement was found between the data from more than 30 field campaigns and the model output. Following this, the effects of introducing novel OH sinks in the chemistry scheme were investigated. The first step was the introduction in the model of the newly characterised reactions of peroxy radicals (RO2) with OH, the kinetics and products of which have only recently been studied in the laboratory. Results from the UM-UKCA model show that reaction with RO2 might represent a non-negligible OH sink in remote environments, but cannot reconcile field measurements of the total OH reactivity with the sum of the individual sinks. To address this, an unspecified additional sink was added to the model in a series of simulations reproducing different scenarios (e.g., different OH recycling probabilities through the oxidation of the additional sink) with a view to establishing the impact of the additional OH sink on the oxidative capacity of the lower atmosphere.
Protocol for buffer space negotiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nessett, D.
There are at least two ways to manage the buffer memory of a communications node. On etechnique veiws the buffer as a single resource that is to be reserved and released as a unit for a particular communication transaction. A more common approach treats the node's buffer space as a collection of resources (e.g., bytes, words, packet slots) capable of being allocated among multiple concurrent conversations. To achieve buffer space multiplexing, some sort of negotiation for buffer space must take place between source and sink nodes before a transaction can commence. Results are presented which indicate that, for an applicationmore » involving a CSMA broadcast network, buffer space multiplexing offers better performance than buffer reservation. To achieve this improvement, a simple protocol is presented that features flow-control information traveling both from source to sink as well as from sink to source. It is argued that this bidirectionality allows the sink to allocate buffer space among its active communication paths more effectively. 13 figures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tikadar, Amitav, E-mail: amitav453@gmail.com; Hossain, Md. Mahamudul; Morshed, A. K. M. M.
Heat transfer from electronic chip is always challenging and very crucial for electronic industry. Electronic chips are assembled in various manners according to the design conditions and limitationsand thus the influence of chip assembly on the overall thermal performance needs to be understand for the efficient design of electronic cooling system. Due to shrinkage of the dimension of channel and continuous increment of thermal load, conventional heat extraction techniques sometimes become inadequate. Due to high surface area to volume ratio, mini-channel have the natural advantage to enhance convective heat transfer and thus to play a vital role in the advancedmore » heat transfer devices with limited surface area and high heat flux. In this paper, a water cooled mini-channel heat sink was considered for electronic chip cooling and five different chip arrangements were designed and studied, namely: the diagonal arrangement, parallel arrangement, stacked arrangement, longitudinal arrangement and sandwiched arrangement. Temperature distribution on the chip surfaces was presented and the thermal performance of the heat sink in terms of overall thermal resistance was also compared. It is found that the sandwiched arrangement of chip provides better thermal performance compared to conventional in line chip arrangement.« less
Broadband piezoelectric vibration energy harvesting using a nonlinear energy sink
NASA Astrophysics Data System (ADS)
Xiong, Liuyang; Tang, Lihua; Liu, Kefu; Mace, Brian R.
2018-05-01
A piezoelectric vibration energy harvester (PVEH) is capable of converting waste or undesirable ambient vibration energy into useful electric energy. However, conventional PVEHs typically work in a narrow frequency range, leading to low efficiency in practical application. This work proposes a PVEH based on the principle of the nonlinear energy sink (NES) to achieve broadband energy harvesting. An alternating current circuit with a resistive load is first considered in the analysis of the dynamic properties and electric performance of the NES-based PEVH. Then, a standard rectifying direct current (DC) interface circuit is developed to evaluate the DC power from the PVEH. To gain insight into the NES mechanism involved, approximate analysis of the proposed PVEH systems under harmonic excitation is sought using the mixed multi-scale and harmonic balance method and the Newton–Raphson harmonic balance method. In addition, an equivalent circuit model (ECM) of the electromechanical system is derived and circuit simulations are conducted to explore and validate the energy harvesting and vibration absorption performance of the proposed NES-based PVEH. The response is also compared with that obtained by direct numerical integration of the equations of motion. Finally, the optimal resistance to obtain the maximum DC power is determined based on the Newton–Raphson harmonic balance method and validated by the ECM. In general, the NES-based PVEH can absorb the vibration from the primary structure and collect electric energy within a broad frequency range effectively.
NASA Astrophysics Data System (ADS)
Deng, F.; Jones, D. B. A.; Walker, T. W.; Keller, M.; Bowman, K. W.; Henze, D. K.; Nassar, R.; Kort, E. A.; Wofsy, S. C.; Walker, K. A.; Bourassa, A. E.; Degenstein, D. A.
2015-10-01
The upper troposphere and lower stratosphere (UTLS) represents a transition region between the more dynamically active troposphere and more stably stratified stratosphere. The region is characterized by strong gradients in the distribution of long-lived tracers, whose representation in models is sensitive to discrepancies in transport. We evaluate the GEOS-Chem model in the UTLS using carbon dioxide (CO2) and ozone (O3) observations from the HIAPER (The High-Performance Instrumented Airborne Platform for Environmental Research) Pole-to-Pole Observations (HIPPO) campaign in March 2010. GEOS-Chem CO2/O3 correlation suggests that there is a discrepancy in mixing across the tropopause in the model, which results in an overestimate of CO2 and an underestimate of O3 in the Arctic lower stratosphere. We assimilate stratospheric O3 data from the Optical Spectrograph and InfraRed Imager System (OSIRIS) and use the assimilated O3 fields together with the HIPPO CO2/O3 correlations to obtain an adjustment to the modeled CO2 profile in the Arctic UTLS (primarily between the 320 and 360 K isentropic surfaces). The HIPPO-derived adjustment corresponds to a sink of 0.60 Pg C for March-August 2010 in the Arctic. Imposing this adjustment results in a reduction in the CO2 sinks inferred from GOSAT observations for temperate North America, Europe, and tropical Asia of 19, 13, and 49 %, respectively. Conversely, the inversion increased the source of CO2 from tropical South America by 23 %. We find that the model also underestimates CO2 in the upper tropical and subtropical troposphere. Correcting for the underestimate in the model relative to HIPPO in the tropical upper troposphere leads to a reduction in the source from tropical South America by 77 %, and produces an estimated sink for tropical Asia that is only 19 % larger than the standard inversion (without the imposed source and sink). Globally, the inversion with the Arctic and tropical adjustment produces a sink of -6.64 Pg C, which is consistent with the estimate of -6.65 Pg C in the standard inversion. However, the standard inversion produces a stronger northern land sink by 0.98 Pg C to account for the CO2 overestimate in the high-latitude UTLS, suggesting that this UTLS discrepancy can impact the latitudinal distribution of the inferred sources and sinks. We find that doubling the model resolution from 4° × 5° to 2° × 2.5° enhances the CO2 vertical gradient in the high-latitude UTLS, and reduces the overestimate in CO2 in the extratropical lower stratosphere. Our results illustrate that discrepancies in the CO2 distribution in the UTLS can affect CO2 flux inversions and suggest the need for more careful evaluation of model errors in the UTLS.
Zhao, Shuqing; Liu, Shuguang; Yin, Runsheng; Li, Zhengpeng; Deng, Yulin; Tan, Kun; Deng, Xiangzheng; Rothstein, David; Qi, Jiaguo; Yin, Runsheng
2009-01-01
Quantifying the spatial and temporal dynamics of carbon stocks in terrestrial ecosystems and carbon fluxes between the terrestrial biosphere and the atmosphere is critical to our understanding of regional patterns of carbon storage and loss. Here we use the General Ensemble Biogeochemical Modeling System to simulate the terrestrial ecosystem carbon dynamics in the Jinsha watershed of China's upper Yangtze basin from 1975 to 2000, based on unique combinations of spatial and temporal dynamics of major driving forces, such as climate, soil properties, nitrogen deposition, and land use and land cover changes. Our analysis demonstrates that the Jinsha watershed ecosystems acted as a carbon sink during the period of 1975–2000, with an average rate of 0.36 Mg/ha/yr, primarily resulting from regional climate variation and local land use and land cover change. Vegetation biomass accumulation accounted for 90.6% of the sink, while soil organic carbon loss before 1992 led to lower net gain of carbon in the watershed, and after that soils became a small sink. Ecosystem carbon sinks/source pattern showed a high degree of spatial heterogeneity, Carbon sinks were associated with forest areas without disturbances, whereas carbon Sources were primarily caused by stand-replacing disturbances. This highlights the importance of land-use history in determining the regional carbon sinks/source pattern.
Understanding methane variability from 1980 - 2015 using inversions of methane, δ13C and ethane
NASA Astrophysics Data System (ADS)
Thompson, Rona; Nisbet, Euan
2017-04-01
Atmospheric methane (CH4) increased globally during the 20th century, from a pre-industrial value of approximately 722 ppb to 1773 ppb in 1999. The upward trend, however, was interrupted between 1999 and 2006, when the atmospheric growth rate of CH4 was close to zero. From 2007, atmospheric CH4 started to increase again and, in 2014, the growth rate was substantially faster (12.5 ppb/y) than in any other year since 2007. Changes in the atmospheric growth rate indicate changes in the balance of CH4 sources and sinks, however, the cause of the 1999-2006 stabilization and subsequent rise in atmospheric CH4, and its attribution to different sources is still not fully resolved. Various explanations have been proposed for the pause in the growth, including a reduction in fossil fuel and wetland emissions, and for its renewed increase, such as increasing emissions from wetlands, enteric fermentation, and fossil fuels, as well as a decline in the OH sink. To better constrain the sources and sinks of CH4, we have performed an inversion using the AGAGE 12-box model of the atmosphere using atmospheric observations of CH4, δ13C, and of ethane. Using observations of these 3 atmospheric tracers simultaneously, a stronger constraint is placed on the different sources, as well as the principal atmospheric sink via oxidation by OH. In the model, we account for all emissions grouped into microbial, fossil fuel, biomass burning, landfill and ocean sources, as well as the soil oxidation sink. We also account for the atmospheric sink of CH4 and ethane via oxidation by OH and Cl radicals. The modelled lifetimes of CH4 and ethane were 8.2 years and 1.3 months, respectively. Inversions were also performed in which the OH sink was optimized simultaneously with the emissions. We find that fossil fuel emissions were underestimated in the northern mid to high latitudes in the 1980s but were overestimated from the mid 1990s onwards with respect to the prior (EDGAR-4.2), and that there is no evidence for a recent increase. For microbial emissions, we find an increase in emissions in the northern low and high latitudes from the early 2000s. The inversion also shifts microbial emissions from the northern to the southern low latitudes with respect to the prior (LPX-Bern for wetlands and EDGAR-4.2 for enteric fermentation). Finally, we do not find any evidence for a recent decrease in the OH sink.
NASA Astrophysics Data System (ADS)
O'Sullivan, M.; Buermann, W.; Spracklen, D. V.; Gloor, E. U.; Arnold, S.
2017-12-01
The global terrestrial carbon sink has increased since the start of this century at a time of rapidly growing carbon dioxide emissions from fossil fuel burning. Here we test the hypothesis that these parallel increases in fossil fuel burning and terrestrial sink are causally linked via increases in atmospheric CO2 and nitrogen deposition (and carbon-nitrogen interaction). Using the dynamic global vegetation model CLM4.5-BGC, we performed factorial analyses, separating the effects of individual drivers to changes in carbon fluxes and sinks. Globally, we found that increases in nitrogen deposition from 1900 to 2016 led to an additional 32 PgC stored. 40% of this increase could be attributed to East Asia and Europe alone, with North America also having a significant contribution. The global, post-2000 anthropogenic nitrogen deposition effect on terrestrial carbon uptake was 0.7 PgC/yr (20% of the total sink). Comparing the past decade (2005-2016) to the previous (1990-2005), regionally, we find nitrogen deposition to be an important driver of changes in net carbon uptake. In East Asia, increases in nitrogen deposition contributed 26% of the total increase in carbon uptake, with direct CO2 fertilization contributing 67%, and the synergistic carbon-nitrogen effect explaining 7% of the sink. Conversely, declining nitrogen deposition rates over North America contributed negatively (-35%) to the carbon sink, with a near zero contribution from the synergistic effect. At global scale, however, our findings suggest that changes in nitrogen deposition (both direct and via increasing the efficiency of the CO2 fertilization effect) played only a minor role in the enhanced plant carbon uptake and sink activity during the most recent decade. This finding is due to regional compensations but also suggesting that other factors (direct CO2, climate, land use change) may have been more important drivers.
Stress, deformation and diffusion interactions in solids - A simulation study
NASA Astrophysics Data System (ADS)
Fischer, F. D.; Svoboda, J.
2015-05-01
Equations of diffusion treated in the frame of Manning's concept, are completed by equations for generation/annihilation of vacancies at non-ideal sources and sinks, by conservation laws, by equations for generation of an eigenstrain state and by a strain-stress analysis. The stress-deformation-diffusion interactions are demonstrated on the evolution of a diffusion couple consisting of two thin layers of different chemical composition forming a free-standing plate without external loading. The equations are solved for different material parameters represented by the values of diffusion coefficients of individual components and by the intensity of sources and sinks for vacancies. The results of simulations indicate that for low intensity of sources and sinks for vacancies a significant eigenstress state can develop and the interdiffusion process is slowed down. For high intensity of sources and sinks for vacancies a significant eigenstrain state can develop and the eigenstress state quickly relaxes. If the difference in the diffusion coefficients of individual components is high, then the intensity of sources and sinks for vacancies influences the interdiffusion process considerably. For such systems their description only by diffusion coefficients is insufficient and must be completed by a microstructure characterization.
Pillai, Krishna; Akhter, Javid; Chua, Terence C; Shehata, Mena; Alzahrani, Nayef; Al-Alem, Issan; Morris, David L
2015-03-01
Thermal ablation of liver tumors near large blood vessels is affected by the cooling effect of blood flow, leading to incomplete ablation. Hence, we conducted a comparative investigation of heat sink effect in monopolar (MP) and bipolar (BP) radiofrequency ablation (RFA), and microwave (MW) ablation devices.With a perfused calf liver, the ablative performances (volume, mass, density, dimensions), with and without heat sink, were measured. Heat sink was present when the ablative tip of the probes were 8.0 mm close to a major hepatic vein and absent when >30 mm away. Temperatures (T1 and T2) on either side of the hepatic vein near the tip of the probes, heating probe temperature (T3), outlet perfusate temperature (T4), and ablation time were monitored.With or without heat sink, BP radiofrequency ablated a larger volume and mass, compared with MP RFA or MW ablation, with latter device producing the highest density of tissue ablated. MW ablation produced an ellipsoidal shape while radiofrequency devices produced spheres.Percentage heat sink effect in Bipolar radiofrequency : Mono-polar radiofrequency : Microwave was (Volume) 33:41:22; (mass) 23:56:34; (density) 9.0:26:18; and (relative elipscity) 5.8:12.9:1.3, indicating that BP and MW devices were less affected.Percentage heat sink effect on time (minutes) to reach maximum temperature (W) = 13.28:9.2:29.8; time at maximum temperature (X) is 87:66:16.66; temperature difference (Y) between the thermal probes (T3) and the temperature (T1 + T2)/2 on either side of the hepatic vessel was 100:87:20; and temperature difference between the (T1 + T2)/2 and temperature of outlet circulating solution (T4), Z was 20.33:30.23:37.5.MW and BP radiofrequencies were less affected by heat sink while MP RFA was the most affected. With a single ablation, BP radiofrequency ablated a larger volume and mass regardless of heat sink.
Pillai, Krishna; Akhter, Javid; Chua, Terence C.; Shehata, Mena; Alzahrani, Nayef; Al-Alem, Issan; Morris, David L.
2015-01-01
Abstract Thermal ablation of liver tumors near large blood vessels is affected by the cooling effect of blood flow, leading to incomplete ablation. Hence, we conducted a comparative investigation of heat sink effect in monopolar (MP) and bipolar (BP) radiofrequency ablation (RFA), and microwave (MW) ablation devices. With a perfused calf liver, the ablative performances (volume, mass, density, dimensions), with and without heat sink, were measured. Heat sink was present when the ablative tip of the probes were 8.0 mm close to a major hepatic vein and absent when >30 mm away. Temperatures (T1 and T2) on either side of the hepatic vein near the tip of the probes, heating probe temperature (T3), outlet perfusate temperature (T4), and ablation time were monitored. With or without heat sink, BP radiofrequency ablated a larger volume and mass, compared with MP RFA or MW ablation, with latter device producing the highest density of tissue ablated. MW ablation produced an ellipsoidal shape while radiofrequency devices produced spheres. Percentage heat sink effect in Bipolar radiofrequency : Mono-polar radiofrequency : Microwave was (Volume) 33:41:22; (mass) 23:56:34; (density) 9.0:26:18; and (relative elipscity) 5.8:12.9:1.3, indicating that BP and MW devices were less affected. Percentage heat sink effect on time (minutes) to reach maximum temperature (W) = 13.28:9.2:29.8; time at maximum temperature (X) is 87:66:16.66; temperature difference (Y) between the thermal probes (T3) and the temperature (T1 + T2)/2 on either side of the hepatic vessel was 100:87:20; and temperature difference between the (T1 + T2)/2 and temperature of outlet circulating solution (T4), Z was 20.33:30.23:37.5. MW and BP radiofrequencies were less affected by heat sink while MP RFA was the most affected. With a single ablation, BP radiofrequency ablated a larger volume and mass regardless of heat sink. PMID:25738477
Integrated Cryogenic Experiment (ICE) microsphere investigation
NASA Technical Reports Server (NTRS)
Spradley, I.; Read, D.
1989-01-01
The main objective is to determine the performance of microsphere insulation in a 0-g environment and compare its performance to reference insulations such as multilayer insulation. The Lockheed Helium Extended-Life Dewar (HELD) is used to provide superfluid-helium cold sink for the experiment. The use of HELD allows the low-g dynamic properties of Passive Orbital Disconnect Struts (PODS) to be characterized and provides a flight demonstration of the PODS system. The thermal performance of microspheres in 1 and 0 g was predicted, a flight experiment was designed to determine microsphere thermal performance, and the interface was also designed between the experimental package and the shuttle through HELD and the Hitchhiker-M carrier. A single test cell was designed and fabricated. The cell was filled with uncoated glass microspheres and tested with a liquid-nitrogen cold sink. The data were found to agree with predictions of microsphere performance in 1 g.
[Simulation of CO2 exchange between forest canopy and atmosphere].
Diao, Yiwei; Wang, Anzhi; Jin, Changjie; Guan, Dexin; Pei, Tiefan
2006-12-01
Estimating the scalar source/sink distribution of CO2 and its vertical fluxes within and above forest canopy continues to be a critical research problem in biosphere-atmosphere exchange processes and plant ecology. With broad-leaved Korean pine forest in Changbai Mountains as test object, and based on Raupach's localized near field theory, the source/sink and vertical flux distribution of CO2 within and above forest canopy were modeled through an inverse Lagrangian dispersion analysis. This model correctly predicted a strong positive CO2 source strength in the deeper layers of the canopy due to soil-plant respiration, and a strong CO2 sink in the upper layers of the canopy due to the assimilation by sunlit foliage. The foliage in the top layer of canopy changed from a CO2 source in the morning to a CO2 sink in the afternoon, while the soil constituted a strong CO2 source all the day. The simulation results accorded well with the eddy covariance CO2 flux measurements within and above the canopy, and the average precision was 89%. The CO2 exchange predicted by the analysis was averagely 15% higher than that of the eddy correlation, but exhibited identical temporal trend. Atmospheric stability remarkably affected the CO2 exchange between forest canopy and atmosphere.
General analytical solutions for DC/AC circuit-network analysis
NASA Astrophysics Data System (ADS)
Rubido, Nicolás; Grebogi, Celso; Baptista, Murilo S.
2017-06-01
In this work, we present novel general analytical solutions for the currents that are developed in the edges of network-like circuits when some nodes of the network act as sources/sinks of DC or AC current. We assume that Ohm's law is valid at every edge and that charge at every node is conserved (with the exception of the source/sink nodes). The resistive, capacitive, and/or inductive properties of the lines in the circuit define a complex network structure with given impedances for each edge. Our solution for the currents at each edge is derived in terms of the eigenvalues and eigenvectors of the Laplacian matrix of the network defined from the impedances. This derivation also allows us to compute the equivalent impedance between any two nodes of the circuit and relate it to currents in a closed circuit which has a single voltage generator instead of many input/output source/sink nodes. This simplifies the treatment that could be done via Thévenin's theorem. Contrary to solving Kirchhoff's equations, our derivation allows to easily calculate the redistribution of currents that occurs when the location of sources and sinks changes within the network. Finally, we show that our solutions are identical to the ones found from Circuit Theory nodal analysis.
A Comprehensive Study of a Micro-Channel Heat Sink Using Integrated Thin-Film Temperature Sensors
Wang, Tao; Wang, Jiejun; He, Jian; Wu, Chuangui; Luo, Wenbo; Shuai, Yao; Zhang, Wanli; Chen, Xiancai; Zhang, Jian; Lin, Jia
2018-01-01
A micro-channel heat sink is a promising cooling method for high power integrated circuits (IC). However, the understanding of such a micro-channel device is not sufficient, because the tools for studying it are very limited. The details inside the micro-channels are not readily available. In this letter, a micro-channel heat sink is comprehensively studied using the integrated temperature sensors. The highly sensitive thin film temperature sensors can accurately monitor the temperature change in the micro-channel in real time. The outstanding heat dissipation performance of the micro-channel heat sink is proven in terms of maximum temperature, cooling speed and heat resistance. The temperature profile along the micro-channel is extracted, and even small temperature perturbations can be detected. The heat source formed temperature peak shifts towards the flow direction with the increasing flow rate. However, the temperature non-uniformity is independent of flow rate, but solely dependent on the heating power. Specific designs for minimizing the temperature non-uniformity are necessary. In addition, the experimental results from the integrated temperature sensors match the simulation results well. This can be used to directly verify the modeling results, helping to build a convincing simulation model. The integrated sensor could be a powerful tool for studying the micro-channel based heat sink. PMID:29351248
Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen
2018-03-18
Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio.
Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen
2018-01-01
Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio. PMID:29562628
A Comprehensive Study of a Micro-Channel Heat Sink Using Integrated Thin-Film Temperature Sensors.
Wang, Tao; Wang, Jiejun; He, Jian; Wu, Chuangui; Luo, Wenbo; Shuai, Yao; Zhang, Wanli; Chen, Xiancai; Zhang, Jian; Lin, Jia
2018-01-19
A micro-channel heat sink is a promising cooling method for high power integrated circuits (IC). However, the understanding of such a micro-channel device is not sufficient, because the tools for studying it are very limited. The details inside the micro-channels are not readily available. In this letter, a micro-channel heat sink is comprehensively studied using the integrated temperature sensors. The highly sensitive thin film temperature sensors can accurately monitor the temperature change in the micro-channel in real time. The outstanding heat dissipation performance of the micro-channel heat sink is proven in terms of maximum temperature, cooling speed and heat resistance. The temperature profile along the micro-channel is extracted, and even small temperature perturbations can be detected. The heat source formed temperature peak shifts towards the flow direction with the increasing flow rate. However, the temperature non-uniformity is independent of flow rate, but solely dependent on the heating power. Specific designs for minimizing the temperature non-uniformity are necessary. In addition, the experimental results from the integrated temperature sensors match the simulation results well. This can be used to directly verify the modeling results, helping to build a convincing simulation model. The integrated sensor could be a powerful tool for studying the micro-channel based heat sink.
Emission and Sink of Greenhouse Gases in Soils of Moscow
NASA Astrophysics Data System (ADS)
Mozharova, N. V.; Kulachkova, S. A.; Lebed'-Sharlevich, Ya. I.
2018-03-01
The first inventory and zoning of the emission and sink of methane and carbon dioxide in the urban structure of greenhouse gases from soils and surface technogenic formations (STFs) (Technosols) on technogenic, recrementogenic, and natural sediments have been performed with consideration for the global warming potential under conditions of different formation rate of these gases, underflooding, and sealing. From gas geochemical criteria and anthropogenic pedogenesis features, the main sources of greenhouse gases, their intensity, and mass emission were revealed. The mass fractions of emissions from the sectors of waste and land use in the inventories of greenhouse gas emissions have been determined. New sources of gas emission have been revealed in the first sector, the emissions from which add tens of percent to the literature and state reports. In the second sector, emissions exceed the available data in 70 times. Estimation criteria based on the degree of manifestation and chemical composition of soil-geochemical anomalies and barrier capacities have been proposed. The sink of greenhouse gases from the atmosphere and the internal (latent) sink of methane in soils and STFs have been determined. Ecological functions of soils and STFs have been shown, and the share of latent methane sink has been calculated. The bacterial oxidation of methane in soils and STFs exceeds its emission to the atmosphere in almost hundred times.
Predicting protein function and other biomedical characteristics with heterogeneous ensembles
Whalen, Sean; Pandey, Om Prakash
2015-01-01
Prediction problems in biomedical sciences, including protein function prediction (PFP), are generally quite difficult. This is due in part to incomplete knowledge of the cellular phenomenon of interest, the appropriateness and data quality of the variables and measurements used for prediction, as well as a lack of consensus regarding the ideal predictor for specific problems. In such scenarios, a powerful approach to improving prediction performance is to construct heterogeneous ensemble predictors that combine the output of diverse individual predictors that capture complementary aspects of the problems and/or datasets. In this paper, we demonstrate the potential of such heterogeneous ensembles, derived from stacking and ensemble selection methods, for addressing PFP and other similar biomedical prediction problems. Deeper analysis of these results shows that the superior predictive ability of these methods, especially stacking, can be attributed to their attention to the following aspects of the ensemble learning process: (i) better balance of diversity and performance, (ii) more effective calibration of outputs and (iii) more robust incorporation of additional base predictors. Finally, to make the effective application of heterogeneous ensembles to large complex datasets (big data) feasible, we present DataSink, a distributed ensemble learning framework, and demonstrate its sound scalability using the examined datasets. DataSink is publicly available from https://github.com/shwhalen/datasink. PMID:26342255
Systems biology derived source-sink mechanism of BMP gradient formation
Zinski, Joseph; Bu, Ye; Wang, Xu; Dou, Wei
2017-01-01
A morphogen gradient of Bone Morphogenetic Protein (BMP) signaling patterns the dorsoventral embryonic axis of vertebrates and invertebrates. The prevailing view in vertebrates for BMP gradient formation is through a counter-gradient of BMP antagonists, often along with ligand shuttling to generate peak signaling levels. To delineate the mechanism in zebrafish, we precisely quantified the BMP activity gradient in wild-type and mutant embryos and combined these data with a mathematical model-based computational screen to test hypotheses for gradient formation. Our analysis ruled out a BMP shuttling mechanism and a bmp transcriptionally-informed gradient mechanism. Surprisingly, rather than supporting a counter-gradient mechanism, our analyses support a fourth model, a source-sink mechanism, which relies on a restricted BMP antagonist distribution acting as a sink that drives BMP flux dorsally and gradient formation. We measured Bmp2 diffusion and found that it supports the source-sink model, suggesting a new mechanism to shape BMP gradients during development. PMID:28826472
Systems biology derived source-sink mechanism of BMP gradient formation.
Zinski, Joseph; Bu, Ye; Wang, Xu; Dou, Wei; Umulis, David; Mullins, Mary C
2017-08-09
A morphogen gradient of Bone Morphogenetic Protein (BMP) signaling patterns the dorsoventral embryonic axis of vertebrates and invertebrates. The prevailing view in vertebrates for BMP gradient formation is through a counter-gradient of BMP antagonists, often along with ligand shuttling to generate peak signaling levels. To delineate the mechanism in zebrafish, we precisely quantified the BMP activity gradient in wild-type and mutant embryos and combined these data with a mathematical model-based computational screen to test hypotheses for gradient formation. Our analysis ruled out a BMP shuttling mechanism and a bmp transcriptionally-informed gradient mechanism. Surprisingly, rather than supporting a counter-gradient mechanism, our analyses support a fourth model, a source-sink mechanism, which relies on a restricted BMP antagonist distribution acting as a sink that drives BMP flux dorsally and gradient formation. We measured Bmp2 diffusion and found that it supports the source-sink model, suggesting a new mechanism to shape BMP gradients during development.
Xu, Shenlai
2009-04-01
A landscape index LI is proposed to evaluate the intensity of the daytime surface urban heat island (SUHI) effect at a local scale. Three aspects of this landscape index are crucial: the source landscape, the sink landscape, and the contribution of source and sink landscapes to the intensity of the SUHI. Source and sink landscape types are identified using the thermo-band of Landsat 7 with a spatial resolution of 60 m, along with appropriate threshold values for the Normalized Difference Vegetation Index, Modified Normalized Difference Water Index, and Normalized Difference Built-up Index. The landscape index was defined as the ratio of the contributions of the source and sink landscapes to the intensity of the SUHI. The intensity of the daytime SUHI is assessed with the help of the landscape index. Our analysis indicates the landscape index can be used to evaluate and compare the intensity of the daytime SUHI for different areas.
Wang, Yan; Xu, Hao; Wu, Xu; Zhu, Yimei; Gu, Baojing; Niu, Xiaoyin; Liu, Anqin; Peng, Changhui; Ge, Ying; Chang, Jie
2011-05-01
Plastic greenhouse vegetable cultivation (PGVC) has played a vital role in increasing incomes of farmers and expanded dramatically in last several decades. However, carbon budget after conversion from conventional vegetable cultivation (CVC) to PGVC has been poorly quantified. A full carbon cycle analysis was used to estimate the net carbon flux from PGVC systems based on the combination of data from both field observations and literatures. Carbon fixation was evaluated at two pre-selected locations in China. Results suggest that: (1) the carbon sink of PGVC is 1.21 and 1.23 Mg C ha(-1) yr(-1) for temperate and subtropical area, respectively; (2) the conversion from CVC to PGVC could substantially enhance carbon sink potential by 8.6 times in the temperate area and by 1.3 times in the subtropical area; (3) the expansion of PGVC usage could enhance the potential carbon sink of arable land in China overall. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Siyang; An, Xingqin; Zhou, Lingxi; Tans, Pieter P.; Jacobson, Andy
2017-06-01
In order to explore where the source and sink have the greatest impact on CO2 background concentration at Waliguan (WLG) station, a statistical method is here proposed to calculate the representative source-sink region. The key to this method is to find the best footprint threshold, and the study is carried out in four parts. Firstly, transport climatology, expressed by total monthly footprint, was simulated by FLEXPART on a 7-day time scale. Surface CO2 emissions in Eurasia frequently transported to WLG station. WLG station was mainly influenced by the westerlies in winter and partly controlled by the Southeast Asian monsoon in summer. Secondly, CO2 concentrations, simulated by CT2015, were processed and analyzed through data quality control, screening, fitting and comparing. CO2 concentrations displayed obvious seasonal variation, with the maximum and minimum concentration appearing in April and August, respectively. The correlation of CO2 fitting background concentrations was R2 = 0.91 between simulation and observation. The temporal patterns were mainly correlated with CO2 exchange of biosphere-atmosphere, human activities and air transport. Thirdly, for the monthly CO2 fitting background concentrations from CT2015, a best footprint threshold was found based on correlation analysis and numerical iteration using the data of footprints and emissions. The grid cells where monthly footprints were greater than the best footprint threshold were the best threshold area corresponding to representative source-sink region. The representative source-sink region of maximum CO2 concentration in April was primarily located in Qinghai province, but the minimum CO2 concentration in August was mainly influenced by emissions in a wider region. Finally, we briefly presented the CO2 source-sink characteristics in the best threshold area. Generally, the best threshold area was a carbon sink. The major source and sink were relatively weak owing to less human activities and vegetation types in this high altitude area. CO2 concentrations were more influenced by human activities when air mass passed through many urban areas in summer. Therefore, the combination of footprints and emissions is an effective approach for assessing the source-sink region representativeness of CO2 background concentration.
Cooling beyond the boundary value in supercritical fluids under vibration
NASA Astrophysics Data System (ADS)
Sharma, D.; Erriguible, A.; Amiroudine, S.
2017-12-01
Supercritical fluids when subjected to simultaneous quench and vibration have been known to cause various intriguing flow phenomena and instabilities depending on the relative direction of temperature gradient and vibration. Here we describe a surprising and interesting phenomenon wherein temperature in the fluid falls below the imposed boundary value when the walls are quenched and the direction of vibration is normal to the temperature gradient. We define these regions in the fluid as sink zones, because they act like sink for heat within the fluid domain. The formation of these zones is first explained using a one-dimensional (1D) analysis with acceleration in constant direction. Subsequently, the effect of various boundary conditions and the relative direction of the temperature gradient to acceleration are analyzed, highlighting the necessary conditions for the formation of sink zones. It is found that the effect of high compressibility and the action of self-weight (due to high acceleration) causes the temperature to change in the bulk besides the usual action of piston effect. This subsequently affects the overall temperature profile thereby leading to the formation of sink zones. Though the examined 1D cases differ from the current two-dimensional (2D) cases, owing to the direction of acceleration being normal as compared to parallel in case of former, the explanations pertaining to 1D cases are judiciously utilized to elucidate the formation of sink zones in 2D supercritical fluids subjected to thermal quench and vibrational acceleration. The appearance of sink zones is found to be dependent on several factors such as proximity to the critical point and acceleration. A surface three-dimensional plot illustrating the effect of these parameters on onset time of sink zones is presented to further substantiate these arguments.
Kawamoto, Naoyuki; Kakefuda, Yohei; Mori, Takao; Hirose, Kenji; Mitome, Masanori; Bando, Yoshio; Golberg, Dmitri
2015-11-20
We developed an original method of in situ nanoscale characterization of thermal resistance utilizing a high-resolution transmission electron microscope (HRTEM). The focused electron beam of the HRTEM was used as a contact-free heat source and a piezo-movable nanothermocouple was developed as a thermal detector. This method has a high flexibility of supplying thermal-flux directions for nano/microscale thermal conductivity analysis, and is a powerful way to probe the thermal properties of complex or composite materials. Using this method we performed reproducible measurements of electron beam-induced temperature changes in pre-selected sections of a heat-sink α-Al(2)O(3)/epoxy-based resin composite. Observed linear behavior of the temperature change in a filler reveals that Fourier's law holds even at such a mesoscopic scale. In addition, we successfully determined the thermal resistance of the nanoscale interfaces between neighboring α-Al(2)O(3) fillers to be 1.16 × 10(-8) m(2)K W(-1), which is 35 times larger than that of the fillers themselves. This method that we have discovered enables evaluation of thermal resistivity of composites on the nanoscale, combined with the ultimate spatial localization and resolution sample analysis capabilities that TEM entails.
Lin, Zheng-Yu; Li, Guo-Lin; Chen, Jin; Chen, Zhong-Wu; Chen, Yi-Ping; Lin, Sun-Zhi
2016-12-01
The aim of this study was to investigate the effect of heat sink on the recurrence of hepatic malignant tumors <3 cm after percutaneous radiofrequency ablation (RFA). This study included 564 hepatic malignant tumors <3 cm in 381 patients. Preoperative images were used to determine whether these tumors were adjacent to vessels, and the diameter of adjacent vessels was measured. RFA was performed computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound (US) guidance, and postoperative imaging follow-up was then conducted. SPSS software version 17.0 was used for data processing, and the χ2 test was used for comparative analysis. Two-sided P < 0.05 indicated statistical significance. A total of 33 recurrences were found: 15 in the MR group (15/468), 12 in the US group (12/53), and 6 in the CT group (6/43). Of the 101 lesions adjacent to blood vessels larger than 3 mm, 20 showed recurrence: 10 in the MR group (10/77), 7 in the US group (7/17), and 3 in the CT group (3/7). The recurrence rate of perivascular lesions was higher than that of nonperivascular lesions, and the rate in the MR group was lower those in the US and CT groups. The curative effect of MRI-guided RFA is better than those of US- and CT-guided ablation. The heat sink effect is an important factor affecting recurrence of hepatic malignant tumors after RFA.
Zhao, Shuqing; Liu, Shuguang; Yin, Runsheng; Li, Zhengpeng; Deng, Yulin; Tan, Kun; Deng, Xiangzheng; Rothstein, David; Qi, Jiaguo
2010-01-01
Quantifying the spatial and temporal dynamics of carbon stocks in terrestrial ecosystems and carbon fluxes between the terrestrial biosphere and the atmosphere is critical to our understanding of regional patterns of carbon budgets. Here we use the General Ensemble biogeochemical Modeling System to simulate the terrestrial ecosystem carbon dynamics in the Jinsha watershed of China’s upper Yangtze basin from 1975 to 2000, based on unique combinations of spatial and temporal dynamics of major driving forces, such as climate, soil properties, nitrogen deposition, and land use and land cover changes. Our analysis demonstrates that the Jinsha watershed ecosystems acted as a carbon sink during the period of 1975–2000, with an average rate of 0.36 Mg/ha/yr, primarily resulting from regional climate variation and local land use and land cover change. Vegetation biomass accumulation accounted for 90.6% of the sink, while soil organic carbon loss before 1992 led to a lower net gain of carbon in the watershed, and after that soils became a small sink. Ecosystem carbon sink/source patterns showed a high degree of spatial heterogeneity. Carbon sinks were associated with forest areas without disturbances, whereas carbon sources were primarily caused by stand-replacing disturbances. It is critical to adequately represent the detailed fast-changing dynamics of land use activities in regional biogeochemical models to determine the spatial and temporal evolution of regional carbon sink/source patterns.
NASA Astrophysics Data System (ADS)
Deng, F.; Jones, D. B. A.; Walker, T. W.; Keller, M.; Bowman, K. W.; Henze, D. K.; Nassar, R.; Kort, E. A.; Wofsy, S. C.; Walker, K. A.; Bourassa, A. E.; Degenstein, D. A.
2015-04-01
The upper troposphere and lower stratosphere (UTLS) represents a transition region between the more dynamically active troposphere and more stably stratified stratosphere. The region is characterized by strong gradients in the distribution of long-lived tracers, which are sensitive to discrepancies in transport in models. We evaluate the GEOS-Chem model in the UTLS using carbon dioxide (CO2) and ozone (O3) observations from the HIAPER (The High-Performance Instrumented Airborne Platform for Environmental Research) Pole-to-Pole Observations (HIPPO) campaign in March 2010. GEOS-Chem CO2 / O3 correlation suggests that there is a discrepancy in mixing across the tropopause in the model, which results in an overestimate of CO2 and an underestimate of O3 in the Arctic lower stratosphere. We assimilate stratospheric O3 data from OSIRIS and used the assimilated O3 fields together with the HIPPO CO2 / O3 correlations to obtain a correction to the modeled CO2 profile in the Arctic UTLS (primarily between the 320 and 360 K isentropic surfaces). The HIPPO-derived correction corresponds to a sink of 0.13 Pg C month-1 in the Arctic. Imposing this sink during March-August 2010 results in a reduction in the CO2 sinks inferred from GOSAT observations for temperate North America, Europe, and tropical Asia of 20, 12, and 50%, respectively. Conversely, the inversion increased the source of CO2 from tropical South America by 20%. We found that the model also underestimated CO2 in the upper tropical and subtropical troposphere, which may be linked by mixing across the subtropical tropopause. Correcting for the bias relative to HIPPO in the tropical upper troposphere, by imposing a source of 0.33 Pg C, led to a reduction in the source from tropical South America by 44%, and produced a flux estimate for tropical Asia that was in agreement with the standard inversion (without the imposed source and sink). However, the seasonal transition from a source to a sink of CO2 for tropical Asia was shifted from April to June. It is unclear whether the discrepancies found in the UTLS are due to errors in mixing associated with the large-scale dynamics or are due to the numerical errors in the advection scheme. However, our results illustrate that discrepancies in the CO2 distribution in the UTLS can affect CO2 flux inversions and suggest the need for more careful evaluation of model transport errors in the UTLS.
Magnetorheological fluids and applications to adaptive landing gear for a lightweight helicopter
NASA Astrophysics Data System (ADS)
Ahure-Powell, Louise A.
During hard landing or crash events of a helicopter there are impact loads that can be injurious to crew and other occupants as well as damaging to the helicopter structure. Landing gear systems are the first in line to protect crew and passengers from detrimental crash loads. The main focus of this research is to improve landing gear systems of a lightweight helicopter. Magnetorheological fluids (MRFs) provide potential solutions to several engineering challenges in a broad range of applications. One application that has been considered recently is the use of magnetorheological (MR) dampers in helicopter landing gear systems. In such application, the adaptive landing gear systems have to continuously adjust their stroking load in response to various operating conditions. In order to support this rotorcraft application, there is a necessity to validate that MRFs are qualified for landing gear applications. First, MRF composites, synthesized utilizing three hydraulic oils certified for use in landing gear systems, two average diameters of spherical magnetic particles, and a lecithin surfactant, are formulated to investigate their performance for potential use in a helicopter landing gear. The magnetorheology of these MR fluids is characterized through a range of tests, including (a) magnetorheology (yield stress and viscosity) as a function of magnetic field, (b) sedimentation analysis using an inductance-based sensor, (c) cycling of a small-scale MR damper undergoing sinusoidal excitations (at 2.5 and 5 Hz), and (d) impact testing of an MR damper for a range of magnetic field strengths and velocities using a free-flight drop tower facility. The performance of these MR fluids was analyzed, and their behavior was compared to standard commercial MR fluids. Based on this range of tests used to characterize the MR fluids synthesized, it was shown that it is feasible to utilize certified landing gear hydraulic oils as the carrier fluids to make suitable MR fluids. Another objective of this research is to satisfy the requirement of a helicopter landing gear damper to enable adaptive shock mitigation performance over a desired sink rate range. It was intended to maintain a constant stroking force of 17 793 N (4000 lbf) over a sink rate range of 1.8-7.9 m/s (6-26 ft/s), which is a substantial increase of the high-end of the sink rate range from 3.7 m/s (12 ft/s), in prior related work, to 7.9 m/s (26 ft/s). To achieve this increase in the high-end of the sink rate range, a spiral wave spring-assisted passive valve MR landing gear damper was developed. Drop tests were first conducted using a single MR landing gear damper. In order to maintain the peak stroking load constant over the desired sink rate range, a bang-bang current control algorithm was formulated using a force feedback signal. The controlled stroking loads were experimentally evaluated using a single drop damper test setup. To emulate the landing gear system of a lightweight helicopter, an iron bird drop test apparatus with four spiral wave spring-assisted relief valves MR landing gear dampers, was fabricated and successfully tested. The effectiveness of the proposed adaptive MR landing gear damper was theoretically and experimentally verified. The bang-bang current control algorithm successfully regulated the stroking load at 4000 lbf over a sink rate range of 6-22 ft/s in the iron bird tests, which significantly exceeds the sink rate range of the previous study (6-12 ft/s). The effectiveness of the proposed adaptive MR landing gear damper with a spiral wave spring-assisted passive valve is theoretically and experimentally verified.
Constraining the Statistics of Population III Binaries
NASA Technical Reports Server (NTRS)
Stacy, Athena; Bromm, Volker
2012-01-01
We perform a cosmological simulation in order to model the growth and evolution of Population III (Pop III) stellar systems in a range of host minihalo environments. A Pop III multiple system forms in each of the ten minihaloes, and the overall mass function is top-heavy compared to the currently observed initial mass function in the Milky Way. Using a sink particle to represent each growing protostar, we examine the binary characteristics of the multiple systems, resolving orbits on scales as small as 20 AU. We find a binary fraction of approx. 36, with semi-major axes as large as 3000 AU. The distribution of orbital periods is slightly peaked at approx. < 900 yr, while the distribution of mass ratios is relatively flat. Of all sink particles formed within the ten minihaloes, approx. 50 are lost to mergers with larger sinks, and 50 of the remaining sinks are ejected from their star-forming disks. The large binary fraction may have important implications for Pop III evolution and nucleosynthesis, as well as the final fate of the first stars.
NASA Astrophysics Data System (ADS)
Fazilati, Mohammad Ali; Alemrajabi, Ali Akbar; Sedaghat, Ahmad
2018-03-01
Liquid desiccant air conditioning system with natural convection was presented previously as a new generation of AC systems. The system consists of two three-fluid energy exchangers namely absorber and regenerator in which the action of air dehumidifying and desiccant regeneration is done, respectively. The influence of working parameters on system performance including the heat source and heat sink temperature, concentration of desiccant solution fills the system initially and humidity content of inlet air to regenerator is investigated experimentally. The heat source temperatures of 50 °C and 60 °C, heat sink temperatures of 15 °C and 20 °C and desiccant concentrations of 30% and 34%, are examined here. The inlet air to regenerator has temperature of 38.5 °C and three relative humidity of 14%, 38% and 44%. In all experiments, the inlet air to absorber has temperature of 31 °C and relative humidity of 75%. By inspecting evaluation indexes of system, it is revealed that higher startup desiccant concentration solution is more beneficial for all study cases. It is also observed although the highest/lowest temperature heat source/heat sink is most suitable for best system operation, increasing the heat source temperature should be accompanied with decreasing heat sink temperature. Using drier air stream for regenerator inlet does not necessarily improve system performance; and the air stream with proper value of humidity content should be employed. Finally after running the system in its best working condition, the coefficient of performance (COP) reached 4.66 which verified to be higher than when the same air conditioning task done by a conventional vapor compression system, in which case the COP was 3.38.
Berman, Gennady P; Nesterov, Alexander I; Gurvitz, Shmuel; Sayre, Richard T
2017-01-01
We analyze theoretically a simple and consistent quantum mechanical model that reveals the possible role of quantum interference, protein noise, and sink effects in the nonphotochemical quenching (NPQ) in light-harvesting complexes (LHCs). The model consists of a network of five interconnected sites (excitonic states of light-sensitive molecules) responsible for the NPQ mechanism. The model also includes the "damaging" and the dissipative channels. The damaging channel is responsible for production of singlet oxygen and other destructive outcomes. In our model, both damaging and "dissipative" charge transfer channels are described by discrete electron energy levels attached to their sinks, that mimic the continuum part of electron energy spectrum. All five excitonic sites interact with the protein environment that is modeled using a stochastic process. Our approach allowed us to derive the exact and closed system of linear ordinary differential equations for the reduced density matrix and its first momentums. These equations are solved numerically including for strong interactions between the light-sensitive molecules and protein environment. As an example, we apply our model to demonstrate possible contributions of quantum interference, protein noise, and sink effects in the NPQ mechanism in the CP29 minor LHC. The numerical simulations show that using proper combination of quantum interference effects, properties of noise, and sinks, one can significantly suppress the damaging channel. Our findings demonstrate the possible role of interference, protein noise, and sink effects for modeling, engineering, and optimizing the performance of the NPQ processes in both natural and artificial light-harvesting complexes.
Berman, Gennady P.; Nesterov, Alexander I.; Gurvitz, Shmuel; ...
2016-04-30
Here, we analyze theoretically a simple and consistent quantum mechanical model that reveals the possible role of quantum interference, protein noise, and sink effects in the nonphotochemical quenching (NPQ) in light-harvesting complexes (LHCs). The model consists of a network of five interconnected sites (excitonic states of light-sensitive molecules) responsible for the NPQ mechanism. The model also includes the “damaging” and the dissipative channels. The damaging channel is responsible for production of singlet oxygen and other destructive outcomes. In this model, both damaging and “dissipative” charge transfer channels are described by discrete electron energy levels attached to their sinks, that mimicmore » the continuum part of electron energy spectrum. All five excitonic sites interact with the protein environment that is modeled using a stochastic process. Our approach allowed us to derive the exact and closed system of linear ordinary differential equations for the reduced density matrix and its first momentums. Moreover, these equations are solved numerically including for strong interactions between the light-sensitive molecules and protein environment. As an example, we apply our model to demonstrate possible contributions of quantum interference, protein noise, and sink effects in the NPQ mechanism in the CP29 minor LHC. The numerical simulations show that using proper combination of quantum interference effects, properties of noise, and sinks, one can significantly suppress the damaging channel. Finally, our findings demonstrate the possible role of interference, protein noise, and sink effects for modeling, engineering, and optimizing the performance of the NPQ processes in both natural and artificial light-harvesting complexes.« less
Modeling Atmospheric CO2 Processes to Constrain the Missing Sink
NASA Technical Reports Server (NTRS)
Kawa, S. R.; Denning, A. S.; Erickson, D. J.; Collatz, J. C.; Pawson, S.
2005-01-01
We report on a NASA supported modeling effort to reduce uncertainty in carbon cycle processes that create the so-called missing sink of atmospheric CO2. Our overall objective is to improve characterization of CO2 source/sink processes globally with improved formulations for atmospheric transport, terrestrial uptake and release, biomass and fossil fuel burning, and observational data analysis. The motivation for this study follows from the perspective that progress in determining CO2 sources and sinks beyond the current state of the art will rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. The major components of this effort are: 1) Continued development of the chemistry and transport model using analyzed meteorological fields from the Goddard Global Modeling and Assimilation Office, with comparison to real time data in both forward and inverse modes; 2) An advanced biosphere model, constrained by remote sensing data, coupled to the global transport model to produce distributions of CO2 fluxes and concentrations that are consistent with actual meteorological variability; 3) Improved remote sensing estimates for biomass burning emission fluxes to better characterize interannual variability in the atmospheric CO2 budget and to better constrain the land use change source; 4) Evaluating the impact of temporally resolved fossil fuel emission distributions on atmospheric CO2 gradients and variability. 5) Testing the impact of existing and planned remote sensing data sources (e.g., AIRS, MODIS, OCO) on inference of CO2 sources and sinks, and use the model to help establish measurement requirements for future remote sensing instruments. The results will help to prepare for the use of OCO and other satellite data in a multi-disciplinary carbon data assimilation system for analysis and prediction of carbon cycle changes and carbodclimate interactions.
Wylie, Bruce K.; Howard, Daniel; Dahal, Devendra; Gilmanov, Tagir; Ji, Lei; Zhang, Li; Smith, Kelcy
2016-01-01
This paper presents the methodology and results of two ecological-based net ecosystem production (NEP) regression tree models capable of up scaling measurements made at various flux tower sites throughout the U.S. Great Plains. Separate grassland and cropland NEP regression tree models were trained using various remote sensing data and other biogeophysical data, along with 15 flux towers contributing to the grassland model and 15 flux towers for the cropland model. The models yielded weekly mean daily grassland and cropland NEP maps of the U.S. Great Plains at 250 m resolution for 2000–2008. The grassland and cropland NEP maps were spatially summarized and statistically compared. The results of this study indicate that grassland and cropland ecosystems generally performed as weak net carbon (C) sinks, absorbing more C from the atmosphere than they released from 2000 to 2008. Grasslands demonstrated higher carbon sink potential (139 g C·m−2·year−1) than non-irrigated croplands. A closer look into the weekly time series reveals the C fluctuation through time and space for each land cover type.
Wang, Hai-Tao; Yao, Chang-Hong; Ai, Jiang-Ning; Cao, Xu-Peng; Xue, Song; Wang, Wei-liang
2014-11-01
Microalgae represent a potential feedstock for biofuel production. During cultivation under nitrogen-depleted conditions, carbohydrates, rather than neutral lipids, were the major carbon sink of the marine microalga Isochrysis zhangjiangensis (Haptophyta). Carbohydrates reached maximum levels of 21.2 pg cell(-1) on day 5, which was an increase of more than 7-fold from day 1, while neutral lipids simultaneously increased 1.9-fold from 4.0 to 7.6 pg cell(-1) during the ten-day nitrogen-depleted cultivation. The carbohydrate productivity of I. zhangjiangensis was improved by optimization of the nitrate supply mode. The maximum carbohydrate concentration was 0.95 g L(-1) under batch cultivation, with an initial nitrogen concentration of 31.0 mg L(-1), which was 2.4-fold greater than that achieved under nitrogen-depleted conditions. High performance liquid chromatography (HPLC) analysis showed that the accumulated carbohydrate in I. zhangjiangensis was composed of glucose. These results show that I. zhangjiangensis represents an ideal carbohydrate-enriched bioresource for biofuel production. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohammadian, Shahabeddin K.; Zhang, Yuwen
2015-01-01
Three dimensional transient thermal analysis of an air-cooled module that contains prismatic Li-ion cells next to a special kind of aluminum pin fin heat sink whose heights of pin fins increase linearly through the width of the channel in air flow direction was studied for thermal management of Lithium-ion battery pack. The effects of pin fins arrangements, discharge rates, inlet air flow velocities, and inlet air temperatures on the battery were investigated. The results showed that despite of heat sinks with uniform pin fin heights that increase the standard deviation of the temperature field, using this kind of pin fin heat sink compare to the heat sink without pin fins not only decreases the bulk temperature inside the battery, but also decreases the standard deviation of the temperature field inside the battery as well. Increasing the inlet air temperature leads to decreasing the standard deviation of the temperature field while increases the maximum temperature of the battery. Furthermore, increasing the inlet air velocity first increases the standard deviation of the temperature field till reaches to the maximum point, and after that decreases. Also, increasing the inlet air velocity leads to decrease in the maximum temperature of the battery.
A new tracer‐density criterion for heterogeneous porous media
Barth, Gilbert R.; Illangasekare, Tissa H.; Hill, Mary C.; Rajaram, Harihar
2001-01-01
Tracer experiments provide information about aquifer material properties vital for accurate site characterization. Unfortunately, density‐induced sinking can distort tracer movement, leading to an inaccurate assessment of material properties. Yet existing criteria for selecting appropriate tracer concentrations are based on analysis of homogeneous media instead of media with heterogeneities typical of field sites. This work introduces a hydraulic‐gradient correction for heterogeneous media and applies it to a criterion previously used to indicate density‐induced instabilities in homogeneous media. The modified criterion was tested using a series of two‐dimensional heterogeneous intermediate‐scale tracer experiments and data from several detailed field tracer tests. The intermediate‐scale experimental facility (10.0×1.2×0.06 m) included both homogeneous and heterogeneous (σln k2 = 1.22) zones. The field tracer tests were less heterogeneous (0.24 < σln k2 < 0.37), but measurements were sufficient to detect density‐induced sinking. Evaluation of the modified criterion using the experiments and field tests demonstrates that the new criterion appears to account for the change in density‐induced sinking due to heterogeneity. The criterion demonstrates the importance of accounting for heterogeneity to predict density‐induced sinking and differences in the onset of density‐induced sinking in two‐ and three‐dimensional systems.
Mangrove production and carbon sinks: A revision of global budget estimates
Bouillon, S.; Borges, A.V.; Castaneda-Moya, E.; Diele, K.; Dittmar, T.; Duke, N.C.; Kristensen, E.; Lee, S.-Y.; Marchand, C.; Middelburg, J.J.; Rivera-Monroy, V. H.; Smith, T. J.; Twilley, R.R.
2008-01-01
Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove primary production from the literature results in a conservative estimate of ???-218 ?? 72 Tg C a-1. When using the best available estimates of various carbon sinks (organic carbon export, sediment burial, and mineralization), it appears that >50% of the carbon fixed by mangrove vegetation is unaccounted for. This unaccounted carbon sink is conservatively estimated at ??? 112 ?? 85 Tg C a-1, equivalent in magnitude to ??? 30-40% of the global riverine organic carbon input to the coastal zone. Our analysis suggests that mineralization is severely underestimated, and that the majority of carbon export from mangroves to adjacent waters occurs as dissolved inorganic carbon (DIC). CO2 efflux from sediments and creek waters and tidal export of DIC appear to be the major sinks. These processes are quantitatively comparable in magnitude to the unaccounted carbon sink in current budgets, but are not yet adequately constrained with the limited published data available so far. Copyright 2008 by the American Geophysical Union.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwinger, Jorg; Goris, Nadine; Tjiputra, Jerry F.
Idealised and hindcast simulations performed with the stand-alone ocean carbon-cycle configuration of the Norwegian Earth System Model (NorESM-OC) are described and evaluated. We present simulation results of three different model configurations (two different model versions at different grid resolutions) using two different atmospheric forcing data sets. Model version NorESM-OC1 corresponds to the version that is included in the NorESM-ME1 fully coupled model, which participated in CMIP5. The main update between NorESM-OC1 and NorESM-OC1.2 is the addition of two new options for the treatment of sinking particles. We find that using a constant sinking speed, which has been the standard in NorESM'smore » ocean carbon cycle module HAMOCC (HAMburg Ocean Carbon Cycle model), does not transport enough particulate organic carbon (POC) into the deep ocean below approximately 2000 m depth. The two newly implemented parameterisations, a particle aggregation scheme with prognostic sinking speed, and a simpler scheme that uses a linear increase in the sinking speed with depth, provide better agreement with observed POC fluxes. Additionally, reduced deep ocean biases of oxygen and remineralised phosphate indicate a better performance of the new parameterisations. For model version 1.2, a re-tuning of the ecosystem parameterisation has been performed, which (i) reduces previously too high primary production at high latitudes, (ii) consequently improves model results for surface nutrients, and (iii) reduces alkalinity and dissolved inorganic carbon biases at low latitudes. We use hindcast simulations with prescribed observed and constant (pre-industrial) atmospheric CO 2 concentrations to derive the past and contemporary ocean carbon sink. As a result, for the period 1990–1999 we find an average ocean carbon uptake ranging from 2.01 to 2.58 Pg C yr -1 depending on model version, grid resolution, and atmospheric forcing data set.« less
Schwinger, Jorg; Goris, Nadine; Tjiputra, Jerry F.; ...
2016-08-02
Idealised and hindcast simulations performed with the stand-alone ocean carbon-cycle configuration of the Norwegian Earth System Model (NorESM-OC) are described and evaluated. We present simulation results of three different model configurations (two different model versions at different grid resolutions) using two different atmospheric forcing data sets. Model version NorESM-OC1 corresponds to the version that is included in the NorESM-ME1 fully coupled model, which participated in CMIP5. The main update between NorESM-OC1 and NorESM-OC1.2 is the addition of two new options for the treatment of sinking particles. We find that using a constant sinking speed, which has been the standard in NorESM'smore » ocean carbon cycle module HAMOCC (HAMburg Ocean Carbon Cycle model), does not transport enough particulate organic carbon (POC) into the deep ocean below approximately 2000 m depth. The two newly implemented parameterisations, a particle aggregation scheme with prognostic sinking speed, and a simpler scheme that uses a linear increase in the sinking speed with depth, provide better agreement with observed POC fluxes. Additionally, reduced deep ocean biases of oxygen and remineralised phosphate indicate a better performance of the new parameterisations. For model version 1.2, a re-tuning of the ecosystem parameterisation has been performed, which (i) reduces previously too high primary production at high latitudes, (ii) consequently improves model results for surface nutrients, and (iii) reduces alkalinity and dissolved inorganic carbon biases at low latitudes. We use hindcast simulations with prescribed observed and constant (pre-industrial) atmospheric CO 2 concentrations to derive the past and contemporary ocean carbon sink. As a result, for the period 1990–1999 we find an average ocean carbon uptake ranging from 2.01 to 2.58 Pg C yr -1 depending on model version, grid resolution, and atmospheric forcing data set.« less
NASA Astrophysics Data System (ADS)
Elarusi, Abdulmunaem; Attar, Alaa; Lee, HoSung
2018-02-01
The optimum design of a thermoelectric system for application in car seat climate control has been modeled and its performance evaluated experimentally. The optimum design of the thermoelectric device combining two heat exchangers was obtained by using a newly developed optimization method based on the dimensional technique. Based on the analytical optimum design results, commercial thermoelectric cooler and heat sinks were selected to design and construct the climate control heat pump. This work focuses on testing the system performance in both cooling and heating modes to ensure accurate analytical modeling. Although the analytical performance was calculated using the simple ideal thermoelectric equations with effective thermoelectric material properties, it showed very good agreement with experiment for most operating conditions.
Brayton heat exchanger unit development program (alternate design)
NASA Technical Reports Server (NTRS)
Duncan, J. D.; Gibson, J. C.; Graves, R. F.; Morse, C. J.; Richard, C. E.
1973-01-01
A Brayton Heat Exchanger Unit Alternate Design (BHXU-Alternate) consisting of a recuperator, a heat sink heat exchanger, and a gas ducting system, was designed and fabricated. The design was formulated to provide a high performance unit suitable for use in a long-life Brayton-cycle powerplant. Emphasis was on double containment against external leakage and leakage of the organic coolant into the gas stream. A parametric analysis and design study was performed to establish the optimum component configurations to achieve low weight and size and high reliability, while meeting the requirements of high effectiveness and low pressure drop. Layout studies and detailed mechanical and structural design were performed to obtain a flight-type packaging arrangement, including the close-coupled integration of the BHXU-Alternate with the Brayton Rotating Unit (BRU).
Zhuang, Qianlai; Zhu, Xudong; He, Yujie; Prigent, Catherine; Melillo, Jerry M.; McGuire, A. David; Prinn, Ronald G.; Kicklighter, David W.
2015-01-01
Estimates of the seasonal and interannual exchanges of carbon dioxide (CO2) and methane (CH4) between land ecosystems north of 45°N and the atmosphere are poorly constrained, in part, because of uncertainty in the temporal variability of water-inundated land area. Here we apply a process-based biogeochemistry model to evaluate how interannual changes in wetland inundation extent might have influenced the overall carbon dynamics of the region during the time period 1993–2004. We find that consideration by our model of these interannual variations between 1993 and 2004, on average, results in regional estimates of net methane sources of 67.8 ± 6.2 Tg CH4 yr−1, which is intermediate to model estimates that use two static inundation extent datasets (51.3 ± 2.6 and 73.0 ± 3.6 Tg CH4 yr−1). In contrast, consideration of interannual changes of wetland inundation extent result in regional estimates of the net CO2 sink of −1.28 ± 0.03 Pg C yr−1 with a persistent wetland carbon sink from −0.38 to −0.41 Pg C yr−1 and a upland sink from −0.82 to −0.98 Pg C yr−1. Taken together, despite the large methane emissions from wetlands, the region is a consistent greenhouse gas sink per global warming potential (GWP) calculations irrespective of the type of wetland datasets being used. However, the use of satellite-detected wetland inundation extent estimates a smaller regional GWP sink than that estimated using static wetland datasets. Our sensitivity analysis indicates that if wetland inundation extent increases or decreases by 10% in each wetland grid cell, the regional source of methane increases 13% or decreases 12%, respectively. In contrast, the regional CO2 sink responds with only 7–9% changes to the changes in wetland inundation extent. Seasonally, the inundated area changes result in higher summer CH4 emissions, but lower summer CO2 sinks, leading to lower summer negative greenhouse gas forcing. Our analysis further indicates that wetlands play a disproportionally important role in affecting regional greenhouse gas budgets given that they only occupy approximately 10% of the total land area in the region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanai, Michio; Tomita, Tomohiko
1997-11-01
In this paper, an analysis of the heat and moisture budgets of the troposphere is revised and extended. The analysis is based on the National Centers for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) reanalysis from 1980 to 1994. The seasonal and interannual variability of heat sources and sinks and the nature of heating over various geographical locations is examined in detail. Results presented include global distributions of the 15-year mean of the vertically integrated heat source and moisture sink and the outgoing longwave radiation flux for northern winter and northern summer. A time series of monthlymore » mean anomalies of the apparent heat source, the apparent moisture sink, outgoing longwave radiation, sea surface temperature, and divergence at wind fields of 850 hPa and 200 hPa are presented for the equatorial Indian Ocean, the equatorial eastern Pacific Ocean, western Tibet, and eastern Tibet. In the equatorial Indian Ocean, short period oscillation is superimposed upon longer periods. Over the eastern Pacific, a longer periodicity is dominant and the variability of the heat source is very well correlated with similar variations of outgoing longwave radiation, sea surface temperature, and horizontal divergence. The high correlation with these variables suggests that anomalous heating is accompanied by intensified convective activity favored by warmer sea surface temperature. 13 refs., 5 figs.« less
NASA Astrophysics Data System (ADS)
Schwietzke, S.; Sherwood, O.; Michel, S. E.; Bruhwiler, L.; Dlugokencky, E. J.; Tans, P. P.
2017-12-01
Methane isotopic data have increasingly been used in recent studies to help constrain global atmospheric methane sources and sinks. The added scientific contributions to this field include (i) careful comparisons and merging of atmospheric isotope measurement datasets to increase spatial coverage, (ii) in-depth analyses of observed isotopic spatial gradients and seasonal patterns, and (iii) improved datasets of isotopic source signatures. Different interpretations have been made regarding the utility of the isotopic data on the diagnosis of methane sources and sinks. Some studies have found isotopic evidence of a largely microbial source causing the renewed growth in global atmospheric methane since 2007, and underestimated global fossil fuel methane emissions compared to most previous studies. However, other studies have challenged these conclusions by pointing out substantial spatial variability in isotopic source signatures as well as open questions in atmospheric sinks and biomass burning trends. This presentation will review and contrast the main arguments and evidence for the different conclusions. The analysis will distinguish among the different research objectives including (i) global methane budget source attribution in steady-state, (ii) source attribution of recent global methane trends, and (iii) identifying specific methane sources in individual plumes during field campaigns. Additional comparisons of model experiments with atmospheric measurements and updates on isotopic source signature data will complement the analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boer, Rizaldi; Wasrin, Upik R.; Hendri, Perdinan
2007-06-01
Rehabilitation of degraded forest land throughimplementation of carbon sink projects can increase terrestrial carbonstock. However, carbon emissions outside the project boundary, which iscommonly referred to as leakage, may reduce or negate the sequestrationbenefits. This study assessed leakage from carbon sink projects thatcould potentially be implemented in the study area comprised of elevensub-districts in the Batanghari District, Jambi Province, Sumatra,Indonesia. The study estimates the probability of a given land use/coverbeing converted into other uses/cover, by applying a logit model. Thepredictor variables were: proximity to the center of the land use area,distance to transportation channel (road or river), area of agriculturalland, unemploymentmore » (number of job seekers), job opportunities, populationdensity and income. Leakage was estimated by analyzing with and withoutcarbon sink projects scenarios. Most of the predictors were estimated asbeing significant in their contribution to land use cover change. Theresults of the analysis show that leakage in the study area can be largeenough to more than offset the project's carbon sequestration benefitsduring the period 2002-2012. However, leakage results are very sensitiveto changes of carbon density of the land uses in the study area. Byreducing C-density of lowland and hill forest by about 10 percent for thebaseline scenario, the leakage becomes positive. Further data collectionand refinement is therefore required. Nevertheless, this study hasdemonstrated that regional analysis is a useful approach to assessleakage.« less
Deng, Jia; Staufenbiel, Sven; Bodmeier, Roland
2017-07-15
The purpose of this study was to discriminate three crystal forms of carbamazepine (a BCS II drug) by in vitro dissolution testing and to correlate in vitro data with published in vivo data. A biphasic dissolution system (phosphate buffer pH6.8 and octanol) was used to evaluate the dissolution of the three polymorphic forms and to compare it with conventional single phase dissolution tests performed under sink and non-sink conditions. Similar dissolution profiles of three polymorphic forms were observed in the conventional dissolution test under sink conditions. Although a difference in dissolution was seen in the single phase dissolution test under non-sink conditions as well as in the aqueous phase of the biphasic test, little relevance for in vivo data was observed. In contrast, the biphasic dissolution system could discriminate between the different polymorphic forms in the octanol phase with a ranking of form III>form I>dihydrate form. This was in agreement with the in vivo performance. The dissolved drug available for oral absorption, which was dominated by dissolution and solution-mediated phase transformation, could be reflected in the biphasic dissolution test. Moreover, a good correlation was established between in vitro dissolution in the octanol phase of the biphasic test and in vivo pharmacokinetic data (R 2 =0.99). The biphasic dissolution method is a valuable tool to discriminate between different crystal forms in the formulations of poorly soluble drugs. Copyright © 2017. Published by Elsevier B.V.
Divergence in sink contributions to population persistence
Population sinks present unique conservation challenges. The loss of animals in sinks can compromise persistence. Conversely, sinks can bolster population sizes, improving viability. To assess the contribution of sinks to regional persistence, we simulated the removal of sink hab...
On modeling weak sinks in MODPATH
Abrams, Daniel B.; Haitjema, Henk; Kauffman, Leon J.
2012-01-01
Regional groundwater flow systems often contain both strong sinks and weak sinks. A strong sink extracts water from the entire aquifer depth, while a weak sink lets some water pass underneath or over the actual sink. The numerical groundwater flow model MODFLOW may allow a sink cell to act as a strong or weak sink, hence extracting all water that enters the cell or allowing some of that water to pass. A physical strong sink can be modeled by either a strong sink cell or a weak sink cell, with the latter generally occurring in low resolution models. Likewise, a physical weak sink may also be represented by either type of sink cell. The representation of weak sinks in the particle tracing code MODPATH is more equivocal than in MODFLOW. With the appropriate parameterization of MODPATH, particle traces and their associated travel times to weak sink streams can be modeled with adequate accuracy, even in single layer models. Weak sink well cells, on the other hand, require special measures as proposed in the literature to generate correct particle traces and individual travel times and hence capture zones. We found that the transit time distributions for well water generally do not require special measures provided aquifer properties are locally homogeneous and the well draws water from the entire aquifer depth, an important observation for determining the response of a well to non-point contaminant inputs.
NASA Astrophysics Data System (ADS)
Nurdin; Ikaningtyas; Kurniaty, Rika
2018-04-01
This study aims to analysis the effectiveness of foreign ship sinking policies to eradicate illegal, unreported, and unregulated (IUU) fishing. There are many foreign fishing vessels were detained due to IUU fishing in Indonesia`s exclusive economic zone (EEZ) waters, particularly in the Natuna and Anambas region. In combating illegal fishing, the government of the Republic of Indonesia take concrete actions in protecting marine potentials by sinking foreign vessel policies. In the last three years more than 300 foreign ships are drowned by Indonesian government. This study revealed that regulations concerning the act of sinking the vessel have been in existence since 2009 but lack of socialization. The Indonesian government’s policy regarding foreign-flagged vessel carrying out IUU fishing is regulated under Law Number 45 of 2009 on Fisheries, and internationally permitted with certain restrictions on conditions set forth in article 73 paragraph (3) of UNCLOS 1982. These policy is part of an effort to improve the deterrence effect of regional offenses that could harm and threaten the sovereignty of the state.
2008-09-01
Mudawar Jaeseon Lee Myungki Sung Boiling and Two-Phase Flow Laboratory School of Mechanical Engineering Purdue University West Lafayette, Indiana...NA 6. AUTHOR(S) 5d. PROJECT NUMBER Mudawar , Issam NA Lee, Jaeseon Sung, Myung Ki 5e. TASK NUMBER NA 5f. WORK UNIT NUMBER NA 7. PERFORMING...NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF Mudawar , Issam PAGES U UU 19b. TELEPHONE NUMBER (Include area code)U U 465 765
An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network
Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian
2015-01-01
Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish–Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection. PMID:26447696
An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network.
Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian
2015-01-01
Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish-Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection.
Synaptic activation patterns of the perirhinal-entorhinal inter-connections.
de Villers-Sidani, E; Tahvildari, B; Alonso, A
2004-01-01
Ample neuropsychological evidence supports the role of rhinal cortices in memory. The perirhinal cortex (PRC) represents one of the main conduits for the bi-directional flow of information between the entorhinal-hippocampal network and the cortical mantle, a process essential in memory formation. However, despite anatomical evidence for a robust reciprocal connectivity between the perirhinal and entorhinal cortices, neurophysiological understanding of this circuitry is lacking. We now present the results of a series of electrophysiological experiments in rats that demonstrate robust synaptic activation patterns of the perirhinal-entorhinal inter-connections. First, using silicon multi-electrode arrays placed under visual guidance in vivo we performed current source density (CSD) analysis of lateral entorhinal cortex (LEC) responses to PRC stimulation, which demonstrated a current sink in layers II-III of the LEC with a latency consistent with monosynaptic activation. To further substantiate and extend this conclusion, we developed a PRC-LEC slice preparation where CSD analysis also revealed a current sink in superficial LEC layers in response to PRC stimulation. Importantly, intracellular recording of superficial LEC layer neurons confirmed that they receive a major monosynaptic excitatory input from the PRC. Finally, CSD analysis of the LEC to PRC projection in vivo also allowed us to document robust feedback synaptic activation of PRC neurons to deep LEC layer activation. We conclude that a clear bidirectional pattern of synaptic interactions exists between the PRC and LEC that would support a dynamic flow of information subserving memory function in the temporal lobe.
Re-evaluating the 1940s CO2 plateau
NASA Astrophysics Data System (ADS)
Bastos, A.; Ciais, P.; Barichivitch, J.; Brovkin, V.; Gasser, T.; Pongratz, J.; Trudinger, C. M.
2016-12-01
The ice-core record reveals a stabilisation of atmospheric CO2 in the 1940s (the so called "plateau"), in spite of continued emissions from fossil fuel burning (FF) and land-use change (LUC). This stabilisation has been previously attributed to very strong oceanic CO2 uptake, perhaps in response to the El-Niño event in 1940. However, this explanation is questionable, since recent atmospheric CO2 data indicate that El Niño events generally lead to higher atmospheric CO2 growth-rates because of the terrestrial response, and oceanic CO2 measurements indicate the range of variability in the ocean sink has been rather modest in recent decades. We use up-to-date reconstructions of the CO2 sources (FF and LUC), ocean uptake from two different reconstructions and the terrestrial sink (from TRENDY models) over the 20th century to evaluate whether these allow capturing the CO2 plateau and provide further insight about its drivers. While these datasets provide a plausible explanation for most of the 20th century carbon budget, especially since 1970, they overestimate atmospheric CO2 growth rate during the plateau period by 0.9-2.0PgC.yr-1. We test the possible explanations for this mismatch, namely i) the role of natural variability in the ocean sink; ii) the representation of the terrestrial sink response to the climate anomalies during the 1940s by land-surface models; iii) the contribution of land-use processes possibly not represented in the current datasets. We conclude that a strong terrestrial sink concurrent with enhanced oceanic uptake is required to explain the CO2 stabilisation. Tests performed using the OSCAR carbon-cycle model suggest that changes in land-use coinciding with drastic socioeconomic changes during WW2 could plausibly contribute to the additional sink required.
Optimizing Endoscope Reprocessing Resources Via Process Flow Queuing Analysis.
Seelen, Mark T; Friend, Tynan H; Levine, Wilton C
2018-05-04
The Massachusetts General Hospital (MGH) is merging its older endoscope processing facilities into a single new facility that will enable high-level disinfection of endoscopes for both the ORs and Endoscopy Suite, leveraging economies of scale for improved patient care and optimal use of resources. Finalized resource planning was necessary for the merging of facilities to optimize staffing and make final equipment selections to support the nearly 33,000 annual endoscopy cases. To accomplish this, we employed operations management methodologies, analyzing the physical process flow of scopes throughout the existing Endoscopy Suite and ORs and mapping the future state capacity of the new reprocessing facility. Further, our analysis required the incorporation of historical case and reprocessing volumes in a multi-server queuing model to identify any potential wait times as a result of the new reprocessing cycle. We also performed sensitivity analysis to understand the impact of future case volume growth. We found that our future-state reprocessing facility, given planned capital expenditures for automated endoscope reprocessors (AERs) and pre-processing sinks, could easily accommodate current scope volume well within the necessary pre-cleaning-to-sink reprocessing time limit recommended by manufacturers. Further, in its current planned state, our model suggested that the future endoscope reprocessing suite at MGH could support an increase in volume of at least 90% over the next several years. Our work suggests that with simple mathematical analysis of historic case data, significant changes to a complex perioperative environment can be made with ease while keeping patient safety as the top priority.
NASA Astrophysics Data System (ADS)
Trull, T. W.; Bray, S. G.; Buesseler, K. O.; Lamborg, C. H.; Manganini, S.; Moy, C.; Valdes, J.
2008-07-01
Among the parameters affecting carbon transfer to the ocean interior, particle sinking rates vary three orders of magnitude and thus more than primary production, f-ratios, or particle carbon contents [e.g., Boyd, P.W., Trull, T.W., 2006. Understanding the export of marine biogenic particles: is there consensus? Progress in Oceanography 4, 276-312, doi:10.1016/j.pocean.2006.10.007]. Very few data have been obtained from the mesopelagic zone where the majority of carbon remineralization occurs and the attenuation of the sinking flux is determined. Here, we report sinking rates from ˜300 m depth for the subtropical (station ALOHA, June 2004) and subarctic (station K2, July 2005) North Pacific Ocean, obtained from short (6.5 day) deployments of an indented rotating sphere (IRS) sediment trap operating as an in situ settling column [Peterson, M.L., Wakeham, S.G., Lee, C., Askea, M.A., Miquel, J.C., 2005. Novel techniques for collection of sinking particles in the ocean and determining their settling rates. Limnology and Oceanography Methods 3, 520-532] to separate the flux into 11 sinking-rate fractions ranging from >820 to >2 m d -1 that are collected by a carousel for further analysis. Functioning of the IRS trap was tested using a novel programming sequence to check that all particles have cleared the settling column prior to the next delivery of particles by the 6-hourly rotation cycle of the IRS. There was some evidence (from the flux distribution among the cups and photomicroscopy of the collected particles) that very slow-sinking particles may have been under-collected because they were unable to penetrate the brine-filled collection cups, but good evidence for appropriate collection of fast-settling fractions. Approximately 50% of the particulate organic carbon (POC) flux was sinking at greater than 100 m d -1 at both stations. At ALOHA, more than 15% of the POC flux sank at >820 m d -1, but low fluxes make this uncertain, and precluded resolution of particles sinking slower than 137 m d -1. At K2, less than 1% of the POC flux sank at >820 m d -1, but a large fraction (˜15-45%) of the flux was contributed by other fast-sinking classes (410 and 205 m d -1). PIC and BSi minerals were not present in higher proportions in the faster sinking fractions, but the observations were too limited to rule out a ballasting contribution to the control of sinking rates. Photographic evidence for a wide range of particle types within individual sinking-rate fractions suggests that biological processes that set the porosity and shape of particles are also important and may mask the role of minerals. Comparing the spectrum of sinking rates observed at K2 with the power-law profile of flux attenuation with depth obtained from other VERTIGO sediment traps deployed at multiple depths [Buesseler, K.O., Lamborg, C.H., Boyd, P.W., Lam, P.J., Trull, T.W., Bidigare, R.R., Bishop, J.K.B., Casciotti, K.L., Dehairs, F., Elskens, M., Honda, M., Karl, D.M., Siegel, D., Silver, M., Steinberg, D., Valdes, J., Van Mooy, B., Wilson, S.E., 2007b. Revisiting carbon flux through the Ocean's twilight zone. Science 316(5824), 567-570, doi: 10.1126/science.1137959] emphasizes the importance of particle transformations within the mesopelagic zone in the control of carbon transport to the ocean interior.
NASA Astrophysics Data System (ADS)
Jha, Sourabh; Crittenden, Thomas; Glezer, Ari
2016-11-01
Heat transport within high aspect ratio, rectangular mm-scale channels that model segments of a high-performance, air-cooled heat sink is enhanced by the formation of unsteady small-scale vortical motions induced by autonomous, aeroelastic fluttering of cantilevered planar thin-film reeds. The flow mechanisms and scaling of the interactions between the reed and the channel flow are explored to overcome the limits of forced convection heat transport from air-side heat exchangers. High-resolution PIV measurements in a testbed model show that undulations of the reed's surface lead to formation and advection of vorticity concentrations, and to alternate shedding of spanwise CW and CCW vortices. These vortices scale with the reed motion amplitude, and ultimately result in motions of decreasing scales and enhanced dissipation that are reminiscent of a turbulent flow. The vorticity shedding lead to strong enhancement in heat transfer that increases with the Reynolds number of the base flow (e.g., the channel's thermal coefficient of performance is enhanced by 2.4-fold and 9-fold for base flow Re = 4,000 and 17,400, respectively, with corresponding decreases of 50 and 77% in the required channel flow rates). This is demonstrated in heat sinks for improving the thermal performance of low-Re thermoelectric power plant air-cooled condensers, where the global air-side pressure losses can be significantly reduced by lowering the required air volume flow rate at a given heat flux and surface temperature. AFOSR and NSF-EPRI.
NASA Technical Reports Server (NTRS)
Enginer, J. E.; Luedke, E. E.; Wanous, D. J.
1976-01-01
Continuing efforts in large gains in heat-pipe performance are reported. It was found that gas-controlled variable-conductance heat pipes can perform reliably for long periods in space and effectively provide temperature stabilization for spacecraft electronics. A solution was formulated that allows the control gas to vent through arterial heat-pipe walls, thus eliminating the problem of arterial failure under load, due to trace impurities of noncondensable gas trapped in an arterial bubble during priming. This solution functions well in zero gravity. Another solution was found that allows priming at a much lower fluid charge. A heat pipe with high capacity, with close temperature control of the heat source and independent of large variations in sink temperature was fabricated.
Rotational effect of buoyancy in frontcrawl: Does it really cause the legs to sink?
Yanai, T
2001-02-01
The purposes of this study were to quantify the rotational effect of buoyant force (buoyant torque) during the performance of front crawl and to reexamine the mechanics of horizontal alignment of the swimmers. Three-dimensional videography was used to measure the position and orientation of the body segments of 11 competitive swimmers performing front crawl stroke at a sub-maximum sprinting speed. The dimensions of each body segment were defined mathematically to match the body segment parameters (mass, density, and centroid position) reported in the literature. The buoyant force and torque were computed for every video-field (60fields/s), assuming that the water surface followed a sine curve along the length of the swimmer. The average buoyant torque over the stroke cycle (mean=22Nm) was directed to raise the legs and lower the head, primarily because the recovery arm and a part of the head were lifted out of the water and the center of buoyancy shifted toward the feet. This finding contradicts the prevailing speculation that buoyancy only causes the legs to sink throughout the stroke cycle. On the basis of a theoretical analysis of the results, it is postulated that the buoyant torque, and perhaps the forces generated by kicks, function to counteract the torque generated by the hydrodynamic forces acting on the hands, so as to maintain the horizontal alignment of the body in front crawl.
CSRQ: Communication-Efficient Secure Range Queries in Two-Tiered Sensor Networks
Dai, Hua; Ye, Qingqun; Yang, Geng; Xu, Jia; He, Ruiliang
2016-01-01
In recent years, we have seen many applications of secure query in two-tiered wireless sensor networks. Storage nodes are responsible for storing data from nearby sensor nodes and answering queries from Sink. It is critical to protect data security from a compromised storage node. In this paper, the Communication-efficient Secure Range Query (CSRQ)—a privacy and integrity preserving range query protocol—is proposed to prevent attackers from gaining information of both data collected by sensor nodes and queries issued by Sink. To preserve privacy and integrity, in addition to employing the encoding mechanisms, a novel data structure called encrypted constraint chain is proposed, which embeds the information of integrity verification. Sink can use this encrypted constraint chain to verify the query result. The performance evaluation shows that CSRQ has lower communication cost than the current range query protocols. PMID:26907293
NASA Astrophysics Data System (ADS)
Majumder, Sambit; Majumder, Abhik; Bhaumik, Swapan
2016-07-01
The present microelectronics market demands devices with high power dissipation capabilities having enhanced cooling per unit area. The drive for miniaturizing the devices to even micro level dimensions is shooting up the applied heat flux on such devices, resulting in complexity in heat transfer and cooling management. In this paper, a method of CPU processor cooling is introduced where active and passive cooling techniques are incorporated simultaneously. A heat sink consisting of fins is designed, where water flows internally through the mini-channel fins and air flows externally. Three dimensional numerical simulations are performed for large set of Reynolds number in laminar region using finite volume method for both developing flows. The dimensions of mini-channel fins are varied for several aspect ratios such as 1, 1.33, 2 and 4. Constant temperature (T) boundary condition is applied at heat sink base. Channel fluid temperature, pressure drop are analyzed to obtain best cooling option in the present study. It has been observed that as the aspect ratio of the channel decreases Nusselt number decreases while pressure drop increases. However, Nusselt number increases with increase in Reynolds number.
Modeling pCO2 variability in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Xue, Z.; He, R.; Fennel, K.; Cai, W.-J.; Lohrenz, S.; Huang, W.-J.; Tian, H.
2014-08-01
A three-dimensional coupled physical-biogeochemical model was used to simulate and examine temporal and spatial variability of surface pCO2 in the Gulf of Mexico (GoM). The model is driven by realistic atmospheric forcing, open boundary conditions from a data-assimilative global ocean circulation model, and observed freshwater and terrestrial nutrient and carbon input from major rivers. A seven-year model hindcast (2004-2010) was performed and was validated against in situ measurements. The model revealed clear seasonality in surface pCO2. Based on the multi-year mean of the model results, the GoM is an overall CO2 sink with a flux of 1.34 × 1012 mol C yr-1, which, together with the enormous fluvial carbon input, is balanced by the carbon export through the Loop Current. A sensitivity experiment was performed where all biological sources and sinks of carbon were disabled. In this simulation surface pCO2 was elevated by ~ 70 ppm, providing the evidence that biological uptake is a primary driver for the observed CO2 sink. The model also provided insights about factors influencing the spatial distribution of surface pCO2 and sources of uncertainty in the carbon budget.
Modeling pCO2 Variability in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Xue, Z. G.; He, R.; Fennel, K.; Cai, W. J.; Lohrenz, S. E.; Huang, W. J.; Tian, H.
2014-12-01
A three-dimensional coupled physical-biogeochemical model was used to simulate and examine temporal and spatial variability of surface pCO2 in the Gulf of Mexico (GoM). The model is driven by realistic atmospheric forcing, open boundary conditions from a data-assimilative global ocean circulation model, and observed freshwater and terrestrial nutrient and carbon input from major rivers. A seven-year model hindcast (2004-2010) was performed and was validated against in situ measurements. The model revealed clear seasonality in surface pCO2. Based on the multi-year mean of the model results, the GoM is an overall CO2 sink with a flux of 1.34 × 1012 mol C yr-1, which, together with the enormous fluvial carbon input, is balanced by the carbon export through the Loop Current. A sensitivity experiment was performed where all biological sources and sinks of carbon were disabled. In this simulation surface pCO2 was elevated by ~70 ppm, providing the evidence that biological uptake is a primary driver for the observed CO2 sink. The model also provided insights about factors influencing the spatial distribution of surface pCO2 and sources of uncertainty in the carbon budget.
Orbital transfer vehicle 3000 LBF thrust chamber assembly hot fire test program
NASA Technical Reports Server (NTRS)
Schneider, Judy; Hayden, Warren R.
1988-01-01
The Aerojet Orbital Transfer Vehicle (OTV) Thrust Chamber Assembly (TCA) concept consists of a hydrogen cooled chamber, and annular injector, and an oxygen cooled centerbody. The hot fire testing of a heat sink version of the chamber with only the throat section using hydrogen cooling is documented. Hydraulic performance of the injector and cooled throat were verified by water flow testing prior to TCA assembly. The cooled throat was proof tested to 3000 psia to verify the integrity of the codeposited EF nickel-cobalt closeout. The first set of hot fire tests were conducted with a heat sink throat to obtain heat flux information. After demonstration of acceptable heat fluxes, the heat sink throat was replaced with the LH2 cooled throat section. Fourteen tests were conducted with a heat sink chamber and throat at chamber pressures of 85 to 359 psia. The injector face was modified at this time to add more face coolant flow. Ten tests were then conducted at chamber pressures of 197 to 620 psia. Actual heat fluxes at the higher chamber pressure range were 23 percent higher than the average of 10 Btu/in 2 predicted.
Microwave liver ablation: influence of hepatic vein size on heat-sink effect in a porcine model.
Yu, Nam C; Raman, Steven S; Kim, Young Jun; Lassman, Charles; Chang, Xinlian; Lu, David S K
2008-07-01
To determine influence of hepatic vein size on perfusion-mediated attenuation in adjacent microwave thermal ablation. With approval of the institutional animal research committee, seven Yorkshire pigs underwent percutaneous (n = 2) or open (n = 5) microwave liver ablation under general anesthesia. In each, multiple ultrasound-guided, nonoverlapping thermal lesions were created within 1 cm of hepatic veins in a 5-10-minute ablation at 45 W. After euthanasia, the liver was harvested and sectioned at 0.5-cm intervals and the degree of perivascular coagulation attenuation was graded on histopathologic analysis. Correlation between venous size (small, < or =3 mm; medium, 3-6 mm; and large, >6 mm) and attenuation grade was performed with use of the Spearman rank test. In 63 of 103 sections (61%)--29 of 37 (78%) small, 27 of 48 (56%) medium, and seven of 18 (39%) large veins--the thermal injury extended to the vein wall around the entire circumference of the coagulation front without distortion of the ablation margin. In 40 of 103 sections (38.9%), varying degrees of concave distortion of perivenous ablation margins were noted, with significant correlation between vein size and heat-sink extent (P < .01). However, thermal injury extended to the vascular wall in all sections without complete circumferential sparing of liver tissue. Around two thrombosed veins, thermal lesions encased the vessels, producing paradoxically convex ablation margins. Although the heat-sink effect was significantly dependent on hepatic vein size, the majority of pathologic sections exhibited no or minimal effect. Further study is required to assess clinical implications.
Efficient Data Gathering in 3D Linear Underwater Wireless Sensor Networks Using Sink Mobility
Akbar, Mariam; Javaid, Nadeem; Khan, Ayesha Hussain; Imran, Muhammad; Shoaib, Muhammad; Vasilakos, Athanasios
2016-01-01
Due to the unpleasant and unpredictable underwater environment, designing an energy-efficient routing protocol for underwater wireless sensor networks (UWSNs) demands more accuracy and extra computations. In the proposed scheme, we introduce a mobile sink (MS), i.e., an autonomous underwater vehicle (AUV), and also courier nodes (CNs), to minimize the energy consumption of nodes. MS and CNs stop at specific stops for data gathering; later on, CNs forward the received data to the MS for further transmission. By the mobility of CNs and MS, the overall energy consumption of nodes is minimized. We perform simulations to investigate the performance of the proposed scheme and compare it to preexisting techniques. Simulation results are compared in terms of network lifetime, throughput, path loss, transmission loss and packet drop ratio. The results show that the proposed technique performs better in terms of network lifetime, throughput, path loss and scalability. PMID:27007373
Efficient Data Gathering in 3D Linear Underwater Wireless Sensor Networks Using Sink Mobility.
Akbar, Mariam; Javaid, Nadeem; Khan, Ayesha Hussain; Imran, Muhammad; Shoaib, Muhammad; Vasilakos, Athanasios
2016-03-19
Due to the unpleasant and unpredictable underwater environment, designing an energy-efficient routing protocol for underwater wireless sensor networks (UWSNs) demands more accuracy and extra computations. In the proposed scheme, we introduce a mobile sink (MS), i.e., an autonomous underwater vehicle (AUV), and also courier nodes (CNs), to minimize the energy consumption of nodes. MS and CNs stop at specific stops for data gathering; later on, CNs forward the received data to the MS for further transmission. By the mobility of CNs and MS, the overall energy consumption of nodes is minimized. We perform simulations to investigate the performance of the proposed scheme and compare it to preexisting techniques. Simulation results are compared in terms of network lifetime, throughput, path loss, transmission loss and packet drop ratio. The results show that the proposed technique performs better in terms of network lifetime, throughput, path loss and scalability.
Sinks as limited resources? A new indicator for evaluating anthropogenic material flows
Kral, Ulrich; Brunner, Paul H.; Chen, Pi-Cheng; Chen, Sih-Rong
2014-01-01
Besides recyclables, the use of materials inevitably yields non-recyclable materials such as emissions and wastes for disposal. These flows must be directed to sinks in a way that no adverse effects arise for humans and the environment. The objective of this paper is to present a new indicator for the assessment of substance flows to sinks on a regional scale. The indicator quantifies the environmentally acceptable mass share of a substance in actual waste and emission flows, ranging from 0% as worst case to 100% as best case. This paper consists of three parts: first, the indicator is defined. Second, a methodology to determine the indicator score is presented, including (i) substance flows analysis and (ii) a distant-to-target approach based on an adaptation of the Ecological Scarcity Method 2006. Third, the metric developed is applied in three case studies including copper (Cu) and lead (Pb) in the city of Vienna, and perfluorooctane sulfonate (PFOS) in Switzerland. The following results were obtained: in Vienna, 99% of Cu flows to geogenic and anthropogenic sinks are acceptable when evaluated by the distant-to-target approach. However, the 0.7% of Cu entering urban soils and the 0.3% entering receiving waters are beyond the acceptable level. In the case of Pb, 92% of all flows into sinks prove to be acceptable, and 8% are disposed of in local landfills with limited capacity. For PFOS, 96% of all flows into sinks are acceptable. 4% cannot be evaluated due to a lack of normative criteria, despite posing a risk for human health and the environment. The examples demonstrate the need (i) for appropriate data of good quality to calculate the sink indicator and (ii) for standards, needed for the assessment of substance flows to urban soils and receiving waters. This study corroborates that the new indicator is well suited as a base for decisions regarding the control of hazardous substances in waste and environmental management. PMID:25368543
Divergence in sink contributions to population persistence (journal article)
Population sinks present unique conservation challenges. The loss of individuals in sinks can compromise persistence; but conversely, sinks can improve viability by improving connectivity and facilitating the recolonization of vacant sources. To assess the contribution of sinks t...
Sequestering CO(2) by mineral carbonation: stability against acid rain exposure.
Allen, Daniel J; Brent, Geoff F
2010-04-01
Mineral carbonation is a potentially attractive alternative to storage of compressed CO(2) in underground repositories, known as geosequestration. Processes for the conversion of basic ores, such as magnesium silicates, to carbonates have been proposed by various researchers, with storage of the carbonate as backfill in the original mine representing a solid carbon sink. The stability of such carbon sinks against acid rain and other sources of strong acids is examined here. It is acknowledged that in the presence of strong acid, carbonates will dissolve and release carbon dioxide. A sensitivity analysis covering annual average rainfall and pH that may be encountered in industrialized areas of the United States, China, Europe, and Australia was conducted to determine maximum CO(2) rerelease rates from mineral carbonation carbon sinks. This analysis is based on a worst-case premise that is equivalent to assuming infinitely rapid kinetics of dissolution of the carbonate. The analysis shows that under any likely conditions of pH and rainfall, leakage rates of stored CO(2) are negligible. This is illustrated in a hypothetical case study under Australian conditions. It is thus proposed that sequestration by mineral carbonation can be considered to be permanent on practical human time scales. Other possible sources of acid have also been considered.
NASA Astrophysics Data System (ADS)
Keppler, Frank; Bahlmann, Enno; Greule, Markus; Schöler, Heinz Friedrich; Wittmer, Julian; Zetzsch, Cornelius
2018-05-01
Chloromethane (CH3Cl) is an important provider of chlorine to the stratosphere but detailed knowledge of its budget is missing. Stable isotope analysis is a potentially powerful tool to constrain CH3Cl flux estimates. The largest degree of isotope fractionation is expected to occur for deuterium in CH3Cl in the hydrogen abstraction reactions with its main sink reactant tropospheric OH and its minor sink reactant Cl atoms. We determined the isotope fractionation by stable hydrogen isotope analysis of the fraction of CH3Cl remaining after reaction with hydroxyl and chlorine radicals in a 3.5 m3 Teflon smog chamber at 293 ± 1 K. We measured the stable hydrogen isotope values of the unreacted CH3Cl using compound-specific thermal conversion isotope ratio mass spectrometry. The isotope fractionations of CH3Cl for the reactions with hydroxyl and chlorine radicals were found to be -264±45 and -280±11 ‰, respectively. For comparison, we performed similar experiments using methane (CH4) as the target compound with OH and obtained a fractionation constant of -205±6 ‰ which is in good agreement with values previously reported. The observed large kinetic isotope effects are helpful when employing isotopic analyses of CH3Cl in the atmosphere to improve our knowledge of its atmospheric budget.
NASA Astrophysics Data System (ADS)
Hepkema, Tjebbe M.; de Swart, Huib E.; Zagaris, Antonios; Duran–Matute, Matias
2018-05-01
In a tidal channel with adjacent tidal flats, along-channel momentum is dissipated on the flats during rising tides. This leads to a sink of along-channel momentum. Using a perturbative method, it is shown that the momentum sink slightly reduces the M2 amplitude of both the sea surface elevation and current velocity and favours flood dominant tides. These changes in tidal characteristics (phase and amplitude of sea surface elevations and currents) are noticeable if widths of tidal flats are at least of the same order as the channel width, and amplitudes and gradients of along-channel velocity are large. The M2 amplitudes are reduced because stagnant water flows from the flats into the channel, thereby slowing down the current. The M4 amplitudes and phases change because the momentum sink acts as an advective term during the fall of the tide, such a term generates flood dominant currents. For a prototype embayment that resembles the Marsdiep-Vlie double-inlet system of the Western Wadden Sea, it is found that for both the sea surface elevation and current velocity, including the momentum sink, lead to a decrease of approximately 2 % in M2 amplitudes and an increase of approximately 25 % in M4 amplitudes. As a result, the net import of coarse sediment is increased by approximately 35 %, while the transport of fine sediment is hardly influenced by the momentum sink. For the Marsdiep-Vlie system, the M2 sea surface amplitude obtained from the idealised model is similar to that computed with a realistic three-dimensional numerical model whilst the comparison with regard to M4 improves if momentum sink is accounted for.
Comparative safety assessment of surface versus submarine plutonium shipments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knepper, D.S.; Feltus, M.A.
1993-01-01
The recent shipment of plutonium from France to Japan aboard the freighter Akatsuki Maru touched off protests from environmental and antinuclear organizations. These protests arose from the fear of an accidental sinking of the vessel that would release its cargo to the sea, as well as the threat of a terrorist nation highjacking the ship for its cargo to produce atomic weapons. The sinking of a merchant ship is not uncommon, as illustrated by the famous losses of the tankers Amoco Cadiz and Exxon Valdez. The highjacking of a lightly armed freighter such as the Akatsuki Maru is possible andmore » would not be unduly difficult for a well-equipped terrorist nation. The combined threats of weapons proliferation and environmental damage arising from the diversion or destruction of a sea vessel carrying plutonium will continue to abound as the reprocessing of spent nuclear fuel increases. An alternate method for the transportation with reduced risks of both diversion and destruction needs to be developed. The shipment aboard the Akatsuki Maru was originally proposed to be flown from France to Japan over the continental United States. This proposal was rejected by the Reagan administration in 1988. A third alternative to the current ideas of air transport and surface transport is subsurface transport. This research project investigates the transportation of plutonium by submarine and compares it to the current method of transportation by freighter. This analysis involves a study of the military threat to a submarine by a terrorist nation and comparable threat to a surface vessel. To study the nonmilitary aspects of plutonium shipping, a fault-tree evaluation is performed for transportation by submarine and compared with the current risk analysis performed for surface vessels.« less
Jeon, Hyeonjae; Park, Kwangjin; Hwang, Dae-Joon; Choo, Hyunseung
2009-01-01
Sensor nodes transmit the sensed information to the sink through wireless sensor networks (WSNs). They have limited power, computational capacities and memory. Portable wireless devices are increasing in popularity. Mechanisms that allow information to be efficiently obtained through mobile WSNs are of significant interest. However, a mobile sink introduces many challenges to data dissemination in large WSNs. For example, it is important to efficiently identify the locations of mobile sinks and disseminate information from multi-source nodes to the multi-mobile sinks. In particular, a stationary dissemination path may no longer be effective in mobile sink applications, due to sink mobility. In this paper, we propose a Sink-oriented Dynamic Location Service (SDLS) approach to handle sink mobility. In SDLS, we propose an Eight-Direction Anchor (EDA) system that acts as a location service server. EDA prevents intensive energy consumption at the border sensor nodes and thus provides energy balancing to all the sensor nodes. Then we propose a Location-based Shortest Relay (LSR) that efficiently forwards (or relays) data from a source node to a sink with minimal delay path. Our results demonstrate that SDLS not only provides an efficient and scalable location service, but also reduces the average data communication overhead in scenarios with multiple and moving sinks and sources.
NASA Technical Reports Server (NTRS)
1985-01-01
Topics covered include: data systems and quality; analysis and assimilation techniques; impacts on forecasts; tropical forecasts; analysis intercomparisons; improvements in predictability; and heat sources and sinks.
Astro-E2 Magnesium Diboride High Current Leads
NASA Technical Reports Server (NTRS)
Panek, J. S.; Tuttle, J. G.; Riall, S.; Mustafi, S.; Gray, A.; Edmonds, R.; Marrero, V.
2003-01-01
The recent discovery of superconducting properties in MgB_2 and rapid development of small diameter steel-clad wires has opened up the possibility of enhancing the design of the baseline Astro-E2 high current lead assembly. Replacing YBCO filaments with MgB_2 wires and modifying the heat sink location can give much higher margins against quench from temperature oscillations of the 4 K heat sink, although wih some overall thermal penalty. The design and performance of a new lead assembly during flight qualification is discussed, with emphasis on thermal, structural, and electrical test results.
Hayat, Tasawar; Awais, Muhammad; Imtiaz, Amna
2016-01-01
This communication deals with the properties of heat source/sink in a magneto-hydrodynamic flow of a non-Newtonian fluid immersed in a porous medium. Shrinking phenomenon along with the permeability of the wall is considered. Mathematical modelling is performed to convert the considered physical process into set of coupled nonlinear mathematical equations. Suitable transformations are invoked to convert the set of partial differential equations into nonlinear ordinary differential equations which are tackled numerically for the solution computations. It is noted that dual solutions for various physical parameters exist which are analyzed in detail.
Binding of methane to activated mineral surfaces - a methane sink on Mars?
NASA Astrophysics Data System (ADS)
Nørnberg, P.; Knak Jensen, S. J.; Skibsted, J.; Jakobsen, H. J.; ten Kate, I. L.; Gunnlaugsson, H. P.; Merrison, J. P.; Finster, K.; Bak, Ebbe; Iversen, J. J.; Kondrup, J. C.
2015-10-01
Tumbling experiments that simulate the wind erosion of quartz grains in an atmosphere of 13 C-enriched methane are reported. The eroded grains are analyzed by 13C and 29 Si solid-state NMR techniques after several months of tumbling. The analysis shows that methane has reacted with the eroded surface to form covalent Si-CH3 bonds, which stay intact for temperatures up to at least 250oC. These findings offer a model for a methane sink that might explain the fast disappearance of methane on Mars.
Unequal Probability Marking Approach to Enhance Security of Traceback Scheme in Tree-Based WSNs.
Huang, Changqin; Ma, Ming; Liu, Xiao; Liu, Anfeng; Zuo, Zhengbang
2017-06-17
Fog (from core to edge) computing is a newly emerging computing platform, which utilizes a large number of network devices at the edge of a network to provide ubiquitous computing, thus having great development potential. However, the issue of security poses an important challenge for fog computing. In particular, the Internet of Things (IoT) that constitutes the fog computing platform is crucial for preserving the security of a huge number of wireless sensors, which are vulnerable to attack. In this paper, a new unequal probability marking approach is proposed to enhance the security performance of logging and migration traceback (LM) schemes in tree-based wireless sensor networks (WSNs). The main contribution of this paper is to overcome the deficiency of the LM scheme that has a higher network lifetime and large storage space. In the unequal probability marking logging and migration (UPLM) scheme of this paper, different marking probabilities are adopted for different nodes according to their distances to the sink. A large marking probability is assigned to nodes in remote areas (areas at a long distance from the sink), while a small marking probability is applied to nodes in nearby area (areas at a short distance from the sink). This reduces the consumption of storage and energy in addition to enhancing the security performance, lifetime, and storage capacity. Marking information will be migrated to nodes at a longer distance from the sink for increasing the amount of stored marking information, thus enhancing the security performance in the process of migration. The experimental simulation shows that for general tree-based WSNs, the UPLM scheme proposed in this paper can store 1.12-1.28 times the amount of stored marking information that the equal probability marking approach achieves, and has 1.15-1.26 times the storage utilization efficiency compared with other schemes.
Unequal Probability Marking Approach to Enhance Security of Traceback Scheme in Tree-Based WSNs
Huang, Changqin; Ma, Ming; Liu, Xiao; Liu, Anfeng; Zuo, Zhengbang
2017-01-01
Fog (from core to edge) computing is a newly emerging computing platform, which utilizes a large number of network devices at the edge of a network to provide ubiquitous computing, thus having great development potential. However, the issue of security poses an important challenge for fog computing. In particular, the Internet of Things (IoT) that constitutes the fog computing platform is crucial for preserving the security of a huge number of wireless sensors, which are vulnerable to attack. In this paper, a new unequal probability marking approach is proposed to enhance the security performance of logging and migration traceback (LM) schemes in tree-based wireless sensor networks (WSNs). The main contribution of this paper is to overcome the deficiency of the LM scheme that has a higher network lifetime and large storage space. In the unequal probability marking logging and migration (UPLM) scheme of this paper, different marking probabilities are adopted for different nodes according to their distances to the sink. A large marking probability is assigned to nodes in remote areas (areas at a long distance from the sink), while a small marking probability is applied to nodes in nearby area (areas at a short distance from the sink). This reduces the consumption of storage and energy in addition to enhancing the security performance, lifetime, and storage capacity. Marking information will be migrated to nodes at a longer distance from the sink for increasing the amount of stored marking information, thus enhancing the security performance in the process of migration. The experimental simulation shows that for general tree-based WSNs, the UPLM scheme proposed in this paper can store 1.12–1.28 times the amount of stored marking information that the equal probability marking approach achieves, and has 1.15–1.26 times the storage utilization efficiency compared with other schemes. PMID:28629135
Numerical modeling of a finned PCM heat sink
NASA Astrophysics Data System (ADS)
Kozak, Y.; Ziskind, G.
2012-09-01
Phase-change materials (PCMs) can absorb large amounts of heat without significant rise of their temperature during the melting process. This effect is attractive for using in thermal energy storage and passive thermal management. One of the techniques enhance the rate of heat transfer into PCMs is by using fins made of a thermally high conductive material. This paper deals with numerical modeling of a finned PCM-based heat sink. Heat is dissipated on the heat sink base and may be either absorbed by the PCM stored in compartments with conducting walls, or dissipated to the air using fins, or both. A detailed analysis had been done by means of a complete solution of the governing multi-dimensional conservation equations, taking into account convection in the melt, density and volume change due to phase change and temperature variation, motion of solid in the liquid, and other associated phenomena.
Aerial and surface rivers: downwind impacts on water availability from land use changes in Amazonia
NASA Astrophysics Data System (ADS)
Weng, Wei; Luedeke, Matthias K. B.; Zemp, Delphine C.; Lakes, Tobia; Kropp, Juergen P.
2018-02-01
The abundant evapotranspiration provided by the Amazon forests is an important component of the hydrological cycle, both regionally and globally. Since the last century, deforestation and expanding agricultural activities have been changing the ecosystem and its provision of moisture to the atmosphere. However, it remains uncertain how the ongoing land use change will influence rainfall, runoff, and water availability as findings from previous studies differ. Using moisture tracking experiments based on observational data, we provide a spatially detailed analysis recognizing potential teleconnection between source and sink regions of atmospheric moisture. We apply land use scenarios in upwind moisture sources and quantify the corresponding rainfall and runoff changes in downwind moisture sinks. We find spatially varying responses of water regimes to land use changes, which may explain the diverse results from previous studies. Parts of the Peruvian Amazon and western Bolivia are identified as the sink areas most sensitive to land use change in the Amazon and we highlight the current water stress by Amazonian land use change on these areas in terms of the water availability. Furthermore, we also identify the influential source areas where land use change may considerably reduce a given target sink's water reception (from our example of the Ucayali River basin outlet, rainfall by 5-12 % and runoff by 19-50 % according to scenarios). Sensitive sinks and influential sources are therefore suggested as hotspots for achieving sustainable land-water management.
Gemmell, Brad J; Oh, Genesok; Buskey, Edward J; Villareal, Tracy A
2016-10-12
Phytoplankton sinking is an important property that can determine community composition in the photic zone and material loss to the deep ocean. To date, studies of diatom suspension have relied on bulk measurements with assumptions that bulk rates adequately capture the essential characteristics of diatom sinking. However, recent work has illustrated that individual diatom sinking rates vary considerably from the mean bulk rate. In this study, we apply high-resolution optical techniques, individual-based observations of diatom sinking and a recently developed method of flow visualization around freely sinking cells. The results show that in both field samples and laboratory cultures, some large species of centric diatoms are capable of a novel behaviour, whereby cells undergo bursts of rapid sinking that alternate with near-zero sinking rates on the timescales of seconds. We also demonstrate that this behaviour is under direct metabolic control of the cell. We discuss these results in the context of implications for nutrient flux to the cell surface. While nutrient flux in large diatoms increases during fast sinking, current mass transport models cannot incorporate the unsteady sinking behaviour observed in this study. However, large diatoms appear capable of benefiting from the enhanced nutrient flux to their surface during rapid sinking even during brief intervening periods of near-zero sinking rates. © 2016 The Author(s).
N-Sink: A Tool to Identify Nitrogen Sources and Sinks within aWatershed Framework
N-Sink is a customized ArcMap© program that provides maps of N sourcesand sinks within a watershed, and estimates the delivery efficiency of N movement from sources to the watershed outlet. The primary objective of N-Sink is to assist land use planners, watershed managers, and la...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-04
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-983] Drawn Stainless Steel Sinks... review of the antidumping duty order on drawn stainless steel sinks (``drawn sinks'') from the People's... merchandise. \\1\\ See Drawn Stainless Steel Sinks from the People's Republic of China: Amended Final...
NASA Astrophysics Data System (ADS)
Subudhi, Sudhakar; Sreenivas, K. R.; Arakeri, Jaywant H.
2013-01-01
This work is concerned with the removal of unwanted fluid through the source-sink pair. The source consists of fluid issuing out of a nozzle in the form of a jet and the sink is a pipe that is kept some distance from the source pipe. Of concern is the percentage of source fluid sucked through the sink. The experiments have been carried in a large glass water tank. The source nozzle diameter is 6 mm and the sink pipe diameter is either 10 or 20 mm. The horizontal and vertical separations and angles between these source and sink pipes are adjustable. The flow was visualized using KMnO4 dye, planer laser induced fluorescence and particle streak photographs. To obtain the effectiveness (that is percentage of source fluid entering the sink pipe), titration method is used. The velocity profiles with and without the sink were obtained using particle image velocimetry. The sink flow rate to obtain a certain effectiveness increase dramatically with lateral separation. The sink diameter and the angle between source and the sink axes don't influence effectiveness as much as the lateral separation.
Chiarotti, Ugo; Moroli, Valerio; Menchetti, Fernando; Piancaldini, Roberto; Bianco, Loris; Viotto, Alberto; Baracchini, Giulia; Gaspardo, Daniele; Nazzi, Fabio; Curti, Maurizio; Gabriele, Massimiliano
2017-03-01
A 39-W thermoelectric generator prototype has been realized and then installed in industrial plant for on-line trials. The prototype was developed as an energy harvesting demonstrator using low temperature cooling water waste heat as energy source. The objective of the research program is to measure the actual performances of this kind of device working with industrial water below 90 °C, as hot source, and fresh water at a temperature of about 15 °C, as cold sink. The article shows the first results of the research program. It was verified, under the tested operative conditions, that the produced electric power exceeds the energy required to pump the water from the hot source and cold sink to the thermoelectric generator unit if they are located at a distance not exceeding 50 m and the electric energy conversion efficiency is 0.33%. It was calculated that increasing the distance of the hot source and cold sink to the thermoelectric generator unit to 100 m the produced electric energy equals the energy required for water pumping, while reducing the distance of the hot source and cold sink to zero meters the developed unit produces an electric energy conversion efficiency of 0.61%.
Striate cortical contribution to the transcorneal electrically evoked response of the visual system.
Shimazu, K; Miyake, Y; Fukatsu, Y; Watanabe, S
1996-01-01
Analyses of current-source-density (CSD) and multiple unit activity (MUA) in area 17 of the cat were performed to determine the sources of the cortical transcorneal electrically evoked response. Cortical field potential, CSD and MUA profiles were obtained with multi-electrodes. CSD findings include: current sinks (inward cell membrane current) within 20 ms latency, in layers 4 and 6 of the striate cortex; current sinks corresponding to N3 (negative component of the EER; latency, 35 ms) in layer 4 and lower layer 3 with current sources (outward cell membrane current) for N3 in the supragranular layers; current sinks with latency over 40 ms in the supragranular layers. In the layers 4 and 6, simultaneous MUA was seen. When the stimulus frequency was increased or with dual stimulation, the N3 current sinks were decreased. This indicates that N1 (latency, 9 ms) and N2 (latency, 20 ms) reflect near-field potentials in layers 4 and 6, generated by geniculocortical afferents, and that N3 is a post- and polysynaptic component. It is also suggested that dipoles composed of cell bodies and the apical dendrites of pyramidal cells of layer 3, generated by satellite cells in layer 4, play a major role in generating N3.
Effects of low sink demand on leaf photosynthesis under potassium deficiency.
Pan, Yonghui; Lu, Zhifeng; Lu, Jianwei; Li, Xiaokun; Cong, Rihuan; Ren, Tao
2017-04-01
The interaction between low sink demand and potassium (K) deficiency in leaf photosynthesis was not intensively investigated, therefore this interaction was investigated in winter oilseed rape (Brassica napus L.). Plants subjected to sufficient (+K) or insufficient (-K) K supply treatments were maintained or removed their flowers and pods; these conditions were defined as high sink demand (HS) or low sink demand (LS), respectively. The low sink demand induced a lower photosynthetic rate (P n ), especially in the -K treatment during the first week. A negative relationship between P n and carbohydrate concentration was observed in the -K treatment but not in the +K treatment, suggesting that the decrease in P n in the -K treatment was the result of sink feedback regulation under low sink demand. Longer sink removal duration increased carbohydrate concentration, but the enhanced assimilate did not influence P n . On the contrary, low sink demand resulted in a high K concentration, slower chloroplast degradation rate and better PSII activity, inducing a higher P n compared with HS. Consequently, low sink demand decreased leaf photosynthesis over the short term due to sink feedback regulation, and potassium deficiency enhanced the photosynthetic decrease through carbohydrate accumulation and a lower carbohydrate concentration threshold for initiating photosynthesis depression. A longer duration of limited sink demand and sufficient potassium supply resulted in a higher photosynthesis rate because of delayed chloroplast degradation. This finding indicates that the nutritional status plays a role in leaf photosynthesis variations due to sink-source manipulation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Heat pipe cooling system with sensible heat sink
NASA Technical Reports Server (NTRS)
Silverstein, Calvin C.
1988-01-01
A heat pipe cooling system which employs a sensible heat sink is discussed. With this type of system, incident aerodynamic heat is transported via a heat pipe from the stagnation region to the heat sink and absorbed by raising the temperature of the heat sink material. The use of a sensible heat sink can be advantageous for situations where the total mission heat load is limited, as it is during re-entry, and a suitable radiation sink is not available.
Geochemistry and Hydrogeology of Water-Filled Sinkholes at Bitter Lake NWR, Roswell, NM
NASA Astrophysics Data System (ADS)
Premo, Z. E.; Crossey, L. J.
2008-12-01
Bitter Lake NWR in southeast (Roswell) New Mexico is located at the convergence of the Pecos River and the surface discharge region in the Roswell Artesian Basin (shallow alluvial aquifer and carbonate aquifer). The Refuge hosts approximately 50 water-filled sinkholes, which each support a unique and diverse aquatic ecosystem. An initial survey of water chemistries indicates that each sink has a unique chemical identity and neutral to alkaline pH. Sinkholes are filled by one or more artesian springs, groundwater seepage and possible hydrothermal water sources. We present results of water and gas analyses of 10 representative sinkholes, sampled during spring and summer, 2008. Analytical results, including major ions, metals (arsenic, selenium, iron), and gas chemistries are compared with monitoring well data from wells found to the north of the Refuge, along the Pecos River, and to the west, along the Pecos Slope - the regional aquifer recharge area. Well samples representative of regional groundwater provide potential end member perspectives for sources of sinkhole waters. Samples were collected incrementally from the surface to sinkhole floor to profile the limnological structure and to assess chemical variation and mixing through the water column. A sonde was deployed to measure and record physical parameters. Results of the analysis are used to describe the geochemical mixing that is occurring within the sinks. As each sink behaves as an independent unit, those separated by less than 10 meters can have dramatic variability in chemical signature and biological influence. For example, among the 29 sinks sampled during the initital survey, chloride concentrations range from 1.912x10-3 to 1.405 mol/kg; sulfate from 7.204x10-4 to 0.1364 mol/kg; and fluoride from 3.579x10-4 to 3.453x10-3 mol/kg. Along the Pecos Slope, groundwater chloride concentrations increase from less than 1.410x10-3 mol/kg near the major recharge area in the Sacramento Mountains to 0.141 mol/kg in the discharge area at the Pecos River to the east of Roswell, which includes the Refuge. Sinks are thus analyzed on three resolutions: regional distribution of sink chemistry (both within the Refuge and along and to the west of the Pecos River); variability between mature and immature sinks; and the anatomy of a representative sink.
NASA Astrophysics Data System (ADS)
Lee, Seunghyun
Future manned space endeavors will require a new class of vehicles, capable of conducting different types of missions and enduring varying gravitational and temperature environments. Thermal management will play a vital role in these new vehicles, and is complicated by the need to tackle both low and high heat sink temperatures. The present study assesses the feasibility of hybrid thermal control system by thermodynamic analysis and investigates the heat transfer mechanisms in two large micro-channel heat exchangers in vapor compression mode and two-phase mode. Unlike prior published two-phase micro-channel studies that concern mostly miniature heat sinks, this study addresses transport characteristics of a heat sink containing large length-to-diameter ratio, up to 609.6 to 1,micro-channels. In the thermodynamic analysis, four different operational modes are considered: single-phase, two-phase, basic heat pump and heat pump with liquid-side, suction-side heat exchanger. A thermodynamic trade study is conducted for six different working fluids to assess important performance parameters including mass flow rate of the working fluid, maximum pressure, radiator area, compressor/pump work, and coefficient of performance (COP). R134a is determined to be most suitable based on its ability to provide a balanced compromise between reducing flow rate and maintaining low system pressure, and a moderate coefficient of performance (COP); this fluid is also both nontoxic and nonflammable, and features zero ozone depletion potential (ODP) and low global warming potential (GWP). It is shown how specific mission stages dictate which mode of operation is most suitable, and this information is used to size the radiator for the H-TCS. The experimental flow boiling investigation consists of exploring the steady-state and the transient two-phase heat transfer characteristics of two large micro-channel heat exchangers that serve as evaporators in the vapor compression loop using R134a as refrigerant. Both heat exchangers feature parallel micro-channels with identical 1x1-mm2 cross-sections. The evaporators are connected in series, with the smaller 152.4-mm long heat exchanger situated upstream of the larger 609.6-mm long heat exchanger. In the steady-state characteristics part, it is shown low qualities are associated with slug flow and dominated by nucleate boiling, and high qualities with annular flow and convective boiling. Important transition points between the different heat transfer regimes are identified as (1) intermittent dryout, resulting from vapor blanket formation in liquid slugs and/or partial dryout in the liquid film surrounding elongated bubbles, (2) incipient dryout, resulting from dry patch formation in the annular film, and (3) complete dryout, following which the wall has to rely entirely on the mild cooling provided by droplets deposited from the vapor core. In the transient characteristics part, heat transfer measurement and high speed video are used to investigate variations of heat transfer coefficient with quality for different mass velocities and heat fluxes, as well as transient fluid flow and heat transfer behavior. An important transient phenomenon that influences both fluid flow and heat transfer is a liquid wave composed of remnants of liquid slugs from the slug flow regime. The liquid wave serves to replenish dry wall patches in the slug flow regime and to a lesser extent the annular regime. Unlike small heat sinks employed in the electronics industry, TCS heat sinks are characterized by large length-to-diameter ratio, for which limited information is presently available. The large length-to-diameter ratio of 609.6 is especially instrumental to capturing detailed axial variations of flow pattern and corresponding variations in local heat transfer coefficient. High-speed video analysis of the inlet plenum shows appreciable vapor backflow under certain operating conditions, which is also reflected in periodic oscillations in the measured pressure drop. In fact, the backflow frequency captured by video matches closely the frequency obtained from Fourier analysis of the pressure drop signal. It is shown the periodic oscillations and vapor backflow are responsible for initiating intermittent dryout and appreciable drop in local heat transfer coefficient in the downstream regions of the channels. A parametric study of oscillation frequency shows a dependence on four dimensionless parameters that account for amount of vapor generation, subcooling, and upstream liquid length, in addition to Weber number. A new correlation for oscillation frequency is constructed that captures the frequency variations relative to these individual parameters. (Abstract shortened by ProQuest.).
Gu, Yingxin; Wylie, Bruce K.; Zhang, Li; Gilmanov, Tagir G.
2012-01-01
This study evaluates the carbon fluxes and trends and examines the environmental sustainability (e.g., carbon budget, source or sink) of the potential biofuel feedstock sites identified in the Greater Platte River Basin (GPRB). A 9-year (2000–2008) time series of net ecosystem production (NEP), a measure of net carbon absorption or emission by ecosystems, was used to assess the historical trends and budgets of carbon flux for grasslands in the GPRB. The spatially averaged annual NEP (ANEP) for grassland areas that are possibly suitable for biofuel expansion (productive grasslands) was 71–169 g C m−2 year−1 during 2000–2008, indicating a carbon sink (more carbon is absorbed than released) in these areas. The spatially averaged ANEP for areas not suitable for biofuel feedstock development (less productive or degraded grasslands) was −47 to 69 g C m−2 year−1 during 2000–2008, showing a weak carbon source or a weak carbon sink (carbon emitted is nearly equal to carbon absorbed). The 9-year pre-harvest cumulative ANEP was 1166 g C m−2 for the suitable areas (a strong carbon sink) and 200 g C m−2 for the non-suitable areas (a weak carbon sink). Results demonstrate and confirm that our method of dynamic modeling of ecosystem performance can successfully identify areas desirable and sustainable for future biofuel feedstock development. This study provides useful information for land managers and decision makers to make optimal land use decisions regarding biofuel feedstock development and sustainability.
Interactions between gravity waves and cold air outflows in a stably stratified uniform flow
NASA Technical Reports Server (NTRS)
Lin, Yuh-Lang; Wang, Ting-An; Weglarz, Ronald P.
1993-01-01
Interactions between gravity waves and cold air outflows in a stably stratified uniform flow forced by various combinations of prescribed heat sinks and sources are studied using a hydrostatic two-dimensional nonlinear numerical model. The formation time for the development of a stagnation point or reversed flow at the surface is not always directly proportional to the Froude number when wave reflections exist from upper levels. A density current is able to form by the wave-otuflow interaction, even though the Froude number is greater than a critical value. This is the result of the wave-outflow interaction shifting the flow response to a different location in the characteristic parameter space. A density current is able to form or be destroyed due to the wave-outflow interaction between a traveling gravity wave and cold air outflow. This is proved by performing experiments with a steady-state heat sink and an additional transient heat source. In a quiescent fluid, a region of cold air, convergence, and upward motion is formed after the collision between two outflows produced by two prescribed heat sinks. After the collision, the individual cold air outflows lose their own identity and merge into a single, stationary, cold air outflow region. Gravity waves tend to suppress this new stationary cold air outflow after the collision. The region of upward motion associated with the collision is confined to a very shallow layer. In a moving airstream, a density current produced by a heat sink may be suppressed or enhanced nonlinearly by an adjacent heat sink due to the wave-outflow interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, Steven C.; Artier, Juliana; Miller, Neil T.
Genetic engineering of photosynthetic organisms typically redirects native metabolism towards desirable products, which thereby represent new metabolic sinks. There is limited information on how these modifications impact the evolved mechanisms of photosynthetic energy metabolism and cellular growth. Two engineered strains of Synechocystis sp. PCC 6803 with altered carbon sink capacity were assayed for their photosynthetic and CO 2 concentrating mechanism properties in conditions of high and low inorganic carbon (Ci) availability. In the ΔglgC mutant, glycogen cannot be synthesized and a carbon sink pathway has been effectively removed. The JU547 strain has been engineered by integration of the Pseudomonas syringaemore » ethylene forming enzyme and provides a new sink. When cultured under high carbon conditions, ΔglgC displayed diminished photochemical efficiency, a more reduced NADPH pool, delayed initiation of the Calvin-Benson-Bassham cycle, and impairment of linear and cyclic electron flows. It also exhibited a large decrease in photochemical quenching indicative of the accumulation of Q A-, normally associated with a reduced PQ pool, but appears instead to be the result of an undefined dissipative mechanism to spill excess energy. In the case of carbon sink integration, JU547 displayed slightly more oxidized PQ and NADPH pools and increased rates of cyclic electron flow and an enhanced demand for inorganic carbon as suggested by increase in the expression of the bicarbonate transporter, SbtA. Overall, the results highlight the importance of the native regulatory network of autotrophic metabolism in governing photosynthetic performance and provide cogent examples of both predicable and difficult to predict phenotypic consequences upon installation of new pathways in autotrophs.« less
NASA Technical Reports Server (NTRS)
Cognata, Thomas J.; Leimkuehler, Thomas O.; Sheth, Rubik B.; Le,Hung
2012-01-01
The Fusible Heat Sink is a novel vehicle heat rejection technology which combines a flow through radiator with a phase change material. The combined technologies create a multi-function device able to shield crew members against Solar Particle Events (SPE), reduce radiator extent by permitting sizing to the average vehicle heat load rather than to the peak vehicle heat load, and to substantially absorb heat load excursions from the average while constantly maintaining thermal control system setpoints. This multi-function technology provides great flexibility for mission planning, making it possible to operate a vehicle in hot or cold environments and under high or low heat load conditions for extended periods of time. This paper describes the model development and experimental validation of the Fusible Heat Sink technology. The model developed was intended to meet the radiation and heat rejection requirements of a nominal MMSEV mission. Development parameters and results, including sizing and model performance will be discussed. From this flight-sized model, a scaled test-article design was modeled, designed, and fabricated for experimental validation of the technology at Johnson Space Center thermal vacuum chamber facilities. Testing showed performance comparable to the model at nominal loads and the capability to maintain heat loads substantially greater than nominal for extended periods of time.
NASA Technical Reports Server (NTRS)
Cognata, Thomas J.; Leimkuehler, Thomas; Sheth, Rubik; Le, Hung
2013-01-01
The Fusible Heat Sink is a novel vehicle heat rejection technology which combines a flow through radiator with a phase change material. The combined technologies create a multi-function device able to shield crew members against Solar Particle Events (SPE), reduce radiator extent by permitting sizing to the average vehicle heat load rather than to the peak vehicle heat load, and to substantially absorb heat load excursions from the average while constantly maintaining thermal control system setpoints. This multi-function technology provides great flexibility for mission planning, making it possible to operate a vehicle in hot or cold environments and under high or low heat load conditions for extended periods of time. This paper describes the modeling and experimental validation of the Fusible Heat Sink technology. The model developed was intended to meet the radiation and heat rejection requirements of a nominal MMSEV mission. Development parameters and results, including sizing and model performance will be discussed. From this flight-sized model, a scaled test-article design was modeled, designed, and fabricated for experimental validation of the technology at Johnson Space Center thermal vacuum chamber facilities. Testing showed performance comparable to the model at nominal loads and the capability to maintain heat loads substantially greater than nominal for extended periods of time.
A Cross-Layer Duty Cycle MAC Protocol Supporting a Pipeline Feature for Wireless Sensor Networks
Tong, Fei; Xie, Rong; Shu, Lei; Kim, Young-Chon
2011-01-01
Although the conventional duty cycle MAC protocols for Wireless Sensor Networks (WSNs) such as RMAC perform well in terms of saving energy and reducing end-to-end delivery latency, they were designed independently and require an extra routing protocol in the network layer to provide path information for the MAC layer. In this paper, we propose a new cross-layer duty cycle MAC protocol with data forwarding supporting a pipeline feature (P-MAC) for WSNs. P-MAC first divides the whole network into many grades around the sink. Each node identifies its grade according to its logical hop distance to the sink and simultaneously establishes a sleep/wakeup schedule using the grade information. Those nodes in the same grade keep the same schedule, which is staggered with the schedule of the nodes in the adjacent grade. Then a variation of the RTS/CTS handshake mechanism is used to forward data continuously in a pipeline fashion from the higher grade to the lower grade nodes and finally to the sink. No extra routing overhead is needed, thus increasing the network scalability while maintaining the superiority of duty-cycling. The simulation results in OPNET show that P-MAC has better performance than S-MAC and RMAC in terms of packet delivery latency and energy efficiency. PMID:22163895
Emergence and Prevalence of Human Vector-Borne Diseases in Sink Vector Populations
Rascalou, Guilhem; Pontier, Dominique; Menu, Frédéric; Gourbière, Sébastien
2012-01-01
Vector-borne diseases represent a major public health concern in most tropical and subtropical areas, and an emerging threat for more developed countries. Our understanding of the ecology, evolution and control of these diseases relies predominantly on theory and data on pathogen transmission in large self-sustaining ‘source’ populations of vectors representative of highly endemic areas. However, there are numerous places where environmental conditions are less favourable to vector populations, but where immigration allows them to persist. We built an epidemiological model to investigate the dynamics of six major human vector borne-diseases in such non self-sustaining ‘sink’ vector populations. The model was parameterized through a review of the literature, and we performed extensive sensitivity analysis to look at the emergence and prevalence of the pathogen that could be encountered in these populations. Despite the low vector abundance in typical sink populations, all six human diseases were able to spread in 15–55% of cases after accidental introduction. The rate of spread was much more strongly influenced by vector longevity, immigration and feeding rates, than by transmission and virulence of the pathogen. Prevalence in humans remained lower than 5% for dengue, leishmaniasis and Japanese encephalitis, but substantially higher for diseases with longer duration of infection; malaria and the American and African trypanosomiasis. Vector-related parameters were again the key factors, although their influence was lower than on pathogen emergence. Our results emphasize the need for ecology and evolution to be thought in the context of metapopulations made of a mosaic of sink and source habitats, and to design vector control program not only targeting areas of high vector density, but working at a larger spatial scale. PMID:22629337
NASA Astrophysics Data System (ADS)
Hadjiachilleos, Stella; Valanides, Nicos; Angeli, Charoula
2013-07-01
Background: Cognitive conflict has been identified as an important factor for bringing about students' conceptual change. Researchers draw attention to the need to study not only cognitive factors related to cognitive conflict but affective factors as well. Purpose: The purpose of this study was to investigate the contribution of cognitive and non-cognitive aspects involved in cognitive conflict on students' conceptual change. Sample: Fifteen students, five from each of fourth, sixth and eighth grades, participated in the study. Seven students were male, and the rest were female. All students had high academic performance and were good at explaining their reasoning. Design and method: The study focused on gaining in-depth information, using semi-structured clinical interviews, about students' thinking when they were engaged in an inquiry process, which incorporated cognitive conflict using a scenario about floating and sinking. Students' initial conceptions related to the phenomenon of floating and sinking were first diagnosed and, subsequently, discrepant events were presented to challenge their initial conceptions. The 15 interviews were qualitatively analyzed using the constant comparative analysis method. Results: The results of this study showed that students' conceptual change was directly related to both cognitive and affective aspects of cognitive conflict. The results also showed that some students showed persistence on alternative frameworks even after their exposure to cognitive conflict. Conclusions: Cognitive conflict is an idiosyncratic, or personal event, that may not be experienced by all learners in the same way. Thus, the effect of cognitive conflict on learners' conceptual change is directly related to learners' ability to experience and feel the conflict when it is presented to them.
Kodama, Hiroshi; Ueshima, Eisuke; Gao, Song; Monette, Sebastien; Paluch, Lee-Ronn; Howk, Kreg; Erinjeri, Joseph P; Solomon, Stephen B; Srimathveeravalli, Govindarajan
2018-04-18
The purpose of this study is to assess the impact of duration of energy delivery on adverse events (AEs) and heat sink effects during high power microwave ablation (MWA) of normal swine lung. High power (100 W) MWA was performed with short (2 min, 18 ablations) or long (10 min, nine ablations) duration of energy delivery in unilateral lung of swine (n = 10). CT imaging was done prior to sacrifice at 2 or 28 d post-treatment, with additional imaging at 7 and 14 d for the latter cohort. Ablation zones were assessed with CT imaging and histopathology analysis. Differences in AEs and ablation characteristics between groups were compared with Fisher's exact test and Student's t-test, respectively. There were no significant differences in formation of air-filled needle tract, cavitation, and pneumonia (p > 0.5) between the treatment groups. Intra-procedural pneumothorax requiring chest tube placement occurred in three animals. Substantial (>20%, p = 0.01) intra-procedural ablation zone distortion was observed in both groups. The presence of large airways or blood vessels did not result in heat sink effect within the ablation zones and was not indicative of reduced ablation size. Increased energy delivery yielded larger (8.9 ± 3.1 cm 3 vs. 3.4 ± 1.7 cm 3 , p < 0.001) spherical ablations (sphericity: 0.70 ± 0.10 vs. 0.56 ± 0.13, p = 0.01). High power MWA of normal lung with longer duration of energy delivery can create larger spherical ablations, without significant differences in post-procedure AEs when compared with shorter energy delivery time.
Vijayaraghavan, K; Joshi, Umid Man
2014-11-01
The present study examines whether green roofs act as a sink or source of contaminants based on various physico-chemical parameters (pH, conductivity and total dissolved solids) and metals (Na, K, Ca, Mg, Al, Fe, Cr, Cu, Ni, Zn, Cd and Pb). The performance of green roof substrate prepared using perlite, vermiculite, sand, crushed brick, and coco-peat, was compared with local garden soil based on improvement of runoff quality. Portulaca grandiflora was used as green roof vegetation. Four different green roof configurations, with vegetated and non-vegetated systems, were examined for several artificial rain events (un-spiked and metal-spiked). In general, the vegetated green roof assemblies generated better-quality runoff with less conductivity and total metal ion concentration compared to un-vegetated assemblies. Of the different green roof configurations examined, P. grandiflora planted on green roof substrate acted as sink for various metals and showed the potential to generate better runoff. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Nagano, Hosei; Ku, Jentung
2006-01-01
Thermal performance of a miniature loop heat pipe (MLHP) with two evaporators and two condensers is described. A comprehensive test program, including start-up, high power, low power, power cycle, and sink temperature cycle tests, has been executed at NASA Goddard Space Flight Center for potential space applications. Experimental data showed that the loop could start with heat loads as low as 2W. The loop operated stably with even and uneven evaporator heat loads, and even and uneven condenser sink temperatures. Heat load sharing between the two evaporators was also successfully demonstrated. The loop had a heat transport capability of l00W to 120W, and could recover from a dry-out by reducing the heat load to evaporators. Low power test results showed the loop could work stably for heat loads as low as 1 W to each evaporator. Excellent adaptability of the MLHP to rapid changes of evaporator power and sink temperature were also demonstrated.
Design Considerations for Fusible Heat Sink
NASA Technical Reports Server (NTRS)
Cognata, Thomas J.; Leimkuehler, Thomas O.; Sheth, Rubik B.
2011-01-01
Traditionally radiator designs are based off a passive or flow through design depending on vehicle requirements. For cyclical heat loads, a novel idea of combining a full flow through radiator to a phase change material is currently being investigated. The flow through radiator can be designed for an average heat load while the phase change material can be used as a source of supplemental heat rejections when vehicle heat loads go above the average load. Furthermore, by using water as the phase change material, harmful radiation protection can be provided to the crew. This paper discusses numerous trades conducted to understand the most optimal fusible heat sink design for a particular heat load. Trades include configuration concepts, amount of phase change needed for supplemental heat rejection, and the form of interstitial material needed for optimal performance. These trades were used to culminate to a fusible heat sink design. The paper will discuss design parameters taken into account to develop an engineering development unit.
Sun, Ran-Hao; Chen, Li-Ding; Wang, Wei; Wang, Zhao-Ming
2012-06-01
Understanding the effect of land cover pattern on nutrient losses is of great importance in management of water resources. The extensive application of mechanism models is limited in large-scale watersheds owing to the intensive data and calibration requirements. On the other hand, the traditional landscape indexes only take the areas and types of land cover into account, considering less about their topographic features and spatial patterns. We constructed a location-weighted landscape index (LWLI) based on the Lorenz curve, which plots the cumulative proportion of areas for sink and source landscapes respectively against cumulative proportion of their relative location to the outlet in a watershed, including relative elevation, distance and slope. We assessed the effect of land cover pattern on total nitrogen losses in the Haihe River. Firstly, 26 watersheds were derived from 1: 250 000 digital elevation model (DEM), and their "source" and "sink" landscape types were identified from Landsat TM images in 2007. The source" landscapes referred to the paddy land, dry land and residential area, correspondingly the "sink" landscapes referred to the forest and grassland. Secondly, LWLI was calculated according to the landscape types and spatial patterns for each watershed. Thirdly, we accessed the effect of land cover pattern on total nitrogen (TN) flux according to the value of LWLI, comparing with the area proportion of sink-source landscapes. The correlation coefficients were different in three parts of Haihe River, i. e., 0.86, 0.67 and 0.65 in the Yanshan Mts, Taihang Mts and lower Haihe River. The results showed strong correlations between TN and LWLI in contrast to the weak correlations between TN and area proportion of sink and source landscape types. This study indicates the spatial pattern of land cover is essential for accessing the nutrient losses, and the location-weighted landscape pattern analysis may be an alternate to existing water quality models, especially in large watershed scales. The sink-source index is sufficiently simple that it can be compared across watersheds and be easily interpreted, and potentially be used in landscape pattern optimal designing and planning.
NASA Technical Reports Server (NTRS)
Ciais, Philippe; Tans, Pieter P.; White, James W. C.; Trolier, Michael; Francey, Roger J.; Berry, Joe A.; Randall, David R.; Sellers, Piers J.; Collatz, James G.; Schimel, David S.
1995-01-01
Using delta C-13 measurements in atmospheric CO2 from a cooperative global air sampling network, we determined the partitioning of the net uptake of CO2 between ocean and land as a function of latitude and time. The majority of delta C-13 measurements were made at the Institute of Arctic and Alpine Research (INSTAAR) of the University of Colorado. We perform an inverse deconvolution of both CO2 and delta C-13 observations, using a two-dimensional model of atmospheric transport. Also, the discrimination against C-13 by plant photosynthesis, as a function of latitude and time, is calculated from global runs of the simple biosphere (SiB) model. Uncertainty due to the longitudinal structure of the data, which is not represented by the model, is studied through a bootstrap analysis by adding and omitting measurement sites. The resulting error estimates for our inferred sources and sinks are of the order of 1 GTC (1 GTC = 10(exp 15) gC). Such error bars do not reflect potential systematic errors arising from our estimates of the isotopic disequilibria between the atmosphere and the oceans and biosphere, which are estimated in a separate sensitivity analysis. With respect to global totals for 1992 we found that 3.2 GTC of carbon dissolved into the ocean and that 1.5 GTC were sequestered by land ecosystems. Northern hemisphere ocean gyres north of 15 deg N absorbed 2.7 GTC. The equatorial oceans between 10 deg S and 10 deg N were a net source to the atmosphere of 0.9 GTC. We obtained a sink of 1.6 GTC in southern ocean gyres south of 20 deg S, although the deconvolution is poorly constrained by sparse data coverage at high southern latitudes. The seasonal uptake of CO2 in the northern gyres appears to be correlated with a bloom of phytoplankton in surface waters. On land, northern temperate and boreal ecosystems between 35 deg N and 65 deg N were found to be a major sink of CO2 in 1992, as large as 3.5 GTC. Northern tropical ecosystems (equator-30 deg N) appear to be a net source to the source to the atmosphere of 2 GTC which could reflect biomass burning. A small sink, 0.3 GTC, was inferred for southern tropical ecosystems (30 deg S-equator).
NASA Astrophysics Data System (ADS)
Ferracci, Valerio; Heimann, Ines; Abraham, N. Luke; Pyle, John A.; Archibald, Alexander T.
2018-05-01
The hydroxyl radical (OH) plays a crucial role in the chemistry of the atmosphere as it initiates the removal of most trace gases. A number of field campaigns have observed the presence of a missing
OH sink in a variety of regions across the planet. A comparison of direct measurements of the OH loss frequency, also known as total OH reactivity (kOH), with the sum of individual known OH sinks (obtained via the simultaneous detection of species such as volatile organic compounds and nitrogen oxides) indicates that, in some cases, up to 80 % of kOH is unaccounted for. In this work, the UM-UKCA chemistry-climate model was used to investigate the wider implications of the missing reactivity on the oxidising capacity of the atmosphere. Simulations of the present-day atmosphere were performed and the model was evaluated against an array of field measurements to verify that the known OH sinks were reproduced well, with a resulting good agreement found for most species. Following this, an additional sink was introduced to simulate the missing OH reactivity as an emission of a hypothetical molecule, X, which undergoes rapid reaction with OH. The magnitude and spatial distribution of this sink were underpinned by observations of the missing reactivity. Model runs showed that the missing reactivity accounted for on average 6 % of the total OH loss flux at the surface and up to 50 % in regions where emissions of the additional sink were high. The lifetime of the hydroxyl radical was reduced by 3 % in the boundary layer, whilst tropospheric methane lifetime increased by 2 % when the additional OH sink was included. As no OH recycling was introduced following the initial oxidation of X, these results can be interpreted as an upper limit of the effects of the missing reactivity on the oxidising capacity of the troposphere. The UM-UKCA simulations also allowed us to establish the atmospheric implications of the newly characterised reactions of peroxy radicals (RO2) with OH. Whilst the effects of this chemistry on kOH were minor, the reaction of the simplest peroxy radical, CH3O2, with OH was found to be a major sink for CH3O2 and source of HO2 over remote regions at the surface and in the free troposphere. Inclusion of this reaction in the model increased tropospheric methane lifetime by up to 3 %, depending on its product branching. Simulations based on the latest kinetic and product information showed that this reaction cannot reconcile models with observations of atmospheric methanol, in contrast to recent suggestions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Chase Qishi
A number of Department of Energy (DOE) science applications, involving exascale computing systems and large experimental facilities, are expected to generate large volumes of data, in the range of petabytes to exabytes, which will be transported over wide-area networks for the purpose of storage, visualization, and analysis. To support such capabilities, significant progress has been made in various components including the deployment of 100 Gbps networks with future 1 Tbps bandwidth, increases in end-host capabilities with multiple cores and buses, capacity improvements in large disk arrays, and deployment of parallel file systems such as Lustre and GPFS. High-performance source-to-sink datamore » flows must be composed of these component systems, which requires significant optimizations of the storage-to-host data and execution paths to match the edge and long-haul network connections. In particular, end systems are currently supported by 10-40 Gbps Network Interface Cards (NIC) and 8-32 Gbps storage Host Channel Adapters (HCAs), which carry the individual flows that collectively must reach network speeds of 100 Gbps and higher. Indeed, such data flows must be synthesized using multicore, multibus hosts connected to high-performance storage systems on one side and to the network on the other side. Current experimental results show that the constituent flows must be optimally composed and preserved from storage systems, across the hosts and the networks with minimal interference. Furthermore, such a capability must be made available transparently to the science users without placing undue demands on them to account for the details of underlying systems and networks. And, this task is expected to become even more complex in the future due to the increasing sophistication of hosts, storage systems, and networks that constitute the high-performance flows. The objectives of this proposal are to (1) develop and test the component technologies and their synthesis methods to achieve source-to-sink high-performance flows, and (2) develop tools that provide these capabilities through simple interfaces to users and applications. In terms of the former, we propose to develop (1) optimization methods that align and transition multiple storage flows to multiple network flows on multicore, multibus hosts; and (2) edge and long-haul network path realization and maintenance using advanced provisioning methods including OSCARS and OpenFlow. We also propose synthesis methods that combine these individual technologies to compose high-performance flows using a collection of constituent storage-network flows, and realize them across the storage and local network connections as well as long-haul connections. We propose to develop automated user tools that profile the hosts, storage systems, and network connections; compose the source-to-sink complex flows; and set up and maintain the needed network connections. These solutions will be tested using (1) 100 Gbps connection(s) between Oak Ridge National Laboratory (ORNL) and Argonne National Laboratory (ANL) with storage systems supported by Lustre and GPFS file systems with an asymmetric connection to University of Memphis (UM); (2) ORNL testbed with multicore and multibus hosts, switches with OpenFlow capabilities, and network emulators; and (3) 100 Gbps connections from ESnet and their Openflow testbed, and other experimental connections. This proposal brings together the expertise and facilities of the two national laboratories, ORNL and ANL, and UM. It also represents a collaboration between DOE and the Department of Defense (DOD) projects at ORNL by sharing technical expertise and personnel costs, and leveraging the existing DOD Extreme Scale Systems Center (ESSC) facilities at ORNL.« less
Development and coupling analysis of active skin antenna
NASA Astrophysics Data System (ADS)
Zhou, Jinzhu; Huang, Jin; He, Qingqang; Tang, Baofu; Song, Liwei
2017-02-01
An active skin antenna is a multifunctional composite structure that can provide load-bearing structure and steerable beam pointing functions, and is usually installed in the structural surface of aircraft, warships, and armored vehicles. This paper presents an innovative design of the active skin antenna, which consists of a package layer, control and signal processing layer, and RF (radio frequency) layer. The RF layer is fabricated by low temperature co-fired ceramics, with 64 microstrip antenna elements, tile transmitting and receiving modules, microchannel heat sinks, and feeding networks integrated into a functional block 2.8 mm thick. In this paper, a full-sized prototype of an active skin antenna was designed, fabricated, and tested. Moreover, a coupling analysis method was presented to evaluate the mechanical and electromagnetic performance of the active skin antenna subjected to aerodynamic loads. A deformed experimental system was built to validate the effectiveness of the coupling analysis method, which was also implemented to evaluate the performance of the active skin antenna when subjected to aerodynamic pressure. The fabricated specimen demonstrated structural configuration feasibility, and superior environmental load resistance.
Hayat, Tasawar; Awais, Muhammad; Imtiaz, Amna
2016-01-01
This communication deals with the properties of heat source/sink in a magneto-hydrodynamic flow of a non-Newtonian fluid immersed in a porous medium. Shrinking phenomenon along with the permeability of the wall is considered. Mathematical modelling is performed to convert the considered physical process into set of coupled nonlinear mathematical equations. Suitable transformations are invoked to convert the set of partial differential equations into nonlinear ordinary differential equations which are tackled numerically for the solution computations. It is noted that dual solutions for various physical parameters exist which are analyzed in detail. PMID:27598314
Testing to the Top: Everything But the Kitchen Sink?
ERIC Educational Resources Information Center
Dietel, Ron
2011-01-01
Two tests intended to measure student achievement of the Common Core State Standards will face intense scrutiny, but the test makers say they will include performance assessments and other items that are not multiple-choice questions. Incorporating performance items on this tests will bring up issues over scoring, costs, and validity.
Quantifying Contemporary Terrestrial Carbon Sources and Sinks in the Conterminous United States
NASA Astrophysics Data System (ADS)
Liu, S.; Loveland, T.
2003-12-01
U.S. land likely accounts for a significant portion of the unidentified global carbon sink, although the magnitude is highly uncertain. The ultimate goal of this study is to quantify the contemporary temporal and spatial patterns of carbon sources and sinks in the conterminous United States from the early 1970s to 2000, and to explain the mechanisms that cause the variability and changes. Because of the difficulty and massive cost for developing land cover change databases for the conterminous United States, we adopt an ecoregion-based sampling approach. Carbon dynamics within thousands of 20 km by 20 km or 10 km by 10 km sampling blocks, stratified by Omernik Level III ecoregions, are simulated using the General Ensemble Biogeochemical Modeling System at the spatial resolution of 60 m by 60 m. The land use change data, providing unprecedented accuracy and consistency, are derived from Landsat imagery for five time points (nominally 1972, 1980, 1986, 1992, and 2000). Mechanisms have been implemented to assimilate data from key national benchmark databases (including the USDA Forest Service_s Forest Inventory and Analysis data and the USDA_s agricultural census data). The dynamics of carbon stocks in vegetation, soil, and harvested wood materials are quantified. Results from three ecoregions (i.e., Southeastern Plains, Piedmont, and Northern Piedmont) indicated that the carbon sink strength has been decreasing from the 1970s to 2000. The relative contribution of biomass accumulation to the sink decreased during this period, while those of soil organic carbon and harvested wood materials increased.
Potential and timescales for oxygen depletion in coastal upwelling systems: A box-model analysis
NASA Astrophysics Data System (ADS)
Harrison, C. S.; Hales, B.; Siedlecki, S.; Samelson, R. M.
2016-05-01
A simple box model is used to examine oxygen depletion in an idealized ocean-margin upwelling system. Near-bottom oxygen depletion is controlled by a competition between flushing with oxygenated offshore source waters and respiration of particulate organic matter produced near the surface and retained near the bottom. Upwelling-supplied nutrients are consumed in the surface box, and some surface particles sink to the bottom where they respire, consuming oxygen. Steady states characterize the potential for hypoxic near-bottom oxygen depletion; this potential is greatest for faster sinking rates, and largely independent of production timescales except in that faster production allows faster sinking. Timescales for oxygen depletion depend on upwelling and productivity differently, however, as oxygen depletion can only be reached in meaningfully short times when productivity is rapid. Hypoxia thus requires fast production, to capture upwelled nutrients, and fast sinking, to deliver the respiration potential to model bottom waters. Combining timescales allows generalizations about tendencies toward hypoxia. If timescales of sinking are comparable to or smaller than the sum of those for respiration and flushing, the steady state will generally be hypoxic, and results indicate optimal timescales and conditions exist to generate hypoxia. For example, the timescale for approach to hypoxia lengthens with stronger upwelling, since surface particle and nutrient are shunted off-shelf, in turn reducing subsurface respiration and oxygen depletion. This suggests that if upwelling winds intensify with climate change the increased forcing could offer mitigation of coastal hypoxia, even as the oxygen levels in upwelled source waters decline.
Bahşi, Hayretdin; Levi, Albert
2010-01-01
Wireless sensor networks (WSNs) generally have a many-to-one structure so that event information flows from sensors to a unique sink. In recent WSN applications, many-to-many structures evolved due to the need for conveying collected event information to multiple sinks. Privacy preserved data collection models in the literature do not solve the problems of WSN applications in which network has multiple un-trusted sinks with different level of privacy requirements. This study proposes a data collection framework bases on k-anonymity for preventing record disclosure of collected event information in WSNs. Proposed method takes the anonymity requirements of multiple sinks into consideration by providing different levels of privacy for each destination sink. Attributes, which may identify an event owner, are generalized or encrypted in order to meet the different anonymity requirements of sinks at the same anonymized output. If the same output is formed, it can be multicasted to all sinks. The other trivial solution is to produce different anonymized outputs for each sink and send them to related sinks. Multicasting is an energy efficient data sending alternative for some sensor nodes. Since minimization of energy consumption is an important design criteria for WSNs, multicasting the same event information to multiple sinks reduces the energy consumption of overall network.
Park, William Keun Chan; Maxwell, Aaron Wilhelm Palmer; Frank, Victoria Elizabeth; Primmer, Michael Patrick; Paul, Jarod Brian; Collins, Scott Andrew; Lombardo, Kara Anne; Lu, Shaolei; Borjeson, Tiffany Marie; Baird, Grayson Luderman; Dupuy, Damian Edward
2018-02-01
To investigate the effects of a novel caesium-based thermal accelerant (TA) agent on ablation zone volumes following in vivo microwave ablation of porcine liver and skeletal muscle, and to correlate the effects of TA with target organ perfusion. This prospective study was performed following institutional animal care and use committee approval. Microwave ablation was performed in liver and resting skeletal muscle in eight Sus scrofa domesticus swine following administration of TA at concentrations of 0 mg/mL (control), 100 mg/mL and 250 mg/mL. Treated tissues were explanted and stained with triphenyltetrazolium chloride (TTC) for quantification of ablation zone volumes, which were compared between TA and control conditions. Hematoxylin and eosin (H&E) staining was also performed for histologic analysis. General mixed modelling with a log-normal distribution was used for all quantitative comparisons (p = 0.05). A total of 28 ablations were performed in the liver and 18 in the skeletal muscle. The use of TA significantly increased ablation zone volumes in a dose-dependent manner in both the porcine muscle and liver (p < 0.01). Both the absolute mean ablation zone volume and percentage increase in ablation zone volume were greater in the resting skeletal muscle than in the liver. In one swine, a qualitative mitigation of heat sink effects was observed by TTC and H&E staining. Non-lethal polymorphic ventricular tachycardia was identified in one swine, treated with intravenous amiodarone. The use of a novel TA agent significantly increased mean ablation zone volumes following microwave ablation using a porcine model. The relationship between TA administration and ablation size was dose-dependent and inversely proportional to the degree of target organ perfusion, and a qualitative reduction in heat-sink effects was observed.
Rapid self-organised initiation of ad hoc sensor networks close above the percolation threshold
NASA Astrophysics Data System (ADS)
Korsnes, Reinert
2010-07-01
This work shows potentials for rapid self-organisation of sensor networks where nodes collaborate to relay messages to a common data collecting unit (sink node). The study problem is, in the sense of graph theory, to find a shortest path tree spanning a weighted graph. This is a well-studied problem where for example Dijkstra’s algorithm provides a solution for non-negative edge weights. The present contribution shows by simulation examples that simple modifications of known distributed approaches here can provide significant improvements in performance. Phase transition phenomena, which are known to take place in networks close to percolation thresholds, may explain these observations. An initial method, which here serves as reference, assumes the sink node starts organisation of the network (tree) by transmitting a control message advertising its availability for its neighbours. These neighbours then advertise their current cost estimate for routing a message to the sink. A node which in this way receives a message implying an improved route to the sink, advertises its new finding and remembers which neighbouring node the message came from. This activity proceeds until there are no more improvements to advertise to neighbours. The result is a tree network for cost effective transmission of messages to the sink (root). This distributed approach has potential for simple improvements which are of interest when minimisation of storage and communication of network information are a concern. Fast organisation of the network takes place when the number k of connections for each node ( degree) is close above its critical value for global network percolation and at the same time there is a threshold for the nodes to decide to advertise network route updates.
Nested atmospheric inversion for the terrestrial carbon sources and sinks in China
NASA Astrophysics Data System (ADS)
Jiang, F.; Wang, H. W.; Chen, J. M.; Zhou, L. X.; Ju, W. M.; Ding, A. J.; Liu, L. X.; Peters, W.
2013-08-01
In this study, we establish a nested atmospheric inversion system with a focus on China using the Bayesian method. The global surface is separated into 43 regions based on the 22 TransCom large regions, with 13 small regions in China. Monthly CO2 concentrations from 130 GlobalView sites and 3 additional China sites are used in this system. The core component of this system is an atmospheric transport matrix, which is created using the TM5 model with a horizontal resolution of 3° × 2°. The net carbon fluxes over the 43 global land and ocean regions are inverted for the period from 2002 to 2008. The inverted global terrestrial carbon sinks mainly occur in boreal Asia, South and Southeast Asia, eastern America and southern South America. Most China areas appear to be carbon sinks, with strongest carbon sinks located in Northeast China. From 2002 to 2008, the global terrestrial carbon sink has an increasing trend, with the lowest carbon sink in 2002. The inter-annual variation (IAV) of the land sinks shows remarkable correlation with the El Niño Southern Oscillation (ENSO). The terrestrial carbon sinks in China also show an increasing trend. However, the IAV in China is not the same as that of the globe. There is relatively stronger land sink in 2002, lowest sink in 2006, and strongest sink in 2007 in China. This IAV could be reasonably explained with the IAVs of temperature and precipitation in China. The mean global and China terrestrial carbon sinks over the period 2002-2008 are -3.20 ± 0.63 and -0.28 ± 0.18 PgC yr-1, respectively. Considering the carbon emissions in the form of reactive biogenic volatile organic compounds (BVOCs) and from the import of wood and food, we further estimate that China's land sink is about -0.31 PgC yr-1.
The Atmosphere of Crystal Cave: Understanding Sources and Sinks of Trace Gases
NASA Astrophysics Data System (ADS)
Jarnot, A. W.; Hughes, S.; Blake, D. R.
2016-12-01
The atmospheric chemistry of cave systems has not been previously studied in depth; however, cave systems are prime locations to study potential sources and sinks for trace gas pollutants. Relatively constant temperatures, humidity, minimal air flow, and lack of sunlight create a stable environment that allows for biogeochemical processes to go on uninterrupted for extended periods of time. Carbonyl sulfide (OCS) is one of the main contributors to air pollution globally, but many OCS sinks are not fully understood. A preliminary analysis of cave air from Crystal Cave in Sequoia National Park yielded OCS concentrations of 35.2 ± 0.7 pptv, approximately 16 times lower than the average concentration of 568 ± 8 pptv measured outside of the cave. In addition, the concentrations of several other trace gases such as alpha-pinene and methyl bromide were found to be abnormally low (10.5 ± 0.3 pptv inside and 387 ± 8 pptv for alpha-pinene, and 387 ± 8 pptv inside and 11.1 ± 0.4 pptv outside for methyl bromide). The cave air was found to be well-mixed as the concentrations of long lived halocarbons such as CFC-12 were similar inside and outside of the cave (545 ± 5 pptv and 538 ± 4 pptv, respectively). This indicates that there may be one or more factors causing the cave to act a sink for several trace gas species. Further sampling and analysis of the atmosphere in the cave is required to draw any concrete conclusions about the unique environment presented here. The information gathered will help elucidate mechanisms for trace gas degradation, which could yield information about global trace gas budgets and their effect on global air quality.
A large and persistent carbon sink in the world's forests
Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; Ciais, P.; Jackson, R.B.; Pacala, S.W.; McGuire, A.D.; Piao, S.; Rautiainen, A.; Sitch, S.; Hayes, D.
2011-01-01
The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ?? 0.4 petagrams of carbon per year (Pg C year-1) globally for 1990 to 2007. We also estimate a source of 1.3 ?? 0.7 Pg C year-1 from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 ?? 0.5 Pg C year-1 partially compensated by a carbon sink in tropical forest regrowth of 1.6 ?? 0.5 Pg C year-1. Together, the fluxes comprise a net global forest sink of 1.1 ?? 0.8 Pg C year-1, with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.
Enhancing the Global Carbon Sink: A Key Mitigation Strategy
NASA Astrophysics Data System (ADS)
Torn, M. S.
2016-12-01
Earth's terrestrial ecosystems absorb about one-third of all anthropogenic CO2 emissions from the atmosphere each year, greatly reducing the climate forcing those emissions would otherwise cause. This puts the size of the terrestrial carbon sink on par with the most aggressive climate mitigation measures proposed. Moreover, the land sink has been keeping pace with rising emissions and has roughly doubled over the past 40 years. But there is a fundamental lack of understanding of why the sink has been increasing and what its future trajectory could be. In developing climate mitigation strategies, governments have a very limited scientific basis for projecting the contributions of their domestic sinks, and yet at least 117 of the 160 COP21 signatories stated they will use the land sink in their Nationally Defined Contribution (NDC). Given its potentially critical role in reducing net emissions and the importance of UNFCCC land sinks in future mitigation scenarios, a first-principles understanding of the dynamics of the land sink is needed. For expansion of the sink, new approaches and ecologically-sound technologies are needed. Carefully conceived terrestrial carbon sequestration could have multiple environmental benefits, but a massive expansion of land carbon sinks using conventional approaches could place excessive demands on the world's land, water, and fertilizer nutrients. Meanwhile, rapid climatic change threatens to undermine or reverse the sink in many ecosystems. We need approaches to protect the large sinks that are currently assumed useful for climate mitigation. Thus we highlight the need for a new research agenda aimed at predicting, protecting, and enhancing the global carbon sink. Key aspects of this agenda include building a predictive capability founded on observations, theory and models, and developing ecological approaches and technologies that are sustainable and scalable, and potentially provide co-benefits such as healthier soils, more resilient and productive ecosystems, and more carbon-neutral bioenergy. Better scientific understanding of the sink provides more options for policy design, enables mitigation strategies that capture co-benefits, and increases the chances that global mitigation commitments will be met.
Helicon plasma thruster discharge model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafleur, T., E-mail: trevor.lafleur@lpp.polytechnique.fr
2014-04-15
By considering particle, momentum, and energy balance equations, we develop a semi-empirical quasi one-dimensional analytical discharge model of radio-frequency and helicon plasma thrusters. The model, which includes both the upstream plasma source region as well as the downstream diverging magnetic nozzle region, is compared with experimental measurements and confirms current performance levels. Analysis of the discharge model identifies plasma power losses on the radial and back wall of the thruster as the major performance reduction factors. These losses serve as sinks for the input power which do not contribute to the thrust, and which reduce the maximum plasma density andmore » hence propellant utilization. With significant radial plasma losses eliminated, the discharge model (with argon) predicts specific impulses in excess of 3000 s, propellant utilizations above 90%, and thruster efficiencies of about 30%.« less
NASA Astrophysics Data System (ADS)
O'Sullivan, Michael; Buermann, Wolfgang; Spracklen, Dominick; Arnold, Steve; Gloor, Manuel
2017-04-01
The global terrestrial carbon sink has increased since the start of this century at a time of rapidly growing carbon dioxide emissions from fossil fuel burning. Here we test the hypothesis that increases in nitrogen deposition from fossil fuel burning and linked carbon-nitrogen interactions fertilized terrestrial ecosystems, increasing carbon uptake and storage. Using the dynamic global vegetation model CLM4.5-BGC, we perform factorial analyses, separating the effects of individual drivers to changes in carbon fluxes and sinks. Globally, we find that increases in nitrogen deposition from 1960 to 2010 increased carbon uptake by 1PgC/yr. One third of this increase can be attributed to East Asia alone, with Europe also having a significant contribution. The global, post-2000 anthropogenic nitrogen deposition effect on terrestrial carbon uptake is entirely accounted for from East Asia (increase of 0.05 PgC/yr). We will also quantify the relative effects of various other drivers on carbon exchanges such as CO2 fertilization, climate change, and land-use and land-cover change. This increased nitrogen deposition has served to fertilize the biosphere in recent years, but its influence on carbon sink processes may be rather short-lived due to the short lifetime of atmospheric reactive nitrogen while the influence of increased CO2 emissions (and the CO2 fertilization effect) will last multiple decades, a 'Faustian Bargain'.
NASA Technical Reports Server (NTRS)
Meyers, D. G.; Farmer, J. M.
1982-01-01
Gravity receptors of Dephnia magna were discovered on the basal segment of the swimming antennae and were shown to respond to upward water currents that pass the animal as it sinks between swimming strokes. Sensitivity of the gravity perceiving mechanism was tested by subjecting daphnids to a series of five decreasingly dense aqueous solutions (neutral density to water) in darkness (to avoid visual cues). Three-dimensional, video analysis of body position (pitch, yaw and roll) and swimming path (hop and sink, vertical and horizontal patterns) revealed a gradual threshold that occurred near a density difference between the animal and its environment of less than 0.25%. Because daphnids do not sink but continue to slide after stroking in the increased density solutions, gravity perception appears to occur during a vertical swing of the longitudinal body axis to the vertical plane, about their center of gravity, and, thereby, implies a multidirectional sensitivity for the antennal-socket setae.
CuPb rheocast alloy as joining material for CFC composites
NASA Astrophysics Data System (ADS)
Salvo, M.; Lemoine, P.; Ferraris, M.; Appendino Montorsi, M.; Matera, R.
1995-10-01
High heat flux components for future use in thermonuclear fusion reactors are designed as layered structures. The assembling of the different parts (armour, heat sink and external structure) requires a joint which could withstand large heat loads and thermal stresses. In this paper we examined a 50 wt% PbCu rheocast alloy (RCA) as joining material for the armour/heat sink joint. The alloy was prepared in vacuum in a rotational furnace and was characterized by SEM-EDS analysis and heating microscopy. The obtained microstructure was globular as foreseen and it remained after prolonged heating at 650°C. The alloy showed very good ductility: sheets of about 200 μm were rolled starting from about 1 × 1 × 1 cm 3 cubes. The alloy was successful in joining both the armour and the heat sink materials, respectively, carbon fibre reinforced composites and copper. Initial mechanical testing shows that the technique is viable for the foreseen applications in the field of thermonuclear fusion reactors.
NASA Technical Reports Server (NTRS)
Edwards, C. L. W.; Meissner, F. T.; Hall, J. B.
1979-01-01
Color computer graphics techniques were investigated as a means of rapidly scanning and interpreting large sets of transient heating data. The data presented were generated to support the conceptual design of a heat-sink thermal protection system (TPS) for a hypersonic research airplane. Color-coded vector and raster displays of the numerical geometry used in the heating calculations were employed to analyze skin thicknesses and surface temperatures of the heat-sink TPS under a variety of trajectory flight profiles. Both vector and raster displays proved to be effective means for rapidly identifying heat-sink mass concentrations, regions of high heating, and potentially adverse thermal gradients. The color-coded (raster) surface displays are a very efficient means for displaying surface-temperature and heating histories, and thereby the more stringent design requirements can quickly be identified. The related hardware and software developments required to implement both the vector and the raster displays for this application are also discussed.
Sayyed, Ali; Medeiros de Araújo, Gustavo; Bodanese, João Paulo; Buss Becker, Leandro
2015-01-01
The use of mobile nodes to collect data in a Wireless Sensor Network (WSN) has gained special attention over the last years. Some researchers explore the use of Unmanned Aerial Vehicles (UAVs) as mobile node for such data-collection purposes. Analyzing these works, it is apparent that mobile nodes used in such scenarios are typically equipped with at least two different radio interfaces. The present work presents a Dual-Stack Single-Radio Communication Architecture (DSSRCA), which allows a UAV to communicate in a bidirectional manner with a WSN and a Sink node. The proposed architecture was specifically designed to support different network QoS requirements, such as best-effort and more reliable communications, attending both UAV-to-WSN and UAV-to-Sink communications needs. DSSRCA was implemented and tested on a real UAV, as detailed in this paper. This paper also includes a simulation analysis that addresses bandwidth consumption in an environmental monitoring application scenario. It includes an analysis of the data gathering rate that can be achieved considering different UAV flight speeds. Obtained results show the viability of using a single radio transmitter for collecting data from the WSN and forwarding such data to the Sink node. PMID:26389911
Sayyed, Ali; de Araújo, Gustavo Medeiros; Bodanese, João Paulo; Becker, Leandro Buss
2015-09-16
The use of mobile nodes to collect data in a Wireless Sensor Network (WSN) has gained special attention over the last years. Some researchers explore the use of Unmanned Aerial Vehicles (UAVs) as mobile node for such data-collection purposes. Analyzing these works, it is apparent that mobile nodes used in such scenarios are typically equipped with at least two different radio interfaces. The present work presents a Dual-Stack Single-Radio Communication Architecture (DSSRCA), which allows a UAV to communicate in a bidirectional manner with a WSN and a Sink node. The proposed architecture was specifically designed to support different network QoS requirements, such as best-effort and more reliable communications, attending both UAV-to-WSN and UAV-to-Sink communications needs. DSSRCA was implemented and tested on a real UAV, as detailed in this paper. This paper also includes a simulation analysis that addresses bandwidth consumption in an environmental monitoring application scenario. It includes an analysis of the data gathering rate that can be achieved considering different UAV flight speeds. Obtained results show the viability of using a single radio transmitter for collecting data from the WSN and forwarding such data to the Sink node.
Effects of biofouling on the sinking behavior of microplastics
NASA Astrophysics Data System (ADS)
Kaiser, David; Kowalski, Nicole; Waniek, Joanna J.
2017-12-01
Although plastic is ubiquitous in marine systems, our current knowledge of transport mechanisms is limited. Much of the plastic entering the ocean sinks; this is intuitively obvious for polymers such as polystyrene (PS), which have a greater density than seawater, but lower density polymers like polyethylene (PE) also occur in sediments. Biofouling can cause large plastic objects to sink, but this phenomenon has not been described for microplastics <5 mm. We incubated PS and PE microplastic particles in estuarine and coastal waters to determine how biofouling changes their sinking behavior. Sinking velocities of PS increased by 16% in estuarine water (salinity 9.8) and 81% in marine water (salinity 36) after 6 weeks of incubation. Thereafter sinking velocities decreased due to lower water temperatures and reduced light availability. Biofouling did not cause PE to sink during the 14 weeks of incubation in estuarine water, but PE started to sink after six weeks in coastal water when sufficiently colonized by blue mussels Mytilus edulis, and its velocity continued to increase until the end of the incubation period. Sinking velocities of these PE pellets were similar irrespective of salinity (10 vs. 36). Biofilm composition differed between estuarine and coastal stations, presumably accounting for differences in sinking behavior. We demonstrate that biofouling enhances microplastic deposition to marine sediments, and our findings should improve microplastic transport models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnett, Angela C.; Rogers, A.; Rees, M.
When we understand how carbon source and sink strengths limit plant growth we realized how critical the knowledge gap is in hindering efforts to maximize crop yield. Here, we investigated how differences in growth rate arise from source–sink limitations, using a model system comparing a fast-growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow-growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub-ambient and elevated CO 2 concentrations ([CO 2]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbonmore » and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO 2] indicating that source strength was near maximal at current [CO 2]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO 2] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO 2], and lower non-structural carbohydrate accumulation. Finally, by alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO 2].« less
Burnett, Angela C.; Rogers, A.; Rees, M.; ...
2016-09-22
When we understand how carbon source and sink strengths limit plant growth we realized how critical the knowledge gap is in hindering efforts to maximize crop yield. Here, we investigated how differences in growth rate arise from source–sink limitations, using a model system comparing a fast-growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow-growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub-ambient and elevated CO 2 concentrations ([CO 2]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbonmore » and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO 2] indicating that source strength was near maximal at current [CO 2]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO 2] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO 2], and lower non-structural carbohydrate accumulation. Finally, by alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO 2].« less
Opportunities and Challenges for Geographically Expanding N-Sink
The N-Sink tool was created to provide a useful and accessible means for local land use managers to explore the relationship of land use in their towns and counties to nitrogen pollution of their waters. N-Sink focuses on three types of landscape N sinks: wetlands, lakes/ponds/re...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-10
... DEPARTMENT OF COMMERCE International Trade Administration [C-570-984] Drawn Stainless Steel Sinks...'') initiated an investigation of drawn stainless steel sink from the People's Republic of China (``PRC''). See Drawn Stainless Steel Sinks from the People's Republic of China: Initiation of Countervailing Duty...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-06
... From the People's Republic of China: Preliminary Affirmative Countervailing Duty Determination AGENCY... provided to producers and exporters of drawn stainless steel sinks (``SS sinks'') from the People's...\\ \\1\\ See Drawn Stainless Steel Sinks from the People's Republic of China: Initiation of Countervailing...
Heat Sink Design and Optimization
2015-12-01
HEAT SINK DESIGN AND OPTIMIZATION I...REPORT DATE (DD-MM-YYYY) December 2015 2. REPORT TYPE Final 3. DATES COVERED (From – To) 4. TITLE AND SUBTITLE HEAT SINK DESIGN AND OPTIMIZATION...distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Heat sinks are devices that are used to enhance heat dissipation
Control methods for aiding a pilot during STOL engine failure transients
NASA Technical Reports Server (NTRS)
Nelson, E. R.; Debra, D. B.
1976-01-01
Candidate autopilot control laws that control the engine failure transient sink rates by demonstrating the engineering application of modern state variable control theory were defined. The results of approximate modal analysis were compared to those derived from full state analyses provided from computer design solutions. The aircraft was described, and a state variable model of its longitudinal dynamic motion due to engine and control variations was defined. The classical fast and slow modes were assumed to be sufficiently different to define reduced order approximations of the aircraft motion amendable to hand analysis control definition methods. The original state equations of motion were also applied to a large scale state variable control design program, in particular OPTSYS. The resulting control laws were compared with respect to their relative responses, ease of application, and meeting the desired performance objectives.
Effect of a surface tension imbalance on a partly submerged cylinder
NASA Astrophysics Data System (ADS)
Janssens, Stoffel; Chaurasia, Vikash; Fried, Eliot
We perform a force analysis of a circular cylinder which lays between a liquid-gas interface and acts as a barrier between a surfactant-free surface and a surfactant-loaded surface. The respective surfaces have uniform surface tensions γa and γb which generate a surface tension imbalance Δγ =γa -γb , also referred to as surface pressure. In addition to the general force analysis, we determine the effect of Δγ on the load-bearing capacity of a floating cylinder upon sinking for a specific set of parameters. Moreover, we demonstrate that Δγ induces a horizontal force component which in magnitude is equal to Δγ , when measured per unit length cylinder, and use an energetic argument to prove that this relation applies to prismatic bodies in general.
Analysis and comparison of wall cooling schemes for advanced gas turbine applications
NASA Technical Reports Server (NTRS)
Colladay, R. S.
1972-01-01
The relative performance of (1) counterflow film cooling, (2) parallel-flow film cooling, (3) convection cooling, (4) adiabatic film cooling, (5) transpiration cooling, and (6) full-coverage film cooling was investigated for heat loading conditions expected in future gas turbine engines. Assumed in the analysis were hot-gas conditions of 2200 K (3500 F) recovery temperature, 5 to 40 atmospheres total pressure, and 0.6 gas Mach number and a cooling air supply temperature of 811 K (1000 F). The first three cooling methods involve film cooling from slots. Counterflow and parallel flow describe the direction of convection cooling air along the inside surface of the wall relative to the main gas flow direction. The importance of utilizing the heat sink available in the coolant for convection cooling prior to film injection is illustrated.
Kinetic energy budgets in areas of intense convection
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.; Berecek, E. M.; Ebel, D. M.; Jedlovec, G. J.
1980-01-01
A kinetic energy budget analysis of the AVE-SESAME 1 period which coincided with the deadly Red River Valley tornado outbreak is presented. Horizontal flux convergence was found to be the major kinetic energy source to the region, while cross contour destruction was the major sink. Kinetic energy transformations were dominated by processes related to strong jet intrusion into the severe storm area. A kinetic energy budget of the AVE 6 period also is presented. The effects of inherent rawinsonde data errors on widely used basic kinematic parameters, including velocity divergence, vorticity advection, and kinematic vertical motion are described. In addition, an error analysis was performed in terms of the kinetic energy budget equation. Results obtained from downward integration of the continuity equation to obtain kinematic values of vertical motion are described. This alternate procedure shows promising results in severe storm situations.
Re-evaluating the 1940s CO2 plateau
NASA Astrophysics Data System (ADS)
Bastos, Ana; Ciais, Philippe; Barichivich, Jonathan; Bopp, Laurent; Brovkin, Victor; Gasser, Thomas; Peng, Shushi; Pongratz, Julia; Viovy, Nicolas; Trudinger, Cathy M.
2016-09-01
The high-resolution CO2 record from Law Dome ice core reveals that atmospheric CO2 concentration stalled during the 1940s (so-called CO2 plateau). Since the fossil-fuel emissions did not decrease during the period, this stalling implies the persistence of a strong sink, perhaps sustained for as long as a decade or more. Double-deconvolution analyses have attributed this sink to the ocean, conceivably as a response to the very strong El Niño event in 1940-1942. However, this explanation is questionable, as recent ocean CO2 data indicate that the range of variability in the ocean sink has been rather modest in recent decades, and El Niño events have generally led to higher growth rates of atmospheric CO2 due to the offsetting terrestrial response. Here, we use the most up-to-date information on the different terms of the carbon budget: fossil-fuel emissions, four estimates of land-use change (LUC) emissions, ocean uptake from two different reconstructions, and the terrestrial sink modelled by the TRENDY project to identify the most likely causes of the 1940s plateau. We find that they greatly overestimate atmospheric CO2 growth rate during the plateau period, as well as in the 1960s, in spite of giving a plausible explanation for most of the 20th century carbon budget, especially from 1970 onwards. The mismatch between reconstructions and observations during the CO2 plateau epoch of 1940-1950 ranges between 0.9 and 2.0 Pg C yr-1, depending on the LUC dataset considered. This mismatch may be explained by (i) decadal variability in the ocean carbon sink not accounted for in the reconstructions we used, (ii) a further terrestrial sink currently missing in the estimates by land-surface models, or (iii) LUC processes not included in the current datasets. Ocean carbon models from CMIP5 indicate that natural variability in the ocean carbon sink could explain an additional 0.5 Pg C yr-1 uptake, but it is unlikely to be higher. The impact of the 1940-1942 El Niño on the observed stabilization of atmospheric CO2 cannot be confirmed nor discarded, as TRENDY models do not reproduce the expected concurrent strong decrease in terrestrial uptake. Nevertheless, this would further increase the mismatch between observed and modelled CO2 growth rate during the CO2 plateau epoch. Tests performed using the OSCAR (v2.2) model indicate that changes in land use not correctly accounted for during the period (coinciding with drastic socioeconomic changes during the Second World War) could contribute to the additional sink required. Thus, the previously proposed ocean hypothesis for the 1940s plateau cannot be confirmed by independent data. Further efforts are required to reduce uncertainty in the different terms of the carbon budget during the first half of the 20th century and to better understand the long-term variability of the ocean and terrestrial CO2 sinks.
78 FR 21417 - Drawn Stainless Steel Sinks From China
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
... Stainless Steel Sinks From China Determinations On the basis of the record \\1\\ developed in the subject... steel sinks from China, provided for in subheading 7324.10.00 of the Harmonized Tariff Schedule of the... notification of a preliminary determinations by Commerce that imports of drawn stainless steel sinks from China...
Temporal variation in biodeposit organic content and sinking velocity in long-line shellfish culture
NASA Astrophysics Data System (ADS)
Ren, Lihua; Zhang, Jihong
2016-09-01
We measured the organic content and sinking velocities of biodeposits from two scallop species ( Chlamys farreri, Patinopecten yessoensis) and abalone ( Haliotis discus hannai) that were cultured on suspended long-lines. Measurements were conducted every two months from April 2010 to February 2011. The shellfish were divided into three size groups (small, middle, and big sizes). At each sample point, we assessed biodeposit organic content, average sinking velocity, the frequency distribution of sinking velocities, and the correlation between organic content and sinking velocity. The organic content of biodeposits varied significantly among months ( P<0.05) and the pattern of change varied among species. Sinking velocities varied significantly, ranging from <0.5 cm/s to >1.9 cm/s. The sinking velocities of biodeposits from C. farreri and P. yessoensis were 0.5-1.5 cm/s and from H. discus hannai were <0.7 cm/s. The organic content was significantly negatively correlated to the sinking velocity of biodeposits in C. farreri ( P<0.001) and P. yessoensis ( P<0.05).
The effect of glyphosate on import into a sink leaf of sugar beet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shieh, Wenjang; Geiger, D.R.
1990-05-01
The basis for glyphosate inducted limitation of carbon import into developing leaves was studied in sugar beet. To separate the effects of the herbicide on export from those on import, glyphosate was supplied to a developing leaf from two exporting source leaves which fed the sink leaf. Carbon import into the sink leaf was determined by supplying {sup 14}CO{sub 2} to a third source leaf which also supplies carbon to the monitored sink leaf. Import into the sink leaf decreased within 2 to 3 h after glyphosate application, even though photosynthesis and export in the source leaf supplying {sup 14}Cmore » were unaffected. Reduced import into the sink leaf was accompanied by increased import by the tap root. Elongation of the sink leaf was only slightly decreased following arrival of glyphosate. Photosynthesis by the sink leaf was not inhibited. The results to data support the view that import is slowed by the inhibition of synthesis of structural or storage compounds in the developing leaves.« less
IMPLEMENTATION OF SINK PARTICLES IN THE ATHENA CODE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong Hao; Ostriker, Eve C., E-mail: hgong@astro.umd.edu, E-mail: eco@astro.princeton.edu
2013-01-15
We describe the implementation and tests of sink particle algorithms in the Eulerian grid-based code Athena. The introduction of sink particles enables the long-term evolution of systems in which localized collapse occurs, and it is impractical (or unnecessary) to resolve the accretion shocks at the centers of collapsing regions. We discuss the similarities and differences of our methods compared to other implementations of sink particles. Our criteria for sink creation are motivated by the properties of the Larson-Penston collapse solution. We use standard particle-mesh methods to compute particle and gas gravity together. Accretion of mass and momenta onto sinks ismore » computed using fluxes returned by the Riemann solver. A series of tests based on previous analytic and numerical collapse solutions is used to validate our method and implementation. We demonstrate use of our code for applications with a simulation of planar converging supersonic turbulent flow, in which multiple cores form and collapse to create sinks; these sinks continue to interact and accrete from their surroundings over several Myr.« less
Ozone, OH and NO3 sink terms at a coniferous forest site in Central Germany: Role of biogenic VOCs
NASA Astrophysics Data System (ADS)
Bonn, B.; Bourtsoukidis, S.; Haunold, W.; Sitals, R.; Jacobi, S.
2012-04-01
Oxidation capacities of ecosystems are important to facilitate an ecosystem feedback on oxidation stress and in order to survive. We have conducted seasonal ambient measurements of a series of biogenic VOCs using a plant enclosure technique and determined the ambient levels of ozone, NOx as well as basic meteorological parameters at a managed spruce forest site in Central Germany (Mt. Kleiner Feldberg). The site is 810 m a.s.l. and faces distinct anthropogenic contributions from the Rhine-Main-area including the airport and major traffic routes in from the southeast. The opposite direction is moderately polluted and can be classified as Central German background condition. Since atmospheric chemistry and pollutants become very important especially for this site, which is the most polluted one in Germany with respect to ozone we approximated the sink terms for the atmospheric oxidation agents of interest at this site, i.e ozone, OH and NO3 using the measurements and box model steady state calculations for intermediate species not measured directly between the first of April and the start of November 2011. BVOC measurements were obtained with PTR-MS every 36 s and averaged for 30 min intervals afterwards to facilitate the inclusion of the monitoring data of the Hessian Agency for the Environment and Geology (HLUG) in Wiesbaden, Germany: temperature, humidity, global radiation, ozone and NOx. Analysis was performed with Matlab (Mathworks Inc.) and included the gas-phase chemistry set-up described by the Master Chemical Mechanism (MCM, v3, [1]). This resulted in the following outcome for sinks of oxidants: Ozone: Significant contributions were found for mono- and sesquiterpenes as well as for NOx. The individual contributions vary notably with the time of the day and the year and the emission strength of biogenic VOCs. Especially for the early season in April sesquiterpene reactions dominated the sink by up to 80% during nighttime, while NOx reactions dominated the sink terms during daytime. The contributions of monoterpene and isoprene reactions strengthened towards the summer period, while sesquiterpene reactions slowed down. Hydroxyl radical: The picture becomes much more complex for OH. Besides the reaction with nitrogen dioxide, isoprene and monoterpenes were key destructing agents of OH with estimated contributions of about 50-60%, increasing towards the summertime. Contributions of their oxidation products to the total sink of OH are supposed to be less than 20% but showing more intense during summer and less towards cooler periods. Sesquiterpene OH-reactions only contributed to 10% with a maximum of about 20% at the early April. Nitrate radical: NO3 displayed a mixture of the sinks of OH and ozone. The dominant destruction takes place via NOx-reactions (about 50%) and the remainder primarily via monoterpene (36±20%), sesquiterpene (11±8%) and isoprene (2±1%) OH-reactions. From our observations at this particular site it is apparent that the spruce forest provides a quite efficient variety of pathways to compensate oxidation stress. This is essentially displayed in the variation of emission pattern of different compound classes with different reactivity for the three major oxidation agents. One needs to be aware of the fact that the sink is highly variable in space, too. Therefore we conclude: In order to understand and describe the oxidation tolerance of a certain ecosystem one needs to detect at least the reactive hydrocarbons. [1] Jenkin, M.E., Shallcross, D. E., and Harvey, J. N.: Development and application of a possible mechanism for the generation of cis-pinic acid form the ozonolysis of α- and β-pinene. Atmos.Environ., 34, 2837-2850, 2000.
Carbon source-sink limitations differ between two species with contrasting growth strategies.
Burnett, Angela C; Rogers, Alistair; Rees, Mark; Osborne, Colin P
2016-11-01
Understanding how carbon source and sink strengths limit plant growth is a critical knowledge gap that hinders efforts to maximize crop yield. We investigated how differences in growth rate arise from source-sink limitations, using a model system comparing a fast-growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow-growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub-ambient and elevated CO 2 concentrations ([CO 2 ]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbon and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO 2 ] indicating that source strength was near maximal at current [CO 2 ]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO 2 ] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO 2 ], and lower non-structural carbohydrate accumulation. Alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO 2 ]. © 2016 John Wiley & Sons Ltd.
A Search Strategy of Level-Based Flooding for the Internet of Things
Qiu, Tie; Ding, Yanhong; Xia, Feng; Ma, Honglian
2012-01-01
This paper deals with the query problem in the Internet of Things (IoT). Flooding is an important query strategy. However, original flooding is prone to cause heavy network loads. To address this problem, we propose a variant of flooding, called Level-Based Flooding (LBF). With LBF, the whole network is divided into several levels according to the distances (i.e., hops) between the sensor nodes and the sink node. The sink node knows the level information of each node. Query packets are broadcast in the network according to the levels of nodes. Upon receiving a query packet, sensor nodes decide how to process it according to the percentage of neighbors that have processed it. When the target node receives the query packet, it sends its data back to the sink node via random walk. We show by extensive simulations that the performance of LBF in terms of cost and latency is much better than that of original flooding, and LBF can be used in IoT of different scales. PMID:23112594
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yablinsky, C. A.; Tippey, K. E.; Vaynman, S.
In this study, the development of oxide dispersion strengthened ferrous alloys has shown that microstructures designed for excellent irradiation resistance and thermal stability ideally contain stable nanoscale precipitates and dislocation sinks. Based upon this understanding, the microstructures of conventionally manufactured ferritic and ferritic-martensitic steels can be designed to include controlled volume fractions of fine, stable precipitates and dislocation sinks via specific alloying and processing paths. The concepts proposed here are categorized as advanced high-Cr ferritic-martensitic (AHCr-FM) and novel tailored precipitate ferritic (TPF) steels, which have the potential to improve the in-reactor performance of conventionally manufactured alloys. AHCr-FM steels have modifiedmore » alloy content relative to current reactor materials (such as alloy NF616/P92) to maximize desirable precipitates and control phase stability. TPF steels are designed to incorporate nickel aluminides, in addition to microalloy carbides, in a ferritic matrix to produce fine precipitate arrays with good thermal stability. Both alloying concepts may also benefit from thermomechanical processing to establish dislocation sinks and modify phase transformation behaviors. Alloying and processing paths toward designed microstructures are discussed for both AHCr-FM and TPF material classes.« less
Biogeochemistry: Deep ocean iron balance
NASA Astrophysics Data System (ADS)
Homoky, William B.
2017-02-01
Dissolved iron is mysteriously pervasive in deep ocean hydrothermal plumes. An analysis of gas, metals and particles from a 4,000 km plume transect suggests that dissolved iron is maintained by rapid and reversible exchanges with sinking particles.
ERIC Educational Resources Information Center
Knight, Wanda B.
2010-01-01
The "sink-or-swim" ideology is pervasive in the United States society. At research universities, for example, promotion and tenure are institutional waters in which faculty are forced to sink or swim with respect to publishing. Either they publish ("swim") or they perish ("sink"). In throwing faculty overboard,…
Analysis, testing, and operation of the MAGI thermal control system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Sonny; Hall, Jeffrey L.; Kasper, Brian P.
2014-01-29
The Aerospace Corporation has completed the development of the Mineral and Gas Identifier (MAGI) sensor - an airborne multi-spectral infrared instrument that is designed to discriminate surface composition and to detect gas emissions from the environment. Sensor performance was demonstrated in a series of flights aboard a Twin Otter aircraft in December 2011 as a stepping stone to a future satellite sensor design. To meet sensor performance requirements the thermal control system was designed to operate the HgCdTe focal plane array (FPA) at 50 K with a 1.79 W heat rejection load to a 44.7 K sink and the opticalmore » assembly at 100 K with a 7.5 W heat load to a 82.3 K sink. Two commercial off-theshelf (COTS) Sunpower Stirling cryocoolers were used to meet the instrument’s cooling requirements. A thermal model constructed in Thermal Desktop was used to run parametric studies that guided the mechanical design and sized the two cryocoolers. This paper discusses the development, validation, and operation of the MAGI thermal control system. Detailed energy balances and temperature predictions are presented for various test cases to demonstrate the utility and accuracy of the thermal model. Model inputs included measured values of heat lift as a function of input power and cold tip temperature for the two cryocoolers. These measurements were also used to make predictions of the cool-down behavior from ambient conditions. Advanced heater software was developed to meet unique requirements for both sensor cool-down rate and stability at the set point temperatures.« less
Comparison of ANN and RKS approaches to model SCC strength
NASA Astrophysics Data System (ADS)
Prakash, Aravind J.; Sathyan, Dhanya; Anand, K. B.; Aravind, N. R.
2018-02-01
Self compacting concrete (SCC) is a high performance concrete that has high flowability and can be used in heavily reinforced concrete members with minimal compaction segregation and bleeding. The mix proportioning of SCC is highly complex and large number of trials are required to get the mix with the desired properties resulting in the wastage of materials and time. The research on SCC has been highly empirical and no theoretical relationships have been developed between the mixture proportioning and engineering properties of SCC. In this work effectiveness of artificial neural network (ANN) and random kitchen sink algorithm(RKS) with regularized least square algorithm(RLS) in predicting the split tensile strength of the SCC is analysed. Random kitchen sink algorithm is used for mapping data to higher dimension and classification of this data is done using Regularized least square algorithm. The training and testing data for the algorithm was obtained experimentally using standard test procedures and materials available. Total of 40 trials were done which were used as the training and testing data. Trials were performed by varying the amount of fine aggregate, coarse aggregate, dosage and type of super plasticizer and water. Prediction accuracy of the ANN and RKS model is checked by comparing the RMSE value of both ANN and RKS. Analysis shows that eventhough the RKS model is good for large data set, its prediction accuracy is as good as conventional prediction method like ANN so the split tensile strength model developed by RKS can be used in industries for the proportioning of SCC with tailor made property.
Dynamic Looping of a Free-Draining Polymer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Felix X. -F.; Stinis, Panos; Qian, Hong
Here, we revisit the celebrated Wilemski--Fixman (WF) treatment for the looping time of a free-draining polymer. The WF theory introduces a sink term into the Fokker--Planck equation for themore » $3(N+1)$-dimensional Ornstein--Uhlenbeck process of polymer dynamics, which accounts for the appropriate boundary condition due to the formation of a loop. The assumption for WF theory is considerably relaxed. A perturbation method approach is developed that justifies and generalizes the previous results using either a delta sink or a Heaviside sink. For both types of sinks, we show that under the condition of a small dimensionless $$\\epsilon$$, the ratio of capture radius to the Kuhn length, we are able to systematically produce all known analytical and asymptotic results obtained by other methods. This includes most notably the transition regime between the $N^2$ scaling of Doi, and $$N\\sqrt{N}/\\epsilon$$ scaling of Szabo, Schulten, and Schulten. The mathematical issue at play is the nonuniform convergence of $$\\epsilon\\to 0$$ and $$N\\to\\infty$$, the latter being an inherent part of the theory of a Gaussian polymer. Our analysis yields a novel term in the analytical expression for the looping time with small $$\\epsilon$$, which was previously unknown. Monte Carlo numerical simulations corroborate the analytical findings. The systematic method developed here can be applied to other systems modeled by multidimensional Smoluchowski equations.« less
Carbon Sequestration by Fruit Trees - Chinese Apple Orchards as an Example
Wu, Ting; Wang, Yi; Yu, Changjiang; Chiarawipa, Rawee; Zhang, Xinzhong; Han, Zhenhai; Wu, Lianhai
2012-01-01
Apple production systems are an important component in the Chinese agricultural sector with 1.99 million ha plantation. The orchards in China could play an important role in the carbon (C) cycle of terrestrial ecosystems and contribute to C sequestration. The carbon sequestration capability in apple orchards was analyzed through identifying a set of potential assessment factors and their weighting factors determined by a field model study and literature. The dynamics of the net C sink in apple orchards in China was estimated based on the apple orchard inventory data from 1990s and the capability analysis. The field study showed that the trees reached the peak of C sequestration capability when they were 18 years old, and then the capability began to decline with age. Carbon emission derived from management practices would not be compensated through C storage in apple trees before reaching the mature stage. The net C sink in apple orchards in China ranged from 14 to 32 Tg C, and C storage in biomass from 230 to 475 Tg C between 1990 and 2010. The estimated net C sequestration in Chinese apple orchards from 1990 to 2010 was equal to 4.5% of the total net C sink in the terrestrial ecosystems in China. Therefore, apple production systems can be potentially considered as C sinks excluding the energy associated with fruit production in addition to provide fruits. PMID:22719974
Carbon sequestration by fruit trees--Chinese apple orchards as an example.
Wu, Ting; Wang, Yi; Yu, Changjiang; Chiarawipa, Rawee; Zhang, Xinzhong; Han, Zhenhai; Wu, Lianhai
2012-01-01
Apple production systems are an important component in the Chinese agricultural sector with 1.99 million ha plantation. The orchards in China could play an important role in the carbon (C) cycle of terrestrial ecosystems and contribute to C sequestration. The carbon sequestration capability in apple orchards was analyzed through identifying a set of potential assessment factors and their weighting factors determined by a field model study and literature. The dynamics of the net C sink in apple orchards in China was estimated based on the apple orchard inventory data from 1990s and the capability analysis. The field study showed that the trees reached the peak of C sequestration capability when they were 18 years old, and then the capability began to decline with age. Carbon emission derived from management practices would not be compensated through C storage in apple trees before reaching the mature stage. The net C sink in apple orchards in China ranged from 14 to 32 Tg C, and C storage in biomass from 230 to 475 Tg C between 1990 and 2010. The estimated net C sequestration in Chinese apple orchards from 1990 to 2010 was equal to 4.5% of the total net C sink in the terrestrial ecosystems in China. Therefore, apple production systems can be potentially considered as C sinks excluding the energy associated with fruit production in addition to provide fruits.
Gliding flight in a jackdaw: a wind tunnel study.
Rosén, M; Hedenström, A
2001-03-01
We examined the gliding flight performance of a jackdaw Corvus monedula in a wind tunnel. The jackdaw was able to glide steadily at speeds between 6 and 11 m s(-1). The bird changed its wingspan and wing area over this speed range, and we measured the so-called glide super-polar, which is the envelope of fixed-wing glide polars over a range of forward speeds and sinking speeds. The glide super-polar was an inverted U-shape with a minimum sinking speed (V(ms)) at 7.4 m s(-1) and a speed for best glide (V(bg)) at 8.3 m s(-)). At the minimum sinking speed, the associated vertical sinking speed was 0.62 m s(-1). The relationship between the ratio of lift to drag (L:D) and airspeed showed an inverted U-shape with a maximum of 12.6 at 8.5 m s(-1). Wingspan decreased linearly with speed over the whole speed range investigated. The tail was spread extensively at low and moderate speeds; at speeds between 6 and 9 m s(-1), the tail area decreased linearly with speed, and at speeds above 9 m s(-1) the tail was fully furled. Reynolds number calculated with the mean chord as the reference length ranged from 38 000 to 76 000 over the speed range 6-11 m s(-1). Comparisons of the jackdaw flight performance were made with existing theory of gliding flight. We also re-analysed data on span ratios with respect to speed in two other bird species previously studied in wind tunnels. These data indicate that an equation for calculating the span ratio, which minimises the sum of induced and profile drag, does not predict the actual span ratios observed in these birds. We derive an alternative equation on the basis of the observed span ratios for calculating wingspan and wing area with respect to forward speed in gliding birds from information about body mass, maximum wingspan, maximum wing area and maximum coefficient of lift. These alternative equations can be used in combination with any model of gliding flight where wing area and wingspan are considered to calculate sinking rate with respect to forward speed.
Aranjuelo, Iker; Ebbets, Allison L; Evans, R Dave; Tissue, David T; Nogués, Salvador; van Gestel, Natasja; Payton, Paxton; Ebbert, Volker; Adams, Williams W; Nowak, Robert S; Smith, Stanley D
2011-10-01
During the first few years of elevated atmospheric [CO(2)] treatment at the Nevada Desert FACE Facility, photosynthetic downregulation was observed in desert shrubs grown under elevated [CO(2)], especially under relatively wet environmental conditions. Nonetheless, those plants maintained increased A (sat) (photosynthetic performance at saturating light and treatment [CO(2)]) under wet conditions, but to a much lesser extent under dry conditions. To determine if plants continued to downregulate during long-term exposure to elevated [CO(2)], responses of photosynthesis to elevated [CO(2)] were examined in two dominant Mojave Desert shrubs, the evergreen Larrea tridentata and the drought-deciduous Ambrosia dumosa, during the eighth full growing season of elevated [CO(2)] treatment at the NDFF. A comprehensive suite of physiological processes were collected. Furthermore, we used C labeling of air to assess carbon allocation and partitioning as measures of C sink activity. Results show that elevated [CO(2)] enhanced photosynthetic performance and plant water status in Larrea, especially during periods of environmental stress, but not in Ambrosia. δ(13)C analyses indicate that Larrea under elevated [CO(2)] allocated a greater proportion of newly assimilated C to C sinks than Ambrosia. Maintenance by Larrea of C sinks during the dry season partially explained the reduced [CO(2)] effect on leaf carbohydrate content during summer, which in turn lessened carbohydrate build-up and feedback inhibition of photosynthesis. δ(13)C results also showed that in a year when plant growth reached the highest rates in 5 years, 4% (Larrea) and 7% (Ambrosia) of C in newly emerging organs were remobilized from C that was assimilated and stored for at least 2 years prior to the current study. Thus, after 8 years of continuous exposure to elevated [CO(2)], both desert perennials maintained their photosynthetic capacities under elevated [CO(2)]. We conclude that C storage, remobilization, and partitioning influence the responsiveness of these desert shrubs during long-term exposure to elevated [CO(2)].
Brignoli, Riccardo; Brown, J Steven; Skye, H; Domanski, Piotr A
2017-08-01
Preliminary refrigerant screenings typically rely on using cycle simulation models involving thermodynamic properties alone. This approach has two shortcomings. First, it neglects transport properties, whose influence on system performance is particularly strong through their impact on the performance of the heat exchangers. Second, the refrigerant temperatures in the evaporator and condenser are specified as input, while real-life equipment operates at imposed heat sink and heat source temperatures; the temperatures in the evaporator and condensers are established based on overall heat transfer resistances of these heat exchangers and the balance of the system. The paper discusses a simulation methodology and model that addresses the above shortcomings. This model simulates the thermodynamic cycle operating at specified heat sink and heat source temperature profiles, and includes the ability to account for the effects of thermophysical properties and refrigerant mass flux on refrigerant heat transfer and pressure drop in the air-to-refrigerant evaporator and condenser. Additionally, the model can optimize the refrigerant mass flux in the heat exchangers to maximize the Coefficient of Performance. The new model is validated with experimental data and its predictions are contrasted to those of a model based on thermodynamic properties alone.
Causes of sinks near Tucson, Arizona, USA
Hoffmann, J.P.; Pool, D.R.; Konieczki, A.D.; Carpenter, M.C.
1998-01-01
Land subsidence in the form of sinks has occurred on and near farmlands near Tucson, Pima County, Arizona, USA. The sinks occur in alluvial deposits along the flood plain of the Santa Cruz River, and have made farmlands dangerous and unsuitable for farming. More than 1700 sinks are confined to the flood plain of the Santa Cruz River and are grouped along two north-northwestward-trending bands that are approximately parallel to the river and other flood-plain drainages. An estimated 17,000 m3 of sediment have been removed in the formation of the sinks. Thirteen trenches were dug to depths of 4-6 m to characterize near-surface sediments in sink and nonsink areas. Sediments below about 2 m included a large percentage of dispersive clays in sink areas. Sediments in nonsink areas contain a large component of medium- to coarse-grained, moderately to well sorted sand that probably fills a paleochannel. Electromagnetic surveys support the association of silts and clays in sink areas that are highly electrically conductive relative to sand in nonsink areas. Sinks probably are caused by the near-surface process of subsurface erosion of dispersive sediments along pre-existing cracks in predominantly silt and clay sediments. The pre-existing cracks probably result from desiccation or tension that developed during periods of water-table decline and channel incision during the past 100 years or in earlier periods.
Microchannel heat sink assembly
Bonde, Wayne L.; Contolini, Robert J.
1992-01-01
The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watetight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures.
Atmospheric Tracer Inverse Modeling Using Markov Chain Monte Carlo (MCMC)
NASA Astrophysics Data System (ADS)
Kasibhatla, P.
2004-12-01
In recent years, there has been an increasing emphasis on the use of Bayesian statistical estimation techniques to characterize the temporal and spatial variability of atmospheric trace gas sources and sinks. The applications have been varied in terms of the particular species of interest, as well as in terms of the spatial and temporal resolution of the estimated fluxes. However, one common characteristic has been the use of relatively simple statistical models for describing the measurement and chemical transport model error statistics and prior source statistics. For example, multivariate normal probability distribution functions (pdfs) are commonly used to model these quantities and inverse source estimates are derived for fixed values of pdf paramaters. While the advantage of this approach is that closed form analytical solutions for the a posteriori pdfs of interest are available, it is worth exploring Bayesian analysis approaches which allow for a more general treatment of error and prior source statistics. Here, we present an application of the Markov Chain Monte Carlo (MCMC) methodology to an atmospheric tracer inversion problem to demonstrate how more gereral statistical models for errors can be incorporated into the analysis in a relatively straightforward manner. The MCMC approach to Bayesian analysis, which has found wide application in a variety of fields, is a statistical simulation approach that involves computing moments of interest of the a posteriori pdf by efficiently sampling this pdf. The specific inverse problem that we focus on is the annual mean CO2 source/sink estimation problem considered by the TransCom3 project. TransCom3 was a collaborative effort involving various modeling groups and followed a common modeling and analysis protocoal. As such, this problem provides a convenient case study to demonstrate the applicability of the MCMC methodology to atmospheric tracer source/sink estimation problems.
Source-sink interaction: a century old concept under the light of modern molecular systems biology.
Chang, Tian-Gen; Zhu, Xin-Guang; Raines, Christine
2017-07-20
Many approaches to engineer source strength have been proposed to enhance crop yield potential. However, a well-co-ordinated source-sink relationship is required finally to realize the promised increase in crop yield potential in the farmer's field. Source-sink interaction has been intensively studied for decades, and a vast amount of knowledge about the interaction in different crops and under different environments has been accumulated. In this review, we first introduce the basic concepts of source, sink and their interactions, then summarize current understanding of how source and sink can be manipulated through both environmental control and genetic manipulations. We show that the source-sink interaction underlies the diverse responses of crops to the same perturbations and argue that development of a molecular systems model of source-sink interaction is required towards a rational manipulation of the source-sink relationship for increased yield. We finally discuss both bottom-up and top-down routes to develop such a model and emphasize that a community effort is needed for development of this model. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Rodrigues, Joel J. P. C.
2014-01-01
This paper exploits sink mobility to prolong the lifetime of sensor networks while maintaining the data transmission delay relatively low. A location predictive and time adaptive data gathering scheme is proposed. In this paper, we introduce a sink location prediction principle based on loose time synchronization and deduce the time-location formulas of the mobile sink. According to local clocks and the time-location formulas of the mobile sink, nodes in the network are able to calculate the current location of the mobile sink accurately and route data packets timely toward the mobile sink by multihop relay. Considering that data packets generating from different areas may be different greatly, an adaptive dwelling time adjustment method is also proposed to balance energy consumption among nodes in the network. Simulation results show that our data gathering scheme enables data routing with less data transmission time delay and balance energy consumption among nodes. PMID:25302327
Friction pull plug welding: chamfered heat sink pull plug design
NASA Technical Reports Server (NTRS)
Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)
2002-01-01
Friction Pull Plug Welding (FPPW) is a solid state repair process for defects up to one inch in length, only requiring single sided tooling (OSL) for usage on flight hardware. Experimental data has shown that the mass of plug heat sink remaining above the top of the plate surface after a weld is completed (the plug heat sink) affects the bonding at the plug top. A minimized heat sink ensures complete bonding of the plug to the plate at the plug top. However, with a minimal heat sink three major problems can arise, the entire plug could be pulled through the plate hole, the central portion of the plug could be separated along grain boundaries, or the plug top hat can be separated from the body. The Chamfered Heat Sink Pull Plug Design allows for complete bonding along the ISL interface through an outside diameter minimal mass heat sink, while maintaining enough central mass in the plug to prevent plug pull through, central separation, and plug top hat separation.
Differences in hemispherical thalamo-cortical causality analysis during resting-state fMRI.
Anwar, Abdul Rauf; Muthalib, Makii; Perrey, Stephane; Wolff, Stephan; Deuschl, Guunther; Heute, Ulrich; Muthuraman, Muthuraman
2014-01-01
Thalamus is a very important part of the human brain. It has been reported to act as a relay for the messaging taking place between the cortical and sub-cortical regions of the brain. In the present study, we analyze the functional network between both hemispheres of the brain with the focus on thalamus. We used conditional Granger causality (CGC) and time-resolved partial directed coherence (tPDC) to investigate the functional connectivity. Results of CGC analysis revealed the asymmetry between connection strengths of the bilateral thalamus. Upon testing the functional connectivity of the default-mode network (DMN) at low-frequency fluctuations (LFF) and comparing coherence vectors using Spearman's rank correlation, we found that thalamus is a better source for the signals directed towards the contralateral regions of the brain, however, when thalamus acts as sink, it is a better sink for signals generated from ipsilateral regions of the brain.
Outer satellite atmospheres: Their nature and planetary interactions
NASA Technical Reports Server (NTRS)
Smyth, W. H.; Combi, M. R.
1982-01-01
Significant progress is reported in early modeling analysis of observed sodium cloud images with our new model which includes the oscillating Io plasma torus ionization sink. Both the general w-D morphology of the region B cloud as well as the large spatial gradient seen between the region A and B clouds are found to be consistent with an isotropic flux of sodium atoms from Io. Model analysis of the spatially extended high velocity directional features provided substantial evidence for a magnetospheric wind driven gas escape mechanism from Io. In our efforts to define the source(s) of hydrogen atoms in the Saturn system, major steps were taken in order to understand the role of Titan. We have completed the comparison of the Voyager UVS data with previous Titan model results, as well as the update of the old model computer code to handle the spatially varying ionization sink for H atoms.
NASA Astrophysics Data System (ADS)
Linke, J.
2006-04-01
The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive R&D. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation.
Graded pitch electromagnetic pump for thin strip metal casting systems
Kuznetsov, Stephen B.
1986-01-01
A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel.
Li, Pin; Feng, Zhaozhong; Catalayud, Vicent; Yuan, Xiangyang; Xu, Yansen; Paoletti, Elena
2017-10-01
The carbon-sink strength of temperate and boreal forests at midlatitudes of the northern hemisphere is decreased by ozone pollution, but knowledge on subtropical evergreen broadleaved forests is missing. Taking the dataset from Chinese studies covering temperate and subtropical regions, effects of elevated ozone concentration ([O 3 ]) on growth, biomass, and functional leaf traits of different types of woody plants were quantitatively evaluated by meta-analysis. Elevated mean [O 3 ] of 116 ppb reduced total biomass of woody plants by 14% compared with control (mean [O 3 ] of 21 ppb). Temperate species from China were more sensitive to O 3 than those from Europe and North America in terms of photosynthesis and transpiration. Significant reductions in chlorophyll content, chlorophyll fluorescence parameters, and ascorbate peroxidase induced significant injury to photosynthesis and growth (height and diameter). Importantly, subtropical species were significantly less sensitive to O 3 than temperate ones, whereas deciduous broadleaf species were significantly more sensitive than evergreen broadleaf and needle-leaf species. These findings suggest that carbon-sink strength of Chinese forests is reduced by present and future [O 3 ] relative to control (20-40 ppb). Given that (sub)-tropical evergreen broadleaved species dominate in Chinese forests, estimation of the global carbon-sink constraints due to [O 3 ] should be re-evaluated. © 2017 John Wiley & Sons Ltd.
The Roles of Forest Biomass Carbon Sinks in Offsetting Anthropogenic Emissions in China
NASA Astrophysics Data System (ADS)
Ju, W.; Zhang, C.
2016-12-01
Forests play a critical role in mitigating climate change because of their high carbon storage and productivity. China has experienced a pronounced increase in forest area resulting from afforestation and reforestation activities since the 1970s. Meanwhile, anthropogenic carbon emission also increased very quickly owing to fast economic development. This study was devoted to assess the roles of forest biomass carbon sinks in offsetting anthropogenic emissions in China for the period from 2000 to 2012. Forest biomass carbon sinks of China's forests were calculated at provincial levels based on eight national forest inventory datasets from 1973 to 2013. The anthropogenic carbon emissions of individual provinces were estimated for different sectors over the period from 2000 to 2012, including industrial, transportation, and other energy consumption and industrial processes. The national forest biomass carbon sinks increased from 25.0 to 166.5 Tg C yr-1 between 1973 and 2008, and then decreased to 130.9 Tg C yr-1 for the period of 2009-2013 because the increases in forest area and biomass carbon density became slower. About 7% and 93% of this sink reduction occurred in planted and natural forests. The carbon sinks for young, middle-aged and premature forests decreased by 27.3, 27.0, and 7.6 Tg C yr-1, respectively. 42% of this decrease was offset by mature and overmature forests. During 2009-2013, forest biomass carbon sinks decreased in all regions but the north and northwest regions. The drivers for changes of forest biomass sinks differ spatially. The average national total anthropogenic carbon emissions were 1107.2 Tg C yr-1 , 1876.7 Tg C yr-1 and 2670 Tg C yr-1 over the periods from 2000 to 2003, 2004 to 2008, 2009 to 2012, respectively. The forest biomass carbon sinks approximately offset 14.6%, 8.9%, and 4.9% of these emissions. The declined roles of forest biomass carbon sinks in offsetting anthropogenic carbon emissions were mainly caused by large increase of anthropogenic carbon emissions and small disturbance-induced decrease of forest biomass carbon sinks. Keywords: anthropogenic carbon emissions, biomass carbon sink, forest disturbances
North America's net terrestrial CO2 exchange with the atmosphere 1990-2009
NASA Astrophysics Data System (ADS)
King, A. W.; Andres, R. J.; Davis, K. J.; Hafer, M.; Hayes, D. J.; Huntzinger, D. N.; de Jong, B.; Kurz, W. A.; McGuire, A. D.; Vargas, R.; Wei, Y.; West, T. O.; Woodall, C. W.
2015-01-01
Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land-atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990-2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr-1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr-1 based on the mean and standard deviation of the distribution and -360 Tg C yr-1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990-2009 equal to 1720 Tg C yr-1 and assuming the estimate of -472 Tg C yr-1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was 1720:472, or nearly 4:1.
North America's net terrestrial CO 2 exchange with the atmosphere 1990–2009
King, Anthony W.; Andres, Robert; Davis, Kenneth J.; ...
2015-01-21
Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO 2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO 2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO 2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate thatmore » the North American land surface was a sink for atmospheric CO 2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr -1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, \\"best\\" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr -1 based on the mean and standard deviation of the distribution and -360 Tg C yr -1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO 2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO 2 emissions for the period 1990–2009 equal to 1720 Tg C yr -1 and assuming the estimate of -472 Tg C yr -1 as an approximation of the true terrestrial CO 2 sink, the continent's source : sink ratio for this time period was 1720:472, or nearly 4:1.« less
North America's net terrestrial CO2 exchange with the atmosphere 1990–2009
King, A.W.; Andres, R.J.; Davis, K.J.; Hafer, M.; Hayes, D.J.; Huntzinger, Deborah N.; de Jong, Bernardus; Kurz, W.A.; McGuire, A. David; Vargas, Rodrigo I.; Wei, Y.; West, Tristram O.; Woodall, Christopher W.
2015-01-01
Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from −890 to −280 Tg C yr−1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are −472 ± 281 Tg C yr−1 based on the mean and standard deviation of the distribution and −360 Tg C yr−1 (with an interquartile range of −496 to −337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990–2009 equal to 1720 Tg C yr−1 and assuming the estimate of −472 Tg C yr−1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was 1720:472, or nearly 4:1.
North America's net terrestrial CO 2 exchange with the atmosphere 1990–2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Anthony W.; Andres, Robert; Davis, Kenneth J.
Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO 2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO 2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO 2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate thatmore » the North American land surface was a sink for atmospheric CO 2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr -1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, \\"best\\" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr -1 based on the mean and standard deviation of the distribution and -360 Tg C yr -1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO 2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO 2 emissions for the period 1990–2009 equal to 1720 Tg C yr -1 and assuming the estimate of -472 Tg C yr -1 as an approximation of the true terrestrial CO 2 sink, the continent's source : sink ratio for this time period was 1720:472, or nearly 4:1.« less
NASA Astrophysics Data System (ADS)
Delle Rose, M.; Beccarisi, L.; Zuccarello, V.
2009-04-01
Peoples living inside flat karstic areas frequently deal with both socio-economic and environmental problems related to the superficial waters management. Karst morphologies, such as dolines and water sinks mostly, characterize the plane territory of Salento (southern Italy). Since their first settlements, Salento landscapes had been modified to drain surface waters, discharge floods and reclaim marshlands. This contribution deals with the Asso graben-polje which is about 200 kmq wide and lies in a regional lowered tectonic structure. It is highly vulnerable owing to both flooding and groundwater pollution and the hazard due to the occurrence of sinkholes is impending. The Asso streams is network of natural and artificial channels which was linked to six water sinks about 75 years ago, i. e. during the last extensive hydrographic arrangement to solve flooding and epidemiological problems. At present, the terminal sinks of the Asso fluvial-karst system absolved the functions of: storm water drainage wells, aquifer remediation-related wells and underground injection regulated wastewater disposal systems. So, the water management of the system is an hard task, being the mitigation of the amplitude of flooding events, achieved by means of the increasing of water sinks discharge, in contrast with the safeguard aquifers by pollutant displacements and the need to protect the public health. In spite of the efforts made till now by Public Bodies, the knowledge related to the speleogenesis and the hydraulic properties of the sinks is disregarded by the current water resource management. The carried out geomorphological researches allow us to distinguish natural, partially modified and human bored water sinks. Some of the natural water sinks can be described us collapse dolines, but a number of them present different origin and development, as karst wells and karst shaft. To each water sink type, specific drainage properties can be assigned. Even if the depressions prone to be flooded are thought by geologists as hazard zones, they also represent ecologically significant habitats. Moreover, natural vegetation is a good indicator of the local environmental characteristics of the hydrographical system. So, this study also dealt with the definition of the plant communities and the characterization of the habitats related to such communities. Through the sampling and the analysis of the hydrophitic and riparian vegetation, a series of plant communities is been characterized. Such communities responds to the length of the period of flooding, to the typology of substratum and to the form of the river bed section. In order to make tools useful to the catchment basin management, existing and collected geological and ecological data are in phase of implementation in a Geographical Information System database.
Bancal, Marie-Odile; Hansart, Amandine; Sache, Ivan; Bancal, Pierre
2012-01-01
Background and Aims Experiments have shown that biotrophic fungi divert assimilates for their growth. However, no attempt has been made either to account for this additional sink or to predict to what extent it competes with both grain filling and plant reserve metabolism for carbon. Fungal sink competitiveness with grains was quantified by a mixed experimental–modelling approach based on winter wheat infected by Puccinia triticina. Methods One week after anthesis, plants grown under controlled conditions were inoculated with varying loads. Sporulation was recorded while plants underwent varying degrees of shading, ensuring a range of both fungal sink and host source levels. Inoculation load significantly increased both sporulating area and rate. Shading significantly affected net assimilation, reserve mobilization and sporulating area, but not grain filling or sporulation rates. An existing carbon partitioning (source–sink) model for wheat during the grain filling period was then enhanced, in which two parameters characterize every sink: carriage capacity and substrate affinity. Fungal sink competitiveness with host sources and sinks was modelled by representing spore production as another sink in diseased wheat during grain filling. Key Results Data from the experiment were fitted to the model to provide the fungal sink parameters. Fungal carriage capacity was 0·56 ± 0·01 µg dry matter °Cd−1 per lesion, much less than grain filling capacity, even in highly infected plants; however, fungal sporulation had a competitive priority for assimilates over grain filling. Simulation with virtual crops accounted for the importance of the relative contribution of photosynthesis loss, anticipated reserve depletion and spore production when light level and disease severity vary. The grain filling rate was less reduced than photosynthesis; however, over the long term, yield loss could double because the earlier reserve depletion observed here would shorten the duration of grain filling. Conclusions Source–sink modelling holds the promise of accounting for plant–pathogen interactions over time under fluctuating climatic/lighting conditions in a robust way. PMID:22589327
NASA Astrophysics Data System (ADS)
Chabi, A. R.; Zarrinabadi, S.; Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Salimi, M.
2017-02-01
Forced convective heat transfer in a microchannel heat sink (MCHS) using CuO/water nanofluids with 0.1 and 0.2 vol% as coolant was investigated. The experiments were focused on the heat transfer enhancement in the channel entrance region at Re < 1800. Hydraulic performance of the MCHS was also estimated by measuring friction factor and pressure drop. Results showed that higher convective heat transfer coefficient was obtained at the microchannel entrance. Maximum enhancement of the average heat transfer coefficient compared with deionized water was about 40 % for 0.2 vol% nanofluid at Re = 1150. Enhancement of the convective heat transfer coefficient of nanofluid decreased with further increasing of Reynolds number.
Forecasting the realized volatility of the Chinese stock market: Do the G7 stock markets help?
NASA Astrophysics Data System (ADS)
Peng, Huan; Chen, Ruoxun; Mei, Dexiang; Diao, Xiaohua
2018-07-01
In this paper, we use a comprehensive look to investigate whether the G7 stock markets can contain predictive information to help in forecasting the Chinese stock market volatility. Our out-of-sample empirical results indicate the kitchen sink (HAR-RV-SK) model is able to attain better performance than the benchmark model (HAR-RV) and other models, implying that the G7 stock markets can help in predicting the one-day volatility of the Chinese stock market. Moreover, the kitchen sink strategy can beat the strategy of the simple combination forecasts. Finally, the G7 stock markets can indeed contain useful information, which can increase the accuracy forecasts of the Chinese stock market.
NASA Astrophysics Data System (ADS)
Kijko, V. V.; Ofitserov, Evgenii N.
2006-05-01
Thermooptic distortions of the active element of an axially diode-pumped Nd:YVO4 solid-state laser are studied at different methods of its mounting. The study was performed by the Hartmann method. A mathematical model for calculating the optical power of a thermal lens produced in the crystal upon pumping is developed and verified experimentally. It is shown that the optical power of a thermal lens produced upon axial pumping of the convectively cooled active element sealed off in a copper heat sink is half the optical power observed upon convective cooling of the active element without heat sink. The experimental and theoretical results are in good agreement.
Estimating Sources and Sinks of Methane from Soils in the Contiguous United States (CONUS)
NASA Astrophysics Data System (ADS)
Shu, S.; Jain, A. K.; Kheshgi, H. S.
2017-12-01
The global methane (CH4) budget estimated based on state-of-the-art models remains highly uncertain. Sources and sinks of CH4 from soils, including wetlands, are the most important source of uncertainty. Soils are estimated to account for about 45% of global CH4 emissions. At the same time oxidation of CH4 by soils is a significant sink, representing about 10% of the total sink. However, most regional and global scale modeling studies of soil CH4 fluxes have ignored the sink through soil oxidation and the source of CH4 emissions from the wet soils with shallow water tables. In this study, we link a bottom-up soil gas diffusion and CH4 biogeochemistry model to a land surface model, ISAM, to calculate the sources, emissions from both wetlands and non-wetlands, and sinks, soil oxidation, of CH4 from soils for the CONUS over the period 1900-2100. The newly developed soil CH4 model framework consists of a gas diffusion module with the vertically resolved soil hydrology (depth up to 3.5 m soil) and soil organic carbon (SOC) and CH4 biogeochemistry module. SOC profile is estimated by modeling vertical soil mixing and thus can represent the deep SOC content and estimate CH4 production from the deep non-wetland soil. For the diffusion calculations, we separately consider both the dissolved and gaseous O2 and CH4 at each soil layer. For CH4 biogeochemistry, we parameterize the production, soil oxidation, ebullition and aerenchyma transportation of CH4 for both seasonal/permanent wetland and wet soil. The SWAMP inundated fraction dataset with 8-day temporal resolution is incorporated to prescribe the extent of permanent and seasonal wetland extent for the recent decade. The model is first evaluated using a compilation of published CH4 site measurement data for CONUS. We then perform two different model experiments: 1) forced by the CRUNCEP climate data from 1900 to 2010 to estimate the contemporary CH4 emission and 2) forced by a climate projection of IPCC's highest representative concentration pathway (RCP8.5) from 2011 to 2100. Our study shows that soil oxidation has an important role attenuating the estimated natural CH4 source. We also find a wetter and warmer climate affects the dry soil CH4 sink and wet soil CH4 emissions and increases the estimated CH4 source over the CONUS.
EU mitigation potential of harvested wood products.
Pilli, Roberto; Fiorese, Giulia; Grassi, Giacomo
2015-12-01
The new rules for the Land Use, Land Use Change and Forestry sector under the Kyoto Protocol recognized the importance of Harvested Wood Products (HWP) in climate change mitigation. We used the Tier 2 method proposed in the 2013 IPCC KP Supplement to estimate emissions and removals from HWP from 1990 to 2030 in EU-28 countries with three future harvest scenarios (constant historical average, and +/-20% in 2030). For the historical period (2000-2012) our results are consistent with other studies, indicating a HWP sink equal on average to -44.0 Mt CO 2 yr -1 (about 10% of the sink by forest pools). Assuming a constant historical harvest scenario and future distribution of the total harvest among each commodity, the HWP sink decreases to -22.9 Mt CO 2 yr -1 in 2030. The increasing and decreasing harvest scenarios produced a HWP sink of -43.2 and -9.0 Mt CO 2 yr -1 in 2030, respectively. Other factors may play an important role on HWP sink, including: (i) the relative share of different wood products, and (ii) the combined effect of production, import and export on the domestic production of each commodity. Maintaining a constant historical harvest, the HWP sink will slowly tend to saturate, i.e. to approach zero in the long term. The current HWP sink will be maintained only by further increasing the current harvest; however, this will tend to reduce the current sink in forest biomass, at least in the short term. Overall, our results suggest that: (i) there is limited potential for additional HWP sink in the EU; (ii) the HWP mitigation potential should be analyzed in conjunction with other mitigation components (e.g. sink in forest biomass, energy and material substitution by wood).
Nested atmospheric inversion for the terrestrial carbon sources and sinks in China
NASA Astrophysics Data System (ADS)
Jiang, F.; Wang, H.; Chen, J. M.; Ju, W.; Ding, A.
2013-01-01
In this study, we establish a~nested atmospheric inversion system with a focus on China using the Bayes theory. The global surface is separated into 43 regions based on the 22 TransCom large regions, with 13 small regions in China. Monthly CO2 concentrations from 130 GlobalView sites and a Hong Kong site are used in this system. The core component of this system is atmospheric transport matrix, which is created using the TM5 model with a horizontal resolution of 3° × 2°. The net carbon fluxes over the 43 global land and ocean regions are inverted for the period from 2002 to 2009. The inverted global terrestrial carbon sinks mainly occur in Boreal Asia, South and Southeast Asia, eastern US and southern South America (SA). Most China areas appear to be carbon sinks, with strongest carbon sinks located in Northeast China. From 2002 to 2009, the global terrestrial carbon sink has an increasing trend, with the lowest carbon sink in 2002. The inter-annual variation (IAV) of the land sinks shows remarkable correlation with the El Niño Southern Oscillation (ENSO). However, no obvious trend is found for the terrestrial carbon sinks in China. The IAVs of carbon sinks in China show strong relationship with drought and temperature. The mean global and China terrestrial carbon sinks over the period 2002-2009 are -3.15 ± 1.48 and -0.21 ± 0.23 Pg C yr-1, respectively. The uncertainties in the posterior carbon flux of China are still very large, mostly due to the lack of CO2 measurement data in China.
Temperature effects on sinking velocity of different Emiliania huxleyi strains.
Rosas-Navarro, Anaid; Langer, Gerald; Ziveri, Patrizia
2018-01-01
The sinking properties of three strains of Emiliania huxleyi in response to temperature changes were examined. We used a recently proposed approach to calculate sinking velocities from coccosphere architecture, which has the advantage to be applicable not only to culture samples, but also to field samples including fossil material. Our data show that temperature in the sub-optimal range impacts sinking velocity of E. huxleyi. This response is widespread among strains isolated in different locations and moreover comparatively predictable, as indicated by the similar slopes of the linear regressions. Sinking velocity was positively correlated to temperature as well as individual cell PIC/POC over the sub-optimum to optimum temperature range in all strains. In the context of climate change our data point to an important influence of global warming on sinking velocities. It has recently been shown that seawater acidification has no effect on sinking velocity of a Mediterranean E. huxleyi strain, while nutrient limitation seems to have a small negative effect on sinking velocity. Given that warming, acidification, and lowered nutrient availability will occur simultaneously under climate change scenarios, the question is what the net effect of different influential factors will be. For example, will the effects of warming and nutrient limitation cancel? This question cannot be answered conclusively but analyses of field samples in addition to laboratory culture studies will improve predictions because in field samples multi-factor influences and even evolutionary changes are not excluded. As mentioned above, the approach of determining sinking rate followed here is applicable to field samples. Future studies could use it to analyse not only seasonal and geographic patterns but also changes in sinking velocity over geological time scales.
Measurements of total OH reactivity during PROPHET-AMOS 2016
NASA Astrophysics Data System (ADS)
Rickly, P.; Sakowski, J.; Bottorff, B.; Lew, M.; Stevens, P. S.; Sklaveniti, S.; Locoge, N.; Dusanter, S.
2017-12-01
As one of the main oxidant in the atmosphere, the hydroxyl radical (OH) initiates the oxidation of volatile organic compounds that can lead to the formation of ozone and secondary organic aerosols. Understanding both the sources and sinks of OH is therefore important to address issues related to air quality and climate change. Measurements of total OH reactivity can provide an important test of our understanding of the OH radical budget. Recent measurements of total reactivity in many environments have been greater than calculated based on the measured concentration of VOCs, suggesting that important OH sinks in these environments are not well characterized. Measurements of total OH reactivity were performed in a forested environment during the PROPHET - AMOS field campaign (Program for Research on Oxidants: PHotochemisty, Emissions, and Transport - Atmospheric Measurements of Oxidants in Summer) using the Comparative Reactivity Method (CRM) and the Total OH Loss Rate Method (TOHLM). The site is characterized by large emissions of isoprene and monoterpenes and low anthropogenic influence. Measurements of total OH reactivity using these two techniques agree to within their respective uncertainties, giving confidence in the measured OH reactivity. In addition, measurements of trace gases (VOCs, NOx, O3) were used to perform a comprehensive apportionment of OH sinks. These measurements are used in a chemical model using the Master Chemical Mechanism to calculate the expected OH reactivity. The results will be compared to previous measurements of total OH reactivity at this site.
Bédard, Emilie; Laferrière, Céline; Charron, Dominique; Lalancette, Cindy; Renaud, Christian; Desmarais, Nadia; Déziel, Eric; Prévost, Michèle
2015-11-01
To perform a post-outbreak prospective study of the Pseudomonas aeruginosa contamination at the faucets (water, aerator and drain) by culture and quantitative polymerase chain reaction (qPCR) and to assess environmental factors influencing occurrence A 450-bed pediatric university hospital in Montreal, Canada Water, aerator swab, and drain swab samples were collected from faucets and analyzed by culture and qPCR for the post-outbreak investigation. Water microbial and physicochemical parameters were measured, and a detailed characterization of the sink environmental and design parameters was performed. The outbreak genotyping investigation identified drains and aerators as the source of infection. The implementation of corrective measures was effective, but post-outbreak sampling using qPCR revealed 50% positivity for P. aeruginosa remaining in the water compared with 7% by culture. P. aeruginosa was recovered in the water, the aerator, and the drain in 21% of sinks. Drain alignment vs the faucet and water microbial quality were significant factors associated with water positivity, whereas P. aeruginosa load in the water was an average of 2 log higher for faucets with a positive aerator. P. aeruginosa contamination in various components of sink environments was still detected several years after the resolution of an outbreak in a pediatric university hospital. Although contamination is often not detectable in water samples by culture, P. aeruginosa is present and can recover its culturability under favorable conditions. The importance of having clear maintenance protocols for water systems, including the drainage components, is highlighted.
Evolution of carbon sinks in a changing climate.
Fung, Inez Y; Doney, Scott C; Lindsay, Keith; John, Jasmin
2005-08-09
Climate change is expected to influence the capacities of the land and oceans to act as repositories for anthropogenic CO2 and hence provide a feedback to climate change. A series of experiments with the National Center for Atmospheric Research-Climate System Model 1 coupled carbon-climate model shows that carbon sink strengths vary with the rate of fossil fuel emissions, so that carbon storage capacities of the land and oceans decrease and climate warming accelerates with faster CO2 emissions. Furthermore, there is a positive feedback between the carbon and climate systems, so that climate warming acts to increase the airborne fraction of anthropogenic CO2 and amplify the climate change itself. Globally, the amplification is small at the end of the 21st century in this model because of its low transient climate response and the near-cancellation between large regional changes in the hydrologic and ecosystem responses. Analysis of our results in the context of comparable models suggests that destabilization of the tropical land sink is qualitatively robust, although its degree is uncertain.
Evolution of carbon sinks in a changing climate
Fung, Inez Y.; Doney, Scott C.; Lindsay, Keith; John, Jasmin
2005-01-01
Climate change is expected to influence the capacities of the land and oceans to act as repositories for anthropogenic CO2 and hence provide a feedback to climate change. A series of experiments with the National Center for Atmospheric Research–Climate System Model 1 coupled carbon–climate model shows that carbon sink strengths vary with the rate of fossil fuel emissions, so that carbon storage capacities of the land and oceans decrease and climate warming accelerates with faster CO2 emissions. Furthermore, there is a positive feedback between the carbon and climate systems, so that climate warming acts to increase the airborne fraction of anthropogenic CO2 and amplify the climate change itself. Globally, the amplification is small at the end of the 21st century in this model because of its low transient climate response and the near-cancellation between large regional changes in the hydrologic and ecosystem responses. Analysis of our results in the context of comparable models suggests that destabilization of the tropical land sink is qualitatively robust, although its degree is uncertain. PMID:16061800
Van de Wal, Bart A E; Leroux, Olivier; Steppe, Kathy
2018-05-01
Grapevines are characterized by a period of irreversible stem shrinkage around the onset of ripening of the grape berries. Since this shrinkage is unrelated to meteorological conditions or drought, it is often suggested that it is caused by the increased sink strength of the grape berries during this period. However, no studies so far have experimentally investigated the mechanisms underlying this irreversible stem shrinkage. We therefore combined continuous measurements of stem diameter variations and histology of potted 2-year-old grapevines (Vitis vinifera L. 'Boskoop Glory'). Sink strength was altered by pruning all grape clusters (treatment P), while non-pruned grapevines served as control (treatment C). Unexpectedly, our results showed irreversible post-veraison stem shrinkage in both treatments, suggesting that the shrinkage is not linked to grape berry sink strength. Anatomical analysis indicated that the shrinkage is the result of the formation of successive concentric periderm layers, and the subsequent dehydration and compression of the older bark tissues, an anatomical feature that is characteristic of Vitis stems. Stem shrinkage is hence unrelated to grape berry development, in contrast to what has been previously suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-04-01
The design calculations for the Waste Isolation Pilot Plant (WIPP) are presented. The following categories are discussed: general nuclear calculations; radwaste calculations; structural calculations; mechanical calculations; civil calculations; electrical calculations; TRU waste surface facility time and motion analysis; shaft sinking procedures; hoist time and motion studies; mining system analysis; mine ventilation calculations; mine structural analysis; and miscellaneous underground calculations.
Pick, Thea R; Bräutigam, Andrea; Schlüter, Urte; Denton, Alisandra K; Colmsee, Christian; Scholz, Uwe; Fahnenstich, Holger; Pieruschka, Roland; Rascher, Uwe; Sonnewald, Uwe; Weber, Andreas P M
2011-12-01
We systematically analyzed a developmental gradient of the third maize (Zea mays) leaf from the point of emergence into the light to the tip in 10 continuous leaf slices to study organ development and physiological and biochemical functions. Transcriptome analysis, oxygen sensitivity of photosynthesis, and photosynthetic rate measurements showed that the maize leaf undergoes a sink-to-source transition without an intermediate phase of C(3) photosynthesis or operation of a photorespiratory carbon pump. Metabolome and transcriptome analysis, chlorophyll and protein measurements, as well as dry weight determination, showed continuous gradients for all analyzed items. The absence of binary on-off switches and regulons pointed to a morphogradient along the leaf as the determining factor of developmental stage. Analysis of transcription factors for differential expression along the leaf gradient defined a list of putative regulators orchestrating the sink-to-source transition and establishment of C(4) photosynthesis. Finally, transcriptome and metabolome analysis, as well as enzyme activity measurements, and absolute quantification of selected metabolites revised the current model of maize C(4) photosynthesis. All data sets are included within the publication to serve as a resource for maize leaf systems biology.
Characterization of shredded television scrap and implications for materials recovery.
Cui, Jirang; Forssberg, Eric
2007-01-01
Characterization of TV scrap was carried out by using a variety of methods, such as chemical analysis, particle size and shape analysis, liberation degree analysis, thermogravimetric analysis, sink-float test, and IR spectrometry. A comparison of TV scrap, personal computer scrap, and printed circuit board scrap shows that the content of non-ferrous metals and precious metals in TV scrap is much lower than that in personal computer scrap or printed circuit board scrap. It is expected that recycling of TV scrap will not be cost-effective by utilizing conventional manual disassembly. The result of particle shape analysis indicates that the non-ferrous metal particles in TV scrap formed as a variety of shapes; it is much more heterogeneous than that of plastics and printed circuit boards. Furthermore, the separability of TV scrap using density-based techniques was evaluated by the sink-float test. The result demonstrates that a high recovery of copper could be obtained by using an effective gravity separation process. Identification of plastics shows that the major plastic in TV scrap is high impact polystyrene. Gravity separation of plastics may encounter some challenges in separation of plastics from TV scrap because of specific density variations.
Pick, Thea R.; Bräutigam, Andrea; Schlüter, Urte; Denton, Alisandra K.; Colmsee, Christian; Scholz, Uwe; Fahnenstich, Holger; Pieruschka, Roland; Rascher, Uwe; Sonnewald, Uwe; Weber, Andreas P.M.
2011-01-01
We systematically analyzed a developmental gradient of the third maize (Zea mays) leaf from the point of emergence into the light to the tip in 10 continuous leaf slices to study organ development and physiological and biochemical functions. Transcriptome analysis, oxygen sensitivity of photosynthesis, and photosynthetic rate measurements showed that the maize leaf undergoes a sink-to-source transition without an intermediate phase of C3 photosynthesis or operation of a photorespiratory carbon pump. Metabolome and transcriptome analysis, chlorophyll and protein measurements, as well as dry weight determination, showed continuous gradients for all analyzed items. The absence of binary on–off switches and regulons pointed to a morphogradient along the leaf as the determining factor of developmental stage. Analysis of transcription factors for differential expression along the leaf gradient defined a list of putative regulators orchestrating the sink-to-source transition and establishment of C4 photosynthesis. Finally, transcriptome and metabolome analysis, as well as enzyme activity measurements, and absolute quantification of selected metabolites revised the current model of maize C4 photosynthesis. All data sets are included within the publication to serve as a resource for maize leaf systems biology. PMID:22186372
Underwood, F L; Cadwallader, D E
1978-08-01
An automated potentiometric procedure was used for studying in vitro dissolution kinetics of acidic drugs. Theoretical considerations indicated that the pH-stat method could be used to establish approximate sink conditions or, possibly, a perfect sink. Data obtained from dissolution studies using the pH-stat method were compared with data obtained from known sink and nonsink conditions. These comparisons indicated that the pH-stat method can be used to establish a sink condition for dissolution studies. The effective diffusion layer thicknesses for benzoic and salicylic acids dissolving in water were determined, and a theoretical dissolution rate was calculated utilizing these values. The close agreement between the experimental dissolution rates obtained under pH-stat conditions and theoretical dissolution rates indicated that perfect sink conditions were established under the experimental conditions used.
The Properties and Effects of Titan's Organic Haze
NASA Technical Reports Server (NTRS)
McKay, Christopher P.; Young, Richard E. (Technical Monitor)
1997-01-01
Titan's organic haze is the the dominant absorber of solar energy in Titan's atmosphere, creating an anti-greenhouse effect. Its variation over time may have had important implications for Titan's surface temperature. The haze is potentially an important sink of photochemically produced carbon and nitrogen compounds. Laboratory simulations and microphysical models suggest that the haze is a sink for C of 4 x 10(exp 8)/ sq cm s, and a sink for N of 1 x 10(exp 8)sq cm s. The C sink is small compared to condensation of hydrocarbons but the sink for N is comparable to the total production rate of HCN. Because estimates of the eddy diffusion profile on Titan have been based on the HCN profile, inclusion of this additional sink for N will affect estimates for all transport processes in Titan's atmosphere.
Microchannel heat sink assembly
Bonde, W.L.; Contolini, R.J.
1992-03-24
The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.
Stjärne Aspelund, A; Sjöström, K; Olsson Liljequist, B; Mörgelin, M; Melander, E; Påhlman, L I
2016-09-01
Pseudomonas aeruginosa may colonize water systems via biofilm formation. In hospital environments, contaminated sinks have been associated with nosocomial transmission. Here we describe a prolonged outbreak of a metallo-β-lactamase-producing P. aeruginosa (Pae-MBL) associated with sink drains, and propose a previously unreported decontamination method with acetic acid. To describe a nosocomial outbreak of Pae-MBL associated with hospital sink drains and to evaluate acetic acid as a decontamination method. The outbreak was investigated by searching the microbiology database, microbiological sampling and strain typing. Antibacterial and antibiofilm properties of acetic acid were evaluated in vitro. Pae-MBL-positive sinks were treated with 24% acetic acid once weekly and monitored with repeated cultures. Fourteen patients with positive cultures for Pae-MBL were identified from 2008 to 2014. The patients had been admitted to three wards, where screening discovered Pae-MBL in 12 sink drains located in the patient bathrooms. Typing of clinical and sink drain isolates revealed identical or closely related strains. Pae-MBL biofilm was highly sensitive to acetic acid with a minimum biofilm eradication concentration of 0.75% (range: 0.19-1.5). Weekly treatment of colonized sink drains with acetic acid resulted in negative cultures and terminated transmission. Acetic acid is highly effective against Pae-MBL biofilms, and may be used as a simple method to decontaminate sink drains and to prevent nosocomial transmission. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
A Sensitive Cloud Chamber without Radioactive Sources
ERIC Educational Resources Information Center
Zeze, Syoji; Itoh, Akio; Oyama, Ayu; Takahashi, Haruka
2012-01-01
We present a sensitive diffusion cloud chamber which does not require any radioactive sources. A major difference from commonly used chambers is the use of a heat sink as its bottom plate. The result of a performance test of the chamber is given. (Contains 8 figures.)
Wolfe, William J.; Evans, Jonathan P.; McCarthy, Sarah; Gain, W. Scott; Bryan, Bradley A.
2004-01-01
Multiple lines of evidence point to climate change as the driving factor suppressing tree regeneration since 1970 in Sinking Pond, a 35-hectare seasonally flooded karst depression located on Arnold Air Force Base near Manchester, Tennessee. Annual censuses of 162-193 seedling plots from 1997 through 2001 demonstrate that the critical stage for tree survival is the transition from seedling to sapling and that this transition is limited to shallow (less than 0.5 meters) ponding depths. Recruitment of saplings to the small adult class also was restricted to shallow areas. Analysis of the spatial and elevation distribution of tree-size classes in a representative 2.3-hectare area of Sinking Pond showed a general absence of overcup oak saplings and young adults in deep (ponding depth greater than 1 meter) and intermediate (ponding depth 0.5-1 meter) areas, even though overcup oak seedlings and mature trees are concentrated in these areas. Analysis of tree rings from 45 trees sampled in a 2.3-hectare spatial-analysis plot showed an even distribution of tree ages across ponding-depth classes from the 1800s through 1970, followed by complete suppression of recruitment in deep and intermediate areas after 1970. Trees younger than 30 years were spatially and vertically concentrated in a small area with shallow ponding depth, about 0.5 meter below the spillway elevation. Results of hydrologic modeling, based on rainfall and temperature records covering the period January 1854 through September 2002, show ponding durations after 1970 considerably longer than historical norms, across ponding-depth classes. This increase in ponding duration corresponds closely with similar increases documented in published analyses of streamflow and precipitation in the eastern United States and with the suppression of tree regeneration at ponding depths greater than 0.5 meter indicated by tree-ring analysis. Comparison of the simulated stage record for Sinking Pond with the ages and elevations of sampled trees shows that prolonged (200 days or more per year) inundation in more than 2 of the first 5 years after germination is inversely related to successful tree recruitment and that such inundation was rare before 1970 and common afterwards.
A Distributed Data-Gathering Protocol Using AUV in Underwater Sensor Networks.
Khan, Jawaad Ullah; Cho, Ho-Shin
2015-08-06
In this paper, we propose a distributed data-gathering scheme using an autonomous underwater vehicle (AUV) working as a mobile sink to gather data from a randomly distributed underwater sensor network where sensor nodes are clustered around several cluster headers. Unlike conventional data-gathering schemes where the AUV visits either every node or every cluster header, the proposed scheme allows the AUV to visit some selected nodes named path-nodes in a way that reduces the overall transmission power of the sensor nodes. Monte Carlo simulations are performed to investigate the performance of the proposed scheme compared with several preexisting techniques employing the AUV in terms of total amount of energy consumption, standard deviation of each node's energy consumption, latency to gather data at a sink, and controlling overhead. Simulation results show that the proposed scheme not only reduces the total energy consumption but also distributes the energy consumption more uniformly over the network, thereby increasing the lifetime of the network.
A Distributed Data-Gathering Protocol Using AUV in Underwater Sensor Networks
Khan, Jawaad Ullah; Cho, Ho-Shin
2015-01-01
In this paper, we propose a distributed data-gathering scheme using an autonomous underwater vehicle (AUV) working as a mobile sink to gather data from a randomly distributed underwater sensor network where sensor nodes are clustered around several cluster headers. Unlike conventional data-gathering schemes where the AUV visits either every node or every cluster header, the proposed scheme allows the AUV to visit some selected nodes named path-nodes in a way that reduces the overall transmission power of the sensor nodes. Monte Carlo simulations are performed to investigate the performance of the proposed scheme compared with several preexisting techniques employing the AUV in terms of total amount of energy consumption, standard deviation of each node’s energy consumption, latency to gather data at a sink, and controlling overhead. Simulation results show that the proposed scheme not only reduces the total energy consumption but also distributes the energy consumption more uniformly over the network, thereby increasing the lifetime of the network. PMID:26287189
A new Hysteretic Nonlinear Energy Sink (HNES)
NASA Astrophysics Data System (ADS)
Tsiatas, George C.; Charalampakis, Aristotelis E.
2018-07-01
The behavior of a new Hysteretic Nonlinear Energy Sink (HNES) coupled to a linear primary oscillator is investigated in shock mitigation. Apart from a small mass and a nonlinear elastic spring of the Duffing oscillator, the HNES is also comprised of a purely hysteretic and a linear elastic spring of potentially negative stiffness, connected in parallel. The Bouc-Wen model is used to describe the force produced by both the purely hysteretic and linear elastic springs. Coupling the primary oscillator with the HNES, three nonlinear equations of motion are derived in terms of the two displacements and the dimensionless hysteretic variable, which are integrated numerically using the analog equation method. The performance of the HNES is examined by quantifying the percentage of the initially induced energy in the primary system that is passively transferred and dissipated by the HNES. Remarkable results are achieved for a wide range of initial input energies. The great performance of the HNES is mostly evidenced when the linear spring stiffness takes on negative values.
Lunar base thermal management/power system analysis and design
NASA Technical Reports Server (NTRS)
Mcghee, Jerry R.
1992-01-01
A compilation of several lunar surface thermal management and power system studies completed under contract and IR&D is presented. The work includes analysis and preliminary design of all major components of an integrated thermal management system, including loads determination, active internal acquisition and transport equipment, external transport systems (active and passive), passive insulation, solar shielding, and a range of lunar surface radiator concepts. Several computer codes were utilized in support of this study, including RADSIM to calculate radiation exchange factors and view factors, RADIATOR (developed in-house) for heat rejection system sizing and performance analysis over a lunar day, SURPWER for power system sizing, and CRYSTORE for cryogenic system performance predictions. Although much of the work was performed in support of lunar rover studies, any or all of the results can be applied to a range of surface applications. Output data include thermal loads summaries, subsystem performance data, mass, and volume estimates (where applicable), integrated and worst-case lunar day radiator size/mass and effective sink temperatures for several concepts (shielded and unshielded), and external transport system performance estimates for both single and two-phase (heat pumped) transport loops. Several advanced radiator concepts are presented, along with brief assessments of possible system benefits and potential drawbacks. System point designs are presented for several cases, executed in support of the contract and IR&D studies, although the parametric nature of the analysis is stressed to illustrate applicability of the analysis procedure to a wide variety of lunar surface systems. The reference configuration(s) derived from the various studies will be presented along with supporting criteria. A preliminary design will also be presented for the reference basing scenario, including qualitative data regarding TPS concerns and issues.
Characterization of Radial Curved Fin Heat Sink under Natural and Forced Convection
NASA Astrophysics Data System (ADS)
Khadke, Rishikesh; Bhole, Kiran
2018-02-01
Heat exchangers are important structures widely used in power plants, food industries, refrigeration, and air conditioners and now widely used in computing systems. Finned type of heat sink is widely used in computing systems. The main aim of the design of the heat sink is to maintain the optimum temperature level. To achieve this goal so many geometrical configurations are implemented. This paper presents a characterization of radially curved fin heat sink under natural and forced convection. Forced convection is studied for the optimization of temperature for better efficiency. The different alternatives in geometry are considered in characterization are heat intensity, the height of the fin and speed of the fan. By recognizing these alternatives the heat sink is characterized by the heat flux usually generated in high-end PCs. The temperature drop characteristics across height and radial direction are presented for the constant heat input and air flow in the heat sink. The effect of dimensionless elevation height (0 ≤ Z* ≤ 1) and Elenbaas Number (0.4 ≤ El ≤ 2.8) of the heat sink were investigated for study of the Nusselt number. Based on experimental characterization, process plan has been developed for the selection of the similar heat sinks for desired output (heat dissipation and temperature distribution).
Drought Rapidly Diminishes the Large Net CO2 Uptake in 2011 Over Semi-Arid Australia
NASA Technical Reports Server (NTRS)
Ma, Xuanlong; Huete, Alfredo; Cleverly, James; Eamus, Derek; Chevallier, Frederic; Joiner, Joanna; Poulter, Benjamin; Zhang, Yongguang; Guanter, Luis; Meyer, Wayne;
2016-01-01
Each year, terrestrial ecosystems absorb more than a quarter of the anthropogenic carbon emissions, termed as land carbon sink. An exceptionally large land carbon sink anomaly was recorded in 2011, of which more than half was attributed to Australia. However, the persistence and spatially attribution of this carbon sink remain largely unknown. Here we conducted an observation-based study to characterize the Australian land carbon sink through the novel coupling of satellite retrievals of atmospheric CO2 and photosynthesis and in-situ flux tower measures. We show the 2010-11 carbon sink was primarily ascribed to savannas and grasslands. When all biomes were normalized by rainfall, shrublands however, were most efficient in absorbing carbon. We found the 2010-11 net CO2 uptake was highly transient with rapid dissipation through drought. The size of the 2010-11 carbon sink over Australia (0.97 Pg) was reduced to 0.48 Pg in 2011-12, and was nearly eliminated in 2012-13 (0.08 Pg). We further report evidence of an earlier 2000-01 large net CO2 uptake, demonstrating a repetitive nature of this land carbon sink. Given a significant increasing trend in extreme wet year precipitation over Australia, we suggest that carbon sink episodes will exert greater future impacts on global carbon cycle.
Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia
NASA Astrophysics Data System (ADS)
Ma, Xuanlong; Huete, Alfredo; Cleverly, James; Eamus, Derek; Chevallier, Frédéric; Joiner, Joanna; Poulter, Benjamin; Zhang, Yongguang; Guanter, Luis; Meyer, Wayne; Xie, Zunyi; Ponce-Campos, Guillermo
2016-11-01
Each year, terrestrial ecosystems absorb more than a quarter of the anthropogenic carbon emissions, termed as land carbon sink. An exceptionally large land carbon sink anomaly was recorded in 2011, of which more than half was attributed to Australia. However, the persistence and spatially attribution of this carbon sink remain largely unknown. Here we conducted an observation-based study to characterize the Australian land carbon sink through the novel coupling of satellite retrievals of atmospheric CO2 and photosynthesis and in-situ flux tower measures. We show the 2010-11 carbon sink was primarily ascribed to savannas and grasslands. When all biomes were normalized by rainfall, shrublands however, were most efficient in absorbing carbon. We found the 2010-11 net CO2 uptake was highly transient with rapid dissipation through drought. The size of the 2010-11 carbon sink over Australia (0.97 Pg) was reduced to 0.48 Pg in 2011-12, and was nearly eliminated in 2012-13 (0.08 Pg). We further report evidence of an earlier 2000-01 large net CO2 uptake, demonstrating a repetitive nature of this land carbon sink. Given a significant increasing trend in extreme wet year precipitation over Australia, we suggest that carbon sink episodes will exert greater future impacts on global carbon cycle.
Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia.
Ma, Xuanlong; Huete, Alfredo; Cleverly, James; Eamus, Derek; Chevallier, Frédéric; Joiner, Joanna; Poulter, Benjamin; Zhang, Yongguang; Guanter, Luis; Meyer, Wayne; Xie, Zunyi; Ponce-Campos, Guillermo
2016-11-25
Each year, terrestrial ecosystems absorb more than a quarter of the anthropogenic carbon emissions, termed as land carbon sink. An exceptionally large land carbon sink anomaly was recorded in 2011, of which more than half was attributed to Australia. However, the persistence and spatially attribution of this carbon sink remain largely unknown. Here we conducted an observation-based study to characterize the Australian land carbon sink through the novel coupling of satellite retrievals of atmospheric CO 2 and photosynthesis and in-situ flux tower measures. We show the 2010-11 carbon sink was primarily ascribed to savannas and grasslands. When all biomes were normalized by rainfall, shrublands however, were most efficient in absorbing carbon. We found the 2010-11 net CO 2 uptake was highly transient with rapid dissipation through drought. The size of the 2010-11 carbon sink over Australia (0.97 Pg) was reduced to 0.48 Pg in 2011-12, and was nearly eliminated in 2012-13 (0.08 Pg). We further report evidence of an earlier 2000-01 large net CO 2 uptake, demonstrating a repetitive nature of this land carbon sink. Given a significant increasing trend in extreme wet year precipitation over Australia, we suggest that carbon sink episodes will exert greater future impacts on global carbon cycle.
North America carbon dioxide sources and sinks: magnitude, attribution, and uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Anthony W.; Hayes, Daniel J.; Huntzinger, Deborah N.
2012-12-01
North America is both a source and sink of atmospheric CO2. Sources, predominately fossil-fuel combustion in the United States along with contributions from deforestation in Mexico, add CO2 to the atmosphere. Most North America ecosystems, particularly regrowing forests in the United States, are sinks for atmospheric CO2. CO2 is removed from the atmosphere in photosynthesis, converted into biomass and stored as carbon in vegetation, soil and wood products. Fossil-fuel emissions dominate the North American source-sink balance. North America is a net source of atmospheric CO2 with ecosystem sinks balancing approximately 35% of fossil-fuel CO2 emissions from North America.
Kuznetsov, Stephen B.
1987-01-01
A system for casting liquid metals is provided with an electromagnetic pump which includes a pair of primary blocks each having a polyphase winding and being positioned to form a gap through which a movable conductive heat sink passes. A solidifying liquid metal sheet is deposited on the heat sink and the heat sink and sheet are held in compression by forces produced as a result of current flow through the polyphase windings. Shaded-pole interaction between the primary windings, heat sink and solidifying strip produce transverse forces which act to center the strip on the heat sink.
Graded pitch electromagnetic pump for thin strip metal casting systems
Kuznetsov, S.B.
1986-04-01
A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel. 4 figs.
Kuznetsov, S.B.
1987-01-13
A system for casting liquid metals is provided with an electromagnetic pump which includes a pair of primary blocks each having a polyphase winding and being positioned to form a gap through which a movable conductive heat sink passes. A solidifying liquid metal sheet is deposited on the heat sink and the heat sink and sheet are held in compression by forces produced as a result of current flow through the polyphase windings. Shaded-pole interaction between the primary windings, heat sink and solidifying strip produce transverse forces which act to center the strip on the heat sink. 5 figs.
Application of a novel new multispectral nanoparticle tracking technique
NASA Astrophysics Data System (ADS)
McElfresh, Cameron; Harrington, Tyler; Vecchio, Kenneth S.
2018-06-01
Fast, reliable, and accurate particle size analysis techniques must meet the demands of evolving industrial and academic research in areas of functionalized nanoparticle synthesis, advanced materials development, and other nanoscale enabled technologies. In this study a new multispectral particle tracking analysis (m-PTA) technique enabled by the ViewSizer™ 3000 (MANTA Instruments, USA) was evaluated using solutions of monomodal and multimodal gold and polystyrene latex nanoparticles, as well as a spark eroded polydisperse 316L stainless steel nanopowder, and large (non-Brownian) borosilicate particles. It was found that m-PTA performed comparably to the DLS in evaluation of monomodal particle size distributions. When measuring bimodal, trimodal and polydisperse solutions, the m-PTA technique overwhelmingly outperformed traditional dynamic light scattering (DLS) in both peak detection and relative particle concentration analysis. It was also observed that the m-PTA technique is less susceptible to large particle overexpression errors. The ViewSizer™ 3000 was also found to be successful in accurately evaluating sizes and concentrations of monomodal and bimodal sinking borosilicate particles.
NASA Technical Reports Server (NTRS)
Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.
2011-01-01
A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.
Sink detection on tilted terrain for automated identification of glacial cirques
NASA Astrophysics Data System (ADS)
Prasicek, Günther; Robl, Jörg; Lang, Andreas
2016-04-01
Glacial cirques are morphologically distinct but complex landforms and represent a vital part of high mountain topography. Their distribution, elevation and relief are expected to hold information on (1) the extent of glacial occupation, (2) the mechanism of glacial cirque erosion, and (3) how glacial in concert with periglacial processes can limit peak altitude and mountain range height. While easily detectably for the expert's eye both in nature and on various representations of topography, their complicated nature makes them a nemesis for computer algorithms. Consequently, manual mapping of glacial cirques is commonplace in many mountain landscapes worldwide, but consistent datasets of cirque distribution and objectively mapped cirques and their morphometrical attributes are lacking. Among the biggest problems for algorithm development are the complexity in shape and the great variability of cirque size. For example, glacial cirques can be rather circular or longitudinal in extent, exist as individual and composite landforms, show prominent topographic depressions or can entirely be filled with water or sediment. For these reasons, attributes like circularity, size, drainage area and topology of landform elements (e.g. a flat floor surrounded by steep walls) have only a limited potential for automated cirque detection. Here we present a novel, geomorphometric method for automated identification of glacial cirques on digital elevation models that exploits their genetic bowl-like shape. First, we differentiate between glacial and fluvial terrain employing an algorithm based on a moving window approach and multi-scale curvature, which is also capable of fitting the analysis window to valley width. We then fit a plane to the valley stretch clipped by the analysis window and rotate the terrain around the center cell until the plane is level. Doing so, we produce sinks of considerable size if the clipped terrain represents a cirque, while no or only very small sinks develop on other valley stretches. We normalize sink area by window size for sink classification, apply this method to the Sawtooth Mountains, Idaho, and to Fiordland, New Zealand, and compare the results to manually mapped reference cirques. Results indicate that false negatives are produced only in very rugged terrain and false positives occur in rare cases, when valleys are strongly curved in longitudinal direction.
Schumm, Phillip; Scoglio, Caterina; Zhang, Qian; Balcan, Duygu
2015-02-21
Through the characterization of a metapopulation cattle disease model on a directed network having source, transit, and sink nodes, we derive two global epidemic invasion thresholds. The first threshold defines the conditions necessary for an epidemic to successfully spread at the global scale. The second threshold defines the criteria that permit an epidemic to move out of the giant strongly connected component and to invade the populations of the sink nodes. As each sink node represents a final waypoint for cattle before slaughter, the existence of an epidemic among the sink nodes is a serious threat to food security. We find that the relationship between these two thresholds depends on the relative proportions of transit and sink nodes in the system and the distributions of the in-degrees of both node types. These analytic results are verified through numerical realizations of the metapopulation cattle model. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Hongqi, Jing; Li, Zhong; Yuxi, Ni; Junjie, Zhang; Suping, Liu; Xiaoyu, Ma
2015-10-01
A novel high-efficiency cooling mini-channel heat-sink structure has been designed to meet the package technology demands of high power density laser diode array stacks. Thermal and water flowing characteristics have been simulated using the Ansys-Fluent software. Owing to the increased effective cooling area, this mini-channel heat-sink structure has a better cooling effect when compared with the traditional macro-channel heat-sinks. Owing to the lower flow velocity in this novel high efficient cooling structure, the chillers' water-pressure requirement is reduced. Meanwhile, the machining process of this high-efficiency cooling mini-channel heat-sink structure is simple and the cost is relatively low, it also has advantages in terms of high durability and long lifetime. This heat-sink is an ideal choice for the package of high power density laser diode array stacks. Project supported by the Defense Industrial Technology Development Program (No. B1320133033).
Biogeochemical properties of sinking particles in the southwestern part of the East Sea (Japan Sea)
NASA Astrophysics Data System (ADS)
Kim, Minkyoung; Hwang, Jeomshik; Rho, TaeKeun; Lee, Tongsup; Kang, Dong-Jin; Chang, Kyung-Il; Noh, Suyun; Joo, HuiTae; Kwak, Jung Hyun; Kang, Chang-Keun; Kim, Kyung-Ryul
2017-03-01
This study investigates the biological pump system in the East Sea (Japan Sea) by conducting an analysis of the total particle flux, biogenic material composition, and carbon isotope ratios of sinking particles. The samples were collected for one year starting from March 2011 using time-series sediment traps deployed at depths of 1040 m and 2280 m on bottom-tethered mooring at Station EC1 (37.33°N, 131.45°E; 2300 m water depth) in the Ulleung Basin (UB), southwestern part of the East Sea. The temporal variation in the particulate organic carbon (POC) flux at 1000 m shows a good relationship with the primary production in the corresponding surface water. The ratio of POC flux at 1000 m to satellite-based primary production in the corresponding region in the UB was 3%, which is comparable to the values of 2 to 5% estimated from previous studies of other part of the East Sea. The lithogenic material accounted for > 17% of the sinking particles at 1000 m and for a larger fraction of 40 to 60% at 2280 m. The radiocarbon contents of the sinking POC at both trap depths imply the additional supply of aged POC, with a much greater contribution at 2280 m. Overall, the particle flux in the deep interior of the East Sea appears to be controlled by the supply of complex sources, including aeolian input, the lateral supply of resuspended sediments, and biological production in the surface water.
Al-Maqtoofi, Marwan; Thornton, Christopher R
2016-11-01
The fungus Fusarium is well known as a plant pathogen, but has recently emerged as an opportunistic pathogen of humans. Habitats providing direct human exposure to infectious propagules are largely unknown, but there is growing evidence that plumbing systems are sources of human pathogenic strains in the Fusarium solani species complex (FSSC) and Fusarium oxysporum species complex (FOSC), the most common groups infecting humans. Here, a newly developed Fusarium-specific monoclonal antibody (mAb ED7) was used to track FSSC and FOSC strains in sink drain biofilms by detecting its target antigen, an extracellular 200 kDa carbohydrate, in saline swabs. The antigen was detectable in 52% of swab samples collected from sinks across a University campus and a tertiary care hospital. The mAb was 100% accurate in detecting FSSC, FOSC, and F. dimerum species complex (FDSC) strains that were present, as mixed fungal communities, in 83% of sink drain biofilms. Specificity of the ELISA was confirmed by sequencing of the internally transcribed spacer 1 (ITS1)-5.8S-ITS2 rRNA-encoding regions of culturable yeasts and molds that were recovered using mycological culture, while translation elongation factor (TEF)-1α analysis of Fusarium isolates included FSSC 1-a, FOSC 33, and FDSC ET-gr, the most common clinical pathotypes in each group. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
13C/12C AND D/H ISOTOPIC ANALYSIS OF ATMOSPHERIC METHANE
The magnitudes of the sources and sinks of greenhouse gases like methane need to be better understood to accurately measure changes in emissions and ensure international compliance with global environmental policies such as the Kyoto Protocol.
2010-08-31
circuit breakers for testing and analysis in ONR laboratories. Task 1.2 Contributors: Sunny Kedia, Shinzo Onishi , Scott Samson, Drew Hanser Task 1.2...HEAT SINK FOR HIGH-POWER MEMS SWITCH APPLICATIONS (TASK 1.3) Contributors: Priscila Spagnol, Shinzo Onishi , Drew Hanser, Weidong Wang, Sunny Kedia
Dynamic behavior and deformation analysis of the fish cage system using mass-spring model
NASA Astrophysics Data System (ADS)
Lee, Chun Woo; Lee, Jihoon; Park, Subong
2015-06-01
Fish cage systems are influenced by various oceanic conditions, and the movements and deformation of the system by the external forces can affect the safety of the system itself, as well as the species of fish being cultivated. Structural durability of the system against environmental factors has been major concern for the marine aquaculture system. In this research, a mathematical model and a simulation method were presented for analyzing the performance of the large-scale fish cage system influenced by current and waves. The cage system consisted of netting, mooring ropes, floats, sinkers and floating collar. All the elements were modeled by use of the mass-spring model. The structures were divided into finite elements and mass points were placed at the mid-point of each element, and mass points were connected by springs without mass. Each mass point was applied to external and internal forces, and total force was calculated in every integration step. The computation method was applied to the dynamic simulation of the actual fish cage systems rigged with synthetic fiber and copper wire simultaneously influenced by current and waves. Here, we also tried to find a relevant ratio between buoyancy and sinking force of the fish cages. The simulation results provide improved understanding of the behavior of the structure and valuable information concerning optimum ratio of the buoyancy to sinking force according to current speeds.
Graphene-Carbon-Metal Composite Film for a Flexible Heat Sink.
Cho, Hyunjin; Rho, Hokyun; Kim, Jun Hee; Chae, Su-Hyeong; Pham, Thang Viet; Seo, Tae Hoon; Kim, Hak Yong; Ha, Jun-Seok; Kim, Hwan Chul; Lee, Sang Hyun; Kim, Myung Jong
2017-11-22
The heat generated from electronic devices such as light emitting diodes (LEDs), batteries, and highly integrated transistors is one of the major causes obstructing the improvement of their performance and reliability. Herein, we report a comprehensive method to dissipate the generated heat to a vast area by using the new type of graphene-carbon-metal composite film as a heat sink. The unique porous graphene-carbon-metal composite film that consists of an electrospun carbon nanofiber with arc-graphene (Arc-G) fillers and an electrochemically deposited copper (Cu) layer showed not only high electrical and thermal conductivity but also high mechanical stability. Accordingly, superior thermal management of LED devices to that of conventional Cu plates and excellent resistance stability during the repeated 10 000 bending cycles has been achieved. The heat dissipation of LEDs has been enhanced by the high heat conduction in the composite film, heat convection in the air flow, and thermal radiation at low temperature in the porous carbon structure. This result reveals that the graphene-carbon-metal composite film is one of the most promising materials for a heat sink of electronic devices in modern electronics.
Yablinsky, C. A.; Tippey, K. E.; Vaynman, S.; ...
2014-11-11
In this study, the development of oxide dispersion strengthened ferrous alloys has shown that microstructures designed for excellent irradiation resistance and thermal stability ideally contain stable nanoscale precipitates and dislocation sinks. Based upon this understanding, the microstructures of conventionally manufactured ferritic and ferritic-martensitic steels can be designed to include controlled volume fractions of fine, stable precipitates and dislocation sinks via specific alloying and processing paths. The concepts proposed here are categorized as advanced high-Cr ferritic-martensitic (AHCr-FM) and novel tailored precipitate ferritic (TPF) steels, which have the potential to improve the in-reactor performance of conventionally manufactured alloys. AHCr-FM steels have modifiedmore » alloy content relative to current reactor materials (such as alloy NF616/P92) to maximize desirable precipitates and control phase stability. TPF steels are designed to incorporate nickel aluminides, in addition to microalloy carbides, in a ferritic matrix to produce fine precipitate arrays with good thermal stability. Both alloying concepts may also benefit from thermomechanical processing to establish dislocation sinks and modify phase transformation behaviors. Alloying and processing paths toward designed microstructures are discussed for both AHCr-FM and TPF material classes.« less
New Submount Requirement of Conductively Cooled Laser Diodes for Lidar Applications
NASA Technical Reports Server (NTRS)
Mo, S. Y.; Cutler, A. D.; Choi, S. H.; Lee, M. H.; Singh, U. N.
2000-01-01
New submount technology is essential for the development of conductively cooled high power diode laser. The simulation and experimental results indicate that thermal conductivity of submount for high power laser-diode must be at least 600 W/m/k or higher for stable operation. We have simulated several theoretical thermal model based on new submount designs and characterized high power diode lasers to determine temperature effects on the performances of laser diodes. The characterization system measures the beam power, output beam profile, temperature distribution, and spectroscopic property of high power diode laser. The characterization system is composed of four main parts: an infrared imaging camera, a CCD camera, a monochromator, and a power meter. Thermal characteristics of two commercial-grade CW 20-W diode laser bars with open heat-sink type were determined with respect to the line shift of emission spectra and beam power stability. The center wavelength of laser emission has a tendency to shift toward longer wavelength as the driving current and heat sink temperature are increased. The increase of heat sink temperature decreases the output power of the laser bar too. Such results lay the guidelines for the design of new submount for high power laser-diodes.
Optimized evaporation from a microchannel heat sink
NASA Astrophysics Data System (ADS)
Monazami, Reza; Haj-Hariri, Hossein
2011-11-01
Two-phase heat transfer devices, benefiting the unique thermal capacities of phase- change, are considered as the top choice for a wide range of applications involving cooling and temperature control. Evaporation and condensation in these devices usually take place on porous structures. It is widely accepted that they improve the evaporation rates and the overall performance of the device. The liquid menisci formed on the pores of a porous material can be viewed as the active sites of evaporation. Therefore, quantifying the rate of evaporation from a single pore can be used to calculate the total evaporation taking place in the evaporator given the density and the average size of the pores. A microchannel heat sink can be viewed as an structured porous material. In this work, an analytical model is developed to predict the evaporation rate from a liquid meniscus enclosed in a microchannel. The effects of the wall superheat and the width of the channel on the evaporation profile through the meniscus are studied. The results suggest that there is an optimum size for the width of the channel in order to maximize the thermal energy absorbed by the unit area of the heat sink as an array of microchannels.
Study of structural active cooling and heat sink systems for space shuttle
NASA Technical Reports Server (NTRS)
1972-01-01
This technology investigation was conducted to evaluate the feasibility of a number of thermal protection systems (TPS) concepts which are alternate candidates to the space shuttle baseline TPS. Four independent tasks were performed. Task 1 consisted of an in-depth evaluation of active structural cooling of the space shuttle orbiter. In Task 2, heat sink concepts for the booster were studied to identify and postulate solutions for design problems unique to heat sink TPS. Task 3 consisted of a feasibility demonstration test of a phase change material (PCM) incorporated into a reusable surface insulation (RSI) thermal protection system for the shuttle orbiter. In Task 4 the feasibility of heat pipes for stagnation region cooling was studied for the booster and the orbiter. Designs were developed for the orbiter leading edge and used in trade studies of leading edge concepts. At the time this program was initiated, a 2-stage fully reusable shuttle system was envisioned; therefore, the majority of the tasks were focused on the fully reusable system environments. Subsequently, a number of alternate shuttle system approaches, with potential for reduced shuttle system development funding requirements, were proposed. Where practicable, appropriate shifts in emphasis and task scoping were made to reflect these changes.
Gravity Survey of the Carson Sink - Data and Maps
Faulds, James E.
2013-12-31
A detailed gravity survey was carried out for the entire Carson Sink in western Nevada (Figure 1) through a subcontract to Zonge Engineering, Inc. The Carson Sink is a large composite basin containing three known, blind high-temperature geothermal systems (Fallon Airbase, Stillwater, and Soda Lake). This area was chosen for a detailed gravity survey in order to characterize the gravity signature of the known geothermal systems and to identify other potential blind systems based on the structural setting indicated by the gravity data. Data: Data were acquired at approximately 400, 800, and 1600 meter intervals for a total of 1,243 stations. The project location and station location points are presented in Figure 14. The station distribution for this survey was designed to complete regional gravity coverage in the Carson Sink area without duplication of available public and private gravity coverage. Gravity data were acquired using a Scintrex CG-5 gravimeter and a LaCoste and Romberg (L&R) Model-G gravimeter. The CG-5 gravity meter has a reading resolution of 0.001 milligals and a typical repeatability of less than 0.005 milligals. The L&R gravity meter has a reading resolution of 0.01 milligals and a typical repeatability of 0.02 milligals. The basic processing of gravimeter readings to calculate through to the Complete Bouguer Anomaly was made using the Gravity and Terrain Correction software version 7.1 for Oasis Montaj by Geosoft LTD. Results: The gravity survey of the Carson Sink yielded the following products. Project location and station location map (Figure 14). Complete Bouguer Anomaly @ 2.67 gm/cc reduction density. Gravity Complete Bouguer Anomaly at 2.50 g/cc Contour Map (Figure 15). Gravity Horizontal Gradient Magnitude Shaded Color Contour Map. Gravity 1st Vertical Derivative Color Contour Map. Interpreted Depth to Mesozoic Basement (Figure 16), incorporating drill-hole intercept values. Preliminary Interpretation of Results: The Carson Sink is a complex composite basin with several major depocenters (Figures 15 and 16). Major depocenters are present in the south-central, east-central, and northeastern parts of the basin. The distribution of gravity anomalies suggests a complex pattern of faulting in the subsurface of the basin, with many fault terminations, step-overs, and accommodation zones. The pattern of faulting implies that other, previously undiscovered blind geothermal systems are likely in the Carson Sink. The gravity survey was completed near the end of this project. Thus, more thorough analysis of the data and potential locations of blind geothermal systems is planned for future work.
NASA Astrophysics Data System (ADS)
Land, P. E.; Shutler, J. D.; Cowling, R. D.; Woolf, D. K.; Walker, P.; Findlay, H. S.; Upstill-Goddard, R. C.; Donlon, C. J.
2013-12-01
We applied coincident Earth observation data collected during 2008 and 2009 from multiple sensors (RA2, AATSR and MERIS, mounted on the European Space Agency satellite Envisat) to characterise environmental conditions and integrated sea-air fluxes of CO2 in three Arctic seas (Greenland, Barents, Kara). We assessed net CO2 sink sensitivity due to changes in temperature, salinity and sea ice duration arising from future climate scenarios. During the study period the Greenland and Barents seas were net sinks for atmospheric CO2, with integrated sea-air fluxes of -36 ± 14 and -11 ± 5 Tg C yr-1, respectively, and the Kara Sea was a weak net CO2 source with an integrated sea-air flux of +2.2 ± 1.4 Tg C yr-1. The combined integrated CO2 sea-air flux from all three was -45 ± 18 Tg C yr-1. In a sensitivity analysis we varied temperature, salinity and sea ice duration. Variations in temperature and salinity led to modification of the transfer velocity, solubility and partial pressure of CO2 taking into account the resultant variations in alkalinity and dissolved organic carbon (DOC). Our results showed that warming had a strong positive effect on the annual integrated sea-air flux of CO2 (i.e. reducing the sink), freshening had a strong negative effect and reduced sea ice duration had a small but measurable positive effect. In the climate change scenario examined, the effects of warming in just over a decade of climate change up to 2020 outweighed the combined effects of freshening and reduced sea ice duration. Collectively these effects gave an integrated sea-air flux change of +4.0 Tg C in the Greenland Sea, +6.0 Tg C in the Barents Sea and +1.7 Tg C in the Kara Sea, reducing the Greenland and Barents sinks by 11% and 53%, respectively, and increasing the weak Kara Sea source by 81%. Overall, the regional integrated flux changed by +11.7 Tg C, which is a 26% reduction in the regional sink. In terms of CO2 sink strength, we conclude that the Barents Sea is the most susceptible of the three regions to the climate changes examined. Our results imply that the region will cease to be a net CO2 sink in the 2050s.
Kotay, Shireen; Chai, Weidong; Guilford, William; Barry, Katie
2017-01-01
ABSTRACT There have been an increasing number of reports implicating Gammaproteobacteria as often carrying genes of drug resistance from colonized sink traps to vulnerable hospitalized patients. However, the mechanism of transmission from the wastewater of the sink P-trap to patients remains poorly understood. Herein we report the use of a designated hand-washing sink lab gallery to model dispersion of green fluorescent protein (GFP)-expressing Escherichia coli from sink wastewater to the surrounding environment. We found no dispersion of GFP-expressing E. coli directly from the P-trap to the sink basin or surrounding countertop with coincident water flow from a faucet. However, when the GFP-expressing E. coli cells were allowed to mature in the P-trap under conditions similar to those in a hospital environment, a GFP-expressing E. coli-containing putative biofilm extended upward over 7 days to reach the strainer. This subsequently resulted in droplet dispersion to the surrounding areas (<30 in.) during faucet operation. We also demonstrated that P-trap colonization could occur by retrograde transmission along a common pipe. We postulate that the organisms mobilize up to the strainer from the P-trap, resulting in droplet dispersion rather than dispersion directly from the P-trap. This work helps to further define the mode of transmission of bacteria from a P-trap reservoir to a vulnerable hospitalized patient. IMPORTANCE Many recent reports demonstrate that sink drain pipes become colonized with highly consequential multidrug-resistant bacteria, which then results in hospital-acquired infections. However, the mechanism of dispersal of bacteria from the sink to patients has not been fully elucidated. Through establishment of a unique sink gallery, this work found that a staged mode of transmission involving biofilm growth from the lower pipe to the sink strainer and subsequent splatter to the bowl and surrounding area occurs rather than splatter directly from the water in the lower pipe. We have also demonstrated that bacterial transmission can occur via connections in wastewater plumbing to neighboring sinks. This work helps to more clearly define the mechanism and risk of transmission from a wastewater source to hospitalized patients in a world with increasingly antibiotic-resistant bacteria that can thrive in wastewater environments and cause infections in vulnerable patients. PMID:28235877
Kotay, Shireen; Chai, Weidong; Guilford, William; Barry, Katie; Mathers, Amy J
2017-04-15
There have been an increasing number of reports implicating Gammaproteobacteria as often carrying genes of drug resistance from colonized sink traps to vulnerable hospitalized patients. However, the mechanism of transmission from the wastewater of the sink P-trap to patients remains poorly understood. Herein we report the use of a designated hand-washing sink lab gallery to model dispersion of green fluorescent protein (GFP)-expressing Escherichia coli from sink wastewater to the surrounding environment. We found no dispersion of GFP-expressing E. coli directly from the P-trap to the sink basin or surrounding countertop with coincident water flow from a faucet. However, when the GFP-expressing E. coli cells were allowed to mature in the P-trap under conditions similar to those in a hospital environment, a GFP-expressing E. coli -containing putative biofilm extended upward over 7 days to reach the strainer. This subsequently resulted in droplet dispersion to the surrounding areas (<30 in.) during faucet operation. We also demonstrated that P-trap colonization could occur by retrograde transmission along a common pipe. We postulate that the organisms mobilize up to the strainer from the P-trap, resulting in droplet dispersion rather than dispersion directly from the P-trap. This work helps to further define the mode of transmission of bacteria from a P-trap reservoir to a vulnerable hospitalized patient. IMPORTANCE Many recent reports demonstrate that sink drain pipes become colonized with highly consequential multidrug-resistant bacteria, which then results in hospital-acquired infections. However, the mechanism of dispersal of bacteria from the sink to patients has not been fully elucidated. Through establishment of a unique sink gallery, this work found that a staged mode of transmission involving biofilm growth from the lower pipe to the sink strainer and subsequent splatter to the bowl and surrounding area occurs rather than splatter directly from the water in the lower pipe. We have also demonstrated that bacterial transmission can occur via connections in wastewater plumbing to neighboring sinks. This work helps to more clearly define the mechanism and risk of transmission from a wastewater source to hospitalized patients in a world with increasingly antibiotic-resistant bacteria that can thrive in wastewater environments and cause infections in vulnerable patients. Copyright © 2017 Kotay et al.
Ma, Y T; Wubs, A M; Mathieu, A; Heuvelink, E; Zhu, J Y; Hu, B G; Cournède, P H; de Reffye, P
2011-04-01
Many indeterminate plants can have wide fluctuations in the pattern of fruit-set and harvest. Fruit-set in these types of plants depends largely on the balance between source (assimilate supply) and sink strength (assimilate demand) within the plant. This study aims to evaluate the ability of functional-structural plant models to simulate different fruit-set patterns among Capsicum cultivars through source-sink relationships. A greenhouse experiment of six Capsicum cultivars characterized with different fruit weight and fruit-set was conducted. Fruit-set patterns and potential fruit sink strength were determined through measurement. Source and sink strength of other organs were determined via the GREENLAB model, with a description of plant organ weight and dimensions according to plant topological structure established from the measured data as inputs. Parameter optimization was determined using a generalized least squares method for the entire growth cycle. Fruit sink strength differed among cultivars. Vegetative sink strength was generally lower for large-fruited cultivars than for small-fruited ones. The larger the size of the fruit, the larger variation there was in fruit-set and fruit yield. Large-fruited cultivars need a higher source-sink ratio for fruit-set, which means higher demand for assimilates. Temporal heterogeneity of fruit-set affected both number and yield of fruit. The simulation study showed that reducing heterogeneity of fruit-set was obtained by different approaches: for example, increasing source strength; decreasing vegetative sink strength, source-sink ratio for fruit-set and flower appearance rate; and harvesting individual fruits earlier before full ripeness. Simulation results showed that, when we increased source strength or decreased vegetative sink strength, fruit-set and fruit weight increased. However, no significant differences were found between large-fruited and small-fruited groups of cultivars regarding the effects of source and vegetative sink strength on fruit-set and fruit weight. When the source-sink ratio at fruit-set decreased, the number of fruit retained on the plant increased competition for assimilates with vegetative organs. Therefore, total plant and vegetative dry weights decreased, especially for large-fruited cultivars. Optimization study showed that temporal heterogeneity of fruit-set and ripening was predicted to be reduced when fruits were harvested earlier. Furthermore, there was a 20 % increase in the number of extra fruit set.
NASA Astrophysics Data System (ADS)
Ebersbach, Friederike; Goldenstein, Nadine; Iversen, Morten; Mollenhauer, Gesine; Hinrichs, Kai-Uwe
2016-04-01
Transport mechanisms of microbial membrane lipids from surface waters to the seafloor are poorly understood. In particular, pelagic archaeal glycerol dibiphytanyl glycerol tetraethers (GDGTs) from planktonic archaea are frequently used for reconstruction of ancient sea surface temperatures (Schouten et al. 2013). Because planktonic archaea are too small and neutrally buoyant to sink independently, transport vehicles for efficient export of fossil archaeal biomarkers to the sediment are required. The surface ocean is coupled with the deep ocean through biogenic sinking particles, a process known as the biological pump (Volk and Hoffert 1985). Two different pathways for particle formation, mainly taking place in the mesopelagic zone, are distinguished: Direct aggregation of phytoplankton blooms or grazing, resulting in phyto-detrital aggregates or reprocessed faecal material, respectively. Grazing and packaging into sinking particles is a possible export mechanism for GDGTs (Huguet et al. 2006). Moreover, it is assumed that phyto-detrital aggregates also play an important role in transporting GDGTs to the deep (Mollenhauer et al. 2015), but processes behind this pathway remain unclear. However, there are only few studies that link GDGT signals in sinking particles to the composition of the exported particulate matter (e.g. Yamamoto et al., 2012; Mollenhauer et al. 2015). Here we investigate sinking particles and suspended particulate matter (SPM) from spring blooms in 2012 and 2013 in the upwelling region in the Atlantic Ocean off Cape Blanc, Mauritania. We compare for the first time material from free-floating sediment traps (100, 200 and 400 m; purely sinking particles) with sinking particles and SPM from size fractionated in-situ pump (ISP) filters (several depths between 40 and 2350 m). This setup allows to relate the signal from archaeal lipids to (i) the flux of particulate organic carbon and the particle assemblages as revealed by the characterisation of thousands of individual particles collected in gels in addition to (ii) the sinking particles and SPM present in different particle size fractions on the filters. First results show that the large size fraction carries relatively more intact lipids indicating fresh material being attached to sinking particles rather than suspended in the water column. Furthermore, the distribution of 1G-GDGTs over depths differs from that of 2G- and HPH-GDGTs which might relate to different archaeal communities at different depths. Our findings contribute to the mechanistic understanding of the export of organic molecules through the water column and support the validation of lipid-based paleoceanographic proxies. References Huguet, C., Cartes, J.E., Sinninghe Damsté, J.S., Schouten, S., 2006. Marine crenarchaeotal membrane lipids in decapods: Implications for the TEX86 paleothermometer. Geochemistry, Geophysics, Geosystems 7 (11), Q11010. Mollenhauer, G., Basse, A., Kim, J.-H., Sinninghe Damsté, J.S., Fischer, G., 2015. A four-year record of UK'37- and TEX86-derived sea surface temperature estimates from sinking particles in the filamentous upwelling region off Cape Blanc, Mauritania. Deep Sea Research Part I: Oceanographic Research Papers 97, 67-79. doi:10.1016/j.dsr.2014.11.015 Schouten, S., Hopmans, E.C., Sinninghe Damsté, J.S., 2013. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review. Organic Geochemistry 54, 19-61. Volk, T., Hoffert, M.I., 1985. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. Geophysical Monographs 32, 99-110. Yamamoto, M., Shimamoto, A., Fukuhara, T., Tanaka, Y., Ishizaka, J., 2012. Glycerol dialkyl glycerol tetraethers and TEX86 index in sinking particles in the western North Pacific. Organic Geochemistry 53 (0), 52-62.
Heat sinking for printed circuitry
Wilson, S.K.; Richardson, G.; Pinkerton, A.L.
1984-09-11
A flat pak or other solid-state device mounted on a printed circuit board directly over a hole extends therethrough so that the bottom of the pak or device extends beyond the bottom of the circuit board. A heat sink disposed beneath the circuit board contacts the bottom of the pak or device and provides direct heat sinking thereto. Pressure may be applied to the top of the pak or device to assure good mechanical and thermal contact with the heat sink.
Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia
Ma, Xuanlong; Huete, Alfredo; Cleverly, James; Eamus, Derek; Chevallier, Frédéric; Joiner, Joanna; Poulter, Benjamin; Zhang, Yongguang; Guanter, Luis; Meyer, Wayne; Xie, Zunyi; Ponce-Campos, Guillermo
2016-01-01
Each year, terrestrial ecosystems absorb more than a quarter of the anthropogenic carbon emissions, termed as land carbon sink. An exceptionally large land carbon sink anomaly was recorded in 2011, of which more than half was attributed to Australia. However, the persistence and spatially attribution of this carbon sink remain largely unknown. Here we conducted an observation-based study to characterize the Australian land carbon sink through the novel coupling of satellite retrievals of atmospheric CO2 and photosynthesis and in-situ flux tower measures. We show the 2010–11 carbon sink was primarily ascribed to savannas and grasslands. When all biomes were normalized by rainfall, shrublands however, were most efficient in absorbing carbon. We found the 2010–11 net CO2 uptake was highly transient with rapid dissipation through drought. The size of the 2010–11 carbon sink over Australia (0.97 Pg) was reduced to 0.48 Pg in 2011–12, and was nearly eliminated in 2012–13 (0.08 Pg). We further report evidence of an earlier 2000–01 large net CO2 uptake, demonstrating a repetitive nature of this land carbon sink. Given a significant increasing trend in extreme wet year precipitation over Australia, we suggest that carbon sink episodes will exert greater future impacts on global carbon cycle. PMID:27886216
Biomimetic Dissolution: A Tool to Predict Amorphous Solid Dispersion Performance.
Puppolo, Michael M; Hughey, Justin R; Dillon, Traciann; Storey, David; Jansen-Varnum, Susan
2017-11-01
The presented study describes the development of a membrane permeation non-sink dissolution method that can provide analysis of complete drug speciation and emulate the in vivo performance of poorly water-soluble Biopharmaceutical Classification System class II compounds. The designed membrane permeation methodology permits evaluation of free/dissolved/unbound drug from amorphous solid dispersion formulations with the use of a two-cell apparatus, biorelevant dissolution media, and a biomimetic polymer membrane. It offers insight into oral drug dissolution, permeation, and absorption. Amorphous solid dispersions of felodipine were prepared by hot melt extrusion and spray drying techniques and evaluated for in vitro performance. Prior to ranking performance of extruded and spray-dried felodipine solid dispersions, optimization of the dissolution methodology was performed for parameters such as agitation rate, membrane type, and membrane pore size. The particle size and zeta potential were analyzed during dissolution experiments to understand drug/polymer speciation and supersaturation sustainment of felodipine solid dispersions. Bland-Altman analysis was performed to measure the agreement or equivalence between dissolution profiles acquired using polymer membranes and porcine intestines and to establish the biomimetic nature of the treated polymer membranes. The utility of the membrane permeation dissolution methodology is seen during the evaluation of felodipine solid dispersions produced by spray drying and hot melt extrusion. The membrane permeation dissolution methodology can suggest formulation performance and be employed as a screening tool for selection of candidates to move forward to pharmacokinetic studies. Furthermore, the presented model is a cost-effective technique.
17. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS, SINK, AND FAUCET, ...
17. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS, SINK, AND FAUCET, AND ORIGINAL WOOD-FRAMED SLIDING GLASS WINDOWS ON SOUTH WALL OVER SINK. VIEW TO SOUTHEAST - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA
Kohl, Stefan; Hollmann, Julien; Erban, Alexander; Kopka, Joachim; Riewe, David; Weschke, Winfriede; Weber, Hans
2015-03-01
During grain filling in barley (Hordeum vulgare L. cv. Barke) reserves are remobilized from vegetative organs. Glumes represent the vegetative tissues closest to grains, senesce late, and are involved in the conversion of assimilates. To analyse glume development and metabolism related to grain filling, parallel transcript and metabolite profiling in glumes and endosperm were performed, showing that glume metabolism and development adjusts to changing grain demands, reflected by specific signatures of metabolite and transcript abundances. Before high endosperm sink strength is established by storage product accumulation, glumes form early, intermediary sink organs, shifting then to remobilizing and exporting source organs. Metabolic and transcriptional transitions occur at two phases: first, at the onset of endosperm filling, as a consequence of endosperm sink activity and assimilate depletion in endosperm and vascular tissues; second, at late grain filling, by developmental ageing and senescence. Regulation of and transition between phases are probably governed by specific NAC and WRKY transcription factors, and both abscisic and jasmonic acid, and are accompanied by changed expression of specific nitrogen transporters. Expression and metabolite profiling suggest glume-specific mechanisms of assimilate conversion and translocation. In summary, grain filling and endosperm sink strength coordinate phase changes in glumes via metabolic, hormonal, and transcriptional control. This study provides a comprehensive view of barley glume development and metabolism, and identifies candidate genes and associated pathways, potentially important for breeding improved grain traits. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
DOW-PR DOlphin and Whale Pods Routing Protocol for Underwater Wireless Sensor Networks (UWSNs).
Wadud, Zahid; Ullah, Khadem; Hussain, Sajjad; Yang, Xiaodong; Qazi, Abdul Baseer
2018-05-12
Underwater Wireless Sensor Networks (UWSNs) have intrinsic challenges that include long propagation delays, high mobility of sensor nodes due to water currents, Doppler spread, delay variance, multipath, attenuation and geometric spreading. The existing Weighting Depth and Forwarding Area Division Depth Based Routing (WDFAD-DBR) protocol considers the weighting depth of the two hops in order to select the next Potential Forwarding Node (PFN). To improve the performance of WDFAD-DBR, we propose DOlphin and Whale Pod Routing protocol (DOW-PR). In this scheme, we divide the transmission range into a number of transmission power levels and at the same time select the next PFNs from forwarding and suppressed zones. In contrast to WDFAD-DBR, our scheme not only considers the packet upward advancement, but also takes into account the number of suppressed nodes and number of PFNs at the first and second hops. Consequently, reasonable energy reduction is observed while receiving and transmitting packets. Moreover, our scheme also considers the hops count of the PFNs from the sink. In the absence of PFNs, the proposed scheme will select the node from the suppressed region for broadcasting and thus ensures minimum loss of data. Besides this, we also propose another routing scheme (whale pod) in which multiple sinks are placed at water surface, but one sink is embedded inside the water and is physically connected with the surface sink through high bandwidth connection. Simulation results show that the proposed scheme has high Packet Delivery Ratio (PDR), low energy tax, reduced Accumulated Propagation Distance (APD) and increased the network lifetime.
DOW-PR DOlphin and Whale Pods Routing Protocol for Underwater Wireless Sensor Networks (UWSNs)
Wadud, Zahid; Ullah, Khadem; Hussain, Sajjad; Yang, Xiaodong; Qazi, Abdul Baseer
2018-01-01
Underwater Wireless Sensor Networks (UWSNs) have intrinsic challenges that include long propagation delays, high mobility of sensor nodes due to water currents, Doppler spread, delay variance, multipath, attenuation and geometric spreading. The existing Weighting Depth and Forwarding Area Division Depth Based Routing (WDFAD-DBR) protocol considers the weighting depth of the two hops in order to select the next Potential Forwarding Node (PFN). To improve the performance of WDFAD-DBR, we propose DOlphin and Whale Pod Routing protocol (DOW-PR). In this scheme, we divide the transmission range into a number of transmission power levels and at the same time select the next PFNs from forwarding and suppressed zones. In contrast to WDFAD-DBR, our scheme not only considers the packet upward advancement, but also takes into account the number of suppressed nodes and number of PFNs at the first and second hops. Consequently, reasonable energy reduction is observed while receiving and transmitting packets. Moreover, our scheme also considers the hops count of the PFNs from the sink. In the absence of PFNs, the proposed scheme will select the node from the suppressed region for broadcasting and thus ensures minimum loss of data. Besides this, we also propose another routing scheme (whale pod) in which multiple sinks are placed at water surface, but one sink is embedded inside the water and is physically connected with the surface sink through high bandwidth connection. Simulation results show that the proposed scheme has high Packet Delivery Ratio (PDR), low energy tax, reduced Accumulated Propagation Distance (APD) and increased the network lifetime. PMID:29757208
Shifting terrestrial feedbacks from CO2 fertilization to global warming
NASA Astrophysics Data System (ADS)
Peñuelas, Josep; Ciais, Philippe; Janssens, Ivan; Canadell, Josep; Obersteiner, Michael; Piao, Shilong; Vautard, Robert; Sardans Jordi Sardans, Jordi
2016-04-01
Humans are increasingly fertilizing the planet. Our activities are increasing atmospheric concentrations of carbon dioxide, nitrogen inputs to ecosystems and global temperatures. Individually and combined, they lead to biospheric availability of carbon and nitrogen, enhanced metabolic activity, and longer growing seasons. Plants can consequently grow more and take up more carbon that can be stored in ecosystem carbon pools, thus enhancing carbon sinks for atmospheric CO2. Data on the increased strength of carbon sinks are, however, inconclusive: Some data (eddy covariance, short-term experiments on elevated CO2 and nutrient fertilization) suggest that biospheric carbon uptake is already effectively increasing but some other data suggest it is not, or are not general and conclusive (tree-ring, forest inventory). The combined land-ocean CO2 sink flux per unit of excess atmospheric CO2 above preindustrial levels declined over 1959-2012 by a factor of about 1/3, implying that CO2 sinks increased more slowly than excess CO2. We will discuss the available data, and the discussion will drive us to revisit our projections for enhanced carbon sinks. We will reconsider the performance of the modulators of increased carbon uptake in a CO2 fertilized and warmed world: nutrients, climate, land use and pollution. Nutrient availability in particular plays a crucial role. A simple mass-balance approach indicates that limited phosphorus availability and the corresponding N:P imbalances can jointly reduce the projected future carbon storage by natural ecosystems during this century. We then present a new paradigm: we are shifting from a fertilization to a warming era. Compared to the historical period, future impacts of warming will be larger than the benefits of CO2 fertilization given nutrient limitations, management and disturbance (which reduces C stocks and thus sequestration potential) and because CO2 will decrease by 2050 in RCP2.6, meaning loss of CO2 fertilization, and CO2 stabilizes by 2060 in RCP4.5. So in light of the Paris agreement, it is more important to investigate climate change impacts on carbon stocks than to expect a continuation of increasing sink due to CO2 fertilization, which will have only a small role or disappear in RCP2.6 during this century.
Regulation of assimilate import into sink organs: update on molecular drivers of sink strength
Bihmidine, Saadia; Hunter, Charles T.; Johns, Christine E.; Koch, Karen E.; Braun, David M.
2013-01-01
Recent developments have altered our view of molecular mechanisms that determine sink strength, defined here as the capacity of non-photosynthetic structures to compete for import of photoassimilates. We review new findings from diverse systems, including stems, seeds, flowers, and fruits. An important advance has been the identification of new transporters and facilitators with major roles in the accumulation and equilibration of sugars at a cellular level. Exactly where each exerts its effect varies among systems. Sugarcane and sweet sorghum stems, for example, both accumulate high levels of sucrose, but may do so via different paths. The distinction is central to strategies for targeted manipulation of sink strength using transporter genes, and shows the importance of system-specific analyses. Another major advance has been the identification of deep hypoxia as a feature of normal grain development. This means that molecular drivers of sink strength in endosperm operate in very low oxygen levels, and under metabolic conditions quite different than previously assumed. Successful enhancement of sink strength has nonetheless been achieved in grains by up-regulating genes for starch biosynthesis. Additionally, our understanding of sink strength is enhanced by awareness of the dual roles played by invertases (INVs), not only in sucrose metabolism, but also in production of the hexose sugar signals that regulate cell cycle and cell division programs. These contributions of INV to cell expansion and division prove to be vital for establishment of young sinks ranging from flowers to fruit. Since INV genes are themselves sugar-responsive “feast genes,” they can mediate a feed-forward enhancement of sink strength when assimilates are abundant. Greater overall productivity and yield have thus been attained in key instances, indicating that even broader enhancements may be achievable as we discover the detailed molecular mechanisms that drive sink strength in diverse systems. PMID:23761804
Wan, Jan; Xiong, Naixue; Zhang, Wei; Zhang, Qinchao; Wan, Zheng
2012-01-01
The reliability of wireless sensor networks (WSNs) can be greatly affected by failures of sensor nodes due to energy exhaustion or the influence of brutal external environment conditions. Such failures seriously affect the data persistence and collection efficiency. Strategies based on network coding technology for WSNs such as LTCDS can improve the data persistence without mass redundancy. However, due to the bad intermediate performance of LTCDS, a serious ‘cliff effect’ may appear during the decoding period, and source data are hard to recover from sink nodes before sufficient encoded packets are collected. In this paper, the influence of coding degree distribution strategy on the ‘cliff effect’ is observed and the prioritized data storage and dissemination algorithm PLTD-ALPHA is presented to achieve better data persistence and recovering performance. With PLTD-ALPHA, the data in sensor network nodes present a trend that their degree distribution increases along with the degree level predefined, and the persistent data packets can be submitted to the sink node according to its degree in order. Finally, the performance of PLTD-ALPHA is evaluated and experiment results show that PLTD-ALPHA can greatly improve the data collection performance and decoding efficiency, while data persistence is not notably affected. PMID:23235451
Kerski, J.J.
2004-01-01
To help teachers and students investigate one of the world's most famous historical events using the geographic perspective and GIS tools and methods, the U.S. Geological Survey (USGS) created a set of educational lessons based on the RMS Titanic's April 1912 sailing. With these lessons, student researchers can learn about latitude and longitude, map projections, ocean currents, databases, maps, and images through the analysis of the route, warnings, sinking, rescue, and eventual discovery of the submerged ocean liner in 1985. They can also consider the human and physical aspects of the maiden voyage in the North Atlantic Ocean at a variety of scales, from global to regional to local. Likewise, their investigations can reveal how the sinking of the Titanic affected future shipping routes.
An active atmospheric methane sink in high Arctic mineral cryosols
Lau, Maggie C.Y.; Stackhouse, B.; Layton, Alice C.; ...
2015-01-01
The transition of Arctic carbon-rich cryosols into methane (CH₄)-emitting wetlands due to global warming is a rising concern. However, the spatially predominant mineral cryosols and their CH₄ emission potential are poorly understood. Fluxes measured in situ and estimated under laboratory conditions coupled with -omics analysis indicate (1) mineral cryosols in the Canadian high Arctic contain atmospheric CH₄-oxidizing bacteria; (2) the atmospheric CH⁺ uptake flux increases with ground temperature; and, as a result, (3) the atmospheric CH₄ sink strength will increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrated that acidic mineralmore » cryosols have previously unrecognized potential of negative CH₄ feedback.« less
Weld geometry strength effect in 2219-T87 aluminum
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.; Novak, H. L.; Mcilwain, M. C.
1981-01-01
A theory of the effect of geometry on the mechanical properties of a butt weld joint is worked out based upon the soft interlayer weld model. Tensile tests of 45 TIG butt welds and 6 EB beads-on-plate in 1/4-in. 2219-T87 aluminum plate made under a wide range of heat sink and power input conditions are analyzed using this theory. The analysis indicates that purely geometrical effects dominate in determining variations in weld joint strength with heat sink and power input. Variations in weld dimensions with cooling rate are significant as well as with power input. Weld size is suggested as a better indicator of the condition of a weld joint than energy input.
Hayes, Matthew A.; Feechan, Angela; Dry, Ian B.
2010-01-01
Biotrophic fungal and oomycete pathogens alter carbohydrate metabolism in infected host tissues. Symptoms such as elevated soluble carbohydrate concentrations and increased invertase activity suggest that a pathogen-induced carbohydrate sink is established. To identify pathogen-induced regulators of carbohydrate sink strength, quantitative real-time polymerase chain reaction was used to measure transcript levels of invertase and hexose transporter genes in biotrophic pathogen-infected grapevine (Vitis vinifera) leaves. The hexose transporter VvHT5 was highly induced in coordination with the cell wall invertase gene VvcwINV by powdery and downy mildew infection. However, similar responses were also observed in response to wounding, suggesting that this is a generalized response to stress. Analysis of the VvHT5 promoter region indicated the presence of multiple abscisic acid (ABA) response elements, suggesting a role for ABA in the transition from source to sink under stress conditions. ABA treatment of grape leaves was found to reproduce the same gene-specific transcriptional changes as observed under biotic and abiotic stress conditions. Furthermore, the key regulatory ABA biosynthetic gene, VvNCED1, was activated under these same stress conditions. VvHT5 promoter::β-glucuronidase-directed expression in transgenic Arabidopsis (Arabidopsis thaliana) was activated by infection with powdery mildew and by ABA treatment, and the expression was closely associated with vascular tissue adjacent to infected regions. Unlike VvHT1 and VvHT3, which appear to be predominantly involved in hexose transport in developing leaves and berries, VvHT5 appears to have a specific role in enhancing sink strength under stress conditions, and this is controlled through ABA. Our data suggest a central role for ABA in the regulation of VvcwINV and VvHT5 expression during the transition from source to sink in response to infection by biotrophic pathogens. PMID:20348211
Constraining the global bromomethane budget from carbon stable isotopes
NASA Astrophysics Data System (ADS)
Bahlmann, Enno; Wittmer, Julian; Greule, Markus; Zetzsch, Cornelius; Seifert, Richard; Keppler, Frank
2016-04-01
Despite intense research in the last two decades, the global bromomethane (CH3Br) budget remains unbalanced with the known sinks exceeding the known sources by about 25%. The reaction with OH is the largest sink for CH3Br. We have determined the kinetic isotope effects for the reactions of CH3Br with the OH and Cl radical in order to better constrain the global CH3Br budget from an isotopic perspective. The isotope fractionation experiments were performed at 20±1°C in a 3500 L Teflon smog-chamber with initial CH3Br mixing ratios of about 2 and 10 ppm and perflourohexane (25 ppb) as internal standard. Atomic chlorine (Cl) was generated via photolysis of molecular chlorine (Cl2) using a solar simulator with an actinic flux comparable to that of the sun in mid-summer in Germany. OH radicals were generated via the photolysis of ozone (O3) at 253.7 nm in the presence of water vapor (RH = 70%).The mixing ratios of CH3Br, and perflourohexane were monitored by GC-MS with a time resolution of 15 minutes throughout the experiments. From each experiment 10 to 15 sub samples were taken in regular time intervals for subsequent carbon isotope ratio determinations by GC-IRMS performed at two independent laboratories in parallel. We found a kinetic isotope effect (KIE) of 17.6±3.3‰ for the reaction of CH3Br with OH and a KIE of 9.8±1.4 ‰ for the reaction with Cl*. We used these fractionation factors along with new data on the isotopic composition of CH3Br in the troposphere (-34±7‰) and the surface ocean (-26±7‰) along with reported source signatures, to constrain the unknown source from an isotopic perspective. The largest uncertainty in estimating the isotopic composition of the unknown source arises from the soil sink. Microbial degradation in soils is the second largest sink and assigned with a large fractionation factors of about 50‰. However, field experiments revealed substantially smaller apparent fractionation factors ranging from 11 to 22‰. In addition, simple model studies suggest that the soil uptake of CH3Br and hence its isotopic effect is largely controlled by diffusion resulting in an even smaller apparent isotopic fractionation. As a consequence, the estimated source signature for the unknown source is discussed with respect to the assumptions made for the soil sink.
Doctor, Daniel H.; Young, John A.
2013-01-01
LiDAR (Light Detection and Ranging) surveys of karst terrains provide high-resolution digital elevation models (DEMs) that are particularly useful for mapping sinkholes. In this study, we used automated processing tools within ArcGIS (v. 10.0) operating on a 1.0 m resolution LiDAR DEM in order to delineate sinkholes and closed depressions in the Boyce 7.5 minute quadrangle located in the northern Shenandoah Valley of Virginia. The results derived from the use of the automated tools were then compared with depressions manually delineated by a geologist. Manual delineation of closed depressions was conducted using a combination of 1.0 m DEM hillshade, slopeshade, aerial imagery, and Topographic Position Index (TPI) rasters. The most effective means of visualizing depressions in the GIS was using an overlay of the partially transparent TPI raster atop the slopeshade raster at 1.0 m resolution. Manually identified depressions were subsequently checked using aerial imagery to screen for false positives, and targeted ground-truthing was undertaken in the field. The automated tools that were utilized include the routines in ArcHydro Tools (v. 2.0) for prescreening, evaluating, and selecting sinks and depressions as well as thresholding, grouping, and assessing depressions from the TPI raster. Results showed that the automated delineation of sinks and depressions within the ArcHydro tools was highly dependent upon pre-conditioning of the DEM to produce "hydrologically correct" surface flow routes. Using stream vectors obtained from the National Hydrologic Dataset alone to condition the flow routing was not sufficient to produce a suitable drainage network, and numerous artificial depressions were generated where roads, railways, or other manmade structures acted as flow barriers in the elevation model. Additional conditioning of the DEM with drainage paths across these barriers was required prior to automated 2delineation of sinks and depressions. In regions where the DEM had been properly conditioned, the tools for automated delineation performed reasonably well as compared to the manually delineated depressions, but generally overestimated the number of depressions thus necessitating manual filtering of the final results. Results from the TPI thresholding analysis were not dependent on DEM pre-conditioning, but the ability to extract meaningful depressions depended on careful assessment of analysis scale and TPI thresholding.
Increased Photochemical Efficiency in Cyanobacteria via an Engineered Sucrose Sink.
Abramson, Bradley W; Kachel, Benjamin; Kramer, David M; Ducat, Daniel C
2016-12-01
In plants, a limited capacity to utilize or export the end-products of the Calvin-Benson cycle (CB) from photosynthetically active source cells to non-photosynthetic sink cells can result in reduced carbon capture and photosynthetic electron transport (PET), and lowered photochemical efficiency. The down-regulation of photosynthesis caused by reduced capacity to utilize photosynthate has been termed 'sink limitation'. Recently, several cyanobacterial and algal strains engineered to overproduce target metabolites have exhibited increased photochemistry, suggesting that possible source-sink regulatory mechanisms may be involved. We directly examined photochemical properties following induction of a heterologous sucrose 'sink' in the unicellular cyanobacterium Synechococcus elongatus PCC 7942. We show that total photochemistry increases proportionally to the experimentally controlled rate of sucrose export. Importantly, the quantum yield of PSII (ΦII) increases in response to sucrose export while the PET chain becomes more oxidized from less PSI acceptor-side limitation, suggesting increased CB activity and a decrease in sink limitation. Enhanced photosynthetic activity and linear electron flow are detectable within hours of induction of the heterologous sink and are independent of pigmentation alterations or the ionic/osmotic effects of the induction system. These observations provide direct evidence that secretion of heterologous carbon bioproducts can be used as an alternative approach to improve photosynthetic efficiency, presumably by by-passing sink limitation. Our results also suggest that engineered microalgal production strains are valuable alternative models for examining photosynthetic sink limitation because they enable greater control and monitoring of metabolite fluxes relative to plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Buermann, Wolfgang; Beaulieu, Claudie; Parida, Bikash; Medvigy, David; Collatz, George J.; Sheffield, Justin; Sarmiento, Jorge L.
2016-03-01
The world's ocean and land ecosystems act as sinks for anthropogenic CO2, and over the last half century their combined sink strength grew steadily with increasing CO2 emissions. Recent analyses of the global carbon budget, however, have uncovered an abrupt, substantial ( ˜ 1 PgC yr-1) and sustained increase in the land sink in the late 1980s whose origin remains unclear. In the absence of this prominent shift in the land sink, increases in atmospheric CO2 concentrations since the late 1980s would have been ˜ 30 % larger than observed (or ˜ 12 ppm above current levels). Global data analyses are limited in regards to attributing causes to changes in the land sink because different regions are likely responding to different drivers. Here, we address this challenge by using terrestrial biosphere models constrained by observations to determine if there is independent evidence for the abrupt strengthening of the land sink. We find that net primary production significantly increased in the late 1980s (more so than heterotrophic respiration), consistent with the inferred increase in the global land sink, and that large-scale climate anomalies are responsible for this shift. We identify two key regions in which climatic constraints on plant growth have eased: northern Eurasia experienced warming, and northern Africa received increased precipitation. Whether these changes in continental climates are connected is uncertain, but North Atlantic climate variability is important. Our findings suggest that improved understanding of climate variability in the North Atlantic may be essential for more credible projections of the land sink under climate change.
Photosynthesis of young apple trees in response to low sink demand under different air temperatures.
Fan, Pei G; Li, Lian S; Duan, Wei; Li, Wei D; Li, Shao H
2010-03-01
Gas exchange, chlorophyll fluorescence, photosynthetic end products and related enzymes in source leaves in response to low sink demand after girdling to remove the root sink were assessed in young apple trees (Malus pumila) grown in two greenhouses with different air temperatures for 5 days. Compared with the non-girdled control in the low-temperature greenhouse (diurnal maximum air temperature <32 degrees C), low sink demand resulted in lower net photosynthetic rate (P(n)), stomatal conductance (g(s)) and transpiration rate (E) but higher leaf temperature on Day 5, while in the high-temperature greenhouse (diurnal maximum air temperature >36 degrees C), P(n), g(s) and E declined from Day 3 onwards. Moreover, gas exchange responded more to low sink demand in the high-temperature greenhouse than in the low-temperature greenhouse. Decreased P(n) at low sink demand was accompanied by lower intercellular CO(2) concentrations in the low-temperature greenhouse. However, decreased maximal photochemical efficiency, potential activity, efficiency of excitation capture, actual efficiency and photochemical quenching, with increased minimal fluorescence and non-photochemical quenching of photosystem II (PSII), were observed in low sink demand leaves only in the high-temperature greenhouse. In addition, low sink demand increased leaf starch and soluble carbohydrate content in both greenhouses but did not result in lower activity of enzymes involved in metabolism. Thus, decreased P(n) under low sink demand was independent of a direct effect of end-product feedback but rather depended on a high temperature threshold. The lower P(n) was likely due to stomatal limitation in the low-temperature greenhouse, but mainly due to non-stomatal limitation in the high-temperature greenhouse.
Diversity changes of microbial communities into hospital surface environments.
Yano, Rika; Shimoda, Tomoko; Watanabe, Reina; Kuroki, Yasutoshi; Okubo, Torahiko; Nakamura, Shinji; Matsuo, Junji; Yoshimura, Sadako; Yamaguchi, Hiroyuki
2017-07-01
Previous works have demonstrated considerable variability in hospital cleanliness in Japan, suggesting that contamination is driven by factors that are currently poorly controlled. We undertook 16S rRNA sequence analysis to study population structures of hospital environmental microbiomes to see which factor(s) impacted contamination. One hundred forty-four samples were collected from surfaces of three hospitals with distinct sizes ("A": >500 beds, "B": 100-500 beds, "C": <100 beds). Sample locations of two ward types (Surgical and Internal) included patient room bed table (multiple) (4BT), patient overbed table (multiple) (4OT), patient room sink (multiple) (4S), patient room bed table (single) (SBT), patient overbed table (single) (SOT), patient room sink (single) (SS), nurse desk (ND), and nurse wagon (NW). Total DNA was extracted from each sample, and the 50 samples that yielded sufficient DNA were used for further 16S rRNA sequencing of hospital microbiome populations with cluster analysis. The number of assigned bacterial OTU populations was significantly decreased in hospital "C" compared to the other hospitals. Cluster analysis of sampling locations revealed that the population structure in almost all locations of hospital "C" and some locations in the other hospitals was very similar and unusually skewed with a family, Enterobacteriaceae. Interestingly, locations included patient area (4OT, 4BT, SBT) and nurse area (ND), with a device (NW) bridging the two and a place (4S and SS) shared between patients or visitors. We demonstrated diversity changes of hospital environmental microbiomes with a skewed population, presumably by medical staff pushing NWs or sinks shared by patients or visitors. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Li, Hongjun; Yin, Hao; Gong, Xiangwu; Dong, Feihong; Ren, Baoquan; He, Yuanzhi; Wang, Jingchao
2016-01-01
This paper investigates the performance of integrated wireless sensor and multibeam satellite networks (IWSMSNs) under terrestrial interference. The IWSMSNs constitute sensor nodes (SNs), satellite sinks (SSs), multibeam satellite and remote monitoring hosts (RMHs). The multibeam satellite covers multiple beams and multiple SSs in each beam. The SSs can be directly used as SNs to transmit sensing data to RMHs via the satellite, and they can also be used to collect the sensing data from other SNs to transmit to the RMHs. We propose the hybrid one-dimensional (1D) and 2D beam models including the equivalent intra-beam interference factor β from terrestrial communication networks (TCNs) and the equivalent inter-beam interference factor α from adjacent beams. The terrestrial interference is possibly due to the signals from the TCNs or the signals of sinks being transmitted to other satellite networks. The closed-form approximations of capacity per beam are derived for the return link of IWSMSNs under terrestrial interference by using the Haar approximations where the IWSMSNs experience the Rician fading channel. The optimal joint decoding capacity can be considered as the upper bound where all of the SSs’ signals can be jointly decoded by a super-receiver on board the multibeam satellite or a gateway station that knows all of the code books. While the linear minimum mean square error (MMSE) capacity is where all of the signals of SSs are decoded singularly by a multibeam satellite or a gateway station. The simulations show that the optimal capacities are obviously higher than the MMSE capacities under the same conditions, while the capacities are lowered by Rician fading and converge as the Rician factor increases. α and β jointly affect the performance of hybrid 1D and 2D beam models, and the number of SSs also contributes different effects on the optimal capacity and MMSE capacity of the IWSMSNs. PMID:27754438
A novel simulation methodology merging source-sink dynamics and landscape connectivity
Source-sink dynamics are an emergent property of complex species-landscape interactions. This study explores the patterns of source and sink behavior that become established across a large landscape, using a simulation model for the northern spotted owl (Strix occidentalis cauri...
Self-actuating heat switches for redundant refrigeration systems
NASA Technical Reports Server (NTRS)
Chan, Chung K. (Inventor)
1988-01-01
A dual refrigeration system for cooling a sink device is described, which automatically thermally couples the cold refrigerator to the sink device while thermally isolating the warm refrigerator from the sink device. The system includes two gas gap heat switches that each thermally couples one of the refrigerators to the sink device, and a pair of sorption pumps that are coupled through tubes to the heat switches. When the first refrigerator is operated and therefore cold, the first pump which is thermally coupled to it is also cooled and adsorbs gas to withdraw it from the second heat switch, to thereby thermally isolate the sink device from the warm second refrigerator. With the second refrigerator being warm, the second pump is also warm and desorbs gas, so the gas lies in the first switch, to close that switch and therefore thermally couple the cold first refrigerator to the sink device. Thus, the heat switches are automatically switched according to the temperature of the corresponding refrigerator.
Lai, Chen-Yen; Chien, Chih-Chun
2016-01-01
While batteries offer electronic source and sink for electronic devices, atomic analogues of source and sink and their theoretical descriptions have been a challenge in cold-atom systems. Here we consider dynamically emerged local potentials as controllable source and sink for bosonic atoms. Although a sink potential can collect bosons in equilibrium and indicate its usefulness in the adiabatic limit, sudden switching of the potential exhibits low effectiveness in pushing bosons into it. This is due to conservation of energy and particle in isolated systems such as cold atoms. By varying the potential depth and interaction strength, the systems can further exhibit averse response, where a deeper emerged potential attracts less bosonic atoms into it. To explore possibilities for improving the effectiveness, we investigate what types of system-environment coupling can help bring bosons into a dynamically emerged sink, and a Lindblad operator corresponding to local cooling is found to serve the purpose. PMID:27849034
Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump
Agusti, S.; González-Gordillo, J. I.; Vaqué, D.; Estrada, M.; Cerezo, M. I.; Salazar, G.; Gasol, J. M.; Duarte, C. M.
2015-01-01
The role of the ocean as a sink for CO2 is partially dependent on the downward transport of phytoplankton cells packaged within fast-sinking particles. However, whether such fast-sinking mechanisms deliver fresh organic carbon down to the deep bathypelagic sea and whether this mechanism is prevalent across the ocean requires confirmation. Here we report the ubiquitous presence of healthy photosynthetic cells, dominated by diatoms, down to 4,000 m in the deep dark ocean. Decay experiments with surface phytoplankton suggested that the large proportion (18%) of healthy photosynthetic cells observed, on average, in the dark ocean, requires transport times from a few days to a few weeks, corresponding to sinking rates (124–732 m d−1) comparable to those of fast-sinking aggregates and faecal pellets. These results confirm the expectation that fast-sinking mechanisms inject fresh organic carbon into the deep sea and that this is a prevalent process operating across the global oligotrophic ocean. PMID:26158221
Development of the GPM Observatory Thermal Vacuum Test Model
NASA Technical Reports Server (NTRS)
Yang, Kan; Peabody, Hume
2012-01-01
A software-based thermal modeling process was documented for generating the thermal panel settings necessary to simulate worst-case on-orbit flight environments in an observatory-level thermal vacuum test setup. The method for creating such a thermal model involved four major steps: (1) determining the major thermal zones for test as indicated by the major dissipating components on the spacecraft, then mapping the major heat flows between these components; (2) finding the flight equivalent sink temperatures for these test thermal zones; (3) determining the thermal test ground support equipment (GSE) design and initial thermal panel settings based on the equivalent sink temperatures; and (4) adjusting the panel settings in the test model to match heat flows and temperatures with the flight model. The observatory test thermal model developed from this process allows quick predictions of the performance of the thermal vacuum test design. In this work, the method described above was applied to the Global Precipitation Measurement (GPM) core observatory spacecraft, a joint project between NASA and the Japanese Aerospace Exploration Agency (JAXA) which is currently being integrated at NASA Goddard Space Flight Center for launch in Early 2014. From preliminary results, the thermal test model generated from this process shows that the heat flows and temperatures match fairly well with the flight thermal model, indicating that the test model can simulate fairly accurately the conditions on-orbit. However, further analysis is needed to determine the best test configuration possible to validate the GPM thermal design before the start of environmental testing later this year. Also, while this analysis method has been applied solely to GPM, it should be emphasized that the same process can be applied to any mission to develop an effective test setup and panel settings which accurately simulate on-orbit thermal environments.
Potential for wind extraction from 4D-Var assimilation of aerosols and moisture
NASA Astrophysics Data System (ADS)
Zaplotnik, Žiga; Žagar, Nedjeljka
2017-04-01
We discuss the potential of the four-dimensional variational data assimilation (4D-Var) to retrieve the unobserved wind field from observations of atmospheric tracers and the mass field through internal model dynamics and the multivariate relationships in the background-error term for 4D-Var. The presence of non-linear moist dynamics makes the wind retrieval from tracers very difficult. On the other hand, it has been shown that moisture observations strongly influence both tropical and mid-latitude wind field in 4D-Var. We present an intermediate complexity model that describes nonlinear interactions between the wind, temperature, aerosols and moisture including their sinks and sources in the framework of the so-called first baroclinic mode atmosphere envisaged by A. Gill. Aerosol physical processes, which are included in the model, are the non-linear advection, diffusion and sources and sinks that exist as dry and wet deposition and diffusion. Precipitation is parametrized according to the Betts-Miller scheme. The control vector for 4D-Var includes aerosols, moisture and the three dynamical variables. The former is analysed univariately whereas wind field and mass field are analysed in a multivariate fashion taking into account quasi-geostrophic and unbalanced dynamics. The OSSE type of studies are performed for the tropical region to assess the ability of 4D-Var to extract wind-field information from the time series of observations of tracers as a function of the flow nonlinearity, the observations density and the length of the assimilation window (12 hours and 24 hours), in dry and moist environment. Results show that the 4D-Var assimilation of aerosols and temperature data is beneficial for the wind analysis with analysis errors strongly dependent on the moist processes and reliable background-error covariances.
NASA Astrophysics Data System (ADS)
Kumar, Love; Sharma, Vishal; Singh, Amarpal
2018-02-01
Wireless sensor networks have tremendous applications, such as civil, military, and environmental monitoring. In most of the applications, sensor data are required to be propagated over the internet/core networks, which result in backhaul setback. Subsequently, there is a necessity to backhaul the sensed information of such networks together with prolonging of the transmission link. Passive optical network (PON) is next-generation access technology emerging as a potential candidate for convergence of the sensed data to the core system. Earlier, the work with single-optical line terminal-PON was demonstrated and investigated merely analytically. This work is an attempt to demonstrate a practical model of a bidirectional single-sink wireless sensor network-PON converged network in which the collected data from cluster heads are transmitted over PON networks. Further, modeled converged structure has been investigated under the influence of double, single, and tandem sideband modulation schemes incorporating a corresponding phase-delay to the sensor data entities that have been overlooked in the past. The outcome illustrates the successful fusion of the sensor data entities over PON with acceptable bit error rate and signal to noise ratio serving as a potential development in the sphere of such converged networks. It has also been revealed that the data entities treated with tandem side band modulation scheme help in improving the performance of the converged structure. Additionally, analysis for uplink transmission reported with queue theory in terms of time cycle, average time delay, data packet generation, and bandwidth utilization. An analytical analysis of proposed converged network shows that average time delay for data packet transmission is less as compared with time cycle delay.
Measurements of total OH reactivity at the PROPHET site
NASA Astrophysics Data System (ADS)
Rickly, Pamela; Sakowski, Joseph; Bottorff, Brandon; Lew, Michelle; Stevens, Philip; Sklaveniti, Sofia; Léonardis, Thierry; Locoge, Nadine; Dusanter, Sébastien
2017-04-01
As the main oxidant in the daytime atmosphere, the hydroxyl radical (OH) initiates the oxidation of organic trace gases and the formation of pollutants such as ozone and secondary organic aerosols. Understanding both the sources and sinks of OH is therefore important to address issues related to air quality and climate change. Total OH reactivity measurements have proved to be of interest to investigate the OH budget and have highlighted an incomplete understanding of OH sinks in forested environments, which are characterized by high concentrations of biogenic volatile organic compounds (BVOCs) and their oxidation products. A research facility located in a Michigan forest, US, has hosted several campaigns of OH reactivity measurements over the last 15 years through the PROPHET (Program for Research on Oxidants: Photochemistry, Emission and Transport) program. This site is characterized by deciduous trees emitting isoprene and other BVOCs and a low impact of anthropogenic emissions. Measurements of OH reactivity were performed during PROPHET 1998 and CABINEX 2009. More recently, OH reactivity was measured during the PROPHET 2016 - AMOS (Atmospheric Measurements of Oxidants in summer) field campaign using the Comparative Reactivity Method (CRM) and the Total OH Loss Rate Method (TOHLM). In this presentation, we will show that the two measurement techniques agree within uncertainties, giving confidence in the measured OH reactivity. In addition, concomitant measurements of trace gases (VOCs, NOx, O3) made by online and offline instruments were used to perform a comprehensive apportionment of OH sinks. We will provide insights into the OH reactivity budget and will show how it compares to the previous abovementioned studies.
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura
2011-01-01
This paper describes thermal vacuum testing of a proto-flight miniature loop heat pipe (MLHP) with two evaporators and two condensers designed for future small systems applications requiring low mass, low power and compactness. Each evaporator contains a wick with an outer diameter of 6.35 mm, and each has its own integral compensation chamber (CC). Miniaturization of the loop components reduces the volume and mass of the thermal system. Multiple evaporators provide flexibility for placement of instruments that need to be maintained at the same temperature, and facilitate heat load sharing among instruments, reducing the auxiliary heater power requirement. A flow regulator is used to regulate heat dissipations between the two condensers, allowing flexible placement of radiators on the spacecraft. A thermoelectric converter (TEC) is attached to each CC for control of the operating temperature and enhancement of start-up success. Tests performed include start-up, power cycle, sink temperature cycle, high power and low power operation, heat load sharing, and operating temperature control. The proto-flight MLHP demonstrated excellent performance in the thermal vacuum test. The loop started successfully and operated stably under various evaporator heat loads and condenser sink temperatures. The TECs were able to maintain the loop operating temperature within b1K of the desired set point temperature at all power levels and all sink temperatures. The un-powered evaporator would automatically share heat from the other powered evaporator. The flow regulator was able to regulate the heat dissipation among the radiators and prevent vapor from flowing into the liquid line.
Li, Weifeng; Cao, Qiwen; Lang, Kun; Wu, Jiansheng
2017-05-15
Rapid urbanization has significantly contributed to the development of urban heat island (UHI). Regulating landscape composition and configuration would help mitigate the UHI in megacities. Taking Shenzhen, China, as a case study area, we defined heat source and heat sink and identified strong and weak sources as well as strong and weak sinks according to the natural and socioeconomic factors influencing land surface temperature (LST). Thus, the potential thermal contributions of heat source and heat sink patches were differentiated. Then, the heterogeneous effects of landscape pattern on LST were examined by using semiparametric geographically weighted regression (SGWR) models. The results showed that landscape composition has more significant effects on thermal environment than configuration. For a strong source, the percentage of patches has a positive impact on LST. Additionally, when mosaicked with some heat sink, even a small improvement in the degree of dispersion of a strong source helps to alleviate UHI. For a weak source, the percentage and density of patches have positive impacts on LST. For a strong sink, the percentage, density, and degree of aggregation of patches have negative impacts on LST. The effects of edge density and patch shape complexity vary spatially with the fragmentation of a strong sink. Similarly, the impacts of a weak sink are mainly exerted via the characteristics of percent, density, and shape complexity of patches. Copyright © 2017 Elsevier B.V. All rights reserved.
Bivalve grazing can shape phytoplankton communities
Lucas, Lisa; Cloern, James E.; Thompson, Janet K.; Stacey, Mark T.; Koseff, Jeffrey K.
2016-01-01
The ability of bivalve filter feeders to limit phytoplankton biomass in shallow waters is well-documented, but the role of bivalves in shaping phytoplankton communities is not. The coupled effect of bivalve grazing at the sediment-water interface and sinking of phytoplankton cells to that bottom filtration zone could influence the relative biomass of sinking (diatoms) and non-sinking phytoplankton. Simulations with a pseudo-2D numerical model showed that benthic filter feeding can interact with sinking to alter diatom:non-diatom ratios. Cases with the smallest proportion of diatom biomass were those with the fastest sinking speeds and strongest bivalve grazing rates. Hydrodynamics modulated the coupled sinking-grazing influence on phytoplankton communities. For example, in simulations with persistent stratification, the non-sinking forms accumulated in the surface layer away from bottom grazers while the sinking forms dropped out of the surface layer toward bottom grazers. Tidal-scale stratification also influenced vertical gradients of the two groups in opposite ways. The model was applied to Suisun Bay, a low-salinity habitat of the San Francisco Bay system that was transformed by the introduction of the exotic clam Potamocorbula amurensis. Simulation results for this Bay were similar to (but more muted than) those for generic habitats, indicating that P. amurensis grazing could have caused a disproportionate loss of diatoms after its introduction. Our model simulations suggest bivalve grazing affects both phytoplankton biomass and community composition in shallow waters. We view these results as hypotheses to be tested with experiments and more complex modeling approaches.
Transcriptional profiling of mechanically and genetically sink-limited soybeans
USDA-ARS?s Scientific Manuscript database
The absence of a reproductive sink causes physiological and morphological changes in soybean plants. These include increased accumulation of nitrogen and starch in the leaves and delayed leaf senescence. To identify transcriptional changes that occur in leaves of these sink-limited plants, we used R...
Multilead, Vaporization-Cooled Soldering Heat Sink
NASA Technical Reports Server (NTRS)
Rice, John
1995-01-01
Vaporization-cooled heat sink proposed for use during soldering of multiple electrical leads of packaged electronic devices to circuit boards. Heat sink includes compliant wicks held in grooves on edges of metal fixture. Wicks saturated with water. Prevents excessive increases in temperature at entrances of leads into package.
TOWARD ERROR ANALYSIS OF LARGE-SCALE FOREST CARBON BUDGETS
Quantification of forest carbon sources and sinks is an important part of national inventories of net greenhouse gas emissions. Several such forest carbon budgets have been constructed, but little effort has been made to analyse the sources of error and how these errors propagate...
Investigation of powder injection moulded oblique fin heat sinks
NASA Astrophysics Data System (ADS)
Sai, Vadri Siva
The present work attempts to study the fluid flow and heat transfer characteristics of PIM oblique finned microchannel heat sink both numerically and experimentally. Experimental results such as thermal resistance and pressure drop have been well validated with ANSYS FLUENT simulations. Hot spots are observed at the most downstream location of the channel is due to the effect of flow migration. Finally, a novel technique has been proposed to reduce the pressure drop on creating additional channels by removing some material at the middle portion of oblique fins. It is found that the creation of oblique cuts incurred a reduction in both pressure drop and Nuavg up to 31.36 % and 16.66 % respectively at a flow rate of 500 ml/min. Nevertheless, for all the flowrates considered in this analysis. % reduction in pressure drop is almost double as compared with % reduction in Nuavg. Therefore, this analysis is beneflcial in reducing the additional cost incurs due to pressure drop penalty.
[Global Atmospheric Chemistry/Transport Modeling and Data-Analysis
NASA Technical Reports Server (NTRS)
Prinn, Ronald G.
1999-01-01
This grant supported a global atmospheric chemistry/transport modeling and data- analysis project devoted to: (a) development, testing, and refining of inverse methods for determining regional and global transient source and sink strengths for trace gases; (b) utilization of these inverse methods which use either the Model for Atmospheric Chemistry and Transport (MATCH) which is based on analyzed observed winds or back- trajectories calculated from these same winds for determining regional and global source and sink strengths for long-lived trace gases important in ozone depletion and the greenhouse effect; (c) determination of global (and perhaps regional) average hydroxyl radical concentrations using inverse methods with multiple "titrating" gases; and (d) computation of the lifetimes and spatially resolved destruction rates of trace gases using 3D models. Important ultimate goals included determination of regional source strengths of important biogenic/anthropogenic trace gases and also of halocarbons restricted by the Montreal Protocol and its follow-on agreements, and hydrohalocarbons now used as alternatives to the above restricted halocarbons.
Wang, Yong; Xiao, Peng; Dai, Jingmin
2017-10-01
A new steady-state apparatus is designed and constructed for the measurement of thermal conductivity (up to 25 W/mK) on a square specimen (300 mm side) with a heating temperature range from 30 °C to 900 °C. A vacuum container, of which the pressure can reach to 1 Pa, is also built for materials which can be easily oxidized. The structure of the facility is different from that of traditional steady-state devices, especially for the design of heating plate and heat sink. To verify the temperature uniformity of the heating plate, a simulation analysis is carried out in this paper. Besides, the heating system, the heat sink, the measuring system, and the vacuum system are presented in detail. In addition, the thermal conductivities of a heat insulation tile, 304L stainless steel, n-docosane, and erythritol are measured by this apparatus. Finally, an uncertainty analysis is discussed depending on different temperatures and materials.
NASA Astrophysics Data System (ADS)
Wang, Yong; Xiao, Peng; Dai, Jingmin
2017-10-01
A new steady-state apparatus is designed and constructed for the measurement of thermal conductivity (up to 25 W/mK) on a square specimen (300 mm side) with a heating temperature range from 30 °C to 900 °C. A vacuum container, of which the pressure can reach to 1 Pa, is also built for materials which can be easily oxidized. The structure of the facility is different from that of traditional steady-state devices, especially for the design of heating plate and heat sink. To verify the temperature uniformity of the heating plate, a simulation analysis is carried out in this paper. Besides, the heating system, the heat sink, the measuring system, and the vacuum system are presented in detail. In addition, the thermal conductivities of a heat insulation tile, 304L stainless steel, n-docosane, and erythritol are measured by this apparatus. Finally, an uncertainty analysis is discussed depending on different temperatures and materials.
Spontaneous cortical activity alternates between motifs defined by regional axonal projections
Mohajerani, Majid H.; Chan, Allen W.; Mohsenvand, Mostafa; LeDue, Jeffrey; Liu, Rui; McVea, David A.; Boyd, Jamie D.; Wang, Yu Tian; Reimers, Mark; Murphy, Timothy H.
2014-01-01
In lightly anaesthetized or awake adult mice using millisecond timescale voltage sensitive dye imaging, we show that a palette of sensory-evoked and hemisphere-wide activity motifs are represented in spontaneous activity. These motifs can reflect multiple modes of sensory processing including vision, audition, and touch. Similar cortical networks were found with direct cortical activation using channelrhodopsin-2. Regional analysis of activity spread indicated modality specific sources such as primary sensory areas, and a common posterior-medial cortical sink where sensory activity was extinguished within the parietal association area, and a secondary anterior medial sink within the cingulate/secondary motor cortices for visual stimuli. Correlation analysis between functional circuits and intracortical axonal projections indicated a common framework corresponding to long-range mono-synaptic connections between cortical regions. Maps of intracortical mono-synaptic structural connections predicted hemisphere-wide patterns of spontaneous and sensory-evoked depolarization. We suggest that an intracortical monosynaptic connectome shapes the ebb and flow of spontaneous cortical activity. PMID:23974708
Civilian helicopter accidents into water: analysis of 46 cases, 1979-2006.
Brooks, Christopher James; MacDonald, Conor Vaughan; Donati, Leo; Taber, Michael John
2008-10-01
When a helicopter crashes or ditches into water the crew and passengers must often make an escape from underwater and a number of the occupants do not survive. This paper examined fatality rates, human factors problems with escape, and causes of death in Canadian civilian registered helicopter accidents in water (1979-2006). Data obtained from the Transportation Safety Board of Canada was reviewed. Key issues such as fatalities, injuries, warning time, sinking, and inversion were examined. There were 46 helicopters that ditched into water. There were 124 crew and passengers involved. Of those, 27 (23%) crew and passengers died. Lack of warning time (55%), rapid sinking (72%), and inversion (35%) were the most common issues in the accidents. Survival rates for Canadian registered helicopter accidents into water (78%) show little change from previously reported worldwide data. Lack of warning time, rapid sinking, and inversion were the significant factors in the survival rate. The practical implication is that crew and passengers involved in planned flights over water must wear all the life support equipment on strap-in and not have it stowed on the back of the seat or in the cabin.
Climatically driven loss of calcium in steppe soil as a sink for atmospheric carbon
Lapenis, A.G.; Lawrence, G.B.; Bailey, S.W.; Aparin, B.F.; Shiklomanov, A.I.; Speranskaya, N.A.; Torn, M.S.; Calef, M.
2008-01-01
During the last several thousand years the semi-arid, cold climate of the Russian steppe formed highly fertile soils rich in organic carbon and calcium (classified as Chernozems in the Russian system). Analysis of archived soil samples collected in Kemannaya Steppe Preserve in 1920, 1947, 1970, and fresh samples collected in 1998 indicated that the native steppe Chernozems, however, lost 17-28 kg m-2 of calcium in the form of carbonates in 1970-1998. Here we demonstrate that the loss of calcium was caused by fundamental shift in the steppe hydrologic balance. Previously unleached soils where precipitation was less than potential evapotranspiration are now being leached due to increased precipitation and, possibly, due to decreased actual evapotranspiration. Because this region receives low levels of acidic deposition, the dissolution of carbonates involves the consumption of atmospheric CO2. Our estimates indicate that this climatically driven terrestrial sink of atmospheric CO2 is ???2.1-7.4 g C m-2 a-1. In addition to the net sink of atmospheric carbon, leaching of pedogenic carbonates significantly amplified seasonal amplitude of CO2 exchange between atmosphere and steppe soil. Copyright 2008 by the American Geophysical Union.
Climate Change Mitigation Challenge for Wood Utilization-The Case of Finland.
Soimakallio, Sampo; Saikku, Laura; Valsta, Lauri; Pingoud, Kim
2016-05-17
The urgent need to mitigate climate change invokes both opportunities and challenges for forest biomass utilization. Fossil fuels can be substituted by using wood products in place of alternative materials and energy, but wood harvesting reduces forest carbon sink and processing of wood products requires material and energy inputs. We assessed the extended life cycle carbon emissions considering substitution impacts for various wood utilization scenarios over 100 years from 2010 onward for Finland. The scenarios were based on various but constant wood utilization structures reflecting current and anticipated mix of wood utilization activities. We applied stochastic simulation to deal with the uncertainty in a number of input variables required. According to our analysis, the wood utilization decrease net carbon emissions with a probability lower than 40% for each of the studied scenarios. Furthermore, large emission reductions were exceptionally unlikely. The uncertainty of the results were influenced clearly the most by the reduction in the forest carbon sink. There is a significant trade-off between avoiding emissions through fossil fuel substitution and reduction in forest carbon sink due to wood harvesting. This creates a major challenge for forest management practices and wood utilization activities in responding to ambitious climate change mitigation targets.
Forest carbon sinks in the Northern Hemisphere
Christine L. Goodale; Michael J. Apps; Richard A. Birdsey; Christopher B. Field; Linda S. Heath; Richard A. Houghton; Jennifer C. Jenkins; Gundolf H. Kohlmaier; Werner Kurz; Shirong Liu; Gert-Jan Nabuurs; Sten Nilsson; Anatoly Z. Shvidenko
2002-01-01
There is general agreement that terrestrial systems in the Northern Hemisphere provide a significant sink for atmospheric CO2; however, estimates of the magnitude and distribution of this sink vary greatly. National forest inventories provide strong, measurement-based constraints on the magnitude of net forest carbon uptake. We brought together...
Applying Scientific Principles to Resolve Student Misconceptions
ERIC Educational Resources Information Center
Yin, Yue
2012-01-01
Misconceptions about sinking and floating phenomena are some of the most challenging to overcome (Yin 2005), possibly because explaining sinking and floating requires students to understand challenging topics such as density, force, and motion. Two scientific principles are typically used in U.S. science curricula to explain sinking and floating:…
Electronic modules easily separated from heat sink
NASA Technical Reports Server (NTRS)
1965-01-01
Metal heat sink and electronic modules bonded to a thermal bridge can be easily cleaved for removal of the modules for replacement or repair. A thin film of grease between a fluorocarbon polymer film on the metal heat sink and an adhesive film on the modules acts as the cleavage plane.
Aluminum heat sink enables power transistors to be mounted integrally with printed circuit board
NASA Technical Reports Server (NTRS)
Seaward, R. C.
1967-01-01
Power transistor is provided with an integral flat plate aluminum heat sink which mounts directly on a printed circuit board containing associated circuitry. Standoff spacers are used to attach the heat sink to the printed circuit board containing the remainder of the circuitry.
On the structure of existence regions for sinks of the Hénon map
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galias, Zbigniew, E-mail: galias@agh.edu.pl; Tucker, Warwick, E-mail: warwick@math.uu.se
2014-03-15
An extensive search for stable periodic orbits (sinks) for the Hénon map in a small neighborhood of the classical parameter values is carried out. Several parameter values which generate a sink are found and verified by rigorous numerical computations. Each found parameter value is extended to a larger region of existence using a simplex continuation method. The structure of these regions of existence is investigated. This study shows that for the Hénon map, there exist sinks close to the classical case.
Detecting black bear source–sink dynamics using individual-based genetic graphs
Draheim, Hope M.; Moore, Jennifer A.; Etter, Dwayne; Winterstein, Scott R.; Scribner, Kim T.
2016-01-01
Source–sink dynamics affects population connectivity, spatial genetic structure and population viability for many species. We introduce a novel approach that uses individual-based genetic graphs to identify source–sink areas within a continuously distributed population of black bears (Ursus americanus) in the northern lower peninsula (NLP) of Michigan, USA. Black bear harvest samples (n = 569, from 2002, 2006 and 2010) were genotyped at 12 microsatellite loci and locations were compared across years to identify areas of consistent occupancy over time. We compared graph metrics estimated for a genetic model with metrics from 10 ecological models to identify ecological factors that were associated with sources and sinks. We identified 62 source nodes, 16 of which represent important source areas (net flux > 0.7) and 79 sink nodes. Source strength was significantly correlated with bear local harvest density (a proxy for bear density) and habitat suitability. Additionally, resampling simulations showed our approach is robust to potential sampling bias from uneven sample dispersion. Findings demonstrate black bears in the NLP exhibit asymmetric gene flow, and individual-based genetic graphs can characterize source–sink dynamics in continuously distributed species in the absence of discrete habitat patches. Our findings warrant consideration of undetected source–sink dynamics and their implications on harvest management of game species. PMID:27440668
[Eco-economic thinking for developing carbon sink industry in the de-farming regions].
Wang, Ji Jun; Wang, Zheng Shu; Cheng, Si Min; Gu, Wen; Li, Yue; Li, Mao Sen
2017-12-01
Based on the potential and the law that plants absorb carbon dioxide, carbon sink industry means certain appropriate artificial intervention to obtain clean air, and to meet people's production and life demand for ecological environment industry. Carbon sink industry is considered as a breakthrough point and a new growth point for optimizing and upgrading of the original relatively balanced or stable agricultural industry-resources system. Among the ecosystem services in the de-farming regions, the rapid increase of the economic manifestation of carbon fixation and oxygen release function and the carbon sink potential, as well as the rise of carbon trading and carbon market both in domestic and international, have established a theoretical and practical basis for the deve-lopment of carbon industry. With the development of the carbon sink industry, improving the carbon sequestration output will become the core of the carbon sink industry. The producers or marketers will form the controlling of the carbon source, the development of the path for carbon storage increasing and re-layout of agricultural industry-resources structure, and thus bring new vitality to regional sustainable development in the de-farming regions. This indicates the emphasis for the future research and development, that is, allocating the agricultural industry-resources structure and their benign coupling mechanism after integrating the carbon sink industry.
Detecting black bear source-sink dynamics using individual-based genetic graphs.
Draheim, Hope M; Moore, Jennifer A; Etter, Dwayne; Winterstein, Scott R; Scribner, Kim T
2016-07-27
Source-sink dynamics affects population connectivity, spatial genetic structure and population viability for many species. We introduce a novel approach that uses individual-based genetic graphs to identify source-sink areas within a continuously distributed population of black bears (Ursus americanus) in the northern lower peninsula (NLP) of Michigan, USA. Black bear harvest samples (n = 569, from 2002, 2006 and 2010) were genotyped at 12 microsatellite loci and locations were compared across years to identify areas of consistent occupancy over time. We compared graph metrics estimated for a genetic model with metrics from 10 ecological models to identify ecological factors that were associated with sources and sinks. We identified 62 source nodes, 16 of which represent important source areas (net flux > 0.7) and 79 sink nodes. Source strength was significantly correlated with bear local harvest density (a proxy for bear density) and habitat suitability. Additionally, resampling simulations showed our approach is robust to potential sampling bias from uneven sample dispersion. Findings demonstrate black bears in the NLP exhibit asymmetric gene flow, and individual-based genetic graphs can characterize source-sink dynamics in continuously distributed species in the absence of discrete habitat patches. Our findings warrant consideration of undetected source-sink dynamics and their implications on harvest management of game species. © 2016 The Author(s).
Dawson, Carolyn H; Mackrill, Jamie B; Cain, Rebecca
2017-12-01
Hand hygiene (HH) prevents harmful contaminants spreading in settings including domestic, health care and food handling. Strategies to improve HH range from behavioural techniques through to automated sinks that ensure hand surface cleaning. This study aimed to assess user experience and acceptance towards a new automated sink, compared to a normal sink. An adapted version of the technology acceptance model (TAM) assessed each mode of handwashing. A within-subjects design enabled N = 46 participants to evaluate both sinks. Perceived Ease of Use and Satisfaction of Use were significantly lower for the automated sink, compared to the conventional sink (p < 0.005). Across the remaining TAM factors, there was no significant difference. Participants suggested design features including jet strength, water temperature and device affordance may improve HH technology. We provide recommendations for future HH technology development to contribute a positive user experience, relevant to technology developers, ergonomists and those involved in HH across all sectors. Practitioner Summary: The need to facilitate timely, effective hand hygiene to prevent illness has led to a rise in automated handwashing systems across different contexts. User acceptance is a key factor in system uptake. This paper applies the technology acceptance model as a means to explore and optimise the design of such systems.
Quantifying the source-sink balance and carbohydrate content in three tomato cultivars.
Li, Tao; Heuvelink, Ep; Marcelis, Leo F M
2015-01-01
Supplementary lighting is frequently applied in the winter season for crop production in greenhouses. The effect of supplementary lighting on plant growth depends on the balance between assimilate production in source leaves and the overall capacity of the plants to use assimilates. This study aims at quantifying the source-sink balance and carbohydrate content of three tomato cultivars differing in fruit size, and to investigate to what extent the source/sink ratio correlates with the potential fruit size. Cultivars Komeet (large size), Capricia (medium size), and Sunstream (small size, cherry tomato) were grown from 16 August to 21 November, at similar crop management as in commercial practice. Supplementary lighting (High Pressure Sodium lamps, photosynthetic active radiation at 1 m below lamps was 162 μmol photons m(-2) s(-1); maximum 10 h per day depending on solar irradiance level) was applied from 19 September onward. Source strength was estimated from total plant growth rate using periodic destructive plant harvests in combination with the crop growth model TOMSIM. Sink strength was estimated from potential fruit growth rate which was determined from non-destructively measuring the fruit growth rate at non-limiting assimilate supply, growing only one fruit on each truss. Carbohydrate content in leaves and stems were periodically determined. During the early growth stage, 'Komeet' and 'Capricia' showed sink limitation and 'Sunstream' was close to sink limitation. During this stage reproductive organs had hardly formed or were still small and natural irradiance was high (early September) compared to winter months. Subsequently, during the fully fruiting stage all three cultivars were strongly source-limited as indicated by the low source/sink ratio (average source/sink ratio from 50 days after planting onward was 0.17, 0.22, and 0.33 for 'Komeet,' 'Capricia,' and 'Sunstream,' respectively). This was further confirmed by the fact that pruning half of the fruits hardly influenced net leaf photosynthesis rates. Carbohydrate content in leaves and stems increased linearly with the source/sink ratio. We conclude that during the early growth stage under high irradiance, tomato plants are sink-limited and that the level of sink limitation differs between cultivars but it is not correlated with their potential fruit size. During the fully fruiting stage tomato plants are source-limited and the extent of source limitation of a cultivar is positively correlated with its potential fruit size.
NASA Astrophysics Data System (ADS)
Loubet, Benjamin; Gonzaga, Lais; Buysse, Pauline; Ciuraru, Raluca; Lafouge, Florence; Decuq, Céline; Zurfluh, Olivier; Fortineau, Alain; Fanucci, Olivier; Sarda-Esteve, Roland; Zannoni, Nora; Truong, Francois; Boissard, Christophe; Gros, Valérie
2017-04-01
Volatile organic compounds (VOC) are essential drivers of atmospheric chemistry. Many VOCs are emitted from and deposited to ecosystems. While forests and grasslands have already been substantially studied, exchanges of VOCs with crops are less known, although these ecosystems represent more than 50% of the surface in France. In this study, we analyze sources and sinks of VOCs in a wheat field (at the ICOS FR-GRI site near Paris) at anthesis based on measurements of fluxes, concentration profiles and branch chambers. The VOCs were measured using a PTR-TOF-Qi-MS (where Qi stands for Quad Ion guide). Air was successively sampled through lines located at different heights within and above the canopy, of which one was used for Eddy Covariance and located near a sonic anemometer. Additional measurements included the standard ICOS meteorological data as well as leaf area index profiles and photosynthesis curves at several heights in the canopy. We report fluxes and profiles for more than 500 VOCs. The deposition velocities of depositing compounds are compared to the maximum exchange velocity and the ozone deposition velocity. The sources and sinks location and magnitude are evaluated by inverse Lagrangian modelling assuming no reaction and simple reaction schemes in the canopy. The sources and sinks of VOC in the canopy are interpreted in terms crop phenology and the potential for reaction with ozone and NOx is evaluated. This study takes place in the ADEME CORTEA COV3ER French project (http://www6.inra.fr/cov3er).
Forecasting lionfish sources and sinks in the Atlantic: are Gulf of Mexico reef fisheries at risk?
NASA Astrophysics Data System (ADS)
Johnston, Matthew W.; Bernard, Andrea M.; Shivji, Mahmood S.
2017-03-01
Invasive lionfish ( Pterois volitans/miles complex) now permeate the entire tropical western Atlantic, Caribbean Sea, and Gulf of Mexico, but lionfish abundance has been measured only in select locations in the field. Despite its rapid range expansion, a comprehensive meta-population analysis of lionfish `sources' and `sinks' and consequentially the invader's potential abundance and impacts on economically important, sympatric reef fishes have not been assessed. These data are urgently needed to spatially direct control efforts and to plan for and perhaps mitigate lionfish-caused damage. Here, we use a biophysical computer model to: (1) forecast larval lionfish sources and sinks that are also delineated as low to high lionfish `density zones' throughout their invaded range, and (2) assess the potential vulnerability of five grouper and snapper species— Epinephelus morio, Mycteroperca microlepis, Epinephelus flavolimbatus, Lutjanus campechanus, and Rhomboplites aurorubens—to lionfish within these density zones in the Gulf of Mexico. Our results suggest that the west Florida shelf and nearshore waters of Texas, USA, and Guyana, South America, function both as lionfish sources and sinks and should be a high priority for targeted lionfish control. Furthermore, of the five groupers and snappers studied, the high fishery value E. morio (red grouper) is the Gulf of Mexico species most at risk from lionfish. Lacking a comprehensive lionfish control policy, these risk exposure data inform managers where removals should be focused and demonstrate the risk to five sympatric native groupers and snappers in the Gulf of Mexico that may be susceptible to dense lionfish aggregations, should control efforts fail.
Seismic Observation of the 26 March 2010 Sinking of the South Korean Naval Vessel Cheonanham
NASA Astrophysics Data System (ADS)
Rhee, S.; Hong, T.
2011-12-01
A South Korean naval vessel, Cheonanham, sank at ~2.5 km southwest from Bakryeong Island (37.929°N, 124.601°E) in 21:22 local time (12:22 UTC) on 26 March 2010. Only 58 people out of the 104 crew members were rescued from the incident, and the other 46 sailors were dead or missing in the incident. Three plausible causes of the sinking were raised: (1) striking by an explosive source (torpedo or mine), (2) shear breakage due to strain accumulation by fatigue, and (3) collision with a sunken rock. The incident was recorded as an M1.5 event at local seismic stations. We analyze local seismic records and investigate the source properties. The event location is determined not only by a usual location method, but also using low-frequency horizontal polarization analysis. The determined event location agrees with the reported sinking location. The S-wave amplitudes are found to be comparable to the P-wave amplitudes. Seismic waves coupled from shock waves are observed, which allows us to constrain the epicentral distance and explosion-source feature. The coupled shock waves have a dominant frequency of ~32 Hz. The shock waves and high P/S amplitude ratios suggest an underwater explosion that is responsible for the vessel sinking. The spectral contents of P waves allows us to constrain the source depth in the water. We infer the depth of the explosion in the sea by comparing the observed spectra with synthetic spectra. We compare the seismic features with those from nuclear explosions.
Thiele, Stefan; Fuchs, Bernhard M.; Amann, Rudolf
2014-01-01
Due to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washed in situ to prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be “inherited” from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather than de novo colonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter. PMID:25527538
NASA Astrophysics Data System (ADS)
Viennet, D.; Fournier, M.; Copard, Y.; Dupont, J. P.
2017-12-01
Source to sink is one of the main concepts in Earth Sciences for a better knowledge of hydrosystems dynamics. Regarding this issue, the present day challenge consists in the characterization by in-situ measurements of the nature and the origin of suspended particles matters (SPM). Few methods can fully cover such requirements and among them, the methodology using the form of particles deserves to be developed. Indeed, morphometry of particles is widely used in sedimentology to identify different sedimentary stocks, source-to-sink transport and sedimentation mechanisms. Currently, morphometry analyses are carried out by scanning electron microscope coupled to image analysis to measure various size and shape descriptors on particles like flatness, elongation, circularity, sphericity, bluntness, fractal dimension. However, complexity and time of analysis are the main limitations of this technique for a long-term monitoring of SPM transfers. Here we present an experimental morphometric approach using a morphogranulometer (a CCD camera coupled to a peristaltic pump). The camera takes pictures while the sample is circulating through a flow cell, leading to the analysis of numerous particles in a short time. The image analysis provides size and shape information discriminating various particles stocks according to their nature and origin by statistical analyses. Measurements were carried out on standard samples of particles commonly found in natural waters. The size and morphological distributions of the different mineral fractions (clay, sand, oxides etc), biologic (microalgae, pollen, etc) and organic (peat, coal, soil organic matter, etc) samples are statistically independent and can be discriminated on a 4D graph. Next step will be on field in situ measurements in a sink-spring network to understand the transfers of the particles stocks inside this simple karstic network. Such a development would be promising for the characterisation of natural hydrosystems.
Spatiotemporal distribution and national measurement of the global carbonate carbon sink.
Li, Huiwen; Wang, Shijie; Bai, Xiaoyong; Luo, Weijun; Tang, Hong; Cao, Yue; Wu, Luhua; Chen, Fei; Li, Qin; Zeng, Cheng; Wang, Mingming
2018-06-21
The magnitudes, spatial distributions and contributions to global carbon budget of the global carbonate carbon sink (CCS) still remain uncertain, allowing the problem of national measurement of CCS remain unresolved which will directly influence the fairness of global carbon markets and emission trading. Here, based on high spatiotemporal resolution ecological, meteorological raster data and chemical field monitoring data, combining highly reliable machine learning algorithm with the thermodynamic dissolution equilibrium model, we estimated the new CCS of 0.89 ± 0.23 petagrams of carbon per year (Pg C yr -1 ), amounting to 74.50% of global net forest sink and accounting for 28.75% of terrestrial sinks or 46.81% of the missing sink. Our measurement for 142 nations of CCS showed that Russia, Canada, China and the USA contribute over half of the global CCS. We also presented the first global fluxes maps of the CCS with spatial resolution of 0.05°, exhibiting two peaks in equatorial regions (10°S to 10°N) and low latitudes (10°N to 35°N) in Northern Hemisphere. By contrast, there are no peaks in Southern Hemisphere. The greatest average carbon sink flux (CCSF), i.e., 2.12 tC ha -1 yr -1 , for 2000 to 2014 was contributed by tropical rainforest climate near the equator, and the smallest average CCSF was presented in tropical arid zones, showing a magnitude of 0.26 tC ha -1 yr -1 . This research estimated the magnitudes, spatial distributions, variations and contributions to the global carbon budget of the CCS in a higher spatiotemporal representativeness and expandability way, which, via multiple mechanisms, introduced an important sink in the terrestrial carbon sink system and the global missing sink and that can help us further reveal and support our understanding of global rock weathering carbon sequestration, terrestrial carbon sink system and global carbon cycle dynamics which make our understanding of global change more comprehensive. Copyright © 2018 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Putwain, David W.; Daly, Anthony L.; Chamberlain, Suzanne; Sadreddini, Shireen
2016-01-01
This study explores the relationship between students' self-report levels of cognitive test anxiety (worry), academic buoyancy (withstanding and successfully responding to routine school challenges and setbacks), coping processes and their achieved grades in high-stakes national examinations at the end of compulsory schooling. The sample comprised…
Recent geodetic surveys and multi-hazards assessment in the sinking town of Tuzla (BiH)
NASA Astrophysics Data System (ADS)
Mancini, Francesco; Stecchi, Francesco; Dervisevic, Rejhana; Celikovic, Ruza
2010-05-01
Ground subsidence triggered by salt mining from deposits located beneath the city of Tuzla (Bosnia & Herzegovina) is one of the major danger acting on a very densely urbanized area since 1950, when the salt deposits exploitation by means of boreholes began. As demonstrated in previous work, subsidence induced several hazard factors such as a severe ground deformations, the arising of deep and superficial fractures and a very fast water table rise connected with the brine extraction. In the past, hazard's factors were investigated by the processing of a series of data collected during two periods; from 1956 to the 1991, and from 1992 to 2003 whereas more recent sinking and deformation rates are being investigated by the use of geomatic methodologies and analysis of geographical data. The analysis of the historical dataset revealed a cumulative subsidence as high as 12 meters during the whole period, causing damage to buildings and infrastructures within an area that includes a large portion of the historical town, nowadays almost entirely destroyed. In previous work all the hazards affecting the city of Tuzla have been quantified and a map reporting the overall risk produced using the GIS (Geographical Information System) tools and a Multicriteria Decision Analysis (MDA). The MDA highlighted a serious risk due to the present-day water table rise, triggered by the decreasing in brine pumping in well defined portion of the city, not necessarily involved in the most severe ground deformations. For such reason since 2004 new elevation data were attained by six-monthly spirit levelling campaigns and more diffuse annual static GPS surveys. Results provided by geodetic surveys have been compared with the raising piezometric level and results are surprising. Both GPS survey and spirit levelling reveal a gradual inversion of sinking rates which are proceeding from negative to positive values over a great portion of the investigated area. Moreover, the impressive negative rates which were historically recorded in the most sinking area (up to -40cm/yr) are now decreasing to relatively less significant values (about -10 cm/yr). Uplift phenomena are proven to be closely related to the fast raising water table and hydrogeological mechanism have to be investigated more deeply in order to reduce the risk of flooding, in portions of the city, due to a reduced draining capability or emerging water table.
Synchronous Firefly Algorithm for Cluster Head Selection in WSN.
Baskaran, Madhusudhanan; Sadagopan, Chitra
2015-01-01
Wireless Sensor Network (WSN) consists of small low-cost, low-power multifunctional nodes interconnected to efficiently aggregate and transmit data to sink. Cluster-based approaches use some nodes as Cluster Heads (CHs) and organize WSNs efficiently for aggregation of data and energy saving. A CH conveys information gathered by cluster nodes and aggregates/compresses data before transmitting it to a sink. However, this additional responsibility of the node results in a higher energy drain leading to uneven network degradation. Low Energy Adaptive Clustering Hierarchy (LEACH) offsets this by probabilistically rotating cluster heads role among nodes with energy above a set threshold. CH selection in WSN is NP-Hard as optimal data aggregation with efficient energy savings cannot be solved in polynomial time. In this work, a modified firefly heuristic, synchronous firefly algorithm, is proposed to improve the network performance. Extensive simulation shows the proposed technique to perform well compared to LEACH and energy-efficient hierarchical clustering. Simulations show the effectiveness of the proposed method in decreasing the packet loss ratio by an average of 9.63% and improving the energy efficiency of the network when compared to LEACH and EEHC.
A Functional-Genetic Scheme for Seizure Forecasting in Canine Epilepsy.
Bou Assi, Elie; Nguyen, Dang K; Rihana, Sandy; Sawan, Mohamad
2018-06-01
The objective of this work is the development of an accurate seizure forecasting algorithm that considers brain's functional connectivity for electrode selection. We start by proposing Kmeans-directed transfer function, an adaptive functional connectivity method intended for seizure onset zone localization in bilateral intracranial EEG recordings. Electrodes identified as seizure activity sources and sinks are then used to implement a seizure-forecasting algorithm on long-term continuous recordings in dogs with naturally-occurring epilepsy. A precision-recall genetic algorithm is proposed for feature selection in line with a probabilistic support vector machine classifier. Epileptic activity generators were focal in all dogs confirming the diagnosis of focal epilepsy in these animals while sinks spanned both hemispheres in 2 of 3 dogs. Seizure forecasting results show performance improvement compared to previous studies, achieving average sensitivity of 84.82% and time in warning of 0.1. Achieved performances highlight the feasibility of seizure forecasting in canine epilepsy. The ability to improve seizure forecasting provides promise for the development of EEG-triggered closed-loop seizure intervention systems for ambulatory implantation in patients with refractory epilepsy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Jingfeng; Zhuang, Qianlai; Law, Beverly E.
2011-01-01
More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr-1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) and temporalmore » (8-day) resolutions derived from NEE measurements from eddy covariance flux towers and wall-to-wall satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the U.S. terrestrial ecosystems could offset a maximum of 40% of the fossil-fuel carbon emissions. Our results show that the U.S. terrestrial carbon sink varied between 0.51 and 0.70 pg C yr-1 over the period 2001–2006. The dominant sources of interannual variation of the carbon sink included extreme climate events and disturbances. Droughts in 2002 and 2006 reduced the U.S. carbon sink by ~20% relative to a normal year. Disturbances including wildfires and hurricanes reduced carbon uptake or resulted in carbon release at regional scales. Our results provide an alternative, independent, and novel constraint to the U.S. terrestrial carbon sink.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Qianlai; Law, Beverly E.; Baldocchi, Dennis
2011-01-01
More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr 1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) andmore » temporal (8-day) resolutions derived from NEE measurements from eddy covariance flux towers and wall-to-wall satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the U.S. terrestrial ecosystems could offset a maximum of 40% of the fossil-fuel carbon emissions. Our results show that the U.S. terrestrial carbon sink varied between 0.51 and 0.70 pg C yr 1 over the period 2001 2006. The dominant sources of interannual variation of the carbon sink included extreme climate events and disturbances. Droughts in 2002 and 2006 reduced the U.S. carbon sink by 20% relative to a normal year. Disturbances including wildfires and hurricanes reduced carbon uptake or resulted in carbon release at regional scales. Our results provide an alternative, independent, and novel constraint to the U.S. terrestrial carbon sink.« less
Outbreak of Pantoea agglomerans Bloodstream Infections at an Oncology Clinic-Illinois, 2012-2013.
Yablon, Brian R; Dantes, Raymund; Tsai, Victoria; Lim, Rachel; Moulton-Meissner, Heather; Arduino, Matthew; Jensen, Bette; Patel, Megan Toth; Vernon, Michael O; Grant-Greene, Yoran; Christiansen, Demian; Conover, Craig; Kallen, Alexander; Guh, Alice Y
2017-03-01
OBJECTIVE To determine the source of a healthcare-associated outbreak of Pantoea agglomerans bloodstream infections. DESIGN Epidemiologic investigation of the outbreak. SETTING Oncology clinic (clinic A). METHODS Cases were defined as Pantoea isolation from blood or catheter tip cultures of clinic A patients during July 2012-May 2013. Clinic A medical charts and laboratory records were reviewed; infection prevention practices and the facility's water system were evaluated. Environmental samples were collected for culture. Clinical and environmental P. agglomerans isolates were compared using pulsed-field gel electrophoresis. RESULTS Twelve cases were identified; median (range) age was 65 (41-78) years. All patients had malignant tumors and had received infusions at clinic A. Deficiencies in parenteral medication preparation and handling were identified (eg, placing infusates near sinks with potential for splash-back contamination). Facility inspection revealed substantial dead-end water piping and inadequate chlorine residual in tap water from multiple sinks, including the pharmacy clean room sink. P. agglomerans was isolated from composite surface swabs of 7 sinks and an ice machine; the pharmacy clean room sink isolate was indistinguishable by pulsed-field gel electrophoresis from 7 of 9 available patient isolates. CONCLUSIONS Exposure of locally prepared infusates to a contaminated pharmacy sink caused the outbreak. Improvements in parenteral medication preparation, including moving chemotherapy preparation offsite, along with terminal sink cleaning and water system remediation ended the outbreak. Greater awareness of recommended medication preparation and handling practices as well as further efforts to better define the contribution of contaminated sinks and plumbing deficiencies to healthcare-associated infections are needed. Infect Control Hosp Epidemiol 2017;38:314-319.
The Soil Sink for Nitrous Oxide: Trivial Amount but Challenging Question
NASA Astrophysics Data System (ADS)
Davidson, E. A.; Savage, K. E.; Sihi, D.
2015-12-01
Net uptake of atmospheric nitrous oxide (N2O) has been observed sporadically for many years. Such observations have often been discounted as measurement error or noise, but they were reported frequently enough to gain some acceptance as valid. The advent of fast response field instruments with good sensitivity and precision has permitted confirmation that some soils can be small sinks of N2O. With regards to "closing the global N2O budget" the soil sink is trivial, because it is smaller than the error terms of most other budget components. Although not important from a global budget perspective, the existence of a soil sink for atmospheric N2O presents a fascinating challenge for understanding the physical, chemical, and biological processes that explain the sink. Reduction of N2O by classical biological denitrification requires reducing conditions generally found in wet soil, and yet we have measured the N2O sink in well drained soils, where we also simultaneously measure a sink for atmospheric methane (CH4). Co-occurrence of N2O reduction and CH4 oxidation would require a broad range of microsite conditions within the soil, spanning high and low oxygen concentrations. Abiotic sinks for N2O or other biological processes that consume N2O could exist, but have not yet been identified. We are attempting to simulate processes of diffusion of N2O, CH4, and O2 from the atmosphere and within a soil profile to determine if classical biological N2O reduction and CH4 oxidation at rates consistent with measured fluxes are plausible.
Influence of plankton community structure on the sinking velocity of marine aggregates
NASA Astrophysics Data System (ADS)
Bach, L. T.; Boxhammer, T.; Larsen, A.; Hildebrandt, N.; Schulz, K. G.; Riebesell, U.
2016-08-01
About 50 Gt of carbon is fixed photosynthetically by surface ocean phytoplankton communities every year. Part of this organic matter is reprocessed within the plankton community to form aggregates which eventually sink and export carbon into the deep ocean. The fraction of organic matter leaving the surface ocean is partly dependent on aggregate sinking velocity which accelerates with increasing aggregate size and density, where the latter is controlled by ballast load and aggregate porosity. In May 2011, we moored nine 25 m deep mesocosms in a Norwegian fjord to assess on a daily basis how plankton community structure affects material properties and sinking velocities of aggregates (Ø 80-400 µm) collected in the mesocosms' sediment traps. We noted that sinking velocity was not necessarily accelerated by opal ballast during diatom blooms, which could be due to relatively high porosity of these rather fresh aggregates. Furthermore, estimated aggregate porosity (Pestimated) decreased as the picoautotroph (0.2-2 µm) fraction of the phytoplankton biomass increased. Thus, picoautotroph-dominated communities may be indicative for food webs promoting a high degree of aggregate repackaging with potential for accelerated sinking. Blooms of the coccolithophore Emiliania huxleyi revealed that cell concentrations of 1500 cells/mL accelerate sinking by about 35-40%, which we estimate (by one-dimensional modeling) to elevate organic matter transfer efficiency through the mesopelagic from 14 to 24%. Our results indicate that sinking velocities are influenced by the complex interplay between the availability of ballast minerals and aggregate packaging; both of which are controlled by plankton community structure.
Beevi, K Sabeena; Nair, Madhu S; Bindu, G R
2016-08-01
The exact measure of mitotic nuclei is a crucial parameter in breast cancer grading and prognosis. This can be achieved by improving the mitotic detection accuracy by careful design of segmentation and classification techniques. In this paper, segmentation of nuclei from breast histopathology images are carried out by Localized Active Contour Model (LACM) utilizing bio-inspired optimization techniques in the detection stage, in order to handle diffused intensities present along object boundaries. Further, the application of a new optimal machine learning algorithm capable of classifying strong non-linear data such as Random Kitchen Sink (RKS), shows improved classification performance. The proposed method has been tested on Mitosis detection in breast cancer histological images (MITOS) dataset provided for MITOS-ATYPIA CONTEST 2014. The proposed framework achieved 95% recall, 98% precision and 96% F-score.
Source-sink dynamics are an emergent property of complex species- landscape interactions. A better understanding of how human activities affect source-sink dynamics has the potential to inform and improve the management of species of conservation concern. Here we use a study of t...
ERIC Educational Resources Information Center
Blintz, William
2005-01-01
In Hamlet, Shakespeare invites readers to ponder a famous philosophical question: To be or not to be? That is the question. In this issue, two trade books invite students to explore the question: To sink or not to sink? That is the experiment. Though both books are targeted for younger children, teachers can use these books with elementary…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
... DEPARTMENT OF COMMERCE International Trade Administration [C-570-984] Drawn Stainless Steel Sinks... investigations of drawn stainless steel sinks from the People's Republic of China.\\1\\ On August 6, 2012, the Department published its preliminary countervailing duty determination.\\2\\ \\1\\ See Drawn Stainless Steel...
Characterizing source-sink dynamics with genetic parentage assignments
M. Zachariah Peery; Steven R. Beissinger; Roger F. House; Martine Berube; Laurie A. Hall; Anna Sellas; Per J. Palsboll
2008-01-01
Source-sink dynamics have been suggested to characterize the population structure of many species, but the prevalence of source-sink systems in nature is uncertain because of inherent challenges in estimating migration rates among populations. Migration rates are often difficult to estimate directly with demographic methods, and indirect genetic methods are subject to...
77 FR 23752 - Drawn Stainless Steel Sinks From China
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-20
... Stainless Steel Sinks From China Determinations On the basis of the record \\1\\ developed in the subject... imports from China of drawn stainless sinks, provided for in subheading 7324.10.00 of the Harmonized... value (LTFV) and subsidized by the Government of China. \\1\\ The record is defined in sec. 207.2(f) of...
ERIC Educational Resources Information Center
McDonald, Judith Richards
2012-01-01
This activity is designed to teach prekindergarten to second grade students about the concept of sink or float through an inquiry activity. Students will use familiar objects to predict and test the properties of sink and float. Background information is offered to teachers to assist them with this activity. This lesson begins with an engaging…
Electrical assembly having heat sink protrusions
Rinehart, Lawrence E.; Romero, Guillermo L.
2009-04-21
An electrical assembly, comprising a heat producing semiconductor device supported on a first major surface of a direct bond metal substrate that has a set of heat sink protrusions supported by its second major surface. In one preferred embodiment the heat sink protrusions are made of the same metal as is used in the direct bond copper.
Long-Term Effects of Targeted Killings by Unmanned Aerial Vehicles
2015-04-03
unrestricted submarine warfare culminated in the sinking of the RMS Lusitania in 1915 and forced the United States into World War I. News of the sinking was...was virtually on English soil and must expect to stand the consequences.”80 Germans supported the sinking, believing the RMS Lusitania was an
Liu, Li Li; Ling, Jiang Hua; Tie, Li; Wang, Jiao Yue; Bing, Long Fei; Xi, Feng Ming
2018-01-01
Under the background of "missing carbon sink" mystery and carbon capture and storage (CCS) technology development, this paper summarized the lime material flow process carbon sink from the lime carbonation principles, impact factors, and lime utilization categories in chemical industry, metallurgy industry, construction industry, and lime kiln ash treatment. The results showed that the lime carbonation rate coefficients were mainly impacted by materials and ambient conditions; the lime carbon sink was mainly in chemical, metallurgy, and construction industries; and current researches focused on the mechanisms and impact factors for carbonation, but their carbon sequestration calculation methods had not been proposed. Therefore, future research should focus on following aspects: to establish a complete system of lime carbon sequestration accounting method in view of material flow; to calculate lime carbon sequestration in both China and the world and explain their offset proportion of CO 2 emission from lime industrial process; to analyze the contribution of lime carbon sequestration to missing carbon sink for clarifying part of missing carbon sinks; to promote the development of carbon capture and storage technology and provide some scientific bases for China's international negotiations on climate change.
Phase Change Material Heat Sink for an ISS Flight Experiment
NASA Technical Reports Server (NTRS)
Quinn, Gregory; Stieber, Jesse; Sheth, Rubik; Ahlstrom, Thomas
2015-01-01
A flight experiment is being constructed to utilize the persistent microgravity environment of the International Space Station (ISS) to prove out operation of a microgravity compatible phase change material (PCM) heat sink. A PCM heat sink can help to reduce the overall mass and volume of future exploration spacecraft thermal control systems (TCS). The program is characterizing a new PCM heat sink that incorporates a novel phase management approach to prevent high pressures and structural deformation that often occur with PCM heat sinks undergoing cyclic operation in microgravity. The PCM unit was made using brazed aluminum construction with paraffin wax as the fusible material. It is designed to be installed into a propylene glycol and water cooling loop, with scaling consistent with the conceptual designs for the Orion Multipurpose Crew Vehicle. This paper reports on the construction of the PCM heat sink and on initial ground test results conducted at UTC Aerospace Systems prior to delivery to NASA. The prototype will be tested later on the ground and in orbit via a self-contained experiment package developed by NASA Johnson Space Center to operate in an ISS EXPRESS rack.
Thermal Buckling Analysis of Rectangular Panels Subjected to Humped Temperature Profile Heating
NASA Technical Reports Server (NTRS)
Ko, William I.
2004-01-01
This research investigates thermal buckling characteristics of rectangular panels subjected to different types of humped temperature profile heating. Minimum potential energy and finite-element methods are used to calculate the panel buckling temperatures. The two methods give fairly close thermal buckling solutions. 'Buckling temperature magnification factor of the first kind, eta' is established for the fixed panel edges to scale up the buckling solution of uniform temperature loading case to give the buckling solution of the humped temperature profile loading cases. Also, 'buckling temperature magnification factor of the second kind, xi' is established for the free panel edges to scale up the buckling solution of humped temperature profile loading cases with unheated boundary heat sinks to give the buckling solutions when the boundary heat sinks are heated up.
Two-and three-dimensional unsteady lift problems in high-speed flight
NASA Technical Reports Server (NTRS)
Lomax, Harvard; Heaslet, Max A; Fuller, Franklyn B; Sluder, Loma
1952-01-01
The problem of transient lift on two- and three-dimensional wings flying at high speeds is discussed as a boundary-value problem for the classical wave equation. Kirchoff's formula is applied so that the analysis is reduced, just as in the steady state, to an investigation of sources and doublets. The applications include the evaluation of indicial lift and pitching-moment curves for two-dimensional sinking and pitching wings flying at Mach numbers equal to 0, 0.8, 1.0, 1.2 and 2.0. Results for the sinking case are also given for a Mach number of 0.5. In addition, the indicial functions for supersonic-edged triangular wings in both forward and reverse flow are presented and compared with the two-dimensional values.
NASA Astrophysics Data System (ADS)
Havu-Nuutinen, Sari
2005-03-01
This paper presents a case study of the process of conceptual change in six-year-old children. The process of conceptual change in learning about floating and sinking is described from two different viewpoints: how the children's conceptions change during the instructional process, and how the social discussion during the experimental exploration can be seen in terms of the cognitive changes in the children. Based on qualitative analysis of verbal data, changes in the children's conceptions were mostly epistemological and the children's theories of flotation became more complete with respect to the scientific view. From the viewpoint of the conceptual change, conceptually orientated teacher-child interactions seemed to support the children's cognitive progress in cognitive skills and guided the children to consider the reasons for the flotation.
Crain, Angela S.
2010-01-01
This report presents the results of a study by the U.S. Geological Survey, in cooperation with the Kentucky Department of Agriculture, on nutrients, select pesticides, and suspended sediment in the karst terrane of the Sinking Creek Basin. Streamflow, nutrient, select pesticide, and suspended-sediment data were collected at seven sampling stations from 2004 through 2006. Concentrations of nitrite plus nitrate ranged from 0.21 to 4.9 milligrams per liter (mg/L) at the seven stations. The median concentration of nitrite plus nitrate for all stations sampled was 1.6 mg/L. Total phosphorus concentrations were greater than 0.1 mg/L, the U.S. Environmental Protection Agency's recommended maximum concentration, in 45 percent of the samples. Concentrations of orthophosphates ranged from less than 0.006 to 0.46 mg/L. Concentrations of nutrients generally were larger during spring and summer months, corresponding to periods of increased fertilizer application on agricultural lands. Concentrations of suspended sediment ranged from 1.0 to 1,490 mg/L at the seven stations. Of the 47 pesticides analyzed, 14 were detected above the adjusted method reporting level of 0.01 micrograms per liter (mug/L). Although these pesticides were detected in water-quality samples, they generally were found at less than part-per-billion concentrations. Atrazine was the only pesticide detected at concentrations greater than U.S. Environmental Protection Agency drinking water standard of 3 mug/L, and the maximum detected concentration was 24.6 mug/L. Loads and yields of nutrients, selected pesticides, and suspended sediment were estimated at two mainstream stations on Sinking Creek, a headwater station (Sinking Creek at Rosetta) and a station at the basin outlet (Sinking Creek near Lodiburg). Mean daily streamflow data were available for the estimation of loads and yields from a stream gage at the basin outlet station; however, only periodic instantaneous flow measurements were available for the headwaters station; mean daily flows at the headwater station were, therefore, estimated using a mathematical record-extension technique known as the Maintenance of Variance-Extension, type 1 (MOVE.1). The estimation of mean daily streamflows introduced a large amount of uncertainty into the loads and yields estimates at the headwater station. Total estimated loads of select (five most commonly detected) pesticides from the Sinking Creek Basin were about 0.01 to 1.2 percent of the estimated application, indicating pesticides possibly are retained within the watershed. Mean annual loads [(in/lb)/yr] for nutrients and suspended sediment were estimated at the two Sinking Creek mainstem sampling stations. The relation between estimated and measured instantaneous loads of nitrite plus nitrate at the Sinking Creek near Lodiburg station indicate a reasonably tight distribution over the range of loads. The model for loads of nitrite plus nitrate at the Sinking Creek at Rosetta station indicates small loads were overestimated and underestimated. Relations between estimated and measured loads of total phosphorus and orthophosphate at both Sinking Creek mainstem stations showed similar patterns to the loads of nitrite plus nitrate at each respective station. The estimated mean annual load of suspended sediment is about 14 times larger at the Sinking Creek near Lodiburg station than at the Sinking Creek near Rosetta station. Estimated yields of nutrients and suspended sediment increased from the headwater to downstream monitoring stations on Sinking Creek. This finding suggests that sources of nutrients and suspended sediment are not evenly distributed throughout the karst terrane of the Sinking Creek Basin. Yields of select pesticides generally were similar from the headwater to downstream monitoring stations. However, the estimated yield of atrazine was about five times higher at the downstream station on Sinking Creek than at the headwater station on Sinking Creek.
Wadud, Zahid; Hussain, Sajjad; Javaid, Nadeem; Bouk, Safdar Hussain; Alrajeh, Nabil; Alabed, Mohamad Souheil; Guizani, Nadra
2017-09-30
Industrial Underwater Acoustic Sensor Networks (IUASNs) come with intrinsic challenges like long propagation delay, small bandwidth, large energy consumption, three-dimensional deployment, and high deployment and battery replacement cost. Any routing strategy proposed for IUASN must take into account these constraints. The vector based forwarding schemes in literature forward data packets to sink using holding time and location information of the sender, forwarder, and sink nodes. Holding time suppresses data broadcasts; however, it fails to keep energy and delay fairness in the network. To achieve this, we propose an Energy Scaled and Expanded Vector-Based Forwarding (ESEVBF) scheme. ESEVBF uses the residual energy of the node to scale and vector pipeline distance ratio to expand the holding time. Resulting scaled and expanded holding time of all forwarding nodes has a significant difference to avoid multiple forwarding, which reduces energy consumption and energy balancing in the network. If a node has a minimum holding time among its neighbors, it shrinks the holding time and quickly forwards the data packets upstream. The performance of ESEVBF is analyzed through in network scenario with and without node mobility to ensure its effectiveness. Simulation results show that ESEVBF has low energy consumption, reduces forwarded data copies, and less end-to-end delay.
Optimal performance of heat engines with a finite source or sink and inequalities between means.
Johal, Ramandeep S
2016-07-01
Given a system with a finite heat capacity and a heat reservoir, and two values of initial temperatures, T_{+} and T_{-}(
Experimental Evaluation of the Heat Sink Effect in Hepatic Microwave Ablation.
Ringe, Kristina I; Lutat, Carolin; Rieder, Christian; Schenk, Andrea; Wacker, Frank; Raatschen, Hans-Juergen
2015-01-01
To demonstrate and quantify the heat sink effect in hepatic microwave ablation (MWA) in a standardized ex vivo model, and to analyze the influence of vessel distance and blood flow on lesion volume and shape. 108 ex vivo MWA procedures were performed in freshly harvested pig livers. Antennas were inserted parallel to non-perfused and perfused (700,1400 ml/min) glass tubes (diameter 5mm) at different distances (10, 15, 20mm). Ablation zones (radius, area) were analyzed and compared (Kruskal-Wallis Test, Dunn's multiple comparison Test). Temperature changes adjacent to the tubes were measured throughout the ablation cycle. Maximum temperature decreased significantly with increasing flow and distance (p<0.05). Compared to non-perfused tubes, ablation zones were significantly deformed by perfused tubes within 15 mm distance to the antenna (p<0.05). At a flow rate of 700 ml/min ablation zone radius was reduced to 37.2% and 80.1% at 10 and 15 mm tube distance, respectively; ablation zone area was reduced to 50.5% and 89.7%, respectively. Significant changes of ablation zones were demonstrated in a pig liver model. Considerable heat sink effect was observed within a diameter of 15 mm around simulated vessels, dependent on flow rate. This has to be taken into account when ablating liver lesions close to vessels.
Thermal performance of ethylene glycol based nanofluids in an electronic heat sink.
Selvakumar, P; Suresh, S
2014-03-01
Heat transfer in electronic devices such as micro processors and power converters is much essential to keep these devices cool for the better functioning of the systems. Air cooled heat sinks are not able to remove the high heat flux produced by the today's electronic components. Liquids work better than air in removing heat. Thermal conductivity which is the most essential property of any heat transfer fluid can be enhanced by adding nano scale solid particles which possess higher thermal conductivity than the liquids. In this work the convective heat transfer and pressure drop characteristics of the water/ethylene glycol mixture based nanofluids consisting of Al2O3, CuO nanoparticles with a volume concentration of 0.1% are studied experimentally in a rectangular channel heat sink. The nano particles are characterized using Scanning Electron Microscope and the nannofluids are prepared by using an ultrasonic vibrator and Sodium Lauryl Salt surfactant. The experimental results showed that nanofluids of 0.1% volume concentration give higher convective heat transfer coefficient values than the plain water/ethylene glycol mixture which is prepared in the volume ratio of 70:30. There is no much penalty in the pressure drop values due to the inclusion of nano particles in the water/ethylene glycol mixture.
Vulnerability of the peatland carbon sink to sea-level rise
NASA Astrophysics Data System (ADS)
Whittle, Alex; Gallego-Sala, Angela V.
2016-06-01
Freshwater peatlands are carbon accumulating ecosystems where primary production exceeds organic matter decomposition rates in the soil, and therefore perform an important sink function in global carbon cycling. Typical peatland plant and microbial communities are adapted to the waterlogged, often acidic and low nutrient conditions that characterise them. Peatlands in coastal locations receive inputs of oceanic base cations that shift conditions from the environmental optimum of these communities altering the carbon balance. Blanket bogs are one such type of peatlands occurring in hyperoceanic regions. Using a blanket bog to coastal marsh transect in Northwest Scotland we assess the impacts of salt intrusion on carbon accumulation rates. A threshold concentration of salt input, caused by inundation, exists corresponding to rapid acidophilic to halophilic plant community change and a carbon accumulation decline. For the first time, we map areas of blanket bog vulnerable to sea-level rise, estimating that this equates to ~7.4% of the total extent and a 0.22 Tg yr-1 carbon sink. Globally, tropical peatlands face the proportionally greatest risk with ~61,000 km2 (~16.6% of total) lying ≤5 m elevation. In total an estimated 20.2 ± 2.5 GtC is stored in peatlands ≤5 m above sea level, which are potentially vulnerable to inundation.
Study on the methodology of road carbon sink forest
NASA Astrophysics Data System (ADS)
Wan, Lijuan; Zhang, Yi; Cheng, Dongxiang; Huang, Yanan
2017-01-01
Advanced concepts of forest carbon sink and forestry carbon sequestration are introduced in road carbon sink forest project and the measurement and carbon monitoring of road carbon sink forest are explored. Experience and technology are accumulated and a set of the carbon sequestration forestation and carbon measurement and monitoring technology systems on both sides of road are formed. To update the green concept, improve the forestation quality along road and to enhanced sequestration and ecological efficiency, it is important to realize the traffic low carbon and energy saving and emission reduction. To use scientific planting and monitoring methods, soil properties, carbon sequestration of soil organic carbon pool, and carbon sequestration capacity of different species of trees were studied and monitored. High carbon sequestration species selection, silvicultural management, measurement of carbon sink and carbon monitoring are explored.
Functional Analysis of Arabidopsis Sucrose Transporters
DOE Office of Scientific and Technical Information (OSTI.GOV)
John M. Ward
2009-03-31
Sucrose is the main photosynthetic product that is transported in the vasculature of plants. The long-distance transport of carbohydrates is required to support the growth and development of net-importing (sink) tissues such as fruit, seeds and roots. This project is focused on understanding the transport mechanism sucrose transporters (SUTs). These are proton-coupled sucrose uptake transporters (membrane proteins) that are required for transport of sucrose in the vasculature and uptake into sink tissues. The accomplishments of this project included: 1) the first analysis of substrate specificity for any SUT. This was accomplished using electrophysiology to analyze AtSUC2, a sucrose transporter frommore » companion cells in Arabidopsis. 2) the first analysis of the transport activity for a monocot SUT. The transport kinetics and substrate specificity of HvSUT1 from barley were studied. 3) the first analysis of a sucrose transporter from sugarcane. and 4) the first analysis of transport activity of a sugar alcohol transporter homolog from plants, AtPLT5. During this period four primary research papers, funded directly by the project, were published in refereed journals. The characterization of several sucrose transporters was essential for the current effort in the analysis of structure/function for this gene family. In particular, the demonstration of strong differences in substrate specificity between type I and II SUTs was important to identify targets for site-directed mutagenesis.« less
NASA Technical Reports Server (NTRS)
Horton, Elmer A; Loftin, Laurence K; Racisz, Stanley F; Quinn, John
1951-01-01
A performance analysis has been made to determine whether boundary-layer control by suction might reduce the minimum take-off and landing distances of a four-place or five-place airplane or a liaison type of airplane below those obtainable with conventional high-lift devices. The airplane was assumed to have a cruise duration of 5 hours at 60-percent power and to be operating from airstrips having a ground friction coefficient of 0.2 or a combined ground and braking coefficient of 0.4. The payload was fixed at 1500 pounds, the wing span was varied from 25 to 100 feet, the aspect ratio was varied from 5 to 15, and the power was varied from 300 to 1300 horsepower. Maximum lift coefficients of 5.0 and 2.8 were assumed for the airplanes with and without boundary-layer-control --equipment weight was included. The effects of the boundary-layer control on total take-off distance, total power-off landing distance, landing and take-off ground run, stalling speed, sinking speed, and gliding speed were determined.
An alternative hypothesis for sink development above salt cavities in the Detroit area
Stump, Daniel; Nieto, A.S.; Ege, J.R.
1982-01-01
Subsidence and sink formation resulting from brining operations in the Windsor-Detroit area include the 1954 sink at the Canadian Salt Company brine field near Windsor, Ontario, and the 1971 sinks at the BASF Wyandotte Corporation brine field at Grosse Ile, Mich. Earlier investigations into both occurrences concluded that the mechanism of sink development consisted of the gradual stoping of poorly supported brine-gallery roof rock to the near surface with subsequent surface collapse. A more recent study attempted to describe the mechanism of sink development in terms of the geometry of a cylindrical chimney formed by stoping of roof rock, the height of a cavity at depth, the depth of overlying rock, and the bulking ratio of the rubble formed during stoping. Persons with extensive experience in solution mining in the Windsor-Detroit area have expressed doubt that the stoping mechanism could fully explain the development of these sinks. Further, they have proposed that the relatively shallow (300-ft-deep) Sylvania Sandstone, in this case, may be responsible for the sinks by a secondary undermining mechanism to be examined in this paper. The mechanism involves downwarping of the beds overlying the salt cavity and development of a shallower cavity in the Sylvania Sandstone by downward migration of cohesionless sand grains from the Sylvania through openings in the disturbed rock to the lower cavity. This study indicates that under natural conditions the Sylvania will not migrate, even in the presence of large underground water flows because the sandstone possesses some cohesion throughout its depth. However, further investigation has formulated a mechanism that could allow the Sylvania Sandstone to loose its cohesion in response to high horizontal stresses. These stresses could be the result of deformation that accompanies general subsidence and (or) of past geologic processes. Included in this study were experimental and analytical investigations. As determined by uniaxial and triaxial testing, the Sylvania Sandstone in the Detroit area has been shown to have low compressive strength. In addition, it exhibits an explosive type failure whereby over 50 percent of the sample is reduced to loose granular sand. As a result of these characteristics, the Sylvania Sandstone can loose its cohesion when subjected to high horizontal stresses. Efforts at mechanically modeling the Sylvania were made to account for the measurements and observations. Linear arch theory was used for an elastic analysis. Linear arch theory predicts two modes of failure: (1) arch crushing, a compressive failure of the upper portion of the arch due to compressive stresses exceeding the compressive strength of the material, and (2) arch collapse, a sagging of the beds due to compressive strains which reduce the arch line to a length less than the original arch length. The arch crushing mode of failure would then yield the loose granular sand as observed in laboratory testing. Arch collapse would simply result in bed sagging without granulation of the sandstone. Arch collapse is favored by thin-bedded material while arch crushing is favored by thick-bedded material. Arch crushing seems to be a likely mode of failure for the Windsor-Detroit sinks. It is believed that after a crushing failure the sand-water slurry (specific gravity 1.2) which exceeds the density of the cavity brine will migrate downward through cracks and open joints eventually reaching the practically limitless open spaces of the rubble column and salt cavity. As the extent of the cavity within the Sylvania increases in depth and width because of sand migration, a critical span will be reached where the immediately overlying upper Sylvania and the overlying Detroit River Dolomite will fail. The collapse will allow a path for the approximately 100 ft of clay to collapse, resulting in a sink as the surface manifestation.
NASA Astrophysics Data System (ADS)
Escourbiac, F.; Richou, M.; Guigon, R.; Constans, S.; Durocher, A.; Merola, M.; Schlosser, J.; Riccardi, B.; Grosman, A.
2009-12-01
Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.
Sources and Sinks: A Stochastic Model of Evolution in Heterogeneous Environments
NASA Astrophysics Data System (ADS)
Hermsen, Rutger; Hwa, Terence
2010-12-01
We study evolution driven by spatial heterogeneity in a stochastic model of source-sink ecologies. A sink is a habitat where mortality exceeds reproduction so that a local population persists only due to immigration from a source. Immigrants can, however, adapt to conditions in the sink by mutation. To characterize the adaptation rate, we derive expressions for the first arrival time of adapted mutants. The joint effects of migration, mutation, birth, and death result in two distinct parameter regimes. These results may pertain to the rapid evolution of drug-resistant pathogens and insects.
Spatial Light Modulators as Optical Crossbar Switches
NASA Technical Reports Server (NTRS)
Juday, Richard
2003-01-01
A proposed method of implementing cross connections in an optical communication network is based on the use of a spatial light modulator (SLM) to form controlled diffraction patterns that connect inputs (light sources) and outputs (light sinks). Sources would typically include optical fibers and/or light-emitting diodes; sinks would typically include optical fibers and/or photodetectors. The sources and/or sinks could be distributed in two dimensions; that is, on planes. Alternatively or in addition, sources and/or sinks could be distributed in three dimensions -- for example, on curved surfaces or in more complex (including random) three-dimensional patterns.
Heat sink effects in VPPA welding
NASA Technical Reports Server (NTRS)
Steranka, Paul O., Jr.
1990-01-01
The development of a model for prediction of heat sink effects associated with the Variable Polarity Plasma Arc (VPPA) Welding Process is discussed. The long term goal of this modeling is to provide means for assessing potential heat sink effects and, eventually, to provide indications as to changes in the welding process that could be used to compensate for these effects and maintain the desired weld quality. In addition to the development of a theoretical model, a brief experimental investigation was conducted to demonstrate heat sink effects and to provide an indication of the accuracy of the model.
Reconciliation of the carbon budget in the ocean's twilight zone.
Giering, Sarah L C; Sanders, Richard; Lampitt, Richard S; Anderson, Thomas R; Tamburini, Christian; Boutrif, Mehdi; Zubkov, Mikhail V; Marsay, Chris M; Henson, Stephanie A; Saw, Kevin; Cook, Kathryn; Mayor, Daniel J
2014-03-27
Photosynthesis in the surface ocean produces approximately 100 gigatonnes of organic carbon per year, of which 5 to 15 per cent is exported to the deep ocean. The rate at which the sinking carbon is converted into carbon dioxide by heterotrophic organisms at depth is important in controlling oceanic carbon storage. It remains uncertain, however, to what extent surface ocean carbon supply meets the demand of water-column biota; the discrepancy between known carbon sources and sinks is as much as two orders of magnitude. Here we present field measurements, respiration rate estimates and a steady-state model that allow us to balance carbon sources and sinks to within observational uncertainties at the Porcupine Abyssal Plain site in the eastern North Atlantic Ocean. We find that prokaryotes are responsible for 70 to 92 per cent of the estimated remineralization in the twilight zone (depths of 50 to 1,000 metres) despite the fact that much of the organic carbon is exported in the form of large, fast-sinking particles accessible to larger zooplankton. We suggest that this occurs because zooplankton fragment and ingest half of the fast-sinking particles, of which more than 30 per cent may be released as suspended and slowly sinking matter, stimulating the deep-ocean microbial loop. The synergy between microbes and zooplankton in the twilight zone is important to our understanding of the processes controlling the oceanic carbon sink.
Sugiura, Daisuke; Betsuyaku, Eriko; Terashima, Ichiro
2015-12-01
To reveal whether hypocotyl sink activities are regulated by the aboveground parts, and whether physiology and morphology of source leaves are affected by the hypocotyl sink activities, we conducted grafting experiments using two Raphanus sativus varieties with different hypocotyl sink activities. Comet (C) and Leafy (L) varieties with high and low hypocotyl sink activities were reciprocally grafted and resultant plants were called by their scion and stock such as CC, LC, CL and LL. Growth, leaf mass per area (LMA), total non-structural carbohydrates (TNCs) and photosynthetic characteristics were compared among them. Comet hypocotyls in CC and LC grew well regardless of the scions, whereas Leafy hypocotyls in CL and LL did not. Relative growth rate was highest in LL and lowest in CC. Photosynthetic capacity was correlated with Rubisco (ribulose 1·5-bisphosphate carboxylase/oxygenase) content but unaffected by TNC. High C/N ratio and accumulation of TNC led to high LMA and structural LMA. These results showed that the hypocotyl sink activity was autonomously regulated by hypocotyl and that the down-regulation of photosynthesis was not induced by TNC. We conclude that the change in the sink activity alters whole-plant growth through the changes in both biomass allocation and leaf morphological characteristics in R. sativus. © 2015 John Wiley & Sons Ltd.
Adjustable Trajectory Design Based on Node Density for Mobile Sink in WSNs
Yang, Guisong; Liu, Shuai; He, Xingyu; Xiong, Naixue; Wu, Chunxue
2016-01-01
The design of movement trajectories for mobile sink plays an important role in data gathering for Wireless Sensor Networks (WSNs), as it affects the network coverage, and packet delivery ratio, as well as the network lifetime. In some scenarios, the whole network can be divided into subareas where the nodes are randomly deployed. The node densities of these subareas are quite different, which may result in a decreased packet delivery ratio and network lifetime if the movement trajectory of the mobile sink cannot adapt to these differences. To address these problems, we propose an adjustable trajectory design method based on node density for mobile sink in WSNs. The movement trajectory of the mobile sink in each subarea follows the Hilbert space-filling curve. Firstly, the trajectory is constructed based on network size. Secondly, the adjustable trajectory is established based on node density in specific subareas. Finally, the trajectories in each subarea are combined to acquire the whole network’s movement trajectory for the mobile sink. In addition, an adaptable power control scheme is designed to adjust nodes’ transmitting range dynamically according to the movement trajectory of the mobile sink in each subarea. The simulation results demonstrate that the proposed trajectories can adapt to network changes flexibly, thus outperform both in packet delivery ratio and in energy consumption the trajectories designed only based on the network size and the whole network node density. PMID:27941662
NASA Astrophysics Data System (ADS)
Sarmah, Ratan; Tiwari, Shubham
2018-03-01
An analytical solution is developed for predicting two-dimensional transient seepage into ditch drainage network receiving water from a non-uniform steady ponding field from the surface of the soil under the influence of source/sink in the flow domain. The flow domain is assumed to be saturated, homogeneous and anisotropic in nature and have finite extends in horizontal and vertical directions. The drains are assumed to be standing vertical and penetrating up to impervious layer. The water levels in the drains are unequal and invariant with time. The flow field is also assumed to be under the continuous influence of time-space dependent arbitrary source/sink term. The correctness of the proposed model is checked by developing a numerical code and also with the existing analytical solution for the simplified case. The study highlights the significance of source/sink influence in the subsurface flow. With the imposition of the source and sink term in the flow domain, the pathline and travel time of water particles started deviating from their original position and above that the side and top discharge to the drains were also observed to have a strong influence of the source/sink terms. The travel time and pathline of water particles are also observed to have a dependency on the height of water in the ditches and on the location of source/sink activation area.
Programming Saposin-Mediated Compensatory Metabolic Sinks for Enhanced Ubiquinone Production.
Xu, Wen; Yuan, Jifeng; Yang, Shuiyun; Ching, Chi-Bun; Liu, Jiankang
2016-12-16
Microbial synthesis of ubiquinone by fermentation processes has been emerging in recent years. However, as ubiquinone is a primary metabolite that is tightly regulated by the host central metabolism, tweaking the individual pathway components could only result in a marginal improvement on the ubiquinone production. Given that ubiquinone is stored in the lipid bilayer, we hypothesized that introducing additional metabolic sink for storing ubiquinone might improve the CoQ 10 production. As human lipid binding/transfer protein saposin B (hSapB) was reported to extract ubiquinone from the lipid bilayer and form the water-soluble complex, hSapB was chosen to build a compensatory metabolic sink for the ubiquinone storage. As a proof-of-concept, hSapB-mediated metabolic sink systems were devised and systematically investigated in the model organism of Escherichia coli. The hSapB-mediated periplasmic sink resulted in more than 200% improvement of CoQ 8 over the wild type strain. Further investigation revealed that hSapB-mediated sink systems could also improve the CoQ 10 production in a CoQ 10 -hyperproducing E. coli strain obtained by a modular pathway rewiring approach. As the design principles and the engineering strategies reported here are generalizable to other microbes, compensatory sink systems will be a method of significant interest to the synthetic biology community.
Laboratory study of PCBs transport from primary sources to ...
The sorption of airborne polychlorinated biphenyls (PCBs) by twenty building materials and their subsequent re-emission (desorption) from concrete were investigated using two 53-L environmental chambers connected in series with a field-collected caulk in the source chamber serving as a stable source of PCBs and building materials in the test chamber. During the tests, the PCB concentrations in the outlet air of the test chamber were monitored and the building materials were removed from the test chamber at different times to determine their PCB content. Among the materials tested, a petroleum-based paint, a latex paint, and a certain type of carpet were among the strongest sinks. Solvent-free epoxy coating, certain types of flooring materials, and brick were among the weakest sinks. For a given sink material, PCB congeners with lower vapor pressures were sorbed in larger quantities. Rough estimates of the partition and diffusion coefficients were obtained by applying a sink model to the data acquired from the chamber studies. A desorption test with the concrete panels showed that re-emission is a slow process, suggesting that PCB sinks, e.g. concrete, can release PCBs into the air for a prolonged period of time (years or decades). This study could fill some of the data gaps associated with the characterization of PCB sinks in contaminated buildings. This paper summarizes the laboratory research results for PCB transport from primary sources to PCB sinks, includ
NASA Technical Reports Server (NTRS)
Moore, D. G. (Principal Investigator); Heilman, J.; Tunheim, J.
1978-01-01
The author has identified the following significant results. Analysis of soil temperature and water table data indicated that shallow aquifers appear to produce a heat sink effect when the depth to water table is approximately four meters or less.
A Descriptive Study of Pre-Service Science Teachers' Misconceptions about Sinking-Floating
ERIC Educational Resources Information Center
Kiray, Seyit Ahmet; Aktan, Filiz; Kaynar, Hamza; Kilinc, Sena; Gorkemli, Tugce
2015-01-01
The purpose of this study is twofold. Firstly, it attempts to determine the pre-service science teachers' misconceptions about floating and sinking. Secondly, it aims to reveal the level of pre-service science teachers' misconceptions, scientific knowledge, lack of knowledge, and lack of confidence related to floating and sinking. To conduct the…
Tracking the fate of watershed nitrogen: The “N-Sink” Web Tool and Two Case Studies
This product describes the application of a web-based decision support tool, N-Sink, in two case study watersheds. N-Sink is a customized ArcMap© program that provides maps of N sourcesand sinks within a watershed, and estimates the delivery efficiency of N movement from sou...
Sinking in Quicksand: An Applied Approach to the Archimedes Principle
ERIC Educational Resources Information Center
Evans, G. M.; Evans, S. C.; Moreno-Atanasio, R.
2015-01-01
The objective of this paper is to present a laboratory experiment that explains the phenomenon of sinking in quicksand simulated as a fluidized bed. The paper demonstrates experimentally and theoretically that the proportion of a body that sinks in quicksand depends on the volume fraction of solids and the density of the body relative to the…
LADS: Optimizing Data Transfers using Layout-Aware Data Scheduling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Youngjae; Atchley, Scott; Vallee, Geoffroy R
While future terabit networks hold the promise of signifi- cantly improving big-data motion among geographically distributed data centers, significant challenges must be overcome even on today s 100 gigabit networks to real- ize end-to-end performance. Multiple bottlenecks exist along the end-to-end path from source to sink. Data stor- age infrastructure at both the source and sink and its in- terplay with the wide-area network are increasingly the bottleneck to achieving high performance. In this paper, we identify the issues that lead to congestion on the path of an end-to-end data transfer in the terabit network en- vironment, and we presentmore » a new bulk data movement framework called LADS for terabit networks. LADS ex- ploits the underlying storage layout at each endpoint to maximize throughput without negatively impacting the performance of shared storage resources for other users. LADS also uses the Common Communication Interface (CCI) in lieu of the sockets interface to use zero-copy, OS-bypass hardware when available. It can further im- prove data transfer performance under congestion on the end systems using buffering at the source using flash storage. With our evaluations, we show that LADS can avoid congested storage elements within the shared stor- age resource, improving I/O bandwidth, and data transfer rates across the high speed networks.« less
Microforms in gravel bed rivers: Formation, disintegration, and effects on bedload transport
Strom, K.; Papanicolaou, A.N.; Evangelopoulos, N.; Odeh, M.
2004-01-01
This research aims to advance current knowledge on cluster formation and evolution by tackling some of the aspects associated with cluster microtopography and the effects of clusters on bedload transport. The specific objectives of the study are (1) to identify the bed shear stress range in which clusters form and disintegrate, (2) to quantitatively describe the spacing characteristics and orientation of clusters with respect to flow characteristics, (3) to quantify the effects clusters have on the mean bedload rate, and (4) to assess the effects of clusters on the pulsating nature of bedload. In order to meet the objectives of this study, two main experimental scenarios, namely, Test Series A and B (20 experiments overall) are considered in a laboratory flume under well-controlled conditions. Series A tests are performed to address objectives (1) and (2) while Series B is designed to meet objectives (3) and (4). Results show that cluster microforms develop in uniform sediment at 1.25 to 2 times the Shields parameter of an individual particle and start disintegrating at about 2.25 times the Shields parameter. It is found that during an unsteady flow event, effects of clusters on bedload transport rate can be classified in three different phases: a sink phase where clusters absorb incoming sediment, a neutral phase where clusters do not affect bedload, and a source phase where clusters release particles. Clusters also increase the magnitude of the fluctuations in bedload transport rate, showing that clusters amplify the unsteady nature of bedload transport. A fourth-order autoregressive, autoregressive integrated moving average model is employed to describe the time series of bedload and provide a predictive formula for predicting bedload at different periods. Finally, a change-point analysis enhanced with a binary segmentation procedure is performed to identify the abrupt changes in the bedload statistic characteristics due to the effects of clusters and detect the different phases in bedload time series using probability theory. The analysis verifies the experimental findings that three phases are detected in the bedload rate time series structure, namely, sink, neutral, and source. ?? ASCE / JUNE 2004.
Experimental Compressibility of Molten Hedenbergite at High Pressure
NASA Astrophysics Data System (ADS)
Agee, C. B.; Barnett, R. G.; Guo, X.; Lange, R. A.; Waller, C.; Asimow, P. D.
2010-12-01
Experiments using the sink/float method have bracketed the density of molten hedenbergite (CaFeSi2O6) at high pressures and temperatures. The experiments are the first of their kind to determine the compressibility of molten hedenbergite at high pressure and are part of a collaborative effort to establish a new database for an array of silicate melt compositions, which will contribute to the development of an empirically based predictive model that will allow calculation of silicate liquid density and compressibility over a wide range of P-T-X conditions where melting could occur in the Earth. Each melt composition will be measured using: (i) double-bob Archimedean method for melt density and thermal expansion at ambient pressure, (ii) sound speed measurements on liquids to constrain melt compressibility at ambient pressure, (iii) sink/float technique to measure melt density to 15 GPa, and (iv) shock wave measurements of P-V-E equation of state and temperature between 10 and 150 GPa. Companion abstracts on molten fayalite (Waller et al., 2010) and liquid mixes of hedenbergite-diopside and anorthite-hedenbergite-diopside (Guo and Lange, 2010) are also presented at this meeting. In the present study, the hedenbergite starting material was synthesized at the Experimental Petrology Lab, University of Michigan, where melt density, thermal expansion, and sound speed measurements were also carried out. The starting material has also been loaded into targets at the Caltech Shockwave Lab, and experiments there are currently underway. We report here preliminary results from static compression measurement performed at the Department of Petrology, Vrije Universiteit, Amsterdam, and the High Pressure Lab, Institute of Meteoritics, University of New Mexico. Experiments were carried out in Quick Press piston-cylinder devices and a Walker-style multi-anvil device. Sink/float marker spheres implemented were gem quality synthetic forsterite (Fo100), San Carlos olivine (Fo90), and natural pyropic garnet(Pyr74 Alm13.5 Gro12.5). We bracketed the density of molten hedenbergite with Fo100 to be 3.09 g cm-3 at 1.1 GPa and 1450°C, and with Fo90 to be 3.27 g cm-3 at 3.0 GPa and 1450-1550°C. These sink-float values represent an increase in isothermal density from reference ambient pressure of 6% and 12% respectively, or linear compressions of 0.16 and 0.12 g cm-3 GPa-1. The density-with-pressure increases in our static compression experiments are in good agreement with the Michigan ambient pressure sound speed measurements that yield an isentropic bulk modulus of KS=18.77 GPa. Currently we are performing higher pressure sink/float experiments in the range 7-8 GPa with pyrope garnet marker spheres to better constrain values for the isothermal bulk modulus (KT) and its pressure derivative K'. As a by-product of our sink/float experiments we are also determining the melting curve of hedenbergite well beyond the published pressure extent of approximately 1.5 GPa (Lindsley, 1967). Our early data show the hedenbergite liquidus to be 1450°C at 3 GPa and approximately 1750°C at 7 GPa.
Carbon budget for a British upland peat catchment.
Worrall, Fred; Reed, Mark; Warburton, Jeff; Burt, Tim
2003-08-01
This study describes the analysis of fluvial carbon flux from an upland peat catchment in the North Pennines. Dissolved organic carbon (DOC), pH, alkalinity and calcium were measured in weekly samples, with particulate organic carbon (POC) measured from the suspended sediment load from the stream outlet of an 11.4-km(2) catchment. For calendar year 1999, regular monitoring of the catchment was supplemented with detailed quasi-continuous measurements of flow and stream temperature, and DOC for the months September through November. The measurements were used to calculate the annual flux of dissolved CO(2), dissolved inorganic carbon, DOC and POC from the catchment and were combined with CO(2) and CH(4) gaseous exchanges calculated from previously published values and the observations of water table height within the peat. The study catchment represents a net sink of 15.4+/-11.9 gC/m(2)/yr. Carbon flows calculated for the study catchment are combined with values in the literature, using a Monte Carlo method, to estimate the carbon budget for British upland peat. For all British upland peat the calculation suggests a net carbon sink of between 0.15 and 0.29 MtC/yr. This is the first study to include a comprehensive study of the fluvial export of carbon within carbon budgets and shows the size of the peat carbon sink to be smaller than previous estimates, although sensitivity analysis shows that the primary productivity rather than fluvial carbon flux is a more important element in estimating the carbon budget in this regard.
Liu, Yu; Wang, Can; Chen, Minpeng
2017-05-01
Research on carbon cycling has attracted attention from both scientists and policy-makers. Based on material flow analysis, this study systematically budgets the carbon inputs, outputs and balance from 1980 to 2013 for China's agro-ecosystem and its sub-systems, including agricultural land use, livestock breeding and rural life. The results show that from 1980 to 2013, both the carbon input and output were growing gradually, with the carbon input doubling from 1.6PgC/year in 1980 to 3.4PgC/year in 2013, while carbon output grew from 2.2PgC/year in 1980 to 3.8PgC/year in 2013. From 1980 to 2013, the crop production system in China has remained a carbon source, and the agricultural land uses were also almost all carbon sources instead of carbon sinks. As soil carbon stock plays a very important role in deciding the function of China's agro-ecosystem as a carbon sink or source, practices that can promote carbon storage and sequestration will be an essential component of low carbon agriculture development in China. Copyright © 2016. Published by Elsevier B.V.
Nested Atmospheric Inversion for the Terrestrial Carbon Sources and Sinks in China
NASA Astrophysics Data System (ADS)
Jiang, F.; Wang, H.; Chen, J.; Ju, W.
2011-12-01
In this study, we establish a nested atmospheric inversion system with focus on East Asia using the Bayes theory. The global surface is separated into 39 regions based on the 22 TransCom large regions, with 17 small regions in East Asia. Monthly CO2 concentrations from 238 GlobalView sites are used in this system. The core component of this system is atmospheric transport matrix, which is created by using the TM5 model. The net carbon flux over the 39 global land and ocean regions is inverted for the period from 2001 to 2007. The inverted global terrestrial carbon sinks mainly occur in North American, most Asia, and Europe. Except for east Inner Mongolia and southern China, most areas in China appear to be carbon sinks. From 2001 to 2007, the global terrestrial carbon sink has an increasing trend, with the lowest carbon sink in 2001, which is related to the strong El Nino event in the same year. For the same reason, China also has a lowest carbon sink in 2001. In 2005, the carbon sink in China is very small as well, due to the severe springtime drought in southern and southwest China. The mean global and China terrestrial carbon sinks over the period 2001-2007 are -2.98±1.0 and -0.28±0.28 Gt C yr-1, respectively. The uncertainties in the posterior carbon flux of China are still very large, mostly due to the lack of CO2 measurement data in China. In order to reduce these uncertainties, we plan to include the CONTRAIL data of Japan in this system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, W.L.; Spechler, R.M.
1993-03-01
Red Snapper Sink is located on the continental shelf, 26 nautical miles east of Crescent Beach, Florida. In 1991, advanced technical-diving techniques enabled divers to explore the bottom of the sink for the first time. The opening of the sink at a depth of 88 feet is approximately 400 feet in diameter. From 88 to 134 feet, the sloping sides of the sink are developed on loose Quaternary shelly sand and Pleistocene clayey sand. Below 134 feet, Red Snapper Sink is a vertical shaft measuring about 150--170 feet in diameter. From 134 to 206 feet, the shaft transects weakly-cemented Pliocenemore » sand and silty sand. From 206 to 335 feet, the walls of the shaft are developed in clayey sands of the Upper Hawthorn Formation (Miocene). From 335 to 380 feet, the lower Hawthorn consists of a layer of dolostone containing phosphate pebbles and carbonate interclasts with phosphatic rims. The top of the Ocala Limestone (Eocene) occurs at 380 feet, and below this depth, the walls of the shaft are undercut. Two dives were made to the bottom of the sink. A sand floor was encountered at a depth of 434 feet on the south side of the shaft and at 460 feet on the northwest side. On the northwest side, the floor slopes to a depth of approximately 495 feet. During a dive to 482 feet, sea water was observed flowing into small caverns at the base of the wall. Seismic profiles indicate that Red Snapper Sink is the surficial expression of a karst breccia pipe originating at a depth of approximately 2,000 feet in Upper Cretaceous and Paleocene rocks.« less
Moen, Birgitte; Røssvoll, Elin; Måge, Ingrid; Møretrø, Trond; Langsrud, Solveig
2016-02-01
Stainless steel coupons are frequently used in biofilm studies in the laboratory, as this material is commonly used in the food industry. The coupons are attached to different surfaces to create a "natural" biofilm to be studied further in laboratory trials. However, little has been done to investigate how well the microbiota on such coupons represents the surrounding environment. The microbiota on sink wall surfaces and on new stainless steel coupons attached to the sink wall for 3 months in 8 domestic kitchen sinks was investigated by next-generation sequencing (MiSeq) of the 16S rRNA gene derived from DNA and RNA (cDNA), and by plating and identification of colonies. The mean number of colony-forming units was about 10-fold higher for coupons than sink surfaces, and more variation in bacterial counts between kitchens was seen on sink surfaces than coupons. The microbiota in the majority of biofilms was dominated by Moraxellaceae (genus Moraxella/Enhydrobacter) and Micrococcaceae (genus Kocuria). The results demonstrated that the variation in the microbiota was mainly due to differences between kitchens (38.2%), followed by the different nucleic acid template (DNA vs RNA) (10.8%), and that only 5.1% of the variation was a result of differences between coupons and sink surfaces. The microbiota variation between sink surfaces and coupons was smaller for samples based on their RNA than on their DNA. Overall, our results suggest that new stainless steel coupons are suited to model the dominating part of the natural microbiota of the surrounding environment and, furthermore, are suitable for different downstream studies.
Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C.
2015-01-01
This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper. PMID:26230694
Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C
2015-07-29
This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper.
NASA Technical Reports Server (NTRS)
Anderson, Kevin R.; Zayas, Daniel; Turner, Daniel
2012-01-01
Computational Fluid Dynamics (CFD) using the commercial CFD package CFDesign has been performed at NASA Jet Propulsion Laboratory (JPL) California Institute of Technology (Caltech) in support of the Phaeton Early Career Hire Program's Optical Payload for Lasercomm Science (OPALS) mission. The OPALS project is one which involves an International Space Station payload that will be using forced convection cooling in a hermetically sealed enclosure at 1 atm of air to cool "off-the-shelf" vendor electronics. The CFD analysis was used to characterize the thermal and fluid flow environment within a complicated labyrinth of electronics boards, fans, instrumentation, harnessing, ductwork and heat exchanger fins. The paradigm of iteratively using CAD/CAE tools and CFD was followed in order to determine the optimum flow geometry and heat sink configuration to yield operational convective film coefficients and temperature survivability limits for the electronics payload. Results from this current CFD analysis and correlation of the CFD model against thermal test data will be presented. Lessons learned and coupled thermal / flow modeling strategies will be shared in this paper.
Acute morphine and cocaine related death after trimethoprim-adultered cocaine abuse.
Fucci, Nadia; Pascali, Vincenzo L
2014-01-01
Over the last few decades, cocaine and morphine (heroin) have been among the primary causes of deaths related to drug abuse. Cocaine is frequently altered by dilution, substitution, contamination, and adulteration. Trimethoprim has never been identified in the powders of cocaine, making this the first post-mortem case report in which the presence of this compound is described. The case reported here is that of a 46-year-old woman with a history of cocaine and morphine abuse who was found dead inside her bathroom. The police found the corpse next to a syringe, with a telephone card containing trace of cocaine on the sink. Toxicological analysis was performed, and drug levels were measured by means of gas chromatography/mass spectrometry. In addition to the presence of cocaine and smaller alkaloids, trimethoprim was also detected on the syringe and telephone card and in the woman's nasal mucosa. Trimethoprim analysis is very quick and easy and can be added to the routine analysis of drugs of abuse seized on the illicit market to obtain more information. © 2014 by the Association of Clinical Scientists, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Federici, G.; Raffray, A.R.; Chiocchio, S.
1995-12-31
This paper presents the results of an analysis carried out to investigate the thermal response of ITER divertor plasma facing components (PFC`s) clad with Be, W, and CFC, to high-recycling, high-power thermal transients (i.e. 10--30 MW/m{sup 2}) which are anticipated to last up to a few seconds. The armour erosion and surface melting are estimated for the different plasma facing materials (PFM`s) together with the maximum heat flux to the coolant, and armour/heat-sink interface temperature. The analysis assumes that intense target evaporation will lead to high radiative power losses in the plasma in front of the target which self-protects themore » target. The cases analyzed clarify the influence of several key parameters such as the plasma heat flux to the target, the loss of the melt layer, the duration of the event, the thickness of the armour, and comparison is made with cases without vapor shielding. Finally, some implications for the performance and lifetime of divertor PFC`s clad with different PFM`s are discussed.« less
Ice pack heat sink subsystem, phase 2. [astronaut life support cooling system
NASA Technical Reports Server (NTRS)
Roebelen, G. J., Jr.; Kellner, J. D.
1975-01-01
The report describes the design, development, fabrication, and test at one gravity of a prototype ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions; the investigation of thermal storage material with the objective of uncovering materials with heats of fusion and/or solution in the range of 300 Btu/lb (700 kilojoules/kilogram); and the planned procedure for implementing an ice pack heat sink subsystem flight experiment. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.
Ahlström, Anders; Raupach, Michael R; Schurgers, Guy; Smith, Benjamin; Arneth, Almut; Jung, Martin; Reichstein, Markus; Canadell, Josep G; Friedlingstein, Pierre; Jain, Atul K; Kato, Etsushi; Poulter, Benjamin; Sitch, Stephen; Stocker, Benjamin D; Viovy, Nicolas; Wang, Ying Ping; Wiltshire, Andy; Zaehle, Sönke; Zeng, Ning
2015-05-22
The growth rate of atmospheric carbon dioxide (CO2) concentrations since industrialization is characterized by large interannual variability, mostly resulting from variability in CO2 uptake by terrestrial ecosystems (typically termed carbon sink). However, the contributions of regional ecosystems to that variability are not well known. Using an ensemble of ecosystem and land-surface models and an empirical observation-based product of global gross primary production, we show that the mean sink, trend, and interannual variability in CO2 uptake by terrestrial ecosystems are dominated by distinct biogeographic regions. Whereas the mean sink is dominated by highly productive lands (mainly tropical forests), the trend and interannual variability of the sink are dominated by semi-arid ecosystems whose carbon balance is strongly associated with circulation-driven variations in both precipitation and temperature. Copyright © 2015, American Association for the Advancement of Science.