Sample records for sinoatrial node automaticity

  1. Direct negative chronotropic action of desflurane on sinoatrial node pacemaker activity in the guinea pig heart.

    PubMed

    Kojima, Akiko; Ito, Yuki; Kitagawa, Hirotoshi; Matsuura, Hiroshi; Nosaka, Shuichi

    2014-06-01

    Desflurane inhalation is associated with sympathetic activation and concomitant increase in heart rate in humans and experimental animals. There is, however, little information concerning the direct effects of desflurane on electrical activity of sinoatrial node pacemaker cells that determines the intrinsic heart rate. Whole-cell patch-clamp experiments were conducted on guinea pig sinoatrial node pacemaker cells to record spontaneous action potentials and ionic currents contributing to sinoatrial node automaticity, namely, hyperpolarization-activated cation current (If), T-type and L-type Ca currents (ICa,T and ICa,L, respectively), Na/Ca exchange current (INCX), and rapidly and slowly activating delayed rectifier K currents (IKr and IKs, respectively). Electrocardiograms were recorded from ex vivo Langendorff-perfused hearts and in vivo hearts. Desflurane at 6 and 12% decreased spontaneous firing rate of sinoatrial node action potentials by 15.9% (n = 11) and 27.6% (n = 10), respectively, which was associated with 20.4% and 42.5% reductions in diastolic depolarization rate, respectively. Desflurane inhibited If, ICa,T, ICa,L, INCX, and IKs but had little effect on IKr. The negative chronotropic action of desflurane was reasonably well reproduced in sinoatrial node computer model. Desflurane reduced the heart rate in Langendorff-perfused hearts. High concentration (12%) of desflurane inhalation was associated with transient tachycardia, which was totally abolished by pretreatment with the β-adrenergic blocker propranolol. Desflurane has a direct negative chronotropic action on sinoatrial node pacemaking activity, which is mediated by its inhibitory action on multiple ionic currents. This direct inhibitory action of desflurane on sinoatrial node automaticity seems to be counteracted by sympathetic activation associated with desflurane inhalation in vivo.

  2. ParamAP: Standardized Parameterization of Sinoatrial Node Myocyte Action Potentials.

    PubMed

    Rickert, Christian; Proenza, Catherine

    2017-08-22

    Sinoatrial node myocytes act as cardiac pacemaker cells by generating spontaneous action potentials (APs). Much information is encoded in sinoatrial AP waveforms, but both the analysis and the comparison of AP parameters between studies is hindered by the lack of standardized parameter definitions and the absence of automated analysis tools. Here we introduce ParamAP, a standalone cross-platform computational tool that uses a template-free detection algorithm to automatically identify and parameterize APs from text input files. ParamAP employs a graphic user interface with automatic and user-customizable input modes, and it outputs data files in text and PDF formats. ParamAP returns a total of 16 AP waveform parameters including time intervals such as the AP duration, membrane potentials such as the maximum diastolic potential, and rates of change of the membrane potential such as the diastolic depolarization rate. ParamAP provides a robust AP detection algorithm in combination with a standardized AP parameter analysis over a wide range of AP waveforms and firing rates, owing in part to the use of an iterative algorithm for the determination of the threshold potential and the diastolic depolarization rate that is independent of the maximum upstroke velocity, a parameter that can vary significantly among sinoatrial APs. Because ParamAP is implemented in Python 3, it is also highly customizable and extensible. In conclusion, ParamAP is a powerful computational tool that facilitates quantitative analysis and enables comparison of sinoatrial APs by standardizing parameter definitions and providing an automated work flow. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Rescuing cardiac automaticity in L-type Cav1.3 channelopathies and beyond.

    PubMed

    Mesirca, Pietro; Bidaud, Isabelle; Mangoni, Matteo E

    2016-10-15

    Pacemaker activity of the sino-atrial node generates the heart rate. Disease of the sinus node and impairment of atrioventricular conduction induce an excessively low ventricular rate (bradycardia), which cannot meet the needs of the organism. Bradycardia accounts for about half of the total workload of clinical cardiologists. The 'sick sinus' syndrome (SSS) is characterized by sinus bradycardia and periods of intermittent atrial fibrillation. Several genetic or acquired risk factors or pathologies can lead to SSS. Implantation of an electronic pacemaker constitutes the only available therapy for SSS. The incidence of SSS is forecast to double over the next 50 years, with ageing of the general population thus urging the development of complementary or alternative therapeutic strategies. In recent years an increasing number of mutations affecting ion channels involved in sino-atrial automaticity have been reported to underlie inheritable SSS. L-type Ca v 1.3 channels play a major role in the generation and regulation of sino-atrial pacemaker activity and atrioventricular conduction. Mutation in the CACNA1D gene encoding Ca v 1.3 channels induces loss-of-function in channel activity and underlies the sino-atrial node dysfunction and deafness syndrome (SANDD). Mice lacking Ca v 1.3 channels (Ca v 1.3 -/- ) fairly recapitulate SSS and constitute a precious model to test new therapeutic approaches to handle this disease. Work in our laboratory shows that targeting G protein-gated K + (I KACh ) channels effectively rescues SSS of Ca v 1.3 -/- mice. This new concept of 'compensatory' ion channel targeting shines new light on the principles underlying the pacemaker mechanism and may open the way to new therapies for SSS. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  4. Expression of key ion channels in the rat cardiac conduction system by laser capture microdissection and quantitative real-time PCR.

    PubMed

    Ou, Yan; Niu, Xiao-lin; Ren, Fu-xian

    2010-09-01

    The objective of this study was to investigate the molecular basis of the inferior nodal extension (INE) in the atrioventricular junctional area that accounts for arrhythmias. The INE was separated from the adult rat heart by laser capture microdissection. The mRNA expression of ion channels was detected by quantitative real-time PCR. Hierarchical clustering was used to demonstrate clustering of expression of genes in sections. The mRNA expression of HCN4, Ca(v)3.1 and Ca(v)3.2 was high in the INE, atrioventricular node and sino-atrial node, and that of Ca(v)3.2 high in Purkinje fibres. Although the expression of HCN1 and Ca(v)1.3 was low in the rat heart, it was relatively higher in the INE, atrioventricular node and sino-atrial node than in right atrial and right ventricular (working) myocytes. Both HCN2 and Ca(v)1.2 were expressed at higher levels in working myocytes than in nodal tissues and in the INE. Hierarchical clustering analysis demonstrated that the expression of the HCN and calcium channels in INE was similar to that in the slow-response automatic cells and different from that in working myocytes and Purkinje fibres. The expression of HCN and calcium channels in the INE of the adult rat heart is similar to that of slow-response automatic cells and provides a substrate for automatic phase 4 depolarization in cells.

  5. Sick sinus syndrome in HCN1-deficient mice.

    PubMed

    Fenske, Stefanie; Krause, Stefanie C; Hassan, Sami I H; Becirovic, Elvir; Auer, Franziska; Bernard, Rebekka; Kupatt, Christian; Lange, Philipp; Ziegler, Tilman; Wotjak, Carsten T; Zhang, Henggui; Hammelmann, Verena; Paparizos, Christos; Biel, Martin; Wahl-Schott, Christian A

    2013-12-17

    Sinus node dysfunction (SND) is a major clinically relevant disease that is associated with sudden cardiac death and requires surgical implantation of electric pacemaker devices. Frequently, SND occurs in heart failure and hypertension, conditions that lead to electric instability of the heart. Although the pathologies of acquired SND have been studied extensively, little is known about the molecular and cellular mechanisms that cause congenital SND. Here, we show that the HCN1 protein is highly expressed in the sinoatrial node and is colocalized with HCN4, the main sinoatrial pacemaker channel isoform. To characterize the cardiac phenotype of HCN1-deficient mice, a detailed functional characterization of pacemaker mechanisms in single isolated sinoatrial node cells, explanted beating sinoatrial node preparation, telemetric in vivo electrocardiography, echocardiography, and in vivo electrophysiology was performed. On the basis of these experiments we demonstrate that mice lacking the pacemaker channel HCN1 display congenital SND characterized by bradycardia, sinus dysrhythmia, prolonged sinoatrial node recovery time, increased sinoatrial conduction time, and recurrent sinus pauses. As a consequence of SND, HCN1-deficient mice display a severely reduced cardiac output. We propose that HCN1 stabilizes the leading pacemaker region within the sinoatrial node and hence is crucial for stable heart rate and regular beat-to-beat variation. Furthermore, we suggest that HCN1-deficient mice may be a valuable genetic disease model for human SND.

  6. Role of sinoatrial node architecture in maintaining a balanced source-sink relationship and synchronous cardiac pacemaking

    PubMed Central

    Unudurthi, Sathya D.; Wolf, Roseanne M.; Hund, Thomas J.

    2014-01-01

    Normal heart rhythm (sinus rhythm) depends on regular activity of the sinoatrial node (SAN), a heterogeneous collection of specialized myocytes in the right atrium. SAN cells, in general, possess a unique electrophysiological profile that promotes spontaneous electrical activity (automaticity). However, while automaticity is required for normal pacemaking, it is not necessarily sufficient. Less appreciated is the importance of the elaborate structure of the SAN complex for proper pacemaker function. Here, we review the important structural features of the SAN with a focus on how these elements help manage a precarious balance between electrical charge generated by the SAN (“source”) and the charge needed to excite the surrounding atrial tissue (“sink”). We also discuss how compromised “source-sink” balance due, for example to fibrosis, may promote SAN dysfunction, characterized by slow and/or asynchronous pacemaker activity and even failure, in the setting of cardiovascular disease (e.g., heart failure, atrial fibrillation). Finally, we discuss implications of the “source-sink” balance in the SAN complex for cell and gene therapies aimed at creating a biological pacemaker as replacement or bridge to conventional electronic pacemakers. PMID:25505419

  7. Local opiate receptors in the sinoatrial node moderate vagal bradycardia.

    PubMed

    Farias, M; Jackson, K; Stanfill, A; Caffrey, J L

    2001-02-20

    Met-enkephalin-arg-phe (MEAP) interrupts vagal bradycardia when infused into the systemic circulation. This study was designed to locate the opiate receptors functionally responsible for this inhibition. Previous observations suggested that the receptors were most likely located in either intracardiac parasympathetic ganglia or the pre-junctional nerve terminals innervating the sinoatrial node. In this study 10 dogs were instrumented with a microdialysis probe inserted into the sinoatrial node. The functional position of the probe was tested by briefly introducing norepinephrine into the probe producing an increase in heart rate of more than 30 beats/min. Vagal stimulations were conducted at 0.5, 1.2 and 4 Hz during vehicle infusion (saline ascorbate). Cardiovascular responses during vagal stimulation were recorded on-line. MEAP was infused directly into the sinoatrial node via the microdialysis probe. The evaluation of vagal bradycardia was repeated during the nodal application of MEAP, diprenorphine (opiate antagonist), and diprenorphine co-infused with MEAP. MEAP introduced into the sinoatrial node via the microdialysis probe reduced vagal bradycardia by more than half. Simultaneous local nodal blockade of these receptors with the opiate antagonist, diprenorphine, eliminated the effect of MEAP demonstrating the participation by opiate receptors. Systemic infusions of MEAP produced a reduction in vagal bradycardia nearly identical to that observed during nodal administration. When local nodal opiate receptors were blocked with diprenorphine, the systemic effect of MEAP was eliminated. These data lead us to suggest that the opiate receptors responsible for the inhibition of vagal bradycardia are located within the sinoatrial node with few, if any, participating extra-nodal or ganglionic receptors.

  8. Three-Dimensional Computer Model of the Right Atrium Including the Sinoatrial and Atrioventricular Nodes Predicts Classical Nodal Behaviours

    PubMed Central

    Li, Jue; Inada, Shin; Schneider, Jurgen E.; Zhang, Henggui; Dobrzynski, Halina; Boyett, Mark R.

    2014-01-01

    The aim of the study was to develop a three-dimensional (3D) anatomically-detailed model of the rabbit right atrium containing the sinoatrial and atrioventricular nodes to study the electrophysiology of the nodes. A model was generated based on 3D images of a rabbit heart (atria and part of ventricles), obtained using high-resolution magnetic resonance imaging. Segmentation was carried out semi-manually. A 3D right atrium array model (∼3.16 million elements), including eighteen objects, was constructed. For description of cellular electrophysiology, the Rogers-modified FitzHugh-Nagumo model was further modified to allow control of the major characteristics of the action potential with relatively low computational resource requirements. Model parameters were chosen to simulate the action potentials in the sinoatrial node, atrial muscle, inferior nodal extension and penetrating bundle. The block zone was simulated as passive tissue. The sinoatrial node, crista terminalis, main branch and roof bundle were considered as anisotropic. We have simulated normal and abnormal electrophysiology of the two nodes. In accordance with experimental findings: (i) during sinus rhythm, conduction occurs down the interatrial septum and into the atrioventricular node via the fast pathway (conduction down the crista terminalis and into the atrioventricular node via the slow pathway is slower); (ii) during atrial fibrillation, the sinoatrial node is protected from overdrive by its long refractory period; and (iii) during atrial fibrillation, the atrioventricular node reduces the frequency of action potentials reaching the ventricles. The model is able to simulate ventricular echo beats. In summary, a 3D anatomical model of the right atrium containing the cardiac conduction system is able to simulate a wide range of classical nodal behaviours. PMID:25380074

  9. If and SR Ca2+ release both contribute to pacemaker activity in canine sinoatrial node cells

    PubMed Central

    Gao, Zhan; Chen, Biyi; Joiner, Mei-ling A.; Wu, Yuejin; Guan, Xiaoqun; Koval, Olha M.; Chaudhary, Ashok K.; Cunha, Shane R.; Mohler, Peter J.; Martins, James B.; Song, Long-Sheng; Anderson, Mark E.

    2010-01-01

    Increasing evidence suggests that cardiac pacemaking is the result of two sinoatrial node (SAN) cell mechanisms: a ‘voltage clock’ and a Ca2+ dependent process, or ‘Ca2+ clock.’ The voltage clock initiates action potentials (APs) by SAN cell membrane potential depolarization from inward currents, of which the pacemaker current (If) is thought to be particularly important. A Ca2+ dependent process triggers APs when sarcoplasmic reticulum (SR) Ca2+ release activates inward current carried by the forward mode of the electrogenic Na+/Ca2+ exchanger (NCX). However, these mechanisms have mostly been defined in rodents or rabbits, but are unexplored in single SAN cells from larger animals. Here, we used patch-clamp and confocal microscope techniques to explore the roles of the voltage and Ca2+ clock mechanisms in canine SAN pacemaker cells. We found that ZD7288, a selective If antagonist, significantly reduced basal automaticity and induced irregular, arrhythmia-like activity in canine SAN cells. In addition, ZD7288 impaired but did not eliminate the SAN cell rate acceleration by isoproterenol. In contrast, ryanodine significantly reduced the SAN cell acceleration by isoproterenol, while ryanodine reduction of basal automaticity was modest (∼14%) and did not reach statistical significance. Importantly, pretreatment with ryanodine eliminated SR Ca2+ release, but did not affect basal or isoproterenol-enhanced If. Taken together, these results indicate that voltage and Ca2+ dependent automaticity mechanisms coexist in canine SAN cells, and suggest If and SR Ca2+ release cooperate to determine baseline and catecholamine-dependent automaticity in isolated dog SAN cells. PMID:20380837

  10. Carvedilol analog modulates both basal and stimulated sinoatrial node automaticity.

    PubMed

    Shinohara, Tetsuji; Kim, Daehyeok; Joung, Boyoung; Maruyama, Mitsunori; Vembaiyan, Kannan; Back, Thomas G; Wayne Chen, S R; Chen, Peng-Sheng; Lin, Shien-Fong

    2014-05-01

    The membrane voltage clock and calcium (Ca(2+)) clock jointly regulate sinoatrial node (SAN) automaticity. VK-II-36 is a novel carvedilol analog that suppresses sarcoplasmic reticulum (SR) Ca(2+) release but does not block the β-receptor. The effect of VK-II-36 on SAN function remains unclear. The purpose of this study was to evaluate whether VK-II-36 can influence SAN automaticity by inhibiting the Ca(2+) clock. We simultaneously mapped intracellular Ca(2+) and membrane potential in 24 isolated canine right atriums using previously described criteria of the timing of late diastolic intracellular Ca elevation (LDCAE) relative to the action potential upstroke to detect the Ca(2+) clock. Pharmacological interventions with isoproterenol (ISO), ryanodine, caffeine, and VK-II-36 were performed after baseline recordings. VK-II-36 caused sinus rate downregulation and reduced LDCAE in the pacemaking site under basal conditions (P < 0.01). ISO induced an upward shift of the pacemaking site in SAN and augmented LDCAE in the pacemaking site. ISO also significantly and dose-dependently increased the sinus rate. The treatment of VK-II-36 (30 μmol/l) abolished both the ISO-induced shift of the pacemaking site and augmentation of LDCAE (P < 0.01), and it suppressed the ISO-induced increase in sinus rate (P = 0.02). Our results suggest that the sinus rate may be partly controlled by the Ca(2+) clock via SR Ca(2+) release during β-adrenergic stimulation.

  11. Carvedilol Analogue Modulates both Basal and Stimulated Sinoatrial Node Automaticity

    PubMed Central

    Shinohara, Tetsuji; Kim, Daehyeok; Joung, Boyoung; Maruyama, Mitsunori; Vembaiyan, Kannan; Back, Thomas G.; Chen, S.R. Wayne; Chen, Peng-Sheng; Lin, Shien-Fong

    2013-01-01

    Background The membrane voltage clock and calcium (Ca2+) clock jointly regulate sinoatrial node (SAN) automaticity. VK-II-36 is a novel carvedilol analog that suppress sarcoplasmic reticulum (SR) Ca2+ release but does not block β-receptor. The effect of VK-II-36 on SAN function remains unclear. The purpose of this study was to evaluate whether VK-II-36 can influence SAN automaticity through inhibiting the Ca2+ clock. Methods and Results We simultaneously mapped intracellular Ca2+ and membrane potential in 24 isolated canine right atriums, using previously described criteria of the timing of late diastolic intracellular Ca elevation (LDCAE) relative to the action potential upstroke to detect the Ca2+ clock. Pharmacological intervention with isoproterenol (ISO), ryanodine, caffeine, and VK-II-36 were performed after baseline recordings. VK-II-36 caused sinus rate downregulation and reduced LDCAE in the pacemaking site under basal condition (P<0.01). ISO induced an upward shift of the pacemaking site in SAN and augmented LDCAE in pacemaking site. ISO also significantly and dose-dependently increased the sinus rate. The treatment of VK-II-36 (30 μmol/L) abolished both the ISO-induced shift of pacemaking site and augmentation of LDCAE (P<0.01), and suppressed the ISO-induced increase in sinus rate (P=0.02). Conclusions Our results suggest that sinus rate may be partly controlled by Ca2+ clock via SR Ca2+ release during β-adrenergic stimulation. PMID:23836067

  12. Prediction model of sinoatrial node field potential using high order partial least squares.

    PubMed

    Feng, Yu; Cao, Hui; Zhang, Yanbin

    2015-01-01

    High order partial least squares (HOPLS) is a novel data processing method. It is highly suitable for building prediction model which has tensor input and output. The objective of this study is to build a prediction model of the relationship between sinoatrial node field potential and high glucose using HOPLS. The three sub-signals of the sinoatrial node field potential made up the model's input. The concentration and the actuation duration of high glucose made up the model's output. The results showed that on the premise of predicting two dimensional variables, HOPLS had the same predictive ability and a lower dispersion degree compared with partial least squares (PLS).

  13. Regulation of basal and reserve cardiac pacemaker function by interactions of cAMP mediated PKA-dependent Ca2+ cycling with surface membrane channels

    PubMed Central

    Vinogradova, Tatiana M.; Lakatta, Edward G.

    2009-01-01

    Decades of intensive research of primary cardiac pacemaker, the sinoatrial node, have established potential roles of specific membrane channels in the generation of the diastolic depolarization, the major mechanism allowing sinoatrial node cells generate spontaneous beating. During the last three decades, multiple studies made either in the isolated sinoatrial node or sinoatrial node cells have demonstrated a pivotal role of Ca2+ and, specifically Ca2+-release from sarcoplasmic reticulum, for spontaneous beating of cardiac pacemaker. Recently, spontaneous, rhythmic local subsarcolemmal Ca2+ releases from ryanodine receptors during late half of the diastolic depolarization have been implicated as a vital factor in the generation of sinoatrial node cells spontaneous firing. Local Ca2+ releases are driven by a unique combination of high basal cAMP production by adenylyl cyclases, high basal cAMP degradation by phosphodiesterases and a high level of cAMP-mediated PKA-dependent phosphorylation. These local Ca2+ releases activate an inward Na+-Ca2+ exchange current which accelerates the terminal diastolic depolarization rate and, thus, controls the spontaneous pacemaker firing. Both the basal primary pacemaker beating rate and its modulation via β-adrenergic receptor stimulation appear to be critically dependent upon intact RyR function and local subsarcolemmal sarcoplasmic reticulum generated Ca2+ releases. This review aspires to integrate the traditional viewpoint that has emphasized the supremacy of the ensemble of surface membrane ion channels in spontaneous firing of the primary cardiac pacemaker, and these novel perspectives of cAMP-mediated PKA-dependent Ca2+ cycling in regulation of the heart pacemaker clock, both in the basal state and during β-adrenergic receptor stimulation. PMID:19573534

  14. Heterogeneous expression of Ca(2+) handling proteins in rabbit sinoatrial node.

    PubMed

    Musa, Hanny; Lei, Ming; Honjo, Hauro; Jones, Sandra A; Dobrzynski, Halina; Lancaster, Mathew K; Takagishi, Yoshiko; Henderson, Zaineb; Kodama, Itsuo; Boyett, Mark R

    2002-03-01

    We investigated the densities of the L-type Ca(2+) current, i(Ca,L), and various Ca(2+) handling proteins in rabbit sinoatrial (SA) node. The density of i(Ca,L), recorded with the whole-cell patch-clamp technique, varied widely in sinoatrial node cells. The density of i(Ca,L) was significantly (p<0.001) correlated with cell capacitance (measure of cell size) and the density was greater in larger cells (likely to be from the periphery of the SA node) than in smaller cells (likely to be from the center of the SA node). Immunocytochemical labeling of the L-type Ca(2+) channel, Na(+)-Ca(2+) exchanger, sarcoplasmic reticulum Ca(2+) release channel (RYR2), and sarcoplasmic reticulum Ca(2+) pump (SERCA2) also varied widely in SA node cells. In all cases there was significantly (p<0.05) denser labeling of cells from the periphery of the SA node than of cells from the center. In contrast, immunocytochemical labeling of the Na(+)-K(+) pump was similar in peripheral and central cells. We conclude that Ca(2+) handling proteins are sparse and poorly organized in the center of the SA node (normally the leading pacemaker site), whereas they are more abundant in the periphery (at the border of the SA node with the surrounding atrial muscle).

  15. Inhibitory effects of sevoflurane on pacemaking activity of sinoatrial node cells in guinea-pig heart

    PubMed Central

    Kojima, Akiko; Kitagawa, Hirotoshi; Omatsu-Kanbe, Mariko; Matsuura, Hiroshi; Nosaka, Shuichi

    2012-01-01

    BACKGROUND AND PURPOSE The volatile anaesthetic sevoflurane affects heart rate in clinical settings. The present study investigated the effect of sevoflurane on sinoatrial (SA) node automaticity and its underlying ionic mechanisms. EXPERIMENTAL APPROACH Spontaneous action potentials and four ionic currents fundamental for pacemaking, namely, the hyperpolarization-activated cation current (If), T-type and L-type Ca2+ currents (ICa,T and ICa,L, respectively), and slowly activating delayed rectifier K+ current (IKs), were recorded in isolated guinea-pig SA node cells using perforated and conventional whole-cell patch-clamp techniques. Heart rate in guinea-pigs was recorded ex vivo in Langendorff mode and in vivo during sevoflurane inhalation. KEY RESULTS In isolated SA node cells, sevoflurane (0.12–0.71 mM) reduced the firing rate of spontaneous action potentials and its electrical basis, diastolic depolarization rate, in a qualitatively similar concentration-dependent manner. Sevoflurane (0.44 mM) reduced spontaneous firing rate by approximately 25% and decreased If, ICa,T, ICa,L and IKs by 14.4, 31.3, 30.3 and 37.1%, respectively, without significantly affecting voltage dependence of current activation. The negative chronotropic effect of sevoflurane was partly reproduced by a computer simulation of SA node cell electrophysiology. Sevoflurane reduced heart rate in Langendorff-perfused hearts, but not in vivo during sevoflurane inhalation in guinea-pigs. CONCLUSIONS AND IMPLICATIONS Sevoflurane at clinically relevant concentrations slowed diastolic depolarization and thereby reduced pacemaking activity in SA node cells, at least partly due to its inhibitory effect on If, ICa,T and ICa,L. These findings provide an important electrophysiological basis of alterations in heart rate during sevoflurane anaesthesia in clinical settings. PMID:22356456

  16. Diadenosine Polyphosphates Suppress the Effects of Sympathetic Nerve Stimulation in Rabbit Heart Pacemaker.

    PubMed

    Abramochkin, D V; Pustovit, K B; Kuz'min, V S

    2017-09-01

    The modulatory influence of diadenosine tetraphosphate (Ap4A) and diadenosine pentaphosphate (Ap5A) on the effect of intramural autonomic nerve stimulation in isolated rabbit sinoatrial node were examined. Electrical activity of the sinoatrial node was recorded intracellularly. Against the background of blockade of adrenergic effects with propranolol (3×10 -6 M) or in preparations isolated 2 h after injection of reserpine (2 mg/kg), nerve stimulation induced short-term membrane hyperpolarization and diminished the sinus node firing rate. These phenomena were not affected by Ap4A or Ap5A (10 -5 M). Under the action of atropine (3×10 -6 M) that completely eliminated the cholinergic influences, nerve stimulation enhanced the sinus node firing rate by 17.30±3.45% from the initial rate. Both Ap4A and Ap5A moderated the stimulation-induced elevation of firing rate to 9.9±2.8 and 10.5±2.9%, respectively. The data suggest that diadenosine polyphosphates significantly modulate the sympathetic influences on the heart rhythm, but have no effect on the parasympathetic control over activity of sinoatrial node.

  17. Morphological study of the innervation pattern of the rabbit sinoatrial node

    NASA Technical Reports Server (NTRS)

    Roberts, L. A.; Slocum, G. R.; Riley, D. A.

    1989-01-01

    The pattern of sinoatrial (SA) node innervations in rabbit was elucidated using a newly developed highly reproducible cholinesterase/silver impregnation staining procedure which made it possible to delineate large nerves, fine processes, and ganglion cells. The SA node and dominant pacemaker sites were identified by microelectrode recording. A generalized pattern of innnervation was recognized, which includes a large ganglionic complex inferior to the SA node; two or more moderately large nerves traversing the SA node parallel to the crista terminalis; nerves entering the intercaval region from the septum, the superior vena cava, and the inferior vena cava to impinge on the SA node; and a fine network of nerve processes, which was particularly dense in the SA node. From the location and distribution of the nerves and ganglionic branches, it can be inferred that the neural network in the intercaval region is capable of performing complex modulatory and integrative functions among the structures within this region.

  18. A case of atrial tachycardia treated with ivabradine as bridge to ablation.

    PubMed

    Meles, Ester; Carbone, Claudio; Maggiolini, Stefano; Moretti, Paolo; DE Carlini, Caterina C; Gentile, Gaetano; Gnecchi-Ruscone, Tomaso

    2015-05-01

    Ivabradine is indicated in cardiac failure and ischemia to reduce sinus rate by inhibition of the pacemaker I(f) current in sinoatrial node. We report a case of an 18-year-old woman with left atrial tachyarrhythmia resistant to several antiarrhythmic drugs and to electric cardioversion who responded only to ivabradine, which significantly reduced heart rate without abolishing the arrhythmia itself. An ectopic focus in the ostium of left pulmonary veins was found and the patient was successfully ablated. We suggest that ivabradine might be therefore useful in the treatment of supraventricular tachyarrhythmias due to an enhanced automaticity. © 2015 Wiley Periodicals, Inc.

  19. Metabolic Syndrome Remodels Electrical Activity of the Sinoatrial Node and Produces Arrhythmias in Rats

    PubMed Central

    Albarado-Ibañez, Alondra; Avelino-Cruz, José Everardo; Velasco, Myrian; Torres-Jácome, Julián; Hiriart, Marcia

    2013-01-01

    In the last ten years, the incidences of metabolic syndrome and supraventricular arrhythmias have greatly increased. The metabolic syndrome is a cluster of alterations, which include obesity, hypertension, hypertriglyceridemia, glucose intolerance and insulin resistance, that increase the risk of developing, among others, atrial and nodal arrhythmias. The aim of this study is to demonstrate that metabolic syndrome induces electrical remodeling of the sinus node and produces arrhythmias. We induced metabolic syndrome in 2-month-old male Wistar rats by administering 20% sucrose in the drinking water. Eight weeks later, the rats were anesthetized and the electrocardiogram was recorded, revealing the presence of arrhythmias only in treated rats. Using conventional microelectrode and voltage clamp techniques, we analyzed the electrical activity of the sinoatrial node. We observed that in the sinoatrial node of “metabolic syndrome rats”, compared to controls, the spontaneous firing of all cells decreased, while the slope of the diastolic depolarization increased only in latent pacemaker cells. Accordingly, the pacemaker currents If and Ist increased. Furthermore, histological analysis showed a large amount of fat surrounding nodal cardiomyocytes and a rise in the sympathetic innervation. Finally, Poincaré plot denoted irregularity in the R-R and P-P ECG intervals, in agreement with the variability of nodal firing potential recorded in metabolic syndrome rats. We conclude that metabolic syndrome produces a dysfunction SA node by disrupting normal architecture and the electrical activity, which could explain the onset of arrhythmias in rats. PMID:24250786

  20. Metabolic syndrome remodels electrical activity of the sinoatrial node and produces arrhythmias in rats.

    PubMed

    Albarado-Ibañez, Alondra; Avelino-Cruz, José Everardo; Velasco, Myrian; Torres-Jácome, Julián; Hiriart, Marcia

    2013-01-01

    In the last ten years, the incidences of metabolic syndrome and supraventricular arrhythmias have greatly increased. The metabolic syndrome is a cluster of alterations, which include obesity, hypertension, hypertriglyceridemia, glucose intolerance and insulin resistance, that increase the risk of developing, among others, atrial and nodal arrhythmias. The aim of this study is to demonstrate that metabolic syndrome induces electrical remodeling of the sinus node and produces arrhythmias. We induced metabolic syndrome in 2-month-old male Wistar rats by administering 20% sucrose in the drinking water. Eight weeks later, the rats were anesthetized and the electrocardiogram was recorded, revealing the presence of arrhythmias only in treated rats. Using conventional microelectrode and voltage clamp techniques, we analyzed the electrical activity of the sinoatrial node. We observed that in the sinoatrial node of "metabolic syndrome rats", compared to controls, the spontaneous firing of all cells decreased, while the slope of the diastolic depolarization increased only in latent pacemaker cells. Accordingly, the pacemaker currents If and Ist increased. Furthermore, histological analysis showed a large amount of fat surrounding nodal cardiomyocytes and a rise in the sympathetic innervation. Finally, Poincaré plot denoted irregularity in the R-R and P-P ECG intervals, in agreement with the variability of nodal firing potential recorded in metabolic syndrome rats. We conclude that metabolic syndrome produces a dysfunction SA node by disrupting normal architecture and the electrical activity, which could explain the onset of arrhythmias in rats.

  1. Effect of Exogenous Extracellular Nicotinamide Adenine Dinucleotide (NAD⁺) on Bioelectric Activity of the Pacemaker and Conduction System of the Heart.

    PubMed

    Pustovit, K B; Kuz'min, V S; Sukhova, G S

    2015-06-01

    In rat sinoatrial node, NAD(+) (10 μM) reduced the rate of spontaneous action potentials, duration of action potentials, and the velocity of slow diastolic depolarization, but the rate of action potential front propagation increases. In passed rabbit Purkinje fibers, NAD(+) (10 μM) reduced the duration of action potentials. Under conditions of spontaneous activity of Purkinje fibers, NAD(+) reduced the fi ring rate and the rate of slow diastolic depolarization. The effects of extracellular NAD(+) on bioelectric activity of the pacemaker (sinoatrial node) and conduction system of the heart (Purkinje fibers) are probably related to activation of P1 and P2 purinoceptors.

  2. Mathematical Models of Cardiac Pacemaking Function

    NASA Astrophysics Data System (ADS)

    Li, Pan; Lines, Glenn T.; Maleckar, Mary M.; Tveito, Aslak

    2013-10-01

    Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.

  3. Human embryonic and induced pluripotent stem cell-derived cardiomyocytes exhibit beat rate variability and power-law behavior.

    PubMed

    Mandel, Yael; Weissman, Amir; Schick, Revital; Barad, Lili; Novak, Atara; Meiry, Gideon; Goldberg, Stanislav; Lorber, Avraham; Rosen, Michael R; Itskovitz-Eldor, Joseph; Binah, Ofer

    2012-02-21

    The sinoatrial node is the main impulse-generating tissue in the heart. Atrioventricular conduction block and arrhythmias caused by sinoatrial node dysfunction are clinically important and generally treated with electronic pacemakers. Although an excellent solution, electronic pacemakers incorporate limitations that have stimulated research on biological pacing. To assess the suitability of potential biological pacemakers, we tested the hypothesis that the spontaneous electric activity of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) exhibit beat rate variability and power-law behavior comparable to those of human sinoatrial node. We recorded extracellular electrograms from hESC-CMs and iPSC-CMs under stable conditions for up to 15 days. The beat rate time series of the spontaneous activity were examined in terms of their power spectral density and additional methods derived from nonlinear dynamics. The major findings were that the mean beat rate of hESC-CMs and iPSC-CMs was stable throughout the 15-day follow-up period and was similar in both cell types, that hESC-CMs and iPSC-CMs exhibited intrinsic beat rate variability and fractal behavior, and that isoproterenol increased and carbamylcholine decreased the beating rate in both hESC-CMs and iPSC-CMs. This is the first study demonstrating that hESC-CMs and iPSC-CMs exhibit beat rate variability and power-law behavior as in humans, thus supporting the potential capability of these cell sources to serve as biological pacemakers. Our ability to generate sinoatrial-compatible spontaneous cardiomyocytes from the patient's own hair (via keratinocyte-derived iPSCs), thus eliminating the critical need for immunosuppression, renders these myocytes an attractive cell source as biological pacemakers.

  4. The in vivo regulation of heart rate in the murine sinoatrial node by stimulatory and inhibitory heterotrimeric G proteins

    PubMed Central

    Sebastian, Sonia; Ang, Richard; Abramowitz, Joel; Weinstein, Lee S.; Chen, Min; Ludwig, Andreas; Birnbaumer, Lutz

    2013-01-01

    Reciprocal physiological modulation of heart rate is controlled by the sympathetic and parasympathetic systems acting on the sinoatrial (SA) node. However, there is little direct in vivo work examining the role of stimulatory and inhibitory G protein signaling in the SA node. Thus, we designed a study to examine the role of the stimulatory (Gαs) and inhibitory G protein (Gαi2) in in vivo heart rate regulation in the SA node in the mouse. We studied mice with conditional deletion of Gαs and Gαi2 in the conduction system using cre-loxP technology. We crossed mice in which cre recombinase expression was driven by a tamoxifen-inducible conduction system-specific construct with “Gαs floxed” and “Gαi2 floxed” mice. We studied the heart rate responses of adult mice compared with littermate controls by using radiotelemetry before and after administration of tamoxifen. The mice with conditional deletion of Gαs and Gαi2 had a loss of diurnal variation and were bradycardic or tachycardic, respectively, in the daytime. In mice with conditional deletion of Gαs, there was a selective loss of low-frequency power, while with deletion of Gαi2, there was a loss of high-frequency power in power spectral analysis of heart rate variability. There was no evidence of pathological arrhythmia. Pharmacological modulation of heart rate by isoprenaline was impaired in the Gαs mice, but a muscarinic agonist was still able to slow the heart rate in Gαi2 mice. We conclude that Gαs- and Gαi2-mediated signaling in the sinoatrial node is important in the reciprocal regulation of heart rate through the autonomic nervous system. PMID:23697798

  5. The in vivo regulation of heart rate in the murine sinoatrial node by stimulatory and inhibitory heterotrimeric G proteins.

    PubMed

    Sebastian, Sonia; Ang, Richard; Abramowitz, Joel; Weinstein, Lee S; Chen, Min; Ludwig, Andreas; Birnbaumer, Lutz; Tinker, Andrew

    2013-08-15

    Reciprocal physiological modulation of heart rate is controlled by the sympathetic and parasympathetic systems acting on the sinoatrial (SA) node. However, there is little direct in vivo work examining the role of stimulatory and inhibitory G protein signaling in the SA node. Thus, we designed a study to examine the role of the stimulatory (Gαs) and inhibitory G protein (Gαi2) in in vivo heart rate regulation in the SA node in the mouse. We studied mice with conditional deletion of Gαs and Gαi2 in the conduction system using cre-loxP technology. We crossed mice in which cre recombinase expression was driven by a tamoxifen-inducible conduction system-specific construct with "Gαs floxed" and "Gαi2 floxed" mice. We studied the heart rate responses of adult mice compared with littermate controls by using radiotelemetry before and after administration of tamoxifen. The mice with conditional deletion of Gαs and Gαi2 had a loss of diurnal variation and were bradycardic or tachycardic, respectively, in the daytime. In mice with conditional deletion of Gαs, there was a selective loss of low-frequency power, while with deletion of Gαi2, there was a loss of high-frequency power in power spectral analysis of heart rate variability. There was no evidence of pathological arrhythmia. Pharmacological modulation of heart rate by isoprenaline was impaired in the Gαs mice, but a muscarinic agonist was still able to slow the heart rate in Gαi2 mice. We conclude that Gαs- and Gαi2-mediated signaling in the sinoatrial node is important in the reciprocal regulation of heart rate through the autonomic nervous system.

  6. Heart Anatomy

    MedlinePlus

    ... aorta, your body’s largest artery. The Conduction System Electrical impulses from your heart muscle (the myocardium) cause your heart to contract. This electrical signal begins in the sinoatrial (SA) node, located ...

  7. Diastolic Dysfunction

    MedlinePlus

    ... the sinoatrial or SA node) sends out an electrical signal that causes the atria to contract. This ... when the ventricles are full of blood. The electrical signals cause the ventricles to contract and push ...

  8. Sick sinus syndrome

    MedlinePlus

    ... the heart (atria). This area is the heart's pacemaker. It may be called the sinoatrial node, sinus ... do so. You may need a permanent implanted pacemaker if your symptoms are related to bradycardia (slow ...

  9. Expression and distribution of voltage-gated ion channels in ferret sinoatrial node.

    PubMed

    Brahmajothi, Mulugu V; Morales, Michael J; Campbell, Donald L; Steenbergen, Charles; Strauss, Harold C

    2010-10-01

    Spontaneous diastolic depolarization in the sinoatrial (SA) node enables it to serve as pacemaker of the heart. The variable cell morphology within the SA node predicts that ion channel expression would be heterogeneous and different from that in the atrium. To evaluate ion channel heterogeneity within the SA node, we used fluorescent in situ hybridization to examine ion channel expression in the ferret SA node region and atrial appendage. SA nodal cells were distinguished from surrounding cardiac myocytes by expression of the slow (SA node) and cardiac (surrounding tissue) forms of troponin I. Nerve cells in the sections were identified by detection of GAP-43 and cytoskeletal middle neurofilament. Transcript expression was characterized for the 4 hyperpolarization-activated cation channels, 6 voltage-gated Na(+) channels, 3 voltage-gated Ca(2+) channels, 24 voltage-gated K(+) channel α-subunits, and 3 ancillary subunits. To ensure that transcript expression was representative of protein expression, immunofluorescence was used to verify localization patterns of voltage-dependent K(+) channels. Colocalizations were performed to observe any preferential patterns. Some overlapping and nonoverlapping binding patterns were observed. Measurement of different cation channel transcripts showed heterogeneous expression with many different patterns of expression, attesting to the complexity of electrical activity in the SA node. This study provides insight into the possible role ion channel heterogeneity plays in SA node pacemaker activity.

  10. Tachycardia | Fast Heart Rate

    MedlinePlus

    ... sinoatrial (SA) node --- the heart's natural pacemaker. A series of early beats in the atria speeds up the heart rate. The rapid heartbeat does not allow enough time for the heart to fill before it contracts ...

  11. Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels

    PubMed Central

    Weisbrod, David; Khun, Shiraz Haron; Bueno, Hanna; Peretz, Asher; Attali, Bernard

    2016-01-01

    The proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. The sinoatrial node (SAN) in human right atrium generates an electrical stimulation approximately 70 times per minute, which propagates from a conductive network to the myocardium leading to chamber contractions during the systoles. Although the SAN and other nodal conductive structures were identified more than a century ago, the mechanisms involved in the generation of cardiac automaticity remain highly debated. In this short review, we survey the current data related to the development of the human cardiac conduction system and the various mechanisms that have been proposed to underlie the pacemaker activity. We also present the human embryonic stem cell-derived cardiomyocyte system, which is used as a model for studying the pacemaker. Finally, we describe our latest characterization of the previously unrecognized role of the SK4 Ca2+-activated K+ channel conductance in pacemaker cells. By exquisitely balancing the inward currents during the diastolic depolarization, the SK4 channels appear to play a crucial role in human cardiac automaticity. PMID:26725737

  12. Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels.

    PubMed

    Weisbrod, David; Khun, Shiraz Haron; Bueno, Hanna; Peretz, Asher; Attali, Bernard

    2016-01-01

    The proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. The sinoatrial node (SAN) in human right atrium generates an electrical stimulation approximately 70 times per minute, which propagates from a conductive network to the myocardium leading to chamber contractions during the systoles. Although the SAN and other nodal conductive structures were identified more than a century ago, the mechanisms involved in the generation of cardiac automaticity remain highly debated. In this short review, we survey the current data related to the development of the human cardiac conduction system and the various mechanisms that have been proposed to underlie the pacemaker activity. We also present the human embryonic stem cell-derived cardiomyocyte system, which is used as a model for studying the pacemaker. Finally, we describe our latest characterization of the previously unrecognized role of the SK4 Ca(2+)-activated K(+) channel conductance in pacemaker cells. By exquisitely balancing the inward currents during the diastolic depolarization, the SK4 channels appear to play a crucial role in human cardiac automaticity.

  13. [Late arrhythmias in the operated interatrial communication. Analysis of sinus node function and the conduction pathways by His bundle electrocardiography].

    PubMed

    Ramírez, A; Gil, M; Martínez Ríos, M A; Cárdenas, M; Pliego, J; Zamora, C; Mata, L A

    1982-01-01

    Four hundred patients with atrial septal defect treated surgically were reviewed. Thirty five (8.7%) developed arrhytmias post-surgery which persisted for over a year. Sinus bradycardia was found in 10 patients, nodal rhythm in 21, and atrial fibrilation and flutter in 4 patients. Thirty five per cent of the patients with late arrhythmias developed related symptomatology. In 14 patients the function of the sinus node was studied with electrical stimulation of the atrium and with His registry. The interatrial conduction time, AV node and His Purkinje were analized employing various stimulation frequencies. All the cases studied had normal intra-atrial conduction; the response of the atrio-ventricular node to increasing frequencies was normal, an the intraventricular conduction remained constant. In 8 patients (52%), alterations of the sinus node were found; these consisted of prolonged post-stimulation pauses, Wenckebach's type sinoatrial block and suppression of sinus automatism employing vagal procedures or through electrical stimulation. A patient with severe bradycardia detected by dynamic electrocardiography had to be treated with a permanent pacemaker. We confirm that these arrhytmias are not produced by lesions of the internodal tracts, and that an alteration of the sinus node is frequent without a concomitant lesion of the intraventricular pathway. The lesion to the nutrient artery could be due to trauma and/or surgically induced. The response to anticholinergic drugs was good. Prolonged observation of these patients could increase the morbility of these arrythmias and raise doubts of the surgical indications in cases with moderate hemodynamic repercussion.

  14. Effects of hemicholinium and bretylium on the release of autonomic transmitters in the isolated sino-atrial node

    PubMed Central

    Appel, W. C.; Vincenzi, F. F.

    1970-01-01

    1. In the isolated, spontaneously beating, sino-atrial node of the rabbit selective electrical excitation of intranodal autonomic nerve fibres results in a biphasic chronotropic response. This chronotropic response (negative followed by positive chronotropism) is due to the release of the autonomic transmitters (acetylcholine and noradrenaline, respectively) from intranodal nerve fibres. 2. In the presence of 2 × 10-4 g/ml hemicholinium, the negative chronotropic (cholinergic) response is abolished while the positive chronotropic (adrenergic) response is unaltered. 3. In the presence of 5 × 10-6 g/ml bretylium, the positive chronotropic response is abolished while the negative chronotropic response is little affected. 4. After blockade of the negative chronotropic response by hemicholinium, bretylium abolishes the remaining positive chronotropic response. The effect of bretylium is not altered in the presence of hemicholinium. 5. Considering currently accepted mechanisms of action for hemicholinium and bretylium, the results of these experiments do not lend support to the cholinergic link hypothesis of adrenergic neuro-effector transmission. PMID:5492897

  15. Effects of hemicholinium and bretylium on the release of autonomic transmitters in the isolated sino-atrial node.

    PubMed

    Appel, W C; Vincenzi, F F

    1970-10-01

    1. In the isolated, spontaneously beating, sino-atrial node of the rabbit selective electrical excitation of intranodal autonomic nerve fibres results in a biphasic chronotropic response. This chronotropic response (negative followed by positive chronotropism) is due to the release of the autonomic transmitters (acetylcholine and noradrenaline, respectively) from intranodal nerve fibres.2. In the presence of 2 x 10(-4) g/ml hemicholinium, the negative chronotropic (cholinergic) response is abolished while the positive chronotropic (adrenergic) response is unaltered.3. In the presence of 5 x 10(-6) g/ml bretylium, the positive chronotropic response is abolished while the negative chronotropic response is little affected.4. After blockade of the negative chronotropic response by hemicholinium, bretylium abolishes the remaining positive chronotropic response. The effect of bretylium is not altered in the presence of hemicholinium.5. Considering currently accepted mechanisms of action for hemicholinium and bretylium, the results of these experiments do not lend support to the cholinergic link hypothesis of adrenergic neuro-effector transmission.

  16. Oxidized CaMKII causes cardiac sinus node dysfunction in mice

    PubMed Central

    Swaminathan, Paari Dominic; Purohit, Anil; Soni, Siddarth; Voigt, Niels; Singh, Madhu V.; Glukhov, Alexey V.; Gao, Zhan; He, B. Julie; Luczak, Elizabeth D.; Joiner, Mei-ling A.; Kutschke, William; Yang, Jinying; Donahue, J. Kevin; Weiss, Robert M.; Grumbach, Isabella M.; Ogawa, Masahiro; Chen, Peng-Sheng; Efimov, Igor; Dobrev, Dobromir; Mohler, Peter J.; Hund, Thomas J.; Anderson, Mark E.

    2011-01-01

    Sinus node dysfunction (SND) is a major public health problem that is associated with sudden cardiac death and requires surgical implantation of artificial pacemakers. However, little is known about the molecular and cellular mechanisms that cause SND. Most SND occurs in the setting of heart failure and hypertension, conditions that are marked by elevated circulating angiotensin II (Ang II) and increased oxidant stress. Here, we show that oxidized calmodulin kinase II (ox-CaMKII) is a biomarker for SND in patients and dogs and a disease determinant in mice. In wild-type mice, Ang II infusion caused sinoatrial nodal (SAN) cell oxidation by activating NADPH oxidase, leading to increased ox-CaMKII, SAN cell apoptosis, and SND. p47–/– mice lacking functional NADPH oxidase and mice with myocardial or SAN-targeted CaMKII inhibition were highly resistant to SAN apoptosis and SND, suggesting that ox-CaMKII–triggered SAN cell death contributed to SND. We developed a computational model of the sinoatrial node that showed that a loss of SAN cells below a critical threshold caused SND by preventing normal impulse formation and propagation. These data provide novel molecular and mechanistic information to understand SND and suggest that targeted CaMKII inhibition may be useful for preventing SND in high-risk patients. PMID:21785215

  17. TRPM7 regulates angiotensin II-induced sinoatrial node fibrosis in sick sinus syndrome rats by mediating Smad signaling.

    PubMed

    Zhong, Hongbin; Wang, Tingjun; Lian, Guili; Xu, Changsheng; Wang, Huajun; Xie, Liangdi

    2018-03-06

    Sinoatrial node fibrosis is involved in the pathogenesis of sinus sick syndrome (SSS). Transient receptor potential (TRP) subfamily M member 7 (TRPM7) is implicated in cardiac fibrosis. However, the mechanisms underlying the regulation of sinoatrial node (SAN) fibrosis in SSS by TRPM7 remain unknown. The aim of this study was to investigate the role of angiotensin II (Ang II)/TRPM7/Smad pathway in the SAN fibrosis in rats with SSS. The rat SSS model was established with sodium hydroxide pinpoint pressing permeation. Forty-eight rats were randomly divided into six groups: normal control (ctrl), sham operation (sham), postoperative 1-, 2-, 3-, and 4-week SSS, respectively. The tissue explant culture method was used to culture cardiac fibroblasts (CFs) from rat SAN tissues. TRPM7 siRNA or encoding plasmids were used to knock down or overexpress TRPM7. Collagen (Col) distribution in SAN and atria was assessed using PASM-Masson staining. Ang II, Col I, and Col III levels in serum and tissues or in CFs were determined by ELISA. TRPM7, smad2 and p-smad2 levels were evaluated by real-time PCR, and/or western blot and immunohistochemistry. SAN and atria in rats of the SSS groups had more fibers and higher levels of Ang II, Col I and III than the sham rats. Similar findings were obtained for TRPM7 and pSmad2 expression. In vitro, Ang II promoted CFs collagen synthesis in a dose-dependent manner, and potentiated TRPM7 and p-Smad2 expression. TRPM7 depletion inhibited Ang II-induced p-Smad2 expression and collagen synthesis in CFs, whereas increased TRPM7 expression did the opposite. SAN fibrosis is regulated by the Ang II/TRPM7/Smad pathway in SSS, indicating that TRPM7 is a potential target for SAN fibrosis therapy in SSS.

  18. Ion Channels in the Heart

    PubMed Central

    Bartos, Daniel C.; Grandi, Eleonora; Ripplinger, Crystal M.

    2015-01-01

    Optimal cardiac function depends on proper timing of excitation and contraction in various regions of the heart, as well as on appropriate heart rate. This is accomplished via specialized electrical properties of various components of the system, including the sinoatrial node, atria, atrioventricular node, His-Purkinje system, and ventricles. Here we review the major regionally-determined electrical properties of these cardiac regions and present the available data regarding the molecular and ionic bases of regional cardiac function and dysfunction. Understanding these differences is of fundamental importance for the investigation of arrhythmia mechanisms and pharmacotherapy. PMID:26140724

  19. Caffeine depression of spontaneous activity in rabbit sino-atrial node cells.

    PubMed

    Satoh, H

    1993-05-01

    1. Effects of caffeine on the action potentials and the membrane currents in spontaneously beating rabbit sino-atrial (SA) node cells were examined using a two-microelectrode technique. 2. Cumulative administrations of caffeine (1-10 mM) caused a negative chronotropic effect in a concentration-dependent manner, which was not modified by atropine (0.1 microM). At 10 mM, caffeine increased the amplitude and prolonged the duration of action potentials significantly; the other parameters were unaffected. 3. In 3 of 16 preparations, caffeine (5 mM) elicited arrhythmia. At high Ca2+ (8.1 mM), caffeine (5 mM) increased the incidence of arrhythmia. 4. Caffeine (0.5-10 mM) enhanced the slow inward current, but at 10 mM decreased the enhanced peak current by 5 mM. The hyperpolarization-activated inward current was also enhanced by caffeine, but 10 mM caffeine decreased the current peak as compared with that at 5 mM. In addition, caffeine inhibited the delayed rectifying outward current in a concentration-dependent manner, accompanied by a depressed activation curve without any shift in the half-maximum activation voltage. 5. Caffeine elevated the cytoplasmic Ca2+ level in the SA node cells loaded with Ca(2+)-sensitive fluorescent dye (fura-2). 6. These results suggest that caffeine enhances and/or inhibits the ionic currents and elicits arrhythmia due to the induction of cellular calcium overload.

  20. Klotho protein lowered in senile patients with brady sinus arrhythmia.

    PubMed

    Wang, Ying; Yang, Wei; Zheng, Ernv; Zhang, Wei; Su, Xianming

    2015-01-01

    To explore the correlationship between brady sinus arrhythmia and the levels of serum klotho protein in aged. 104 patients over 75 years old with brady sinus arrhythmia (experiment group) were enrolled, including 34 cases of sinus arrest, 43 cases of sinus bradycardia and 25 cases of atrioventricular block. 109 patients over 75 years old without brady sinus arrhymia were chosen as control group. All subjects were monitored by Holter. The levels of serum klotho protein were detected and compared among three groups. The correlation between the frequency of sinus arrest and the levels of serum klotho protein was analyzed simultaneously. The levels of serum klotho protein in experiment group were lower than that in control group (P<0.01); the sinus arrest frequency was negatively correlated with the levels of serum klotho protien. The levels of serum klotho protein in patients with sinus arrest were lower than that with sinus bradycardia and atrioventricularblock (P<0.05). But there was no significant difference between sinus bradycardia group and atrioventricular block group. The levels of serum klotho protein may reflect the function of sinoatrial node and could be used as an index to estimate the function of sinoatrial node.

  1. Klotho protein lowered in senile patients with brady sinus arrhythmia

    PubMed Central

    Wang, Ying; Yang, Wei; Zheng, Ernv; Zhang, Wei; Su, Xianming

    2015-01-01

    Objective: To explore the correlationship between brady sinus arrhythmia and the levels of serum klotho protein in aged. Methods: 104 patients over 75 years old with brady sinus arrhythmia (experiment group) were enrolled, including 34 cases of sinus arrest, 43 cases of sinus bradycardia and 25 cases of atrioventricular block. 109 patients over 75 years old without brady sinus arrhymia were chosen as control group. All subjects were monitored by Holter. The levels of serum klotho protein were detected and compared among three groups. The correlation between the frequency of sinus arrest and the levels of serum klotho protein was analyzed simultaneously. Results: The levels of serum klotho protein in experiment group were lower than that in control group (P<0.01); the sinus arrest frequency was negatively correlated with the levels of serum klotho protien. The levels of serum klotho protein in patients with sinus arrest were lower than that with sinus bradycardia and atrioventricularblock (P<0.05). But there was no significant difference between sinus bradycardia group and atrioventricular block group. Conclusion: The levels of serum klotho protein may reflect the function of sinoatrial node and could be used as an index to estimate the function of sinoatrial node. PMID:26550342

  2. Upregulation of adenosine A1 receptors facilitates sinoatrial node dysfunction in chronic canine heart failure by exacerbating nodal conduction abnormalities revealed by novel dual-sided intramural optical mapping.

    PubMed

    Lou, Qing; Hansen, Brian J; Fedorenko, Olga; Csepe, Thomas A; Kalyanasundaram, Anuradha; Li, Ning; Hage, Lori T; Glukhov, Alexey V; Billman, George E; Weiss, Raul; Mohler, Peter J; Györke, Sándor; Biesiadecki, Brandon J; Carnes, Cynthia A; Fedorov, Vadim V

    2014-07-22

    Although sinoatrial node (SAN) dysfunction is a hallmark of human heart failure (HF), the underlying mechanisms remain poorly understood. We aimed to examine the role of adenosine in SAN dysfunction and tachy-brady arrhythmias in chronic HF. We applied multiple approaches to characterize SAN structure, SAN function, and adenosine A1 receptor expression in control (n=17) and 4-month tachypacing-induced chronic HF (n=18) dogs. Novel intramural optical mapping of coronary-perfused right atrial preparations revealed that adenosine (10 μmol/L) markedly prolonged postpacing SAN conduction time in HF by 206 ± 99 milliseconds (versus 66 ± 21 milliseconds in controls; P=0.02). Adenosine induced SAN intranodal conduction block or microreentry in 6 of 8 dogs with HF versus 0 of 7 controls (P=0.007). Adenosine-induced SAN conduction abnormalities and automaticity depression caused postpacing atrial pauses in HF versus control dogs (17.1 ± 28.9 versus 1.5 ± 1.3 seconds; P<0.001). Furthermore, 10 μmol/L adenosine shortened atrial repolarization and led to pacing-induced atrial fibrillation in 6 of 7 HF versus 0 of 7 control dogs (P=0.002). Adenosine-induced SAN dysfunction and atrial fibrillation were abolished or prevented by adenosine A1 receptor antagonists (50 μmol/L theophylline/1 μmol/L 8-cyclopentyl-1,3-dipropylxanthine). Adenosine A1 receptor protein expression was significantly upregulated during HF in the SAN (by 47 ± 19%) and surrounding atrial myocardium (by 90 ± 40%). Interstitial fibrosis was significantly increased within the SAN in HF versus control dogs (38 ± 4% versus 23 ± 4%; P<0.001). In chronic HF, adenosine A1 receptor upregulation in SAN pacemaker and atrial cardiomyocytes may increase cardiac sensitivity to adenosine. This effect may exacerbate conduction abnormalities in the structurally impaired SAN, leading to SAN dysfunction, and potentiate atrial repolarization shortening, thereby facilitating atrial fibrillation. Atrial fibrillation may further depress SAN function and lead to tachy-brady arrhythmias in HF. © 2014 American Heart Association, Inc.

  3. Long-Term Effects of Atrial Ganglionated Plexi Ablation on Function and Structure of Sinoatrial and Atrioventricular Node in Canine.

    PubMed

    Zhang, Ming; Wang, Ximin; Xie, Xinxing; Wang, Zhongsu; Liu, Xiaoyan; Guan, Juan; Wang, Weizong; Li, Zhan; Wang, Jiangrong; Gao, Mei; Hou, Yinglong

    2015-10-01

    Long-term effects of ganglionated plexi (GP) ablation on sinoatrial node (SAN) and atrioventricular node (AVN) remain unclear. This study is to investigate the long-term effects of ablation of cardiac anterior right GP (ARGP) and inferior right GP (IRGP) on function and structure of SAN and AVN in canine. Thirty-two dogs were randomly divided into an operated group (n = 24) and sham-operated group (n = 8). ARGP and IRGP were ablated in operated group which was randomly divided into three subgroups according to the period of evaluation after operation (1 month, 6 months, 12 months). The functional and histological characteristics of SAN and AVN, as well as the expression of connexin (Cx) 43 and Cx 45 in SAN and AVN, were evaluated before and after ablation. Resting heart rate was increased and AVN effective refractory period was prolonged and sinus node recovery time (SNRT) and corrected SNRT were shortened immediately after ablation. These changes were reverted to preablation level after 1 month. At 1 month, ventricular rate during atrial fibrillation was slowed, atria-His intervals were prolonged, and Cx43 and Cx45 expression in SAN and AVN were downregulated. At 6 months, all changes were reverted to preablation level. The histological characteristics of SAN and AVN did not change. Ablation of ARGP and IRGP has short-term effects on function and structure of SAN and AVN rather than long-term effects, which suggests that ablation of ARGP and IRGP is safe. Atrioventricular conduction dysfunction after ablation may be related to downregulated Cx43 and Cx45 expression in AVN. © 2015 Wiley Periodicals, Inc.

  4. Next-generation pacemakers: from small devices to biological pacemakers.

    PubMed

    Cingolani, Eugenio; Goldhaber, Joshua I; Marbán, Eduardo

    2018-03-01

    Electrogenesis in the heart begins in the sinoatrial node and proceeds down the conduction system to originate the heartbeat. Conduction system disorders lead to slow heart rates that are insufficient to support the circulation, necessitating implantation of electronic pacemakers. The typical electronic pacemaker consists of a subcutaneous generator and battery module attached to one or more endocardial leads. New leadless pacemakers can be implanted directly into the right ventricular apex, providing single-chamber pacing without a subcutaneous generator. Modern pacemakers are generally reliable, and their programmability provides options for different pacing modes tailored to specific clinical needs. Advances in device technology will probably include alternative energy sources and dual-chamber leadless pacing in the not-too-distant future. Although effective, current electronic devices have limitations related to lead or generator malfunction, lack of autonomic responsiveness, undesirable interactions with strong magnetic fields, and device-related infections. Biological pacemakers, generated by somatic gene transfer, cell fusion, or cell transplantation, provide an alternative to electronic devices. Somatic reprogramming strategies, which involve transfer of genes encoding transcription factors to transform working myocardium into a surrogate sinoatrial node, are furthest along in the translational pipeline. Even as electronic pacemakers become smaller and less invasive, biological pacemakers might expand the therapeutic armamentarium for conduction system disorders.

  5. Effects of Nicotinamide Adenine Dinucleotide (NAD(+)) and Diadenosine Tetraphosphate (Ap4A) on Electrical Activity of Working and Pacemaker Atrial Myocardium in Guinea Pigs.

    PubMed

    Pustovit, K B; Abramochkin, D V

    2016-04-01

    Effects of nucleotide polyphosphate compounds (nicotinamide adenine dinucleotide, NAD(+); diadenosine tetraphosphate, Ap4A) on the confi guration of action potentials were studied in isolated preparations of guinea pig sinoatrial node and right atrial appendage (auricle). In the working myocardium, NAD(+) and Ap4A in concentrations of 10(-5) and 10(-4) M had no effect on resting potential, but significantly reduced the duration of action potentials; the most pronounced decrease was found at 25% repolarization. In the primary pacemaker of the sinoatrial node, both concentrations of NAD(+) and Ap4A induced hyperpolarization and reduction in the rate of slow diastolic depolarization, but significant slowing of the sinus rhythm was produced by these substances only in the concentration of 10(-4) M. Moreover, AP shortening and marked acceleration of AP upstroke were observed in the pacemaker myocardium after application of polyphosphates. Comparative analysis of the effects of NAD(+) and Ap4A in the working and pacemaker myocardium drove us to a hypothesis on inhibitory effects of these substances on L-type calcium current accompanied by stimulation of one or several potassium currents, which induce enhancement of repolarization and hyperpolarization of membranes probably mediated by the activation of purine receptors.

  6. β1-Adrenergic blocker bisoprolol reverses down-regulated ion channels in sinoatrial node of heart failure rats.

    PubMed

    Du, Yuan; Zhang, Junbo; Xi, Yutao; Wu, Geru; Han, Ke; Huang, Xin; Ma, Aiqun; Wang, Tingzhong

    2016-06-01

    Bisoprolol, an antagonist of β1-adrenergic receptors, is effective in reducing the morbidity and mortality in patients with heart failure (HF). It has been found that HF is accompanied with dysfunction of the sinoatrial node (SAN). However, whether bisoprolol reverses the decreased SAN function in HF and how the relevant ion channels in SAN change were relatively less studied. SAN function and messenger RNA (mRNA) expression of sodium channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channel subunits were assessed in sham-operated rats, abdominal arterio-venous shunt (volume overload)-induced HF rats, and bisoprolol- treated HF rats. SAN cells of rats were isolated by laser capture microdissection. Quantitative real-time PCR analysis was used to quantify mRNA expression of sodium channels and HCN channel subunits in SAN. Intrinsic heart rate declined and sinus node recovery time prolonged in HF rats, indicating the suppressed SAN function, which could be improved by bisoprolol treatment. Nav1.1, Nav1.6, and HCN4 mRNA expressions were reduced in SAN in HF rats compared with that in control rats. Treatment with bisoprolol could reverse both the SAN function and the Nav1.1, Nav1.6, and HCN4 mRNA expression partially. These data indicated that bisoprolol is effective in HF treatment partially due to improved SAN function by reversing the down-regulation of sodium channels (Nav1.1 and Nav1.6) and HCN channel (HCN4) subunits in SAN in failing hearts.

  7. Beat-to-Beat Variation in Periodicity of Local Calcium Releases Contributes to Intrinsic Variations of Spontaneous Cycle Length in Isolated Single Sinoatrial Node Cells

    PubMed Central

    Monfredi, Oliver; Maltseva, Larissa A.; Spurgeon, Harold A.; Boyett, Mark R.; Lakatta, Edward G.; Maltsev, Victor A.

    2013-01-01

    Spontaneous, submembrane local Ca2+ releases (LCRs) generated by the sarcoplasmic reticulum in sinoatrial nodal cells, the cells of the primary cardiac pacemaker, activate inward Na+/Ca2+-exchange current to accelerate the diastolic depolarization rate, and therefore to impact on cycle length. Since LCRs are generated by Ca2+ release channel (i.e. ryanodine receptor) openings, they exhibit a degree of stochastic behavior, manifested as notable cycle-to-cycle variations in the time of their occurrence. Aim The present study tested whether variation in LCR periodicity contributes to intrinsic (beat-to-beat) cycle length variability in single sinoatrial nodal cells. Methods We imaged single rabbit sinoatrial nodal cells using a 2D-camera to capture LCRs over the entire cell, and, in selected cells, simultaneously measured action potentials by perforated patch clamp. Results LCRs begin to occur on the descending part of the action potential-induced whole-cell Ca2+ transient, at about the time of the maximum diastolic potential. Shortly after the maximum diastolic potential (mean 54±7.7 ms, n = 14), the ensemble of waxing LCR activity converts the decay of the global Ca2+ transient into a rise, resulting in a late, whole-cell diastolic Ca2+ elevation, accompanied by a notable acceleration in diastolic depolarization rate. On average, cells (n = 9) generate 13.2±3.7 LCRs per cycle (mean±SEM), varying in size (7.1±4.2 µm) and duration (44.2±27.1 ms), with both size and duration being greater for later-occurring LCRs. While the timing of each LCR occurrence also varies, the LCR period (i.e. the time from the preceding Ca2+ transient peak to an LCR’s subsequent occurrence) averaged for all LCRs in a given cycle closely predicts the time of occurrence of the next action potential, i.e. the cycle length. Conclusion Intrinsic cycle length variability in single sinoatrial nodal cells is linked to beat-to-beat variations in the average period of individual LCRs each cycle. PMID:23826247

  8. Comprehensive multilevel in vivo and in vitro analysis of heart rate fluctuations in mice by ECG telemetry and electrophysiology.

    PubMed

    Fenske, Stefanie; Pröbstle, Rasmus; Auer, Franziska; Hassan, Sami; Marks, Vanessa; Pauza, Danius H; Biel, Martin; Wahl-Schott, Christian

    2016-01-01

    The normal heartbeat slightly fluctuates around a mean value; this phenomenon is called physiological heart rate variability (HRV). It is well known that altered HRV is a risk factor for sudden cardiac death. The availability of genetic mouse models makes it possible to experimentally dissect the mechanism of pathological changes in HRV and its relation to sudden cardiac death. Here we provide a protocol that allows for a comprehensive multilevel analysis of heart rate (HR) fluctuations. The protocol comprises a set of techniques that include in vivo telemetry and in vitro electrophysiology of intact sinoatrial network preparations or isolated single sinoatrial node (SAN) cells. In vitro preparations can be completed within a few hours, with data acquisition within 1 d. In vivo telemetric ECG requires 1 h for surgery and several weeks for data acquisition and analysis. This protocol is of interest to researchers investigating cardiovascular physiology and the pathophysiology of sudden cardiac death.

  9. Development of the cardiac pacemaker

    PubMed Central

    Liang, Xingqun; Evans, Sylvia M.

    2017-01-01

    The sinoatrial node (SAN) is the dominant pacemaker of the heart. Abnormalities in SAN formation and function can cause sinus arrhythmia, including sick sinus syndrome and sudden death. A better understanding of genes and signaling pathways that regulate SAN development and function is essential to develop more effective treatment to sinus arrhythmia, including biological pacemakers. In this review, we briefly summarize the key processes of SAN morphogenesis during development, and focus on the transcriptional network that drives SAN development. PMID:27770149

  10. Computer algorithms for automated detection and analysis of local Ca2+ releases in spontaneously beating cardiac pacemaker cells

    PubMed Central

    Kim, Mary S.; Tsutsui, Kenta; Stern, Michael D.; Lakatta, Edward G.; Maltsev, Victor A.

    2017-01-01

    Local Ca2+ Releases (LCRs) are crucial events involved in cardiac pacemaker cell function. However, specific algorithms for automatic LCR detection and analysis have not been developed in live, spontaneously beating pacemaker cells. In the present study we measured LCRs using a high-speed 2D-camera in spontaneously contracting sinoatrial (SA) node cells isolated from rabbit and guinea pig and developed a new algorithm capable of detecting and analyzing the LCRs spatially in two-dimensions, and in time. Our algorithm tracks points along the midline of the contracting cell. It uses these points as a coordinate system for affine transform, producing a transformed image series where the cell does not contract. Action potential-induced Ca2+ transients and LCRs were thereafter isolated from recording noise by applying a series of spatial filters. The LCR birth and death events were detected by a differential (frame-to-frame) sensitivity algorithm applied to each pixel (cell location). An LCR was detected when its signal changes sufficiently quickly within a sufficiently large area. The LCR is considered to have died when its amplitude decays substantially, or when it merges into the rising whole cell Ca2+ transient. Ultimately, our algorithm provides major LCR parameters such as period, signal mass, duration, and propagation path area. As the LCRs propagate within live cells, the algorithm identifies splitting and merging behaviors, indicating the importance of locally propagating Ca2+-induced-Ca2+-release for the fate of LCRs and for generating a powerful ensemble Ca2+ signal. Thus, our new computer algorithms eliminate motion artifacts and detect 2D local spatiotemporal events from recording noise and global signals. While the algorithms were developed to detect LCRs in sinoatrial nodal cells, they have the potential to be used in other applications in biophysics and cell physiology, for example, to detect Ca2+ wavelets (abortive waves), sparks and embers in muscle cells and Ca2+ puffs and syntillas in neurons. PMID:28683095

  11. [Changes of heart electrophysiological parameters after destruction of epicardial subplexuses that innervate sinoatrial node].

    PubMed

    Kulboka, Arūnas; Veikutis, Vincentas; Pauza, Dainius Haroldas; Lekas, Raimundas

    2003-01-01

    The aims of present study were to verify the topography of the intracardiac nerve subplexuses (INS) by using electrophysiological methods, its relations with sinoatrial (SA) node function and to investigate possibility of selective surgical SA node denervation. Fifteen mongrel dogs of either sex weighing 8 to 15 kg were used for electrophysiological studies. Both cervical vagosympathetic trunks were isolated and crushed by tight ligatures. Nervus subplexuses destructions were performed by cryocoagulation in three zones located around the right superior vena cava: ventral, lateral and dorsal. The sinus rhythm, SA node function recovery time, AV node conductivity, AV node and atrial effective refractory period were measured. Five experiments in each of three zones were performed. Experimental data show that destruction of the epicardial nerves has different effect on electrophysiological parameters. After destruction of the anterior zone of the right atrium the sinus rhythm decreased on an average by 11.6%; SA node function recovery time prolonged by 7.2%; AV node conductivity decreased by 13.1%; AV node effective refractory period prolonged by 12.9% and atrial effective refractory period, by 10.9 %. Measurements of electrophysiological parameters after intravenous injection of atropine sulphate show that sinus rhythm decreased on an average by 23.4%; SA node function recovery time increased by 9.1%; the conductivity of AV node decreased by 10.2%; AV node effective refractory period prolonged by 15.4% and atrial effective refractory period, by 13.2%. After destruction of the intracardiac nerves of the lateral zone, the sinus rhythm decreased by 15.7%; SA node function recovery time increased by 16.3%; AV node conductivity decreased by 8.3%; AV node effective refractory period and atrial effective refractory period prolonged by 11.9% and 10.0%, respectively. After the atropine sulphate intravenous injection, the sinus rhythm decreased on an average by 7.1%, SA node function recovery time prolonged by 7.1%, AV conductivity decreased by 9.1%, AV node effective refractory period increased by 12.4%, and atrial effective refractory period prolonged by 12.5%. After destruction of the nerves in the dorsal zone the changes of electrophysiological parameters were opposite to those obtained after destruction of the nerve tracts in the anterior or lateral zones: the sinus rhythm increased on an average by 4.3%; SA node function recovery time shortened by 8.8%; AV conductivity increased by 9.7%; AV node and atrial effective refractory period decreased by 12.3% and 12.1%, respectively. After intravenous atropine sulphate infusion, sinus rhythm decreased on an average by 8.3%; SA node function recovery time prolonged by 9.6%; AV node conductivity decreased by 5%; AV node and atrial effective refractory period prolonged by 4.2% and 5.2%, respectively. The average changes of electrophysiological parameters before and after INS destruction shows that cryocoagulation of ventral and lateral zones eliminates the effects of sympathetic tone to SA and AV nodal activity. Cryocoagulation of dorsal zone eliminates the effects of nervus vagus to both nodal structures. These findings shows the possibility alter or correct SA node function by making selective surgical SA node denervation.

  12. Electrophysiological properties of prion-positive cardiac progenitors derived from murine embryonic stem cells.

    PubMed

    Fujii, Hiroshi; Ikeuchi, Yu; Kurata, Yasutaka; Ikeda, Nobuhito; Bahrudin, Udin; Li, Peili; Nakayama, Yuji; Endo, Ryo; Hasegawa, Akira; Morikawa, Kumi; Miake, Junichiro; Yoshida, Akio; Hidaka, Kyoko; Morisaki, Takayuki; Ninomiya, Haruaki; Shirayoshi, Yasuaki; Yamamoto, Kazuhiro; Hisatome, Ichiro

    2012-01-01

    The prion protein (PrP) has been reported to serve as a surface maker for isolation of cardiomyogenic progenitors from murine embryonic stem (ES) cells. Although PrP-positive cells exhibited automaticity, their electrophysiological characteristics remain unresolved. The aim of the present study was therefore to investigate the electrophysiological properties of PrP-positive cells in comparison with those of HCN4p-or Nkx2.5-positive cells. Differentiation of AB1, HCN5p-EGFP and hcgp7 ES cells into cardiac progenitors was induced by embryoid body (EB) formation. EBs were dissociated and cells expressing PrP, HCN4-EGFP and/or Nkx2.5-GFP were collected via flow cytometry. Sorted cells were subjected to reverse transcriptase-polymerase chain reaction, immunostaining and patch-clamp experiments. PrP-positive cells expressed mRNA of undifferentiation markers, first and second heart field markers, and cardiac-specific genes and ion channels, indicating their commitment to cardiomyogenic progenitors. PrP-positive cells with automaticity showed positive and negative chronotropic responses to isoproterenol and carbamylcholine, respectively. Hyperpolarization-activated cation current (I(f)) was barely detectable, whereas Na(+) and L-type Ca(2+) channel currents were frequently observed. Their spontaneous activity was slowed by inhibition of sarcoplasmic reticulum Ca(2+) uptake and release but not by blocking I(f). The maximum diastolic potential of their spontaneous firings was more depolarized than that of Nkx2.5-GFP-positive cells. PrP-positive cells contained cardiac progenitors that separated from the lineage of sinoatrial node cells. PrP can be used as a marker to enrich nascent cardiac progenitors.

  13. Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberger, Florian, E-mail: f.weinberger@uke.de; Mehrkens, Dennis, E-mail: dennis.mehrkens@uk-koeln.de; Starbatty, Jutta, E-mail: starbatty@uke.uni-hamburg.de

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activitymore » and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.« less

  14. Model for the respiratory modulation of the heart beat-to-beat time interval series

    NASA Astrophysics Data System (ADS)

    Capurro, Alberto; Diambra, Luis; Malta, C. P.

    2005-09-01

    In this study we present a model for the respiratory modulation of the heart beat-to-beat interval series. The model consists of a set of differential equations used to simulate the membrane potential of a single rabbit sinoatrial node cell, excited with a periodic input signal with added correlated noise. This signal, which simulates the input from the autonomous nervous system to the sinoatrial node, was included in the pacemaker equations as a modulation of the iNaK current pump and the potassium current iK. We focus at modeling the heart beat-to-beat time interval series from normal subjects during meditation of the Kundalini Yoga and Chi techniques. The analysis of the experimental data indicates that while the embedding of pre-meditation and control cases have a roughly circular shape, it acquires a polygonal shape during meditation, triangular for the Kundalini Yoga data and quadrangular in the case of Chi data. The model was used to assess the waveshape of the respiratory signals needed to reproduce the trajectory of the experimental data in the phase space. The embedding of the Chi data could be reproduced using a periodic signal obtained by smoothing a square wave. In the case of Kundalini Yoga data, the embedding was reproduced with a periodic signal obtained by smoothing a triangular wave having a rising branch of longer duration than the decreasing branch. Our study provides an estimation of the respiratory signal using only the heart beat-to-beat time interval series.

  15. Knockdown of cardiac Kir3.1 gene with siRNA can improve bradycardia in an experimental sinus bradycardia rat model.

    PubMed

    Li, Yang; Fu, Xiaodan; Zhang, Zhi; Yu, Bo

    2017-05-01

    The objective of this study was to explore whether the inhibition of potassium inwardly rectifying channel (Kir3.1) with short interfering RNA (siRNA) can improve bradycardia in an experimental sinus bradycardia rat model. 54 Sprague Dawley (SD) rats were randomly divided into three groups: experimental group, control group, and sham group. Sinus bradycardia model was established in SD rats through chemical ablation of sinoatrial (SA) node with 20% formaldehyde. Variations of Kir3.1 expression at mRNA and protein level were examined with qPCR and Western blotting. Electrocardiograms (ECG) of rats at 3 days and 1, 2, 3, and 4 weeks after chemical ablation and lentivirus injection were recorded and differences were compared among the three groups. The differences among multiple groups were analyzed by one-way analysis of variance (ANOVA). It was found through RT-PCR and Western blot that the mRNA and protein levels of Kir3.1 at sinoatrial node areas were decreased by 42 ± 7% and 31 ± 7% in comparison with control group, respectively (P < 0.05 in both comparisons) after 4 weeks of chemical ablation/injection. Whole-cell patch clamp data showed that the lentiviral construct could significantly inhibit the potassium current of a muscarinic acetylcholine-sensitive K + channel, I KACh . ECG data showed that the heart rate of experimental group increased after 3 days of chemical ablation/injection and lasted for at least 4 weeks after the chemical ablation/injection (heart rate increased 15.4 ± 3.8% in comparison with control group, P < 0.05). Inhibition of Kir3.1 could rescue sinus bradycardia induced by chemical ablation of SA node with 20% formaldehyde at least partly through inhibiting I KACh channel.

  16. Radiotherapy as a cause of complete atrioventricular block in Hodgkin's disease. An electrophysiological-pathological correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, S.I.; Bharati, S.; Glass, J.

    1981-04-01

    A 20-year-old man contracted Hodgkin's disease and was treated with mantle radiotherapy. Heart block developed 11 years later. Electrocardiograms revealed predominant atrioventricular (AV) block and occasional AV conduction. Intracardiac electrograms demonstrated that the site of AV block was above the level of the His bundle. A permanent transvenous pacemaker was implanted. Seven months later the patient died of complications from cryptococcal meningitis. Pathological study of the heart revealed marked arteriosclerosis with fibrosis of the epicardium, myocardium, and endocardium. Examination of the conduction system revealed extensive arteriolosclerosis of the sinoatrial node and its approaches. In addition, there was marked fibrosis ofmore » the approaches to the AV node, the AV bundle, and both bundle branches. There was no evidence of Hodgkin's disease. This case documents the rare occurrence of AV block due to tissue destruction by radiotherapy. There was a good correlation between block proximal to the His bundle recording site and fibrosis of the approaches to the AV node.« less

  17. Radiotherapy as a cause of complete atrioventricular block in Hodgkin's disease: an electrophysiological-pathological correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, S.I.; Bharati, S.; Glass, J.

    1981-04-01

    A 20-year-old man contracted Hodgkin's disease and was treated with mantle radiotherapy. Heart block developed 11 years later. Electrocardiograms revealed predominant atrioventricular (AV) block and occasional AV conduction. Intracardiac electrograms demonstrated that the site of AV block was above the level of the His bundle. A permanent transvenous pacemaker was implanted. Seven months later the patient died of complications from cryptococcal meningitis. Pathological study of the heart revealed marked arteriosclerosis with fibrosis of the epicardium, myocardium, and endocardium. Examination of the conduction system revealed extensive arteriolosclerosis of the sinoatrial node and its approaches. In addition, there was marked fibrosis ofmore » the approaches to the AV node, the AV bundle, and both bundle branches. There was no evidence of Hodgkin's disease. This case documents the rare occurrence of AV block due to tissue destruction by radiotherapy. There was a good correlation between block proximal to the His bundle recording site and fibrosis of the approaches to the AV node.« less

  18. Inhibition of sarcoplasmic reticulum Ca(2+)-ATPase decreases atrioventricular node-paced heart rate in rabbits.

    PubMed

    Cheng, Hongwei; Smith, Godfrey L; Orchard, Clive H; Hancox, Jules C; Burton, Francis L

    2012-10-01

    Recent data indicate that Ca(2+) cycling in isolated atrioventricular node (AVN) cells contributes to setting spontaneous rate. The aim of the present study was to extend this observation to the intact AVN in situ, by evaluating the effects of inhibiting sarcoplasmic reticulum Ca(2+) uptake with cyclopiazonic acid (CPA) on intact AVN spontaneous activity and its response to isoprenaline. A model of the AVN-paced heart was produced to investigate intact AVN automaticity, by surgical ablation of the sino-atrial node (SAN) in the rabbit Langendorff-perfused heart. Electrograms were recorded from a site close to the AVN (triangle of Koch), an atrial site above the AVN, the left atrium and right ventricle, enabling AVN pacing of the preparation to be confirmed. Before SAN ablation, the heart rate was 166.8 ± 5.4 beats min(-1). Ablation of the SAN was clearly indicated by a sudden and significant decrease of heart rate to 108.6 ± 9.6 beats min(-1) (P < 0.01, n = 10). Isoprenaline (100 nm) increased AVN rate to 187.8 ± 12.0 beats min(-1) after 1 min of application (P < 0.01, n = 10). Cyclopiazonic acid (10 and 30 μm) decreased AVN rate to 81.6 ± 4.8 (n = 9) and 77.4 ± 6.0 beats min(-1) (n = 7), respectively [P < 0.05, 10 or 30 μm CPA versus control (n = 10)] and also reduced the AVN rate increase in response to isoprenaline from 78.8 ± 10.0 to 46.8 ± 6.8 and 26.7 ± 5.3%, respectively (P < 0.01). These inhibitory effects of CPA on the intact AVN rate and its response to isoprenaline indicate that Ca(2+) cycling is important to the intact AVN spontaneous activity and its acceleration during sympathetic stimulation.

  19. Increasing T-type calcium channel activity by β-adrenergic stimulation contributes to β-adrenergic regulation of heart rates.

    PubMed

    Li, Yingxin; Zhang, Xiaoxiao; Zhang, Chen; Zhang, Xiaoying; Li, Ying; Qi, Zhao; Szeto, Christopher; Tang, Mingxin; Peng, Yizhi; Molkentin, Jeffery D; Houser, Steven R; Xie, Mingxing; Chen, Xiongwen

    2018-04-01

    Cav3.1 T-type Ca 2+ channel current (I Ca-T ) contributes to heart rate genesis but is not known to contribute to heart rate regulation by the sympathetic/β-adrenergic system (SAS). We show that the loss of Cav3.1 makes the beating rates of the heart in vivo and perfused hearts ex vivo, as well as sinoatrial node cells, less sensitive to β-adrenergic stimulation; it also renders less conduction acceleration through the atrioventricular node by β-adrenergic stimulation. Increasing Cav3.1 in cardiomyocytes has the opposite effects. I Ca-T in sinoatrial nodal cells can be upregulated by β-adrenergic stimulation. The results of the present study add a new contribution to heart rate regulation by the SAS system and provide potential new mechanisms for the dysregulation of heart rate and conduction by the SAS in the heart. T-type Ca 2+ channel can be a target for heart disease treatments that aim to slow down the heart rate ABSTRACT: Cav3.1 (α 1G ) T-type Ca 2+ channel (TTCC) is expressed in mouse sinoatrial node cells (SANCs) and atrioventricular (AV) nodal cells and contributes to heart rate (HR) genesis and AV conduction. However, its role in HR regulation and AV conduction acceleration by the β-adrenergic system (SAS) is unclear. In the present study, L- (I Ca-L ) and T-type (I Ca-T ) Ca 2+ currents were recorded in SANCs from Cav3.1 transgenic (TG) and knockout (KO), and control mice. I Ca-T was absent in KO SANCs but enhanced in TG SANCs. In anaesthetized animals, different doses of isoproterenol (ISO) were infused via the jugular vein and the HR was recorded. The EC 50 of the HR response to ISO was lower in TG mice but higher in KO mice, and the maximal percentage of HR increase by ISO was greater in TG mice but less in KO mice. In Langendorff-perfused hearts, ISO increased HR and shortened PR intervals to a greater extent in TG but to a less extent in KO hearts. KO SANCs had significantly slower spontaneous beating rates than control SANCs before and after ISO; TG SANCs had similar basal beating rates as control SANCs probably as a result of decreased I Ca-L but a greater response to ISO than control SANCs. I Ca-T in SANCs was significantly increased by ISO. I Ca-T upregulation by β-adrenergic stimulation contributes to HR and conduction regulation by the SAS. TTCC can be a target for slowing the HR. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  20. A comparison of the chronotropic and dromotropic actions between adenosine triphosphate and edrophonium in patients undergoing coronary artery bypass graft surgery.

    PubMed

    Watanabe, Seiji; Kono, Yasuo; Oishi-Tobinaga, Yoko; Yamada, Shin-ichi; Hara, Masato; Kano, Tatsuhiko

    2002-10-01

    To compare the effects of the stimulation of adenosine receptors and acetylcholine receptors in the cardiac conduction system in patients with ischemic heart disease. Prospective. University hospital. Patients scheduled for coronary artery bypass graft surgery (n = 37). The patients were divided into 3 groups: control group (n = 9), adenosine triphosphate (ATP) group (n = 12), and edrophonium group (n = 16). ATP (10 mg) or edrophonium (0.25 mg/kg) followed by saline or the same amount of saline was injected through a central venous catheter. ATP induced atrioventricular block in 10 of 12 patients (83%). The ATP injection produced a more prominent prolongation in the PQ duration (P-R interval) (139%) than in the P-P interval (105%) at the last beat before the development of atrioventricular block. The prolongation in the P-P interval (11%, average 85 msec) and PQ duration during atrioventricular block disappeared immediately after the restoration of atrioventricular conduction. After edrophonium, the maximal prolongation in P-P (118%, p < 0.01) and PQ (120%, p < 0.01) intervals was the same. P-P interval remained prolonged (p < 0.01) after PQ interval returned to baseline. Neither ATP nor edrophonium affected the QRS duration. These findings suggest that ATP predominantly inhibited atrioventricular conduction rather than the firing rate of sinoatrial nodes, and edrophonium inhibited both proportionally even with prolonged inhibitory action on the sinoatrial nodes. An injection of ATP is needed only when a transient cardiac standstill is requested, such as in endovascular grafting surgery. Edrophonium may be used to slow heart rate during coronary artery bypass graft surgery. Copyright 2002, Elsevier Science (USA). All rights reserved.

  1. Remodeling of cardiac cholinergic innervation and control of heart rate in mice with streptozotocin-induced diabetes.

    PubMed

    Mabe, Abigail M; Hoover, Donald B

    2011-07-05

    Cardiac autonomic neuropathy is a frequent complication of diabetes and often presents as impaired cholinergic regulation of heart rate. Some have assumed that diabetics have degeneration of cardiac cholinergic nerves, but basic knowledge on this topic is lacking. Accordingly, our goal was to evaluate the structure and function of cardiac cholinergic neurons and nerves in C57BL/6 mice with streptozotocin-induced diabetes. Electrocardiograms were obtained weekly from conscious control and diabetic mice for 16 weeks. Resting heart rate decreased in diabetic mice, but intrinsic heart rate was unchanged. Power spectral analysis of electrocardiograms revealed decreased high frequency and increased low frequency power in diabetic mice, suggesting a relative reduction of parasympathetic tone. Negative chronotropic responses to right vagal nerve stimulation were blunted in 16-week diabetic mice, but postjunctional sensitivity of isolated atria to muscarinic agonists was unchanged. Immunohistochemical analysis of hearts from diabetic and control mice showed no difference in abundance of cholinergic neurons, but cholinergic nerve density was increased at the sinoatrial node of diabetic mice (16 weeks: 14.9±1.2% area for diabetics versus 8.9±0.8% area for control, P<0.01). We conclude that disruption of cholinergic function in diabetic mice cannot be attributed to a loss of cardiac cholinergic neurons and nerve fibers or altered cholinergic sensitivity of the atria. Instead, decreased responses to vagal stimulation might be caused by a defect of preganglionic cholinergic neurons and/or ganglionic neurotransmission. The increased density of cholinergic nerves observed at the sinoatrial node of diabetic mice might be a compensatory response. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Calsequestrin 2 deletion causes sinoatrial node dysfunction and atrial arrhythmias associated with altered sarcoplasmic reticulum calcium cycling and degenerative fibrosis within the mouse atrial pacemaker complex1

    PubMed Central

    Glukhov, Alexey V.; Kalyanasundaram, Anuradha; Lou, Qing; Hage, Lori T.; Hansen, Brian J.; Belevych, Andriy E.; Mohler, Peter J.; Knollmann, Björn C.; Periasamy, Muthu; Györke, Sandor; Fedorov, Vadim V.

    2015-01-01

    Aims Loss-of-function mutations in Calsequestrin 2 (CASQ2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT patients also exhibit bradycardia and atrial arrhythmias for which the underlying mechanism remains unknown. We aimed to study the sinoatrial node (SAN) dysfunction due to loss of CASQ2. Methods and results In vivo electrocardiogram (ECG) monitoring, in vitro high-resolution optical mapping, confocal imaging of intracellular Ca2+ cycling, and 3D atrial immunohistology were performed in wild-type (WT) and Casq2 null (Casq2−/−) mice. Casq2−/− mice exhibited bradycardia, SAN conduction abnormalities, and beat-to-beat heart rate variability due to enhanced atrial ectopic activity both at baseline and with autonomic stimulation. Loss of CASQ2 increased fibrosis within the pacemaker complex, depressed primary SAN activity, and conduction, but enhanced atrial ectopic activity and atrial fibrillation (AF) associated with macro- and micro-reentry during autonomic stimulation. In SAN myocytes, CASQ2 deficiency induced perturbations in intracellular Ca2+ cycling, including abnormal Ca2+ release, periods of significantly elevated diastolic Ca2+ levels leading to pauses and unstable pacemaker rate. Importantly, Ca2+ cycling dysfunction occurred not only at the SAN cellular level but was also globally manifested as an increased delay between action potential (AP) and Ca2+ transient upstrokes throughout the atrial pacemaker complex. Conclusions Loss of CASQ2 causes abnormal sarcoplasmic reticulum Ca2+ release and selective interstitial fibrosis in the atrial pacemaker complex, which disrupt SAN pacemaking but enhance latent pacemaker activity, create conduction abnormalities and increase susceptibility to AF. These functional and extensive structural alterations could contribute to SAN dysfunction as well as AF in CPVT patients. PMID:24216388

  3. Repeated arterial occlusion, delta-opioid receptor (DOR) plasticity and vagal transmission within the sinoatrial node of the anesthetized dog.

    PubMed

    Deo, Shekhar H; Barlow, Matthew A; Gonzalez, Leticia; Yoshishige, Darice; Caffrey, James L

    2009-01-01

    Brief interruptions in coronary blood flow precondition the heart, engage delta-opioid receptor (DOR) mechanisms and reduce the damage that typically accompanies subsequent longer coronary occlusions. Repeated short occlusions of the sinoatrial (SA) node artery progressively raised nodal methionine-enkephalin-arginine-phenylalanine (MEAP) and improved vagal transmission during subsequent long occlusions in anesthetized dogs. The DOR type-1 (DOR-1) antagonist, BNTX reversed the vagotonic effect. Higher doses of enkephalin interrupted vagal transmission through a DOR-2 mechanism. The current study tested whether the preconditioning (PC) protocol, the later occlusion or a combination of both was required for the vagotonic effect. The study also tested whether evolving vagotonic effects included withdrawal of competing DOR-2 vagolytic influences. Vagal transmission progressively improved during successive SA nodal artery occlusions. The vagotonic effect was absent in sham animals and after DOR-1 blockade. After completing the PC protocol, exogenously applied vagolytic doses of MEAP reduced vagal transmission under both normal and occluded conditions. The magnitude of these DOR-2 vagolytic effects was small compared to controls and repeated MEAP challenges rapidly eroded vagolytic responses further. Prior DOR-1 blockade did not alter the PC mediated, progressive loss of DOR-2 vagolytic responses. In conclusion, DOR-1 vagotonic responses evolved from signals earlier in the PC protocol and erosion of competing DOR-2 vagolytic responses may have contributed to an unmasking of vagotonic responses. The data support the hypothesis that PC and DOR-2 stimulation promote DOR trafficking, and down regulation of the vagolytic DOR-2 phenotype in favor of the vagotonic DOR-1 phenotype. DOR-1 blockade may accelerate the process by sequestering newly emerging receptors.

  4. A Parametric Computational Model of the Action Potential of Pacemaker Cells.

    PubMed

    Ai, Weiwei; Patel, Nitish D; Roop, Partha S; Malik, Avinash; Andalam, Sidharta; Yip, Eugene; Allen, Nathan; Trew, Mark L

    2018-01-01

    A flexible, efficient, and verifiable pacemaker cell model is essential to the design of real-time virtual hearts that can be used for closed-loop validation of cardiac devices. A new parametric model of pacemaker action potential is developed to address this need. The action potential phases are modeled using hybrid automaton with one piecewise-linear continuous variable. The model can capture rate-dependent dynamics, such as action potential duration restitution, conduction velocity restitution, and overdrive suppression by incorporating nonlinear update functions. Simulated dynamics of the model compared well with previous models and clinical data. The results show that the parametric model can reproduce the electrophysiological dynamics of a variety of pacemaker cells, such as sinoatrial node, atrioventricular node, and the His-Purkinje system, under varying cardiac conditions. This is an important contribution toward closed-loop validation of cardiac devices using real-time heart models.

  5. Cross-correlation of heartbeat and respiration rhythms

    NASA Astrophysics Data System (ADS)

    Capurro, A.; Malta, C. P.; Diambra, L.; Contreras, P.; Migliaro, E. R.

    2005-10-01

    The cross-correlation function between respiration and heart beat interval series shows that during metronomized breathing the heart beat follows the respiration more closely than during spontaneous breathing. We reproduced the heart beat interval modulations during metronomized breathing using a biophysical model of the sinoatrial node excited by an input signal formed by the recorded respiration. In the case of spontaneous breathing, a good agreement with the experimental data was obtained only by using an input signal formed by the sum of the recorded respiration and a realization of correlated noise. Metronomized breathing refers to the situation where a subject breathes following the rhythm of a metronome.

  6. Computational analysis of the human sinus node action potential: model development and effects of mutations

    PubMed Central

    Fabbri, Alan; Fantini, Matteo; Wilders, Ronald

    2017-01-01

    Key points We constructed a comprehensive mathematical model of the spontaneous electrical activity of a human sinoatrial node (SAN) pacemaker cell, starting from the recent Severi–DiFrancesco model of rabbit SAN cells.Our model is based on electrophysiological data from isolated human SAN pacemaker cells and closely matches the action potentials and calcium transient that were recorded experimentally.Simulated ion channelopathies explain the clinically observed changes in heart rate in corresponding mutation carriers, providing an independent qualitative validation of the model.The model shows that the modulatory role of the ‘funny current’ (I f) in the pacing rate of human SAN pacemaker cells is highly similar to that of rabbit SAN cells, despite its considerably lower amplitude.The model may prove useful in the design of experiments and the development of heart‐rate modulating drugs. Abstract The sinoatrial node (SAN) is the normal pacemaker of the mammalian heart.  Over several decades, a large amount of data on the ionic mechanisms underlying the spontaneous electrical activity of SAN pacemaker cells has been obtained, mostly in experiments on single cells isolated from rabbit SAN. This wealth of data has allowed the development of mathematical models of the electrical activity of rabbit SAN pacemaker cells. The present study aimed to construct a comprehensive model of the electrical activity of a human SAN pacemaker cell using recently obtained electrophysiological data from human SAN pacemaker cells.  We based our model on the recent Severi–DiFrancesco model of a rabbit SAN pacemaker cell. The action potential and calcium transient of the resulting model are close to the experimentally recorded values. The model has a much smaller ‘funny current’ (I f) than do rabbit cells, although its modulatory role is highly similar. Changes in pacing rate upon the implementation of mutations associated with sinus node dysfunction agree with the clinical observations. This agreement holds for both loss‐of‐function and gain‐of‐function mutations in the HCN4, SCN5A and KCNQ1 genes, underlying ion channelopathies in I f, fast sodium current and slow delayed rectifier potassium current, respectively. We conclude that our human SAN cell model can be a useful tool in the design of experiments and the development of drugs that aim to modulate heart rate. PMID:28185290

  7. Activity of cholinesterases of blood and heart in rats of different sex and age during muscular loads and hypokinesia

    NASA Technical Reports Server (NTRS)

    Rozanova, V. D.; Antonova, G. A.

    1979-01-01

    The activity of acetylcholinesterase (Ache) and butyrilcholinesterase (Bche) in the blood and the heart of 3 and 13 month old control male rats is considerably lower than in female rats. In 25 month old rats, no sex differences in the Ache and Bche were revealed in the heart. In 3 and 13 month old male and female rats, under conditions of muscular exercises, the Ache and Bche activity is lower, and in hypokinetic male rats -- higher than that in respective control animals. In all the rats, irrespective of sex, age, and motor conditions, Ache and Bche activity tended to decrease from the sinoatrial node to the heart apex.

  8. Automatic identification of IASLC-defined mediastinal lymph node stations on CT scans using multi-atlas organ segmentation

    NASA Astrophysics Data System (ADS)

    Hoffman, Joanne; Liu, Jiamin; Turkbey, Evrim; Kim, Lauren; Summers, Ronald M.

    2015-03-01

    Station-labeling of mediastinal lymph nodes is typically performed to identify the location of enlarged nodes for cancer staging. Stations are usually assigned in clinical radiology practice manually by qualitative visual assessment on CT scans, which is time consuming and highly variable. In this paper, we developed a method that automatically recognizes the lymph node stations in thoracic CT scans based on the anatomical organs in the mediastinum. First, the trachea, lungs, and spines are automatically segmented to locate the mediastinum region. Then, eight more anatomical organs are simultaneously identified by multi-atlas segmentation. Finally, with the segmentation of those anatomical organs, we convert the text definitions of the International Association for the Study of Lung Cancer (IASLC) lymph node map into patient-specific color-coded CT image maps. Thus, a lymph node station is automatically assigned to each lymph node. We applied this system to CT scans of 86 patients with 336 mediastinal lymph nodes measuring equal or greater than 10 mm. 84.8% of mediastinal lymph nodes were correctly mapped to their stations.

  9. The natriuretic peptides BNP and CNP increase heart rate and electrical conduction by stimulating ionic currents in the sinoatrial node and atrial myocardium following activation of guanylyl cyclase-linked natriuretic peptide receptors.

    PubMed

    Springer, Jeremy; Azer, John; Hua, Rui; Robbins, Courtney; Adamczyk, Andrew; McBoyle, Sarah; Bissell, Mary Beth; Rose, Robert A

    2012-05-01

    Natriuretic peptides (NPs) are best known for their ability to regulate blood vessel tone and kidney function whereas their electrophysiological effects on the heart are less clear. Here, we measured the effects of BNP and CNP on sinoatrial node (SAN) and atrial electrophysiology in isolated hearts as well as isolated SAN and right atrial myocytes from mice. BNP and CNP dose-dependently increased heart rate and conduction through the heart as indicated by reductions in R-R interval, P wave duration and P-R interval on ECGs. In conjunction with these ECG changes BNP and CNP (100 nM) increased spontaneous action potential frequency in isolated SAN myocytes by increasing L-type Ca(2+) current (I(Ca,L)) and the hyperpolarization-activated current (I(f)). BNP had no effect on right atrial myocyte APs in basal conditions; however, in the presence of isoproterenol (10nM), BNP increased atrial AP duration and I(Ca,L). Quantitative gene expression and immunocytochemistry data show that all three NP receptors (NPR-A, NPR-B and NPR-C) are expressed in the SAN and atrium. The effects of BNP and CNP on SAN and right atrial myocytes were maintained in mutant mice lacking functional NPR-C receptors and blocked by the NPR-A antagonist A71915 indicating that BNP and CNP function through their guanylyl cyclase-linked receptors. Our data also show that the effects of BNP and CNP are completely absent in the presence of the phosphodiesterase 3 inhibitor milrinone. Based on these data we conclude that NPs can increase heart rate and electrical conduction by activating the guanylyl cyclase-linked NPR-A and NPR-B receptors and inhibiting PDE3 activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Distribution of the muscarinic K+ channel proteins Kir3.1 and Kir3.4 in the ventricle, atrium, and sinoatrial node of heart.

    PubMed

    Dobrzynski, H; Marples, D D; Musa, H; Yamanushi, T T; Henderson, Z; Takagishi, Y; Honjo, H; Kodama, I; Boyett, M R

    2001-10-01

    The functionally important effects on the heart of ACh released from vagal nerves are principally mediated by the muscarinic K+ channel. The aim of this study was to determine the abundance and cellular location of the muscarinic K+ channel subunits Kir3.1 and Kir3.4 in different regions of heart. Western blotting showed a very low abundance of Kir3.1 in rat ventricle, although Kir3.1 was undetectable in guinea pig and ferret ventricle. Although immunofluorescence on tissue sections showed no labeling of Kir3.1 in rat, guinea pig, and ferret ventricle and Kir3.4 in rat ventricle, immunofluorescence on single ventricular cells from rat showed labeling in t-tubules of both Kir3.1 and Kir3.4. Kir3.1 was abundant in the atrium of the three species, as shown by Western blotting and immunofluorescence, and Kir3.4 was abundant in the atrium of rat, as shown by immunofluorescence. Immunofluorescence showed Kir3.1 expression in SA node from the three species and Kir3.4 expression in the SA node from rat. The muscarinic K+ channel is activated by ACh via the m2 muscarinic receptor and, in atrium and SA node from ferret, Kir3.1 labeling was co-localized with m2 muscarinic receptor labeling throughout the outer cell membrane.

  11. Model for the heart beat-to-beat time series during meditation

    NASA Astrophysics Data System (ADS)

    Capurro, A.; Diambra, L.; Malta, C. P.

    2003-09-01

    We present a model for the respiratory modulation of the heart beat-to-beat interval series. The model consists of a pacemaker, that simulates the membrane potential of the sinoatrial node, modulated by a periodic input signal plus correlated noise that simulates the respiratory input. The model was used to assess the waveshape of the respiratory signals needed to reproduce in the phase space the trajectory of experimental heart beat-to-beat interval data. The data sets were recorded during meditation practices of the Chi and Kundalini Yoga techniques. Our study indicates that in the first case the respiratory signal has the shape of a smoothed square wave, and in the second case it has the shape of a smoothed triangular wave.

  12. Electrophysiological heterogeneity of pacemaker cells in the rabbit intercaval region, including the SA node: insights from recording multiple ion currents in each cell.

    PubMed

    Monfredi, Oliver; Tsutsui, Kenta; Ziman, Bruce; Stern, Michael D; Lakatta, Edward G; Maltsev, Victor A

    2018-03-01

    Cardiac pacemaker cells, including cells of the sinoatrial node, are heterogeneous in size, morphology, and electrophysiological characteristics. The exact extent to which these cells differ electrophysiologically is unclear yet is critical to understanding their functioning. We examined major ionic currents in individual intercaval pacemaker cells (IPCs) sampled from the paracristal, intercaval region (including the sinoatrial node) that were spontaneously beating after enzymatic isolation from rabbit hearts. The beating rate was measured at baseline and after inhibition of the Ca 2+ pump with cyclopiazonic acid. Thereafter, in each cell, we consecutively measured the density of funny current ( I f ), delayed rectifier K + current ( I K ) (a surrogate of repolarization capacity), and L-type Ca 2+ current ( I Ca,L ) using whole cell patch clamp . The ionic current densities varied to a greater extent than previously appreciated, with some IPCs demonstrating very small or zero I f . The density of none of the currents was correlated with cell size, while I Ca,L and I f densities were related to baseline beating rates. I f density was correlated with I K density but not with that of I Ca,L . Inhibition of Ca 2+ cycling had a greater beating rate slowing effect in IPCs with lower I f densities. Our numerical model simulation indicated that 1) IPCs with small (or zero) I f or small I Ca,L can operate via a major contribution of Ca 2+ clock, 2) I f -Ca 2+ -clock interplay could be important for robust pacemaking function, and 3) coupled I f - I K function could regulate maximum diastolic potential. Thus, we have demonstrated marked electrophysiological heterogeneity of IPCs. This heterogeneity is manifested in basal beating rate and response to interference of Ca 2+ cycling, which is linked to I f . NEW & NOTEWORTHY In the present study, a hitherto unrecognized range of heterogeneity of ion currents in pacemaker cells from the intercaval region is demonstrated. Relationships between basal beating rate and L-type Ca 2+ current and funny current ( I f ) density are uncovered, along with a positive relationship between I f and delayed rectifier K + current. Links are shown between the response to Ca 2+ cycling blockade and I f density.

  13. Myristoylated peptides potentiate the funny current (If) in sinoatrial myocytes

    PubMed Central

    Liao, Zhandi; St Clair, Joshua R; Larson, Eric D

    2011-01-01

    The funny current, If, in sinoatrial myocytes is thought to contribute to the sympathetic fight-or-flight increase in heart rate. If is produced by hyperpolarization-activated cyclic nucleotide sensitive-4 (HCN4) channels, and it is widely believed that sympathetic regulation of If occurs via direct binding of cAMP to HCN4, independent of phosphorylation. However, we have recently shown that Protein Kinase A (PKA) activity is required for sympathetic regulation of If, and that PKA can directly phosphorylate HCN4.1 In the present study, we examined the effects of a myristoylated PKA inhibitory peptide (myr-PKI) on If in mouse sinoatrial myocytes. We found that myr-PKI and another myristoylated peptide potently and specifically potentiated If via a mechanism that did not involve PKA inhibition and that was independent of the peptide sequence, Protein Kinase C or phosphatidylinositol-4,5-bisphosphate. The off-target activation of If by myristoylated peptides limits their usefulness for studies of pacemaker mechanisms in sinoatrial myocytes. PMID:21150293

  14. The Masked Semantic Priming Effect Is Task Dependent: Reconsidering the Automatic Spreading Activation Process

    ERIC Educational Resources Information Center

    de Wit, Bianca; Kinoshita, Sachiko

    2015-01-01

    Semantic priming effects are popularly explained in terms of an automatic spreading activation process, according to which the activation of a node in a semantic network spreads automatically to interconnected nodes, preactivating a semantically related word. It is expected from this account that semantic priming effects should be routinely…

  15. Effect of antihypertensive drug therapy on short-term heart rate variability in newly diagnosed essential hypertension.

    PubMed

    Pavithran, Purushothaman; Prakash, E Sankaranarayanan; Dutta, Tarun K; Madanmohan, Trakroo

    2010-02-01

    1. Abnormalities of cardiac autonomic regulation are a potential mechanism for morbidity despite blood pressure (BP) lowering in hypertension. Analysis of short-term (5 min) heart rate variability (HRV) provides a non-invasive probe of autonomic regulation of sino-atrial (SA) node automaticity. 2. We hypothesized that antihypertensive drug therapy would be associated with an increase in 5 min overall HRV, along with a decrease in blood pressure (BP), at 8 weeks follow up in subjects with newly diagnosed, never-treated essential hypertension. 3. One hundred and fifty patients (84 men and 66 women; mean (+/-SD) age 48 +/- 10 years) with newly diagnosed essential hypertension were divided to five groups of 30 patients each to receive one of the following antihypertensive drugs (or drug combinations): 5 mg/day amlodipine; 50 mg/day atenolol; 5 mg/day enalapril; 25 mg/day hydrochlorothiazide; or a combination of 5 mg/day amlodipine and 50 mg/day atenolol. 4. The only significant change in HRV indices was an increase in total variability of RR intervals and an increase in high-frequency (HF) RR interval spectral power in the amlodipine + atenolol-treated group (P < 0.05). 5. The results indicate that there is a dissociation between changes in short-term HRV and mean RR interval and BP lowering in patients with newly diagnosed hypertension. 6. We interpret the increase in HF RR interval spectral power in the amlodipine + atenolol-treated group as being due to an increase in vagal modulation of RR intervals and/or diminution in sympathetic restraint of respiratory sinus arrhythmia.

  16. Ivabradine prolongs phase 3 of cardiac repolarization and blocks the hERG1 (KCNH2) current over a concentration-range overlapping with that required to block HCN4.

    PubMed

    Lees-Miller, James P; Guo, Jiqing; Wang, Yibo; Perissinotti, Laura L; Noskov, Sergei Y; Duff, Henry J

    2015-08-01

    In Europe, ivabradine has recently been approved to treat patients with angina who have intolerance to beta blockers and/or heart failure. Ivabradine is considered to act specifically on the sinoatrial node by inhibiting the If current (the funny current) to slow automaticity. However, in vitro studies show that ivabradine prolongs phase 3 repolarization in ventricular tissue. No episodes of Torsades de Pointes have been reported in randomized clinical studies. The objective of this study is to assess whether ivabradine blocked the hERG1 current. In the present study we discovered that ivabradine prolongs action potential and blocks the hERG current over a range of concentrations overlapping with those required to block HCN4. Ivabradine produced tonic, rather than use-dependent block. The mutation Y652A significantly suppressed pharmacologic block of hERG by ivabradine. Disruption of C-type inactivation also suppressed block of hERG1 by ivabradine. Molecular docking and molecular dynamics simulations indicate that ivabradine may access the inner cavity of the hERG1 via a lipophilic route and has a well-defined binding site in the closed state of the channel. Structural organization of the binding pockets for ivabradine is discussed. Ivabradine blocks hERG and prolongs action potential duration. Our study is potentially important because it indicates the need for active post marketing surveillance of ivabradine. Importantly, proarrhythmia of a number of other drugs has only been discovered during post marketing surveillance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Intracellular Calcium Dynamics and the Acceleration of Sinus Rhythm by β-Adrenergic Stimulation

    PubMed Central

    Joung, Boyoung; Tang, Liang; Maruyama, Mitsunori; Han, Seongwook; Chen, Zhenhui; Stucky, Marcelle; Jones, Larry R.; Fishbein, Michael C.; Weiss, James N.; Chen, Peng-Sheng; Lin, Shien-Fong

    2009-01-01

    Background Recent evidence indicates that membrane voltage and Ca2+ clocks jointly regulate sinoatrial node (SAN) automaticity. Here we test the hypothesis that sinus rate acceleration by β-adrenergic stimulation involves synergistic interactions between these clock mechanisms. Methods and Results We simultaneously mapped intracellular calcium (Cai) and membrane potential (Vm) in 25 isolated canine right atrium (RA), using previously described criteria of the timing of late diastolic Cai elevation (LDCAE) relative to the action potential (AP) upstroke to detect the Ca2+ clock. Before isoproterenol, the earliest pacemaking site occurred in the inferior SAN, and LDCAE was observed in only 4/25 preparations. Isoproterenol (1 μmol/L) increased sinus rate and shifted pacemaking site to superior SAN, concomitant with the appearance of LDCAE preceding the AP upstroke by 98 ± 31 ms. Caffeine had similar effects, while SR Ca2+ depletion with ryanodine and thapsigargin prevented isoproterenol-induced LDCAE and blunted sinus rate acceleration. Cai transient relaxation time during ISO was shorter in superior SAN (124 ± 34 ms) than inferior SAN (138 ± 24 ms, p = 0.01) or RA (164 ± 33 ms, p = 0.001), and was associated with a lower SR Ca2+ ATPase pump to phospholamban protein ratio in SAN than in RA. If current blockade with ZD 7288 modestly blunted, but did not prevent LDCAE or sinus rate acceleration by isoproterenol. Conclusions Acceleration of the Ca2+ clock in the superior SAN plays an important role in sinus acceleration during β-adrenergic stimulation, interacting synergistically with the voltage clock to increase sinus rate. PMID:19188501

  18. Cardiac Resynchronization Therapy and phase resetting of the sinoatrial node: A conjecture

    NASA Astrophysics Data System (ADS)

    Cantini, Federico; Varanini, Maurizio; Macerata, Alberto; Piacenti, Marcello; Morales, Maria-Aurora; Balocchi, Rita

    2007-03-01

    Congestive heart failure is a severe chronic disease often associated with disorders that alter the mechanisms of excitation-contraction coupling that may result in an asynchronous left ventricular motion which may further impair the ability of the failing heart to eject blood. In recent years a therapeutic approach to resynchronize the ventricles (cardiac resynchronization therapy, CRT) has been performed through the use of a pacemaker device able to provide atrial-based biventricular stimulation. Atrial lead senses the spontaneous occurrence of cells depolarization and sends the information to the generator which, in turn, after a settled delay [atrioventricular (AV) delay], sends electrical impulses to both ventricles to stimulate their synchronous contraction. Recent studies performed on heart rate behavior of chronically implanted patients at different epochs after implantation have shown that CRT can lead to sustained overall improvement of heart function with a reduction in morbidity and mortality. At this moment, however, there are no studies about CRT effects on spontaneous heart activity of chronically implanted patients. We performed an experimental study in which the electrocardiographic signal of five subjects under chronic CRT was recorded during the activity of the pacemaker programmed at different AV delays and under spontaneous cardiac activity after pacemaker deactivation. The different behavior of heart rate variability during pacemaker activity and after pacemaker deactivation suggested the hypothesis of a phase resetting mechanism induced by the pacemaker stimulus on the sinoatrial (SA) node, a phenomenon already known in literature for aggregate of cardiac cells, but still unexplored in vivo. The constraints imposed by the nature of our study (in vivo tests) made it impossible to plan an experiment to prove our hypothesis directly. We therefore considered the best attainable result would be to prove the accordance of our data to the conjecture through the use of models and physical considerations. We first used the data of literature on far-field effects of cardiac defibrillators to prove that the pacemaker impulses delivered to the two ventricles were able to induce modifications in membrane voltage at the level of the SA node. To simulate a phase resetting mechanism of the SA node, we used a Van der Pol modified model to allow the possibility of changing the refractory period and the firing frequency of the cells separately. With appropriate parameters of the model we reproduced phase response curves that can account for our experimental data. Furthermore, the simulated curves closely resemble the functional form proposed in literature for perturbed aggregate of cardiac cells. Despite the small sample of subjects investigated and the limited number of ECG recordings at different AV delays, we think we have proved the plausibility of the proposed conjecture.

  19. Prevalence and predictors of low voltage zones in the left atrium in patients with atrial fibrillation.

    PubMed

    Huo, Yan; Gaspar, Thomas; Pohl, Matthias; Sitzy, Judith; Richter, Utz; Neudeck, Sebastian; Mayer, Julia; Kronborg, Mads Brix; Piorkowski, Christopher

    2017-06-10

    To describe the extent and distribution of low voltage zones (LVZ) in a large cohort of patients undergoing ablation for paroxysmal and persistent atrial fibrillation (AF), and to explore baseline predictors of LVZ in these patients. Consecutive patients who underwent a bipolar voltage map guided AF ablation, were enrolled. Voltage maps were conducted for each patient using 3-dimensional electroanatomical mapping system and LVZ were defined as areas of bipolar voltage < 0.5 mV. A total of 539 patients (309 male, age 65 ± 10 years) were included. Low voltage zones was present in 58 out of 292 patients with paroxysmal and 134 out of 247 persistent AF (P < 0.001). The area of LVZ was larger in patients with persistent as compare to paroxysmal AF, 5 cm2 (IQR 3-18.6) vs. 12.1 cm2 (IQR 3.6-28.5), P = 0.026, respectively. In the multivariate analysis age (OR 1.07, 95%CI 1.05-1.10, P < 0.001), female gender (OR 2.18, 95%CI 1.38-3.43, P = 0.001), sinoatrial node dysfunction (OR 3.90, 95%CI 1.24-12.21, P = 0.020), larger surface area of left atrium pr. cm2 (OR 1.01, 95%CI 1.00-1.02, P = 0.016), and persistent AF (OR 5.03, 95%CI 3.20-7.90, P<0.001) were associated with presence of LVZ. In a large cohort of patients undergoing ablation for AF, the prevalence of LVZ was higher and LVZ areas larger in patients with persistent as compared with paroxysmal AF. The most frequent localization of LVZ was anterior wall, septum and posterior wall. Presence of LVZ was associated with higher age, female gender, larger LA surface area, and sinoatrial node dysfunction. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  20. Modulation of voltage- and Ca2+-dependent gating of CaV1.3 L-type calcium channels by alternative splicing of a C-terminal regulatory domain.

    PubMed

    Singh, Anamika; Gebhart, Mathias; Fritsch, Reinhard; Sinnegger-Brauns, Martina J; Poggiani, Chiara; Hoda, Jean-Charles; Engel, Jutta; Romanin, Christoph; Striessnig, Jörg; Koschak, Alexandra

    2008-07-25

    Low voltage activation of Ca(V)1.3 L-type Ca(2+) channels controls excitability in sensory cells and central neurons as well as sinoatrial node pacemaking. Ca(V)1.3-mediated pacemaking determines neuronal vulnerability of dopaminergic striatal neurons affected in Parkinson disease. We have previously found that in Ca(V)1.4 L-type Ca(2+) channels, activation, voltage, and calcium-dependent inactivation are controlled by an intrinsic distal C-terminal modulator. Because alternative splicing in the Ca(V)1.3 alpha1 subunit C terminus gives rise to a long (Ca(V)1.3(42)) and a short form (Ca(V)1.3(42A)), we investigated if a C-terminal modulatory mechanism also controls Ca(V)1.3 gating. The biophysical properties of both splice variants were compared after heterologous expression together with beta3 and alpha2delta1 subunits in HEK-293 cells. Activation of calcium current through Ca(V)1.3(42A) channels was more pronounced at negative voltages, and inactivation was faster because of enhanced calcium-dependent inactivation. By investigating several Ca(V)1.3 channel truncations, we restricted the modulator activity to the last 116 amino acids of the C terminus. The resulting Ca(V)1.3(DeltaC116) channels showed gating properties similar to Ca(V)1.3(42A) that were reverted by co-expression of the corresponding C-terminal peptide C(116). Fluorescence resonance energy transfer experiments confirmed an intramolecular protein interaction in the C terminus of Ca(V)1.3 channels that also modulates calmodulin binding. These experiments revealed a novel mechanism of channel modulation enabling cells to tightly control Ca(V)1.3 channel activity by alternative splicing. The absence of the C-terminal modulator in short splice forms facilitates Ca(V)1.3 channel activation at lower voltages expected to favor Ca(V)1.3 activity at threshold voltages as required for modulation of neuronal firing behavior and sinoatrial node pacemaking.

  1. Sinoatrial block complicating legionnaire's disease.

    PubMed

    Medarov, B; Tongia, S; Rossoff, L

    2003-11-01

    A 59 year old woman presented with acute onset of fever, chills, diaphoresis, vague chest discomfort, and was found to be hypotensive and tachypnoeic. An electrocardiogram demonstrated sinoatrial block with a junctional rhythm between 50 and 80 beats/min. All cultures were negative and imaging studies unrevealing. Her urine tested positive for Legionella pneumophila antigen serotype 1 and she improved with antibiotic therapy.

  2. Automatic Network Fingerprinting through Single-Node Motifs

    PubMed Central

    Echtermeyer, Christoph; da Fontoura Costa, Luciano; Rodrigues, Francisco A.; Kaiser, Marcus

    2011-01-01

    Complex networks have been characterised by their specific connectivity patterns (network motifs), but their building blocks can also be identified and described by node-motifs—a combination of local network features. One technique to identify single node-motifs has been presented by Costa et al. (L. D. F. Costa, F. A. Rodrigues, C. C. Hilgetag, and M. Kaiser, Europhys. Lett., 87, 1, 2009). Here, we first suggest improvements to the method including how its parameters can be determined automatically. Such automatic routines make high-throughput studies of many networks feasible. Second, the new routines are validated in different network-series. Third, we provide an example of how the method can be used to analyse network time-series. In conclusion, we provide a robust method for systematically discovering and classifying characteristic nodes of a network. In contrast to classical motif analysis, our approach can identify individual components (here: nodes) that are specific to a network. Such special nodes, as hubs before, might be found to play critical roles in real-world networks. PMID:21297963

  3. Sodium Hydroxide Pinpoint Pressing Permeation Method for the Animal Modeling of Sick Sinus Syndrome.

    PubMed

    Geng, Naizhi; Jiang, Ning; Peng, Cailiang; Wang, Huaiping; Zhang, Shuoxin; Chen, Tianyu; Liu, Lixia; Wu, Yaping; Liu, Dandan

    2015-01-01

    Sodium hydroxide pinpoint pressing permeation (SHPPP) was investigated in order to build a rat model of sick sinus syndrome (SSS), which is easy to operate and control the degree of damage, with fewer complications and applicable for large and small animals.Thirty healthy Wistar rats (15 males and 15 females, weighing 250-350 g) were randomly divided into 3 groups, namely a formaldehyde thoracotomy wet compressing group (FTWC), formaldehyde pinpoint pressing permeation group (FPPP) group, and SHPPP group. The number of surviving rats, heart rate (HR), sinoatrial node recovery time (SNRT), corrected SNRT (CSNRT), and sinoatrial conduction time (SACT) were recorded 3 days, one week, and two weeks after modeling.The achievement ratio of modeling was 10% in the FTWC group, 40% in the FPPP group, and 70% in the SHPPP group, and the differences were statistically significant (χ(2) = 7.250, P = 0.007). Meanwhile, the HR was reduced by about 37% in these 3 groups 3 days after modeling, while the reduction was maintained only in SHPPP (P > 0.05) and the HR was re-elevated in the FTWC and FPPP groups 2 weeks after modeling (P < 0.05). Additionally, the SNRT, cS-NRT, and SACT were significantly prolonged compared with pre-modeling in all 3 groups (P < 0.01).SHPPP was the best method with which to build an SSS model with stable and lasting low HR and high success rate of modeling, which might be helpful for further studies on the SSS mechanisms and drugs.

  4. Review of the If selective channel inhibitor ivabradine in the treatment of chronic stable angina.

    PubMed

    Prasad, Usha K; Gray, David; Purcell, Henry

    2009-02-01

    Coronary heart disease is the major cause of morbidity and mortality in industrialized countries, and its prevalence is predicted to grow as the population ages. Current drugs for chronic stable angina (such as beta-blockers, calcium-channel blockers, long- and short-acting nitrates, and potassium-channel activators) are often effective, either as monotherapy or in combination, but side effects and contraindications may limit their use. The "I(f)" (for "funny") channel, discovered in 1979, is expressed mainly in the membrane of pacemaker cells present in the sinus node, the atrioventricular node, the ventricular conduction pathways, and ventricular myocytes. By determining the slope of diastolic depolarization, which in turn controls action potential frequency, it is a key determinant of heart rate and so provides a new therapeutic target for controlling angina symptoms. A new antiangina drug, ivabradine, has been developed and licensed for clinical use. It exclusively reduces the heart rate by selectively blocking the I(f) channel of the sino-atrial node. As clinical trials have shown it to be remarkably well-tolerated, ivabradine offers an alternative for patients who cannot take, or are intolerant of, beta blockade. This review provides an insight into this new agent, its historical background, mechanism of action, and pathophysiologic basis, and provides up-to-date evidence-based information on its optimum use in stable angina.

  5. Effect of interconnection between cervical vagus trunk, epicardial fat pad on sinus node function, and atrial fibrillation.

    PubMed

    Zhou, Qina; Zhang, Ling; Wang, Kun; Xu, Xiaoxia; Ji, Meng; Zhang, Feng; Wang, Hongli; Hou, Yuemei

    2014-03-01

    The epicardial fat pad (FP) integrates the autonomic innervation between the extrinsic and intrinsic cardiac autonomic nervous system and affects atrial electrophysiology and pathophysiology. Eighteen dogs were divided into two groups: sequential ablation of sinoatrial node FP (SAN-FP) and atrioventricular node FP (AVN-FP). Sinus rate (SR), atrial fibrillation (AF) inducibility, and effective refractory period (ERP) changes during electrical stimulation of the vagus trunk were detected before and after ablation. In the SAN-FP group, the SR slowing, increasing AF inducibility, and ERP shortening that induced by vagus trunk stimulation were significantly attenuated by isolated SAN-FP ablation, compared with the same group prior to ablation (all P < 0.05). Subsequent AVN-FP ablation following SAN-FP ablation almost cannot produce further attenuation during vagus trunk stimulation, compared with isolated SAN-FP ablation (P > 0.05). In the AVN-FP group, SR slowing, increasing AF inducibility, and ERP shortening that induced by vagus trunk stimulation were completely eliminated by isolated AVN-FP ablation, compared with the same group prior to ablation (all P < 0.05). Subsequent SAN-FP ablation following AVN-FP ablation produced no further attenuation, compared with isolated AVN-FP ablation (P > 0.05). A neural pathway from the cervical vagus trunk to the sinus node and atrium runs through the SAN-FP, but eventually converges at the AVN-FP and also suggested that the AVN-FP serves as an "integration center" for the SAN-FP to modulate sinus node function. The AVN-FP may play a more critical role in the initiation and maintenance of AF. ©2013 First Affilated Hospital of Xingiang Medical University Pacing and Clinical Electrophysiology ©2013 Wiley Periodicals, Inc.

  6. Microwave effects on isolated chick embryo hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caddemi, A.; Tamburello, C.C.; Zanforlin, L.

    1986-01-01

    This study was designed to examine the effects of microwaves on the electric activity of hearts as a means of elucidating interactive mechanisms of nonionizing radiation with cardiac tissue. Experiments were performed on isolated hearts of 9-12-day-old chick embryos placed in small petri dishes. Oxygenated isotonic Ringer's solution at 37 degrees C permitted heart survival. Samples were irradiated at 2.45 GHz with a power density of 3 mW/cm2. The heart signal was detected with a glass micropipet inserted into the sinoatrial node and examined by means of a Berg-Fourier analyzer. Pulsed microwaves caused the locking of the heartbeat to themore » modulation frequency, whereas continuous wave irradiation might have induced slight bradycardia. Pulsed fields induced stimulation or regularization of the heartbeat in arrhythmia, fibrillation, or arrest of the heart.« less

  7. Optimisation of a Generic Ionic Model of Cardiac Myocyte Electrical Activity

    PubMed Central

    Guo, Tianruo; Al Abed, Amr; Lovell, Nigel H.; Dokos, Socrates

    2013-01-01

    A generic cardiomyocyte ionic model, whose complexity lies between a simple phenomenological formulation and a biophysically detailed ionic membrane current description, is presented. The model provides a user-defined number of ionic currents, employing two-gate Hodgkin-Huxley type kinetics. Its generic nature allows accurate reconstruction of action potential waveforms recorded experimentally from a range of cardiac myocytes. Using a multiobjective optimisation approach, the generic ionic model was optimised to accurately reproduce multiple action potential waveforms recorded from central and peripheral sinoatrial nodes and right atrial and left atrial myocytes from rabbit cardiac tissue preparations, under different electrical stimulus protocols and pharmacological conditions. When fitted simultaneously to multiple datasets, the time course of several physiologically realistic ionic currents could be reconstructed. Model behaviours tend to be well identified when extra experimental information is incorporated into the optimisation. PMID:23710254

  8. Automatic detection of pelvic lymph nodes using multiple MR sequences

    NASA Astrophysics Data System (ADS)

    Yan, Michelle; Lu, Yue; Lu, Renzhi; Requardt, Martin; Moeller, Thomas; Takahashi, Satoru; Barentsz, Jelle

    2007-03-01

    A system for automatic detection of pelvic lymph nodes is developed by incorporating complementary information extracted from multiple MR sequences. A single MR sequence lacks sufficient diagnostic information for lymph node localization and staging. Correct diagnosis often requires input from multiple complementary sequences which makes manual detection of lymph nodes very labor intensive. Small lymph nodes are often missed even by highly-trained radiologists. The proposed system is aimed at assisting radiologists in finding lymph nodes faster and more accurately. To the best of our knowledge, this is the first such system reported in the literature. A 3-dimensional (3D) MR angiography (MRA) image is employed for extracting blood vessels that serve as a guide in searching for pelvic lymph nodes. Segmentation, shape and location analysis of potential lymph nodes are then performed using a high resolution 3D T1-weighted VIBE (T1-vibe) MR sequence acquired by Siemens 3T scanner. An optional contrast-agent enhanced MR image, such as post ferumoxtran-10 T2*-weighted MEDIC sequence, can also be incorporated to further improve detection accuracy of malignant nodes. The system outputs a list of potential lymph node locations that are overlaid onto the corresponding MR sequences and presents them to users with associated confidence levels as well as their sizes and lengths in each axis. Preliminary studies demonstrates the feasibility of automatic lymph node detection and scenarios in which this system may be used to assist radiologists in diagnosis and reporting.

  9. Subgrouping Automata: automatic sequence subgrouping using phylogenetic tree-based optimum subgrouping algorithm.

    PubMed

    Seo, Joo-Hyun; Park, Jihyang; Kim, Eun-Mi; Kim, Juhan; Joo, Keehyoung; Lee, Jooyoung; Kim, Byung-Gee

    2014-02-01

    Sequence subgrouping for a given sequence set can enable various informative tasks such as the functional discrimination of sequence subsets and the functional inference of unknown sequences. Because an identity threshold for sequence subgrouping may vary according to the given sequence set, it is highly desirable to construct a robust subgrouping algorithm which automatically identifies an optimal identity threshold and generates subgroups for a given sequence set. To meet this end, an automatic sequence subgrouping method, named 'Subgrouping Automata' was constructed. Firstly, tree analysis module analyzes the structure of tree and calculates the all possible subgroups in each node. Sequence similarity analysis module calculates average sequence similarity for all subgroups in each node. Representative sequence generation module finds a representative sequence using profile analysis and self-scoring for each subgroup. For all nodes, average sequence similarities are calculated and 'Subgrouping Automata' searches a node showing statistically maximum sequence similarity increase using Student's t-value. A node showing the maximum t-value, which gives the most significant differences in average sequence similarity between two adjacent nodes, is determined as an optimum subgrouping node in the phylogenetic tree. Further analysis showed that the optimum subgrouping node from SA prevents under-subgrouping and over-subgrouping. Copyright © 2013. Published by Elsevier Ltd.

  10. An 8-node tetrahedral finite element suitable for explicit transient dynamic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Key, S.W.; Heinstein, M.W.; Stone, C.M.

    1997-12-31

    Considerable effort has been expended in perfecting the algorithmic properties of 8-node hexahedral finite elements. Today the element is well understood and performs exceptionally well when used in modeling three-dimensional explicit transient dynamic events. However, the automatic generation of all-hexahedral meshes remains an elusive achievement. The alternative of automatic generation for all-tetrahedral finite element is a notoriously poor performer, and the 10-node quadratic tetrahedral finite element while a better performer numerically is computationally expensive. To use the all-tetrahedral mesh generation extant today, the authors have explored the creation of a quality 8-node tetrahedral finite element (a four-node tetrahedral finite elementmore » enriched with four midface nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping and the element`s performance in applications are presented. In particular, they examine the 80node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element only samples constant strain states and, therefore, has 12 hourglass modes. In this regard, it bears similarities to the 8-node, mean-quadrature hexahedral finite element. Given automatic all-tetrahedral meshing, the 8-node, constant-strain tetrahedral finite element is a suitable replacement for the 8-node hexahedral finite element and handbuilt meshes.« less

  11. Lymph node detection in IASLC-defined zones on PET/CT images

    NASA Astrophysics Data System (ADS)

    Song, Yihua; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.

    2016-03-01

    Lymph node detection is challenging due to the low contrast between lymph nodes as well as surrounding soft tissues and the variation in nodal size and shape. In this paper, we propose several novel ideas which are combined into a system to operate on positron emission tomography/ computed tomography (PET/CT) images to detect abnormal thoracic nodes. First, our previous Automatic Anatomy Recognition (AAR) approach is modified where lymph node zones predominantly following International Association for the Study of Lung Cancer (IASLC) specifications are modeled as objects arranged in a hierarchy along with key anatomic anchor objects. This fuzzy anatomy model built from diagnostic CT images is then deployed on PET/CT images for automatically recognizing the zones. A novel globular filter (g-filter) to detect blob-like objects over a specified range of sizes is designed to detect the most likely locations and sizes of diseased nodes. Abnormal nodes within each automatically localized zone are subsequently detected via combined use of different items of information at various scales: lymph node zone model poses found at recognition indicating the geographic layout at the global level of node clusters, g-filter response which hones in on and carefully selects node-like globular objects at the node level, and CT and PET gray value but within only the most plausible nodal regions for node presence at the voxel level. The models are built from 25 diagnostic CT scans and refined for an object hierarchy based on a separate set of 20 diagnostic CT scans. Node detection is tested on an additional set of 20 PET/CT scans. Our preliminary results indicate node detection sensitivity and specificity at around 90% and 85%, respectively.

  12. Automatic localization of IASLC-defined mediastinal lymph node stations on CT images using fuzzy models

    NASA Astrophysics Data System (ADS)

    Matsumoto, Monica M. S.; Beig, Niha G.; Udupa, Jayaram K.; Archer, Steven; Torigian, Drew A.

    2014-03-01

    Lung cancer is associated with the highest cancer mortality rates among men and women in the United States. The accurate and precise identification of the lymph node stations on computed tomography (CT) images is important for staging disease and potentially for prognosticating outcome in patients with lung cancer, as well as for pretreatment planning and response assessment purposes. To facilitate a standard means of referring to lymph nodes, the International Association for the Study of Lung Cancer (IASLC) has recently proposed a definition of the different lymph node stations and zones in the thorax. However, nodal station identification is typically performed manually by visual assessment in clinical radiology. This approach leaves room for error due to the subjective and potentially ambiguous nature of visual interpretation, and is labor intensive. We present a method of automatically recognizing the mediastinal IASLC-defined lymph node stations by modifying a hierarchical fuzzy modeling approach previously developed for body-wide automatic anatomy recognition (AAR) in medical imagery. Our AAR-lymph node (AAR-LN) system follows the AAR methodology and consists of two steps. In the first step, the various lymph node stations are manually delineated on a set of CT images following the IASLC definitions. These delineations are then used to build a fuzzy hierarchical model of the nodal stations which are considered as 3D objects. In the second step, the stations are automatically located on any given CT image of the thorax by using the hierarchical fuzzy model and object recognition algorithms. Based on 23 data sets used for model building, 22 independent data sets for testing, and 10 lymph node stations, a mean localization accuracy of within 1-6 voxels has been achieved by the AAR-LN system.

  13. Gene- and cell-based bio-artificial pacemaker: what basic and translational lessons have we learned?

    PubMed Central

    Li, RA

    2012-01-01

    Normal rhythms originate in the sino-atrial node, a specialized cardiac tissue consisting of only a few thousands of pacemaker cells. Malfunction of pacemaker cells due to diseases or aging leads to rhythm generation disorders (for example, bradycardias and sick-sinus syndrome (SSS)), which often necessitate the implantation of electronic pacemakers. Although effective, electronic devices are associated with such shortcomings as limited battery life, permanent implantation of leads, lead dislodging, the lack of autonomic responses and so on. Here, various gene- and cell-based approaches, with a particular emphasis placed on the use of pluripotent stem cells and the hyperpolarization-activated cyclic nucleotide-gated-encoded pacemaker gene family, that have been pursued in the past decade to reconstruct bio-artificial pacemakers as alternatives will be discussed in relation to the basic biological insights and translational regenerative potential. PMID:22673497

  14. Gene- and cell-based bio-artificial pacemaker: what basic and translational lessons have we learned?

    PubMed

    Li, R A

    2012-06-01

    Normal rhythms originate in the sino-atrial node, a specialized cardiac tissue consisting of only a few thousands of nodal pacemaker cells. Malfunction of pacemaker cells due to diseases or aging leads to rhythm generation disorders (for example, bradycardias and sick-sinus syndrome (SSS)), which often necessitate the implantation of electronic pacemakers. Although effective, electronic devices are associated with such shortcomings as limited battery life, permanent implantation of leads, lead dislodging, the lack of autonomic responses and so on. Here, various gene- and cell-based approaches, with a particular emphasis placed on the use of pluripotent stem cells and the hyperpolarization-activated cyclic nucleotide-gated-encoded pacemaker gene family, that have been pursued in the past decade to reconstruct bio-artificial pacemakers as alternatives will be discussed in relation to the basic biological insights and translational regenerative potential.

  15. Exercise training-induced bradycardia: evidence for enhanced parasympathetic regulation without changes in intrinsic sinoatrial node function.

    PubMed

    Billman, George E; Cagnoli, Kristen L; Csepe, Thomas; Li, Ning; Wright, Patrick; Mohler, Peter J; Fedorov, Vadim V

    2015-06-01

    The mechanisms responsible for exercise-induced reductions in baseline heart rate (HR), known as training bradycardia, remain controversial. Therefore, changes in cardiac autonomic regulation and intrinsic sinoatrial nodal (SAN) rate were evaluated using dogs randomly assigned to either a 10- to 12-wk exercise training (Ex, n = 15) or an equivalent sedentary period (Sed, n = 10). Intrinsic HR was revealed by combined autonomic nervous system (ANS) blockade (propranolol + atropine, iv) before and after completion of the study. At the end of the study, SAN function was further evaluated by examining the SAN recovery time (SNRT) following rapid atrial pacing and the response to adenosine in anesthetized animals. As expected, both the response to submaximal exercise and baseline HR significantly (P < 0.01) decreased, and heart rate variability (HRV; e.g., high-frequency R-R interval variability) significantly (P < 0.01) increased in the Ex group but did not change in the Sed group. Atropine also induced significantly (P < 0.01) greater reductions in HRV in the Ex group compared with the Sed group; propranolol elicited similar HR and HRV changes in both groups. In contrast, neither intrinsic HR (Ex before, 141.2 ± 6.7; Ex after, 146.0 ± 8.0 vs. Sed before, 143.3 ± 11.1; Sed after, 141.0 ± 11.3 beats per minute), the response to adenosine, corrected SNRT, nor atrial fibrosis and atrial fibrillation inducibility differed in the Ex group vs. the Sed group. These data suggest that in a large-animal model, training bradycardia results from an enhanced cardiac parasympathetic regulation and not from changes in intrinsic properties of the SAN. Copyright © 2015 the American Physiological Society.

  16. The effects of the new antiarrhythmic E 047/1 on postoperative ischemia-induced arrhythmias in dogs.

    PubMed

    Kulier, A H; Novalija, E; Hogan, Q; Vicenzi, M N; Woehlck, H J; Bajic, J; Atlee, J L; Bosnjak, Z J

    1999-12-01

    Perioperative malignant ventricular tachyarrhythmias pose an imminent clinical danger by potentially precipitating myocardial ischemia and severely compromising hemodynamics. Thus, immediate and effective therapy is required, which is not always provided by currently recommended IV drug regimens, indicating a need for more effective drugs. We examined antiarrhythmic effects of the new benzofurane compound E 047/1 on spontaneous ventricular tachyarrhythmia in a conscious dog model. One day after experimental myocardial infarction, 40 dogs exhibiting tachyarrhythmia randomly received (bolus plus 1-h infusion) E 047/1 6 mg/kg plus 6 mg x kg(-1) x h(-1), lidocaine 1 mg/kg plus 4.8 mg x kg(-1) x h(-1), flecainide 1 mg/kg plus 0.05 mg x kg(-1) x h(-1), amiodarone 10 mg/kg plus 1.8 mg x kg(-1) x h(-1), or bretylium 10 mg/kg plus 20 mg x kg(-1) x h(-1). Electrocardiogram was evaluated for number of premature ventricular contractions (PVC), normally conducted beats originating from the sinoatrial node, and episodes of ventricular tachycardia. Immediately after the bolus, E 047/1 reduced PVCs by 46% and increased sinoatrial beats from 4 to 61 bpm. The ratio of PVCs to total beats decreased from 98% to 58%. Amiodarone and flecainide exhibited antiarrhythmic effects with delayed onset. Lidocaine did not suppress PVCs significantly, and bretylium was proarrhythmic. The antiarrhythmic E 047/1 has desirable features, suppressing ischemia-induced ventricular tachyarrhythmia quickly and efficiently, and may be a useful addition to current therapeutic regimens. Life-threatening arrhythmias of the heart after myocardial infarction or ischemia may be treated quickly and efficiently by the new drug E 047/1.

  17. Dilated cardiomyopathy and sinoatrial dysfunction in an Estrela mountain dog.

    PubMed

    Lobo, Luis; Pinheiro-Vieira, António; Gomes, João L; Canada, Nuno; Ribeiro, Lenio; Costa, Paulo D; Oliveira, Pedro; Bussadori, Claudio

    2012-01-01

    A 1 yr old male Estrela mountain dog was evaluated as a part of a screening program for dilated cardiomyopathy. The dog came from a family with a history of dilated cardiomyopathy but was asymptomatic. Occult dilated cardiomyopathy and sino-atrial dysfunction were diagnosed based on echocardiography and electrocardiography. These two disorders may be associated given that related dogs have been diagnosed with the same disorders. The dog has remained asymptomatic for 4 years following initial evaluation.

  18. Methods of visualizing graphs

    DOEpatents

    Wong, Pak C.; Mackey, Patrick S.; Perrine, Kenneth A.; Foote, Harlan P.; Thomas, James J.

    2008-12-23

    Methods for visualizing a graph by automatically drawing elements of the graph as labels are disclosed. In one embodiment, the method comprises receiving node information and edge information from an input device and/or communication interface, constructing a graph layout based at least in part on that information, wherein the edges are automatically drawn as labels, and displaying the graph on a display device according to the graph layout. In some embodiments, the nodes are automatically drawn as labels instead of, or in addition to, the label-edges.

  19. Inhibition of spontaneous activity of rabbit atrioventricular node cells by KB-R7943 and inhibitors of sarcoplasmic reticulum Ca2+ ATPase

    PubMed Central

    Cheng, Hongwei; Smith, Godfrey L.; Hancox, Jules C.; Orchard, Clive H.

    2011-01-01

    The atrioventricular node (AVN) can act as a subsidiary cardiac pacemaker if the sinoatrial node fails. In this study, we investigated the effects of the Na–Ca exchange (NCX) inhibitor KB-R7943, and inhibition of the sarcoplasmic reticulum calcium ATPase (SERCA), using thapsigargin or cyclopiazonic acid (CPA), on spontaneous action potentials (APs) and [Ca2+]i transients from cells isolated from the rabbit AVN. Spontaneous [Ca2+]i transients were monitored from undialysed AVN cells at 37 °C using Fluo-4. In separate experiments, spontaneous APs and ionic currents were recorded using the whole-cell patch clamp technique. Rapid application of 5 μM KB-R7943 slowed or stopped spontaneous APs and [Ca2+]i transients. However, in voltage clamp experiments in addition to blocking NCX current (INCX) KB-R7943 partially inhibited L-type calcium current (ICa,L). Rapid reduction of external [Na+] also abolished spontaneous activity. Inhibition of SERCA (using 2.5 μM thapsigargin or 30 μM CPA) also slowed or stopped spontaneous APs and [Ca2+]i transients. Our findings are consistent with the hypothesis that sarcoplasmic reticulum (SR) Ca2+ release influences spontaneous activity in AVN cells, and that this occurs via [Ca2+]i-activated INCX; however, the inhibitory action of KB-R7943 on ICa,L means that care is required in the interpretation of data obtained using this compound. PMID:21163524

  20. Cardiac rhythm and pacemaking abnormalities in patients affected by endemic pemphigus in Colombia may be the result of deposition of autoantibodies, complement, fibrinogen, and other molecules.

    PubMed

    Abreu Velez, Ana Maria; Howard, Michael S; Velazquez-Velez, Jorge Enrique

    2018-05-01

    We previously showed that one-third of patients affected by endemic pemphigus foliaceus in El Bagre, Colombia (El Bagre-EPF), display autoreactivity to the heart. The purpose of this study was to investigate rhythm disturbances with the presence of autoantibodies and correlate them with ECG changes in these patients. We performed a study comparing 30 patients and 30 controls from the endemic area, matched by demographics, including age, sex, weight, work activities, and comorbidities. ECG as well as direct and indirect immunofluorescence, immunohistochemistry, and confocal microscopic studies focusing on cardiac node abnormalities were performed. Autopsies of 7 patients also were reviewed. The main ECG abnormalities seen in the El Bagre-EPF patients were sinus bradycardia (in one-half), followed by left bundle branch block, left posterior fascicular block, and left anterior fascicular block compared with the controls. One-third of the patients displayed polyclonal autoantibodies against the sinoatrial and/or AV nodes and the His bundle correlating with rhythm anomalies and delays in the cardiac conduction system (P <.01). The patient antibodies colocalized with commercial antibodies to desmoplakins I and II, p0071, armadillo repeat gene deleted in velo-cardio-facial syndrome (ARVCF), and myocardium-enriched zonula occludens-1-associated protein (MYZAP; Progen Biotechnik) (P <.01). One-third of the patients affected by El Bagre-EPF have rhythm abnormalities that slow the conduction of impulses in cardiac nodes and the cardiac conduction system. These abnormalities likely occur as a result of deposition of autoantibodies, complement, and other inflammatory molecules. We show for the first time that MYZAP is present in cardiac nodes. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  1. Automatic Calibration of Stereo-Cameras Using Ordinary Chess-Board Patterns

    NASA Astrophysics Data System (ADS)

    Prokos, A.; Kalisperakis, I.; Petsa, E.; Karras, G.

    2012-07-01

    Automation of camera calibration is facilitated by recording coded 2D patterns. Our toolbox for automatic camera calibration using images of simple chess-board patterns is freely available on the Internet. But it is unsuitable for stereo-cameras whose calibration implies recovering camera geometry and their true-to-scale relative orientation. In contrast to all reported methods requiring additional specific coding to establish an object space coordinate system, a toolbox for automatic stereo-camera calibration relying on ordinary chess-board patterns is presented here. First, the camera calibration algorithm is applied to all image pairs of the pattern to extract nodes of known spacing, order them in rows and columns, and estimate two independent camera parameter sets. The actual node correspondences on stereo-pairs remain unknown. Image pairs of a textured 3D scene are exploited for finding the fundamental matrix of the stereo-camera by applying RANSAC to point matches established with the SIFT algorithm. A node is then selected near the centre of the left image; its match on the right image is assumed as the node closest to the corresponding epipolar line. This yields matches for all nodes (since these have already been ordered), which should also satisfy the 2D epipolar geometry. Measures for avoiding mismatching are taken. With automatically estimated initial orientation values, a bundle adjustment is performed constraining all pairs on a common (scaled) relative orientation. Ambiguities regarding the actual exterior orientations of the stereo-camera with respect to the pattern are irrelevant. Results from this automatic method show typical precisions not above 1/4 pixels for 640×480 web cameras.

  2. Parallel reduced-instruction-set-computer architecture for real-time symbolic pattern matching

    NASA Astrophysics Data System (ADS)

    Parson, Dale E.

    1991-03-01

    This report discusses ongoing work on a parallel reduced-instruction- set-computer (RISC) architecture for automatic production matching. The PRIOPS compiler takes advantage of the memoryless character of automatic processing by translating a program's collection of automatic production tests into an equivalent combinational circuit-a digital circuit without memory, whose outputs are immediate functions of its inputs. The circuit provides a highly parallel, fine-grain model of automatic matching. The compiler then maps the combinational circuit onto RISC hardware. The heart of the processor is an array of comparators capable of testing production conditions in parallel, Each comparator attaches to private memory that contains virtual circuit nodes-records of the current state of nodes and busses in the combinational circuit. All comparator memories hold identical information, allowing simultaneous update for a single changing circuit node and simultaneous retrieval of different circuit nodes by different comparators. Along with the comparator-based logic unit is a sequencer that determines the current combination of production-derived comparisons to try, based on the combined success and failure of previous combinations of comparisons. The memoryless nature of automatic matching allows the compiler to designate invariant memory addresses for virtual circuit nodes, and to generate the most effective sequences of comparison test combinations. The result is maximal utilization of parallel hardware, indicating speed increases and scalability beyond that found for course-grain, multiprocessor approaches to concurrent Rete matching. Future work will consider application of this RISC architecture to the standard (controlled) Rete algorithm, where search through memory dominates portions of matching.

  3. Concurrent hypercube system with improved message passing

    NASA Technical Reports Server (NTRS)

    Peterson, John C. (Inventor); Tuazon, Jesus O. (Inventor); Lieberman, Don (Inventor); Pniel, Moshe (Inventor)

    1989-01-01

    A network of microprocessors, or nodes, are interconnected in an n-dimensional cube having bidirectional communication links along the edges of the n-dimensional cube. Each node's processor network includes an I/O subprocessor dedicated to controlling communication of message packets along a bidirectional communication link with each end thereof terminating at an I/O controlled transceiver. Transmit data lines are directly connected from a local FIFO through each node's communication link transceiver. Status and control signals from the neighboring nodes are delivered over supervisory lines to inform the local node that the neighbor node's FIFO is empty and the bidirectional link between the two nodes is idle for data communication. A clocking line between neighbors, clocks a message into an empty FIFO at a neighbor's node and vica versa. Either neighbor may acquire control over the bidirectional communication link at any time, and thus each node has circuitry for checking whether or not the communication link is busy or idle, and whether or not the receive FIFO is empty. Likewise, each node can empty its own FIFO and in turn deliver a status signal to a neighboring node indicating that the local FIFO is empty. The system includes features of automatic message rerouting, block message transfer and automatic parity checking and generation.

  4. Automatic detection of axillary lymphadenopathy on CT scans of untreated chronic lymphocytic leukemia patients

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Hua, Jeremy; Chellappa, Vivek; Petrick, Nicholas; Sahiner, Berkman; Farooqui, Mohammed; Marti, Gerald; Wiestner, Adrian; Summers, Ronald M.

    2012-03-01

    Patients with chronic lymphocytic leukemia (CLL) have an increased frequency of axillary lymphadenopathy. Pretreatment CT scans can be used to upstage patients at the time of presentation and post-treatment CT scans can reduce the number of complete responses. In the current clinical workflow, the detection and diagnosis of lymph nodes is usually performed manually by examining all slices of CT images, which can be time consuming and highly dependent on the observer's experience. A system for automatic lymph node detection and measurement is desired. We propose a computer aided detection (CAD) system for axillary lymph nodes on CT scans in CLL patients. The lung is first automatically segmented and the patient's body in lung region is extracted to set the search region for lymph nodes. Multi-scale Hessian based blob detection is then applied to detect potential lymph nodes within the search region. Next, the detected potential candidates are segmented by fast level set method. Finally, features are calculated from the segmented candidates and support vector machine (SVM) classification is utilized for false positive reduction. Two blobness features, Frangi's and Li's, are tested and their free-response receiver operating characteristic (FROC) curves are generated to assess system performance. We applied our detection system to 12 patients with 168 axillary lymph nodes measuring greater than 10 mm. All lymph nodes are manually labeled as ground truth. The system achieved sensitivities of 81% and 85% at 2 false positives per patient for Frangi's and Li's blobness, respectively.

  5. Automatic mediastinal lymph node detection in chest CT

    NASA Astrophysics Data System (ADS)

    Feuerstein, Marco; Deguchi, Daisuke; Kitasaka, Takayuki; Iwano, Shingo; Imaizumi, Kazuyoshi; Hasegawa, Yoshinori; Suenaga, Yasuhito; Mori, Kensaku

    2009-02-01

    Computed tomography (CT) of the chest is a very common staging investigation for the assessment of mediastinal, hilar, and intrapulmonary lymph nodes in the context of lung cancer. In the current clinical workflow, the detection and assessment of lymph nodes is usually performed manually, which can be error-prone and timeconsuming. We therefore propose a method for the automatic detection of mediastinal, hilar, and intrapulmonary lymph node candidates in contrast-enhanced chest CT. Based on the segmentation of important mediastinal anatomy (bronchial tree, aortic arch) and making use of anatomical knowledge, we utilize Hessian eigenvalues to detect lymph node candidates. As lymph nodes can be characterized as blob-like structures of varying size and shape within a specific intensity interval, we can utilize these characteristics to reduce the number of false positive candidates significantly. We applied our method to 5 cases suspected to have lung cancer. The processing time of our algorithm did not exceed 6 minutes, and we achieved an average sensitivity of 82.1% and an average precision of 13.3%.

  6. Network structure exploration in networks with node attributes

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Wang, Xiaolong; Bu, Junzhao; Tang, Buzhou; Xiang, Xin

    2016-05-01

    Complex networks provide a powerful way to represent complex systems and have been widely studied during the past several years. One of the most important tasks of network analysis is to detect structures (also called structural regularities) embedded in networks by determining group number and group partition. Most of network structure exploration models only consider network links. However, in real world networks, nodes may have attributes that are useful for network structure exploration. In this paper, we propose a novel Bayesian nonparametric (BNP) model to explore structural regularities in networks with node attributes, called Bayesian nonparametric attribute (BNPA) model. This model does not only take full advantage of both links between nodes and node attributes for group partition via shared hidden variables, but also determine group number automatically via the Bayesian nonparametric theory. Experiments conducted on a number of real and synthetic networks show that our BNPA model is able to automatically explore structural regularities in networks with node attributes and is competitive with other state-of-the-art models.

  7. System for definition of the central-chest vasculature

    NASA Astrophysics Data System (ADS)

    Taeprasartsit, Pinyo; Higgins, William E.

    2009-02-01

    Accurate definition of the central-chest vasculature from three-dimensional (3D) multi-detector CT (MDCT) images is important for pulmonary applications. For instance, the aorta and pulmonary artery help in automatic definition of the Mountain lymph-node stations for lung-cancer staging. This work presents a system for defining major vascular structures in the central chest. The system provides automatic methods for extracting the aorta and pulmonary artery and semi-automatic methods for extracting the other major central chest arteries/veins, such as the superior vena cava and azygos vein. Automatic aorta and pulmonary artery extraction are performed by model fitting and selection. The system also extracts certain vascular structure information to validate outputs. A semi-automatic method extracts vasculature by finding the medial axes between provided important sites. Results of the system are applied to lymph-node station definition and guidance of bronchoscopic biopsy.

  8. Effects of acetylcholine and noradrenalin on action potentials of isolated rabbit sinoatrial and atrial myocytes.

    PubMed

    Verkerk, Arie O; Geuzebroek, Guillaume S C; Veldkamp, Marieke W; Wilders, Ronald

    2012-01-01

    The autonomic nervous system controls heart rate and contractility through sympathetic and parasympathetic inputs to the cardiac tissue, with acetylcholine (ACh) and noradrenalin (NA) as the chemical transmitters. In recent years, it has become clear that specific Regulators of G protein Signaling proteins (RGS proteins) suppress muscarinic sensitivity and parasympathetic tone, identifying RGS proteins as intriguing potential therapeutic targets. In the present study, we have identified the effects of 1 μM ACh and 1 μM NA on the intrinsic action potentials of sinoatrial (SA) nodal and atrial myocytes. Single cells were enzymatically isolated from the SA node or from the left atrium of rabbit hearts. Action potentials were recorded using the amphotericin-perforated patch-clamp technique in the absence and presence of ACh, NA, or a combination of both. In SA nodal myocytes, ACh increased cycle length and decreased diastolic depolarization rate, whereas NA decreased cycle length and increased diastolic depolarization rate. Both ACh and NA increased maximum upstroke velocity. Furthermore, ACh hyperpolarized the maximum diastolic potential. In atrial myocytes stimulated at 2 Hz, both ACh and NA hyperpolarized the maximum diastolic potential, increased the action potential amplitude, and increased the maximum upstroke velocity. Action potential duration at 50 and 90% repolarization was decreased by ACh, but increased by NA. The effects of both ACh and NA on action potential duration showed a dose dependence in the range of 1-1000 nM, while a clear-cut frequency dependence in the range of 1-4 Hz was absent. Intermediate results were obtained in the combined presence of ACh and NA in both SA nodal and atrial myocytes. Our data uncover the extent to which SA nodal and atrial action potentials are intrinsically dependent on ACh, NA, or a combination of both and may thus guide further experiments with RGS proteins.

  9. Effects of Acetylcholine and Noradrenalin on Action Potentials of Isolated Rabbit Sinoatrial and Atrial Myocytes

    PubMed Central

    Verkerk, Arie O.; Geuzebroek, Guillaume S. C.; Veldkamp, Marieke W.; Wilders, Ronald

    2012-01-01

    The autonomic nervous system controls heart rate and contractility through sympathetic and parasympathetic inputs to the cardiac tissue, with acetylcholine (ACh) and noradrenalin (NA) as the chemical transmitters. In recent years, it has become clear that specific Regulators of G protein Signaling proteins (RGS proteins) suppress muscarinic sensitivity and parasympathetic tone, identifying RGS proteins as intriguing potential therapeutic targets. In the present study, we have identified the effects of 1 μM ACh and 1 μM NA on the intrinsic action potentials of sinoatrial (SA) nodal and atrial myocytes. Single cells were enzymatically isolated from the SA node or from the left atrium of rabbit hearts. Action potentials were recorded using the amphotericin-perforated patch-clamp technique in the absence and presence of ACh, NA, or a combination of both. In SA nodal myocytes, ACh increased cycle length and decreased diastolic depolarization rate, whereas NA decreased cycle length and increased diastolic depolarization rate. Both ACh and NA increased maximum upstroke velocity. Furthermore, ACh hyperpolarized the maximum diastolic potential. In atrial myocytes stimulated at 2 Hz, both ACh and NA hyperpolarized the maximum diastolic potential, increased the action potential amplitude, and increased the maximum upstroke velocity. Action potential duration at 50 and 90% repolarization was decreased by ACh, but increased by NA. The effects of both ACh and NA on action potential duration showed a dose dependence in the range of 1–1000 nM, while a clear-cut frequency dependence in the range of 1–4 Hz was absent. Intermediate results were obtained in the combined presence of ACh and NA in both SA nodal and atrial myocytes. Our data uncover the extent to which SA nodal and atrial action potentials are intrinsically dependent on ACh, NA, or a combination of both and may thus guide further experiments with RGS proteins. PMID:22754533

  10. Scalable Node Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drotar, Alexander P.; Quinn, Erin E.; Sutherland, Landon D.

    2012-07-30

    Project description is: (1) Build a high performance computer; and (2) Create a tool to monitor node applications in Component Based Tool Framework (CBTF) using code from Lightweight Data Metric Service (LDMS). The importance of this project is that: (1) there is a need a scalable, parallel tool to monitor nodes on clusters; and (2) New LDMS plugins need to be able to be easily added to tool. CBTF stands for Component Based Tool Framework. It's scalable and adjusts to different topologies automatically. It uses MRNet (Multicast/Reduction Network) mechanism for information transport. CBTF is flexible and general enough to bemore » used for any tool that needs to do a task on many nodes. Its components are reusable and 'EASILY' added to a new tool. There are three levels of CBTF: (1) frontend node - interacts with users; (2) filter nodes - filters or concatenates information from backend nodes; and (3) backend nodes - where the actual work of the tool is done. LDMS stands for lightweight data metric servies. It's a tool used for monitoring nodes. Ltool is the name of the tool we derived from LDMS. It's dynamically linked and includes the following components: Vmstat, Meminfo, Procinterrupts and more. It works by: Ltool command is run on the frontend node; Ltool collects information from the backend nodes; backend nodes send information to the filter nodes; and filter nodes concatenate information and send to a database on the front end node. Ltool is a useful tool when it comes to monitoring nodes on a cluster because the overhead involved with running the tool is not particularly high and it will automatically scale to any size cluster.« less

  11. Thoracic lymph node station recognition on CT images based on automatic anatomy recognition with an optimal parent strategy

    NASA Astrophysics Data System (ADS)

    Xu, Guoping; Udupa, Jayaram K.; Tong, Yubing; Cao, Hanqiang; Odhner, Dewey; Torigian, Drew A.; Wu, Xingyu

    2018-03-01

    Currently, there are many papers that have been published on the detection and segmentation of lymph nodes from medical images. However, it is still a challenging problem owing to low contrast with surrounding soft tissues and the variations of lymph node size and shape on computed tomography (CT) images. This is particularly very difficult on low-dose CT of PET/CT acquisitions. In this study, we utilize our previous automatic anatomy recognition (AAR) framework to recognize the thoracic-lymph node stations defined by the International Association for the Study of Lung Cancer (IASLC) lymph node map. The lymph node stations themselves are viewed as anatomic objects and are localized by using a one-shot method in the AAR framework. Two strategies have been taken in this paper for integration into AAR framework. The first is to combine some lymph node stations into composite lymph node stations according to their geometrical nearness. The other is to find the optimal parent (organ or union of organs) as an anchor for each lymph node station based on the recognition error and thereby find an overall optimal hierarchy to arrange anchor organs and lymph node stations. Based on 28 contrast-enhanced thoracic CT image data sets for model building, 12 independent data sets for testing, our results show that thoracic lymph node stations can be localized within 2-3 voxels compared to the ground truth.

  12. Electrophysiological effects of FK664, a new cardiotonic agent, on preparations from guinea pig ventricle and from rabbit sino-atrial node.

    PubMed

    Kodama, I; Anno, T; Sudo, Y; Satake, N; Shibata, S

    1989-05-01

    Effects of the cardiotonic agent FK664, 6-(3, 4-dimethoxy-phenyl)-1-ethyl-4-mesitylimino-3-methyl-3,4-dihydro-2 (1H)-pyrimidone, on isolated guinea pig ventricular muscles and rabbit sinus node pacemaker cells were studied using micro-electrode techniques. In ventricular muscles driven at 0.5-1.0 Hz, FK664 above 3 mumol.litre-1 caused an increase in contractile force and a shortening of time to peak tension. This positive inotropic effect of FK664 was accompanied by a slight elevation of the early plateau phase of the action potential, while other action potential variables were unaffected. The change in contractile force induced by FK664 was abolished in a low Ca2+ medium (0.12 mmol.litre-1) or by treatment with ryanodine (2 mumol.litre-1), whereas it was relatively well preserved in the preparations pretreated with nefedipine (1 mumol.litre-1). The slow action potentials induced by isoprenaline (0.3 mumol.litre-1) in high K+ medium (30 mmol.litre-1) and the slow inward current measured by single sucrose gap voltage clamp at a holding potential of -40 mV were unaffected by FK664. In sinus node pacemaker cells, FK664 (1-10 mumol.litre-1) caused a dose dependent acceleration of phase 4 depolarisation and a shortening of spontaneous firing cycle length. This positive chronotropic effect of FK664 was markedly inhibited in a low Ca2+ medium (0.3 mmol.litre-1). These findings suggest that FK664 has positive inotropic and chronotropic effects on the heart, due to an enhancement of transsarcolemmal calcium influx through the low threshold, dihydropyridine insensitive Ca2+ channel population.

  13. Mediastinal lymph node detection and station mapping on chest CT using spatial priors and random forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiamin; Hoffman, Joanne; Zhao, Jocelyn

    2016-07-15

    Purpose: To develop an automated system for mediastinal lymph node detection and station mapping for chest CT. Methods: The contextual organs, trachea, lungs, and spine are first automatically identified to locate the region of interest (ROI) (mediastinum). The authors employ shape features derived from Hessian analysis, local object scale, and circular transformation that are computed per voxel in the ROI. Eight more anatomical structures are simultaneously segmented by multiatlas label fusion. Spatial priors are defined as the relative multidimensional distance vectors corresponding to each structure. Intensity, shape, and spatial prior features are integrated and parsed by a random forest classifiermore » for lymph node detection. The detected candidates are then segmented by the following curve evolution process. Texture features are computed on the segmented lymph nodes and a support vector machine committee is used for final classification. For lymph node station labeling, based on the segmentation results of the above anatomical structures, the textual definitions of mediastinal lymph node map according to the International Association for the Study of Lung Cancer are converted into patient-specific color-coded CT image, where the lymph node station can be automatically assigned for each detected node. Results: The chest CT volumes from 70 patients with 316 enlarged mediastinal lymph nodes are used for validation. For lymph node detection, their system achieves 88% sensitivity at eight false positives per patient. For lymph node station labeling, 84.5% of lymph nodes are correctly assigned to their stations. Conclusions: Multiple-channel shape, intensity, and spatial prior features aggregated by a random forest classifier improve mediastinal lymph node detection on chest CT. Using the location information of segmented anatomic structures from the multiatlas formulation enables accurate identification of lymph node stations.« less

  14. Definition and automatic anatomy recognition of lymph node zones in the pelvis on CT images

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Guo, Shuxu; Attor, Rosemary; Reinicke, Danica; Torigian, Drew A.

    2016-03-01

    Currently, unlike IALSC-defined thoracic lymph node zones, no explicitly provided definitions for lymph nodes in other body regions are available. Yet, definitions are critical for standardizing the recognition, delineation, quantification, and reporting of lymphadenopathy in other body regions. Continuing from our previous work in the thorax, this paper proposes a standardized definition of the grouping of pelvic lymph nodes into 10 zones. We subsequently employ our earlier Automatic Anatomy Recognition (AAR) framework designed for body-wide organ modeling, recognition, and delineation to actually implement these zonal definitions where the zones are treated as anatomic objects. First, all 10 zones and key anatomic organs used as anchors are manually delineated under expert supervision for constructing fuzzy anatomy models of the assembly of organs together with the zones. Then, optimal hierarchical arrangement of these objects is constructed for the purpose of achieving the best zonal recognition. For actual localization of the objects, two strategies are used -- optimal thresholded search for organs and one-shot method for the zones where the known relationship of the zones to key organs is exploited. Based on 50 computed tomography (CT) image data sets for the pelvic body region and an equal division into training and test subsets, automatic zonal localization within 1-3 voxels is achieved.

  15. A Self-Organizing Incremental Neural Network based on local distribution learning.

    PubMed

    Xing, Youlu; Shi, Xiaofeng; Shen, Furao; Zhou, Ke; Zhao, Jinxi

    2016-12-01

    In this paper, we propose an unsupervised incremental learning neural network based on local distribution learning, which is called Local Distribution Self-Organizing Incremental Neural Network (LD-SOINN). The LD-SOINN combines the advantages of incremental learning and matrix learning. It can automatically discover suitable nodes to fit the learning data in an incremental way without a priori knowledge such as the structure of the network. The nodes of the network store rich local information regarding the learning data. The adaptive vigilance parameter guarantees that LD-SOINN is able to add new nodes for new knowledge automatically and the number of nodes will not grow unlimitedly. While the learning process continues, nodes that are close to each other and have similar principal components are merged to obtain a concise local representation, which we call a relaxation data representation. A denoising process based on density is designed to reduce the influence of noise. Experiments show that the LD-SOINN performs well on both artificial and real-word data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Semi-automatic central-chest lymph-node definition from 3D MDCT images

    NASA Astrophysics Data System (ADS)

    Lu, Kongkuo; Higgins, William E.

    2010-03-01

    Central-chest lymph nodes play a vital role in lung-cancer staging. The three-dimensional (3D) definition of lymph nodes from multidetector computed-tomography (MDCT) images, however, remains an open problem. This is because of the limitations in the MDCT imaging of soft-tissue structures and the complicated phenomena that influence the appearance of a lymph node in an MDCT image. In the past, we have made significant efforts toward developing (1) live-wire-based segmentation methods for defining 2D and 3D chest structures and (2) a computer-based system for automatic definition and interactive visualization of the Mountain central-chest lymph-node stations. Based on these works, we propose new single-click and single-section live-wire methods for segmenting central-chest lymph nodes. The single-click live wire only requires the user to select an object pixel on one 2D MDCT section and is designed for typical lymph nodes. The single-section live wire requires the user to process one selected 2D section using standard 2D live wire, but it is more robust. We applied these methods to the segmentation of 20 lymph nodes from two human MDCT chest scans (10 per scan) drawn from our ground-truth database. The single-click live wire segmented 75% of the selected nodes successfully and reproducibly, while the success rate for the single-section live wire was 85%. We are able to segment the remaining nodes, using our previously derived (but more interaction intense) 2D live-wire method incorporated in our lymph-node analysis system. Both proposed methods are reliable and applicable to a wide range of pulmonary lymph nodes.

  17. Nonlinear Krylov and moving nodes in the method of lines

    NASA Astrophysics Data System (ADS)

    Miller, Keith

    2005-11-01

    We report on some successes and problem areas in the Method of Lines from our work with moving node finite element methods. First, we report on our "nonlinear Krylov accelerator" for the modified Newton's method on the nonlinear equations of our stiff ODE solver. Since 1990 it has been robust, simple, cheap, and automatic on all our moving node computations. We publicize further trials with it here because it should be of great general usefulness to all those solving evolutionary equations. Second, we discuss the need for reliable automatic choice of spatially variable time steps. Third, we discuss the need for robust and efficient iterative solvers for the difficult linearized equations (Jx=b) of our stiff ODE solver. Here, the 1997 thesis of Zulu Xaba has made significant progress.

  18. Generation of Murine Cardiac Pacemaker Cell Aggregates Based on ES-Cell-Programming in Combination with Myh6-Promoter-Selection

    PubMed Central

    Rimmbach, Christian; Jung, Julia J.; David, Robert

    2015-01-01

    Treatment of the “sick sinus syndrome” is based on artificial pacemakers. These bear hazards such as battery failure and infections. Moreover, they lack hormone responsiveness and the overall procedure is cost-intensive. “Biological pacemakers” generated from PSCs may become an alternative, yet the typical content of pacemaker cells in Embryoid Bodies (EBs) is extremely low. The described protocol combines “forward programming” of murine PSCs via the sinus node inducer TBX3 with Myh6-promoter based antibiotic selection. This yields cardiomyocyte aggregates consistent of >80% physiologically functional pacemaker cells. These “induced-sinoatrial-bodies” (“iSABs”) are spontaneously contracting at yet unreached frequencies (400-500 bpm) corresponding to nodal cells isolated from mouse hearts and are able to pace murine myocardium ex vivo. Using the described protocol highly pure sinus nodal single cells can be generated which e.g. can be used for in vitro drug testing. Furthermore, the iSABs generated according to this protocol may become a crucial step towards heart tissue engineering. PMID:25742394

  19. Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block

    PubMed Central

    Hu, Yu-Feng; Dawkins, James Frederick; Cho, Hee Cheol; Marbán, Eduardo; Cingolani, Eugenio

    2016-01-01

    Somatic reprogramming by reexpression of the embryonic transcription factor T-box 18 (TBX18) converts cardiomyocytes into pacemaker cells. We hypothesized that this could be a viable therapeutic avenue for pacemaker-dependent patients afflicted with device-related complications, and therefore tested whether adenoviral TBX18 gene transfer could create biological pacemaker activity in vivo in a large-animal model of complete heart block. Biological pacemaker activity, originating from the intramyocardial injection site, was evident in TBX18-transduced animals starting at day 2 and persisted for the duration of the study (14 days) with minimal backup electronic pacemaker use. Relative to controls transduced with a reporter gene, TBX18-transduced animals exhibited enhanced autonomic responses and physiologically superior chronotropic support of physical activity. Induced sinoatrial node cells could be identified by their distinctive morphology at the site of injection in TBX18-transduced animals, but not in controls. No local or systemic safety concerns arose. Thus, minimally invasive TBX18 gene transfer creates physiologically relevant pacemaker activity in complete heart block, providing evidence for therapeutic somatic reprogramming in a clinically relevant disease model. PMID:25031269

  20. Nonlinear physics of electrical wave propagation in the heart: a review

    NASA Astrophysics Data System (ADS)

    Alonso, Sergio; Bär, Markus; Echebarria, Blas

    2016-09-01

    The beating of the heart is a synchronized contraction of muscle cells (myocytes) that is triggered by a periodic sequence of electrical waves (action potentials) originating in the sino-atrial node and propagating over the atria and the ventricles. Cardiac arrhythmias like atrial and ventricular fibrillation (AF,VF) or ventricular tachycardia (VT) are caused by disruptions and instabilities of these electrical excitations, that lead to the emergence of rotating waves (VT) and turbulent wave patterns (AF,VF). Numerous simulation and experimental studies during the last 20 years have addressed these topics. In this review we focus on the nonlinear dynamics of wave propagation in the heart with an emphasis on the theory of pulses, spirals and scroll waves and their instabilities in excitable media with applications to cardiac modeling. After an introduction into electrophysiological models for action potential propagation, the modeling and analysis of spatiotemporal alternans, spiral and scroll meandering, spiral breakup and scroll wave instabilities like negative line tension and sproing are reviewed in depth and discussed with emphasis on their impact for cardiac arrhythmias.

  1. Role of ivabradine and heart rate lowering in chronic heart failure: guideline update.

    PubMed

    Chow, Sheryl L; Page, Robert Lee; Depre, Christophe

    2018-06-14

    This review summarizes the current management of heart failure (HF) in patients with reduced ejection fraction and the potential role of heart rate lowering agents in select populations, as recommended in the updated guidelines. Areas covered: PubMed was searched for studies that evaluated the role of heart rate lowering or ivabradine in HF management. Expert commentary: Targeting heart rate may offer benefit when added to renin-angiotensin aldosterone antagonists, and beta-blockers. Ivabradine is a heart rate lowering agent that acts on the funny current (I f ) in the sinoatrial node, thereby reducing heart rate without directly affecting cardiac contraction and relaxation. Clinical data from a phase 3 trial demonstrated that ivabradine reduced the composite endpoint of cardiovascular death or hospital admission for worsening systolic HF, while maintaining an acceptable safety profile in patients receiving standard of care therapy. These data, in addition to more recently published guidelines, suggest ivabradine as a promising new treatment option for lowering heart rate after optimizing standard therapy in select patients with chronic HF.

  2. Genetic loci associated with heart rate variability and their effects on cardiac disease risk

    PubMed Central

    Nolte, Ilja M.; Munoz, M. Loretto; Tragante, Vinicius; Amare, Azmeraw T.; Jansen, Rick; Vaez, Ahmad; von der Heyde, Benedikt; Avery, Christy L.; Bis, Joshua C.; Dierckx, Bram; van Dongen, Jenny; Gogarten, Stephanie M.; Goyette, Philippe; Hernesniemi, Jussi; Huikari, Ville; Hwang, Shih-Jen; Jaju, Deepali; Kerr, Kathleen F.; Kluttig, Alexander; Krijthe, Bouwe P.; Kumar, Jitender; van der Laan, Sander W.; Lyytikäinen, Leo-Pekka; Maihofer, Adam X.; Minassian, Arpi; van der Most, Peter J.; Müller-Nurasyid, Martina; Nivard, Michel; Salvi, Erika; Stewart, James D.; Thayer, Julian F.; Verweij, Niek; Wong, Andrew; Zabaneh, Delilah; Zafarmand, Mohammad H.; Abdellaoui, Abdel; Albarwani, Sulayma; Albert, Christine; Alonso, Alvaro; Ashar, Foram; Auvinen, Juha; Axelsson, Tomas; Baker, Dewleen G.; de Bakker, Paul I. W.; Barcella, Matteo; Bayoumi, Riad; Bieringa, Rob J.; Boomsma, Dorret; Boucher, Gabrielle; Britton, Annie R.; Christophersen, Ingrid; Dietrich, Andrea; Ehret, George B.; Ellinor, Patrick T.; Eskola, Markku; Felix, Janine F.; Floras, John S.; Franco, Oscar H.; Friberg, Peter; Gademan, Maaike G. J.; Geyer, Mark A.; Giedraitis, Vilmantas; Hartman, Catharina A.; Hemerich, Daiane; Hofman, Albert; Hottenga, Jouke-Jan; Huikuri, Heikki; Hutri-Kähönen, Nina; Jouven, Xavier; Junttila, Juhani; Juonala, Markus; Kiviniemi, Antti M.; Kors, Jan A.; Kumari, Meena; Kuznetsova, Tatiana; Laurie, Cathy C.; Lefrandt, Joop D.; Li, Yong; Li, Yun; Liao, Duanping; Limacher, Marian C.; Lin, Henry J.; Lindgren, Cecilia M.; Lubitz, Steven A.; Mahajan, Anubha; McKnight, Barbara; zu Schwabedissen, Henriette Meyer; Milaneschi, Yuri; Mononen, Nina; Morris, Andrew P.; Nalls, Mike A.; Navis, Gerjan; Neijts, Melanie; Nikus, Kjell; North, Kari E.; O'Connor, Daniel T.; Ormel, Johan; Perz, Siegfried; Peters, Annette; Psaty, Bruce M.; Raitakari, Olli T.; Risbrough, Victoria B.; Sinner, Moritz F.; Siscovick, David; Smit, Johannes H.; Smith, Nicholas L.; Soliman, Elsayed Z.; Sotoodehnia, Nona; Staessen, Jan A.; Stein, Phyllis K.; Stilp, Adrienne M.; Stolarz-Skrzypek, Katarzyna; Strauch, Konstantin; Sundström, Johan; Swenne, Cees A.; Syvänen, Ann-Christine; Tardif, Jean-Claude; Taylor, Kent D.; Teumer, Alexander; Thornton, Timothy A.; Tinker, Lesley E.; Uitterlinden, André G.; van Setten, Jessica; Voss, Andreas; Waldenberger, Melanie; Wilhelmsen, Kirk C.; Willemsen, Gonneke; Wong, Quenna; Zhang, Zhu-Ming; Zonderman, Alan B.; Cusi, Daniele; Evans, Michele K.; Greiser, Halina K.; van der Harst, Pim; Hassan, Mohammad; Ingelsson, Erik; Järvelin, Marjo-Riitta; Kääb, Stefan; Kähönen, Mika; Kivimaki, Mika; Kooperberg, Charles; Kuh, Diana; Lehtimäki, Terho; Lind, Lars; Nievergelt, Caroline M.; O'Donnell, Chris J.; Oldehinkel, Albertine J.; Penninx, Brenda; Reiner, Alexander P.; Riese, Harriëtte; van Roon, Arie M.; Rioux, John D.; Rotter, Jerome I.; Sofer, Tamar; Stricker, Bruno H.; Tiemeier, Henning; Vrijkotte, Tanja G. M.; Asselbergs, Folkert W.; Brundel, Bianca J. J. M.; Heckbert, Susan R.; Whitsel, Eric A.; den Hoed, Marcel; Snieder, Harold; de Geus, Eco J. C.

    2017-01-01

    Reduced cardiac vagal control reflected in low heart rate variability (HRV) is associated with greater risks for cardiac morbidity and mortality. In two-stage meta-analyses of genome-wide association studies for three HRV traits in up to 53,174 individuals of European ancestry, we detect 17 genome-wide significant SNPs in eight loci. HRV SNPs tag non-synonymous SNPs (in NDUFA11 and KIAA1755), expression quantitative trait loci (eQTLs) (influencing GNG11, RGS6 and NEO1), or are located in genes preferentially expressed in the sinoatrial node (GNG11, RGS6 and HCN4). Genetic risk scores account for 0.9 to 2.6% of the HRV variance. Significant genetic correlation is found for HRV with heart rate (−0.74

  3. A simple node and conductor data generator for SINDA

    NASA Technical Reports Server (NTRS)

    Gottula, Ronald R.

    1992-01-01

    This paper presents a simple, automated method to generate NODE and CONDUCTOR DATA for thermal match modes. The method uses personal computer spreadsheets to create SINDA inputs. It was developed in order to make SINDA modeling less time consuming and serves as an alternative to graphical methods. Anyone having some experience using a personal computer can easily implement this process. The user develops spreadsheets to automatically calculate capacitances and conductances based on material properties and dimensional data. The necessary node and conductor information is then taken from the spreadsheets and automatically arranged into the proper format, ready for insertion directly into the SINDA model. This technique provides a number of benefits to the SINDA user such as a reduction in the number of hand calculations, and an ability to very quickly generate a parametric set of NODE and CONDUCTOR DATA blocks. It also provides advantages over graphical thermal modeling systems by retaining the analyst's complete visibility into the thermal network, and by permitting user comments anywhere within the DATA blocks.

  4. Relation extraction for biological pathway construction using node2vec.

    PubMed

    Kim, Munui; Baek, Seung Han; Song, Min

    2018-06-13

    Systems biology is an important field for understanding whole biological mechanisms composed of interactions between biological components. One approach for understanding complex and diverse mechanisms is to analyze biological pathways. However, because these pathways consist of important interactions and information on these interactions is disseminated in a large number of biomedical reports, text-mining techniques are essential for extracting these relationships automatically. In this study, we applied node2vec, an algorithmic framework for feature learning in networks, for relationship extraction. To this end, we extracted genes from paper abstracts using pkde4j, a text-mining tool for detecting entities and relationships. Using the extracted genes, a co-occurrence network was constructed and node2vec was used with the network to generate a latent representation. To demonstrate the efficacy of node2vec in extracting relationships between genes, performance was evaluated for gene-gene interactions involved in a type 2 diabetes pathway. Moreover, we compared the results of node2vec to those of baseline methods such as co-occurrence and DeepWalk. Node2vec outperformed existing methods in detecting relationships in the type 2 diabetes pathway, demonstrating that this method is appropriate for capturing the relatedness between pairs of biological entities involved in biological pathways. The results demonstrated that node2vec is useful for automatic pathway construction.

  5. Cross-ontological analytics for alignment of different classification schemes

    DOEpatents

    Posse, Christian; Sanfilippo, Antonio P; Gopalan, Banu; Riensche, Roderick M; Baddeley, Robert L

    2010-09-28

    Quantification of the similarity between nodes in multiple electronic classification schemes is provided by automatically identifying relationships and similarities between nodes within and across the electronic classification schemes. Quantifying the similarity between a first node in a first electronic classification scheme and a second node in a second electronic classification scheme involves finding a third node in the first electronic classification scheme, wherein a first product value of an inter-scheme similarity value between the second and third nodes and an intra-scheme similarity value between the first and third nodes is a maximum. A fourth node in the second electronic classification scheme can be found, wherein a second product value of an inter-scheme similarity value between the first and fourth nodes and an intra-scheme similarity value between the second and fourth nodes is a maximum. The maximum between the first and second product values represents a measure of similarity between the first and second nodes.

  6. Method and apparatus for analyzing error conditions in a massively parallel computer system by identifying anomalous nodes within a communicator set

    DOEpatents

    Gooding, Thomas Michael [Rochester, MN

    2011-04-19

    An analytical mechanism for a massively parallel computer system automatically analyzes data retrieved from the system, and identifies nodes which exhibit anomalous behavior in comparison to their immediate neighbors. Preferably, anomalous behavior is determined by comparing call-return stack tracebacks for each node, grouping like nodes together, and identifying neighboring nodes which do not themselves belong to the group. A node, not itself in the group, having a large number of neighbors in the group, is a likely locality of error. The analyzer preferably presents this information to the user by sorting the neighbors according to number of adjoining members of the group.

  7. Energy modelling in sensor networks

    NASA Astrophysics Data System (ADS)

    Schmidt, D.; Krämer, M.; Kuhn, T.; Wehn, N.

    2007-06-01

    Wireless sensor networks are one of the key enabling technologies for the vision of ambient intelligence. Energy resources for sensor nodes are very scarce. A key challenge is the design of energy efficient communication protocols. Models of the energy consumption are needed to accurately simulate the efficiency of a protocol or application design, and can also be used for automatic energy optimizations in a model driven design process. We propose a novel methodology to create models for sensor nodes based on few simple measurements. In a case study the methodology was used to create models for MICAz nodes. The models were integrated in a simulation environment as well as in a SDL runtime framework of a model driven design process. Measurements on a test application that was created automatically from an SDL specification showed an 80% reduction in energy consumption compared to an implementation without power saving strategies.

  8. Wireless Sensor Network-Based Greenhouse Environment Monitoring and Automatic Control System for Dew Condensation Prevention

    PubMed Central

    Park, Dae-Heon; Park, Jang-Woo

    2011-01-01

    Dew condensation on the leaf surface of greenhouse crops can promote diseases caused by fungus and bacteria, affecting the growth of the crops. In this paper, we present a WSN (Wireless Sensor Network)-based automatic monitoring system to prevent dew condensation in a greenhouse environment. The system is composed of sensor nodes for collecting data, base nodes for processing collected data, relay nodes for driving devices for adjusting the environment inside greenhouse and an environment server for data storage and processing. Using the Barenbrug formula for calculating the dew point on the leaves, this system is realized to prevent dew condensation phenomena on the crop’s surface acting as an important element for prevention of diseases infections. We also constructed a physical model resembling the typical greenhouse in order to verify the performance of our system with regard to dew condensation control. PMID:22163813

  9. Wireless sensor network-based greenhouse environment monitoring and automatic control system for dew condensation prevention.

    PubMed

    Park, Dae-Heon; Park, Jang-Woo

    2011-01-01

    Dew condensation on the leaf surface of greenhouse crops can promote diseases caused by fungus and bacteria, affecting the growth of the crops. In this paper, we present a WSN (Wireless Sensor Network)-based automatic monitoring system to prevent dew condensation in a greenhouse environment. The system is composed of sensor nodes for collecting data, base nodes for processing collected data, relay nodes for driving devices for adjusting the environment inside greenhouse and an environment server for data storage and processing. Using the Barenbrug formula for calculating the dew point on the leaves, this system is realized to prevent dew condensation phenomena on the crop's surface acting as an important element for prevention of diseases infections. We also constructed a physical model resembling the typical greenhouse in order to verify the performance of our system with regard to dew condensation control.

  10. Fault-tolerant three-level inverter

    DOEpatents

    Edwards, John; Xu, Longya; Bhargava, Brij B.

    2006-12-05

    A method for driving a neutral point clamped three-level inverter is provided. In one exemplary embodiment, DC current is received at a neutral point-clamped three-level inverter. The inverter has a plurality of nodes including first, second and third output nodes. The inverter also has a plurality of switches. Faults are checked for in the inverter and predetermined switches are automatically activated responsive to a detected fault such that three-phase electrical power is provided at the output nodes.

  11. Acute desensitization of acetylcholine and endothelin-1 activated inward rectifier K+ current in myocytes from the cardiac atrioventricular node.

    PubMed

    Choisy, Stéphanie C M; James, Andrew F; Hancox, Jules C

    2012-07-06

    The atrioventricular node (AVN) is a vital component of the pacemaker-conduction system of the heart, co-ordinating conduction of electrical excitation from cardiac atria to ventricles and acting as a secondary pacemaker. The electrical behaviour of the AVN is modulated by vagal activity via activation of muscarinic potassium current, IKACh. However, it is not yet known if this response exhibits 'fade' or desensitization in the AVN, as established for the heart's primary pacemaker--the sinoatrial node. In this study, acute activation of IKACh in rabbit single AVN cells was investigated using whole-cell patch clamp at 37 °C. 0.1-1 μM acetylcholine (ACh) rapidly activated a robust IKACh in AVN myocytes during a descending voltage-ramp protocol. This response was inhibited by tertiapin-Q (TQ; 300 nM) and by the M2 muscarinic ACh receptor antagonist AFDX-116 (1 μM). During sustained ACh exposure the elicited IKACh exhibited bi-exponential fade (τf of 2.0 s and τs 76.9 s at -120 mV; 1 μM ACh). 10 nM ET-1 elicited a current similar to IKACh, which faded with a mono-exponential time-course (τ of 52.6 s at -120 mV). When ET-1 was applied following ACh, the ET-1 activated response was greatly attenuated, demonstrating that ACh could desensitize the response to ET-1. For neither ACh nor ET-1 was the rate of current fade dependent upon the initial response magnitude, which is inconsistent with K+ flux mediated changes in electrochemical driving force as the underlying mechanism. Collectively, these findings demonstrate that TQ sensitive inwardly rectifying K+ current in cardiac AVN cells, elicited by M2 muscarinic receptor or ET-1 receptor activation, exhibits fade due to rapid desensitization. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Novel insights into the distribution of cardiac HCN channels: an expression study in the mouse heart.

    PubMed

    Herrmann, Stefan; Layh, Beate; Ludwig, Andreas

    2011-12-01

    HCN pacemaker channels (I(f) channels) are believed to contribute to important functions in the heart; thus these channels became an attractive target for generating transgenic mouse mutants to elucidate their role in physiological and pathophysiological cardiac conditions. A full understanding of cardiac I(f) and the interpretation of studies using HCN mouse mutants require detailed information about the expression profile of the individual HCN subunits. Here we investigate the cardiac expression pattern of the HCN isoforms at the mRNA as well as at the protein level. The specificity of antibodies used was strictly confirmed by the use of HCN1, HCN2 and HCN4 knockout animals. We find a low, but highly differential HCN expression profile outside the cardiac conduction pathway including left and right atria and ventricles. Additionally HCN distribution was investigated in tissue slices of the sinoatrial node, the atrioventricular node, the bundle of His and the bundle branches. The conduction system was marked by acetylcholine esterase staining. HCN4 was confirmed as the predominant isoform of the primary pacemaker followed by a distinct expression of HCN1. In contrast HCN2 shows only a confined expression to individual pacemaker cells. Immunolabeling of the AV-node reveals also a pronounced specificity for HCN1 and HCN4. Compared to the SN and AVN we found a low but selective expression of HCN4 as the only isoform in the atrioventricular bundle. However in the bundle branches HCN1, HCN4 and also HCN2 show a prominent and selective expression pattern. Our results display a characteristic distribution of individual HCN isoforms in several cardiac compartments and reveal that beside HCN4, HCN1 represents the isoform which is selectively expressed in most parts of the conduction system suggesting a substantial contribution of HCN1 to pacemaking. 2011 Elsevier Ltd. All rights reserved.

  13. Spontaneous, local diastolic subsarcolemmal calcium releases in single, isolated guinea-pig sinoatrial nodal cells.

    PubMed

    Sirenko, Syevda G; Yang, Dongmei; Maltseva, Larissa A; Kim, Mary S; Lakatta, Edward G; Maltsev, Victor A

    2017-01-01

    Uptake and release calcium from the sarcoplasmic reticulum (SR) (dubbed "calcium clock"), in the form of spontaneous, rhythmic, local diastolic calcium releases (LCRs), together with voltage-sensitive ion channels (membrane clock) form a coupled system that regulates the action potential (AP) firing rate. LCRs activate Sodium/Calcium exchanger (NCX) that accelerates diastolic depolarization and thus participating in regulation of the time at which the next AP will occur. Previous studies in rabbit SA node cells (SANC) demonstrated that the basal AP cycle length (APCL) is tightly coupled to the basal LCR period (time from the prior AP-induced Ca2+ transient to the diastolic LCR occurrence), and that this coupling is further modulated by autonomic receptor stimulation. Although spontaneous LCRs during diastolic depolarization have been reported in SANC of various species (rabbit, cat, mouse, toad), prior studies have failed to detect LCRs in spontaneously beating SANC of guinea-pig, a species that has been traditionally used in studies of cardiac pacemaker cell function. We performed a detailed investigation of whether guinea-pig SANC generate LCRs and whether they play a similar key role in regulation of the AP firing rate. We used two different approaches, 2D high-speed camera and classical line-scan confocal imaging. Positioning the scan-line beneath sarcolemma, parallel to the long axis of the cell, we found that rhythmically beating guinea-pig SANC do, indeed, generate spontaneous, diastolic LCRs beneath the surface membrane. The average key LCR characteristics measured in confocal images in guinea-pig SANC were comparable to rabbit SANC, both in the basal state and in the presence of β-adrenergic receptor stimulation. Moreover, the relationship between the LCR period and APCL was subtended by the same linear function. Thus, LCRs in guinea-pig SANC contribute to the diastolic depolarization and APCL regulation. Our findings indicate that coupled-clock system regulation of APCL is a general, species-independent, mechanism of pacemaker cell normal automaticity. Lack of LCRs in prior studies is likely explained by technical issues, as individual LCRs are small stochastic events occurring mainly near the cell border.

  14. Spontaneous, local diastolic subsarcolemmal calcium releases in single, isolated guinea-pig sinoatrial nodal cells

    PubMed Central

    Sirenko, Syevda G.; Yang, Dongmei; Maltseva, Larissa A.; Kim, Mary S.; Lakatta, Edward G.

    2017-01-01

    Uptake and release calcium from the sarcoplasmic reticulum (SR) (dubbed “calcium clock”), in the form of spontaneous, rhythmic, local diastolic calcium releases (LCRs), together with voltage-sensitive ion channels (membrane clock) form a coupled system that regulates the action potential (AP) firing rate. LCRs activate Sodium/Calcium exchanger (NCX) that accelerates diastolic depolarization and thus participating in regulation of the time at which the next AP will occur. Previous studies in rabbit SA node cells (SANC) demonstrated that the basal AP cycle length (APCL) is tightly coupled to the basal LCR period (time from the prior AP-induced Ca2+ transient to the diastolic LCR occurrence), and that this coupling is further modulated by autonomic receptor stimulation. Although spontaneous LCRs during diastolic depolarization have been reported in SANC of various species (rabbit, cat, mouse, toad), prior studies have failed to detect LCRs in spontaneously beating SANC of guinea-pig, a species that has been traditionally used in studies of cardiac pacemaker cell function. We performed a detailed investigation of whether guinea-pig SANC generate LCRs and whether they play a similar key role in regulation of the AP firing rate. We used two different approaches, 2D high-speed camera and classical line-scan confocal imaging. Positioning the scan-line beneath sarcolemma, parallel to the long axis of the cell, we found that rhythmically beating guinea-pig SANC do, indeed, generate spontaneous, diastolic LCRs beneath the surface membrane. The average key LCR characteristics measured in confocal images in guinea-pig SANC were comparable to rabbit SANC, both in the basal state and in the presence of β-adrenergic receptor stimulation. Moreover, the relationship between the LCR period and APCL was subtended by the same linear function. Thus, LCRs in guinea-pig SANC contribute to the diastolic depolarization and APCL regulation. Our findings indicate that coupled-clock system regulation of APCL is a general, species-independent, mechanism of pacemaker cell normal automaticity. Lack of LCRs in prior studies is likely explained by technical issues, as individual LCRs are small stochastic events occurring mainly near the cell border. PMID:28945810

  15. Maximum heart rate in brown trout (Salmo trutta fario) is not limited by firing rate of pacemaker cells.

    PubMed

    Haverinen, Jaakko; Abramochkin, Denis V; Kamkin, Andre; Vornanen, Matti

    2017-02-01

    Temperature-induced changes in cardiac output (Q̇) in fish are largely dependent on thermal modulation of heart rate (f H ), and at high temperatures Q̇ collapses due to heat-dependent depression of f H This study tests the hypothesis that firing rate of sinoatrial pacemaker cells sets the upper thermal limit of f H in vivo. To this end, temperature dependence of action potential (AP) frequency of enzymatically isolated pacemaker cells (pacemaker rate, f PM ), spontaneous beating rate of isolated sinoatrial preparations (f SA ), and in vivo f H of the cold-acclimated (4°C) brown trout (Salmo trutta fario) were compared under acute thermal challenges. With rising temperature, f PM steadily increased because of the acceleration of diastolic depolarization and shortening of AP duration up to the break point temperature (T BP ) of 24.0 ± 0.37°C, at which point the electrical activity abruptly ceased. The maximum f PM at T BP was much higher [193 ± 21.0 beats per minute (bpm)] than the peak f SA (94.3 ± 6.0 bpm at 24.1°C) or peak f H (76.7 ± 2.4 at 15.7 ± 0.82°C) (P < 0.05). These findings strongly suggest that the frequency generator of the sinoatrial pacemaker cells does not limit f H at high temperatures in the brown trout in vivo. Copyright © 2017 the American Physiological Society.

  16. Zebrafish heart as a model to study the integrative autonomic control of pacemaker function

    PubMed Central

    Stoyek, Matthew R.; Quinn, T. Alexander; Croll, Roger P.

    2016-01-01

    The cardiac pacemaker sets the heart's primary rate, with pacemaker discharge controlled by the autonomic nervous system through intracardiac ganglia. A fundamental issue in understanding the relationship between neural activity and cardiac chronotropy is the identification of neuronal populations that control pacemaker cells. To date, most studies of neurocardiac control have been done in mammalian species, where neurons are embedded in and distributed throughout the heart, so they are largely inaccessible for whole-organ, integrative studies. Here, we establish the isolated, innervated zebrafish heart as a novel alternative model for studies of autonomic control of heart rate. Stimulation of individual cardiac vagosympathetic nerve trunks evoked bradycardia (parasympathetic activation) and tachycardia (sympathetic activation). Simultaneous stimulation of both vagosympathetic nerve trunks evoked a summative effect. Effects of nerve stimulation were mimicked by direct application of cholinergic and adrenergic agents. Optical mapping of electrical activity confirmed the sinoatrial region as the site of origin of normal pacemaker activity and identified a secondary pacemaker in the atrioventricular region. Strong vagosympathetic nerve stimulation resulted in a shift in the origin of initial excitation from the sinoatrial pacemaker to the atrioventricular pacemaker. Putative pacemaker cells in the sinoatrial and atrioventricular regions expressed adrenergic β2 and cholinergic muscarinic type 2 receptors. Collectively, we have demonstrated that the zebrafish heart contains the accepted hallmarks of vertebrate cardiac control, establishing this preparation as a viable model for studies of integrative physiological control of cardiac function by intracardiac neurons. PMID:27342878

  17. Tachycardia-bradycardia syndrome: Electrophysiological mechanisms and future therapeutic approaches (Review)

    PubMed Central

    Tse, Gary; Liu, Tong; Li, Ka Hou Christien; Laxton, Victoria; Wong, Andy On-Tik; Chan, Yin Wah Fiona; Keung, Wendy; Chan, Camie W.Y.; Li, Ronald A.

    2017-01-01

    Sick sinus syndrome (SSS) encompasses a group of disorders whereby the heart is unable to perform its pacemaker function, due to genetic and acquired causes. Tachycardia-bradycardia syndrome (TBS) is a complication of SSS characterized by alternating tachycardia and bradycardia. Techniques such as genetic screening and molecular diagnostics together with the use of pre-clinical models have elucidated the electrophysiological mechanisms of this condition. Dysfunction of ion channels responsible for initiation or conduction of cardiac action potentials may underlie both bradycardia and tachycardia; bradycardia can also increase the risk of tachycardia, and vice versa. The mainstay treatment option for SSS is pacemaker implantation, an effective approach, but has disadvantages such as infection, limited battery life, dislodgement of leads and catheters to be permanently implanted in situ. Alternatives to electronic pacemakers are gene-based bio-artificial sinoatrial node and cell-based bio-artificial pacemakers, which are promising techniques whose long-term safety and efficacy need to be established. The aim of this article is to review the different ion channels involved in TBS, examine the three-way relationship between ion channel dysfunction, tachycardia and bradycardia in TBS and to consider its current and future therapies. PMID:28204831

  18. Tachycardia-bradycardia syndrome: Electrophysiological mechanisms and future therapeutic approaches (Review).

    PubMed

    Tse, Gary; Liu, Tong; Li, Ka Hou Christien; Laxton, Victoria; Wong, Andy On-Tik; Chan, Yin Wah Fiona; Keung, Wendy; Chan, Camie W Y; Li, Ronald A

    2017-03-01

    Sick sinus syndrome (SSS) encompasses a group of disorders whereby the heart is unable to perform its pacemaker function, due to genetic and acquired causes. Tachycardia‑bradycardia syndrome (TBS) is a complication of SSS characterized by alternating tachycardia and bradycardia. Techniques such as genetic screening and molecular diagnostics together with the use of pre-clinical models have elucidated the electrophysiological mechanisms of this condition. Dysfunction of ion channels responsible for initiation or conduction of cardiac action potentials may underlie both bradycardia and tachycardia; bradycardia can also increase the risk of tachycardia, and vice versa. The mainstay treatment option for SSS is pacemaker implantation, an effective approach, but has disadvantages such as infection, limited battery life, dislodgement of leads and catheters to be permanently implanted in situ. Alternatives to electronic pacemakers are gene‑based bio‑artificial sinoatrial node and cell‑based bio‑artificial pacemakers, which are promising techniques whose long-term safety and efficacy need to be established. The aim of this article is to review the different ion channels involved in TBS, examine the three‑way relationship between ion channel dysfunction, tachycardia and bradycardia in TBS and to consider its current and future therapies.

  19. Reduced intrinsic heart rate is associated with reduced arrhythmic susceptibility in guinea-pig heart.

    PubMed

    Osadchii, Oleg E

    2014-12-01

    In the clinical setting, patients with slower resting heart rate are less prone to cardiovascular death compared with those with elevated heart rate. However, electrophysiological adaptations associated with reduced cardiac rhythm have not been thoroughly explored. In this study, relationships between intrinsic heart rate and arrhythmic susceptibility were examined by assessments of action potential duration (APD) rate adaptation and inducibility of repolarization alternans in sinoatrial node (SAN)-driven and atrioventricular (AV)-blocked guinea-pig hearts perfused with Langendorff apparatus. Electrocardiograms, epicardial monophasic action potentials, and effective refractory periods (ERP) were assessed in normokalemic and hypokalemic conditions. Slower basal heart rate in AV-blocked hearts was associated with prolonged ventricular repolarization during spontaneous beating, and with attenuated APD shortening at increased cardiac activation rates during dynamic pacing, when compared with SAN-driven hearts. During hypokalemic perfusion, the inducibility of repolarization alternans and tachyarrhythmia by rapid pacing was found to be lower in AV-blocked hearts. This difference was ascribed to prolonged ERP in the setting of reduced basal heart rate, which prevented ventricular capture at critically short pacing intervals required to induce arrhythmia. Reduced basal heart rate is associated with electrophysiological changes that prevent electrical instability upon an abrupt cardiac acceleration.

  20. Accelerating sino-atrium computer simulations with graphic processing units.

    PubMed

    Zhang, Hong; Xiao, Zheng; Lin, Shien-fong

    2015-01-01

    Sino-atrial node cells (SANCs) play a significant role in rhythmic firing. To investigate their role in arrhythmia and interactions with the atrium, computer simulations based on cellular dynamic mathematical models are generally used. However, the large-scale computation usually makes research difficult, given the limited computational power of Central Processing Units (CPUs). In this paper, an accelerating approach with Graphic Processing Units (GPUs) is proposed in a simulation consisting of the SAN tissue and the adjoining atrium. By using the operator splitting method, the computational task was made parallel. Three parallelization strategies were then put forward. The strategy with the shortest running time was further optimized by considering block size, data transfer and partition. The results showed that for a simulation with 500 SANCs and 30 atrial cells, the execution time taken by the non-optimized program decreased 62% with respect to a serial program running on CPU. The execution time decreased by 80% after the program was optimized. The larger the tissue was, the more significant the acceleration became. The results demonstrated the effectiveness of the proposed GPU-accelerating methods and their promising applications in more complicated biological simulations.

  1. New Medications for Heart Failure

    PubMed Central

    Gordin, Jonathan S.; Fonarow, Gregg C.

    2016-01-01

    Heart failure is common and results in substantial morbidity and mortality. Current guideline-based therapies for heart failure with reduced ejection fraction, including beta-blockers, angiotensin converting enzyme (ACE) inhibitors, and aldosterone antagonists aim to interrupt deleterious neurohormonal pathways and have shown significant success in reducing morbidity and mortality associated with heart failure. Continued efforts to further improve outcomes in patients with heart failure with reduced ejection fraction have led to the first new-in-class medications approved for heart failure since 2005, ivabradine and sacubitril/valsartan. Ivabradine targets the If channels in the sinoatrial node of the heart, decreasing heart rate. Sacubitril/valsartan combines a neprilysin inhibitor that increases levels of beneficial vasodilatory peptides with an angiotensin receptor antagonist. On a background of previously approved, guideline-directed medical therapies for heart failure, these medications have shown improved clinical outcomes ranging from decreased hospitalizations in a select group of patients to a reduction in all-cause mortality across all pre-specified subgroups. In this review, we will discuss the previously established guideline-directed medical therapies for heart failure with reduced ejection fraction, the translational research that led to the development of these new therapies, and the results from the major clinical trials of ivabradine and sacubitril/valsartan. PMID:27038558

  2. Diadenosine pentaphosphate affects electrical activity in guinea pig atrium via activation of potassium acetylcholine-dependent inward rectifier.

    PubMed

    Abramochkin, Denis V; Karimova, Viktoria M; Filatova, Tatiana S; Kamkin, Andre

    2017-07-01

    Diadenosine pentaphosphate (Ap5A) belongs to the family of diadenosine polyphosphates, endogenously produced compounds that affect vascular tone and cardiac performance when released from platelets. The previous findings indicate that Ap5A shortens action potentials (APs) in rat myocardium via activation of purine P2 receptors. The present study demonstrates alternative mechanism of Ap5A electrophysiological effects found in guinea pig myocardium. Ap5A (10 -4  M) shortens APs in guinea pig working atrial myocardium and slows down pacemaker activity in the sinoatrial node. P1 receptors antagonist DPCPX (10 -7  M) or selective GIRK channels blocker tertiapin (10 -6  M) completely abolished all Ap5A effects, while P2 blocker PPADS (10 -4  M) was ineffective. Patch-clamp experiments revealed potassium inward rectifier current activated by Ap5A in guinea pig atrial myocytes. The current was abolished by DPCPX or tertiapin and therefore was considered as potassium acetylcholine-dependent inward rectifier (I KACh ). Thus, unlike rat, in guinea pig atrium Ap5A produces activation of P1 receptors and subsequent opening of KACh channels leading to negative effects on cardiac electrical activity.

  3. MEMS tracking mirror system for a bidirectional free-space optical link.

    PubMed

    Jeon, Sungho; Toshiyoshi, Hiroshi

    2017-08-20

    We report on a bidirectional free-space optical system that is capable of automatic connection and tracking of an optical link between two nodes. A piezoelectric micro-electro-mechanical systems (MEMS) optical scanner is used to steer a laser beam of two wavelengths superposed to visually present a communication zone, to search for the position of the remote node by means of the retro-reflector optics, and to transmit the data between the nodes. A feedback system is developed to control the MEMS scanner to dynamically establish the optical link within a 10-ms transition time and to keep track of the moving node.

  4. Direct Evidence for Differential Roles of Temporal and Frontal Components of Auditory Change Detection

    ERIC Educational Resources Information Center

    Shalgi, Shani; Deouell, Leon Y.

    2007-01-01

    Automatic change detection is a fundamental capacity of the human brain. In audition, this capacity is indexed by the mismatch negativity (MMN) event-related potential, which is putatively supported by a network consisting of superior temporal and frontal nodes. The aim of this study was to elucidate the roles of these nodes within the neural…

  5. Poster — Thur Eve — 70: Automatic lung bronchial and vessel bifurcations detection algorithm for deformable image registration assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labine, Alexandre; Carrier, Jean-François; Bedwani, Stéphane

    2014-08-15

    Purpose: To investigate an automatic bronchial and vessel bifurcations detection algorithm for deformable image registration (DIR) assessment to improve lung cancer radiation treatment. Methods: 4DCT datasets were acquired and exported to Varian treatment planning system (TPS) EclipseTM for contouring. The lungs TPS contour was used as the prior shape for a segmentation algorithm based on hierarchical surface deformation that identifies the deformed lungs volumes of the 10 breathing phases. Hounsfield unit (HU) threshold filter was applied within the segmented lung volumes to identify blood vessels and airways. Segmented blood vessels and airways were skeletonised using a hierarchical curve-skeleton algorithm basedmore » on a generalized potential field approach. A graph representation of the computed skeleton was generated to assign one of three labels to each node: the termination node, the continuation node or the branching node. Results: 320 ± 51 bifurcations were detected in the right lung of a patient for the 10 breathing phases. The bifurcations were visually analyzed. 92 ± 10 bifurcations were found in the upper half of the lung and 228 ± 45 bifurcations were found in the lower half of the lung. Discrepancies between ten vessel trees were mainly ascribed to large deformation and in regions where the HU varies. Conclusions: We established an automatic method for DIR assessment using the morphological information of the patient anatomy. This approach allows a description of the lung's internal structure movement, which is needed to validate the DIR deformation fields for accurate 4D cancer treatment planning.« less

  6. Intelligent Data Granulation on Load: Improving Infobright's Knowledge Grid

    NASA Astrophysics Data System (ADS)

    Ślęzak, Dominik; Kowalski, Marcin

    One of the major aspects of Infobright's relational database technology is automatic decomposition of each of data tables onto Rough Rows, each consisting of 64K of original rows. Rough Rows are automatically annotated by Knowledge Nodes that represent compact information about the rows' values. Query performance depends on the quality of Knowledge Nodes, i.e., their efficiency in minimizing the access to the compressed portions of data stored on disk, according to the specific query optimization procedures. We show how to implement the mechanism of organizing the incoming data into such Rough Rows that maximize the quality of the corresponding Knowledge Nodes. Given clear business-driven requirements, the implemented mechanism needs to be fully integrated with the data load process, causing no decrease in the data load speed. The performance gain resulting from better data organization is illustrated by some tests over our benchmark data. The differences between the proposed mechanism and some well-known procedures of database clustering or partitioning are discussed. The paper is a continuation of our patent application [22].

  7. Running Gaussian16 Software Jobs on the Peregrine System | High-Performance

    Science.gov Websites

    , parallel setup is taken care of automatically based on settings in the PBS script example below. Previous filesystem called /dev/shm. This scratch space is set automatically by the example script below. The Gaussian system. An example script for batch submission is given below. #!/bin/bash #PBS -l nodes=2 #PBS -l

  8. Automatic abdominal lymph node detection method based on local intensity structure analysis from 3D x-ray CT images

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoshihiko; Nimura, Yukitaka; Kitasaka, Takayuki; Mizuno, Shinji; Furukawa, Kazuhiro; Goto, Hidemi; Fujiwara, Michitaka; Misawa, Kazunari; Ito, Masaaki; Nawano, Shigeru; Mori, Kensaku

    2013-03-01

    This paper presents an automated method of abdominal lymph node detection to aid the preoperative diagnosis of abdominal cancer surgery. In abdominal cancer surgery, surgeons must resect not only tumors and metastases but also lymph nodes that might have a metastasis. This procedure is called lymphadenectomy or lymph node dissection. Insufficient lymphadenectomy carries a high risk for relapse. However, excessive resection decreases a patient's quality of life. Therefore, it is important to identify the location and the structure of lymph nodes to make a suitable surgical plan. The proposed method consists of candidate lymph node detection and false positive reduction. Candidate lymph nodes are detected using a multi-scale blob-like enhancement filter based on local intensity structure analysis. To reduce false positives, the proposed method uses a classifier based on support vector machine with the texture and shape information. The experimental results reveal that it detects 70.5% of the lymph nodes with 13.0 false positives per case.

  9. Identification of nodal tissue in the living heart using rapid scanning fiber-optics confocal microscopy and extracellular fluorophores.

    PubMed

    Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

    2013-09-01

    Risks associated with pediatric reconstructive heart surgery include injury of the sinoatrial node (SAN) and atrioventricular node (AVN), requiring cardiac rhythm management using implantable pacemakers. These injuries are the result of difficulties in identifying nodal tissues intraoperatively. Here we describe an approach based on confocal microscopy and extracellular fluorophores to quantify tissue microstructure and identify nodal tissue. Using conventional 3-dimensional confocal microscopy we investigated the microstructural arrangement of SAN, AVN, and atrial working myocardium (AWM) in fixed rat heart. AWM exhibited a regular striated arrangement of the extracellular space. In contrast, SAN and AVN had an irregular, reticulated arrangement. AWM, SAN, and AVN tissues were beneath a thin surface layer of tissue that did not obstruct confocal microscopic imaging. Subsequently, we imaged tissues in living rat hearts with real-time fiber-optics confocal microscopy. Fiber-optics confocal microscopy images resembled images acquired with conventional confocal microscopy. We investigated spatial regularity of tissue microstructure from Fourier analysis and second-order image moments. Fourier analysis of fiber-optics confocal microscopy images showed that the spatial regularity of AWM was greater than that of nodal tissues (37.5 ± 5.0% versus 24.3 ± 3.9% for SAN and 23.8 ± 3.7% for AVN; P<0.05). Similar differences of spatial regularities were revealed from second-order image moments (50.0 ± 7.3% for AWM versus 29.3 ± 6.7% for SAN and 27.3 ± 5.5% for AVN; P<0.05). The study demonstrates feasibility of identifying nodal tissue in living heart using extracellular fluorophores and fiber-optics confocal microscopy. Application of the approach in pediatric reconstructive heart surgery may reduce risks of injuring nodal tissues.

  10. RF Energy Harvesting Peel-and-Stick Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalau-Keraly, Christopher; Schwartz, David; Daniel, George

    PARC, a Xerox Company, is developing a low-cost system of peel-and-stick wireless sensors that will enable widespread building environment sensor deployment with the potential to deliver up to 30% energy savings. The system is embodied by a set of RF hubs that provide power to the automatically located sensor nodes, and relays data wirelessly to the building management system (BMS). The sensor nodes are flexible electronic labels powered by rectified RF energy transmitted by a RF hub and can contain multiple printed and conventional sensors. The system design overcomes limitations in wireless sensors related to power delivery, lifetime, and costmore » by eliminating batteries and photovoltaic devices. The sensor localization is performed automatically by the inclusion of a programmable multidirectional antenna array in the RF hub. Comparison of signal strengths when the RF beam is swept allows for sensor localization, further reducing installation effort and enabling automatic recommissioning of sensors that have been relocated, overcoming a significant challenge in building operations. PARC has already demonstrated wireless power and temperature data transmission up to a distance of 20m with a duty cycle less than a minute between measurements, using power levels well within the FCC regulation limits in the 902-928 MHz ISM band. The sensor’s RF energy harvesting antenna dimensions was less than 5cmx9cm, demonstrating the possibility of small form factor for the sensor nodes.« less

  11. Attributed graph distance measure for automatic detection of attention deficit hyperactive disordered subjects.

    PubMed

    Dey, Soumyabrata; Rao, A Ravishankar; Shah, Mubarak

    2014-01-01

    Attention Deficit Hyperactive Disorder (ADHD) is getting a lot of attention recently for two reasons. First, it is one of the most commonly found childhood disorders and second, the root cause of the problem is still unknown. Functional Magnetic Resonance Imaging (fMRI) data has become a popular tool for the analysis of ADHD, which is the focus of our current research. In this paper we propose a novel framework for the automatic classification of the ADHD subjects using their resting state fMRI (rs-fMRI) data of the brain. We construct brain functional connectivity networks for all the subjects. The nodes of the network are constructed with clusters of highly active voxels and edges between any pair of nodes represent the correlations between their average fMRI time series. The activity level of the voxels are measured based on the average power of their corresponding fMRI time-series. For each node of the networks, a local descriptor comprising of a set of attributes of the node is computed. Next, the Multi-Dimensional Scaling (MDS) technique is used to project all the subjects from the unknown graph-space to a low dimensional space based on their inter-graph distance measures. Finally, the Support Vector Machine (SVM) classifier is used on the low dimensional projected space for automatic classification of the ADHD subjects. Exhaustive experimental validation of the proposed method is performed using the data set released for the ADHD-200 competition. Our method shows promise as we achieve impressive classification accuracies on the training (70.49%) and test data sets (73.55%). Our results reveal that the detection rates are higher when classification is performed separately on the male and female groups of subjects.

  12. Static Methods in the Design of Nonlinear Automatic Control Systems,

    DTIC Science & Technology

    1984-06-27

    227 Chapter VI. Ways of Decrease of the Number of Statistical Nodes During the Research of Nonlinear Systems...at present occupies the central place. This region of research was called the statistical dynamics of nonlinear H automatic control systems...receives further development in the numerous research of Soviet and C foreign scientists. Special role in the development of the statistical dynamics of

  13. ALICE HLT Cluster operation during ALICE Run 2

    NASA Astrophysics Data System (ADS)

    Lehrbach, J.; Krzewicki, M.; Rohr, D.; Engel, H.; Gomez Ramirez, A.; Lindenstruth, V.; Berzano, D.; ALICE Collaboration

    2017-10-01

    ALICE (A Large Ion Collider Experiment) is one of the four major detectors located at the LHC at CERN, focusing on the study of heavy-ion collisions. The ALICE High Level Trigger (HLT) is a compute cluster which reconstructs the events and compresses the data in real-time. The data compression by the HLT is a vital part of data taking especially during the heavy-ion runs in order to be able to store the data which implies that reliability of the whole cluster is an important matter. To guarantee a consistent state among all compute nodes of the HLT cluster we have automatized the operation as much as possible. For automatic deployment of the nodes we use Foreman with locally mirrored repositories and for configuration management of the nodes we use Puppet. Important parameters like temperatures, network traffic, CPU load etc. of the nodes are monitored with Zabbix. During periods without beam the HLT cluster is used for tests and as one of the WLCG Grid sites to compute offline jobs in order to maximize the usage of our cluster. To prevent interference with normal HLT operations we separate the virtual machines running the Grid jobs from the normal HLT operation via virtual networks (VLANs). In this paper we give an overview of the ALICE HLT operation in 2016.

  14. Automatic Multi-sensor Data Quality Checking and Event Detection for Environmental Sensing

    NASA Astrophysics Data System (ADS)

    LIU, Q.; Zhang, Y.; Zhao, Y.; Gao, D.; Gallaher, D. W.; Lv, Q.; Shang, L.

    2017-12-01

    With the advances in sensing technologies, large-scale environmental sensing infrastructures are pervasively deployed to continuously collect data for various research and application fields, such as air quality study and weather condition monitoring. In such infrastructures, many sensor nodes are distributed in a specific area and each individual sensor node is capable of measuring several parameters (e.g., humidity, temperature, and pressure), providing massive data for natural event detection and analysis. However, due to the dynamics of the ambient environment, sensor data can be contaminated by errors or noise. Thus, data quality is still a primary concern for scientists before drawing any reliable scientific conclusions. To help researchers identify potential data quality issues and detect meaningful natural events, this work proposes a novel algorithm to automatically identify and rank anomalous time windows from multiple sensor data streams. More specifically, (1) the algorithm adaptively learns the characteristics of normal evolving time series and (2) models the spatial-temporal relationship among multiple sensor nodes to infer the anomaly likelihood of a time series window for a particular parameter in a sensor node. Case studies using different data sets are presented and the experimental results demonstrate that the proposed algorithm can effectively identify anomalous time windows, which may resulted from data quality issues and natural events.

  15. Distrubtion Tolerant Network Technology Flight Validation Report: DINET

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    2009-01-01

    In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions.

  16. Distribution Tolerant Network Technology Flight Validation Report: DINET

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    2009-01-01

    In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions.

  17. An updated computational model of rabbit sinoatrial action potential to investigate the mechanisms of heart rate modulation

    PubMed Central

    Severi, Stefano; Fantini, Matteo; Charawi, Lara A; DiFrancesco, Dario

    2012-01-01

    The cellular basis of cardiac pacemaking is still debated. Reliable computational models of the sinoatrial node (SAN) action potential (AP) may help gain a deeper understanding of the phenomenon. Recently, novel models incorporating detailed Ca2+-handling dynamics have been proposed, but they fail to reproduce a number of experimental data, and more specifically effects of ‘funny’ (If) current modifications. We therefore developed a SAN AP model, based on available experimental data, in an attempt to reproduce physiological and pharmacological heart rate modulation. Cell compartmentalization and intracellular Ca2+-handling mechanisms were formulated as in the Maltsev–Lakatta model, focusing on Ca2+-cycling processes. Membrane current equations were revised on the basis of published experimental data. Modifications of the formulation of currents/pumps/exchangers to simulate If blockers, autonomic modulators and Ca2+-dependent mechanisms (ivabradine, caesium, acetylcholine, isoprenaline, BAPTA) were derived from experimental data. The model generates AP waveforms typical of rabbit SAN cells, whose parameters fall within the experimental ranges: 352 ms cycle length, 80 mV AP amplitude, −58 mV maximum diastolic potential (MDP), 108 ms APD50, and 7.1 V s−1 maximum upstroke velocity. Rate modulation by If-blocking drugs agrees with experimental findings: 20% and 22% caesium-induced (5 mm) and ivabradine-induced (3 μm) rate reductions, respectively, due to changes in diastolic depolarization (DD) slope, with no changes in either MDP or take-off potential (TOP). The model consistently reproduces the effects of autonomic modulation: 20% rate decrease with 10 nm acetylcholine and 28% increase with 1 μm isoprenaline, again entirely due to increase in the DD slope, with no changes in either MDP or TOP. Model testing of BAPTA effects showed slowing of rate, −26%, without cessation of beating. Our up-to-date model describes satisfactorily experimental data concerning autonomic stimulation, funny-channel blockade and inhibition of the Ca2+-related system by BAPTA, making it a useful tool for further investigation. Simulation results suggest that a detailed description of the intracellular Ca2+ fluxes is fully compatible with the observation that If is a major component of pacemaking and rate modulation. PMID:22711956

  18. Man-Made Object Extraction from Remote Sensing Imagery by Graph-Based Manifold Ranking

    NASA Astrophysics Data System (ADS)

    He, Y.; Wang, X.; Hu, X. Y.; Liu, S. H.

    2018-04-01

    The automatic extraction of man-made objects from remote sensing imagery is useful in many applications. This paper proposes an algorithm for extracting man-made objects automatically by integrating a graph model with the manifold ranking algorithm. Initially, we estimate a priori value of the man-made objects with the use of symmetric and contrast features. The graph model is established to represent the spatial relationships among pre-segmented superpixels, which are used as the graph nodes. Multiple characteristics, namely colour, texture and main direction, are used to compute the weights of the adjacent nodes. Manifold ranking effectively explores the relationships among all the nodes in the feature space as well as initial query assignment; thus, it is applied to generate a ranking map, which indicates the scores of the man-made objects. The man-made objects are then segmented on the basis of the ranking map. Two typical segmentation algorithms are compared with the proposed algorithm. Experimental results show that the proposed algorithm can extract man-made objects with high recognition rate and low omission rate.

  19. Fault-Tolerant Local-Area Network

    NASA Technical Reports Server (NTRS)

    Morales, Sergio; Friedman, Gary L.

    1988-01-01

    Local-area network (LAN) for computers prevents single-point failure from interrupting communication between nodes of network. Includes two complete cables, LAN 1 and LAN 2. Microprocessor-based slave switches link cables to network-node devices as work stations, print servers, and file servers. Slave switches respond to commands from master switch, connecting nodes to two cable networks or disconnecting them so they are completely isolated. System monitor and control computer (SMC) acts as gateway, allowing nodes on either cable to communicate with each other and ensuring that LAN 1 and LAN 2 are fully used when functioning properly. Network monitors and controls itself, automatically routes traffic for efficient use of resources, and isolates and corrects its own faults, with potential dramatic reduction in time out of service.

  20. Intracardiac Origin of Heart Rate Variability, Pacemaker Funny Current and their Possible Association with Critical Illness

    PubMed Central

    Papaioannou, Vasilios E; Verkerk, Arie O; Amin, Ahmed S; de Bakker, Jaques MT

    2013-01-01

    Heart rate variability (HRV) is an indirect estimator of autonomic modulation of heart rate and is considered a risk marker in critical illness, particularly in heart failure and severe sepsis. A reduced HRV has been found in critically ill patients and has been associated with neuro-autonomic uncoupling or decreased baroreflex sensitivity. However, results from human and animal experimental studies indicate that intracardiac mechanisms might also be responsible for interbeat fluctuations. These studies have demonstrated that different membrane channel proteins and especially the so-called ‘funny’ current (If), an hyperpolarization-activated, inward current that drives diastolic depolarization resulting in spontaneous activity in cardiac pacemaker cells, are altered during critical illness. Furthermore, membrane channels kinetics seem to have significant impact upon HRV, whose early decrease might reflect a cellular metabolic stress. In this review article we present research findings regarding intracardiac origin of HRV, at the cellular level and in both isolated sinoatrial node and whole ex vivo heart preparations. In addition, we will review results from various experimental studies that support the interrelation between If and HRV during endotoxemia. We suggest that reduced HRV during sepsis could also be associated with altered pacemaker cell membrane properties, due to ionic current remodeling. PMID:22920474

  1. Characterization of QT and RR interval series during acute myocardial ischemia by means of recurrence quantification analysis.

    PubMed

    Peng, Yi; Sun, Zhongwei

    2011-01-01

    This study is aimed to investigate the nonlinear dynamic properties of the fluctuations in ventricular repolarization, heart rate and their correlation during acute myocardial ischemia. From 13 ECG records in long-term ST-T database, 170 ischemic episodes were selected with the duration of 34 s to 23 min 18 s, and two 5-min episodes immediately before and after each ischemic episode as non-ischemic ones for comparison. QT interval (QTI) and RR interval (RRI) were extracted and the ectopic beats were removed. Recurrence quantification analysis (RQA) was performed on QTI and RRI series, respectively, and cross recurrence quantification analysis (CRQA) on paired normalized QTI and RRI series. Wilcoxon signed-rank test was used for statistical analysis. Results revealed that the RQA indexes for QTI and HRI series had the same changing trend during ischemia with more significantly changed indexes in QTI series. In the CRQA, indexes related to the vertical and horizontal structures in recurrence plot significantly increased, representing decreased dependency of QTI on RRI. Both QTI and RRI series showed reduced complexity during ischemia with higher sensitivity in ventricular repolarization. The weakened coupling between QTI and RRI suggests the decreased influence of sinoatrial node on QTI modulation during ischemia.

  2. The BEAUTIFUL study: randomized trial of ivabradine in patients with stable coronary artery disease and left ventricular systolic dysfunction - baseline characteristics of the study population.

    PubMed

    Ferrari, R; Ford, I; Fox, K; Steg, P G; Tendera, M

    2008-01-01

    Ivabradine is a selective heart rate-lowering agent that acts by inhibiting the pacemaker current If in sinoatrial node cells. Patients with coronary artery disease and left ventricular dysfunction are at high risk of death and cardiac events, and the BEAUTIFUL study was designed to evaluate the effects of ivabradine on outcome in such patients receiving optimal medical therapy. This report describes the study population at baseline. BEAUTIFUL is an international, multicentre, randomized, double-blind trial to compare ivabradine with placebo in reducing mortality and cardiovascular events in patients with stable coronary artery disease and left ventricular systolic dysfunction (ejection fraction <40%). A total of 10,917 patients were randomized. At baseline, their mean age was 65 years, 83% were male, 98% Caucasian, 88% had previous myocardial infarction, 37% had diabetes, and 40% had metabolic syndrome. Mean ejection fraction was 32% and resting heart rate was 71.6 bpm. Concomitant medications included beta-blockers (87%), renin-angiotensin system agents (89%), antithrombotic agents (94%), and lipid-lowering agents (76%). Main results from BEAUTIFUL are expected in 2008, and should show whether ivabradine, on top of optimal medical treatment, reduces mortality and cardiovascular events in this population of high-risk patients. (c) 2007 S. Karger AG, Basel

  3. Functional Characterization of Cnidarian HCN Channels Points to an Early Evolution of Ih.

    PubMed

    Baker, Emma C; Layden, Michael J; van Rossum, Damian B; Kamel, Bishoy; Medina, Monica; Simpson, Eboni; Jegla, Timothy

    2015-01-01

    HCN channels play a unique role in bilaterian physiology as the only hyperpolarization-gated cation channels. Their voltage-gating is regulated by cyclic nucleotides and phosphatidylinositol 4,5-bisphosphate (PIP2). Activation of HCN channels provides the depolarizing current in response to hyperpolarization that is critical for intrinsic rhythmicity in neurons and the sinoatrial node. Additionally, HCN channels regulate dendritic excitability in a wide variety of neurons. Little is known about the early functional evolution of HCN channels, but the presence of HCN sequences in basal metazoan phyla and choanoflagellates, a protozoan sister group to the metazoans, indicate that the gene family predates metazoan emergence. We functionally characterized two HCN channel orthologs from Nematostella vectensis (Cnidaria, Anthozoa) to determine which properties of HCN channels were established prior to the emergence of bilaterians. We find Nematostella HCN channels share all the major functional features of bilaterian HCNs, including reversed voltage-dependence, activation by cAMP and PIP2, and block by extracellular Cs+. Thus bilaterian-like HCN channels were already present in the common parahoxozoan ancestor of bilaterians and cnidarians, at a time when the functional diversity of voltage-gated K+ channels was rapidly expanding. NvHCN1 and NvHCN2 are expressed broadly in planulae and in both the endoderm and ectoderm of juvenile polyps.

  4. Method and apparatus for eliminating unsuccessful tries in a search tree

    NASA Technical Reports Server (NTRS)

    Peterson, John C. (Inventor); Chow, Edward (Inventor); Madan, Herb S. (Inventor)

    1991-01-01

    A circuit switching system in an M-ary, n-cube connected network completes a best-first path from an originating node to a destination node by latching valid legs of the path as the path is being sought out. Each network node is provided with a routing hyperswitch sub-network, (HSN) connected between that node and bidirectional high capacity communication channels of the n-cube network. The sub-networks are all controlled by routing algorithms which respond to message identification headings (headers) on messages to be routed along one or more routing legs. The header includes information embedded therein which is interpreted by each sub-network to route and historically update the header. A logic circuit, available at every node, implements the algorithm and automatically forwards or back-tracks the header in the network legs of various paths until a completed path is latched.

  5. A Novel Four-Node Quadrilateral Smoothing Element for Stress Enhancement and Error Estimation

    NASA Technical Reports Server (NTRS)

    Tessler, A.; Riggs, H. R.; Dambach, M.

    1998-01-01

    A four-node, quadrilateral smoothing element is developed based upon a penalized-discrete-least-squares variational formulation. The smoothing methodology recovers C1-continuous stresses, thus enabling effective a posteriori error estimation and automatic adaptive mesh refinement. The element formulation is originated with a five-node macro-element configuration consisting of four triangular anisoparametric smoothing elements in a cross-diagonal pattern. This element pattern enables a convenient closed-form solution for the degrees of freedom of the interior node, resulting from enforcing explicitly a set of natural edge-wise penalty constraints. The degree-of-freedom reduction scheme leads to a very efficient formulation of a four-node quadrilateral smoothing element without any compromise in robustness and accuracy of the smoothing analysis. The application examples include stress recovery and error estimation in adaptive mesh refinement solutions for an elasticity problem and an aerospace structural component.

  6. Design of autonomous sensor nodes for remote soil monitoring in tropical banana plantation

    NASA Astrophysics Data System (ADS)

    Tiausas, Francis Jerome G.; Co, Jerelyn; Macalinao, Marc Joseph M.; Guico, Maria Leonora; Monje, Jose Claro; Oppus, Carlos

    2017-09-01

    Determining the effect of Fusarium oxysporum f. sp. cubense Tropical Race 4 on various soil parameters is essential in modeling and predicting its occurrence in banana plantations. One way to fulfill this is through a sensor network that will continuously and automatically monitor environmental conditions at suspect locations for an extended period of time. A wireless sensor network was developed specifically for this purpose. This sensor network is capable of measuring soil acidity, moisture, temperature, and conductivity. The designed prototype made use of off-the-shelf Parrot Flower Power soil sensor, pH sensor, Bluno Beetle, battery, and 3D-printed materials, catering specifically to the conditions of tropical banana plantations with consideration for sensor node size, communication, and power. Sensor nodes were tested on both simulated tropical environments and on an actual banana plantation in San Jose, General Santos City, Philippines. Challenges were resolved through iterative design and development of prototypes. Several tests including temperature and weather resilience, and structural stress tests were done to validate the design. Findings showed that the WSN nodes developed for this purpose are resilient to high tropical temperatures for up to 12 hours of continuous exposure, are able to withstand compressive forces of up to 8880.6 N, and can reliably collect data automatically from the area 47.96% of the time at an hourly frequency under actual field conditions.

  7. VoIP attacks detection engine based on neural network

    NASA Astrophysics Data System (ADS)

    Safarik, Jakub; Slachta, Jiri

    2015-05-01

    The security is crucial for any system nowadays, especially communications. One of the most successful protocols in the field of communication over IP networks is Session Initiation Protocol. It is an open-source project used by different kinds of applications, both open-source and proprietary. High penetration and text-based principle made SIP number one target in IP telephony infrastructure, so security of SIP server is essential. To keep up with hackers and to detect potential malicious attacks, security administrator needs to monitor and evaluate SIP traffic in the network. But monitoring and following evaluation could easily overwhelm the security administrator in networks, typically in networks with a number of SIP servers, users and logically or geographically separated networks. The proposed solution lies in automatic attack detection systems. The article covers detection of VoIP attacks through a distributed network of nodes. Then the gathered data analyze aggregation server with artificial neural network. Artificial neural network means multilayer perceptron network trained with a set of collected attacks. Attack data could also be preprocessed and verified with a self-organizing map. The source data is detected by distributed network of detection nodes. Each node contains a honeypot application and traffic monitoring mechanism. Aggregation of data from each node creates an input for neural networks. The automatic classification on a centralized server with low false positive detection reduce the cost of attack detection resources. The detection system uses modular design for easy deployment in final infrastructure. The centralized server collects and process detected traffic. It also maintains all detection nodes.

  8. A grid layout algorithm for automatic drawing of biochemical networks.

    PubMed

    Li, Weijiang; Kurata, Hiroyuki

    2005-05-01

    Visualization is indispensable in the research of complex biochemical networks. Available graph layout algorithms are not adequate for satisfactorily drawing such networks. New methods are required to visualize automatically the topological architectures and facilitate the understanding of the functions of the networks. We propose a novel layout algorithm to draw complex biochemical networks. A network is modeled as a system of interacting nodes on squared grids. A discrete cost function between each node pair is designed based on the topological relation and the geometric positions of the two nodes. The layouts are produced by minimizing the total cost. We design a fast algorithm to minimize the discrete cost function, by which candidate layouts can be produced efficiently. A simulated annealing procedure is used to choose better candidates. Our algorithm demonstrates its ability to exhibit cluster structures clearly in relatively compact layout areas without any prior knowledge. We developed Windows software to implement the algorithm for CADLIVE. All materials can be freely downloaded from http://kurata21.bio.kyutech.ac.jp/grid/grid_layout.htm; http://www.cadlive.jp/ http://kurata21.bio.kyutech.ac.jp/grid/grid_layout.htm; http://www.cadlive.jp/

  9. Automatic FDG-PET-based tumor and metastatic lymph node segmentation in cervical cancer

    NASA Astrophysics Data System (ADS)

    Arbonès, Dídac R.; Jensen, Henrik G.; Loft, Annika; Munck af Rosenschöld, Per; Hansen, Anders Elias; Igel, Christian; Darkner, Sune

    2014-03-01

    Treatment of cervical cancer, one of the three most commonly diagnosed cancers worldwide, often relies on delineations of the tumour and metastases based on PET imaging using the contrast agent 18F-Fluorodeoxyglucose (FDG). We present a robust automatic algorithm for segmenting the gross tumour volume (GTV) and metastatic lymph nodes in such images. As the cervix is located next to the bladder and FDG is washed out through the urine, the PET-positive GTV and the bladder cannot be easily separated. Our processing pipeline starts with a histogram-based region of interest detection followed by level set segmentation. After that, morphological image operations combined with clustering, region growing, and nearest neighbour labelling allow to remove the bladder and to identify the tumour and metastatic lymph nodes. The proposed method was applied to 125 patients and no failure could be detected by visual inspection. We compared our segmentations with results from manual delineations of corresponding MR and CT images, showing that the detected GTV lays at least 97.5% within the MR/CT delineations. We conclude that the algorithm has a very high potential for substituting the tedious manual delineation of PET positive areas.

  10. An efficient grid layout algorithm for biological networks utilizing various biological attributes

    PubMed Central

    Kojima, Kaname; Nagasaki, Masao; Jeong, Euna; Kato, Mitsuru; Miyano, Satoru

    2007-01-01

    Background Clearly visualized biopathways provide a great help in understanding biological systems. However, manual drawing of large-scale biopathways is time consuming. We proposed a grid layout algorithm that can handle gene-regulatory networks and signal transduction pathways by considering edge-edge crossing, node-edge crossing, distance measure between nodes, and subcellular localization information from Gene Ontology. Consequently, the layout algorithm succeeded in drastically reducing these crossings in the apoptosis model. However, for larger-scale networks, we encountered three problems: (i) the initial layout is often very far from any local optimum because nodes are initially placed at random, (ii) from a biological viewpoint, human layouts still exceed automatic layouts in understanding because except subcellular localization, it does not fully utilize biological information of pathways, and (iii) it employs a local search strategy in which the neighborhood is obtained by moving one node at each step, and automatic layouts suggest that simultaneous movements of multiple nodes are necessary for better layouts, while such extension may face worsening the time complexity. Results We propose a new grid layout algorithm. To address problem (i), we devised a new force-directed algorithm whose output is suitable as the initial layout. For (ii), we considered that an appropriate alignment of nodes having the same biological attribute is one of the most important factors of the comprehension, and we defined a new score function that gives an advantage to such configurations. For solving problem (iii), we developed a search strategy that considers swapping nodes as well as moving a node, while keeping the order of the time complexity. Though a naïve implementation increases by one order, the time complexity, we solved this difficulty by devising a method that caches differences between scores of a layout and its possible updates. Conclusion Layouts of the new grid layout algorithm are compared with that of the previous algorithm and human layout in an endothelial cell model, three times as large as the apoptosis model. The total cost of the result from the new grid layout algorithm is similar to that of the human layout. In addition, its convergence time is drastically reduced (40% reduction). PMID:17338825

  11. An Analysis of an Automatic Coolant Bypass in the International Space Station Node 2 Internal Active Thermal Control System

    NASA Technical Reports Server (NTRS)

    Clanton, Stephen E.; Holt, James M.; Turner, Larry D. (Technical Monitor)

    2001-01-01

    A challenging part of International Space Station (ISS) thermal control design is the ability to incorporate design changes into an integrated system without negatively impacting performance. The challenge presents itself in that the typical ISS Internal Active Thermal Control System (IATCS) consists of an integrated hardware/software system that provides active coolant resources to a variety of users. Software algorithms control the IATCS to specific temperatures, flow rates, and pressure differentials in order to meet the user-defined requirements. What may seem to be small design changes imposed on the system may in fact result in system instability or the temporary inability to meet user requirements. The purpose of this paper is to provide a brief description of the solution process and analyses used to implement one such design change that required the incorporation of an automatic coolant bypass in the ISS Node 2 element.

  12. ZeroCal: Automatic MAC Protocol Calibration

    NASA Astrophysics Data System (ADS)

    Meier, Andreas; Woehrle, Matthias; Zimmerling, Marco; Thiele, Lothar

    Sensor network MAC protocols are typically configured for an intended deployment scenario once and for all at compile time. This approach, however, leads to suboptimal performance if the network conditions deviate from the expectations. We present ZeroCal, a distributed algorithm that allows nodes to dynamically adapt to variations in traffic volume. Using ZeroCal, each node autonomously configures its MAC protocol at runtime, thereby trying to reduce the maximum energy consumption among all nodes. While the algorithm is readily usable for any asynchronous low-power listening or low-power probing protocol, we validate and demonstrate the effectiveness of ZeroCal on X-MAC. Extensive testbed experiments and simulations indicate that ZeroCal quickly adapts to traffic variations. We further show that ZeroCal extends network lifetime by 50% compared to an optimal configuration with identical and static MAC parameters at all nodes.

  13. Automated Construction of Node Software Using Attributes in a Ubiquitous Sensor Network Environment

    PubMed Central

    Lee, Woojin; Kim, Juil; Kang, JangMook

    2010-01-01

    In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric—the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment. PMID:22163678

  14. Automated construction of node software using attributes in a ubiquitous sensor network environment.

    PubMed

    Lee, Woojin; Kim, Juil; Kang, JangMook

    2010-01-01

    In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric-the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment.

  15. a Method for the Seamlines Network Automatic Selection Based on Building Vector

    NASA Astrophysics Data System (ADS)

    Li, P.; Dong, Y.; Hu, Y.; Li, X.; Tan, P.

    2018-04-01

    In order to improve the efficiency of large scale orthophoto production of city, this paper presents a method for automatic selection of seamlines network in large scale orthophoto based on the buildings' vector. Firstly, a simple model of the building is built by combining building's vector, height and DEM, and the imaging area of the building on single DOM is obtained. Then, the initial Voronoi network of the measurement area is automatically generated based on the positions of the bottom of all images. Finally, the final seamlines network is obtained by optimizing all nodes and seamlines in the network automatically based on the imaging areas of the buildings. The experimental results show that the proposed method can not only get around the building seamlines network quickly, but also remain the Voronoi network' characteristics of projection distortion minimum theory, which can solve the problem of automatic selection of orthophoto seamlines network in image mosaicking effectively.

  16. Hierarchical Learning of Tree Classifiers for Large-Scale Plant Species Identification.

    PubMed

    Fan, Jianping; Zhou, Ning; Peng, Jinye; Gao, Ling

    2015-11-01

    In this paper, a hierarchical multi-task structural learning algorithm is developed to support large-scale plant species identification, where a visual tree is constructed for organizing large numbers of plant species in a coarse-to-fine fashion and determining the inter-related learning tasks automatically. For a given parent node on the visual tree, it contains a set of sibling coarse-grained categories of plant species or sibling fine-grained plant species, and a multi-task structural learning algorithm is developed to train their inter-related classifiers jointly for enhancing their discrimination power. The inter-level relationship constraint, e.g., a plant image must first be assigned to a parent node (high-level non-leaf node) correctly if it can further be assigned to the most relevant child node (low-level non-leaf node or leaf node) on the visual tree, is formally defined and leveraged to learn more discriminative tree classifiers over the visual tree. Our experimental results have demonstrated the effectiveness of our hierarchical multi-task structural learning algorithm on training more discriminative tree classifiers for large-scale plant species identification.

  17. Lymph node segmentation by dynamic programming and active contours.

    PubMed

    Tan, Yongqiang; Lu, Lin; Bonde, Apurva; Wang, Deling; Qi, Jing; Schwartz, Lawrence H; Zhao, Binsheng

    2018-03-03

    Enlarged lymph nodes are indicators of cancer staging, and the change in their size is a reflection of treatment response. Automatic lymph node segmentation is challenging, as the boundary can be unclear and the surrounding structures complex. This work communicates a new three-dimensional algorithm for the segmentation of enlarged lymph nodes. The algorithm requires a user to draw a region of interest (ROI) enclosing the lymph node. Rays are cast from the center of the ROI, and the intersections of the rays and the boundary of the lymph node form a triangle mesh. The intersection points are determined by dynamic programming. The triangle mesh initializes an active contour which evolves to low-energy boundary. Three radiologists independently delineated the contours of 54 lesions from 48 patients. Dice coefficient was used to evaluate the algorithm's performance. The mean Dice coefficient between computer and the majority vote results was 83.2%. The mean Dice coefficients between the three radiologists' manual segmentations were 84.6%, 86.2%, and 88.3%. The performance of this segmentation algorithm suggests its potential clinical value for quantifying enlarged lymph nodes. © 2018 American Association of Physicists in Medicine.

  18. Automatic Earth observation data service based on reusable geo-processing workflow

    NASA Astrophysics Data System (ADS)

    Chen, Nengcheng; Di, Liping; Gong, Jianya; Yu, Genong; Min, Min

    2008-12-01

    A common Sensor Web data service framework for Geo-Processing Workflow (GPW) is presented as part of the NASA Sensor Web project. This framework consists of a data service node, a data processing node, a data presentation node, a Catalogue Service node and BPEL engine. An abstract model designer is used to design the top level GPW model, model instantiation service is used to generate the concrete BPEL, and the BPEL execution engine is adopted. The framework is used to generate several kinds of data: raw data from live sensors, coverage or feature data, geospatial products, or sensor maps. A scenario for an EO-1 Sensor Web data service for fire classification is used to test the feasibility of the proposed framework. The execution time and influences of the service framework are evaluated. The experiments show that this framework can improve the quality of services for sensor data retrieval and processing.

  19. Support-vector-machine tree-based domain knowledge learning toward automated sports video classification

    NASA Astrophysics Data System (ADS)

    Xiao, Guoqiang; Jiang, Yang; Song, Gang; Jiang, Jianmin

    2010-12-01

    We propose a support-vector-machine (SVM) tree to hierarchically learn from domain knowledge represented by low-level features toward automatic classification of sports videos. The proposed SVM tree adopts a binary tree structure to exploit the nature of SVM's binary classification, where each internal node is a single SVM learning unit, and each external node represents the classified output type. Such a SVM tree presents a number of advantages, which include: 1. low computing cost; 2. integrated learning and classification while preserving individual SVM's learning strength; and 3. flexibility in both structure and learning modules, where different numbers of nodes and features can be added to address specific learning requirements, and various learning models can be added as individual nodes, such as neural networks, AdaBoost, hidden Markov models, dynamic Bayesian networks, etc. Experiments support that the proposed SVM tree achieves good performances in sports video classifications.

  20. Internet Protocol-Hybrid Opto-Electronic Ring Network (IP-HORNET): A Novel Internet Protocol-Over-Wavelength Division Multiplexing (IP-Over-WDM) Multiple-Access Metropolitan Area Network (MAN)

    DTIC Science & Technology

    2003-04-01

    usage times. End users may range from today’s typical users, such as home and business users, to futuristic users such as automobiles , appliances, hand...has the ability to drop a reprogrammable quantity of wavelengths into the node. The second technological requirement is a protocol that automatically...goal of the R-OADM is to have the ability to drop a reprogrammable number of wavelengths. If it is determined that at peak usage the node must receive M

  1. Improving Interpretation of Cardiac Phenotypes and Enhancing Discovery With Expanded Knowledge in the Gene Ontology

    PubMed Central

    Roncaglia, Paola; Howe, Douglas G.; Laulederkind, Stanley J.F.; Khodiyar, Varsha K.; Berardini, Tanya Z.; Tweedie, Susan; Foulger, Rebecca E.; Osumi-Sutherland, David; Campbell, Nancy H.; Huntley, Rachael P.; Talmud, Philippa J.; Blake, Judith A.; Breckenridge, Ross; Riley, Paul R.; Lambiase, Pier D.; Elliott, Perry M.; Clapp, Lucie; Tinker, Andrew; Hill, David P.

    2018-01-01

    Background: A systems biology approach to cardiac physiology requires a comprehensive representation of how coordinated processes operate in the heart, as well as the ability to interpret relevant transcriptomic and proteomic experiments. The Gene Ontology (GO) Consortium provides structured, controlled vocabularies of biological terms that can be used to summarize and analyze functional knowledge for gene products. Methods and Results: In this study, we created a computational resource to facilitate genetic studies of cardiac physiology by integrating literature curation with attention to an improved and expanded ontological representation of heart processes in the Gene Ontology. As a result, the Gene Ontology now contains terms that comprehensively describe the roles of proteins in cardiac muscle cell action potential, electrical coupling, and the transmission of the electrical impulse from the sinoatrial node to the ventricles. Evaluating the effectiveness of this approach to inform data analysis demonstrated that Gene Ontology annotations, analyzed within an expanded ontological context of heart processes, can help to identify candidate genes associated with arrhythmic disease risk loci. Conclusions: We determined that a combination of curation and ontology development for heart-specific genes and processes supports the identification and downstream analysis of genes responsible for the spread of the cardiac action potential through the heart. Annotating these genes and processes in a structured format facilitates data analysis and supports effective retrieval of gene-centric information about cardiac defects. PMID:29440116

  2. Common and Rare Coding Genetic Variation Underlying the Electrocardiographic PR Interval.

    PubMed

    Lin, Honghuang; van Setten, Jessica; Smith, Albert V; Bihlmeyer, Nathan A; Warren, Helen R; Brody, Jennifer A; Radmanesh, Farid; Hall, Leanne; Grarup, Niels; Müller-Nurasyid, Martina; Boutin, Thibaud; Verweij, Niek; Lin, Henry J; Li-Gao, Ruifang; van den Berg, Marten E; Marten, Jonathan; Weiss, Stefan; Prins, Bram P; Haessler, Jeffrey; Lyytikäinen, Leo-Pekka; Mei, Hao; Harris, Tamara B; Launer, Lenore J; Li, Man; Alonso, Alvaro; Soliman, Elsayed Z; Connell, John M; Huang, Paul L; Weng, Lu-Chen; Jameson, Heather S; Hucker, William; Hanley, Alan; Tucker, Nathan R; Chen, Yii-Der Ida; Bis, Joshua C; Rice, Kenneth M; Sitlani, Colleen M; Kors, Jan A; Xie, Zhijun; Wen, Chengping; Magnani, Jared W; Nelson, Christopher P; Kanters, Jørgen K; Sinner, Moritz F; Strauch, Konstantin; Peters, Annette; Waldenberger, Melanie; Meitinger, Thomas; Bork-Jensen, Jette; Pedersen, Oluf; Linneberg, Allan; Rudan, Igor; de Boer, Rudolf A; van der Meer, Peter; Yao, Jie; Guo, Xiuqing; Taylor, Kent D; Sotoodehnia, Nona; Rotter, Jerome I; Mook-Kanamori, Dennis O; Trompet, Stella; Rivadeneira, Fernando; Uitterlinden, André; Eijgelsheim, Mark; Padmanabhan, Sandosh; Smith, Blair H; Völzke, Henry; Felix, Stephan B; Homuth, Georg; Völker, Uwe; Mangino, Massimo; Spector, Timothy D; Bots, Michiel L; Perez, Marco; Kähönen, Mika; Raitakari, Olli T; Gudnason, Vilmundur; Arking, Dan E; Munroe, Patricia B; Psaty, Bruce M; van Duijn, Cornelia M; Benjamin, Emelia J; Rosand, Jonathan; Samani, Nilesh J; Hansen, Torben; Kääb, Stefan; Polasek, Ozren; van der Harst, Pim; Heckbert, Susan R; Jukema, J Wouter; Stricker, Bruno H; Hayward, Caroline; Dörr, Marcus; Jamshidi, Yalda; Asselbergs, Folkert W; Kooperberg, Charles; Lehtimäki, Terho; Wilson, James G; Ellinor, Patrick T; Lubitz, Steven A; Isaacs, Aaron

    2018-05-01

    Electrical conduction from the cardiac sinoatrial node to the ventricles is critical for normal heart function. Genome-wide association studies have identified more than a dozen common genetic loci that are associated with PR interval. However, it is unclear whether rare and low-frequency variants also contribute to PR interval heritability. We performed large-scale meta-analyses of the PR interval that included 83 367 participants of European ancestry and 9436 of African ancestry. We examined both common and rare variants associated with the PR interval. We identified 31 genetic loci that were significantly associated with PR interval after Bonferroni correction ( P <1.2×10 -6 ), including 11 novel loci that have not been reported previously. Many of these loci are involved in heart morphogenesis. In gene-based analysis, we found that multiple rare variants at MYH6 ( P =5.9×10 -11 ) and SCN5A ( P =1.1×10 -7 ) were associated with PR interval. SCN5A locus also was implicated in the common variant analysis, whereas MYH6 was a novel locus. We identified common variants at 11 novel loci and rare variants within 2 gene regions that were significantly associated with PR interval. Our findings provide novel insights to the current understanding of atrioventricular conduction, which is critical for cardiac activity and an important determinant of health. © 2018 American Heart Association, Inc.

  3. Improving Interpretation of Cardiac Phenotypes and Enhancing Discovery With Expanded Knowledge in the Gene Ontology.

    PubMed

    Lovering, Ruth C; Roncaglia, Paola; Howe, Douglas G; Laulederkind, Stanley J F; Khodiyar, Varsha K; Berardini, Tanya Z; Tweedie, Susan; Foulger, Rebecca E; Osumi-Sutherland, David; Campbell, Nancy H; Huntley, Rachael P; Talmud, Philippa J; Blake, Judith A; Breckenridge, Ross; Riley, Paul R; Lambiase, Pier D; Elliott, Perry M; Clapp, Lucie; Tinker, Andrew; Hill, David P

    2018-02-01

    A systems biology approach to cardiac physiology requires a comprehensive representation of how coordinated processes operate in the heart, as well as the ability to interpret relevant transcriptomic and proteomic experiments. The Gene Ontology (GO) Consortium provides structured, controlled vocabularies of biological terms that can be used to summarize and analyze functional knowledge for gene products. In this study, we created a computational resource to facilitate genetic studies of cardiac physiology by integrating literature curation with attention to an improved and expanded ontological representation of heart processes in the Gene Ontology. As a result, the Gene Ontology now contains terms that comprehensively describe the roles of proteins in cardiac muscle cell action potential, electrical coupling, and the transmission of the electrical impulse from the sinoatrial node to the ventricles. Evaluating the effectiveness of this approach to inform data analysis demonstrated that Gene Ontology annotations, analyzed within an expanded ontological context of heart processes, can help to identify candidate genes associated with arrhythmic disease risk loci. We determined that a combination of curation and ontology development for heart-specific genes and processes supports the identification and downstream analysis of genes responsible for the spread of the cardiac action potential through the heart. Annotating these genes and processes in a structured format facilitates data analysis and supports effective retrieval of gene-centric information about cardiac defects. © 2018 The Authors.

  4. Automatic panoramic thermal integrated sensor

    NASA Astrophysics Data System (ADS)

    Gutin, Mikhail A.; Tsui, Eddy K.; Gutin, Olga N.

    2005-05-01

    Historically, the US Army has recognized the advantages of panoramic imagers with high image resolution: increased area coverage with fewer cameras, instantaneous full horizon detection, location and tracking of multiple targets simultaneously, extended range, and others. The novel ViperViewTM high-resolution panoramic thermal imager is the heart of the Automatic Panoramic Thermal Integrated Sensor (APTIS), being jointly developed by Applied Science Innovative, Inc. (ASI) and the Armament Research, Development and Engineering Center (ARDEC) in support of the Future Combat Systems (FCS) and the Intelligent Munitions Systems (IMS). The APTIS is anticipated to operate as an intelligent node in a wireless network of multifunctional nodes that work together to improve situational awareness (SA) in many defense and offensive operations, as well as serve as a sensor node in tactical Intelligence Surveillance Reconnaissance (ISR). The ViperView is as an aberration-corrected omnidirectional imager with small optics designed to match the resolution of a 640x480 pixels IR camera with improved image quality for longer range target detection, classification, and tracking. The same approach is applicable to panoramic cameras working in the visible spectral range. Other components of the ATPIS sensor suite include ancillary sensors, advanced power management, and wakeup capability. This paper describes the development status of the APTIS system.

  5. RGS6, but not RGS4, is the dominant regulator of G protein signaling (RGS) modulator of the parasympathetic regulation of mouse heart rate.

    PubMed

    Wydeven, Nicole; Posokhova, Ekaterina; Xia, Zhilian; Martemyanov, Kirill A; Wickman, Kevin

    2014-01-24

    Parasympathetic activity decreases heart rate (HR) by inhibiting pacemaker cells in the sinoatrial node (SAN). Dysregulation of parasympathetic influence has been linked to sinus node dysfunction and arrhythmia. RGS (regulator of G protein signaling) proteins are negative modulators of the parasympathetic regulation of HR and the prototypical M2 muscarinic receptor (M2R)-dependent signaling pathway in the SAN that involves the muscarinic-gated atrial K(+) channel IKACh. Both RGS4 and RGS6-Gβ5 have been implicated in these processes. Here, we used Rgs4(-/-), Rgs6(-/-), and Rgs4(-/-):Rgs6(-/-) mice to compare the relative influence of RGS4 and RGS6 on parasympathetic regulation of HR and M2R-IKACh-dependent signaling in the SAN. In retrogradely perfused hearts, ablation of RGS6, but not RGS4, correlated with decreased resting HR, increased heart rate variability, and enhanced sensitivity to the negative chronotropic effects of the muscarinic agonist carbachol. Similarly, loss of RGS6, but not RGS4, correlated with enhanced sensitivity of the M2R-IKACh signaling pathway in SAN cells to carbachol and a significant slowing of M2R-IKACh deactivation rate. Surprisingly, concurrent genetic ablation of RGS4 partially rescued some deficits observed in Rgs6(-/-) mice. These findings, together with those from an acute pharmacologic approach in SAN cells from Rgs6(-/-) and Gβ5(-/-) mice, suggest that the partial rescue of phenotypes in Rgs4(-/-):Rgs6(-/-) mice is attributable to another R7 RGS protein whose influence on M2R-IKACh signaling is masked by RGS4. Thus, RGS6-Gβ5, but not RGS4, is the primary RGS modulator of parasympathetic HR regulation and SAN M2R-IKACh signaling in mice.

  6. Localization accuracy from automatic and semi-automatic rigid registration of locally-advanced lung cancer targets during image-guided radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Scott P.; Weiss, Elisabeth; Hugo, Geoffrey D.

    2012-01-15

    Purpose: To evaluate localization accuracy resulting from rigid registration of locally-advanced lung cancer targets using fully automatic and semi-automatic protocols for image-guided radiation therapy. Methods: Seventeen lung cancer patients, fourteen also presenting with involved lymph nodes, received computed tomography (CT) scans once per week throughout treatment under active breathing control. A physician contoured both lung and lymph node targets for all weekly scans. Various automatic and semi-automatic rigid registration techniques were then performed for both individual and simultaneous alignments of the primary gross tumor volume (GTV{sub P}) and involved lymph nodes (GTV{sub LN}) to simulate the localization process in image-guidedmore » radiation therapy. Techniques included ''standard'' (direct registration of weekly images to a planning CT), ''seeded'' (manual prealignment of targets to guide standard registration), ''transitive-based'' (alignment of pretreatment and planning CTs through one or more intermediate images), and ''rereferenced'' (designation of a new reference image for registration). Localization error (LE) was assessed as the residual centroid and border distances between targets from planning and weekly CTs after registration. Results: Initial bony alignment resulted in centroid LE of 7.3 {+-} 5.4 mm and 5.4 {+-} 3.4 mm for the GTV{sub P} and GTV{sub LN}, respectively. Compared to bony alignment, transitive-based and seeded registrations significantly reduced GTV{sub P} centroid LE to 4.7 {+-} 3.7 mm (p = 0.011) and 4.3 {+-} 2.5 mm (p < 1 x 10{sup -3}), respectively, but the smallest GTV{sub P} LE of 2.4 {+-} 2.1 mm was provided by rereferenced registration (p < 1 x 10{sup -6}). Standard registration significantly reduced GTV{sub LN} centroid LE to 3.2 {+-} 2.5 mm (p < 1 x 10{sup -3}) compared to bony alignment, with little additional gain offered by the other registration techniques. For simultaneous target alignment, centroid LE as low as 3.9 {+-} 2.7 mm and 3.8 {+-} 2.3 mm were achieved for the GTV{sub P} and GTV{sub LN}, respectively, using rereferenced registration. Conclusions: Target shape, volume, and configuration changes during radiation therapy limited the accuracy of standard rigid registration for image-guided localization in locally-advanced lung cancer. Significant error reductions were possible using other rigid registration techniques, with LE approaching the lower limit imposed by interfraction target variability throughout treatment.« less

  7. Automatic discovery of the communication network topology for building a supercomputer model

    NASA Astrophysics Data System (ADS)

    Sobolev, Sergey; Stefanov, Konstantin; Voevodin, Vadim

    2016-10-01

    The Research Computing Center of Lomonosov Moscow State University is developing the Octotron software suite for automatic monitoring and mitigation of emergency situations in supercomputers so as to maximize hardware reliability. The suite is based on a software model of the supercomputer. The model uses a graph to describe the computing system components and their interconnections. One of the most complex components of a supercomputer that needs to be included in the model is its communication network. This work describes the proposed approach for automatically discovering the Ethernet communication network topology in a supercomputer and its description in terms of the Octotron model. This suite automatically detects computing nodes and switches, collects information about them and identifies their interconnections. The application of this approach is demonstrated on the "Lomonosov" and "Lomonosov-2" supercomputers.

  8. Turbine Engine Component Analysis: Cantilevered Composite Flat Plate Analysis

    DTIC Science & Technology

    1989-11-01

    4/5 element which translates into the ADIN. shell element (Type 7) with thickness correction. PATADI automatically generates midsurface normal vectors...for each node referenced by a shell element. Using thickness correction, the element thickness will be oriented along the midsurface direction. If no

  9. Proposals for the implementation of the variants of automatic control of the telescope AZT-2

    NASA Astrophysics Data System (ADS)

    Shavlovskyi, V. I.; Puha, S. P.; Vidmachenko, A. P.; Volovyk, D. V.; Puha, G. P.; Obolonskyi, V. O.; Kratko, O. O.; Stefurak, M. V.

    2018-05-01

    Based on the experience of astronomical observations, structural features and results of the review of the technical state of the mechanism of the telescope AZT-2 in the Main Astronomical Observatory of NAS of Ukraine, in 2012 it was decided to carry out works on its modernization. To this end, it was suggested that the telescope control system should consist of angle sensors on the time axis "alpha" and the axis "delta", personal computer (PC), corresponding software, power control unit, and rotation system of telescope. The angle sensor should be absolute, with a resolution of better than 10 angular minutes. The PC should perform the functions of data processing from the angle sensor, and control the power node. The developed software allows the operator to direct the telescope in an automatic mode, and to set the necessary parameters of the system. With using of PC, the power control node will directly control the engine of the rotation system.

  10. Towards organizing health knowledge on community-based health services.

    PubMed

    Akbari, Mohammad; Hu, Xia; Nie, Liqiang; Chua, Tat-Seng

    2016-12-01

    Online community-based health services accumulate a huge amount of unstructured health question answering (QA) records at a continuously increasing pace. The ability to organize these health QA records has been found to be effective for data access. The existing approaches for organizing information are often not applicable to health domain due to its domain nature as characterized by complex relation among entities, large vocabulary gap, and heterogeneity of users. To tackle these challenges, we propose a top-down organization scheme, which can automatically assign the unstructured health-related records into a hierarchy with prior domain knowledge. Besides automatic hierarchy prototype generation, it also enables each data instance to be associated with multiple leaf nodes and profiles each node with terminologies. Based on this scheme, we design a hierarchy-based health information retrieval system. Experiments on a real-world dataset demonstrate the effectiveness of our scheme in organizing health QA into a topic hierarchy and retrieving health QA records from the topic hierarchy.

  11. Fast modal extraction in NASTRAN via the FEER computer program. [based on automatic matrix reduction method for lower modes of structures with many degrees of freedom

    NASA Technical Reports Server (NTRS)

    Newman, M. B.; Pipano, A.

    1973-01-01

    A new eigensolution routine, FEER (Fast Eigensolution Extraction Routine), used in conjunction with NASTRAN at Israel Aircraft Industries is described. The FEER program is based on an automatic matrix reduction scheme whereby the lower modes of structures with many degrees of freedom can be accurately extracted from a tridiagonal eigenvalue problem whose size is of the same order of magnitude as the number of required modes. The process is effected without arbitrary lumping of masses at selected node points or selection of nodes to be retained in the analysis set. The results of computational efficiency studies are presented, showing major arithmetic operation counts and actual computer run times of FEER as compared to other methods of eigenvalue extraction, including those available in the NASTRAN READ module. It is concluded that the tridiagonal reduction method used in FEER would serve as a valuable addition to NASTRAN for highly increased efficiency in obtaining structural vibration modes.

  12. Postural tachycardia syndrome and inappropriate sinus tachycardia: role of autonomic modulation and sinus node automaticity.

    PubMed

    Nwazue, Victor C; Paranjape, Sachin Y; Black, Bonnie K; Biaggioni, Italo; Diedrich, André; Dupont, William D; Robertson, David; Raj, Satish R

    2014-04-10

    Inappropriate sinus tachycardia (IST) and postural tachycardia syndrome (POTS) are 2 disorders characterized by sinus tachycardia. It is debated whether the pathophysiology of IST and POTS results from abnormal autonomic regulation or abnormal sinus node function. We hypothesized that intrinsic heart rate (IHR) after autonomic blockade would be increased in patients with IST but not POTS. We enrolled 48 POTS patients, 8 IST patients, and 17 healthy control (HC) subjects. Intravenous propranolol and atropine were given to block the sympathetic and parasympathetic limbs of the autonomic nervous system in order to determine the IHR. Patients with IST have a higher sympathetic contribution to heart rate when compared with POTS patients (31±13 bpm versus 12±7 bpm, P<0.001) and HC (8±4 bpm; P<0.001) and a trend to less parasympathetic contribution than POTS and HC (IST: 31±11 bpm versus POTS: 46±11 bpm versus HC: 48±11 bpm, ANOVA P=0.108). IHR was not significantly different between IST and either POTS or HC (IST: 111±11 bpm versus POTS: 108±11 bpm versus HC: 106±12 bpm, ANOVA P=0.237). IST patients have more sympathetic tone when compared with either POTS or HC, but IST patients do not have abnormal sinus node automaticity. These data suggest that the treatment of IST and POTS should focus on sympatholysis, reserving sinus node modification for patients with continued debilitating symptoms after beta-blockade and possibly ivabradine. http://clinicaltrials.gov/. Unique identifier: NCT00262470.

  13. Modeling and Simulation with INS.

    ERIC Educational Resources Information Center

    Roberts, Stephen D.; And Others

    INS, the Integrated Network Simulation language, puts simulation modeling into a network framework and automatically performs such programming activities as placing the problem into a next event structure, coding events, collecting statistics, monitoring status, and formatting reports. To do this, INS provides a set of symbols (nodes and branches)…

  14. Computational performance of Free Mesh Method applied to continuum mechanics problems

    PubMed Central

    YAGAWA, Genki

    2011-01-01

    The free mesh method (FMM) is a kind of the meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, or a node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm. The aim of the present paper is to review some unique numerical solutions of fluid and solid mechanics by employing FMM as well as the Enriched Free Mesh Method (EFMM), which is a new version of FMM, including compressible flow and sounding mechanism in air-reed instruments as applications to fluid mechanics, and automatic remeshing for slow crack growth, dynamic behavior of solid as well as large-scale Eigen-frequency of engine block as applications to solid mechanics. PMID:21558753

  15. Disruptions of brain structural network in end-stage renal disease patients with long-term hemodialysis and normal-appearing brain tissues.

    PubMed

    Chou, Ming-Chung; Ko, Chih-Hung; Chang, Jer-Ming; Hsieh, Tsyh-Jyi

    2018-05-04

    End-stage renal disease (ESRD) patients on hemodialysis were demonstrated to exhibit silent and invisible white-matter alterations which would likely lead to disruptions of brain structural networks. Therefore, the purpose of this study was to investigate the disruptions of brain structural network in ESRD patients. Thiry-three ESRD patients with normal-appearing brain tissues and 29 age- and gender-matched healthy controls were enrolled in this study and underwent both cognitive ability screening instrument (CASI) assessment and diffusion tensor imaging (DTI) acquisition. Brain structural connectivity network was constructed using probabilistic tractography with automatic anatomical labeling template. Graph-theory analysis was performed to detect the alterations of node-strength, node-degree, node-local efficiency, and node-clustering coefficient in ESRD patients. Correlational analysis was performed to understand the relationship between network measures, CASI score, and dialysis duration. Structural connectivity, node-strength, node-degree, and node-local efficiency were significantly decreased, whereas node-clustering coefficient was significantly increased in ESRD patients as compared with healthy controls. The disrupted local structural networks were generally associated with common neurological complications of ESRD patients, but the correlational analysis did not reveal significant correlation between network measures, CASI score, and dialysis duration. Graph-theory analysis was helpful to investigate disruptions of brain structural network in ESRD patients with normal-appearing brain tissues. Copyright © 2018. Published by Elsevier Masson SAS.

  16. Combining registration and active shape models for the automatic segmentation of the lymph node regions in head and neck CT images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Antong; Deeley, Matthew A.; Niermann, Kenneth J.

    2010-12-15

    Purpose: Intensity-modulated radiation therapy (IMRT) is the state of the art technique for head and neck cancer treatment. It requires precise delineation of the target to be treated and structures to be spared, which is currently done manually. The process is a time-consuming task of which the delineation of lymph node regions is often the longest step. Atlas-based delineation has been proposed as an alternative, but, in the authors' experience, this approach is not accurate enough for routine clinical use. Here, the authors improve atlas-based segmentation results obtained for level II-IV lymph node regions using an active shape model (ASM)more » approach. Methods: An average image volume was first created from a set of head and neck patient images with minimally enlarged nodes. The average image volume was then registered using affine, global, and local nonrigid transformations to the other volumes to establish a correspondence between surface points in the atlas and surface points in each of the other volumes. Once the correspondence was established, the ASMs were created for each node level. The models were then used to first constrain the results obtained with an atlas-based approach and then to iteratively refine the solution. Results: The method was evaluated through a leave-one-out experiment. The ASM- and atlas-based segmentations were compared to manual delineations via the Dice similarity coefficient (DSC) for volume overlap and the Euclidean distance between manual and automatic 3D surfaces. The mean DSC value obtained with the ASM-based approach is 10.7% higher than with the atlas-based approach; the mean and median surface errors were decreased by 13.6% and 12.0%, respectively. Conclusions: The ASM approach is effective in reducing segmentation errors in areas of low CT contrast where purely atlas-based methods are challenged. Statistical analysis shows that the improvements brought by this approach are significant.« less

  17. Auto-Configuration Protocols in Mobile Ad Hoc Networks

    PubMed Central

    Villalba, Luis Javier García; Matesanz, Julián García; Orozco, Ana Lucila Sandoval; Díaz, José Duván Márquez

    2011-01-01

    The TCP/IP protocol allows the different nodes in a network to communicate by associating a different IP address to each node. In wired or wireless networks with infrastructure, we have a server or node acting as such which correctly assigns IP addresses, but in mobile ad hoc networks there is no such centralized entity capable of carrying out this function. Therefore, a protocol is needed to perform the network configuration automatically and in a dynamic way, which will use all nodes in the network (or part thereof) as if they were servers that manage IP addresses. This article reviews the major proposed auto-configuration protocols for mobile ad hoc networks, with particular emphasis on one of the most recent: D2HCP. This work also includes a comparison of auto-configuration protocols for mobile ad hoc networks by specifying the most relevant metrics, such as a guarantee of uniqueness, overhead, latency, dependency on the routing protocol and uniformity. PMID:22163814

  18. A monitoring system for vegetable greenhouses based on a wireless sensor network.

    PubMed

    Li, Xiu-hong; Cheng, Xiao; Yan, Ke; Gong, Peng

    2010-01-01

    A wireless sensor network-based automatic monitoring system is designed for monitoring the life conditions of greenhouse vegetables. The complete system architecture includes a group of sensor nodes, a base station, and an internet data center. For the design of wireless sensor node, the JN5139 micro-processor is adopted as the core component and the Zigbee protocol is used for wireless communication between nodes. With an ARM7 microprocessor and embedded ZKOS operating system, a proprietary gateway node is developed to achieve data influx, screen display, system configuration and GPRS based remote data forwarding. Through a Client/Server mode the management software for remote data center achieves real-time data distribution and time-series analysis. Besides, a GSM-short-message-based interface is developed for sending real-time environmental measurements, and for alarming when a measurement is beyond some pre-defined threshold. The whole system has been tested for over one year and satisfactory results have been observed, which indicate that this system is very useful for greenhouse environment monitoring.

  19. [Sinus rhythm: mechanisms and function].

    PubMed

    Lerebours, Guy

    2007-01-01

    The normal cardiac rhythm originates in a specialized region of the heart, the sinus node that is part of the nodal tissue. The rhythmic, impulse initiation of sinus node pacemaker cells results from a spontaneous diastolic depolarization that is initiated immediately after repolarization of the preceding actions potential. This slow diastolic depolarisation is typical of automatic cells and essential to their function. Several currents are involved in this diastolic depolarisation: a hyperpolarization activated inward current, termed "pacemaker" I(f) current, two Ca2+ currents (a L type and a T type), a delayed K+ current and a Na/Ca exchange current. The frequency of the automatic discharge is the main determinant of heart rate. However the sinus node activity is regulated by adrenergic and cholinergic neurotransmitters. Acetylcholine provokes the hyperpolarization of pacemaker cells and decreases the speed of the spontaneous diastolic depolarisation, thus slowing the sinus rate. Catecholamines lead to sinus tachycardia by increasing the diastolic depolarisation speed. In normal conditions, the observed resting heart rate is lower than the intrinsic frequency of the sinus node due to a "predominance" of the vagal tone. Neural regulation of the heart rate aims at meeting the metabolic needs of the tissues through a varying blood flow. Differences between diurnal and nocturnal mean heart rates are accounted for by neural influences. During the night, the increased vagal tone results in decreased heart rate. The exercise-induced tachycardia results from the sympathetic stimulation. It allows more blood to reach skeletal muscles, and as a consequence an increased supply of oxygen and nutrients. Compared to the variety of clinical arrhythmias, sinus rhythm is the basis for optimal exercise capacity and quality of life.

  20. Proactive Fault Tolerance for HPC with Xen Virtualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagarajan, Arun Babu; Mueller, Frank; Engelmann, Christian

    2007-01-01

    with thousands of processors. At such large counts of compute nodes, faults are becoming common place. Current techniques to tolerate faults focus on reactive schemes to recover from faults and generally rely on a checkpoint/restart mechanism. Yet, in today's systems, node failures can often be anticipated by detecting a deteriorating health status. Instead of a reactive scheme for fault tolerance (FT), we are promoting a proactive one where processes automatically migrate from “unhealthy” nodes to healthy ones. Our approach relies on operating system virtualization techniques exemplied by but not limited to Xen. This paper contributes an automatic and transparent mechanismmore » for proactive FT for arbitrary MPI applications. It leverages virtualization techniques combined with health monitoring and load-based migration. We exploit Xen's live migration mechanism for a guest operating system (OS) to migrate an MPI task from a health-deteriorating node to a healthy one without stopping the MPI task during most of the migration. Our proactive FT daemon orchestrates the tasks of health monitoring, load determination and initiation of guest OS migration. Experimental results demonstrate that live migration hides migration costs and limits the overhead to only a few seconds making it an attractive approach to realize FT in HPC systems. Overall, our enhancements make proactive FT a valuable asset for long-running MPI application that is complementary to reactive FT using full checkpoint/ restart schemes since checkpoint frequencies can be reduced as fewer unanticipated failures are encountered. In the context of OS virtualization, we believe that this is the rst comprehensive study of proactive fault tolerance where live migration is actually triggered by health monitoring.« less

  1. An Algorithm to Automatically Generate the Combinatorial Orbit Counting Equations

    PubMed Central

    Melckenbeeck, Ine; Audenaert, Pieter; Michoel, Tom; Colle, Didier; Pickavet, Mario

    2016-01-01

    Graphlets are small subgraphs, usually containing up to five vertices, that can be found in a larger graph. Identification of the graphlets that a vertex in an explored graph touches can provide useful information about the local structure of the graph around that vertex. Actually finding all graphlets in a large graph can be time-consuming, however. As the graphlets grow in size, more different graphlets emerge and the time needed to find each graphlet also scales up. If it is not needed to find each instance of each graphlet, but knowing the number of graphlets touching each node of the graph suffices, the problem is less hard. Previous research shows a way to simplify counting the graphlets: instead of looking for the graphlets needed, smaller graphlets are searched, as well as the number of common neighbors of vertices. Solving a system of equations then gives the number of times a vertex is part of each graphlet of the desired size. However, until now, equations only exist to count graphlets with 4 or 5 nodes. In this paper, two new techniques are presented. The first allows to generate the equations needed in an automatic way. This eliminates the tedious work needed to do so manually each time an extra node is added to the graphlets. The technique is independent on the number of nodes in the graphlets and can thus be used to count larger graphlets than previously possible. The second technique gives all graphlets a unique ordering which is easily extended to name graphlets of any size. Both techniques were used to generate equations to count graphlets with 4, 5 and 6 vertices, which extends all previous results. Code can be found at https://github.com/IneMelckenbeeck/equation-generator and https://github.com/IneMelckenbeeck/graphlet-naming. PMID:26797021

  2. An algebraic multigrid method for Q2-Q1 mixed discretizations of the Navier-Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokopenko, Andrey; Tuminaro, Raymond S.

    Algebraic multigrid (AMG) preconditioners are considered for discretized systems of partial differential equations (PDEs) where unknowns associated with different physical quantities are not necessarily co-located at mesh points. Speci cally, we investigate a Q 2-Q 1 mixed finite element discretization of the incompressible Navier-Stokes equations where the number of velocity nodes is much greater than the number of pressure nodes. Consequently, some velocity degrees-of-freedom (dofs) are defined at spatial locations where there are no corresponding pressure dofs. Thus, AMG approaches lever- aging this co-located structure are not applicable. This paper instead proposes an automatic AMG coarsening that mimics certain pressure/velocitymore » dof relationships of the Q 2-Q 1 discretization. The main idea is to first automatically define coarse pressures in a somewhat standard AMG fashion and then to carefully (but automatically) choose coarse velocity unknowns so that the spatial location relationship between pressure and velocity dofs resembles that on the nest grid. To define coefficients within the inter-grid transfers, an energy minimization AMG (EMIN-AMG) is utilized. EMIN-AMG is not tied to specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to the proposed coarsening. Numerical results highlighting solver performance are given on Stokes and incompressible Navier-Stokes problems.« less

  3. PEEL-AND-STICK SENSORS POWERED BY DIRECTED RF ENERGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalau-Keraly, Chrisopher; Daniel, George; Lee, Joseph

    PARC, a Xerox Company, is developing a low-cost system of peel-and-stick wireless sensors that will enable widespread building environment sensor deployment with the potential to deliver up to 30% energy savings. The system is embodied by a set of RF hubs that provide power to automatically located sensor nodes, and relay data wirelessly to the building management system (BMS). The sensor nodes are flexible electronic labels powered by rectified RF energy transmitted by an RF hub and can contain multiple printed and conventional sensors. The system design overcomes limitations in wireless sensors related to power delivery, lifetime, and cost bymore » eliminating batteries and photovoltaic devices. Sensor localization is performed automatically by the inclusion of a programmable multidirectional antenna array in the RF hub. Comparison of signal strengths while the RF beam is swept allows for sensor localization, reducing installation effort and enabling automatic recommissioning of sensors that have been relocated, overcoming a significant challenge in building operations. PARC has already demonstrated wireless power and temperature data transmission up to a distance of 20m with less than one minute between measurements, using power levels well within the FCC regulation limits in the 902-928 MHz ISM band. The sensor’s RF energy harvesting antenna achieves high performance with dimensions below 5cm x 9cm.« less

  4. Peel-and-Stick Sensors Powered by Directed RF Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalau-Keraly, Christopher; Daniel, George; Lee, Joseph

    PARC, a Xerox Company, is developing a low-cost system of peel-and-stick wireless sensors that will enable widespread building environment sensor deployment with the potential to deliver up to 30% energy savings. The system is embodied by a set of RF hubs that provide power to automatically located sensor nodes, and relay data wirelessly to the building management system (BMS). The sensor nodes are flexible electronic labels powered by rectified RF energy transmitted by an RF hub and can contain multiple printed and conventional sensors. The system design overcomes limitations in wireless sensors related to power delivery, lifetime, and cost bymore » eliminating batteries and photovoltaic devices. Sensor localization is performed automatically by the inclusion of a programmable multidirectional antenna array in the RF hub. Comparison of signal strengths while the RF beam is swept allows for sensor localization, reducing installation effort and enabling automatic recommissioning of sensors that have been relocated, overcoming a significant challenge in building operations. PARC has already demonstrated wireless power and temperature data transmission up to a distance of 20m with less than one minute between measurements, using power levels well within the FCC regulation limits in the 902-928 MHz ISM band. The sensor’s RF energy harvesting antenna achieves high performance with dimensions below 5cm x 9cm« less

  5. An algebraic multigrid method for Q2-Q1 mixed discretizations of the Navier-Stokes equations

    DOE PAGES

    Prokopenko, Andrey; Tuminaro, Raymond S.

    2016-07-01

    Algebraic multigrid (AMG) preconditioners are considered for discretized systems of partial differential equations (PDEs) where unknowns associated with different physical quantities are not necessarily co-located at mesh points. Speci cally, we investigate a Q 2-Q 1 mixed finite element discretization of the incompressible Navier-Stokes equations where the number of velocity nodes is much greater than the number of pressure nodes. Consequently, some velocity degrees-of-freedom (dofs) are defined at spatial locations where there are no corresponding pressure dofs. Thus, AMG approaches lever- aging this co-located structure are not applicable. This paper instead proposes an automatic AMG coarsening that mimics certain pressure/velocitymore » dof relationships of the Q 2-Q 1 discretization. The main idea is to first automatically define coarse pressures in a somewhat standard AMG fashion and then to carefully (but automatically) choose coarse velocity unknowns so that the spatial location relationship between pressure and velocity dofs resembles that on the nest grid. To define coefficients within the inter-grid transfers, an energy minimization AMG (EMIN-AMG) is utilized. EMIN-AMG is not tied to specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to the proposed coarsening. Numerical results highlighting solver performance are given on Stokes and incompressible Navier-Stokes problems.« less

  6. Defect inspection and printability study for 14 nm node and beyond photomask

    NASA Astrophysics Data System (ADS)

    Seki, Kazunori; Yonetani, Masashi; Badger, Karen; Dechene, Dan J.; Akima, Shinji

    2016-10-01

    Two different mask inspection techniques are developed and compared for 14 nm node and beyond photomasks, High resolution and Litho-based inspection. High resolution inspection is the general inspection method in which a 19x nm wavelength laser is used with the High NA inspection optics. Litho-based inspection is a new inspection technology. This inspection uses the wafer lithography information, and as such, this method has automatic defect classification capability which is based on wafer printability. Both High resolution and Litho-based inspection methods are compared using 14 nm and 7 nm node programmed defect and production design masks. The defect sensitivity and mask inspectability is compared, in addition to comparing the defect classification and throughput. Additionally, the Cost / Infrastructure comparison is analyzed and the impact of each inspection method is discussed.

  7. Comparisons of node-based and element-based approaches of assigning bone material properties onto subject-specific finite element models.

    PubMed

    Chen, G; Wu, F Y; Liu, Z C; Yang, K; Cui, F

    2015-08-01

    Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares it with the element-based approach in the literature. Both approaches were implemented using ABAQUS. The assignment procedure is divided into two steps: generating the data file of the image intensity of a bone in a MATLAB program and reading the data file into ABAQUS via user subroutines. The node-based approach assigns the material properties to each node of the finite element mesh, while the element-based approach assigns the material properties directly to each integration point of an element. Both approaches are independent from the type of elements. A number of FE meshes are tested and both give accurate solutions; comparatively the node-based approach involves less programming effort. The node-based approach is also independent from the type of analyses; it has been tested on the nonlinear analysis of a Sawbone femur. The node-based approach substantially improves the level of automation of the assignment procedure of bone material properties. It is the simplest and most powerful approach that is applicable to many types of analyses and elements. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Probabilistic resource allocation system with self-adaptive capability

    NASA Technical Reports Server (NTRS)

    Yufik, Yan M. (Inventor)

    1996-01-01

    A probabilistic resource allocation system is disclosed containing a low capacity computational module (Short Term Memory or STM) and a self-organizing associative network (Long Term Memory or LTM) where nodes represent elementary resources, terminal end nodes represent goals, and directed links represent the order of resource association in different allocation episodes. Goals and their priorities are indicated by the user, and allocation decisions are made in the STM, while candidate associations of resources are supplied by the LTM based on the association strength (reliability). Reliability values are automatically assigned to the network links based on the frequency and relative success of exercising those links in the previous allocation decisions. Accumulation of allocation history in the form of an associative network in the LTM reduces computational demands on subsequent allocations. For this purpose, the network automatically partitions itself into strongly associated high reliability packets, allowing fast approximate computation and display of allocation solutions satisfying the overall reliability and other user-imposed constraints. System performance improves in time due to modification of network parameters and partitioning criteria based on the performance feedback.

  9. Probabilistic resource allocation system with self-adaptive capability

    NASA Technical Reports Server (NTRS)

    Yufik, Yan M. (Inventor)

    1998-01-01

    A probabilistic resource allocation system is disclosed containing a low capacity computational module (Short Term Memory or STM) and a self-organizing associative network (Long Term Memory or LTM) where nodes represent elementary resources, terminal end nodes represent goals, and weighted links represent the order of resource association in different allocation episodes. Goals and their priorities are indicated by the user, and allocation decisions are made in the STM, while candidate associations of resources are supplied by the LTM based on the association strength (reliability). Weights are automatically assigned to the network links based on the frequency and relative success of exercising those links in the previous allocation decisions. Accumulation of allocation history in the form of an associative network in the LTM reduces computational demands on subsequent allocations. For this purpose, the network automatically partitions itself into strongly associated high reliability packets, allowing fast approximate computation and display of allocation solutions satisfying the overall reliability and other user-imposed constraints. System performance improves in time due to modification of network parameters and partitioning criteria based on the performance feedback.

  10. Disruption Tolerant Networking Flight Validation Experiment on NASA's EPOXI Mission

    NASA Technical Reports Server (NTRS)

    Wyatt, Jay; Burleigh, Scott; Jones, Ross; Torgerson, Leigh; Wissler, Steve

    2009-01-01

    In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions. This activity was part of a larger NASA space DTN development program to mature DTN to flight readiness for a wide variety of mission types by the end of 2011. This paper describes the DTN protocols, the flight demo implementation, validation metrics which were created for the experiment, and validation results.

  11. Concurrent white matter bundles and grey matter networks using independent component analysis.

    PubMed

    O'Muircheartaigh, Jonathan; Jbabdi, Saad

    2018-04-15

    Developments in non-invasive diffusion MRI tractography techniques have permitted the investigation of both the anatomy of white matter pathways connecting grey matter regions and their structural integrity. In parallel, there has been an expansion in automated techniques aimed at parcellating grey matter into distinct regions based on functional imaging. Here we apply independent component analysis to whole-brain tractography data to automatically extract brain networks based on their associated white matter pathways. This method decomposes the tractography data into components that consist of paired grey matter 'nodes' and white matter 'edges', and automatically separates major white matter bundles, including known cortico-cortical and cortico-subcortical tracts. We show how this framework can be used to investigate individual variations in brain networks (in terms of both nodes and edges) as well as their associations with individual differences in behaviour and anatomy. Finally, we investigate correspondences between tractography-based brain components and several canonical resting-state networks derived from functional MRI. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Wireless Mid-Infrared Spectroscopy Sensor Network for Automatic Carbon Dioxide Fertilization in a Greenhouse Environment.

    PubMed

    Wang, Jianing; Niu, Xintao; Zheng, Lingjiao; Zheng, Chuantao; Wang, Yiding

    2016-11-18

    In this paper, a wireless mid-infrared spectroscopy sensor network was designed and implemented for carbon dioxide fertilization in a greenhouse environment. A mid-infrared carbon dioxide (CO₂) sensor based on non-dispersive infrared (NDIR) with the functionalities of wireless communication and anti-condensation prevention was realized as the sensor node. Smart transmission power regulation was applied in the wireless sensor network, according to the Received Signal Strength Indication (RSSI), to realize high communication stability and low-power consumption deployment. Besides real-time monitoring, this system also provides a CO₂ control facility for manual and automatic control through a LabVIEW platform. According to simulations and field tests, the implemented sensor node has a satisfying anti-condensation ability and reliable measurement performance on CO₂ concentrations ranging from 30 ppm to 5000 ppm. As an application, based on the Fuzzy proportional, integral, and derivative (PID) algorithm realized on a LabVIEW platform, the CO₂ concentration was regulated to some desired concentrations, such as 800 ppm and 1200 ppm, in 30 min with a controlled fluctuation of <±35 ppm in an acre of greenhouse.

  13. RyR2R420Q catecholaminergic polymorphic ventricular tachycardia mutation induces bradycardia by disturbing the coupled clock pacemaker mechanism

    PubMed Central

    Wang, Yue Yi; Mesirca, Pietro; Marqués-Sulé, Elena; Villejoubert, Olivier; D’Ocon, Pilar; Ruiz, Cristina; Domingo, Diana; Zorio, Esther; Mangoni, Matteo E.; Benitah, Jean-Pierre; Gómez, Ana María

    2017-01-01

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a lethal genetic arrhythmia that manifests syncope or sudden death in children and young adults under stress conditions. CPVT patients often present bradycardia and sino-atrial node (SAN) dysfunction. However, the mechanism remains unclear. We analyzed SAN function in two CPVT families and in a novel knock-in (KI) mouse model carrying the RyR2R420Q mutation. Humans and KI mice presented slower resting heart rate. Accordingly, the rate of spontaneous intracellular Ca2+ ([Ca2+]i) transients was slower in KI mouse SAN preparations than in WT, without any significant alteration in the “funny” current (If ). The L-type Ca2+ current was reduced in KI SAN cells in a [Ca2+]i-dependent way, suggesting that bradycardia was due to disrupted crosstalk between the “voltage” and “Ca2+” clock, and the mechanisms of pacemaking was induced by aberrant spontaneous RyR2- dependent Ca2+ release. This finding was consistent with a higher Ca2+ leak during diastolic periods produced by long-lasting Ca2+ sparks in KI SAN cells. Our results uncover a mechanism for the CPVT-causing RyR2 N-terminal mutation R420Q, and they highlight the fact that enhancing the Ca2+ clock may slow the heart rhythm by disturbing the coupling between Ca2+ and voltage clocks. PMID:28422759

  14. Ablation of RIC8A function in mouse neurons leads to a severe neuromuscular phenotype and postnatal death.

    PubMed

    Ruisu, Katrin; Kask, Keiu; Meier, Riho; Saare, Merly; Raid, Raivo; Veraksitš, Alar; Karis, Alar; Tõnissoo, Tambet; Pooga, Margus

    2013-01-01

    Resistance to inhibitors of cholinesterase 8 (RIC8) is a guanine nucleotide exchange factor required for the intracellular regulation of G protein signalling. RIC8 activates different Gα subunits via non-canonical pathway, thereby amplifying and prolonging the G protein mediated signal. In order to circumvent the embryonic lethality associated with the absence of RIC8A and to study its role in the nervous system, we constructed Ric8a conditional knockout mice using Cre/loxP technology. Introduction of a synapsin I promoter driven Cre transgenic mouse strain (SynCre) into the floxed Ric8a (Ric8a (F/F) ) background ablated RIC8A function in most differentiated neuron populations. Mutant SynCre (+/-) Ric8 (lacZ/F) mice were born at expected Mendelian ratio, but they died in early postnatal age (P4-P6). The mutants exhibited major developmental defects, like growth retardation and muscular weakness, impaired coordination and balance, muscular spasms and abnormal heart beat. Histological analysis revealed that the deficiency of RIC8A in neurons caused skeletal muscle atrophy and heart muscle hypoplasia, in addition, the sinoatrial node was misplaced and its size reduced. However, we did not observe gross morphological changes in brains of SynCre (+/-) Ric8a (lacZ/F) mutants. Our results demonstrate that in mice the activity of RIC8A in neurons is essential for survival and its deficiency causes a severe neuromuscular phenotype.

  15. Ablation of RIC8A Function in Mouse Neurons Leads to a Severe Neuromuscular Phenotype and Postnatal Death

    PubMed Central

    Ruisu, Katrin; Kask, Keiu; Meier, Riho; Saare, Merly; Raid, Raivo; Veraksitš, Alar; Karis, Alar; Tõnissoo, Tambet; Pooga, Margus

    2013-01-01

    Resistance to inhibitors of cholinesterase 8 (RIC8) is a guanine nucleotide exchange factor required for the intracellular regulation of G protein signalling. RIC8 activates different Gα subunits via non-canonical pathway, thereby amplifying and prolonging the G protein mediated signal. In order to circumvent the embryonic lethality associated with the absence of RIC8A and to study its role in the nervous system, we constructed Ric8a conditional knockout mice using Cre/loxP technology. Introduction of a synapsin I promoter driven Cre transgenic mouse strain (SynCre) into the floxed Ric8a (Ric8a F/F) background ablated RIC8A function in most differentiated neuron populations. Mutant SynCre +/- Ric8 lacZ/F mice were born at expected Mendelian ratio, but they died in early postnatal age (P4-P6). The mutants exhibited major developmental defects, like growth retardation and muscular weakness, impaired coordination and balance, muscular spasms and abnormal heart beat. Histological analysis revealed that the deficiency of RIC8A in neurons caused skeletal muscle atrophy and heart muscle hypoplasia, in addition, the sinoatrial node was misplaced and its size reduced. However, we did not observe gross morphological changes in brains of SynCre +/- Ric8a lacZ/F mutants. Our results demonstrate that in mice the activity of RIC8A in neurons is essential for survival and its deficiency causes a severe neuromuscular phenotype. PMID:23977396

  16. Calcium dynamics in cardiac excitatory and non-excitatory cells and the role of gap junction.

    PubMed

    Das, Phonindra Nath; Mehrotra, Parul; Mishra, Aseem; Bairagi, Nandadulal; Chatterjee, Samrat

    2017-07-01

    Calcium ions aid in the generation of action potential in myocytes and are responsible for the excitation-contraction coupling of heart. The heart muscle has specialized patches of cells, called excitatory cells (EC) such as the Sino-atrial node cells capable of auto-generation of action potential and cells which receive signals from the excitatory cells, called non-excitatory cells (NEC) such as cells of the ventricular and auricular walls. In order to understand cardiac calcium homeostasis, it is, therefore, important to study the calcium dynamics taking into account both types of cardiac cells. Here we have developed a model to capture the calcium dynamics in excitatory and non-excitatory cells taking into consideration the gap junction mediated calcium ion transfer from excitatory cell to non-excitatory cell. Our study revealed that the gap junctional coupling between excitatory and non-excitatory cells plays important role in the calcium dynamics. It is observed that any reduction in the functioning of gap junction may result in abnormal calcium oscillations in NEC, even when the calcium dynamics is normal in EC cell. Sensitivity of gap junction is observed to be independent of the pacing rate and hence a careful monitoring is required to maintain normal cardiomyocyte condition. It also highlights that sarcoplasmic reticulum may not be always able to control the amount of cytoplasmic calcium under the condition of calcium overload. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Murine Electrophysiological Models of Cardiac Arrhythmogenesis

    PubMed Central

    2016-01-01

    Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias. PMID:27974512

  18. Extraction and visualization of the central chest lymph-node stations

    NASA Astrophysics Data System (ADS)

    Lu, Kongkuo; Merritt, Scott A.; Higgins, William E.

    2008-03-01

    Lung cancer remains the leading cause of cancer death in the United States and is expected to account for nearly 30% of all cancer deaths in 2007. Central to the lung-cancer diagnosis and staging process is the assessment of the central chest lymph nodes. This assessment typically requires two major stages: (1) location of the lymph nodes in a three-dimensional (3D) high-resolution volumetric multi-detector computed-tomography (MDCT) image of the chest; (2) subsequent nodal sampling using transbronchial needle aspiration (TBNA). We describe a computer-based system for automatically locating the central chest lymph-node stations in a 3D MDCT image. Automated analysis methods are first run that extract the airway tree, airway-tree centerlines, aorta, pulmonary artery, lungs, key skeletal structures, and major-airway labels. This information provides geometrical and anatomical cues for localizing the major nodal stations. Our system demarcates these stations, conforming to criteria outlined for the Mountain and Wang standard classification systems. Visualization tools within the system then enable the user to interact with these stations to locate visible lymph nodes. Results derived from a set of human 3D MDCT chest images illustrate the usage and efficacy of the system.

  19. Metropolitan all-pass and inter-city quantum communication network.

    PubMed

    Chen, Teng-Yun; Wang, Jian; Liang, Hao; Liu, Wei-Yue; Liu, Yang; Jiang, Xiao; Wang, Yuan; Wan, Xu; Cai, Wei-Qi; Ju, Lei; Chen, Luo-Kan; Wang, Liu-Jun; Gao, Yuan; Chen, Kai; Peng, Cheng-Zhi; Chen, Zeng-Bing; Pan, Jian-Wei

    2010-12-20

    We have demonstrated a metropolitan all-pass quantum communication network in field fiber for four nodes. Any two nodes of them can be connected in the network to perform quantum key distribution (QKD). An optical switching module is presented that enables arbitrary 2-connectivity among output ports. Integrated QKD terminals are worked out, which can operate either as a transmitter, a receiver, or even both at the same time. Furthermore, an additional link in another city of 60 km fiber (up to 130 km) is seamless integrated into this network based on a trusted relay architecture. On all the links, we have implemented protocol of decoy state scheme. All of necessary electrical hardware, synchronization, feedback control, network software, execution of QKD protocols are made by tailored designing, which allow a completely automatical and stable running. Our system has been put into operation in Hefei in August 2009, and publicly demonstrated during an evaluation conference on quantum network organized by the Chinese Academy of Sciences on August 29, 2009. Real-time voice telephone with one-time pad encoding between any two of the five nodes (four all-pass nodes plus one additional node through relay) is successfully established in the network within 60 km.

  20. Essential Role of the m2R-RGS6-IKACh Pathway in Controlling Intrinsic Heart Rate Variability

    PubMed Central

    Posokhova, Ekaterina; Ng, David; Opel, Aaisha; Masuho, Ikuo; Tinker, Andrew; Biesecker, Leslie G.; Wickman, Kevin; Martemyanov, Kirill A.

    2013-01-01

    Normal heart function requires generation of a regular rhythm by sinoatrial pacemaker cells and the alteration of this spontaneous heart rate by the autonomic input to match physiological demand. However, the molecular mechanisms that ensure consistent periodicity of cardiac contractions and fine tuning of this process by autonomic system are not completely understood. Here we examined the contribution of the m2R-IKACh intracellular signaling pathway, which mediates the negative chronotropic effect of parasympathetic stimulation, to the regulation of the cardiac pacemaking rhythm. Using isolated heart preparations and single-cell recordings we show that the m2R-IKACh signaling pathway controls the excitability and firing pattern of the sinoatrial cardiomyocytes and determines variability of cardiac rhythm in a manner independent from the autonomic input. Ablation of the major regulator of this pathway, Rgs6, in mice results in irregular cardiac rhythmicity and increases susceptibility to atrial fibrillation. We further identify several human subjects with variants in the RGS6 gene and show that the loss of function in RGS6 correlates with increased heart rate variability. These findings identify the essential role of the m2R-IKACh signaling pathway in the regulation of cardiac sinus rhythm and implicate RGS6 in arrhythmia pathogenesis. PMID:24204714

  1. Centrality measures in temporal networks with time series analysis

    NASA Astrophysics Data System (ADS)

    Huang, Qiangjuan; Zhao, Chengli; Zhang, Xue; Wang, Xiaojie; Yi, Dongyun

    2017-05-01

    The study of identifying important nodes in networks has a wide application in different fields. However, the current researches are mostly based on static or aggregated networks. Recently, the increasing attention to networks with time-varying structure promotes the study of node centrality in temporal networks. In this paper, we define a supra-evolution matrix to depict the temporal network structure. With using of the time series analysis, the relationships between different time layers can be learned automatically. Based on the special form of the supra-evolution matrix, the eigenvector centrality calculating problem is turned into the calculation of eigenvectors of several low-dimensional matrices through iteration, which effectively reduces the computational complexity. Experiments are carried out on two real-world temporal networks, Enron email communication network and DBLP co-authorship network, the results of which show that our method is more efficient at discovering the important nodes than the common aggregating method.

  2. Development of assembly and joint concepts for erectable space structures

    NASA Technical Reports Server (NTRS)

    Jacquemin, G. G.; Bluck, R. M.; Grotbeck, G. H.; Johnson, R. R.

    1980-01-01

    The technology associated with the on-orbit assembly of tetrahedral truss platforms erected of graphite epoxy tapered columns is examined. Associated with the assembly process is the design and fabrication of nine member node joints. Two such joints demonstrating somewhat different technology were designed and fabricated. Two methods of automatic assembly using the node designs were investigated, and the time of assembly of tetrahedral truss structures up to 1 square km in size was estimated. The effect of column and node joint packaging on the Space Shuttle cargo bay is examined. A brief discussion is included of operating cost considerations and the selection of energy sources. Consideration was given to the design assembly machines from 5 m to 20 m. The smaller machines, mounted on the Space Shuttle, are deployable and restowable. They provide a means of demonstrating the capabilities of the concept and of erecting small specialized platforms on relatively short notice.

  3. Semantic Analysis of Email Using Domain Ontologies and WordNet

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Keller, Richard M.

    2005-01-01

    The problem of capturing and accessing knowledge in paper form has been supplanted by a problem of providing structure to vast amounts of electronic information. Systems that can construct semantic links for natural language documents like email messages automatically will be a crucial element of semantic email tools. We have designed an information extraction process that can leverage the knowledge already contained in an existing semantic web, recognizing references in email to existing nodes in a network of ontology instances by using linguistic knowledge and knowledge of the structure of the semantic web. We developed a heuristic score that uses several forms of evidence to detect references in email to existing nodes in the Semanticorganizer repository's network. While these scores cannot directly support automated probabilistic inference, they can be used to rank nodes by relevance and link those deemed most relevant to email messages.

  4. Control method for peak power delivery with limited DC-bus voltage

    DOEpatents

    Edwards, John; Xu, Longya; Bhargava, Brij B.

    2006-09-05

    A method for driving a neutral point-clamped multi-level voltage source inverter supplying a synchronous motor is provided. A DC current is received at a neutral point-clamped multi-level voltage source inverter. The inverter has first, second, and third output nodes. The inverter also has a plurality of switches. A desired speed of a synchronous motor connected to the inverter by the first second and third nodes is received by the inverter. The synchronous motor has a rotor and the speed of the motor is defined by the rotational rate of the rotor. A position of the rotor is sensed, current flowing to the motor out of at least two of the first, second, and third output nodes is sensed, and predetermined switches are automatically activated by the inverter responsive to the sensed rotor position, the sensed current, and the desired speed.

  5. Providing Self-Healing Ability for Wireless Sensor Node by Using Reconfigurable Hardware

    PubMed Central

    Yuan, Shenfang; Qiu, Lei; Gao, Shang; Tong, Yao; Yang, Weiwei

    2012-01-01

    Wireless sensor networks (WSNs) have received tremendous attention over the past ten years. In engineering applications of WSNs, a number of sensor nodes are usually spread across some specific geographical area. Some of these nodes have to work in harsh environments. Dependability of the Wireless Sensor Network (WSN) is very important for its successful applications in the engineering area. In ordinary research, when a node has a failure, it is usually discarded and the network is reorganized to ensure the normal operation of the WSN. Using appropriate WSN re-organization methods, though the sensor networks can be reorganized, this causes additional maintenance costs and sometimes still decreases the function of the networks. In those situations where the sensor networks cannot be reorganized, the performance of the whole WSN will surely be degraded. In order to ensure the reliable and low cost operation of WSNs, a method to develop a wireless sensor node with self-healing ability based on reconfigurable hardware is proposed in this paper. Two self-healing WSN node realization paradigms based on reconfigurable hardware are presented, including a redundancy-based self-healing paradigm and a whole FPAA/FPGA based self-healing paradigm. The nodes designed with the self-healing ability can dynamically change their node configurations to repair the nodes' hardware failures. To demonstrate these two paradigms, a strain sensor node is adopted as an illustration to show the concepts. Two strain WSN sensor nodes with self-healing ability are developed respectively according to the proposed self-healing paradigms. Evaluation experiments on self-healing ability and power consumption are performed. Experimental results show that the developed nodes can self-diagnose the failures and recover to a normal state automatically. The research presented can improve the robustness of WSNs and reduce the maintenance cost of WSNs in engineering applications. PMID:23202176

  6. Complex Network Simulation of Forest Network Spatial Pattern in Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Zeng, Y.

    2017-09-01

    Forest network-construction uses for the method and model with the scale-free features of complex network theory based on random graph theory and dynamic network nodes which show a power-law distribution phenomenon. The model is suitable for ecological disturbance by larger ecological landscape Pearl River Delta consistent recovery. Remote sensing and GIS spatial data are available through the latest forest patches. A standard scale-free network node distribution model calculates the area of forest network's power-law distribution parameter value size; The recent existing forest polygons which are defined as nodes can compute the network nodes decaying index value of the network's degree distribution. The parameters of forest network are picked up then make a spatial transition to GIS real world models. Hence the connection is automatically generated by minimizing the ecological corridor by the least cost rule between the near nodes. Based on scale-free network node distribution requirements, select the number compared with less, a huge point of aggregation as a future forest planning network's main node, and put them with the existing node sequence comparison. By this theory, the forest ecological projects in the past avoid being fragmented, scattered disorderly phenomena. The previous regular forest networks can be reduced the required forest planting costs by this method. For ecological restoration of tropical and subtropical in south China areas, it will provide an effective method for the forest entering city project guidance and demonstration with other ecological networks (water, climate network, etc.) for networking a standard and base datum.

  7. A wearable wireless ECG monitoring system with dynamic transmission power control for long-term homecare.

    PubMed

    Wang, Yishan; Doleschel, Sammy; Wunderlich, Ralf; Heinen, Stefan

    2015-03-01

    This paper presents a wearable wireless ECG monitoring system based on novel 3-Lead electrode placements for long-term homecare. The experiment for novel 3-Lead electrode placements is carried out, and the results show that the distance between limb electrodes can be significantly reduced. Based on the new electrode position, a small size sensor node, which is powered by a rechargeable battery, is designed to detect, amplify, filter and transmit the ECG signals. The coordinator receives the data and sends it to PC. Finally the signals are displayed on the GUI. In order to control the power consumption of sensor node, a dynamic power adjustment method is applied to automatically adjust the transmission power of the sensor node according to the received signal strength indicator (RSSI), which is related to the distance and obstacle between sensor node and coordinator. The system is evaluated when the user, who wears the sensor, is walking and running. A promising performance is achieved even under body motion. The power consumption can be significantly reduced with this dynamic power adjustment method.

  8. Communication Range Dynamics and Performance Analysis for a Self-Adaptive Transmission Power Controller.

    PubMed

    Lucas Martínez, Néstor; Martínez Ortega, José-Fernán; Hernández Díaz, Vicente; Del Toro Matamoros, Raúl M

    2016-05-12

    The deployment of the nodes in a Wireless Sensor and Actuator Network (WSAN) is typically restricted by the sensing and acting coverage. This implies that the locations of the nodes may be, and usually are, not optimal from the point of view of the radio communication. Additionally, when the transmission power is tuned for those locations, there are other unpredictable factors that can cause connectivity failures, like interferences, signal fading due to passing objects and, of course, radio irregularities. A control-based self-adaptive system is a typical solution to improve the energy consumption while keeping good connectivity. In this paper, we explore how the communication range for each node evolves along the iterations of an energy saving self-adaptive transmission power controller when using different parameter sets in an outdoor scenario, providing a WSAN that automatically adapts to surrounding changes keeping good connectivity. The results obtained in this paper show how the parameters with the best performance keep a k-connected network, where k is in the range of the desired node degree plus or minus a specified tolerance value.

  9. Communication Range Dynamics and Performance Analysis for a Self-Adaptive Transmission Power Controller †

    PubMed Central

    Lucas Martínez, Néstor; Martínez Ortega, José-Fernán; Hernández Díaz, Vicente; del Toro Matamoros, Raúl M.

    2016-01-01

    The deployment of the nodes in a Wireless Sensor and Actuator Network (WSAN) is typically restricted by the sensing and acting coverage. This implies that the locations of the nodes may be, and usually are, not optimal from the point of view of the radio communication. Additionally, when the transmission power is tuned for those locations, there are other unpredictable factors that can cause connectivity failures, like interferences, signal fading due to passing objects and, of course, radio irregularities. A control-based self-adaptive system is a typical solution to improve the energy consumption while keeping good connectivity. In this paper, we explore how the communication range for each node evolves along the iterations of an energy saving self-adaptive transmission power controller when using different parameter sets in an outdoor scenario, providing a WSAN that automatically adapts to surrounding changes keeping good connectivity. The results obtained in this paper show how the parameters with the best performance keep a k-connected network, where k is in the range of the desired node degree plus or minus a specified tolerance value. PMID:27187397

  10. A Monitoring System for Vegetable Greenhouses based on a Wireless Sensor Network

    PubMed Central

    Li, Xiu-hong; Cheng, Xiao; Yan, Ke; Gong, Peng

    2010-01-01

    A wireless sensor network-based automatic monitoring system is designed for monitoring the life conditions of greenhouse vegetatables. The complete system architecture includes a group of sensor nodes, a base station, and an internet data center. For the design of wireless sensor node, the JN5139 micro-processor is adopted as the core component and the Zigbee protocol is used for wireless communication between nodes. With an ARM7 microprocessor and embedded ZKOS operating system, a proprietary gateway node is developed to achieve data influx, screen display, system configuration and GPRS based remote data forwarding. Through a Client/Server mode the management software for remote data center achieves real-time data distribution and time-series analysis. Besides, a GSM-short-message-based interface is developed for sending real-time environmental measurements, and for alarming when a measurement is beyond some pre-defined threshold. The whole system has been tested for over one year and satisfactory results have been observed, which indicate that this system is very useful for greenhouse environment monitoring. PMID:22163391

  11. A high-efficiency self-powered wireless sensor node for monitoring concerning vibratory events

    NASA Astrophysics Data System (ADS)

    Xu, Dacheng; Li, Suiqiong; Li, Mengyang; Xie, Danpeng; Dong, Chuan; Li, Xinxin

    2017-09-01

    This paper presents a self-powered wireless alarming sensor node (SWASN), which was designed to monitor the occurrence of concerning vibratory events. The major components of the sensor node include a vibration-threshold-triggered energy harvester (VTTEH) that powers the sensor node, a dual threshold voltage control circuit (DTVCC) for power management and a radio frequency (RF) signal transmitting module. The VTTEH generates significant electric energy only when the input vibration reaches certain amplitude. Thus, the VTTEH serves as both the power source and the vibration-event-sensing element for the sensor node. The DTVCC was specifically designed to utilize the limited power supply from the VTTEH to operate the sensor node. Constructed with only voltage detectors and MOSFETs, the DTVCC achieved low power consumption, which was 65% lower compared with the power management circuit designed in our previous work. Meanwhile, a RF transmit circuit was constructed based on the commercially available CC1110-F32 wireless transceiver chip and a compact planar antenna was designed to improve the signal transmission distance. The sensor node was fabricated and was characterized both in the laboratory and in the field. Experimental results showed that the SWASN could automatically send out alarming signals when the simulated concerning event occurred. The waiting time between two consecutive transmission periods is less than 125 s and the transmission distance can reach 1.31 km. The SWASN will have broad applications in field surveillances.

  12. Network module detection: Affinity search technique with the multi-node topological overlap measure

    PubMed Central

    Li, Ai; Horvath, Steve

    2009-01-01

    Background Many clustering procedures only allow the user to input a pairwise dissimilarity or distance measure between objects. We propose a clustering method that can input a multi-point dissimilarity measure d(i1, i2, ..., iP) where the number of points P can be larger than 2. The work is motivated by gene network analysis where clusters correspond to modules of highly interconnected nodes. Here, we define modules as clusters of network nodes with high multi-node topological overlap. The topological overlap measure is a robust measure of interconnectedness which is based on shared network neighbors. In previous work, we have shown that the multi-node topological overlap measure yields biologically meaningful results when used as input of network neighborhood analysis. Findings We adapt network neighborhood analysis for the use of module detection. We propose the Module Affinity Search Technique (MAST), which is a generalized version of the Cluster Affinity Search Technique (CAST). MAST can accommodate a multi-node dissimilarity measure. Clusters grow around user-defined or automatically chosen seeds (e.g. hub nodes). We propose both local and global cluster growth stopping rules. We use several simulations and a gene co-expression network application to argue that the MAST approach leads to biologically meaningful results. We compare MAST with hierarchical clustering and partitioning around medoid clustering. Conclusion Our flexible module detection method is implemented in the MTOM software which can be downloaded from the following webpage: PMID:19619323

  13. Network module detection: Affinity search technique with the multi-node topological overlap measure.

    PubMed

    Li, Ai; Horvath, Steve

    2009-07-20

    Many clustering procedures only allow the user to input a pairwise dissimilarity or distance measure between objects. We propose a clustering method that can input a multi-point dissimilarity measure d(i1, i2, ..., iP) where the number of points P can be larger than 2. The work is motivated by gene network analysis where clusters correspond to modules of highly interconnected nodes. Here, we define modules as clusters of network nodes with high multi-node topological overlap. The topological overlap measure is a robust measure of interconnectedness which is based on shared network neighbors. In previous work, we have shown that the multi-node topological overlap measure yields biologically meaningful results when used as input of network neighborhood analysis. We adapt network neighborhood analysis for the use of module detection. We propose the Module Affinity Search Technique (MAST), which is a generalized version of the Cluster Affinity Search Technique (CAST). MAST can accommodate a multi-node dissimilarity measure. Clusters grow around user-defined or automatically chosen seeds (e.g. hub nodes). We propose both local and global cluster growth stopping rules. We use several simulations and a gene co-expression network application to argue that the MAST approach leads to biologically meaningful results. We compare MAST with hierarchical clustering and partitioning around medoid clustering. Our flexible module detection method is implemented in the MTOM software which can be downloaded from the following webpage: http://www.genetics.ucla.edu/labs/horvath/MTOM/

  14. Energy-efficient boarder node medium access control protocol for wireless sensor networks.

    PubMed

    Razaque, Abdul; Elleithy, Khaled M

    2014-03-12

    This paper introduces the design, implementation, and performance analysis of the scalable and mobility-aware hybrid protocol named boarder node medium access control (BN-MAC) for wireless sensor networks (WSNs), which leverages the characteristics of scheduled and contention-based MAC protocols. Like contention-based MAC protocols, BN-MAC achieves high channel utilization, network adaptability under heavy traffic and mobility, and low latency and overhead. Like schedule-based MAC protocols, BN-MAC reduces idle listening time, emissions, and collision handling at low cost at one-hop neighbor nodes and achieves high channel utilization under heavy network loads. BN-MAC is particularly designed for region-wise WSNs. Each region is controlled by a boarder node (BN), which is of paramount importance. The BN coordinates with the remaining nodes within and beyond the region. Unlike other hybrid MAC protocols, BN-MAC incorporates three promising models that further reduce the energy consumption, idle listening time, overhearing, and congestion to improve the throughput and reduce the latency. One of the models used with BN-MAC is automatic active and sleep (AAS), which reduces the ideal listening time. When nodes finish their monitoring process, AAS lets them automatically go into the sleep state to avoid the idle listening state. Another model used in BN-MAC is the intelligent decision-making (IDM) model, which helps the nodes sense the nature of the environment. Based on the nature of the environment, the nodes decide whether to use the active or passive mode. This decision power of the nodes further reduces energy consumption because the nodes turn off the radio of the transceiver in the passive mode. The third model is the least-distance smart neighboring search (LDSNS), which determines the shortest efficient path to the one-hop neighbor and also provides cross-layering support to handle the mobility of the nodes. The BN-MAC also incorporates a semi-synchronous feature with a low duty cycle, which is advantageous for reducing the latency and energy consumption for several WSN application areas to improve the throughput. BN-MAC uses a unique window slot size to enhance the contention resolution issue for improved throughput. BN-MAC also prefers to communicate within a one-hop destination using Anycast, which maintains load balancing to maintain network reliability. BN-MAC is introduced with the goal of supporting four major application areas: monitoring and behavioral areas, controlling natural disasters, human-centric applications, and tracking mobility and static home automation devices from remote places. These application areas require a congestion-free mobility-supported MAC protocol to guarantee reliable data delivery. BN-MAC was evaluated using network simulator-2 (ns2) and compared with other hybrid MAC protocols, such as Zebra medium access control (Z-MAC), advertisement-based MAC (A-MAC), Speck-MAC, adaptive duty cycle SMAC (ADC-SMAC), and low-power real-time medium access control (LPR-MAC). The simulation results indicate that BN-MAC is a robust and energy-efficient protocol that outperforms other hybrid MAC protocols in the context of quality of service (QoS) parameters, such as energy consumption, latency, throughput, channel access time, successful delivery rate, coverage efficiency, and average duty cycle.

  15. Energy-Efficient Boarder Node Medium Access Control Protocol for Wireless Sensor Networks

    PubMed Central

    Razaque, Abdul; Elleithy, Khaled M.

    2014-01-01

    This paper introduces the design, implementation, and performance analysis of the scalable and mobility-aware hybrid protocol named boarder node medium access control (BN-MAC) for wireless sensor networks (WSNs), which leverages the characteristics of scheduled and contention-based MAC protocols. Like contention-based MAC protocols, BN-MAC achieves high channel utilization, network adaptability under heavy traffic and mobility, and low latency and overhead. Like schedule-based MAC protocols, BN-MAC reduces idle listening time, emissions, and collision handling at low cost at one-hop neighbor nodes and achieves high channel utilization under heavy network loads. BN-MAC is particularly designed for region-wise WSNs. Each region is controlled by a boarder node (BN), which is of paramount importance. The BN coordinates with the remaining nodes within and beyond the region. Unlike other hybrid MAC protocols, BN-MAC incorporates three promising models that further reduce the energy consumption, idle listening time, overhearing, and congestion to improve the throughput and reduce the latency. One of the models used with BN-MAC is automatic active and sleep (AAS), which reduces the ideal listening time. When nodes finish their monitoring process, AAS lets them automatically go into the sleep state to avoid the idle listening state. Another model used in BN-MAC is the intelligent decision-making (IDM) model, which helps the nodes sense the nature of the environment. Based on the nature of the environment, the nodes decide whether to use the active or passive mode. This decision power of the nodes further reduces energy consumption because the nodes turn off the radio of the transceiver in the passive mode. The third model is the least-distance smart neighboring search (LDSNS), which determines the shortest efficient path to the one-hop neighbor and also provides cross-layering support to handle the mobility of the nodes. The BN-MAC also incorporates a semi-synchronous feature with a low duty cycle, which is advantageous for reducing the latency and energy consumption for several WSN application areas to improve the throughput. BN-MAC uses a unique window slot size to enhance the contention resolution issue for improved throughput. BN-MAC also prefers to communicate within a one-hop destination using Anycast, which maintains load balancing to maintain network reliability. BN-MAC is introduced with the goal of supporting four major application areas: monitoring and behavioral areas, controlling natural disasters, human-centric applications, and tracking mobility and static home automation devices from remote places. These application areas require a congestion-free mobility-supported MAC protocol to guarantee reliable data delivery. BN-MAC was evaluated using network simulator-2 (ns2) and compared with other hybrid MAC protocols, such as Zebra medium access control (Z-MAC), advertisement-based MAC (A-MAC), Speck-MAC, adaptive duty cycle SMAC (ADC-SMAC), and low-power real-time medium access control (LPR-MAC). The simulation results indicate that BN-MAC is a robust and energy-efficient protocol that outperforms other hybrid MAC protocols in the context of quality of service (QoS) parameters, such as energy consumption, latency, throughput, channel access time, successful delivery rate, coverage efficiency, and average duty cycle. PMID:24625737

  16. Bitopic Sphingosine 1-Phosphate Receptor 3 (S1P3) Antagonist Rescue from Complete Heart Block: Pharmacological and Genetic Evidence for Direct S1P3 Regulation of Mouse Cardiac Conduction.

    PubMed

    Sanna, M Germana; Vincent, Kevin P; Repetto, Emanuela; Nguyen, Nhan; Brown, Steven J; Abgaryan, Lusine; Riley, Sean W; Leaf, Nora B; Cahalan, Stuart M; Kiosses, William B; Kohno, Yasushi; Brown, Joan Heller; McCulloch, Andrew D; Rosen, Hugh; Gonzalez-Cabrera, Pedro J

    2016-01-01

    The molecular pharmacology of the G protein-coupled receptors for sphingosine 1-phosphate (S1P) provides important insight into established and new therapeutic targets. A new, potent bitopic S1P3 antagonist, SPM-354, with in vivo activity, has been used, together with S1P3-knockin and S1P3-knockout mice to define the spatial and functional properties of S1P3 in regulating cardiac conduction. We show that S1P3 is a key direct regulator of cardiac rhythm both in vivo and in isolated perfused hearts. 2-Amino-2-[2-(4-octylphenyl)ethyl]propane-1,3-diol in vivo and S1P in isolated hearts induced a spectrum of cardiac effects, ranging from sinus bradycardia to complete heart block, as measured by a surface electrocardiogram in anesthetized mice and in volume-conducted Langendorff preparations. The agonist effects on complete heart block are absent in S1P3-knockout mice and are reversed in wild-type mice with SPM-354, as characterized and described here. Homologous knockin of S1P3-mCherry is fully functional pharmacologically and is strongly expressed by immunohistochemistry confocal microscopy in Hyperpolarization Activated Cyclic Nucleotide Gated Potassium Channel 4 (HCN4)-positive atrioventricular node and His-Purkinje fibers, with relative less expression in the HCN4-positive sinoatrial node. In Langendorff studies, at constant pressure, SPM-354 restored sinus rhythm in S1P-induced complete heart block and fully reversed S1P-mediated bradycardia. S1P3 distribution and function in the mouse ventricular cardiac conduction system suggest a direct mechanism for heart block risk that should be further studied in humans. A richer understanding of receptor and ligand usage in the pacemaker cells of the cardiac system is likely to be useful in understanding ventricular conduction in health, disease, and pharmacology. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  17. Contact Graph Routing

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.

    2011-01-01

    Contact Graph Routing (CGR) is a dynamic routing system that computes routes through a time-varying topology of scheduled communication contacts in a network based on the DTN (Delay-Tolerant Networking) architecture. It is designed to enable dynamic selection of data transmission routes in a space network based on DTN. This dynamic responsiveness in route computation should be significantly more effective and less expensive than static routing, increasing total data return while at the same time reducing mission operations cost and risk. The basic strategy of CGR is to take advantage of the fact that, since flight mission communication operations are planned in detail, the communication routes between any pair of bundle agents in a population of nodes that have all been informed of one another's plans can be inferred from those plans rather than discovered via dialogue (which is impractical over long one-way-light-time space links). Messages that convey this planning information are used to construct contact graphs (time-varying models of network connectivity) from which CGR automatically computes efficient routes for bundles. Automatic route selection increases the flexibility and resilience of the space network, simplifying cross-support and reducing mission management costs. Note that there are no routing tables in Contact Graph Routing. The best route for a bundle destined for a given node may routinely be different from the best route for a different bundle destined for the same node, depending on bundle priority, bundle expiration time, and changes in the current lengths of transmission queues for neighboring nodes; routes must be computed individually for each bundle, from the Bundle Protocol agent's current network connectivity model for the bundle s destination node (the contact graph). Clearly this places a premium on optimizing the implementation of the route computation algorithm. The scalability of CGR to very large networks remains a research topic. The information carried by CGR contact plan messages is useful not only for dynamic route computation, but also for the implementation of rate control, congestion forecasting, transmission episode initiation and termination, timeout interval computation, and retransmission timer suspension and resumption.

  18. Automatic Camera Orientation and Structure Recovery with Samantha

    NASA Astrophysics Data System (ADS)

    Gherardi, R.; Toldo, R.; Garro, V.; Fusiello, A.

    2011-09-01

    SAMANTHA is a software capable of computing camera orientation and structure recovery from a sparse block of casual images without human intervention. It can process both calibrated images or uncalibrated, in which case an autocalibration routine is run. Pictures are organized into a hierarchical tree which has single images as leaves and partial reconstructions as internal nodes. The method proceeds bottom up until it reaches the root node, corresponding to the final result. This framework is one order of magnitude faster than sequential approaches, inherently parallel, less sensitive to the error accumulation causing drift. We have verified the quality of our reconstructions both qualitatively producing compelling point clouds and quantitatively, comparing them with laser scans serving as ground truth.

  19. Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, R; Gallagher, B; Neville, J

    Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the 'roles' of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied ourmore » model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.« less

  20. The Use of Signal Dimensionality for Automatic QC of Seismic Array Data

    NASA Astrophysics Data System (ADS)

    Rowe, C. A.; Stead, R. J.; Begnaud, M. L.; Draganov, D.; Maceira, M.; Gomez, M.

    2014-12-01

    A significant problem in seismic array analysis is the inclusion of bad sensor channels in the beam-forming process. We are testing an approach to automated, on-the-fly quality control (QC) to aid in the identification of poorly performing sensor channels prior to beam-forming in routine event detection or location processing. The idea stems from methods used for large computer servers, when monitoring traffic at enormous numbers of nodes is impractical on a node-by-node basis, so the dimensionality of the node traffic is instead monitored for anomalies that could represent malware, cyber-attacks or other problems. The technique relies upon the use of subspace dimensionality or principal components of the overall system traffic. The subspace technique is not new to seismology, but its most common application has been limited to comparing waveforms to an a priori collection of templates for detecting highly similar events in a swarm or seismic cluster. We examine the signal dimension in similar way to the method addressing node traffic anomalies in large computer systems. We explore the effects of malfunctioning channels on the dimension of the data and its derivatives, and how to leverage this effect for identifying bad array elements. We show preliminary results applied to arrays in Kazakhstan (Makanchi) and Argentina (Malargue).

  1. Investigation of Inter-Node B Macro Diversity for Single-Carrier Based Radio Access in Evolved UTRA Uplink

    NASA Astrophysics Data System (ADS)

    Kawai, Hiroyuki; Morimoto, Akihito; Higuchi, Kenichi; Sawahashi, Mamoru

    This paper investigates the gain of inter-Node B macro diversity for a scheduled-based shared channel using single-carrier FDMA radio access in the Evolved UTRA (UMTS Terrestrial Radio Access) uplink based on system-level simulations. More specifically, we clarify the gain of inter-Node B soft handover (SHO) with selection combining at the radio frame length level (=10msec) compared to that for hard handover (HHO) for a scheduled-based shared data channel, considering the gains of key packet-specific techniques including channel-dependent scheduling, adaptive modulation and coding (AMC), hybrid automatic repeat request (ARQ) with packet combining, and slow transmission power control (TPC). Simulation results show that the inter-Node B SHO increases the user throughput at the cell edge by approximately 10% for a short cell radius such as 100-300m due to the diversity gain from a sudden change in other-cell interference, which is a feature specific to full scheduled-based packet access. However, it is also shown that the gain of inter-Node B SHO compared to that for HHO is small in a macrocell environment when the cell radius is longer than approximately 500m due to the gains from hybrid ARQ with packet combining, slow TPC, and proportional fairness based channel-dependent scheduling.

  2. HOLA: Human-like Orthogonal Network Layout.

    PubMed

    Kieffer, Steve; Dwyer, Tim; Marriott, Kim; Wybrow, Michael

    2016-01-01

    Over the last 50 years a wide variety of automatic network layout algorithms have been developed. Some are fast heuristic techniques suitable for networks with hundreds of thousands of nodes while others are multi-stage frameworks for higher-quality layout of smaller networks. However, despite decades of research currently no algorithm produces layout of comparable quality to that of a human. We give a new "human-centred" methodology for automatic network layout algorithm design that is intended to overcome this deficiency. User studies are first used to identify the aesthetic criteria algorithms should encode, then an algorithm is developed that is informed by these criteria and finally, a follow-up study evaluates the algorithm output. We have used this new methodology to develop an automatic orthogonal network layout method, HOLA, that achieves measurably better (by user study) layout than the best available orthogonal layout algorithm and which produces layouts of comparable quality to those produced by hand.

  3. Wireless Mid-Infrared Spectroscopy Sensor Network for Automatic Carbon Dioxide Fertilization in a Greenhouse Environment

    PubMed Central

    Wang, Jianing; Niu, Xintao; Zheng, Lingjiao; Zheng, Chuantao; Wang, Yiding

    2016-01-01

    In this paper, a wireless mid-infrared spectroscopy sensor network was designed and implemented for carbon dioxide fertilization in a greenhouse environment. A mid-infrared carbon dioxide (CO2) sensor based on non-dispersive infrared (NDIR) with the functionalities of wireless communication and anti-condensation prevention was realized as the sensor node. Smart transmission power regulation was applied in the wireless sensor network, according to the Received Signal Strength Indication (RSSI), to realize high communication stability and low-power consumption deployment. Besides real-time monitoring, this system also provides a CO2 control facility for manual and automatic control through a LabVIEW platform. According to simulations and field tests, the implemented sensor node has a satisfying anti-condensation ability and reliable measurement performance on CO2 concentrations ranging from 30 ppm to 5000 ppm. As an application, based on the Fuzzy proportional, integral, and derivative (PID) algorithm realized on a LabVIEW platform, the CO2 concentration was regulated to some desired concentrations, such as 800 ppm and 1200 ppm, in 30 min with a controlled fluctuation of <±35 ppm in an acre of greenhouse. PMID:27869725

  4. Ca(2+)/calmodulin-activated phosphodiesterase 1A is highly expressed in rabbit cardiac sinoatrial nodal cells and regulates pacemaker function.

    PubMed

    Lukyanenko, Yevgeniya O; Younes, Antoine; Lyashkov, Alexey E; Tarasov, Kirill V; Riordon, Daniel R; Lee, Joonho; Sirenko, Syevda G; Kobrinsky, Evgeny; Ziman, Bruce; Tarasova, Yelena S; Juhaszova, Magdalena; Sollott, Steven J; Graham, David R; Lakatta, Edward G

    2016-09-01

    Constitutive Ca(2+)/calmodulin (CaM)-activation of adenylyl cyclases (ACs) types 1 and 8 in sinoatrial nodal cells (SANC) generates cAMP within lipid-raft-rich microdomains to initiate cAMP-protein kinase A (PKA) signaling, that regulates basal state rhythmic action potential firing of these cells. Mounting evidence in other cell types points to a balance between Ca(2+)-activated counteracting enzymes, ACs and phosphodiesterases (PDEs) within these cells. We hypothesized that the expression and activity of Ca(2+)/CaM-activated PDE Type 1A is higher in SANC than in other cardiac cell types. We found that PDE1A protein expression was 5-fold higher in sinoatrial nodal tissue than in left ventricle, and its mRNA expression was 12-fold greater in the corresponding isolated cells. PDE1 activity (nimodipine-sensitive) accounted for 39% of the total PDE activity in SANC lysates, compared to only 4% in left ventricular cardiomyocytes (LVC). Additionally, total PDE activity in SANC lysates was lowest (10%) in lipid-raft-rich and highest (76%) in lipid-raft-poor fractions (equilibrium sedimentation on a sucrose density gradient). In intact cells PDE1A immunolabeling was not localized to the cell surface membrane (structured illumination microscopy imaging), but located approximately within about 150nm inside of immunolabeling of hyperpolarization-activated cyclic nucleotide-gated potassium channels (HCN4), which reside within lipid-raft-rich microenvironments. In permeabilized SANC, in which surface membrane ion channels are not functional, nimodipine increased spontaneous SR Ca(2+) cycling. PDE1A mRNA silencing in HL-1 cells increased the spontaneous beating rate, reduced the cAMP, and increased cGMP levels in response to IBMX, a broad spectrum PDE inhibitor (detected via fluorescence resonance energy transfer microscopy). We conclude that signaling via cAMP generated by Ca(2+)/CaM-activated AC in SANC lipid raft domains is limited by cAMP degradation by Ca(2+)/CaM-activated PDE1A in non-lipid raft domains. This suggests that local gradients of [Ca(2+)]-CaM or different AC and PDE1A affinity regulate both cAMP production and its degradation, and this balance determines the intensity of Ca(2+)-AC-cAMP-PKA signaling that drives SANC pacemaker function. Copyright © 2016. Published by Elsevier Ltd.

  5. A minimally interactive method to segment enlarged lymph nodes in 3D thoracic CT images using a rotatable spiral-scanning technique

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Moltz, Jan H.; Bornemann, Lars; Hahn, Horst K.

    2012-03-01

    Precise size measurement of enlarged lymph nodes is a significant indicator for diagnosing malignancy, follow-up and therapy monitoring of cancer diseases. The presence of diverse sizes and shapes, inhomogeneous enhancement and the adjacency to neighboring structures with similar intensities, make the segmentation task challenging. We present a semi-automatic approach requiring minimal user interactions to fast and robustly segment the enlarged lymph nodes. First, a stroke approximating the largest diameter of a specific lymph node is drawn manually from which a volume of interest (VOI) is determined. Second, Based on the statistical analysis of the intensities on the dilated stroke area, a region growing procedure is utilized within the VOI to create an initial segmentation of the target lymph node. Third, a rotatable spiral-scanning technique is proposed to resample the 3D boundary surface of the lymph node to a 2D boundary contour in a transformed polar image. The boundary contour is found by seeking the optimal path in 2D polar image with dynamic programming algorithm and eventually transformed back to 3D. Ultimately, the boundary surface of the lymph node is determined using an interpolation scheme followed by post-processing steps. To test the robustness and efficiency of our method, a quantitative evaluation was conducted with a dataset of 315 lymph nodes acquired from 79 patients with lymphoma and melanoma. Compared to the reference segmentations, an average Dice coefficient of 0.88 with a standard deviation of 0.08, and an average absolute surface distance of 0.54mm with a standard deviation of 0.48mm, were achieved.

  6. Automated Meteor Detection by All-Sky Digital Camera Systems

    NASA Astrophysics Data System (ADS)

    Suk, Tomáš; Šimberová, Stanislava

    2017-12-01

    We have developed a set of methods to detect meteor light traces captured by all-sky CCD cameras. Operating at small automatic observatories (stations), these cameras create a network spread over a large territory. Image data coming from these stations are merged in one central node. Since a vast amount of data is collected by the stations in a single night, robotic storage and analysis are essential to processing. The proposed methodology is adapted to data from a network of automatic stations equipped with digital fish-eye cameras and includes data capturing, preparation, pre-processing, analysis, and finally recognition of objects in time sequences. In our experiments we utilized real observed data from two stations.

  7. Discrimination of liver cancer in cellular level based on backscatter micro-spectrum with PCA algorithm and BP neural network

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Wang, Cheng; Cai, Gan; Dong, Xiaona

    2016-10-01

    The incidence and mortality rate of the primary liver cancer are very high and its postoperative metastasis and recurrence have become important factors to the prognosis of patients. Circulating tumor cells (CTC), as a new tumor marker, play important roles in the early diagnosis and individualized treatment. This paper presents an effective method to distinguish liver cancer based on the cellular scattering spectrum, which is a non-fluorescence technique based on the fiber confocal microscopic spectrometer. Combining the principal component analysis (PCA) with back propagation (BP) neural network were utilized to establish an automatic recognition model for backscatter spectrum of the liver cancer cells from blood cell. PCA was applied to reduce the dimension of the scattering spectral data which obtained by the fiber confocal microscopic spectrometer. After dimensionality reduction by PCA, a neural network pattern recognition model with 2 input layer nodes, 11 hidden layer nodes, 3 output nodes was established. We trained the network with 66 samples and also tested it. Results showed that the recognition rate of the three types of cells is more than 90%, the relative standard deviation is only 2.36%. The experimental results showed that the fiber confocal microscopic spectrometer combining with the algorithm of PCA and BP neural network can automatically identify the liver cancer cell from the blood cells. This will provide a better tool for investigating the metastasis of liver cancers in vivo, the biology metabolic characteristics of liver cancers and drug transportation. Additionally, it is obviously referential in practical application.

  8. G-protein mediated gating of inward-rectifier K+ channels.

    PubMed

    Mark, M D; Herlitze, S

    2000-10-01

    G-protein regulated inward-rectifier potassium channels (GIRK) are part of a superfamily of inward-rectifier K+ channels which includes seven family members. To date four GIRK subunits, designated GIRK1-4 (also designated Kir3.1-4), have been identified in mammals, and GIRK5 has been found in Xenopus oocytes. GIRK channels exist in vivo both as homotetramers and heterotetramers. In contrast to the other mammalian GIRK family members, GIRK1 can not form functional channels by itself and has to assemble with GIRK2, 3 or 4. As the name implies, GIRK channels are modulated by G-proteins; they are also modulated by phosphatidylinositol 4,5-bisphosphate, intracellular sodium, ethanol and mechanical stretch. Recently a family of GTPase activating proteins known as regulators of G-protein signaling were shown to be the missing link for the fast deactivation kinetics of GIRK channels in native cells, which contrast with the slow kinetics observed in heterologously expressed channels. GIRK1, 2 and 3 are highly abundant in brain, while GIRK4 has limited distribution. Here, GIRK1/2 seems to be the predominant heterotetramer. In general, neuronal GIRK channels are involved in the regulation of the excitability of neurons and may contribute to the resting potential. Interestingly, only the GIRK1 and 4 subunits are distributed in the atrial and sinoatrial node cells of the heart and are involved in the regulation of cardiac rate. Our main objective of this review is to assess the current understanding of the G-protein modulation of GIRK channels and their physiological importance in mammals.

  9. Structural and functional cardiac cholinergic deficits in adult neurturin knockout mice.

    PubMed

    Mabe, Abigail M; Hoover, Donald B

    2009-04-01

    Previous work provided indirect evidence that the neurotrophic factor neurturin (NRTN) is required for normal cholinergic innervation of the heart. This study used nrtn knockout (KO) and wild-type (WT) mice to determine the effect of nrtn deletion on cardiac cholinergic innervation and function in the adult heart. Immunohistochemistry, confocal microscopy, and quantitative image analysis were used to directly evaluate intrinsic cardiac neuronal development. Atrial acetylcholine (ACh) levels were determined as an indirect index of cholinergic innervation. Cholinergic function was evaluated by measuring negative chronotropic responses to right vagal nerve stimulation in anaesthetized mice and responses of isolated atria to muscarinic agonists. KO hearts contained only 35% the normal number of cholinergic neurons, and the residual cholinergic neurons were 15% smaller than in WT. Cholinergic nerve density at the sinoatrial node was reduced by 87% in KOs, but noradrenergic nerve density was unaffected. Atrial ACh levels were substantially lower in KO mice (0.013 +/- 0.004 vs. 0.050 +/- 0.011 pmol/microg protein; P < 0.02) as expected from cholinergic neuron and nerve fibre deficits. Maximum bradycardia evoked by vagal stimulation was reduced in KO mice (38 +/- 6% vs. 69 +/- 3% decrease at 20 Hz; P < 0.001), and chronotropic responses took longer to develop and fade. In contrast to these deficits, isolated atria from KO mice had normal post-junctional sensitivity to carbachol and bethanechol. These findings demonstrate that NRTN is essential for normal cardiac cholinergic innervation and cholinergic control of heart rate. The presence of residual cardiac cholinergic neurons and vagal bradycardia in KO mice suggests that additional neurotrophic factors may influence this system.

  10. High resolution heart rate variability analysis in patients with angina pectoris during coronary artery bypass graft surgery

    NASA Astrophysics Data System (ADS)

    Mironov, V. A.; Mironova, T. F.; Kuvatov, V. A.; Nokhrina, O. Yu.; Kuvatova, E. V.

    2017-12-01

    The purpose of the study is approbation of the capabilities of high-resolution rhythmocardiography (RCG) for the determination of the actual cardiovascular status of operated patients with angina pectoris during coronary artery bypass graft surgery (CABGS) for myocardial revascularization. The research was done by means of a KAP-RK-02-Mikor hardware-software complex with a monitor record and the time- and frequency-domain analyses of heart rate variability (HRV). Monitor records were made at each stage of CABGS in 123 patients. As a result, HRV manifested itself as a fairly adequate and promising method for the determination of the cardiovascular status during CABGS. In addition, the data of the HRV study during CABGS testify to the capability of RCG to determine the high risk of life-threatening cardioarrhythmias before and during operation, to different changes in sinoatrial heart node (SN) dysregulation, and contain the HRV symptoms of a high death risk before, during and after shunting. The loss of the peripheral autonomic sympathetic and parasympathetic control in SN in the form of the autonomic cardioneuropathy syndrome is a predictor of the complications related to CABGS. The obtained data on RCG monitoring of HRV recording are suggestive of wide prospects of the high-resolution RCG method to be used in cardiac surgery as a whole. The actual multivariant dysregulations of SN pacemaker activity testify to its adequacy to the pathophysiology of each period of the cardiac operation, according to the initial ischemic damages and localization of cardiosurgical manipulations during CABGS.

  11. Mechanism underlying impaired cardiac pacemaking rhythm during ischemia: A simulation study

    NASA Astrophysics Data System (ADS)

    Bai, Xiangyun; Wang, Kuanquan; Yuan, Yongfeng; Li, Qince; Dobrzynski, Halina; Boyett, Mark R.; Hancox, Jules C.; Zhang, Henggui

    2017-09-01

    Ischemia in the heart impairs function of the cardiac pacemaker, the sinoatrial node (SAN). However, the ionic mechanisms underlying the ischemia-induced dysfunction of the SAN remain elusive. In order to investigate the ionic mechanisms by which ischemia causes SAN dysfunction, action potential models of rabbit SAN and atrial cells were modified to incorporate extant experimental data of ischemia-induced changes to membrane ion channels and intracellular ion homeostasis. The cell models were incorporated into an anatomically detailed 2D model of the intact SAN-atrium. Using the multi-scale models, the functional impact of ischemia-induced electrical alterations on cardiac pacemaking action potentials (APs) and their conduction was investigated. The effects of vagal tone activity on the regulation of cardiac pacemaker activity in control and ischemic conditions were also investigated. The simulation results showed that at the cellular level ischemia slowed the SAN pacemaking rate, which was mainly attributable to the altered Na+-Ca2+ exchange current and the ATP-sensitive potassium current. In the 2D SAN-atrium tissue model, ischemia slowed down both the pacemaking rate and the conduction velocity of APs into the surrounding atrial tissue. Simulated vagal nerve activity, including the actions of acetylcholine in the model, amplified the effects of ischemia, leading to possible SAN arrest and/or conduction exit block, which are major features of the sick sinus syndrome. In conclusion, this study provides novel insights into understanding the mechanisms by which ischemia alters SAN function, identifying specific conductances as contributors to bradycardia and conduction block.

  12. Characterization of a right atrial subsidiary pacemaker and acceleration of the pacing rate by HCN over-expression.

    PubMed

    Morris, Gwilym M; D'Souza, Alicia; Dobrzynski, Halina; Lei, Ming; Choudhury, Moinuddin; Billeter, Rudi; Kryukova, Yelena; Robinson, Richard B; Kingston, Paul A; Boyett, Mark R

    2013-10-01

    Although the right atrium (RA contains subsidiary atrial pacemaker (SAP) tissue that can take over from the sinoatrial node (SAN) in sick sinus syndrome (SSS), SAP tissue is bradycardic. Little is known about SAP tissue and one aim of the study was to characterize ion channel expression to obtain insight into SAP pacemaker mechanisms. A second aim was to determine whether HCN over-expression (a 'biopacemaker'-like strategy) can accelerate the pacemaker rate producing a pacemaker that is similar in nature to the SAN. SAP tissue was isolated from the rat and the leading pacemaker site was characterized. Cell size at the leading pacemaker site in the SAP was smaller than in the RA and comparable to that in the SAN. mRNA levels showed the SAP to be similar to, but distinct from, the SAN. For example, in the SAN and SAP, expression of Tbx3 and HCN1 was higher and Nav1.5 and Cx43 lower than in the RA. Organ-cultured SAP tissue beat spontaneously, but at a slower rate than the SAN. Adenovirus-mediated gene transfer of HCN2 and the chimeric protein HCN212 significantly increased the pacemaker rate of the SAP close to that of the native SAN, but HCN4 was ineffective. SAP tissue near the inferior vena cava is bradycardic, but shares characteristics with the SAN. Pacing can be accelerated by the over-expression of HCN2 or HCN212. This provides proof of concept for the use of SAP tissue as a substrate for biopacemaking in the treatment of SSS.

  13. Ivabradine: Current and Future Treatment of Heart Failure.

    PubMed

    Thorup, Lene; Simonsen, Ulf; Grimm, Daniela; Hedegaard, Elise R

    2017-08-01

    In heart failure (HF), the heart cannot pump blood efficiently and is therefore unable to meet the body's demands of oxygen, and/or there is increased end-diastolic pressure. Current treatments for HF with reduced ejection fraction (HFrEF) include angiotensin-converting enzyme (ACE) inhibitors, angiotension receptor type 1 (AT 1 ) antagonists, β-adrenoceptor antagonists, aldosterone receptor antagonists, diuretics, digoxin and a combination drug with AT 1 receptor antagonist and neprilysin inhibitor. In HF, the risk of readmission for hospital and mortality is markedly higher with a heart rate (HR) above 70 bpm. Here, we review the evidence regarding the use of ivabradine for lowering HR in HF. Ivabradine is a blocker of an I funny current (I(f)) channel and causes rate-dependent inhibition of the pacemaker activity in the sinoatrial node. In clinical trials of HFrEF, treatment with ivabradine seems to improve clinical outcome, for example improved ejection fraction (EF) and less readmission for hospital, but the effect appears most pronounced in patients with HRs above 70 bpm, while the effect on cardiovascular death appears less consistent. The adverse effects of ivabradine include bradycardia, atrial fibrillation and visual disturbances, but ivabradine avoids the negative inotrope effects observed with β-adrenoceptor antagonists. In conclusion, in patients with stable HFrEF with EF<35% and HR above 70 bpm, ivabradine improves the outcome and might be a first choice of therapy, if beta-adrenoceptor antagonists are not tolerated. Further studies must show whether that can be extended to HF patients with preserved EF. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  14. Reversible autonomic dysfunction in hyperthyroid patients affects gastric myoelectrical activity and emptying.

    PubMed

    Barczyński, M; Thor, P

    2001-08-01

    The autonomic nervous system (ANS) function in hyperthyroidism has been so far investigated mainly from the cardiovascular point of view. The aim of this study is to show that the ANS dysfunction in hyperthyroidism is also expressed in gastric myoelectrical activity disturbances and gastric emptying disorders and to search for a correlation between the severity of clinical manifestation and free thyroid hormone levels and the degree of the ANS dysfunction. The analyzed group included 50 recently diagnosed patients with hyperthyroidism who were examined twice: before and after 3 months of thyrostatic treatment. Results were compared with those of a sex-, age- and BMI-matched control group of 50 healthy volunteers. The study included: heart rate variability analysis in time and frequency domain, at rest and during a deep-breathing test, surface electrogastrography in preprandial and postprandial periods measured simultaneously with the ultrasound assessment of gastric emptying time by Bolondi method. In patients with hyperthyroidism in comparison with the control group, the following significant differences were observed: a sharp reduction of the high-frequency component and a decrease of heart rate variability, a high incidence of dysrhythmia with dominant bradyarrhythmia, and a delay of gastric emptying. The degree of disorders related to the degree of clinical manifestation of hyperthyroidism's symptoms and free triiodothyronine serum concentration both. All the disorders were functional and disappeared in a stable euthyroidism. To conclude, the ANS dysfunction in hyperthyroidism results not only in withdrawal of vagal inhibitory effect on sinoatrial node, but in impaired mutual neuro-hormonal regulation (decrease of vagal influence) of gastric myoelectrical activity followed by delay of gastric emptying.

  15. Built-in-test by signature inspection (bitsi)

    DOEpatents

    Bergeson, Gary C.; Morneau, Richard A.

    1991-01-01

    A system and method for fault detection for electronic circuits. A stimulus generator sends a signal to the input of the circuit under test. Signature inspection logic compares the resultant signal from test nodes on the circuit to an expected signal. If the signals do not match, the signature inspection logic sends a signal to the control logic for indication of fault detection in the circuit. A data input multiplexer between the test nodes of the circuit under test and the signature inspection logic can provide for identification of the specific node at fault by the signature inspection logic. Control logic responsive to the signature inspection logic conveys information about fault detection for use in determining the condition of the circuit. When used in conjunction with a system test controller, the built-in test by signature inspection system and method can be used to poll a plurality of circuits automatically and continuous for faults and record the results of such polling in the system test controller.

  16. Scheduling based on a dynamic resource connection

    NASA Astrophysics Data System (ADS)

    Nagiyev, A. E.; Botygin, I. A.; Shersntneva, A. I.; Konyaev, P. A.

    2017-02-01

    The practical using of distributed computing systems associated with many problems, including troubles with the organization of an effective interaction between the agents located at the nodes of the system, with the specific configuration of each node of the system to perform a certain task, with the effective distribution of the available information and computational resources of the system, with the control of multithreading which implements the logic of solving research problems and so on. The article describes the method of computing load balancing in distributed automatic systems, focused on the multi-agency and multi-threaded data processing. The scheme of the control of processing requests from the terminal devices, providing the effective dynamic scaling of computing power under peak load is offered. The results of the model experiments research of the developed load scheduling algorithm are set out. These results show the effectiveness of the algorithm even with a significant expansion in the number of connected nodes and zoom in the architecture distributed computing system.

  17. New modeling method for the dielectric relaxation of a DRAM cell capacitor

    NASA Astrophysics Data System (ADS)

    Choi, Sujin; Sun, Wookyung; Shin, Hyungsoon

    2018-02-01

    This study proposes a new method for automatically synthesizing the equivalent circuit of the dielectric relaxation (DR) characteristic in dynamic random access memory (DRAM) without frequency dependent capacitance measurement. Charge loss due to DR can be observed by a voltage drop at the storage node and this phenomenon can be analyzed by an equivalent circuit. The Havariliak-Negami model is used to accurately determine the electrical characteristic parameters of an equivalent circuit. The DRAM sensing operation is performed in HSPICE simulations to verify this new method. The simulation demonstrates that the storage node voltage drop resulting from DR and the reduction in the sensing voltage margin, which has a critical impact on DRAM read operation, can be accurately estimated using this new method.

  18. Cartographic generalization of urban street networks based on gravitational field theory

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Li, Yongshu; Li, Zheng; Guo, Jiawei

    2014-05-01

    The automatic generalization of urban street networks is a constant and important aspect of geographical information science. Previous studies show that the dual graph for street-street relationships more accurately reflects the overall morphological properties and importance of streets than do other methods. In this study, we construct a dual graph to represent street-street relationship and propose an approach to generalize street networks based on gravitational field theory. We retain the global structural properties and topological connectivity of an original street network and borrow from gravitational field theory to define the gravitational force between nodes. The concept of multi-order neighbors is introduced and the gravitational force is taken as the measure of the importance contribution between nodes. The importance of a node is defined as the result of the interaction between a given node and its multi-order neighbors. Degree distribution is used to evaluate the level of maintaining the global structure and topological characteristics of a street network and to illustrate the efficiency of the suggested method. Experimental results indicate that the proposed approach can be used in generalizing street networks and retaining their density characteristics, connectivity and global structure.

  19. Relative Localization in Wireless Sensor Networks for Measurement of Electric Fields under HVDC Transmission Lines

    PubMed Central

    Cui, Yong; Wang, Qiusheng; Yuan, Haiwen; Song, Xiao; Hu, Xuemin; Zhao, Luxing

    2015-01-01

    In the wireless sensor networks (WSNs) for electric field measurement system under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes' neighbor lists based on the Received Signal Strength Indicator (RSSI) values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions. PMID:25658390

  20. Relative localization in wireless sensor networks for measurement of electric fields under HVDC transmission lines.

    PubMed

    Cui, Yong; Wang, Qiusheng; Yuan, Haiwen; Song, Xiao; Hu, Xuemin; Zhao, Luxing

    2015-02-04

    In the wireless sensor networks (WSNs) for electric field measurement system under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes' neighbor lists based on the Received Signal Strength Indicator (RSSI) values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions.

  1. Processes in the Resolution of Ambiguous Words: Towards a Model of Selective Inhibition. Cognitive Science Program, Technical Report No. 86-6.

    ERIC Educational Resources Information Center

    Yee, Penny L.

    This study investigates the role of specific inhibitory processes in lexical ambiguity resolution. An attentional view of inhibition and a view based on specific automatic inhibition between nodes predict different results when a neutral item is processed between an ambiguous word and a related target. Subjects were 32 English speakers with normal…

  2. Intelligent system for automatic feature detection and selection or identification

    DOEpatents

    Sun, Chuen-Tsai; Jang, Jyh-Shing; Fu, Chi-Yung

    1997-01-01

    A neural network uses a fuzzy membership function, the parameters of which are adaptive during the training process, to parameterize the interconnection weights between an (n-1)'th layer and an n'th layer of the network. Each j'th node in each k'th layer of the network except the input layer produces its output value y.sub.k,j according to the function ##EQU1## where N.sub.k-1 is the number of nodes in layer k-1, i indexes the nodes of layer k-1 and all the w.sub.k,i,j are interconnection weights. The interconnection weights to all nodes j in the n'th layer are given by w.sub.n,i,j =w.sub.n,j (i, p.sub.n,j,1, . . . , p.sub.n,j,p.sbsb.n). The apparatus is trained by setting values for at least one of the parameters p.sub.n,j,1, . . . , p.sub.n,j,Pn. Preferably the number of parameters P.sub.n is less than the number of nodes N.sub.n-1 in layer n-1. w.sub.n,j (i,p.sub.n,j,1, . . . , p.sub.n,j,Pn) can be convex in i, and it can be bell-shaped. Sample functions for w.sub.n,j (i, p.sub.n,j,1, . . . , p.sub.n,j,Pn) include ##EQU2##

  3. Material suspension within an acoustically excited resonant chamber. [at near weightless conditions

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Saffren, M. M.; Elleman, D. D. (Inventor)

    1975-01-01

    A method is described for positioning an object within a chamber, which is especially useful in performing manufacturing operations under zero gravity conditions. Sound waves are applied within the chamber in different directions and at a frequency for each direction that establishes a standing wave pattern so that the object is automatically urged towards the intersections of the nodes, or locations of minimum pressure.

  4. New Navy Fighting Machine in the South China Sea

    DTIC Science & Technology

    2012-06-01

    documents/SD_WhitePaper_Mil6. pdf . Rubel, Robert C. "The Future of the Aircraft Carrier." Naval War College Review, Autumn 2011, http:// www.usnwc.edu...50 Figure 8. CT USV Disbursement Amongst Combatants Tactic...51 Figure 9. FALCON Laser Node Affixed to DC-3 Aircraft ...Area Denial AAC Air-to-Air Combat AAD Anti- Aircraft Defense AGC Automatic Gain Control AGS Advanced Gun System ARIES Airborne Reconnaissance

  5. Toward seamless wearable sensing: Automatic on-body sensor localization for physical activity monitoring.

    PubMed

    Saeedi, Ramyar; Purath, Janet; Venkatasubramanian, Krishna; Ghasemzadeh, Hassan

    2014-01-01

    Mobile wearable sensors have demonstrated great potential in a broad range of applications in healthcare and wellness. These technologies are known for their potential to revolutionize the way next generation medical services are supplied and consumed by providing more effective interventions, improving health outcomes, and substantially reducing healthcare costs. Despite these potentials, utilization of these sensor devices is currently limited to lab settings and in highly controlled clinical trials. A major obstacle in widespread utilization of these systems is that the sensors need to be used in predefined locations on the body in order to provide accurate outcomes such as type of physical activity performed by the user. This has reduced users' willingness to utilize such technologies. In this paper, we propose a novel signal processing approach that leverages feature selection algorithms for accurate and automatic localization of wearable sensors. Our results based on real data collected using wearable motion sensors demonstrate that the proposed approach can perform sensor localization with 98.4% accuracy which is 30.7% more accurate than an approach without a feature selection mechanism. Furthermore, utilizing our node localization algorithm aids the activity recognition algorithm to achieve 98.8% accuracy (an increase from 33.6% for the system without node localization).

  6. Acquisition Of Rainfall Dataset And The Application For The Automatic Harvester In The Chesapeake Bay Region

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Piasecki, M.

    2008-12-01

    The objective of this study is the preparation and indexing of rainfall data products for ingestion into the Chesapeake Bay Environmental Observatory (CBEO) node of the CUAHSI/WATERs network. Rainfall products (which are obtained and then processed based on the WSR-88D NEXRAD network) are obtained from the NOAA/NWS Advanced Hydrologic Prediction Service that combines the Multi-sensor Precipitation Estimate (MPE) data generated by the Regional River Forecast Centers and Hydro-NEXRAD rainfall data generated as a service by the University of Iowa. The former is collected on 4*4 km grid (HRAP) with a daily average temporal resolution and the latter on a 1minute*1minute degree grid with hourly values. We have generated a cut-out for the Chesapeake Bay Basin that contains about 9,300 nodes (sites) for the MPE data and about 300,000 nodes (sites) for the Hydro-NEXRAD product. Automated harvesting services have been implemented for both data products. The MPE data is harvested from its download site using ArcGIS which in turn is used to extract the data for the Chesapeake Bay watershed before a scripting program is used to scatter the data into the ODM. The Hydro-NEXRAD is downloaded from a web-based system at the University of Iowa which permits downloads for large scale watersheds organized by Hydraulic Unit Codes (HUC). The resulting ASCII is then automatically parsed and the information stored alongside the MPE data. The two data products stored side-by-side then allows a comparison between them addressing the accuracy and agreement between the methods used to arrive at rainfall data as both use the raw reflectivity data from the WSD-88D system.

  7. Automatic yield-line analysis of slabs using discontinuity layout optimization

    PubMed Central

    Gilbert, Matthew; He, Linwei; Smith, Colin C.; Le, Canh V.

    2014-01-01

    The yield-line method of analysis is a long established and extremely effective means of estimating the maximum load sustainable by a slab or plate. However, although numerous attempts to automate the process of directly identifying the critical pattern of yield-lines have been made over the past few decades, to date none has proved capable of reliably analysing slabs of arbitrary geometry. Here, it is demonstrated that the discontinuity layout optimization (DLO) procedure can successfully be applied to such problems. The procedure involves discretization of the problem using nodes inter-connected by potential yield-line discontinuities, with the critical layout of these then identified using linear programming. The procedure is applied to various benchmark problems, demonstrating that highly accurate solutions can be obtained, and showing that DLO provides a truly systematic means of directly and reliably automatically identifying yield-line patterns. Finally, since the critical yield-line patterns for many problems are found to be quite complex in form, a means of automatically simplifying these is presented. PMID:25104905

  8. Fast Appearance Modeling for Automatic Primary Video Object Segmentation.

    PubMed

    Yang, Jiong; Price, Brian; Shen, Xiaohui; Lin, Zhe; Yuan, Junsong

    2016-02-01

    Automatic segmentation of the primary object in a video clip is a challenging problem as there is no prior knowledge of the primary object. Most existing techniques thus adapt an iterative approach for foreground and background appearance modeling, i.e., fix the appearance model while optimizing the segmentation and fix the segmentation while optimizing the appearance model. However, these approaches may rely on good initialization and can be easily trapped in local optimal. In addition, they are usually time consuming for analyzing videos. To address these limitations, we propose a novel and efficient appearance modeling technique for automatic primary video object segmentation in the Markov random field (MRF) framework. It embeds the appearance constraint as auxiliary nodes and edges in the MRF structure, and can optimize both the segmentation and appearance model parameters simultaneously in one graph cut. The extensive experimental evaluations validate the superiority of the proposed approach over the state-of-the-art methods, in both efficiency and effectiveness.

  9. Research on Centralized Voltage and Effective Inequality Identification Based on Circuit Analysis Method

    NASA Astrophysics Data System (ADS)

    Su, Yi; Wang, Feifeng; Lu, Yufeng; Huang, Huimin; Xia, Xiaofei

    2017-09-01

    This paper is based on affine function equation of the grid and OPF problem, discusses the equivalent of some inequality constraints variables optimizing. Further, we propose the model of injection current and set up the constraint sensitivity index of affine characteristics. The index can be used to identify the central point voltage and effective inequality of the system automatically. And then we can know how to compensate reactive power of the corresponding generator node and control the voltage to ensure the quality of the system voltage. When checking the effective inequalities we introduce cross-solving method of power flow. This provide a different idea for solving the power flow. The paper uses the results of the IEEE5 node examples to illustrate the validity and practicality of the proposed method.

  10. The navigation system of the JPL robot

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.

    1977-01-01

    The control structure of the JPL research robot and the operations of the navigation subsystem are discussed. The robot functions as a network of interacting concurrent processes distributed among several computers and coordinated by a central executive. The results of scene analysis are used to create a segmented terrain model in which surface regions are classified by traversibility. The model is used by a path planning algorithm, PATH, which uses tree search methods to find the optimal path to a goal. In PATH, the search space is defined dynamically as a consequence of node testing. Maze-solving and the use of an associative data base for context dependent node generation are also discussed. Execution of a planned path is accomplished by a feedback guidance process with automatic error recovery.

  11. Automatic Single Event Effects Sensitivity Analysis of a 13-Bit Successive Approximation ADC

    NASA Astrophysics Data System (ADS)

    Márquez, F.; Muñoz, F.; Palomo, F. R.; Sanz, L.; López-Morillo, E.; Aguirre, M. A.; Jiménez, A.

    2015-08-01

    This paper presents Analog Fault Tolerant University of Seville Debugging System (AFTU), a tool to evaluate the Single-Event Effect (SEE) sensitivity of analog/mixed signal microelectronic circuits at transistor level. As analog cells can behave in an unpredictable way when critical areas interact with the particle hitting, there is a need for designers to have a software tool that allows an automatic and exhaustive analysis of Single-Event Effects influence. AFTU takes the test-bench SPECTRE design, emulates radiation conditions and automatically evaluates vulnerabilities using user-defined heuristics. To illustrate the utility of the tool, the SEE sensitivity of a 13-bits Successive Approximation Analog-to-Digital Converter (ADC) has been analysed. This circuit was selected not only because it was designed for space applications, but also due to the fact that a manual SEE sensitivity analysis would be too time-consuming. After a user-defined test campaign, it was detected that some voltage transients were propagated to a node where a parasitic diode was activated, affecting the offset cancelation, and therefore the whole resolution of the ADC. A simple modification of the scheme solved the problem, as it was verified with another automatic SEE sensitivity analysis.

  12. An image-based approach for automatic detecting five true-leaves stage of cotton

    NASA Astrophysics Data System (ADS)

    Li, Yanan; Cao, Zhiguo; Wu, Xi; Yu, Zhenghong; Wang, Yu; Bai, Xiaodong

    2013-10-01

    Cotton, as one of the four major economic crops, is of great significance to the development of the national economy. Monitoring cotton growth status by automatic image-based detection makes sense due to its low-cost, low-labor and the capability of continuous observations. However, little research has been done to improve close observation of different growth stages of field crops using digital cameras. Therefore, algorithms proposed by us were developed to detect the growth information and predict the starting date of cotton automatically. In this paper, we introduce an approach for automatic detecting five true-leaves stage, which is a critical growth stage of cotton. On account of the drawbacks caused by illumination and the complex background, we cannot use the global coverage as the unique standard of judgment. Consequently, we propose a new method to determine the five true-leaves stage through detecting the node number between the main stem and the side stems, based on the agricultural meteorological observation specification. The error of the results between the predicted starting date with the proposed algorithm and artificial observations is restricted to no more than one day.

  13. From syncitium to regulated pump: a cardiac muscle cellular update

    PubMed Central

    2011-01-01

    The primary purpose of this article is to present a basic overview of some key teaching concepts that should be considered for inclusion in an six- to eight-lecture introductory block on the regulation of cardiac performance for graduate students. Within the context of cardiac excitation-contraction coupling, this review incorporates information on Ca2+ microdomains and local control theory, with particular emphasis on the role of Ca2+ sparks as a key regulatory component of ventricular myocyte contraction dynamics. Recent information pertaining to local Ca2+ cycling in sinoatrial nodal cells (SANCs) as a mechanism underlying cardiac automaticity is also presented as part of the recently described coupled-clock pacemaker system. The details of this regulation are emerging; however, the notion that the sequestration and release of Ca2+ from internal stores in SANCs (similar to that observed in ventricular myocytes) regulates the rhythmic excitation of the heart (i.e., membrane ion channels) is an important advancement in this area. The regulatory role of cardiac adrenergic receptors on cardiac rate and function is also included, and fundamental concepts related to intracellular signaling are discussed. An important point of emphasis is that whole organ cardiac dynamics can be traced back to cellular events regulating intracellular Ca2+ homeostasis and, as such, provides an important conceptual framework from which students can begin to think about whole organ physiology in health and disease. Greater synchrony of Ca2+-regulatory mechanisms between ventricular and pacemaker cells should enhance student comprehension of complex regulatory phenomenon in cardiac muscle. PMID:21385997

  14. An Integrative Structural Health Monitoring System for the Local/Global Responses of a Large-Scale Irregular Building under Construction

    PubMed Central

    Park, Hyo Seon; Shin, Yunah; Choi, Se Woon; Kim, Yousok

    2013-01-01

    In this study, a practical and integrative SHM system was developed and applied to a large-scale irregular building under construction, where many challenging issues exist. In the proposed sensor network, customized energy-efficient wireless sensing units (sensor nodes, repeater nodes, and master nodes) were employed and comprehensive communications from the sensor node to the remote monitoring server were conducted through wireless communications. The long-term (13-month) monitoring results recorded from a large number of sensors (75 vibrating wire strain gauges, 10 inclinometers, and three laser displacement sensors) indicated that the construction event exhibiting the largest influence on structural behavior was the removal of bents that were temporarily installed to support the free end of the cantilevered members during their construction. The safety of each member could be confirmed based on the quantitative evaluation of each response. Furthermore, it was also confirmed that the relation between these responses (i.e., deflection, strain, and inclination) can provide information about the global behavior of structures induced from specific events. Analysis of the measurement results demonstrates the proposed sensor network system is capable of automatic and real-time monitoring and can be applied and utilized for both the safety evaluation and precise implementation of buildings under construction. PMID:23860317

  15. An artificial immune system approach with secondary response for misbehavior detection in mobile ad hoc networks.

    PubMed

    Sarafijanović, Slavisa; Le Boudec, Jean-Yves

    2005-09-01

    In mobile ad hoc networks, nodes act both as terminals and information relays, and they participate in a common routing protocol, such as dynamic source routing (DSR). The network is vulnerable to routing misbehavior, due to faulty or malicious nodes. Misbehavior detection systems aim at removing this vulnerability. In this paper, we investigate the use of an artificial immune system (AIS) to detect node misbehavior in a mobile ad hoc network using DSR. The system is inspired by the natural immune system (IS) of vertebrates. Our goal is to build a system that, like its natural counterpart, automatically learns, and detects new misbehavior. We describe our solution for the classification task of the AIS; it employs negative selection and clonal selection, the algorithms for learning and adaptation used by the natural IS. We define how we map the natural IS concepts such as self, antigen, and antibody to a mobile ad hoc network and give the resulting algorithm for classifying nodes as misbehaving. We implemented the system in the network simulator Glomosim; we present detection results and discuss how the system parameters affect the performance of primary and secondary response. Further steps will extend the design by using an analogy to the innate system, danger signal, and memory cells.

  16. Modular Neural Networks for Speech Recognition.

    DTIC Science & Technology

    1996-08-01

    automatic speech rccogni- tion, understanding and translation since the early 1950’ s . Although researchers have demonstrated impressive results with...nodes. It serves only as a data source for the following hidden layer( s ). Finally, the networks output is computed by neurons in the output layer. The...following update rule for weights in the hidden layer: w (,,•+I) ("’) E/V S (W W k- = wj, -- 7 - / v It is easy to generalize the backpropagation

  17. The Model Analyst’s Toolkit: Scientific Model Development, Analysis, and Validation

    DTIC Science & Technology

    2014-05-20

    but there can still be many recommendations generated. Therefore, the recommender results are displayed in a sortable table where each row is a...reporting period. Since the synthesis graph can be complex and have many dependencies, the system must determine the order of evaluation of nodes, and...validation failure, if any. 3.1. Automatic Feature Extraction In many domains, causal models can often be more readily described as patterns of

  18. Significance and interest of dense seismic arrays for understanding the mechanics of clayey landslides: a test case of 150 nodes at Super-Sauze landslide

    NASA Astrophysics Data System (ADS)

    Provost, Floriane; Malet, Jean-Philippe; Hibert, Clément; Vergne, Jérôme

    2017-04-01

    Clayey landslides present various seismic sources generated by the slope deformation (rockfall, slidequakes, tremors, fluid transfers). However, the characterization of the micro-seismicity and the construction of advanced catalogs (classification of the seismic source, time, and location) are complex for such objects because of the variety of recorded signals, the low signal to noise ratios, the highly attenuating medium, and the small size of the object that limits the picking of the P and S-waves. A full understanding of the seismic sources is hence often difficult because of the few number of seismometers, the large distance source-to-sensor (> 50m) and because of the lack of a continous spatially distributed record of the slope deformation. Recent progress in the geophysical instrumentation allowed the deployment of a dense network of 150 ZLand nodes (Tesla Corp.) combined with a Ground-Based InSAR sensor (IDS, IBIS-FM) for a period of ca. 2 months at the Super-Sauze clayey landslide (South French Alps). The Zland nodes are vertical wireless seismometers with 12 days autonomy. Three nodes were co-located at 50 locations in the most active part of the landslide and above the main scarp with a sensor-to-sensor distance of ca. 50m and a sample frequency of 400Hz. The Ground-Based InSAR sensor was installed in front of the landslide at a distance of ca. 800m and acquired an image every 15 minutes. The seismic events are detected automatically based on their spectrogram content with Signal-to-Noise Ratio (SNR) larger than 1.5 and automatically classified using the Random Forest algorithm. The landslide endogenous sources are then located by optimization of the inter-trace correlation of the first arrivals. This experiment aims to document the deformation of the landslide by combining surface and in depth information and provides a new insight into the seismic sources interpretation. The spatial distribution of the deformation is compared to the location of the endogenous seismic events in order to analyze seismic vs. aseismic deformation.

  19. Metamesh, Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staley, Martin

    Metamesh is a general-purpose C++ library for creating "mesh" data structures from smaller parts. That is, rather than providing a traditional "mesh format," as many libraries do, or a GUI for building meshes, Metamesh provides tools by which the mesh structures themselves can be built. Consider that a mesh in up to three dimensions can contain nodes (0d entities), edges (1d), faces (2d), and cells (3d). Edges are typically defined from two nodes. Faces can be defined from nodes or edges; and cells from nodes, edges, or faces. Someone might also wish to allow for general faces or cells, ormore » for only a specific variant - say, triangular faces and tetrahedral cells. Moreover, a mesh can have the same or a lesser dimension than that of its enclosing space. In 3d, say, one could have a full 3d mesh, a 2d "sheet" mesh without cells, a 1d "string" mesh with neither faces nor cells, or even a 1d "point cloud." And, aside from the mesh structure itself, additional data might be wanted: velocities at nodes, say, or fluxes across faces, or an average density in each cell. Metamesh supports all of this, through C++ generics and template metaprogramming techniques. Users fit Metamesh constructs together to define a mesh layout, and Metamesh then automatically provides the newly constructed mesh with functionality. Metamesh also provides facilities for spinning, extruding, visualizing, and performing I/O of whatever meshes a user builds.« less

  20. A Bayesian Sampler for Optimization of Protein Domain Hierarchies

    PubMed Central

    2014-01-01

    Abstract The process of identifying and modeling functionally divergent subgroups for a specific protein domain class and arranging these subgroups hierarchically has, thus far, largely been done via manual curation. How to accomplish this automatically and optimally is an unsolved statistical and algorithmic problem that is addressed here via Markov chain Monte Carlo sampling. Taking as input a (typically very large) multiple-sequence alignment, the sampler creates and optimizes a hierarchy by adding and deleting leaf nodes, by moving nodes and subtrees up and down the hierarchy, by inserting or deleting internal nodes, and by redefining the sequences and conserved patterns associated with each node. All such operations are based on a probability distribution that models the conserved and divergent patterns defining each subgroup. When we view these patterns as sequence determinants of protein function, each node or subtree in such a hierarchy corresponds to a subgroup of sequences with similar biological properties. The sampler can be applied either de novo or to an existing hierarchy. When applied to 60 protein domains from multiple starting points in this way, it converged on similar solutions with nearly identical log-likelihood ratio scores, suggesting that it typically finds the optimal peak in the posterior probability distribution. Similarities and differences between independently generated, nearly optimal hierarchies for a given domain help distinguish robust from statistically uncertain features. Thus, a future application of the sampler is to provide confidence measures for various features of a domain hierarchy. PMID:24494927

  1. Intelligent system for automatic feature detection and selection or identification

    DOEpatents

    Sun, C.T.; Shiang, P.S.; Jang, J.S.; Fu, C.Y.

    1997-09-02

    A neural network uses a fuzzy membership function, the parameters of which are adaptive during the training process, to parameterize the interconnection weights between an (n{minus}1)`th layer and an n`th layer of the network. Each j`th node in each k`th layer of the network except the input layer produces its output value y{sub k,j} according to the function shown in Equation 1 where N{sub k{minus}1} is the number of nodes in layer k{minus}1, i indexes the nodes of layer k{minus}1 and all the w{sub k,i,j} are interconnection weights. The interconnection weights to all nodes j in the n`th layer are given by w{sub n,i,j}=w{sub n,j} (i, p{sub n,j,1}, . . . , p{sub n,j},p{sub n}). The apparatus is trained by setting values for at least one of the parameters p{sub n,j,1}, . . . , p{sub n,j},Pn. Preferably the number of parameters P{sub n} is less than the number of nodes N{sub n{minus}1} in layer n{minus}1. W{sub n,j} (i,p{sub n,j,1}, . . . , p{sub n,j},Pn) can be convex in i, and it can be bell-shaped. Sample functions for w{sub n,j} (i, p{sub n,j,1}, . . . , p{sub n,j},Pn) include Equation 2, shown in the patent. 8 figs.

  2. A hybrid optic-fiber sensor network with the function of self-diagnosis and self-healing

    NASA Astrophysics Data System (ADS)

    Xu, Shibo; Liu, Tiegen; Ge, Chunfeng; Chen, Cheng; Zhang, Hongxia

    2014-11-01

    We develop a hybrid wavelength division multiplexing optical fiber network with distributed fiber-optic sensors and quasi-distributed FBG sensor arrays which detect vibrations, temperatures and strains at the same time. The network has the ability to locate the failure sites automatically designated as self-diagnosis and make protective switching to reestablish sensing service designated as self-healing by cooperative work of software and hardware. The processes above are accomplished by master-slave processors with the help of optical and wireless telemetry signals. All the sensing and optical telemetry signals transmit in the same fiber either working fiber or backup fiber. We take wavelength 1450nm as downstream signal and wavelength 1350nm as upstream signal to control the network in normal circumstances, both signals are sent by a light emitting node of the corresponding processor. There is also a continuous laser wavelength 1310nm sent by each node and received by next node on both working and backup fibers to monitor their healthy states, but it does not carry any message like telemetry signals do. When fibers of two sensor units are completely damaged, the master processor will lose the communication with the node between the damaged ones.However we install RF module in each node to solve the possible problem. Finally, the whole network state is transmitted to host computer by master processor. Operator could know and control the network by human-machine interface if needed.

  3. Chronic orthostatic intolerance: a disorder with discordant cardiac and vascular sympathetic control

    NASA Technical Reports Server (NTRS)

    Furlan, R.; Jacob, G.; Snell, M.; Robertson, D.; Porta, A.; Harris, P.; Mosqueda-Garcia, R.

    1998-01-01

    BACKGROUND: Chronic orthostatic intolerance (COI) is a debilitating autonomic condition in young adults. Its neurohumoral and hemodynamic profiles suggest possible alterations of postural sympathetic function and of baroreflex control of heart rate (HR). METHODS AND RESULTS: In 16 COI patients and 16 healthy volunteers, intra-arterial blood pressure (BP), ECG, central venous pressure (CVP), and muscle sympathetic nerve activity (MSNA) were recorded at rest and during 75 degrees tilt. Spectral analysis of RR interval and systolic arterial pressure (SAP) variabilities provided indices of sympathovagal modulation of the sinoatrial node (ratio of low-frequency to high-frequency components, LF/HF) and of sympathetic vasomotor control (LFSAP). Baroreflex mechanisms were assessed (1) by the slope of the regression line obtained from changes of RR interval and MSNA evoked by pharmacologically induced alterations in BP and (2) by the index alpha, obtained from cross-spectral analysis of RR and SAP variabilities. At rest, HR, MSNA, LF/HF, and LFSAP were higher in COI patients, whereas BP and CVP were similar in the two groups. During tilt, BP did not change and CVP fell by the same extent in the 2 groups; the increase of HR and LF/HF was more pronounced in COI patients. Conversely, the increase of MSNA was lower in COI than in control subjects. Baroreflex sensitivity was similar in COI and control subjects at rest; tilt reduced alpha similarly in both groups. CONCLUSIONS: COI is characterized by an overall enhancement of noradrenergic tone at rest and by a blunted postganglionic sympathetic response to standing, with a compensatory cardiac sympathetic overactivity. Baroreflex mechanisms maintain their functional responsiveness. These data suggest that in COI, the functional distribution of central sympathetic tone to the heart and vasculature is abnormal.

  4. I(f) inhibition in cardiovascular diseases.

    PubMed

    Thollon, Catherine; Vilaine, Jean-Paul

    2010-01-01

    Heart rate (HR) is determined by the pacemaker activity of cells from the sinoatrial node (SAN), located in the right atria. Spontaneous electrical activity of SAN cells results from a diastolic depolarization (DD). Despite controversy in the exact contribution of funny current (I(f)) in pacemaking, it is a major contributor of DD. I(f) is an inward Na(+)/K(+) current, activated upon hyperpolarization and directly modulated by cyclic adenosine monophosphate. The f-proteins are hyperpolarization-activated cyclic nucleotide-gated channels, HCN4 being the main isoform of SAN. Ivabradine (IVA) decreases DD and inhibits I(f) in a use-dependent manner. Under normal conditions IVA selectively reduces HR and limits exercise-induced tachycardia, in animals and young volunteers. Reduction in HR with IVA both decreases myocardial oxygen consumption and increases its supply due to prolongation of diastolic perfusion time. In animal models and in human with coronary artery disease (CAD), IVA has anti-anginal and anti-ischemic efficacy, equipotent to classical treatments, β-blockers, or calcium channel blockers. As expected from its selectivity for I(f), the drug is safe and well tolerated with minor visual side effects. As a consequence, IVA is the first inhibitor of I(f) approved for the treatment of stable angina. Available clinical data indicate that IVA could improve the management of stable angina in all patients including those treated with β-blockers. As chronic elevation of resting HR is an independent predictor of mortality, pure HR reduction by inhibition of I(f) could, beyond the control of anti-anginal symptoms, improve the prognosis of CAD and heart failure; this therapeutic potential is currently under evaluation with IVA. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Heart Rate Reduction With Ivabradine Protects Against Left Ventricular Remodeling by Attenuating Infarct Expansion and Preserving Remote-Zone Contractile Function and Synchrony in a Mouse Model of Reperfused Myocardial Infarction.

    PubMed

    O'Connor, Daniel M; Smith, Robert S; Piras, Bryan A; Beyers, Ronald J; Lin, Dan; Hossack, John A; French, Brent A

    2016-04-22

    Ivabradine selectively inhibits the pacemaker current of the sinoatrial node, slowing heart rate. Few studies have examined the effects of ivabradine on the mechanical properties of the heart after reperfused myocardial infarction (MI). Advances in ultrasound speckle-tracking allow strain analyses to be performed in small-animal models, enabling the assessment of regional mechanical function. After 1 hour of coronary occlusion followed by reperfusion, mice received 10 mg/kg per day of ivabradine dissolved in drinking water (n=10), or were treated as infarcted controls (n=9). Three-dimensional high-frequency echocardiography was performed at baseline and at days 2, 7, 14, and 28 post-MI. Speckle-tracking software was used to calculate intramural longitudinal myocardial strain (Ell) and strain rate. Standard deviation time to peak radial strain (SD Tpeak Err) and temporal uniformity of strain were calculated from short-axis cines acquired in the left ventricular remote zone. Ivabradine reduced heart rate by 8% to 16% over the course of 28 days compared to controls (P<0.001). On day 28 post-MI, the ivabradine group was found to have significantly smaller end-systolic volumes, greater ejection fraction, reduced wall thinning, and greater peak Ell and Ell rate in the remote zone, as well as globally. Temporal uniformity of strain and SD Tpeak Err were significantly smaller in the ivabradine-treated group by day 28 (P<0.05). High-frequency ultrasound speckle-tracking demonstrated decreased left ventricular remodeling and dyssynchrony, as well as improved mechanical performance in remote myocardium after heart rate reduction with ivabradine. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  6. [Morphological and electrophysiological changes of the heart atria in necropsy patients with atrial fibrillation - a pilot study].

    PubMed

    Matějková, Adéla; Steiner, Ivo

    2014-01-01

    Atrial fibrillation (AF), the most common supraventricular tachycardia, has a morphological base, so called remodelation of atrial myocardium, with its abnormal conduction pattern as a consequence. The remodelation regards electrical, contractile, and structural properties. In this pilot study we attempted to find relations between the myocardial morphological (scarring, amyloidosis, left atrial enlargement) and electrophysiological (ECG characteristics of the P-wave) changes in patients with AF. We examined 40 hearts of necropsy patients - 20 with a history of AF and 20 with no history of AF. Grossly, the heart weight and the size of the left atrium (LA) were evaluated. Histologically, 7 standard sites from the atria were examined. In each specimen, the degree of myocardial scarring and of deposition of isolated atrial amyloid (IAA) were assessed. We failed to show any significant difference in the P-wave pattern between patients with and without AF. Morphologically, however, there were several differences - the patients with AF had significantly heavier hearts, larger left atria, more severely scarred myocardium of the LA and the atrial septum, and more severe deposition of IAA in both atria in comparison to the control group of patients with sinus rhythm. The left atrial distribution of both fibrosis and amyloidosis was irregular. In patients with AF the former was most pronounced in the LA ceiling while the latter in the LA anterior wall. The entire series showed more marked amyloidosis in the left than in the right atrium. An interesting finding was the universal absence of IAA in the sinoatrial node. The knowledge of distribution of atrial myocardial structural changes could be utilized by pathologists in taking specimens for histology and also by cardiologists in targeting the radiofrequency ablation therapy.

  7. Electrophysiological effects of desflurane in children with Wolff-Parkinson-White syndrome: a randomized crossover study.

    PubMed

    Hino, H; Oda, Y; Yoshida, Y; Suzuki, T; Shimada, M; Nishikawa, K

    2018-02-01

    We hypothesized that, compared with propofol, desflurane prolongs the antegrade accessory pathway effective refractory period (APERP) in children undergoing radiofrequency catheter ablation for Wolff-Parkinson-White (WPW) syndrome. In this randomized crossover study, children aged 4.1-16.1 years undergoing radiofrequency catheter ablation for WPW syndrome were randomly divided into four groups according to the concentration of desflurane and anesthetics used in the first and the second electrophysiological studies (EPS). After induction of general anesthesia with propofol and tracheal intubation, they received one of the following regimens: 0.5 minimum alveolar concentration (MAC) desflurane (first EPS) and propofol (second EPS) (Des0.5-Prop group, n = 8); propofol (first EPS) and 0.5 MAC desflurane (second EPS) (Prop-Des0.5 group, n = 9); 1 MAC desflurane (first EPS) and propofol (second EPS) (Des1.0-Prop group, n = 10); propofol (first EPS) and 1 MAC desflurane (second EPS) (Prop-Des1.0 group, n = 9). Radiofrequency catheter ablation was performed upon completion of EPS. Sample size was determined to detect a difference in the APERP. Desflurane at 1.0 MAC significantly prolonged the APERP compared with propofol, but did not affect the sinoatrial conduction time, atrio-His interval or atrioventricular node effective refractory period. Supraventricular tachycardia was induced in all children receiving propofol, but not induced in 1 and 4 children receiving 0.5 MAC and 1.0 MAC desflurane, respectively. Desflurane enhances the refractoriness and may block the electrical conduction of the atrioventricular accessory pathway, and is therefore not suitable for use in children undergoing radiofrequency catheter ablation for WPW syndrome. © 2017 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  8. Double valvular insufficiency in a Burmese python (Python molurus bivittatus, Linnaeus, 1758) suffering from concomitant bacterial pneumonia.

    PubMed

    Schilliger, Lionel; Tréhiou-Sechi, Emilie; Petit, Amandine M P; Misbach, Charlotte; Chetboul, Valérie

    2010-12-01

    Ultrasonography, and, to a lesser extent, echocardiography are now well-established, noninvasive, and painless diagnostic tools in herpetologic medicine. Various cardiac lesions have been previously described in reptiles, but valvulopathy is rarely documented in these animals and, consequently, is poorly understood. In this report, sinoatrial and atrioventricular insufficiencies were diagnosed in a 5-yr-old captive dyspneic Burmese python (Python molurus bivittatus) on the basis of echocardiographic and Doppler examination. This case report is the first to document Doppler assessment of valvular regurgitations in a reptile.

  9. Integration of Mesh Optimization with 3D All-Hex Mesh Generation, LDRD Subcase 3504340000, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KNUPP,PATRICK; MITCHELL,SCOTT A.

    1999-11-01

    In an attempt to automatically produce high-quality all-hex meshes, we investigated a mesh improvement strategy: given an initial poor-quality all-hex mesh, we iteratively changed the element connectivity, adding and deleting elements and nodes, and optimized the node positions. We found a set of hex reconnection primitives. We improved the optimization algorithms so they can untangle a negative-Jacobian mesh, even considering Jacobians on the boundary, and subsequently optimize the condition number of elements in an untangled mesh. However, even after applying both the primitives and optimization we were unable to produce high-quality meshes in certain regions. Our experiences suggest that manymore » boundary configurations of quadrilaterals admit no hexahedral mesh with positive Jacobians, although we have no proof of this.« less

  10. Data transmission system with distributed microprocessors

    DOEpatents

    Nambu, Shigeo

    1985-01-01

    A data transmission system having a common request line and a special request line in addition to a transmission line. The special request line has priority over the common request line. A plurality of node stations are multi-drop connected to the transmission line. Among the node stations, a supervising station is connected to the special request line and takes precedence over other slave stations to become a master station. The master station collects data from the slave stations. The station connected to the common request line can assign a master control function to any station requesting to be assigned the master control function within a short period of time. Each station has an auto response control circuit. The master station automatically collects data by the auto response controlling circuit independently of the microprocessors of the slave stations.

  11. A heterogeneous computing environment for simulating astrophysical fluid flows

    NASA Technical Reports Server (NTRS)

    Cazes, J.

    1994-01-01

    In the Concurrent Computing Laboratory in the Department of Physics and Astronomy at Louisiana State University we have constructed a heterogeneous computing environment that permits us to routinely simulate complicated three-dimensional fluid flows and to readily visualize the results of each simulation via three-dimensional animation sequences. An 8192-node MasPar MP-1 computer with 0.5 GBytes of RAM provides 250 MFlops of execution speed for our fluid flow simulations. Utilizing the parallel virtual machine (PVM) language, at periodic intervals data is automatically transferred from the MP-1 to a cluster of workstations where individual three-dimensional images are rendered for inclusion in a single animation sequence. Work is underway to replace executions on the MP-1 with simulations performed on the 512-node CM-5 at NCSA and to simultaneously gain access to more potent volume rendering workstations.

  12. DG TO FT - AUTOMATIC TRANSLATION OF DIGRAPH TO FAULT TREE MODELS

    NASA Technical Reports Server (NTRS)

    Iverson, D. L.

    1994-01-01

    Fault tree and digraph models are frequently used for system failure analysis. Both types of models represent a failure space view of the system using AND and OR nodes in a directed graph structure. Each model has its advantages. While digraphs can be derived in a fairly straightforward manner from system schematics and knowledge about component failure modes and system design, fault tree structure allows for fast processing using efficient techniques developed for tree data structures. The similarities between digraphs and fault trees permits the information encoded in the digraph to be translated into a logically equivalent fault tree. The DG TO FT translation tool will automatically translate digraph models, including those with loops or cycles, into fault tree models that have the same minimum cut set solutions as the input digraph. This tool could be useful, for example, if some parts of a system have been modeled using digraphs and others using fault trees. The digraphs could be translated and incorporated into the fault trees, allowing them to be analyzed using a number of powerful fault tree processing codes, such as cut set and quantitative solution codes. A cut set for a given node is a group of failure events that will cause the failure of the node. A minimum cut set for a node is any cut set that, if any of the failures in the set were to be removed, the occurrence of the other failures in the set will not cause the failure of the event represented by the node. Cut sets calculations can be used to find dependencies, weak links, and vital system components whose failures would cause serious systems failure. The DG TO FT translation system reads in a digraph with each node listed as a separate object in the input file. The user specifies a terminal node for the digraph that will be used as the top node of the resulting fault tree. A fault tree basic event node representing the failure of that digraph node is created and becomes a child of the terminal root node. A subtree is created for each of the inputs to the digraph terminal node and the root of those subtrees are added as children of the top node of the fault tree. Every node in the digraph upstream of the terminal node will be visited and converted. During the conversion process, the algorithm keeps track of the path from the digraph terminal node to the current digraph node. If a node is visited twice, then the program has found a cycle in the digraph. This cycle is broken by finding the minimal cut sets of the twice visited digraph node and forming those cut sets into subtrees. Another implementation of the algorithm resolves loops by building a subtree based on the digraph minimal cut sets calculation. It does not reduce the subtree to minimal cut set form. This second implementation produces larger fault trees, but runs much faster than the version using minimal cut sets since it does not spend time reducing the subtrees to minimal cut sets. The fault trees produced by DG TO FT will contain OR gates, AND gates, Basic Event nodes, and NOP gates. The results of a translation can be output as a text object description of the fault tree similar to the text digraph input format. The translator can also output a LISP language formatted file and an augmented LISP file which can be used by the FTDS (ARC-13019) diagnosis system, available from COSMIC, which performs diagnostic reasoning using the fault tree as a knowledge base. DG TO FT is written in C-language to be machine independent. It has been successfully implemented on a Sun running SunOS, a DECstation running ULTRIX, a Macintosh running System 7, and a DEC VAX running VMS. The RAM requirement varies with the size of the models. DG TO FT is available in UNIX tar format on a .25 inch streaming magnetic tape cartridge (standard distribution) or on a 3.5 inch diskette. It is also available on a 3.5 inch Macintosh format diskette or on a 9-track 1600 BPI magnetic tape in DEC VAX FILES-11 format. Sample input and sample output are provided on the distribution medium. An electronic copy of the documentation in Macintosh Microsoft Word format is provided on the distribution medium. DG TO FT was developed in 1992. Sun, and SunOS are trademarks of Sun Microsystems, Inc. DECstation, ULTRIX, VAX, and VMS are trademarks of Digital Equipment Corporation. UNIX is a registered trademark of AT&T Bell Laboratories. Macintosh is a registered trademark of Apple Computer, Inc. System 7 is a trademark of Apple Computers Inc. Microsoft Word is a trademark of Microsoft Corporation.

  13. Accelerating semantic graph databases on commodity clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morari, Alessandro; Castellana, Vito G.; Haglin, David J.

    We are developing a full software system for accelerating semantic graph databases on commodity cluster that scales to hundreds of nodes while maintaining constant query throughput. Our framework comprises a SPARQL to C++ compiler, a library of parallel graph methods and a custom multithreaded runtime layer, which provides a Partitioned Global Address Space (PGAS) programming model with fork/join parallelism and automatic load balancing over a commodity clusters. We present preliminary results for the compiler and for the runtime.

  14. Infrasound Monitoring of Local, Regional and Global Events

    DTIC Science & Technology

    2007-09-01

    detect and associate signals from the March 9th 2005 eruption at Mount Saint Helens, and locate the event to be within 5 km of the caldera . The...are located within 5 km of the center of the caldera at Mount Saint Helens. Figure 4. Locations of grid nodes that were automatically associated...photograph, and are located within 5 km of the center of the caldera . 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

  15. Evolution of a radio communication relay system

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoa G.; Pezeshkian, Narek; Hart, Abraham; Burmeister, Aaron; Holz, Kevin; Neff, Joseph; Roth, Leif

    2013-05-01

    Providing long-distance non-line-of-sight control for unmanned ground robots has long been recognized as a problem, considering the nature of the required high-bandwidth radio links. In the early 2000s, the DARPA Mobile Autonomous Robot Software (MARS) program funded the Space and Naval Warfare Systems Center (SSC) Pacific to demonstrate a capability for autonomous mobile communication relaying on a number of Pioneer laboratory robots. This effort also resulted in the development of ad hoc networking radios and software that were later leveraged in the development of a more practical and logistically simpler system, the Automatically Deployed Communication Relays (ADCR). Funded by the Joint Ground Robotics Enterprise and internally by SSC Pacific, several generations of ADCR systems introduced increasingly more capable hardware and software for automatic maintenance of communication links through deployment of static relay nodes from mobile robots. This capability was finally tapped in 2010 to fulfill an urgent need from theater. 243 kits of ruggedized, robot-deployable communication relays were produced and sent to Afghanistan to extend the range of EOD and tactical ground robots in 2012. This paper provides a summary of the evolution of the radio relay technology at SSC Pacific, and then focuses on the latest two stages, the Manually-Deployed Communication Relays and the latest effort to automate the deployment of these ruggedized and fielded relay nodes.

  16. Force-reflective teleoperated system with shared and compliant control capabilities

    NASA Technical Reports Server (NTRS)

    Szakaly, Z.; Kim, W. S.; Bejczy, A. K.

    1989-01-01

    The force-reflecting teleoperator breadboard is described. It is the first system among available Research and Development systems with the following combined capabilities: (1) The master input device is not a replica of the slave arm. It is a general purpose device which can be applied to the control of different robot arms through proper mathematical transformations. (2) Force reflection generated in the master hand controller is referenced to forces and moments measured by a six DOF force-moment sensor at the base of the robot hand. (3) The system permits a smooth spectrum of operations between full manual, shared manual and automatic, and full automatic (called traded) control. (4) The system can be operated with variable compliance or stiffness in force-reflecting control. Some of the key points of the system are the data handling and computing architecture, the communication method, and the handling of mathematical transformations. The architecture is a fully synchronized pipeline. The communication method achieves optimal use of a parallel communication channel between the local and remote computing nodes. A time delay box is also implemented in this communication channel permitting experiments with up to 8 sec time delay. The mathematical transformations are computed faster than 1 msec so that control at each node can be operated at 1 kHz servo rate without interpolation. This results in an overall force-reflecting loop rate of 200 Hz.

  17. Clinical evaluation of multi-atlas based segmentation of lymph node regions in head and neck and prostate cancer patients.

    PubMed

    Sjöberg, Carl; Lundmark, Martin; Granberg, Christoffer; Johansson, Silvia; Ahnesjö, Anders; Montelius, Anders

    2013-10-03

    Semi-automated segmentation using deformable registration of selected atlas cases consisting of expert segmented patient images has been proposed to facilitate the delineation of lymph node regions for three-dimensional conformal and intensity-modulated radiotherapy planning of head and neck and prostate tumours. Our aim is to investigate if fusion of multiple atlases will lead to clinical workload reductions and more accurate segmentation proposals compared to the use of a single atlas segmentation, due to a more complete representation of the anatomical variations. Atlases for lymph node regions were constructed using 11 head and neck patients and 15 prostate patients based on published recommendations for segmentations. A commercial registration software (Velocity AI) was used to create individual segmentations through deformable registration. Ten head and neck patients, and ten prostate patients, all different from the atlas patients, were randomly chosen for the study from retrospective data. Each patient was first delineated three times, (a) manually by a radiation oncologist, (b) automatically using a single atlas segmentation proposal from a chosen atlas and (c) automatically by fusing the atlas proposals from all cases in the database using the probabilistic weighting fusion algorithm. In a subsequent step a radiation oncologist corrected the segmentation proposals achieved from step (b) and (c) without using the result from method (a) as reference. The time spent for editing the segmentations was recorded separately for each method and for each individual structure. Finally, the Dice Similarity Coefficient and the volume of the structures were used to evaluate the similarity between the structures delineated with the different methods. For the single atlas method, the time reduction compared to manual segmentation was 29% and 23% for head and neck and pelvis lymph nodes, respectively, while editing the fused atlas proposal resulted in time reductions of 49% and 34%. The average volume of the fused atlas proposals was only 74% of the manual segmentation for the head and neck cases and 82% for the prostate cases due to a blurring effect from the fusion process. After editing of the proposals the resulting volume differences were no longer statistically significant, although a slight influence by the proposals could be noticed since the average edited volume was still slightly smaller than the manual segmentation, 9% and 5%, respectively. Segmentation based on fusion of multiple atlases reduces the time needed for delineation of lymph node regions compared to the use of a single atlas segmentation. Even though the time saving is large, the quality of the segmentation is maintained compared to manual segmentation.

  18. An Experiment of GMPLS-Based Dispersion Compensation Control over In-Field Fibers

    NASA Astrophysics Data System (ADS)

    Seno, Shoichiro; Horiuchi, Eiichi; Yoshida, Sota; Sugihara, Takashi; Onohara, Kiyoshi; Kamei, Misato; Baba, Yoshimasa; Kubo, Kazuo; Mizuochi, Takashi

    As ROADMs (Reconfigurable Optical Add/Drop Multiplexers) are becoming widely used in metro/core networks, distributed control of wavelength paths by extended GMPLS (Generalized MultiProtocol Label Switching) protocols has attracted much attention. For the automatic establishment of an arbitrary wavelength path satisfying dynamic traffic demands over a ROADM or WXC (Wavelength Cross Connect)-based network, precise determination of chromatic dispersion over the path and optimized assignment of dispersion compensation capabilities at related nodes are essential. This paper reports an experiment over in-field fibers where GMPLS-based control was applied for the automatic discovery of chromatic dispersion, path computation, and wavelength path establishment with dynamic adjustment of variable dispersion compensation. The GMPLS-based control scheme, which the authors called GMPLS-Plus, extended GMPLS's distributed control architecture with attributes for automatic discovery, advertisement, and signaling of chromatic dispersion. In this experiment, wavelength paths with distances of 24km and 360km were successfully established and error-free data transmission was verified. The experiment also confirmed path restoration with dynamic compensation adjustment upon fiber failure.

  19. Automated quadrilateral surface discretization method and apparatus usable to generate mesh in a finite element analysis system

    DOEpatents

    Blacker, Teddy D.

    1994-01-01

    An automatic quadrilateral surface discretization method and apparatus is provided for automatically discretizing a geometric region without decomposing the region. The automated quadrilateral surface discretization method and apparatus automatically generates a mesh of all quadrilateral elements which is particularly useful in finite element analysis. The generated mesh of all quadrilateral elements is boundary sensitive, orientation insensitive and has few irregular nodes on the boundary. A permanent boundary of the geometric region is input and rows are iteratively layered toward the interior of the geometric region. Also, an exterior permanent boundary and an interior permanent boundary for a geometric region may be input and the rows are iteratively layered inward from the exterior boundary in a first counter clockwise direction while the rows are iteratively layered from the interior permanent boundary toward the exterior of the region in a second clockwise direction. As a result, a high quality mesh for an arbitrary geometry may be generated with a technique that is robust and fast for complex geometric regions and extreme mesh gradations.

  20. Optical texture analysis for automatic cytology and histology: a Markovian approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pressman, N.J.

    1976-10-12

    Markovian analysis is a method to measure optical texture based on gray-level transition probabilities in digitized images. The experiments described in this dissertation investigate the classification performance of parameters generated by this method. Three types of data sets are used: images of (1) human blood leukocytes (nuclei of monocytes, neutrophils, and lymphocytes; Wright stain; (0.125 ..mu..m)/sup 2//picture point), (2) cervical exfoliative cells (nuclei of normal intermediate squamous cells and dysplastic and carcinoma in situ cells; azure-A/Feulgen stain; (0.125 ..mu..m)/sup 2//picture point), and (3) lymph-node tissue sections (6-..mu..m thick sections from normal, acute lymphadenitis, and Hodgkin lymph nodes; hematoxylin and eosinmore » stain; (0.625 ..mu..m)/sup 2/ picture point). Each image consists of 128 x 128 picture points originally scanned with a 256 gray-level resolution. Each image class is defined by 75 images.« less

  1. Automatic Camera Calibration Using Multiple Sets of Pairwise Correspondences.

    PubMed

    Vasconcelos, Francisco; Barreto, Joao P; Boyer, Edmond

    2018-04-01

    We propose a new method to add an uncalibrated node into a network of calibrated cameras using only pairwise point correspondences. While previous methods perform this task using triple correspondences, these are often difficult to establish when there is limited overlap between different views. In such challenging cases we must rely on pairwise correspondences and our solution becomes more advantageous. Our method includes an 11-point minimal solution for the intrinsic and extrinsic calibration of a camera from pairwise correspondences with other two calibrated cameras, and a new inlier selection framework that extends the traditional RANSAC family of algorithms to sampling across multiple datasets. Our method is validated on different application scenarios where a lack of triple correspondences might occur: addition of a new node to a camera network; calibration and motion estimation of a moving camera inside a camera network; and addition of views with limited overlap to a Structure-from-Motion model.

  2. Deep Space Networking Experiments on the EPOXI Spacecraft

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    2011-01-01

    NASA's Space Communications & Navigation Program within the Space Operations Directorate is operating a program to develop and deploy Disruption Tolerant Networking [DTN] technology for a wide variety of mission types by the end of 2011. DTN is an enabling element of the Interplanetary Internet where terrestrial networking protocols are generally unsuitable because they rely on timely and continuous end-to-end delivery of data and acknowledgments. In fall of 2008 and 2009 and 2011 the Jet Propulsion Laboratory installed and tested essential elements of DTN technology on the Deep Impact spacecraft. These experiments, called Deep Impact Network Experiment (DINET 1) were performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. The DINET 1 software was installed on the backup software partition on the backup flight computer for DINET 1. For DINET 1, the spacecraft was at a distance of about 15 million miles (24 million kilometers) from Earth. During DINET 1 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. The first DINET 1 experiment successfully validated many of the essential elements of the DTN protocols. DINET 2 demonstrated: 1) additional DTN functionality, 2) automated certain tasks which were manually implemented in DINET 1 and 3) installed the ION SW on nodes outside of JPL. DINET 3 plans to: 1) upgrade the LTP convergence-layer adapter to conform to the international LTP CL specification, 2) add convergence-layer "stewardship" procedures and 3) add the BSP security elements [PIB & PCB]. This paper describes the planning and execution of the flight experiment and the validation results.

  3. a Super Voxel-Based Riemannian Graph for Multi Scale Segmentation of LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Li, Minglei

    2018-04-01

    Automatically segmenting LiDAR points into respective independent partitions has become a topic of great importance in photogrammetry, remote sensing and computer vision. In this paper, we cast the problem of point cloud segmentation as a graph optimization problem by constructing a Riemannian graph. The scale space of the observed scene is explored by an octree-based over-segmentation with different depths. The over-segmentation produces many super voxels which restrict the structure of the scene and will be used as nodes of the graph. The Kruskal coordinates are used to compute edge weights that are proportional to the geodesic distance between nodes. Then we compute the edge-weight matrix in which the elements reflect the sectional curvatures associated with the geodesic paths between super voxel nodes on the scene surface. The final segmentation results are generated by clustering similar super voxels and cutting off the weak edges in the graph. The performance of this method was evaluated on LiDAR point clouds for both indoor and outdoor scenes. Additionally, extensive comparisons to state of the art techniques show that our algorithm outperforms on many metrics.

  4. Controlling automatic imitative tendencies: interactions between mirror neuron and cognitive control systems.

    PubMed

    Cross, Katy A; Torrisi, Salvatore; Reynolds Losin, Elizabeth A; Iacoboni, Marco

    2013-12-01

    Humans have an automatic tendency to imitate others. Although several regions commonly observed in social tasks have been shown to be involved in imitation control, there is little work exploring how these regions interact with one another. We used fMRI and dynamic causal modeling to identify imitation-specific control mechanisms and examine functional interactions between regions. Participants performed a pre-specified action (lifting their index or middle finger) in response to videos depicting the same two actions (biological cues) or dots moving with similar trajectories (non-biological cues). On congruent trials, the stimulus and response were similar (e.g. index finger response to index finger or left side dot stimulus), while on incongruent trials the stimulus and response were dissimilar (e.g. index finger response to middle finger or right side dot stimulus). Reaction times were slower on incongruent compared to congruent trials for both biological and non-biological stimuli, replicating previous findings that suggest the automatic imitative or spatially compatible (congruent) response must be controlled on incongruent trials. Neural correlates of the congruency effects were different depending on the cue type. The medial prefrontal cortex, anterior cingulate, inferior frontal gyrus pars opercularis (IFGpo) and the left anterior insula were involved specifically in controlling imitation. In addition, the IFGpo was also more active for biological compared to non-biological stimuli, suggesting that the region represents the frontal node of the human mirror neuron system (MNS). Effective connectivity analysis exploring the interactions between these regions, suggests a role for the mPFC and ACC in imitative conflict detection and the anterior insula in conflict resolution processes, which may occur through interactions with the frontal node of the MNS. We suggest an extension of the previous models of imitation control involving interactions between imitation-specific and general cognitive control mechanisms. © 2013.

  5. Grid infrastructure for automatic processing of SAR data for flood applications

    NASA Astrophysics Data System (ADS)

    Kussul, Natalia; Skakun, Serhiy; Shelestov, Andrii

    2010-05-01

    More and more geosciences applications are being put on to the Grids. Due to the complexity of geosciences applications that is caused by complex workflow, the use of computationally intensive environmental models, the need of management and integration of heterogeneous data sets, Grid offers solutions to tackle these problems. Many geosciences applications, especially those related to the disaster management and mitigations require the geospatial services to be delivered in proper time. For example, information on flooded areas should be provided to corresponding organizations (local authorities, civil protection agencies, UN agencies etc.) no more than in 24 h to be able to effectively allocate resources required to mitigate the disaster. Therefore, providing infrastructure and services that will enable automatic generation of products based on the integration of heterogeneous data represents the tasks of great importance. In this paper we present Grid infrastructure for automatic processing of synthetic-aperture radar (SAR) satellite images to derive flood products. In particular, we use SAR data acquired by ESA's ENVSAT satellite, and neural networks to derive flood extent. The data are provided in operational mode from ESA rolling archive (within ESA Category-1 grant). We developed a portal that is based on OpenLayers frameworks and provides access point to the developed services. Through the portal the user can define geographical region and search for the required data. Upon selection of data sets a workflow is automatically generated and executed on the resources of Grid infrastructure. For workflow execution and management we use Karajan language. The workflow of SAR data processing consists of the following steps: image calibration, image orthorectification, image processing with neural networks, topographic effects removal, geocoding and transformation to lat/long projection, and visualisation. These steps are executed by different software, and can be executed by different resources of the Grid system. The resulting geospatial services are available in various OGC standards such as KML and WMS. Currently, the Grid infrastructure integrates the resources of several geographically distributed organizations, in particular: Space Research Institute NASU-NSAU (Ukraine) with deployed computational and storage nodes based on Globus Toolkit 4 (htpp://www.globus.org) and gLite 3 (http://glite.web.cern.ch) middleware, access to geospatial data and a Grid portal; Institute of Cybernetics of NASU (Ukraine) with deployed computational and storage nodes (SCIT-1/2/3 clusters) based on Globus Toolkit 4 middleware and access to computational resources (approximately 500 processors); Center of Earth Observation and Digital Earth Chinese Academy of Sciences (CEODE-CAS, China) with deployed computational nodes based on Globus Toolkit 4 middleware and access to geospatial data (approximately 16 processors). We are currently adding new geospatial services based on optical satellite data, namely MODIS. This work is carried out jointly with the CEODE-CAS. Using workflow patterns that were developed for SAR data processing we are building new workflows for optical data processing.

  6. Automatic translation of digraph to fault-tree models

    NASA Technical Reports Server (NTRS)

    Iverson, David L.

    1992-01-01

    The author presents a technique for converting digraph models, including those models containing cycles, to a fault-tree format. A computer program which automatically performs this translation using an object-oriented representation of the models has been developed. The fault-trees resulting from translations can be used for fault-tree analysis and diagnosis. Programs to calculate fault-tree and digraph cut sets and perform diagnosis with fault-tree models have also been developed. The digraph to fault-tree translation system has been successfully tested on several digraphs of varying size and complexity. Details of some representative translation problems are presented. Most of the computation performed by the program is dedicated to finding minimal cut sets for digraph nodes in order to break cycles in the digraph. Fault-trees produced by the translator have been successfully used with NASA's Fault-Tree Diagnosis System (FTDS) to produce automated diagnostic systems.

  7. Initial dynamics of the EKG during an electrical defibrillation of the heart

    NASA Technical Reports Server (NTRS)

    Bikov, I. I.; Chebotarov, Y. P.; Nikolaev, V. G.

    1980-01-01

    In tests on 11 mature dogs, immobilized by means of an automatic blocking and synchronization system, artefact free EKG were obtained, beginning 0.04-0.06 sec after passage of a defibrillating current. Different versions of the start of fibrillation were noted, in application of the defibrillating stimulus in the early phase of the cardiac cycle. A swinging phenomenon, increasing amplitude, of fibrillation was noted for 0.4-1.5 sec after delivery of a subthreshold stimulus. Conditions for a positive outcome of repeated defibrillation were found, and a relationship was noted between the configuration of the exciting process with respect to the lines of force of the defibrillating current and the defibrillation threshold. It was shown that the initial EKG dynamics after defibrillation is based on a gradual shift of the pacemaker from the myocardium of the ventricles to the sinus node, through phases of atrioventricular and atrial automatism.

  8. Attention trees and semantic paths

    NASA Astrophysics Data System (ADS)

    Giusti, Christian; Pieroni, Goffredo G.; Pieroni, Laura

    2007-02-01

    In the last few decades several techniques for image content extraction, often based on segmentation, have been proposed. It has been suggested that under the assumption of very general image content, segmentation becomes unstable and classification becomes unreliable. According to recent psychological theories, certain image regions attract the attention of human observers more than others and, generally, the image main meaning appears concentrated in those regions. Initially, regions attracting our attention are perceived as a whole and hypotheses on their content are formulated; successively the components of those regions are carefully analyzed and a more precise interpretation is reached. It is interesting to observe that an image decomposition process performed according to these psychological visual attention theories might present advantages with respect to a traditional segmentation approach. In this paper we propose an automatic procedure generating image decomposition based on the detection of visual attention regions. A new clustering algorithm taking advantage of the Delaunay- Voronoi diagrams for achieving the decomposition target is proposed. By applying that algorithm recursively, starting from the whole image, a transformation of the image into a tree of related meaningful regions is obtained (Attention Tree). Successively, a semantic interpretation of the leaf nodes is carried out by using a structure of Neural Networks (Neural Tree) assisted by a knowledge base (Ontology Net). Starting from leaf nodes, paths toward the root node across the Attention Tree are attempted. The task of the path consists in relating the semantics of each child-parent node pair and, consequently, in merging the corresponding image regions. The relationship detected in this way between two tree nodes generates, as a result, the extension of the interpreted image area through each step of the path. The construction of several Attention Trees has been performed and partial results will be shown.

  9. The evaluation of multi-structure, multi-atlas pelvic anatomy features in a prostate MR lymphography CAD system

    NASA Astrophysics Data System (ADS)

    Meijs, M.; Debats, O.; Huisman, H.

    2015-03-01

    In prostate cancer, the detection of metastatic lymph nodes indicates progression from localized disease to metastasized cancer. The detection of positive lymph nodes is, however, a complex and time consuming task for experienced radiologists. Assistance of a two-stage Computer-Aided Detection (CAD) system in MR Lymphography (MRL) is not yet feasible due to the large number of false positives in the first stage of the system. By introducing a multi-structure, multi-atlas segmentation, using an affine transformation followed by a B-spline transformation for registration, the organ location is given by a mean density probability map. The atlas segmentation is semi-automatically drawn with ITK-SNAP, using Active Contour Segmentation. Each anatomic structure is identified by a label number. Registration is performed using Elastix, using Mutual Information and an Adaptive Stochastic Gradient optimization. The dataset consists of the MRL scans of ten patients, with lymph nodes manually annotated in consensus by two expert readers. The feature map of the CAD system consists of the Multi-Atlas and various other features (e.g. Normalized Intensity and multi-scale Blobness). The voxel-based Gentleboost classifier is evaluated using ROC analysis with cross validation. We show in a set of 10 studies that adding multi-structure, multi-atlas anatomical structure likelihood features improves the quality of the lymph node voxel likelihood map. Multiple structure anatomy maps may thus make MRL CAD more feasible.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guo Qiang; Luo, Lingyun; Ogbuji, Chime

    The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy (FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif Checking (MOCH) to study the effects of such multi-relation type interactions. MOCH represents patterns of multitype interaction as small labeled sub-graph motifs, whose nodes represent class variables, and labeled edges represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web Technology (OWL, RDF and SPARQL) andmore » Virtuoso, we performed exhaustive analyses of three 2-node motifs, resulting in 638 matching FMA configurations; twelve 3-node motifs, resulting in 202,960 configurations. Using the Principal Ideal Explorer (PIE) methodology as an extension of MOCH, we were able to identify 755 root nodes with 4,100 respective descendants with opposing antonyms in their class names for arbitrary-length motifs. With possible disjointness implied by antonyms, we performed manual inspection of a subset of the resulting FMA fragments and tracked down a source of abnormal inferred conclusions (captured by the motifs), coming from a gender-neutral class being modeled as a part of gender-specific class, such as “Urinary system” is a part of “Female human body.” Our results demonstrate that MOCH and PIE provide a unique source of valuable information for quality assurance. Since our approach is general, it is applicable to any ontological system with an OWL representation.« less

  11. A graph-based approach to auditing RxNorm.

    PubMed

    Bodenreider, Olivier; Peters, Lee B

    2009-06-01

    RxNorm is a standardized nomenclature for clinical drug entities developed by the National Library of Medicine. In this paper, we audit relations in RxNorm for consistency and completeness through the systematic analysis of the graph of its concepts and relationships. The representation of multi-ingredient drugs is normalized in order to make it compatible with that of single-ingredient drugs. All meaningful paths between two nodes in the type graph are computed and instantiated. Alternate paths are automatically compared and manually inspected in case of inconsistency. The 115 meaningful paths identified in the type graph can be grouped into 28 groups with respect to start and end nodes. Of the 19 groups of alternate paths (i.e., with two or more paths) between the start and end nodes, 9 (47%) exhibit inconsistencies. Overall, 28 (24%) of the 115 paths are inconsistent with other alternate paths. A total of 348 inconsistencies were identified in the April 2008 version of RxNorm and reported to the RxNorm team, of which 215 (62%) had been corrected in the January 2009 version of RxNorm. The inconsistencies identified involve missing nodes (93), missing links (17), extraneous links (237) and one case of mix-up between two ingredients. Our auditing method proved effective in identifying a limited number of errors that had defeated the quality assurance mechanisms currently in place in the RxNorm production system. Some recommendations for the development of RxNorm are provided.

  12. Data oriented job submission scheme for the PHENIX user analysis in CCJ

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; En'yo, H.; Ichihara, T.; Watanabe, Y.; Yokkaichi, S.

    2011-12-01

    The RIKEN Computing Center in Japan (CCJ) has been developed to make it possible analyzing huge amount of data corrected by the PHENIX experiment at RHIC. The corrected raw data or reconstructed data are transferred via SINET3 with 10 Gbps bandwidth from Brookheaven National Laboratory (BNL) by using GridFTP. The transferred data are once stored in the hierarchical storage management system (HPSS) prior to the user analysis. Since the size of data grows steadily year by year, concentrations of the access request to data servers become one of the serious bottlenecks. To eliminate this I/O bound problem, 18 calculating nodes with total 180 TB local disks were introduced to store the data a priori. We added some setup in a batch job scheduler (LSF) so that user can specify the requiring data already distributed to the local disks. The locations of data are automatically obtained from a database, and jobs are dispatched to the appropriate node which has the required data. To avoid the multiple access to a local disk from several jobs in a node, techniques of lock file and access control list are employed. As a result, each job can handle a local disk exclusively. Indeed, the total throughput was improved drastically as compared to the preexisting nodes in CCJ, and users can analyze about 150 TB data within 9 hours. We report this successful job submission scheme and the feature of the PC cluster.

  13. An Incremental Type-2 Meta-Cognitive Extreme Learning Machine.

    PubMed

    Pratama, Mahardhika; Zhang, Guangquan; Er, Meng Joo; Anavatti, Sreenatha

    2017-02-01

    Existing extreme learning algorithm have not taken into account four issues: 1) complexity; 2) uncertainty; 3) concept drift; and 4) high dimensionality. A novel incremental type-2 meta-cognitive extreme learning machine (ELM) called evolving type-2 ELM (eT2ELM) is proposed to cope with the four issues in this paper. The eT2ELM presents three main pillars of human meta-cognition: 1) what-to-learn; 2) how-to-learn; and 3) when-to-learn. The what-to-learn component selects important training samples for model updates by virtue of the online certainty-based active learning method, which renders eT2ELM as a semi-supervised classifier. The how-to-learn element develops a synergy between extreme learning theory and the evolving concept, whereby the hidden nodes can be generated and pruned automatically from data streams with no tuning of hidden nodes. The when-to-learn constituent makes use of the standard sample reserved strategy. A generalized interval type-2 fuzzy neural network is also put forward as a cognitive component, in which a hidden node is built upon the interval type-2 multivariate Gaussian function while exploiting a subset of Chebyshev series in the output node. The efficacy of the proposed eT2ELM is numerically validated in 12 data streams containing various concept drifts. The numerical results are confirmed by thorough statistical tests, where the eT2ELM demonstrates the most encouraging numerical results in delivering reliable prediction, while sustaining low complexity.

  14. A Graph-based Approach to Auditing RxNorm

    PubMed Central

    Bodenreider, Olivier; Peters, Lee B.

    2009-01-01

    Objectives RxNorm is a standardized nomenclature for clinical drug entities developed by the National Library of Medicine. In this paper, we audit relations in RxNorm for consistency and completeness through the systematic analysis of the graph of its concepts and relationships. Methods The representation of multi-ingredient drugs is normalized in order to make it compatible with that of single-ingredient drugs. All meaningful paths between two nodes in the type graph are computed and instantiated. Alternate paths are automatically compared and manually inspected in case of inconsistency. Results The 115 meaningful paths identified in the type graph can be grouped into 28 groups with respect to start and end nodes. Of the 19 groups of alternate paths (i.e., with two or more paths) between the start and end nodes, 9 (47%) exhibit inconsistencies. Overall, 28 (24%) of the 115 paths are inconsistent with other alternate paths. A total of 348 inconsistencies were identified in the April 2008 version of RxNorm and reported to the RxNorm team, of which 215 (62%) had been corrected in the January 2009 version of RxNorm. Conclusion The inconsistencies identified involve missing nodes (93), missing links (17), extraneous links (237) and one case of mix-up between two ingredients. Our auditing method proved effective in identifying a limited number of errors that had defeated the quality assurance mechanisms currently in place in the RxNorm production system. Some recommendations for the development of RxNorm are provided. PMID:19394440

  15. Comparison of different strategies for using fossil calibrations to generate the time prior in Bayesian molecular clock dating.

    PubMed

    Barba-Montoya, Jose; Dos Reis, Mario; Yang, Ziheng

    2017-09-01

    Fossil calibrations are the utmost source of information for resolving the distances between molecular sequences into estimates of absolute times and absolute rates in molecular clock dating analysis. The quality of calibrations is thus expected to have a major impact on divergence time estimates even if a huge amount of molecular data is available. In Bayesian molecular clock dating, fossil calibration information is incorporated in the analysis through the prior on divergence times (the time prior). Here, we evaluate three strategies for converting fossil calibrations (in the form of minimum- and maximum-age bounds) into the prior on times, which differ according to whether they borrow information from the maximum age of ancestral nodes and minimum age of descendent nodes to form constraints for any given node on the phylogeny. We study a simple example that is analytically tractable, and analyze two real datasets (one of 10 primate species and another of 48 seed plant species) using three Bayesian dating programs: MCMCTree, MrBayes and BEAST2. We examine how different calibration strategies, the birth-death process, and automatic truncation (to enforce the constraint that ancestral nodes are older than descendent nodes) interact to determine the time prior. In general, truncation has a great impact on calibrations so that the effective priors on the calibration node ages after the truncation can be very different from the user-specified calibration densities. The different strategies for generating the effective prior also had considerable impact, leading to very different marginal effective priors. Arbitrary parameters used to implement minimum-bound calibrations were found to have a strong impact upon the prior and posterior of the divergence times. Our results highlight the importance of inspecting the joint time prior used by the dating program before any Bayesian dating analysis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Clinical evaluation of pacemaker automatic capture management and atrioventricular interval extension algorithm.

    PubMed

    Chen, Ke-ping; Xu, Geng; Wu, Shulin; Tang, Baopeng; Wang, Li; Zhang, Shu

    2013-03-01

    The present study was to assess the accuracy of automatic atrial and ventricular capture management (ACM and VCM) in determining pacing threshold and the performance of a second-generation automatic atrioventricular (AV) interval extension algorithm for reducing unnecessary ventricular pacing. A total of 398 patients at 32 centres who received an EnPulse dual-chamber pacing/dual-chamber adaptive rate pacing pacemaker (Medtronic, Minneapolis, MN, USA) were enrolled. The last amplitude thresholds as measured by ACM and VCM prior to the 6-month follow-up were compared with manually measured thresholds. Device diagnostics were used to evaluate ACM and VCM and the percentage of ventricular pacing with and without the AV extension algorithm. Modelling was performed to assess longevity gains relating to the use of automaticity features. Atrial and ventricular capture management performed accurately and reliably provided complete capture management in 97% of studied patients. The AV interval extension algorithm reduced the median per cent of right ventricular pacing in patients with sinus node dysfunction from 99.7 to 1.5% at 6-month follow-up and in patients with intermittent AV block (excluding persistent 3° AV block) from 99.9 to 50.2%. On the basis of validated modelling, estimated device longevity could potentially be extended by 1.9 years through the use of the capture management and AV interval extension features. Both ACM and VCM features reliably measured thresholds in nearly all patients; the AV extension algorithm significantly reduced ventricular pacing; and the use of pacemaker automaticity features potentially extends device longevity.

  17. Initial Experience With Ultra High-Density Mapping of Human Right Atria.

    PubMed

    Bollmann, Andreas; Hilbert, Sebastian; John, Silke; Kosiuk, Jedrzej; Hindricks, Gerhard

    2016-02-01

    Recently, an automatic, high-resolution mapping system has been presented to accurately and quickly identify right atrial geometry and activation patterns in animals, but human data are lacking. This study aims to assess the clinical feasibility and accuracy of high-density electroanatomical mapping of various RA arrhythmias. Electroanatomical maps of the RA (35 partial and 24 complete) were created in 23 patients using a novel mini-basket catheter with 64 electrodes and automatic electrogram annotation. Median acquisition time was 6:43 minutes (0:39-23:05 minutes) with shorter times for partial (4.03 ± 4.13 minutes) than for complete maps (9.41 ± 4.92 minutes). During mapping 3,236 (710-16,306) data points were automatically annotated without manual correction. Maps obtained during sinus rhythm created geometry consistent with CT imaging and demonstrated activation originating at the middle to superior crista terminalis, while maps during CS pacing showed right atrial activation beginning at the infero-septal region. Activation patterns were consistent with cavotricuspid isthmus-dependent atrial flutter (n = 4), complex reentry tachycardia (n = 1), or ectopic atrial tachycardia (n = 2). His bundle and fractionated potentials in the slow pathway region were automatically detected in all patients. Ablation of the cavotricuspid isthmus (n = 9), the atrio-ventricular node (n = 2), atrial ectopy (n = 2), and the slow pathway (n = 3) was successfully and safely performed. RA mapping with this automatic high-density mapping system is fast, feasible, and safe. It is possible to reproducibly identify propagation of atrial activation during sinus rhythm, various tachycardias, and also complex reentrant arrhythmias. © 2015 Wiley Periodicals, Inc.

  18. Polarization transformation as an algorithm for automatic generalization and quality assessment

    NASA Astrophysics Data System (ADS)

    Qian, Haizhong; Meng, Liqiu

    2007-06-01

    Since decades it has been a dream of cartographers to computationally mimic the generalization processes in human brains for the derivation of various small-scale target maps or databases from a large-scale source map or database. This paper addresses in a systematic way the polarization transformation (PT) - a new algorithm that serves both the purpose of automatic generalization of discrete features and the quality assurance. By means of PT, two dimensional point clusters or line networks in the Cartesian system can be transformed into a polar coordinate system, which then can be unfolded as a single spectrum line r = f(α), where r and a stand for the polar radius and the polar angle respectively. After the transformation, the original features will correspond to nodes on the spectrum line delimited between 0° and 360° along the horizontal axis, and between the minimum and maximum polar radius along the vertical axis. Since PT is a lossless transformation, it allows a straighforward analysis and comparison of the original and generalized distributions, thus automatic generalization and quality assurance can be down in this way. Examples illustrate that PT algorithm meets with the requirement of generalization of discrete spatial features and is more scientific.

  19. Users manual for AUTOMESH-2D: A program of automatic mesh generation for two-dimensional scattering analysis by the finite element method

    NASA Technical Reports Server (NTRS)

    Hua, Chongyu; Volakis, John L.

    1990-01-01

    AUTOMESH-2D is a computer program specifically designed as a preprocessor for the scattering analysis of two dimensional bodies by the finite element method. This program was developed due to a need for reproducing the effort required to define and check the geometry data, element topology, and material properties. There are six modules in the program: (1) Parameter Specification; (2) Data Input; (3) Node Generation; (4) Element Generation; (5) Mesh Smoothing; and (5) Data File Generation.

  20. [Auricular arrhythmia in Steinert's myotonia. Apropos of a case with a familial study].

    PubMed

    Chagnon, A; Vidal, M E

    1983-02-24

    A case of bradycardia-tachycardia syndrome leading to the late discovery of Steinert syndrome is reported. There is a discrepancy between the frequency of the main features of the bradycardia-tachycardia syndrome (sinoatrial block and atrial flutter in our observation) usually reported in Steinert disease and the fact that no case similar to ours seems to have yet been reported; this suggests definite underrating. Insertion of a pacemaker should avoid sudden death from a conduction disturbance. The heart should be carefully monitored in patients with myotonic dystrophy; conversely, this diagnosis should be considered in the etiologic diagnosis of myocardiopathies.

  1. An Energy-Aware Hybrid ARQ Scheme with Multi-ACKs for Data Sensing Wireless Sensor Networks.

    PubMed

    Zhang, Jinhuan; Long, Jun

    2017-06-12

    Wireless sensor networks (WSNs) are one of the important supporting technologies of edge computing. In WSNs, reliable communications are essential for most applications due to the unreliability of wireless links. In addition, network lifetime is also an important performance metric and needs to be considered in many WSN studies. In the paper, an energy-aware hybrid Automatic Repeat-reQuest protocol (ARQ) scheme is proposed to ensure energy efficiency under the guarantee of network transmission reliability. In the scheme, the source node sends data packets continuously with the correct window size and it does not need to wait for the acknowledgement (ACK) confirmation for each data packet. When the destination receives K data packets, it will return multiple copies of one ACK for confirmation to avoid ACK packet loss. The energy consumption of each node in flat circle network applying the proposed scheme is statistical analyzed and the cases under which it is more energy efficiency than the original scheme is discussed. Moreover, how to select parameters of the scheme is addressed to extend the network lifetime under the constraint of the network reliability. In addition, the energy efficiency of the proposed schemes is evaluated. Simulation results are presented to demonstrate that a node energy consumption reduction could be gained and the network lifetime is prolonged.

  2. Experimenting with an Evolving Ground/Space-based Software Architecture to Enable Sensor Webs

    NASA Technical Reports Server (NTRS)

    mandl, Daniel; Frye, Stuart

    2005-01-01

    A series of ongoing experiments are being conducted at the NASA Goddard Space Flight Center to explore integrated ground and space-based software architectures enabling sensor webs. A sensor web, as defined by Steve Talabac at NASA Goddard Space Flight Center(GSFC), is a coherent set of distributed nodes interconnected by a communications fabric, that collectively behave as a single, dynamically adaptive, observing system. The nodes can be comprised of satellites, ground instruments, computing nodes etc. Sensor web capability requires autonomous management of constellation resources. This becomes progressively more important as more and more satellites share resource, such as communication channels and ground station,s while automatically coordinating their activities. There have been five ongoing activities which include an effort to standardize a set of middleware. This paper will describe one set of activities using the Earth Observing 1 satellite, which used a variety of ground and flight software along with other satellites and ground sensors to prototype a sensor web. This activity allowed us to explore where the difficulties that occur in the assembly of sensor webs given today s technology. We will present an overview of the software system architecture, some key experiments and lessons learned to facilitate better sensor webs in the future.

  3. A uniform approach for programming distributed heterogeneous computing systems

    PubMed Central

    Grasso, Ivan; Pellegrini, Simone; Cosenza, Biagio; Fahringer, Thomas

    2014-01-01

    Large-scale compute clusters of heterogeneous nodes equipped with multi-core CPUs and GPUs are getting increasingly popular in the scientific community. However, such systems require a combination of different programming paradigms making application development very challenging. In this article we introduce libWater, a library-based extension of the OpenCL programming model that simplifies the development of heterogeneous distributed applications. libWater consists of a simple interface, which is a transparent abstraction of the underlying distributed architecture, offering advanced features such as inter-context and inter-node device synchronization. It provides a runtime system which tracks dependency information enforced by event synchronization to dynamically build a DAG of commands, on which we automatically apply two optimizations: collective communication pattern detection and device-host-device copy removal. We assess libWater’s performance in three compute clusters available from the Vienna Scientific Cluster, the Barcelona Supercomputing Center and the University of Innsbruck, demonstrating improved performance and scaling with different test applications and configurations. PMID:25844015

  4. A uniform approach for programming distributed heterogeneous computing systems.

    PubMed

    Grasso, Ivan; Pellegrini, Simone; Cosenza, Biagio; Fahringer, Thomas

    2014-12-01

    Large-scale compute clusters of heterogeneous nodes equipped with multi-core CPUs and GPUs are getting increasingly popular in the scientific community. However, such systems require a combination of different programming paradigms making application development very challenging. In this article we introduce libWater, a library-based extension of the OpenCL programming model that simplifies the development of heterogeneous distributed applications. libWater consists of a simple interface, which is a transparent abstraction of the underlying distributed architecture, offering advanced features such as inter-context and inter-node device synchronization. It provides a runtime system which tracks dependency information enforced by event synchronization to dynamically build a DAG of commands, on which we automatically apply two optimizations: collective communication pattern detection and device-host-device copy removal. We assess libWater's performance in three compute clusters available from the Vienna Scientific Cluster, the Barcelona Supercomputing Center and the University of Innsbruck, demonstrating improved performance and scaling with different test applications and configurations.

  5. A Model-Based Approach for Bridging Virtual and Physical Sensor Nodes in a Hybrid Simulation Framework

    PubMed Central

    Mozumdar, Mohammad; Song, Zhen Yu; Lavagno, Luciano; Sangiovanni-Vincentelli, Alberto L.

    2014-01-01

    The Model Based Design (MBD) approach is a popular trend to speed up application development of embedded systems, which uses high-level abstractions to capture functional requirements in an executable manner, and which automates implementation code generation. Wireless Sensor Networks (WSNs) are an emerging very promising application area for embedded systems. However, there is a lack of tools in this area, which would allow an application developer to model a WSN application by using high level abstractions, simulate it mapped to a multi-node scenario for functional analysis, and finally use the refined model to automatically generate code for different WSN platforms. Motivated by this idea, in this paper we present a hybrid simulation framework that not only follows the MBD approach for WSN application development, but also interconnects a simulated sub-network with a physical sub-network and then allows one to co-simulate them, which is also known as Hardware-In-the-Loop (HIL) simulation. PMID:24960083

  6. Dynamic analysis of flexible gear trains/transmissions - An automated approach

    NASA Technical Reports Server (NTRS)

    Amirouche, F. M. L.; Shareef, N. H.; Xie, M.

    1992-01-01

    In this paper an automated algorithmic method is presented for the dynamic analysis of geared trains/transmissions. These are treated as a system of interconnected flexible bodies. The procedure developed explains the switching of constraints with time as a result of the change in the contacting areas at the gear teeth. The elastic behavior of the system is studied through the employment of three-dimensional isoparametric elements having six degrees-of-freedom at each node. The contact between the bodies is assumed at the various nodes, which could be either a line or a plane. The kinematical expressions, together with the equations of motion using Kane's method, strain energy concepts, are presented in a matrix form suitable for computer implementation. The constraint Jacobian matrices are generated automatically based on the contact information between the bodies. The concepts of the relative velocity at the contacting points at the tooth pairs and the subsequent use of the transmission ratios in the analysis is presented.

  7. Development of Power Supply Management Module for Radio Signal Repeaters of Automatic Metering Reading System in Variable Solar Density Conditions

    NASA Astrophysics Data System (ADS)

    Kondratjevs, K.; Zabasta, A.; Selmanovs-Pless, V.

    2016-02-01

    In recent years, there has been significant research focus that revolves around harvesting and minimising energy consumption by wireless sensor network nodes. When a sensor node is depleted of energy, it becomes unresponsive and disconnected from the network that can significantly influence the performance of the whole network. The purpose of the present research is to create a power supply management module in order to provide stable operating voltage for autonomous operations of radio signal repeaters, sensors or gateways of WSN. The developed management module is composed of a solar panel, lithium battery and power supply management module. The novelty of the research is the management module, which ensures stable and uninterrupted operations of electronic equipment in various power supply modes in different situations, simultaneously ensuring energy protection and sustainability of the module components. The management module is able to provide power supply of 5 V for electronics scheme independently, without power interruption switching between power sources and power flows in different directions.

  8. Lightweight scheduling of elastic analysis containers in a competitive cloud environment: a Docked Analysis Facility for ALICE

    NASA Astrophysics Data System (ADS)

    Berzano, D.; Blomer, J.; Buncic, P.; Charalampidis, I.; Ganis, G.; Meusel, R.

    2015-12-01

    During the last years, several Grid computing centres chose virtualization as a better way to manage diverse use cases with self-consistent environments on the same bare infrastructure. The maturity of control interfaces (such as OpenNebula and OpenStack) opened the possibility to easily change the amount of resources assigned to each use case by simply turning on and off virtual machines. Some of those private clouds use, in production, copies of the Virtual Analysis Facility, a fully virtualized and self-contained batch analysis cluster capable of expanding and shrinking automatically upon need: however, resources starvation occurs frequently as expansion has to compete with other virtual machines running long-living batch jobs. Such batch nodes cannot relinquish their resources in a timely fashion: the more jobs they run, the longer it takes to drain them and shut off, and making one-job virtual machines introduces a non-negligible virtualization overhead. By improving several components of the Virtual Analysis Facility we have realized an experimental “Docked” Analysis Facility for ALICE, which leverages containers instead of virtual machines for providing performance and security isolation. We will present the techniques we have used to address practical problems, such as software provisioning through CVMFS, as well as our considerations on the maturity of containers for High Performance Computing. As the abstraction layer is thinner, our Docked Analysis Facilities may feature a more fine-grained sizing, down to single-job node containers: we will show how this approach will positively impact automatic cluster resizing by deploying lightweight pilot containers instead of replacing central queue polls.

  9. New operator assistance features in the CMS Run Control System

    NASA Astrophysics Data System (ADS)

    Andre, J.-M.; Behrens, U.; Branson, J.; Brummer, P.; Chaze, O.; Cittolin, S.; Contescu, C.; Craigs, B. G.; Darlea, G.-L.; Deldicque, C.; Demiragli, Z.; Dobson, M.; Doualot, N.; Erhan, S.; Fulcher, J. R.; Gigi, D.; Gładki, M.; Glege, F.; Gomez-Ceballos, G.; Hegeman, J.; Holzner, A.; Janulis, M.; Jimenez-Estupiñán, R.; Masetti, L.; Meijers, F.; Meschi, E.; Mommsen, R. K.; Morovic, S.; O'Dell, V.; Orsini, L.; Paus, C.; Petrova, P.; Pieri, M.; Racz, A.; Reis, T.; Sakulin, H.; Schwick, C.; Simelevicius, D.; Vougioukas, M.; Zejdl, P.

    2017-10-01

    During Run-1 of the LHC, many operational procedures have been automated in the run control system of the Compact Muon Solenoid (CMS) experiment. When detector high voltages are ramped up or down or upon certain beam mode changes of the LHC, the DAQ system is automatically partially reconfigured with new parameters. Certain types of errors such as errors caused by single-event upsets may trigger an automatic recovery procedure. Furthermore, the top-level control node continuously performs cross-checks to detect sub-system actions becoming necessary because of changes in configuration keys, changes in the set of included front-end drivers or because of potential clock instabilities. The operator is guided to perform the necessary actions through graphical indicators displayed next to the relevant command buttons in the user interface. Through these indicators, consistent configuration of CMS is ensured. However, manually following the indicators can still be inefficient at times. A new assistant to the operator has therefore been developed that can automatically perform all the necessary actions in a streamlined order. If additional problems arise, the new assistant tries to automatically recover from these. With the new assistant, a run can be started from any state of the sub-systems with a single click. An ongoing run may be recovered with a single click, once the appropriate recovery action has been selected. We review the automation features of CMS Run Control and discuss the new assistant in detail including first operational experience.

  10. New Operator Assistance Features in the CMS Run Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andre, J.M.; et al.

    During Run-1 of the LHC, many operational procedures have been automated in the run control system of the Compact Muon Solenoid (CMS) experiment. When detector high voltages are ramped up or down or upon certain beam mode changes of the LHC, the DAQ system is automatically partially reconfigured with new parameters. Certain types of errors such as errors caused by single-event upsets may trigger an automatic recovery procedure. Furthermore, the top-level control node continuously performs cross-checks to detect sub-system actions becoming necessary because of changes in configuration keys, changes in the set of included front-end drivers or because of potentialmore » clock instabilities. The operator is guided to perform the necessary actions through graphical indicators displayed next to the relevant command buttons in the user interface. Through these indicators, consistent configuration of CMS is ensured. However, manually following the indicators can still be inefficient at times. A new assistant to the operator has therefore been developed that can automatically perform all the necessary actions in a streamlined order. If additional problems arise, the new assistant tries to automatically recover from these. With the new assistant, a run can be started from any state of the sub-systems with a single click. An ongoing run may be recovered with a single click, once the appropriate recovery action has been selected. We review the automation features of CMS Run Control and discuss the new assistant in detail including first operational experience.« less

  11. Development of cardiac parasympathetic neurons, glial cells, and regional cholinergic innervation of the mouse heart.

    PubMed

    Fregoso, S P; Hoover, D B

    2012-09-27

    Very little is known about the development of cardiac parasympathetic ganglia and cholinergic innervation of the mouse heart. Accordingly, we evaluated the growth of cholinergic neurons and nerve fibers in mouse hearts from embryonic day 18.5 (E18.5) through postnatal day 21(P21). Cholinergic perikarya and varicose nerve fibers were identified in paraffin sections immunostained for the vesicular acetylcholine transporter (VAChT). Satellite cells and Schwann cells in adjacent sections were identified by immunostaining for S100β calcium binding protein (S100) and brain-fatty acid binding protein (B-FABP). We found that cardiac ganglia had formed in close association to the atria and cholinergic innervation of the atrioventricular junction had already begun by E18.5. However, most cholinergic innervation of the heart, including the sinoatrial node, developed postnatally (P0.5-P21) along with a doubling of the cross-sectional area of cholinergic perikarya. Satellite cells were present throughout neonatal cardiac ganglia and expressed primarily B-FABP. As they became more mature at P21, satellite cells stained strongly for both B-FABP and S100. Satellite cells appeared to surround most cardiac parasympathetic neurons, even in neonatal hearts. Mature Schwann cells, identified by morphology and strong staining for S100, were already present at E18.5 in atrial regions that receive cholinergic innervation at later developmental times. The abundance and distribution of S100-positive Schwann cells increased postnatally along with nerve density. While S100 staining of cardiac Schwann cells was maintained in P21 and older mice, Schwann cells did not show B-FABP staining at these times. Parallel development of satellite cells and cholinergic perikarya in the cardiac ganglia and the increase in abundance of Schwann cells and varicose cholinergic nerve fibers in the atria suggest that neuronal-glial interactions could be important for development of the parasympathetic nervous system in the heart. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. An experimental ovine Theileriosis: The effect of Theileria lestoquardi infection on cardiovascular system in sheep.

    PubMed

    Yaghfoori, Saeed; Razmi, Gholam Reza; Mohri, Mehrdad; Razavizadeh, Ali Reza Taghavi; Movassaghi, Ahmad Reza

    2016-09-01

    The malignant ovine theileriosis is caused by Theileria lestoquardi, which is highly pathogenic in sheep. Theileriosis involves different organs in ruminants, but the effect of the disease on the cardiovascular system is unclear. To understand the pathogenesis of T. lestoquardi on the cardiovascular system, Baluchi breed sheep were infected with the mentioned parasite by releasing unfed adults of Hyalomma anatolicum anatolicum, which were infected with T. lestoquardi. The infected sheep were clinically examined on days 0, 2, 5, 7, 10, 12, 14, 17, and 21, and the blood samples were collected for biochemical parameters measurement. At termination of the experiment, the infected sheep were euthanized and pathological examinations of heart tissue were conducted. During experimental infection of sheep with T. lestoquardi, activities of cardiac troponin I (cTnI), lactate dehydrogenase, and aspartate aminotransferase, were significantly increased (P˂0.05), while a conspicuous decrease (P˂0.05) was observed in creatine phosphokinase activities. Alterations made in biochemical factors almost coincided with the presence of piroplasm in the blood and schizont in lymph nodes. Maximum and minimum of parasitemia in the sheep stood between 3.3% and 0.28%, respectively. In addition, electrocardiography revealed sinus tachycardia, sinus arrhythmia, sino-atrial block and ST-elevation, atrial premature beat, and alteration in QRS and in T waves' amplitude. Heart histopathological examination showed hyperemia, infiltration of mononuclear inflammatory cells into interstitial tissue, endocarditis, and focal necrosis of cardiac muscle cells. In addition, in one of the sheep, definite occurrence of infarction was observed. The results indicate that T. lestoquardi infection has devastating pathological impacts on the cardiovascular system of sheep. Furthermore, measurement of the cTnI amount is a useful biochemical factor for diagnosis and for better understanding of the severity and progression of the disease and its effects on cardiac tissue. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Multivariate assessment of the central-cardiorespiratory network structure in neuropathological disease.

    PubMed

    Schulz, Steffen; Haueisen, Jens; Bär, Karl-Juergen; Voss, Andreas

    2018-06-22

    The new interdisciplinary field of network physiology is getting more and more into the focus of interest in medicine. The autonomic nervous system (ANS) dysfunction is well described in schizophrenia (SZO). However, the linear and nonlinear coupling between the ANS and central nervous system (CNS) is only partly addressed until now. This coupling can be assumed as a feedback-feedforward network, reacting with flexible and adaptive responses to internal and external factors. Approach: For the first time, in this study, we investigated linear and nonlinear short-term central-cardiorespiratory couplings of 17 patients suffering from paranoid schizophrenia (SZO) in comparison to 17 age-gender matched healthy subjects (CON) analyzing heart rate (HR), respiration (RESP) and the power of frontal EEG activity (PEEG). The objective is to determine how the different regulatory aspects of the CNS-ANS compose the central-cardiorespiratory network (CCRN). To quantify these couplings within the CCRN the normalized short time partial directed coherence (NSTPDC) and the new multivariate high-resolution joint symbolic dynamics (mHRJSD) were applied. Main results: We found that the CCRN in SZO is characterized as a bidirectional one, with stronger central driving mechanisms (PEEG→HR) towards HR regulation than vice versa, and with stronger respiratory influence (RESP→PEEG) on central activity than vice versa. This suggests that the central-cardiorespiratory process (closed-loop) is mainly focusing on adapting the HR via the sinoatrial node than focusing on respiratory regulation. On the other side, the feedback-loop from ANS to CNS is strongly dominated via respiratory activity. Significance: We could demonstrate a considerably significantly different central-cardiorespiratory network structure in schizophrenia with strong central influence on the cardiac system and a strong respiratory influence on the central nervous system. Moreover, this study provides a more in-depth understanding of the interplay of the central and autonomic regulatory network in healthy subjects and schizophrenic patients. . © 2018 Institute of Physics and Engineering in Medicine.

  14. Organization of the sympathetic innervation of the forelimb resistance vessels in the cat.

    PubMed

    Backman, S B; Stein, R D; Polosa, C

    1999-02-01

    Detailed information on the outflow pathway of sympathetic vasoconstrictor fibers to the upper extremity is lacking. We studied the organization of the sympathetic innervation of the forelimb resistance vessels and of the sinoatrial (SA) node in the decerebrated, artificially respirated cat. The distal portion of sectioned individual rami T1-8 and the sympathetic chain immediately caudal to T8 on the right side were electrically stimulated while the right forelimb perfusion pressure (forelimb perfused at constant flow) and heart rate were recorded. Increases in perfusion pressure were evoked by stimulation of T2-8 (maximal response T7: 55 +/- 2.3 mm Hg). Responses were still evoked by stimulation of the sympathetic chain immediately caudal to T8 (44 +/- 15 mm Hg). Increases in heart rate were evoked by the stimulation of more rostral rami (T1-5; maximal response T3: 55.2 +/- 8 bpm). These vasoconstrictor and cardioacceleratory responses were blocked by the cholinergic antagonists hexamethonium and scopolamine. Sectioning of the vertebral nerve and the T1 ramus abolished the vasoconstrictor response. Stimulation of the vertebral nerve and of the proximal portion of the sectioned T1 ramus increased perfusion pressure (69 +/- 9 and 34 +/- 14 mm Hg, respectively), which was unaffected by ganglionic cholinergic block. These data suggest that forelimb resistance vessel control is subserved by sympathetic preganglionic neurons located mainly in the middle to caudal thoracic spinal segments. Some of the postganglionic axons subserving vasomotor function course through the T1 ramus, in addition to the vertebral nerve. Forelimb vasculature is controlled by sympathetic preganglionic neurons located in middle to caudal thoracic spinal segments and by postganglionic axons carried in the T1 ramus and vertebral nerve. This helps to provide the anatomical substrate of interruption of sympathetic outflow to the upper extremity produced by major conduction anesthesia of the stellate ganglion or spinal cord.

  15. Hydroxychloroquine reduces heart rate by modulating the hyperpolarization-activated current If: Novel electrophysiological insights and therapeutic potential

    PubMed Central

    Capel, Rebecca A.; Herring, Neil; Kalla, Manish; Yavari, Arash; Mirams, Gary R.; Douglas, Gillian; Bub, Gil; Channon, Keith; Paterson, David J.; Terrar, Derek A.; Burton, Rebecca-Ann B.

    2015-01-01

    Background Bradycardic agents are of interest for the treatment of ischemic heart disease and heart failure, as heart rate is an important determinant of myocardial oxygen consumption. Objectives The purpose of this study was to investigate the propensity of hydroxychloroquine (HCQ) to cause bradycardia. Methods We assessed the effects of HCQ on (1) cardiac beating rate in vitro (mice); (2) the “funny” current (If) in isolated guinea pig sinoatrial node (SAN) myocytes (1, 3, 10 µM); (3) heart rate and blood pressure in vivo by acute bolus injection (rat, dose range 1–30 mg/kg), (4) blood pressure and ventricular function during feeding (mouse, 100 mg/kg/d for 2 wk, tail cuff plethysmography, anesthetized echocardiography). Results In mouse atria, spontaneous beating rate was significantly (P < .05) reduced (by 9% ± 3% and 15% ± 2% at 3 and 10 µM HCQ, n = 7). In guinea pig isolated SAN cells, HCQ conferred a significant reduction in spontaneous action potential firing rate (17% ± 6%, 1 μM dose) and a dose-dependent reduction in If (13% ± 3% at 1 µM; 19% ± 2% at 3 µM). Effects were also observed on L-type calcium ion current (ICaL) (12% ± 4% reduction) and rapid delayed rectifier potassium current (IKr) (35% ± 4%) at 3 µM. Intravenous HCQ decreased heart rate in anesthetized rats (14.3% ± 1.1% at 15mg/kg; n = 6) without significantly reducing mean arterial blood pressure. In vivo feeding studies in mice showed no significant change in systolic blood pressure nor left ventricular function. Conclusions We have shown that HCQ acts as a bradycardic agent in SAN cells, in atrial preparations, and in vivo. HCQ slows the rate of spontaneous action potential firing in the SAN through multichannel inhibition, including that of If. PMID:26025323

  16. Assessment of the clinical cardiac drug-drug interaction associated with the combination of hepatitis C virus nucleotide inhibitors and amiodarone in guinea pigs and rhesus monkeys.

    PubMed

    Regan, Christopher P; Morissette, Pierre; Regan, Hillary K; Travis, Jeffery J; Gerenser, Pamela; Wen, Jianzhong; Fitzgerald, Kevin; Gruver, Shaun; DeGeorge, Joseph J; Sannajust, Frederick J

    2016-11-01

    In 2015, European and U.S. health agencies issued warning letters in response to 9 reported clinical cases of severe bradycardia/bradyarrhythmia in hepatitis C virus (HCV)-infected patients treated with sofosbuvir (SOF) in combination with other direct acting antivirals (DAAs) and the antiarrhythmic drug, amiodarone (AMIO). We utilized preclinical in vivo models to better understand this cardiac effect, the potential pharmacological mechanism(s), and to identify a clinically translatable model to assess the drug-drug interaction (DDI) cardiac risk of current and future HCV inhibitors. An anesthetized guinea pig model was used to elicit a SOF+AMIO-dependent bradycardia. Detailed cardiac electrophysiological studies in this species revealed SOF+AMIO-dependent selective nodal dysfunction, with initial, larger effects on the sinoatrial node. Further studies in conscious, rhesus monkeys revealed an emergent bradycardia and bradyarrhythmia in 3 of 4 monkeys administered SOF+AMIO, effects not observed with either agent alone. Morever, bradycardia and bradyarrhythmia were not observed in rhesus monkeys when intravenous infusion of MK-3682 was completed after AMIO pretreatment. These are the first preclinical in vivo experiments reported to replicate the severe clinical SOF+AMIO cardiac DDI and provide potential in vivo mechanism of action. As such, these data provide a preclinical risk assessment paradigm, including a clinically relevant nonhuman primate model, with which to better understand cardiovascular DDI risk for this therapeutic class. Furthermore, these studies suggest that not all HCV DAAs and, in particular, not all HCV nonstructural protein 5B inhibitors may exhibit this cardiac DDI with amiodarone. Given the selective in vivo cardiac electrophysiological effect, these data enable targeted cellular/molecular mechanistic studies to more precisely identify cell types, receptors, and/or ion channels responsible for the clinical DDI. (Hepatology 2016;64:1430-1441). © 2016 by the American Association for the Study of Liver Diseases.

  17. Hydroxychloroquine reduces heart rate by modulating the hyperpolarization-activated current If: Novel electrophysiological insights and therapeutic potential.

    PubMed

    Capel, Rebecca A; Herring, Neil; Kalla, Manish; Yavari, Arash; Mirams, Gary R; Douglas, Gillian; Bub, Gil; Channon, Keith; Paterson, David J; Terrar, Derek A; Burton, Rebecca-Ann B

    2015-10-01

    Bradycardic agents are of interest for the treatment of ischemic heart disease and heart failure, as heart rate is an important determinant of myocardial oxygen consumption. The purpose of this study was to investigate the propensity of hydroxychloroquine (HCQ) to cause bradycardia. We assessed the effects of HCQ on (1) cardiac beating rate in vitro (mice); (2) the "funny" current (If) in isolated guinea pig sinoatrial node (SAN) myocytes (1, 3, 10 µM); (3) heart rate and blood pressure in vivo by acute bolus injection (rat, dose range 1-30 mg/kg), (4) blood pressure and ventricular function during feeding (mouse, 100 mg/kg/d for 2 wk, tail cuff plethysmography, anesthetized echocardiography). In mouse atria, spontaneous beating rate was significantly (P < .05) reduced (by 9% ± 3% and 15% ± 2% at 3 and 10 µM HCQ, n = 7). In guinea pig isolated SAN cells, HCQ conferred a significant reduction in spontaneous action potential firing rate (17% ± 6%, 1 μM dose) and a dose-dependent reduction in If (13% ± 3% at 1 µM; 19% ± 2% at 3 µM). Effects were also observed on L-type calcium ion current (ICaL) (12% ± 4% reduction) and rapid delayed rectifier potassium current (IKr) (35% ± 4%) at 3 µM. Intravenous HCQ decreased heart rate in anesthetized rats (14.3% ± 1.1% at 15mg/kg; n = 6) without significantly reducing mean arterial blood pressure. In vivo feeding studies in mice showed no significant change in systolic blood pressure nor left ventricular function. We have shown that HCQ acts as a bradycardic agent in SAN cells, in atrial preparations, and in vivo. HCQ slows the rate of spontaneous action potential firing in the SAN through multichannel inhibition, including that of If. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  18. Advances in the management of heart failure: the role of ivabradine

    PubMed Central

    Müller-Werdan, Ursula; Stöckl, Georg; Werdan, Karl

    2016-01-01

    A high resting heart rate (≥70–75 b.p.m.) is a risk factor for patients with heart failure (HF) with reduced ejection fraction (EF), probably in the sense of accelerated atherosclerosis, with an increased morbidity and mortality. Beta-blockers not only reduce heart rate but also have negative inotropic and blood pressure-lowering effects, and therefore, in many patients, they cannot be given in the recommended dose. Ivabradine specifically inhibits the pacemaker current (funny current, If) of the sinoatrial node cells, resulting in therapeutic heart rate lowering without any negative inotropic and blood pressure-lowering effect. According to the European Society of Cardiology guidelines, ivabradine should be considered to reduce the risk of HF hospitalization and cardiovascular death in symptomatic patients with a reduced left ventricular EF ≤35% and sinus rhythm ≥70 b.p.m. despite treatment with an evidence-based dose of beta-blocker or a dose below the recommended dose (recommendation class “IIa” = weight of evidence/opinion is in favor of usefulness/efficacy: “should be considered”; level of evidence “B” = data derived from a single randomized clinical trial or large nonrandomized studies). Using a heart rate cutoff of ≥ 75 b.p.m., as licensed by the European Medicines Agency, treatment with ivabradine 5–7.5 mg b.i.d. reduces cardiovascular mortality by 17%, HF mortality by 39% and HF hospitalization rate by 30%. A high resting heart rate is not only a risk factor in HF with reduced EF but also at least a risk marker in HF with preserved EF, in acute HF and also in special forms of HF. In this review, we discuss the proven role of ivabradine in the validated indication “HF with reduced EF” together with interesting preliminary findings, and the potential role of ivabradine in further, specific forms of HF. PMID:27895488

  19. Ca2+-regulated-cAMP/PKA signaling in cardiac pacemaker cells links ATP supply to demand.

    PubMed

    Yaniv, Yael; Juhaszova, Magdalena; Lyashkov, Alexey E; Spurgeon, Harold A; Sollott, Steven J; Lakatta, Edward G

    2011-11-01

    In sinoatrial node cells (SANC), Ca(2+) activates adenylate cyclase (AC) to generate a high basal level of cAMP-mediated/protein kinase A (PKA)-dependent phosphorylation of Ca(2+) cycling proteins. These result in spontaneous sarcoplasmic-reticulum (SR) generated rhythmic Ca(2+) oscillations during diastolic depolarization, that not only trigger the surface membrane to generate rhythmic action potentials (APs), but, in a feed-forward manner, also activate AC/PKA signaling. ATP is consumed to pump Ca(2+) to the SR, to produce cAMP, to support contraction and to maintain cell ionic homeostasis. Since feedback mechanisms link ATP-demand to ATP production, we hypothesized that (1) both basal ATP supply and demand in SANC would be Ca(2+)-cAMP/PKA dependent; and (2) due to its feed-forward nature, a decrease in flux through the Ca(2+)-cAMP/PKA signaling axis will reduce the basal ATP production rate. O(2) consumption in spontaneous beating SANC was comparable to ventricular myocytes (VM) stimulated at 3 Hz. Graded reduction of basal Ca(2+)-cAMP/PKA signaling to reduce ATP demand in rabbit SANC produced graded ATP depletion (r(2)=0.96), and reduced O(2) consumption and flavoprotein fluorescence. Neither inhibition of glycolysis, selectively blocking contraction nor specific inhibition of mitochondrial Ca(2+) flux reduced the ATP level. Feed-forward basal Ca(2+)-cAMP/PKA signaling both consumes ATP to drive spontaneous APs in SANC and is tightly linked to mitochondrial ATP production. Interfering with Ca(2+)-cAMP/PKA signaling not only slows the firing rate and reduces ATP consumption, but also appears to reduce ATP production so that ATP levels fall. This distinctly differs from VM, which lack this feed-forward basal cAMP/PKA signaling, and in which ATP level remains constant when the demand changes. Published by Elsevier Ltd.

  20. Computational modeling of inhibition of voltage-gated Ca channels: identification of different effects on uterine and cardiac action potentials.

    PubMed

    Tong, Wing-Chiu; Ghouri, Iffath; Taggart, Michael J

    2014-01-01

    The uterus and heart share the important physiological feature whereby contractile activation of the muscle tissue is regulated by the generation of periodic, spontaneous electrical action potentials (APs). Preterm birth arising from premature uterine contractions is a major complication of pregnancy and there remains a need to pursue avenues of research that facilitate the use of drugs, tocolytics, to limit these inappropriate contractions without deleterious actions on cardiac electrical excitation. A novel approach is to make use of mathematical models of uterine and cardiac APs, which incorporate many ionic currents contributing to the AP forms, and test the cell-specific responses to interventions. We have used three such models-of uterine smooth muscle cells (USMC), cardiac sinoatrial node cells (SAN), and ventricular cells-to investigate the relative effects of reducing two important voltage-gated Ca currents-the L-type (ICaL) and T-type (ICaT) Ca currents. Reduction of ICaL (10%) alone, or ICaT (40%) alone, blunted USMC APs with little effect on ventricular APs and only mild effects on SAN activity. Larger reductions in either current further attenuated the USMC APs but with also greater effects on SAN APs. Encouragingly, a combination of ICaL and ICaT reduction did blunt USMC APs as intended with little detriment to APs of either cardiac cell type. Subsequent overlapping maps of ICaL and ICaT inhibition profiles from each model revealed a range of combined reductions of ICaL and ICaT over which an appreciable diminution of USMC APs could be achieved with no deleterious action on cardiac SAN or ventricular APs. This novel approach illustrates the potential for computational biology to inform us of possible uterine and cardiac cell-specific mechanisms. Incorporating such computational approaches in future studies directed at designing new, or repurposing existing, tocolytics will be beneficial for establishing a desired uterine specificity of action.

  1. Computational modeling of inhibition of voltage-gated Ca channels: identification of different effects on uterine and cardiac action potentials

    PubMed Central

    Tong, Wing-Chiu; Ghouri, Iffath; Taggart, Michael J.

    2014-01-01

    The uterus and heart share the important physiological feature whereby contractile activation of the muscle tissue is regulated by the generation of periodic, spontaneous electrical action potentials (APs). Preterm birth arising from premature uterine contractions is a major complication of pregnancy and there remains a need to pursue avenues of research that facilitate the use of drugs, tocolytics, to limit these inappropriate contractions without deleterious actions on cardiac electrical excitation. A novel approach is to make use of mathematical models of uterine and cardiac APs, which incorporate many ionic currents contributing to the AP forms, and test the cell-specific responses to interventions. We have used three such models—of uterine smooth muscle cells (USMC), cardiac sinoatrial node cells (SAN), and ventricular cells—to investigate the relative effects of reducing two important voltage-gated Ca currents—the L-type (ICaL) and T-type (ICaT) Ca currents. Reduction of ICaL (10%) alone, or ICaT (40%) alone, blunted USMC APs with little effect on ventricular APs and only mild effects on SAN activity. Larger reductions in either current further attenuated the USMC APs but with also greater effects on SAN APs. Encouragingly, a combination of ICaL and ICaT reduction did blunt USMC APs as intended with little detriment to APs of either cardiac cell type. Subsequent overlapping maps of ICaL and ICaT inhibition profiles from each model revealed a range of combined reductions of ICaL and ICaT over which an appreciable diminution of USMC APs could be achieved with no deleterious action on cardiac SAN or ventricular APs. This novel approach illustrates the potential for computational biology to inform us of possible uterine and cardiac cell-specific mechanisms. Incorporating such computational approaches in future studies directed at designing new, or repurposing existing, tocolytics will be beneficial for establishing a desired uterine specificity of action. PMID:25360118

  2. A New Algorithm to Diagnose Atrial Ectopic Origin from Multi Lead ECG Systems - Insights from 3D Virtual Human Atria and Torso

    PubMed Central

    Alday, Erick A. Perez; Colman, Michael A.; Langley, Philip; Butters, Timothy D.; Higham, Jonathan; Workman, Antony J.; Hancox, Jules C.; Zhang, Henggui

    2015-01-01

    Rapid atrial arrhythmias such as atrial fibrillation (AF) predispose to ventricular arrhythmias, sudden cardiac death and stroke. Identifying the origin of atrial ectopic activity from the electrocardiogram (ECG) can help to diagnose the early onset of AF in a cost-effective manner. The complex and rapid atrial electrical activity during AF makes it difficult to obtain detailed information on atrial activation using the standard 12-lead ECG alone. Compared to conventional 12-lead ECG, more detailed ECG lead configurations may provide further information about spatio-temporal dynamics of the body surface potential (BSP) during atrial excitation. We apply a recently developed 3D human atrial model to simulate electrical activity during normal sinus rhythm and ectopic pacing. The atrial model is placed into a newly developed torso model which considers the presence of the lungs, liver and spinal cord. A boundary element method is used to compute the BSP resulting from atrial excitation. Elements of the torso mesh corresponding to the locations of the placement of the electrodes in the standard 12-lead and a more detailed 64-lead ECG configuration were selected. The ectopic focal activity was simulated at various origins across all the different regions of the atria. Simulated BSP maps during normal atrial excitation (i.e. sinoatrial node excitation) were compared to those observed experimentally (obtained from the 64-lead ECG system), showing a strong agreement between the evolution in time of the simulated and experimental data in the P-wave morphology of the ECG and dipole evolution. An algorithm to obtain the location of the stimulus from a 64-lead ECG system was developed. The algorithm presented had a success rate of 93%, meaning that it correctly identified the origin of atrial focus in 75/80 simulations, and involved a general approach relevant to any multi-lead ECG system. This represents a significant improvement over previously developed algorithms. PMID:25611350

  3. Role of the P-wave high frequency energy and duration as noninvasive cardiovascular predictors of paroxysmal atrial fibrillation.

    PubMed

    Alcaraz, Raúl; Martínez, Arturo; Rieta, José J

    2015-04-01

    A normal cardiac activation starts in the sinoatrial node and then spreads throughout the atrial myocardium, thus defining the P-wave of the electrocardiogram. However, when the onset of paroxysmal atrial fibrillation (PAF) approximates, a highly disturbed electrical activity occurs within the atria, thus provoking fragmented and eventually longer P-waves. Although this altered atrial conduction has been successfully quantified just before PAF onset from the signal-averaged P-wave spectral analysis, its evolution during the hours preceding the arrhythmia has not been assessed yet. This work focuses on quantifying the P-wave spectral content variability over the 2h preceding PAF onset with the aim of anticipating as much as possible the arrhythmic episode envision. For that purpose, the time course of several metrics estimating absolute energy and ratios of high- to low-frequency power in different bands between 20 and 200Hz has been computed from the P-wave autoregressive spectral estimation. All the analyzed metrics showed an increasing variability trend as PAF onset approximated, providing the P-wave high-frequency energy (between 80 and 150Hz) a diagnostic accuracy around 80% to discern between healthy subjects, patients far from PAF and patients less than 1h close to a PAF episode. This discriminant power was similar to that provided by the most classical time-domain approach, i.e., the P-wave duration. Furthermore, the linear combination of both metrics improved the diagnostic accuracy up to 88.07%, thus constituting a reliable noninvasive harbinger of PAF onset with a reasonable anticipation. The information provided by this methodology could be very useful in clinical practice either to optimize the antiarrhythmic treatment in patients at high-risk of PAF onset and to limit drug administration in low risk patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Spaceflight Activates Protein Kinase C Alpha Signaling and Modifies the Developmental Stage of Human Neonatal Cardiovascular Progenitor Cells.

    PubMed

    Baio, Jonathan; Martinez, Aida F; Bailey, Leonard; Hasaniya, Nahidh; Pecaut, Michael J; Kearns-Jonker, Mary

    2018-02-12

    Spaceflight impacts cardiovascular function in astronauts; however, its impact on cardiac development and the stem cells that form the basis for cardiac repair is unknown. Accordingly, further research is needed to uncover the potential relevance of such changes to human health. Using simulated microgravity (SMG) generated by two-dimensional clinorotation and culture aboard the International Space Station (ISS), we assessed the effects of mechanical unloading on human neonatal cardiovascular progenitor cell (CPC) developmental properties and signaling. Following 6-7 days of SMG and 12 days of ISS culture, we analyzed changes in gene expression. Both environments induced the expression of genes that are typically associated with an earlier state of cardiovascular development. To understand the mechanism by which such changes occurred, we assessed the expression of mechanosensitive small RhoGTPases in SMG-cultured CPCs and observed decreased levels of RHOA and CDC42. Given the effect of these molecules on intracellular calcium levels, we evaluated changes in noncanonical Wnt/calcium signaling. After 6-7 days under SMG, CPCs exhibited elevated levels of WNT5A and PRKCA. Similarly, ISS-cultured CPCs exhibited elevated levels of calcium handling and signaling genes, which corresponded to protein kinase C alpha (PKCα), a calcium-dependent protein kinase, activation after 30 days. Akt was activated, whereas phosphorylated extracellular signal-regulated kinase levels were unchanged. To explore the effect of calcium induction in neonatal CPCs, we activated PKCα using hWnt5a treatment on Earth. Subsequently, early cardiovascular developmental marker levels were elevated. Transcripts induced by SMG and hWnt5a-treatment are expressed within the sinoatrial node, which may represent embryonic myocardium maintained in its primitive state. Calcium signaling is sensitive to mechanical unloading and directs CPC developmental properties. Further research both in space and on Earth may help refine the use of CPCs in stem cell-based therapies and highlight the molecular events of development.

  5. Automated Extraction and Classification of Cancer Stage Mentions fromUnstructured Text Fields in a Central Cancer Registry

    PubMed Central

    AAlAbdulsalam, Abdulrahman K.; Garvin, Jennifer H.; Redd, Andrew; Carter, Marjorie E.; Sweeny, Carol; Meystre, Stephane M.

    2018-01-01

    Cancer stage is one of the most important prognostic parameters in most cancer subtypes. The American Joint Com-mittee on Cancer (AJCC) specifies criteria for staging each cancer type based on tumor characteristics (T), lymph node involvement (N), and tumor metastasis (M) known as TNM staging system. Information related to cancer stage is typically recorded in clinical narrative text notes and other informal means of communication in the Electronic Health Record (EHR). As a result, human chart-abstractors (known as certified tumor registrars) have to search through volu-minous amounts of text to extract accurate stage information and resolve discordance between different data sources. This study proposes novel applications of natural language processing and machine learning to automatically extract and classify TNM stage mentions from records at the Utah Cancer Registry. Our results indicate that TNM stages can be extracted and classified automatically with high accuracy (extraction sensitivity: 95.5%–98.4% and classification sensitivity: 83.5%–87%). PMID:29888032

  6. An automatic graph-based approach for artery/vein classification in retinal images.

    PubMed

    Dashtbozorg, Behdad; Mendonça, Ana Maria; Campilho, Aurélio

    2014-03-01

    The classification of retinal vessels into artery/vein (A/V) is an important phase for automating the detection of vascular changes, and for the calculation of characteristic signs associated with several systemic diseases such as diabetes, hypertension, and other cardiovascular conditions. This paper presents an automatic approach for A/V classification based on the analysis of a graph extracted from the retinal vasculature. The proposed method classifies the entire vascular tree deciding on the type of each intersection point (graph nodes) and assigning one of two labels to each vessel segment (graph links). Final classification of a vessel segment as A/V is performed through the combination of the graph-based labeling results with a set of intensity features. The results of this proposed method are compared with manual labeling for three public databases. Accuracy values of 88.3%, 87.4%, and 89.8% are obtained for the images of the INSPIRE-AVR, DRIVE, and VICAVR databases, respectively. These results demonstrate that our method outperforms recent approaches for A/V classification.

  7. Automated Extraction and Classification of Cancer Stage Mentions fromUnstructured Text Fields in a Central Cancer Registry.

    PubMed

    AAlAbdulsalam, Abdulrahman K; Garvin, Jennifer H; Redd, Andrew; Carter, Marjorie E; Sweeny, Carol; Meystre, Stephane M

    2018-01-01

    Cancer stage is one of the most important prognostic parameters in most cancer subtypes. The American Joint Com-mittee on Cancer (AJCC) specifies criteria for staging each cancer type based on tumor characteristics (T), lymph node involvement (N), and tumor metastasis (M) known as TNM staging system. Information related to cancer stage is typically recorded in clinical narrative text notes and other informal means of communication in the Electronic Health Record (EHR). As a result, human chart-abstractors (known as certified tumor registrars) have to search through volu-minous amounts of text to extract accurate stage information and resolve discordance between different data sources. This study proposes novel applications of natural language processing and machine learning to automatically extract and classify TNM stage mentions from records at the Utah Cancer Registry. Our results indicate that TNM stages can be extracted and classified automatically with high accuracy (extraction sensitivity: 95.5%-98.4% and classification sensitivity: 83.5%-87%).

  8. Automation of motor dexterity assessment.

    PubMed

    Heyer, Patrick; Castrejon, Luis R; Orihuela-Espina, Felipe; Sucar, Luis Enrique

    2017-07-01

    Motor dexterity assessment is regularly performed in rehabilitation wards to establish patient status and automatization for such routinary task is sought. A system for automatizing the assessment of motor dexterity based on the Fugl-Meyer scale and with loose restrictions on sensing technologies is presented. The system consists of two main elements: 1) A data representation that abstracts the low level information obtained from a variety of sensors, into a highly separable low dimensionality encoding employing t-distributed Stochastic Neighbourhood Embedding, and, 2) central to this communication, a multi-label classifier that boosts classification rates by exploiting the fact that the classes corresponding to the individual exercises are naturally organized as a network. Depending on the targeted therapeutic movement class labels i.e. exercises scores, are highly correlated-patients who perform well in one, tends to perform well in related exercises-; and critically no node can be used as proxy of others - an exercise does not encode the information of other exercises. Over data from a cohort of 20 patients, the novel classifier outperforms classical Naive Bayes, random forest and variants of support vector machines (ANOVA: p < 0.001). The novel multi-label classification strategy fulfills an automatic system for motor dexterity assessment, with implications for lessening therapist's workloads, reducing healthcare costs and providing support for home-based virtual rehabilitation and telerehabilitation alternatives.

  9. The design of tea garden environmental monitoring system based on WSN

    NASA Astrophysics Data System (ADS)

    Chen, Huajun; Yuan, Lina

    2018-01-01

    Through the application of wireless sensor network (WSN) in tea garden, it can realize the change of traditional tea garden to the modern ones, and effectively improves the comprehensive productive capacity of tea garden. According to the requirement of real-time remote in agricultural information collection and monitoring and the power supply affected by environmental limitations, based on WSN, this paper designs a set of tea garden environmental monitoring system, which achieves the monitoring nodes with ad-hoc network as well as automatic acquisition and transmission to the tea plantations of air temperature, light intensity, soil temperature and humidity.

  10. Automating hypertext for decision support

    NASA Technical Reports Server (NTRS)

    Bieber, Michael

    1990-01-01

    A decision support system (DSS) shell is being constructed that can support applications in a variety of fields, e.g., engineering, manufacturing, finance. The shell provides a hypertext-style interface for 'navigating' among DSS application models, data, and reports. The traditional notion of hypertext had to be enhanced. Hypertext normally requires manually, pre-defined links. A DSS shell, however, requires that hypertext connections to be built 'on the fly'. The role of hypertext is discussed in augmenting DSS applications and the decision making process. Also discussed is how hypertext nodes, links, and link markers tailored to an arbitrary DSS application were automatically generated.

  11. Automatic processing of high-rate, high-density multibeam echosounder data

    NASA Astrophysics Data System (ADS)

    Calder, B. R.; Mayer, L. A.

    2003-06-01

    Multibeam echosounders (MBES) are currently the best way to determine the bathymetry of large regions of the seabed with high accuracy. They are becoming the standard instrument for hydrographic surveying and are also used in geological studies, mineral exploration and scientific investigation of the earth's crustal deformations and life cycle. The significantly increased data density provided by an MBES has significant advantages in accurately delineating the morphology of the seabed, but comes with the attendant disadvantage of having to handle and process a much greater volume of data. Current data processing approaches typically involve (computer aided) human inspection of all data, with time-consuming and subjective assessment of all data points. As data rates increase with each new generation of instrument and required turn-around times decrease, manual approaches become unwieldy and automatic methods of processing essential. We propose a new method for automatically processing MBES data that attempts to address concerns of efficiency, objectivity, robustness and accuracy. The method attributes each sounding with an estimate of vertical and horizontal error, and then uses a model of information propagation to transfer information about the depth from each sounding to its local neighborhood. Embedded in the survey area are estimation nodes that aim to determine the true depth at an absolutely defined location, along with its associated uncertainty. As soon as soundings are made available, the nodes independently assimilate propagated information to form depth hypotheses which are then tracked and updated on-line as more data is gathered. Consequently, we can extract at any time a "current-best" estimate for all nodes, plus co-located uncertainties and other metrics. The method can assimilate data from multiple surveys, multiple instruments or repeated passes of the same instrument in real-time as data is being gathered. The data assimilation scheme is sufficiently robust to deal with typical survey echosounder errors. Robustness is improved by pre-conditioning the data, and allowing the depth model to be incrementally defined. A model monitoring scheme ensures that inconsistent data are maintained as separate but internally consistent depth hypotheses. A disambiguation of these competing hypotheses is only carried out when required by the user. The algorithm has a low memory footprint, runs faster than data can currently be gathered, and is suitable for real-time use. We call this algorithm CUBE (Combined Uncertainty and Bathymetry Estimator). We illustrate CUBE on two data sets gathered in shallow water with different instruments and for different purposes. We show that the algorithm is robust to even gross failure modes, and reliably processes the vast majority of the data. In both cases, we confirm that the estimates made by CUBE are statistically similar to those generated by hand.

  12. Integrated Water Flow Model (IWFM), A Tool For Numerically Simulating Linked Groundwater, Surface Water And Land-Surface Hydrologic Processes

    NASA Astrophysics Data System (ADS)

    Dogrul, E. C.; Brush, C. F.; Kadir, T. N.

    2006-12-01

    The Integrated Water Flow Model (IWFM) is a comprehensive input-driven application for simulating groundwater flow, surface water flow and land-surface hydrologic processes, and interactions between these processes, developed by the California Department of Water Resources (DWR). IWFM couples a 3-D finite element groundwater flow process and 1-D land surface, lake, stream flow and vertical unsaturated-zone flow processes which are solved simultaneously at each time step. The groundwater flow system is simulated as a multilayer aquifer system with a mixture of confined and unconfined aquifers separated by semiconfining layers. The groundwater flow process can simulate changing aquifer conditions (confined to unconfined and vice versa), subsidence, tile drains, injection wells and pumping wells. The land surface process calculates elemental water budgets for agricultural, urban, riparian and native vegetation classes. Crop water demands are dynamically calculated using distributed soil properties, land use and crop data, and precipitation and evapotranspiration rates. The crop mix can also be automatically modified as a function of pumping lift using logit functions. Surface water diversions and groundwater pumping can each be specified, or can be automatically adjusted at run time to balance water supply with water demand. The land-surface process also routes runoff to streams and deep percolation to the unsaturated zone. Surface water networks are specified as a series of stream nodes (coincident with groundwater nodes) with specified bed elevation, conductance and stage-flow relationships. Stream nodes are linked to form stream reaches. Stream inflows at the model boundary, surface water diversion locations, and one or more surface water deliveries per location are specified. IWFM routes stream flows through the network, calculating groundwater-surface water interactions, accumulating inflows from runoff, and allocating available stream flows to meet specified or calculated deliveries. IWFM utilizes a very straight-forward input file structure, allowing rapid development of complex simulations. A key feature of IWFM is a new algorithm for computation of groundwater flow across element faces. Enhancements to version 3.0 include automatic time-tracking of input and output data sets, linkage with the HEC-DSS database, and dynamic crop allocation using logit functions. Utilities linking IWFM to the PEST automated calibration suite are also available. All source code, executables and documentation are available for download from the DWR web site. IWFM is currently being used to develop hydrologic simulations of California's Central Valley (C2VSIM); the west side of California's San Joaquin Valley (WESTSIM); Butte County, CA; Solano County, CA; Merced County, CA; and the Oregon side of the Walla Walla River Basin.

  13. SU-E-J-238: Monitoring Lymph Node Volumes During Radiotherapy Using Semi-Automatic Segmentation of MRI Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veeraraghavan, H; Tyagi, N; Riaz, N

    2014-06-01

    Purpose: Identification and image-based monitoring of lymph nodes growing due to disease, could be an attractive alternative to prophylactic head and neck irradiation. We evaluated the accuracy of the user-interactive Grow Cut algorithm for volumetric segmentation of radiotherapy relevant lymph nodes from MRI taken weekly during radiotherapy. Method: The algorithm employs user drawn strokes in the image to volumetrically segment multiple structures of interest. We used a 3D T2-wturbo spin echo images with an isotropic resolution of 1 mm3 and FOV of 492×492×300 mm3 of head and neck cancer patients who underwent weekly MR imaging during the course of radiotherapy.more » Various lymph node (LN) levels (N2, N3, N4'5) were individually contoured on the weekly MR images by an expert physician and used as ground truth in our study. The segmentation results were compared with the physician drawn lymph nodes based on DICE similarity score. Results: Three head and neck patients with 6 weekly MR images were evaluated. Two patients had level 2 LN drawn and one patient had level N2, N3 and N4'5 drawn on each MR image. The algorithm took an average of a minute to segment the entire volume (512×512×300 mm3). The algorithm achieved an overall DICE similarity score of 0.78. The time taken for initializing and obtaining the volumetric mask was about 5 mins for cases with only N2 LN and about 15 mins for the case with N2,N3 and N4'5 level nodes. The longer initialization time for the latter case was due to the need for accurate user inputs to separate overlapping portions of the different LN. The standard deviation in segmentation accuracy at different time points was utmost 0.05. Conclusions: Our initial evaluation of the grow cut segmentation shows reasonably accurate and consistent volumetric segmentations of LN with minimal user effort and time.« less

  14. Visualization and Analysis of Wireless Sensor Network Data for Smart Civil Structure Applications Based On Spatial Correlation Technique

    NASA Astrophysics Data System (ADS)

    Chowdhry, Bhawani Shankar; White, Neil M.; Jeswani, Jai Kumar; Dayo, Khalil; Rathi, Manorma

    2009-07-01

    Disasters affecting infrastructure, such as the 2001 earthquakes in India, 2005 in Pakistan, 2008 in China and the 2004 tsunami in Asia, provide a common need for intelligent buildings and smart civil structures. Now, imagine massive reductions in time to get the infrastructure working again, realtime information on damage to buildings, massive reductions in cost and time to certify that structures are undamaged and can still be operated, reductions in the number of structures to be rebuilt (if they are known not to be damaged). Achieving these ideas would lead to huge, quantifiable, long-term savings to government and industry. Wireless sensor networks (WSNs) can be deployed in buildings to make any civil structure both smart and intelligent. WSNs have recently gained much attention in both public and research communities because they are expected to bring a new paradigm to the interaction between humans, environment, and machines. This paper presents the deployment of WSN nodes in the Top Quality Centralized Instrumentation Centre (TQCIC). We created an ad hoc networking application to collect real-time data sensed from the nodes that were randomly distributed throughout the building. If the sensors are relocated, then the application automatically reconfigures itself in the light of the new routing topology. WSNs are event-based systems that rely on the collective effort of several micro-sensor nodes, which are continuously observing a physical phenomenon. WSN applications require spatially dense sensor deployment in order to achieve satisfactory coverage. The degree of spatial correlation increases with the decreasing inter-node separation. Energy consumption is reduced dramatically by having only those sensor nodes with unique readings transmit their data. We report on an algorithm based on a spatial correlation technique that assures high QoS (in terms of SNR) of the network as well as proper utilization of energy, by suppressing redundant data transmission. The visualization and analysis of WSN data are presented in a Windows-based user interface.

  15. SU-E-T-628: A Cloud Computing Based Multi-Objective Optimization Method for Inverse Treatment Planning.

    PubMed

    Na, Y; Suh, T; Xing, L

    2012-06-01

    Multi-objective (MO) plan optimization entails generation of an enormous number of IMRT or VMAT plans constituting the Pareto surface, which presents a computationally challenging task. The purpose of this work is to overcome the hurdle by developing an efficient MO method using emerging cloud computing platform. As a backbone of cloud computing for optimizing inverse treatment planning, Amazon Elastic Compute Cloud with a master node (17.1 GB memory, 2 virtual cores, 420 GB instance storage, 64-bit platform) is used. The master node is able to scale seamlessly a number of working group instances, called workers, based on the user-defined setting account for MO functions in clinical setting. Each worker solved the objective function with an efficient sparse decomposition method. The workers are automatically terminated if there are finished tasks. The optimized plans are archived to the master node to generate the Pareto solution set. Three clinical cases have been planned using the developed MO IMRT and VMAT planning tools to demonstrate the advantages of the proposed method. The target dose coverage and critical structure sparing of plans are comparable obtained using the cloud computing platform are identical to that obtained using desktop PC (Intel Xeon® CPU 2.33GHz, 8GB memory). It is found that the MO planning speeds up the processing of obtaining the Pareto set substantially for both types of plans. The speedup scales approximately linearly with the number of nodes used for computing. With the use of N nodes, the computational time is reduced by the fitting model, 0.2+2.3/N, with r̂2>0.99, on average of the cases making real-time MO planning possible. A cloud computing infrastructure is developed for MO optimization. The algorithm substantially improves the speed of inverse plan optimization. The platform is valuable for both MO planning and future off- or on-line adaptive re-planning. © 2012 American Association of Physicists in Medicine.

  16. Central FPGA-based destination and load control in the LHCb MHz event readout

    NASA Astrophysics Data System (ADS)

    Jacobsson, R.

    2012-10-01

    The readout strategy of the LHCb experiment is based on complete event readout at 1 MHz. A set of 320 sub-detector readout boards transmit event fragments at total rate of 24.6 MHz at a bandwidth usage of up to 70 GB/s over a commercial switching network based on Gigabit Ethernet to a distributed event building and high-level trigger processing farm with 1470 individual multi-core computer nodes. In the original specifications, the readout was based on a pure push protocol. This paper describes the proposal, implementation, and experience of a non-conventional mixture of a push and a pull protocol, akin to credit-based flow control. An FPGA-based central master module, partly operating at the LHC bunch clock frequency of 40.08 MHz and partly at a double clock speed, is in charge of the entire trigger and readout control from the front-end electronics up to the high-level trigger farm. One FPGA is dedicated to controlling the event fragment packing in the readout boards, the assignment of the farm node destination for each event, and controls the farm load based on an asynchronous pull mechanism from each farm node. This dynamic readout scheme relies on generic event requests and the concept of node credit allowing load control and trigger rate regulation as a function of the global farm load. It also allows the vital task of fast central monitoring and automatic recovery in-flight of failing nodes while maintaining dead-time and event loss at a minimum. This paper demonstrates the strength and suitability of implementing this real-time task for a very large distributed system in an FPGA where no random delays are introduced, and where extreme reliability and accurate event accounting are fundamental requirements. It was in use during the entire commissioning phase of LHCb and has been in faultless operation during the first two years of physics luminosity data taking.

  17. Automated IMRT planning with regional optimization using planning scripts

    PubMed Central

    Wong, Eugene; Bzdusek, Karl; Lock, Michael; Chen, Jeff Z.

    2013-01-01

    Intensity‐modulated radiation therapy (IMRT) has become a standard technique in radiation therapy for treating different types of cancers. Various class solutions have been developed for simple cases (e.g., localized prostate, whole breast) to generate IMRT plans efficiently. However, for more complex cases (e.g., head and neck, pelvic nodes), it can be time‐consuming for a planner to generate optimized IMRT plans. To generate optimal plans in these more complex cases which generally have multiple target volumes and organs at risk, it is often required to have additional IMRT optimization structures such as dose limiting ring structures, adjust beam geometry, select inverse planning objectives and associated weights, and additional IMRT objectives to reduce cold and hot spots in the dose distribution. These parameters are generally manually adjusted with a repeated trial and error approach during the optimization process. To improve IMRT planning efficiency in these more complex cases, an iterative method that incorporates some of these adjustment processes automatically in a planning script is designed, implemented, and validated. In particular, regional optimization has been implemented in an iterative way to reduce various hot or cold spots during the optimization process that begins with defining and automatic segmentation of hot and cold spots, introducing new objectives and their relative weights into inverse planning, and turn this into an iterative process with termination criteria. The method has been applied to three clinical sites: prostate with pelvic nodes, head and neck, and anal canal cancers, and has shown to reduce IMRT planning time significantly for clinical applications with improved plan quality. The IMRT planning scripts have been used for more than 500 clinical cases. PACS numbers: 87.55.D, 87.55.de PMID:23318393

  18. Structural scene analysis and content-based image retrieval applied to bone age assessment

    NASA Astrophysics Data System (ADS)

    Fischer, Benedikt; Brosig, André; Deserno, Thomas M.; Ott, Bastian; Günther, Rolf W.

    2009-02-01

    Radiological bone age assessment is based on global or local image regions of interest (ROI), such as epiphyseal regions or the area of carpal bones. Usually, these regions are compared to a standardized reference and a score determining the skeletal maturity is calculated. For computer-assisted diagnosis, automatic ROI extraction is done so far by heuristic approaches. In this work, we apply a high-level approach of scene analysis for knowledge-based ROI segmentation. Based on a set of 100 reference images from the IRMA database, a so called structural prototype (SP) is trained. In this graph-based structure, the 14 phalanges and 5 metacarpal bones are represented by nodes, with associated location, shape, as well as texture parameters modeled by Gaussians. Accordingly, the Gaussians describing the relative positions, relative orientation, and other relative parameters between two nodes are associated to the edges. Thereafter, segmentation of a hand radiograph is done in several steps: (i) a multi-scale region merging scheme is applied to extract visually prominent regions; (ii) a graph/sub-graph matching to the SP robustly identifies a subset of the 19 bones; (iii) the SP is registered to the current image for complete scene-reconstruction (iv) the epiphyseal regions are extracted from the reconstructed scene. The evaluation is based on 137 images of Caucasian males from the USC hand atlas. Overall, an error rate of 32% is achieved, for the 6 middle distal and medial/distal epiphyses, 23% of all extractions need adjustments. On average 9.58 of the 14 epiphyseal regions were extracted successfully per image. This is promising for further use in content-based image retrieval (CBIR) and CBIR-based automatic bone age assessment.

  19. Self-organized topology of recurrence-based complex networks

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Liu, Gang

    2013-12-01

    With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article is to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., "what is the self-organizing geometry of a recurrence network?" and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks.

  20. Self-organized topology of recurrence-based complex networks.

    PubMed

    Yang, Hui; Liu, Gang

    2013-12-01

    With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article is to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., "what is the self-organizing geometry of a recurrence network?" and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks.

  1. Self-organized topology of recurrence-based complex networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hui, E-mail: huiyang@usf.edu; Liu, Gang

    With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article ismore » to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., “what is the self-organizing geometry of a recurrence network?” and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks.« less

  2. GATE Monte Carlo simulation in a cloud computing environment

    NASA Astrophysics Data System (ADS)

    Rowedder, Blake Austin

    The GEANT4-based GATE is a unique and powerful Monte Carlo (MC) platform, which provides a single code library allowing the simulation of specific medical physics applications, e.g. PET, SPECT, CT, radiotherapy, and hadron therapy. However, this rigorous yet flexible platform is used only sparingly in the clinic due to its lengthy calculation time. By accessing the powerful computational resources of a cloud computing environment, GATE's runtime can be significantly reduced to clinically feasible levels without the sizable investment of a local high performance cluster. This study investigated a reliable and efficient execution of GATE MC simulations using a commercial cloud computing services. Amazon's Elastic Compute Cloud was used to launch several nodes equipped with GATE. Job data was initially broken up on the local computer, then uploaded to the worker nodes on the cloud. The results were automatically downloaded and aggregated on the local computer for display and analysis. Five simulations were repeated for every cluster size between 1 and 20 nodes. Ultimately, increasing cluster size resulted in a decrease in calculation time that could be expressed with an inverse power model. Comparing the benchmark results to the published values and error margins indicated that the simulation results were not affected by the cluster size and thus that integrity of a calculation is preserved in a cloud computing environment. The runtime of a 53 minute long simulation was decreased to 3.11 minutes when run on a 20-node cluster. The ability to improve the speed of simulation suggests that fast MC simulations are viable for imaging and radiotherapy applications. With high power computing continuing to lower in price and accessibility, implementing Monte Carlo techniques with cloud computing for clinical applications will continue to become more attractive.

  3. Optimizing Tensor Contraction Expressions for Hybrid CPU-GPU Execution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Wenjing; Krishnamoorthy, Sriram; Villa, Oreste

    2013-03-01

    Tensor contractions are generalized multidimensional matrix multiplication operations that widely occur in quantum chemistry. Efficient execution of tensor contractions on Graphics Processing Units (GPUs) requires several challenges to be addressed, including index permutation and small dimension-sizes reducing thread block utilization. Moreover, to apply the same optimizations to various expressions, we need a code generation tool. In this paper, we present our approach to automatically generate CUDA code to execute tensor contractions on GPUs, including management of data movement between CPU and GPU. To evaluate our tool, GPU-enabled code is generated for the most expensive contractions in CCSD(T), a key coupledmore » cluster method, and incorporated into NWChem, a popular computational chemistry suite. For this method, we demonstrate speedup over a factor of 8.4 using one GPU (instead of one core per node) and over 2.6 when utilizing the entire system using hybrid CPU+GPU solution with 2 GPUs and 5 cores (instead of 7 cores per node). Finally, we analyze the implementation behavior on future GPU systems.« less

  4. Dynamic Reconfiguration of Security Policies in Wireless Sensor Networks

    PubMed Central

    Pinto, Mónica; Gámez, Nadia; Fuentes, Lidia; Amor, Mercedes; Horcas, José Miguel; Ayala, Inmaculada

    2015-01-01

    Providing security and privacy to wireless sensor nodes (WSNs) is very challenging, due to the heterogeneity of sensor nodes and their limited capabilities in terms of energy, processing power and memory. The applications for these systems run in a myriad of sensors with different low-level programming abstractions, limited capabilities and different routing protocols. This means that applications for WSNs need mechanisms for self-adaptation and for self-protection based on the dynamic adaptation of the algorithms used to provide security. Dynamic software product lines (DSPLs) allow managing both variability and dynamic software adaptation, so they can be considered a key technology in successfully developing self-protected WSN applications. In this paper, we propose a self-protection solution for WSNs based on the combination of the INTER-TRUST security framework (a solution for the dynamic negotiation and deployment of security policies) and the FamiWare middleware (a DSPL approach to automatically configure and reconfigure instances of a middleware for WSNs). We evaluate our approach using a case study from the intelligent transportation system domain. PMID:25746093

  5. Cyber situational awareness and differential hardening

    NASA Astrophysics Data System (ADS)

    Dwivedi, Anurag; Tebben, Dan

    2012-06-01

    The advent of cyber threats has created a need for a new network planning, design, architecture, operations, control, situational awareness, management, and maintenance paradigms. Primary considerations include the ability to assess cyber attack resiliency of the network, and rapidly detect, isolate, and operate during deliberate simultaneous attacks against the network nodes and links. Legacy network planning relied on automatic protection of a network in the event of a single fault or a very few simultaneous faults in mesh networks, but in the future it must be augmented to include improved network resiliency and vulnerability awareness to cyber attacks. Ability to design a resilient network requires the development of methods to define, and quantify the network resiliency to attacks, and to be able to develop new optimization strategies for maintaining operations in the midst of these newly emerging cyber threats. Ways to quantify resiliency, and its use in visualizing cyber vulnerability awareness and in identifying node or link criticality, are presented in the current work, as well as a methodology of differential network hardening based on the criticality profile of cyber network components.

  6. Deep space telecommunications, navigation, and information management - Support of the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Hall, Justin R.; Hastrup, Rolf C.

    1990-01-01

    The principal challenges in providing effective deep space navigation, telecommunications, and information management architectures and designs for Mars exploration support are presented. The fundamental objectives are to provide the mission with the means to monitor and control mission elements, obtain science, navigation, and engineering data, compute state vectors and navigate, and to move these data efficiently and automatically between mission nodes for timely analysis and decision making. New requirements are summarized, and related issues and challenges including the robust connectivity for manned and robotic links, are identified. Enabling strategies are discussed, and candidate architectures and driving technologies are described.

  7. Deep space telecommunications, navigation, and information management - Support of the Space Exploration Initiative

    NASA Astrophysics Data System (ADS)

    Hall, Justin R.; Hastrup, Rolf C.

    1990-10-01

    The principal challenges in providing effective deep space navigation, telecommunications, and information management architectures and designs for Mars exploration support are presented. The fundamental objectives are to provide the mission with the means to monitor and control mission elements, obtain science, navigation, and engineering data, compute state vectors and navigate, and to move these data efficiently and automatically between mission nodes for timely analysis and decision making. New requirements are summarized, and related issues and challenges including the robust connectivity for manned and robotic links, are identified. Enabling strategies are discussed, and candidate architectures and driving technologies are described.

  8. Automation for pattern library creation and in-design optimization

    NASA Astrophysics Data System (ADS)

    Deng, Rock; Zou, Elain; Hong, Sid; Wang, Jinyan; Zhang, Yifan; Sweis, Jason; Lai, Ya-Chieh; Ding, Hua; Huang, Jason

    2015-03-01

    Semiconductor manufacturing technologies are becoming increasingly complex with every passing node. Newer technology nodes are pushing the limits of optical lithography and requiring multiple exposures with exotic material stacks for each critical layer. All of this added complexity usually amounts to further restrictions in what can be designed. Furthermore, the designs must be checked against all these restrictions in verification and sign-off stages. Design rules are intended to capture all the manufacturing limitations such that yield can be maximized for any given design adhering to all the rules. Most manufacturing steps employ some sort of model based simulation which characterizes the behavior of each step. The lithography models play a very big part of the overall yield and design restrictions in patterning. However, lithography models are not practical to run during design creation due to their slow and prohibitive run times. Furthermore, the models are not usually given to foundry customers because of the confidential and sensitive nature of every foundry's processes. The design layout locations where a model flags unacceptable simulated results can be used to define pattern rules which can be shared with customers. With advanced technology nodes we see a large growth of pattern based rules. This is due to the fact that pattern matching is very fast and the rules themselves can be very complex to describe in a standard DRC language. Therefore, the patterns are left as either pattern layout clips or abstracted into pattern-like syntax which a pattern matcher can use directly. The patterns themselves can be multi-layered with "fuzzy" designations such that groups of similar patterns can be found using one description. The pattern matcher is often integrated with a DRC tool such that verification and signoff can be done in one step. The patterns can be layout constructs that are "forbidden", "waived", or simply low-yielding in nature. The patterns can also contain remedies built in so that fixing happens either automatically or in a guided manner. Building a comprehensive library of patterns is a very difficult task especially when a new technology node is being developed or the process keeps changing. The main dilemma is not having enough representative layouts to use for model simulation where pattern locations can be marked and extracted. This paper will present an automatic pattern library creation flow by using a few known yield detractor patterns to systematically expand the pattern library and generate optimized patterns. We will also look at the specific fixing hints in terms of edge movements, additive, or subtractive changes needed during optimization. Optimization will be shown for both the digital physical implementation and custom design methods.

  9. A Hopfield neural network for image change detection.

    PubMed

    Pajares, Gonzalo

    2006-09-01

    This paper outlines an optimization relaxation approach based on the analog Hopfield neural network (HNN) for solving the image change detection problem between two images. A difference image is obtained by subtracting pixel by pixel both images. The network topology is built so that each pixel in the difference image is a node in the network. Each node is characterized by its state, which determines if a pixel has changed. An energy function is derived, so that the network converges to stable states. The analog Hopfield's model allows each node to take on analog state values. Unlike most widely used approaches, where binary labels (changed/unchanged) are assigned to each pixel, the analog property provides the strength of the change. The main contribution of this paper is reflected in the customization of the analog Hopfield neural network to derive an automatic image change detection approach. When a pixel is being processed, some existing image change detection procedures consider only interpixel relations on its neighborhood. The main drawback of such approaches is the labeling of this pixel as changed or unchanged according to the information supplied by its neighbors, where its own information is ignored. The Hopfield model overcomes this drawback and for each pixel allows a tradeoff between the influence of its neighborhood and its own criterion. This is mapped under the energy function to be minimized. The performance of the proposed method is illustrated by comparative analysis against some existing image change detection methods.

  10. Landslide susceptibility mapping using decision-tree based CHi-squared automatic interaction detection (CHAID) and Logistic regression (LR) integration

    NASA Astrophysics Data System (ADS)

    Althuwaynee, Omar F.; Pradhan, Biswajeet; Ahmad, Noordin

    2014-06-01

    This article uses methodology based on chi-squared automatic interaction detection (CHAID), as a multivariate method that has an automatic classification capacity to analyse large numbers of landslide conditioning factors. This new algorithm was developed to overcome the subjectivity of the manual categorization of scale data of landslide conditioning factors, and to predict rainfall-induced susceptibility map in Kuala Lumpur city and surrounding areas using geographic information system (GIS). The main objective of this article is to use CHi-squared automatic interaction detection (CHAID) method to perform the best classification fit for each conditioning factor, then, combining it with logistic regression (LR). LR model was used to find the corresponding coefficients of best fitting function that assess the optimal terminal nodes. A cluster pattern of landslide locations was extracted in previous study using nearest neighbor index (NNI), which were then used to identify the clustered landslide locations range. Clustered locations were used as model training data with 14 landslide conditioning factors such as; topographic derived parameters, lithology, NDVI, land use and land cover maps. Pearson chi-squared value was used to find the best classification fit between the dependent variable and conditioning factors. Finally the relationship between conditioning factors were assessed and the landslide susceptibility map (LSM) was produced. An area under the curve (AUC) was used to test the model reliability and prediction capability with the training and validation landslide locations respectively. This study proved the efficiency and reliability of decision tree (DT) model in landslide susceptibility mapping. Also it provided a valuable scientific basis for spatial decision making in planning and urban management studies.

  11. Advanced MicroObserver UGS integration with and cueing of the BattleHawk squad level loitering munition and UAV

    NASA Astrophysics Data System (ADS)

    Steadman, Bob; Finklea, John; Kershaw, James; Loughman, Cathy; Shaffner, Patti; Frost, Dean; Deller, Sean

    2014-06-01

    Textron's Advanced MicroObserver(R) is a next generation remote unattended ground sensor system (UGS) for border security, infrastructure protection, and small combat unit security. The original MicroObserver(R) is a sophisticated seismic sensor system with multi-node fusion that supports target tracking. This system has been deployed in combat theaters. The system's seismic sensor nodes are uniquely able to be completely buried (including antennas) for optimal covertness. The advanced version adds a wireless day/night Electro-Optic Infrared (EOIR) system, cued by seismic tracking, with sophisticated target discrimination and automatic frame capture features. Also new is a field deployable Gateway configurable with a variety of radio systems and flexible networking, an important upgrade that enabled the research described herein. BattleHawkTM is a small tube launched Unmanned Air Vehicle (UAV) with a warhead. Using transmitted video from its EOIR subsystem an operator can search for and acquire a target day or night, select a target for attack, and execute terminal dive to destroy the target. It is designed as a lightweight squad level asset carried by an individual infantryman. Although BattleHawk has the best loiter time in its class, it's still relatively short compared to large UAVs. Also it's a one-shot asset in its munition configuration. Therefore Textron Defense Systems conducted research, funded internally, to determine if there was military utility in having the highly persistent MicroObserver(R) system cue BattleHawk's launch and vector it to beyond visual range targets for engagement. This paper describes that research; the system configuration implemented, and the results of field testing that was performed on a government range early in 2013. On the integrated system that was implemented, MicroObserver(R) seismic detections activated that system's camera which then automatically captured images of the target. The geo-referenced and time-tagged MicroObserver(R) target reports and images were then automatically forwarded to the BattleHawk Android-based controller. This allowed the operator to see the intruder (classified and geo-located) on the map based display, assess the intruder as likely hostile (via the image), and launch BattleHawk with the pre-loaded target coordinates. The operator was thus able to quickly acquire the intended target (without a search) and initiate target engagement immediately. System latencies were a major concern encountered during the research.

  12. Prediction in Health Domain Using Bayesian Networks Optimization Based on Induction Learning Techniques

    NASA Astrophysics Data System (ADS)

    Felgaer, Pablo; Britos, Paola; García-Martínez, Ramón

    A Bayesian network is a directed acyclic graph in which each node represents a variable and each arc a probabilistic dependency; they are used to provide: a compact form to represent the knowledge and flexible methods of reasoning. Obtaining it from data is a learning process that is divided in two steps: structural learning and parametric learning. In this paper we define an automatic learning method that optimizes the Bayesian networks applied to classification, using a hybrid method of learning that combines the advantages of the induction techniques of the decision trees (TDIDT-C4.5) with those of the Bayesian networks. The resulting method is applied to prediction in health domain.

  13. COMP Superscalar, an interoperable programming framework

    NASA Astrophysics Data System (ADS)

    Badia, Rosa M.; Conejero, Javier; Diaz, Carlos; Ejarque, Jorge; Lezzi, Daniele; Lordan, Francesc; Ramon-Cortes, Cristian; Sirvent, Raul

    2015-12-01

    COMPSs is a programming framework that aims to facilitate the parallelization of existing applications written in Java, C/C++ and Python scripts. For that purpose, it offers a simple programming model based on sequential development in which the user is mainly responsible for (i) identifying the functions to be executed as asynchronous parallel tasks and (ii) annotating them with annotations or standard Python decorators. A runtime system is in charge of exploiting the inherent concurrency of the code, automatically detecting and enforcing the data dependencies between tasks and spawning these tasks to the available resources, which can be nodes in a cluster, clouds or grids. In cloud environments, COMPSs provides scalability and elasticity features allowing the dynamic provision of resources.

  14. Supercomputer simulations of structure formation in the Universe

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tomoaki

    2017-06-01

    We describe the implementation and performance results of our massively parallel MPI†/OpenMP‡ hybrid TreePM code for large-scale cosmological N-body simulations. For domain decomposition, a recursive multi-section algorithm is used and the size of domains are automatically set so that the total calculation time is the same for all processes. We developed a highly-tuned gravity kernel for short-range forces, and a novel communication algorithm for long-range forces. For two trillion particles benchmark simulation, the average performance on the fullsystem of K computer (82,944 nodes, the total number of core is 663,552) is 5.8 Pflops, which corresponds to 55% of the peak speed.

  15. Risk Identification in a Smart Monitoring System Used to Preserve Artefacts Based on Textile Materials

    NASA Astrophysics Data System (ADS)

    Diaconescu, V. D.; Scripcariu, L.; Mătăsaru, P. D.; Diaconescu, M. R.; Ignat, C. A.

    2018-06-01

    Exhibited textile-materials-based artefacts can be affected by the environmental conditions. A smart monitoring system that commands an adaptive automatic environment control system is proposed for indoor exhibition spaces containing various textile artefacts. All exhibited objects are monitored by many multi-sensor nodes containing temperature, relative humidity and light sensors. Data collected periodically from the entire sensor network is stored in a database and statistically processed in order to identify and classify the environment risk. Risk consequences are analyzed depending on the risk class and the smart system commands different control measures in order to stabilize the indoor environment conditions to the recommended values and prevent material degradation.

  16. Multisensor configurations for early sniper detection

    NASA Astrophysics Data System (ADS)

    Lindgren, D.; Bank, D.; Carlsson, L.; Dulski, R.; Duval, Y.; Fournier, G.; Grasser, R.; Habberstad, H.; Jacquelard, C.; Kastek, M.; Otterlei, R.; Piau, G.-P.; Pierre, F.; Renhorn, I.; Sjöqvist, L.; Steinvall, O.; Trzaskawka, P.

    2011-11-01

    This contribution reports some of the fusion results from the EDA SNIPOD project, where different multisensor configurations for sniper detection and localization have been studied. A project aim has been to cover the whole time line from sniper transport and establishment to shot. To do so, different optical sensors with and without laser illumination have been tested, as well as acoustic arrays and solid state projectile radar. A sensor fusion node collects detections and background statistics from all sensors and employs hypothesis testing and multisensor estimation programs to produce unified and reliable sniper alarms and accurate sniper localizations. Operator interfaces that connect to the fusion node should be able to support both sniper countermeasures and the guidance of personnel to safety. Although the integrated platform has not been actually built, sensors have been evaluated at common field trials with military ammunitions in the caliber range 5.56 to 12.7 mm, and at sniper distances up to 900 m. It is concluded that integrating complementary sensors for pre- and postshot sniper detection in a common system with automatic detection and fusion will give superior performance, compared to stand alone sensors. A practical system is most likely designed with a cost effective subset of available complementary sensors.

  17. Software system for data management and distributed processing of multichannel biomedical signals.

    PubMed

    Franaszczuk, P J; Jouny, C C

    2004-01-01

    The presented software is designed for efficient utilization of cluster of PC computers for signal analysis of multichannel physiological data. The system consists of three main components: 1) a library of input and output procedures, 2) a database storing additional information about location in a storage system, 3) a user interface for selecting data for analysis, choosing programs for analysis, and distributing computing and output data on cluster nodes. The system allows for processing multichannel time series data in multiple binary formats. The description of data format, channels and time of recording are included in separate text files. Definition and selection of multiple channel montages is possible. Epochs for analysis can be selected both manually and automatically. Implementation of a new signal processing procedures is possible with a minimal programming overhead for the input/output processing and user interface. The number of nodes in cluster used for computations and amount of storage can be changed with no major modification to software. Current implementations include the time-frequency analysis of multiday, multichannel recordings of intracranial EEG of epileptic patients as well as evoked response analyses of repeated cognitive tasks.

  18. Layered data association using graph-theoretic formulation with applications to tennis ball tracking in monocular sequences.

    PubMed

    Yan, Fei; Christmas, William; Kittler, Josef

    2008-10-01

    In this paper, we propose a multilayered data association scheme with graph-theoretic formulation for tracking multiple objects that undergo switching dynamics in clutter. The proposed scheme takes as input object candidates detected in each frame. At the object candidate level, "tracklets'' are "grown'' from sets of candidates that have high probabilities of containing only true positives. At the tracklet level, a directed and weighted graph is constructed, where each node is a tracklet, and the edge weight between two nodes is defined according to the "compatibility'' of the two tracklets. The association problem is then formulated as an all-pairs shortest path (APSP) problem in this graph. Finally, at the path level, by analyzing the APSPs, all object trajectories are identified, and track initiation and track termination are automatically dealt with. By exploiting a special topological property of the graph, we have also developed a more efficient APSP algorithm than the general-purpose ones. The proposed data association scheme is applied to tennis sequences to track tennis balls. Experiments show that it works well on sequences where other data association methods perform poorly or fail completely.

  19. Range pattern matching with layer operations and continuous refinements

    NASA Astrophysics Data System (ADS)

    Tseng, I.-Lun; Lee, Zhao Chuan; Li, Yongfu; Perez, Valerio; Tripathi, Vikas; Ong, Jonathan Yoong Seang

    2018-03-01

    At advanced and mainstream process nodes (e.g., 7nm, 14nm, 22nm, and 55nm process nodes), lithography hotspots can exist in layouts of integrated circuits even if the layouts pass design rule checking (DRC). Existence of lithography hotspots in a layout can cause manufacturability issues, which can result in yield losses of manufactured integrated circuits. In order to detect lithography hotspots existing in physical layouts, pattern matching (PM) algorithms and commercial PM tools have been developed. However, there are still needs to use DRC tools to perform PM operations. In this paper, we propose a PM synthesis methodology, which uses a continuous refinement technique, for the automatic synthesis of a given lithography hotspot pattern into a DRC deck, which consists of layer operation commands, so that an equivalent PM operation can be performed by executing the synthesized deck with the use of a DRC tool. Note that the proposed methodology can deal with not only exact patterns, but also range patterns. Also, lithography hotspot patterns containing multiple layers can be processed. Experimental results show that the proposed methodology can accurately and efficiently detect lithography hotspots in physical layouts.

  20. Implementation of Grid Tier 2 and Tier 3 facilities on a Distributed OpenStack Cloud

    NASA Astrophysics Data System (ADS)

    Limosani, Antonio; Boland, Lucien; Coddington, Paul; Crosby, Sean; Huang, Joanna; Sevior, Martin; Wilson, Ross; Zhang, Shunde

    2014-06-01

    The Australian Government is making a AUD 100 million investment in Compute and Storage for the academic community. The Compute facilities are provided in the form of 30,000 CPU cores located at 8 nodes around Australia in a distributed virtualized Infrastructure as a Service facility based on OpenStack. The storage will eventually consist of over 100 petabytes located at 6 nodes. All will be linked via a 100 Gb/s network. This proceeding describes the development of a fully connected WLCG Tier-2 grid site as well as a general purpose Tier-3 computing cluster based on this architecture. The facility employs an extension to Torque to enable dynamic allocations of virtual machine instances. A base Scientific Linux virtual machine (VM) image is deployed in the OpenStack cloud and automatically configured as required using Puppet. Custom scripts are used to launch multiple VMs, integrate them into the dynamic Torque cluster and to mount remote file systems. We report on our experience in developing this nation-wide ATLAS and Belle II Tier 2 and Tier 3 computing infrastructure using the national Research Cloud and storage facilities.

  1. RB Particle Filter Time Synchronization Algorithm Based on the DPM Model.

    PubMed

    Guo, Chunsheng; Shen, Jia; Sun, Yao; Ying, Na

    2015-09-03

    Time synchronization is essential for node localization, target tracking, data fusion, and various other Wireless Sensor Network (WSN) applications. To improve the estimation accuracy of continuous clock offset and skew of mobile nodes in WSNs, we propose a novel time synchronization algorithm, the Rao-Blackwellised (RB) particle filter time synchronization algorithm based on the Dirichlet process mixture (DPM) model. In a state-space equation with a linear substructure, state variables are divided into linear and non-linear variables by the RB particle filter algorithm. These two variables can be estimated using Kalman filter and particle filter, respectively, which improves the computational efficiency more so than if only the particle filter was used. In addition, the DPM model is used to describe the distribution of non-deterministic delays and to automatically adjust the number of Gaussian mixture model components based on the observational data. This improves the estimation accuracy of clock offset and skew, which allows achieving the time synchronization. The time synchronization performance of this algorithm is also validated by computer simulations and experimental measurements. The results show that the proposed algorithm has a higher time synchronization precision than traditional time synchronization algorithms.

  2. Design and experimental evaluation on an advanced multisource energy harvesting system for wireless sensor nodes.

    PubMed

    Li, Hao; Zhang, Gaofei; Ma, Rui; You, Zheng

    2014-01-01

    An effective multisource energy harvesting system is presented as power supply for wireless sensor nodes (WSNs). The advanced system contains not only an expandable power management module including control of the charging and discharging process of the lithium polymer battery but also an energy harvesting system using the maximum power point tracking (MPPT) circuit with analog driving scheme for the collection of both solar and vibration energy sources. Since the MPPT and the power management module are utilized, the system is able to effectively achieve a low power consumption. Furthermore, a super capacitor is integrated in the system so that current fluctuations of the lithium polymer battery during the charging and discharging processes can be properly reduced. In addition, through a simple analog switch circuit with low power consumption, the proposed system can successfully switch the power supply path according to the ambient energy sources and load power automatically. A practical WSNs platform shows that efficiency of the energy harvesting system can reach about 75-85% through the 24-hour environmental test, which confirms that the proposed system can be used as a long-term continuous power supply for WSNs.

  3. Design and Experimental Evaluation on an Advanced Multisource Energy Harvesting System for Wireless Sensor Nodes

    PubMed Central

    Li, Hao; Zhang, Gaofei; Ma, Rui; You, Zheng

    2014-01-01

    An effective multisource energy harvesting system is presented as power supply for wireless sensor nodes (WSNs). The advanced system contains not only an expandable power management module including control of the charging and discharging process of the lithium polymer battery but also an energy harvesting system using the maximum power point tracking (MPPT) circuit with analog driving scheme for the collection of both solar and vibration energy sources. Since the MPPT and the power management module are utilized, the system is able to effectively achieve a low power consumption. Furthermore, a super capacitor is integrated in the system so that current fluctuations of the lithium polymer battery during the charging and discharging processes can be properly reduced. In addition, through a simple analog switch circuit with low power consumption, the proposed system can successfully switch the power supply path according to the ambient energy sources and load power automatically. A practical WSNs platform shows that efficiency of the energy harvesting system can reach about 75–85% through the 24-hour environmental test, which confirms that the proposed system can be used as a long-term continuous power supply for WSNs. PMID:25032233

  4. Deep space telecommunications, navigation, and information management. Support of the space exploration initiative

    NASA Astrophysics Data System (ADS)

    Hall, Justin R.; Hastrup, Rolf C.

    The United States Space Exploration Initiative (SEI) calls for the charting of a new and evolving manned course to the Moon, Mars, and beyond. This paper discusses key challenges in providing effective deep space telecommunications, navigation, and information management (TNIM) architectures and designs for Mars exploration support. The fundamental objectives are to provide the mission with means to monitor and control mission elements, acquire engineering, science, and navigation data, compute state vectors and navigate, and move these data efficiently and automatically between mission nodes for timely analysis and decision-making. Although these objectives do not depart, fundamentally, from those evolved over the past 30 years in supporting deep space robotic exploration, there are several new issues. This paper focuses on summarizing new requirements, identifying related issues and challenges, responding with concepts and strategies which are enabling, and, finally, describing candidate architectures, and driving technologies. The design challenges include the attainment of: 1) manageable interfaces in a large distributed system, 2) highly unattended operations for in-situ Mars telecommunications and navigation functions, 3) robust connectivity for manned and robotic links, 4) information management for efficient and reliable interchange of data between mission nodes, and 5) an adequate Mars-Earth data rate.

  5. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network

    PubMed Central

    Sun, Xingming; Yan, Shuangshuang; Wang, Baowei; Xia, Li; Liu, Qi; Zhang, Hui

    2015-01-01

    Air temperature (AT) is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS). Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR). Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE) and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months. PMID:26213941

  6. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network.

    PubMed

    Sun, Xingming; Yan, Shuangshuang; Wang, Baowei; Xia, Li; Liu, Qi; Zhang, Hui

    2015-07-24

    Air temperature (AT) is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS). Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR). Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE) and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months.

  7. Automatic analysis of attack data from distributed honeypot network

    NASA Astrophysics Data System (ADS)

    Safarik, Jakub; Voznak, MIroslav; Rezac, Filip; Partila, Pavol; Tomala, Karel

    2013-05-01

    There are many ways of getting real data about malicious activity in a network. One of them relies on masquerading monitoring servers as a production one. These servers are called honeypots and data about attacks on them brings us valuable information about actual attacks and techniques used by hackers. The article describes distributed topology of honeypots, which was developed with a strong orientation on monitoring of IP telephony traffic. IP telephony servers can be easily exposed to various types of attacks, and without protection, this situation can lead to loss of money and other unpleasant consequences. Using a distributed topology with honeypots placed in different geological locations and networks provides more valuable and independent results. With automatic system of gathering information from all honeypots, it is possible to work with all information on one centralized point. Communication between honeypots and centralized data store use secure SSH tunnels and server communicates only with authorized honeypots. The centralized server also automatically analyses data from each honeypot. Results of this analysis and also other statistical data about malicious activity are simply accessible through a built-in web server. All statistical and analysis reports serve as information basis for an algorithm which classifies different types of used VoIP attacks. The web interface then brings a tool for quick comparison and evaluation of actual attacks in all monitored networks. The article describes both, the honeypots nodes in distributed architecture, which monitor suspicious activity, and also methods and algorithms used on the server side for analysis of gathered data.

  8. Subtype-specific differentiation of cardiac pacemaker cell clusters from human induced pluripotent stem cells.

    PubMed

    Schweizer, Patrick A; Darche, Fabrice F; Ullrich, Nina D; Geschwill, Pascal; Greber, Boris; Rivinius, Rasmus; Seyler, Claudia; Müller-Decker, Karin; Draguhn, Andreas; Utikal, Jochen; Koenen, Michael; Katus, Hugo A; Thomas, Dierk

    2017-10-16

    Human induced pluripotent stem cells (hiPSC) harbor the potential to differentiate into diverse cardiac cell types. Previous experimental efforts were primarily directed at the generation of hiPSC-derived cells with ventricular cardiomyocyte characteristics. Aiming at a straightforward approach for pacemaker cell modeling and replacement, we sought to selectively differentiate cells with nodal-type properties. hiPSC were differentiated into spontaneously beating clusters by co-culturing with visceral endoderm-like cells in a serum-free medium. Subsequent culturing in a specified fetal bovine serum (FBS)-enriched cell medium produced a pacemaker-type phenotype that was studied in detail using quantitative real-time polymerase chain reaction (qRT-PCR), immunocytochemistry, and patch-clamp electrophysiology. Further investigations comprised pharmacological stimulations and co-culturing with neonatal cardiomyocytes. hiPSC co-cultured in a serum-free medium with the visceral endoderm-like cell line END-2 produced spontaneously beating clusters after 10-12 days of culture. The pacemaker-specific genes HCN4, TBX3, and TBX18 were abundantly expressed at this early developmental stage, while levels of sarcomeric gene products remained low. We observed that working-type cardiomyogenic differentiation can be suppressed by transfer of early clusters into a FBS-enriched cell medium immediately after beating onset. After 6 weeks under these conditions, sinoatrial node (SAN) hallmark genes remained at high levels, while working-type myocardial transcripts (NKX2.5, TBX5) were low. Clusters were characterized by regular activity and robust beating rates (70-90 beats/min) and were triggered by spontaneous Ca 2+ transients recapitulating calcium clock properties of genuine pacemaker cells. They were responsive to adrenergic/cholinergic stimulation and able to pace neonatal rat ventricular myocytes in co-culture experiments. Action potential (AP) measurements of cells individualized from clusters exhibited nodal-type (63.4%) and atrial-type (36.6%) AP morphologies, while ventricular AP configurations were not observed. We provide a novel culture media-based, transgene-free approach for targeted generation of hiPSC-derived pacemaker-type cells that grow in clusters and offer the potential for disease modeling, drug testing, and individualized cell-based replacement therapy of the SAN.

  9. 3D virtual human atria: A computational platform for studying clinical atrial fibrillation

    PubMed Central

    Aslanidi, Oleg V; Colman, Michael A; Stott, Jonathan; Dobrzynski, Halina; Boyett, Mark R; Holden, Arun V; Zhang, Henggui

    2011-01-01

    Despite a vast amount of experimental and clinical data on the underlying ionic, cellular and tissue substrates, the mechanisms of common atrial arrhythmias (such as atrial fibrillation, AF) arising from the functional interactions at the whole atria level remain unclear. Computational modelling provides a quantitative framework for integrating such multi-scale data and understanding the arrhythmogenic behaviour that emerges from the collective spatio-temporal dynamics in all parts of the heart. In this study, we have developed a multi-scale hierarchy of biophysically detailed computational models for the human atria – 3D virtual human atria. Primarily, diffusion tensor MRI reconstruction of the tissue geometry and fibre orientation in the human sinoatrial node (SAN) and surrounding atrial muscle was integrated into the 3D model of the whole atria dissected from the Visible Human dataset. The anatomical models were combined with the heterogeneous atrial action potential (AP) models, and used to simulate the AP conduction in the human atria under various conditions: SAN pacemaking and atrial activation in the normal rhythm, break-down of regular AP wave-fronts during rapid atrial pacing, and the genesis of multiple re-entrant wavelets characteristic of AF. Contributions of different properties of the tissue to the mechanisms of the normal rhythm and AF arrhythmogenesis are investigated and discussed. The 3D model of the atria itself was incorporated into the torso model to simulate the body surface ECG patterns in the normal and arrhythmic conditions. Therefore, a state-of-the-art computational platform has been developed, which can be used for studying multi-scale electrical phenomena during atrial conduction and arrhythmogenesis. Results of such simulations can be directly compared with experimental electrophysiological and endocardial mapping data, as well as clinical ECG recordings. More importantly, the virtual human atria can provide validated means for directly dissecting 3D excitation propagation processes within the atrial walls from an in vivo whole heart, which are beyond the current technical capabilities of experimental or clinical set-ups. PMID:21762716

  10. Cable Tester Box

    NASA Technical Reports Server (NTRS)

    Lee, Jason H.

    2011-01-01

    Cables are very important electrical devices that carry power and signals across multiple instruments. Any fault in a cable can easily result in a catastrophic outcome. Therefore, verifying that all cables are built to spec is a very important part of Electrical Integration Procedures. Currently, there are two methods used in lab for verifying cable connectivity. (1) Using a Break-Out Box and an ohmmeter this method is time-consuming but effective for custom cables and (2) Commercial Automated Cable Tester Boxes this method is fast, but to test custom cables often requires pre-programmed configuration files, and cables used on spacecraft are often uniquely designed for specific purposes. The idea is to develop a semi-automatic continuity tester that reduces human effort in cable testing, speeds up the electrical integration process, and ensures system safety. The JPL-Cable Tester Box is developed to check every single possible electrical connection in a cable in parallel. This system indicates connectivity through LED (light emitting diode) circuits. Users can choose to test any pin/shell (test node) with a single push of a button, and any other nodes that are shorted to the test node, even if they are in the same connector, will light up with the test node. The JPL-Cable Tester Boxes offers the following advantages: 1. Easy to use: The architecture is simple enough that it only takes 5 minutes for anyone to learn how operate the Cable Tester Box. No pre-programming and calibration are required, since this box only checks continuity. 2. Fast: The cable tester box checks all the possible electrical connections in parallel at a push of a button. If a cable normally takes half an hour to test, using the Cable Tester Box will improve the speed to as little as 60 seconds to complete. 3. Versatile: Multiple cable tester boxes can be used together. As long as all the boxes share the same electrical potential, any number of connectors can be tested together.

  11. Lumping of degree-based mean-field and pair-approximation equations for multistate contact processes

    NASA Astrophysics Data System (ADS)

    Kyriakopoulos, Charalampos; Grossmann, Gerrit; Wolf, Verena; Bortolussi, Luca

    2018-01-01

    Contact processes form a large and highly interesting class of dynamic processes on networks, including epidemic and information-spreading networks. While devising stochastic models of such processes is relatively easy, analyzing them is very challenging from a computational point of view, particularly for large networks appearing in real applications. One strategy to reduce the complexity of their analysis is to rely on approximations, often in terms of a set of differential equations capturing the evolution of a random node, distinguishing nodes with different topological contexts (i.e., different degrees of different neighborhoods), such as degree-based mean-field (DBMF), approximate-master-equation (AME), or pair-approximation (PA) approaches. The number of differential equations so obtained is typically proportional to the maximum degree kmax of the network, which is much smaller than the size of the master equation of the underlying stochastic model, yet numerically solving these equations can still be problematic for large kmax. In this paper, we consider AME and PA, extended to cope with multiple local states, and we provide an aggregation procedure that clusters together nodes having similar degrees, treating those in the same cluster as indistinguishable, thus reducing the number of equations while preserving an accurate description of global observables of interest. We also provide an automatic way to build such equations and to identify a small number of degree clusters that give accurate results. The method is tested on several case studies, where it shows a high level of compression and a reduction of computational time of several orders of magnitude for large networks, with minimal loss in accuracy.

  12. BinTree Seeking: A Novel Approach to Mine Both Bi-Sparse and Cohesive Modules in Protein Interaction Networks

    PubMed Central

    Shen, Hong-Bin

    2011-01-01

    Modern science of networks has brought significant advances to our understanding of complex systems biology. As a representative model of systems biology, Protein Interaction Networks (PINs) are characterized by a remarkable modular structures, reflecting functional associations between their components. Many methods were proposed to capture cohesive modules so that there is a higher density of edges within modules than those across them. Recent studies reveal that cohesively interacting modules of proteins is not a universal organizing principle in PINs, which has opened up new avenues for revisiting functional modules in PINs. In this paper, functional clusters in PINs are found to be able to form unorthodox structures defined as bi-sparse module. In contrast to the traditional cohesive module, the nodes in the bi-sparse module are sparsely connected internally and densely connected with other bi-sparse or cohesive modules. We present a novel protocol called the BinTree Seeking (BTS) for mining both bi-sparse and cohesive modules in PINs based on Edge Density of Module (EDM) and matrix theory. BTS detects modules by depicting links and nodes rather than nodes alone and its derivation procedure is totally performed on adjacency matrix of networks. The number of modules in a PIN can be automatically determined in the proposed BTS approach. BTS is tested on three real PINs and the results demonstrate that functional modules in PINs are not dominantly cohesive but can be sparse. BTS software and the supporting information are available at: www.csbio.sjtu.edu.cn/bioinf/BTS/. PMID:22140454

  13. A recurrent self-organizing neural fuzzy inference network.

    PubMed

    Juang, C F; Lin, C T

    1999-01-01

    A recurrent self-organizing neural fuzzy inference network (RSONFIN) is proposed in this paper. The RSONFIN is inherently a recurrent multilayered connectionist network for realizing the basic elements and functions of dynamic fuzzy inference, and may be considered to be constructed from a series of dynamic fuzzy rules. The temporal relations embedded in the network are built by adding some feedback connections representing the memory elements to a feedforward neural fuzzy network. Each weight as well as node in the RSONFIN has its own meaning and represents a special element in a fuzzy rule. There are no hidden nodes (i.e., no membership functions and fuzzy rules) initially in the RSONFIN. They are created on-line via concurrent structure identification (the construction of dynamic fuzzy if-then rules) and parameter identification (the tuning of the free parameters of membership functions). The structure learning together with the parameter learning forms a fast learning algorithm for building a small, yet powerful, dynamic neural fuzzy network. Two major characteristics of the RSONFIN can thus be seen: 1) the recurrent property of the RSONFIN makes it suitable for dealing with temporal problems and 2) no predetermination, like the number of hidden nodes, must be given, since the RSONFIN can find its optimal structure and parameters automatically and quickly. Moreover, to reduce the number of fuzzy rules generated, a flexible input partition method, the aligned clustering-based algorithm, is proposed. Various simulations on temporal problems are done and performance comparisons with some existing recurrent networks are also made. Efficiency of the RSONFIN is verified from these results.

  14. Remote Memory Access Protocol Target Node Intellectual Property

    NASA Technical Reports Server (NTRS)

    Haddad, Omar

    2013-01-01

    The MagnetoSpheric Multiscale (MMS) mission had a requirement to use the Remote Memory Access Protocol (RMAP) over its SpaceWire network. At the time, no known intellectual property (IP) cores were available for purchase. Additionally, MMS preferred to implement the RMAP functionality with control over the low-level details of the design. For example, not all the RMAP standard functionality was needed, and it was desired to implement only the portions of the RMAP protocol that were needed. RMAP functionality had been previously implemented in commercial off-the-shelf (COTS) products, but the IP core was not available for purchase. The RMAP Target IP core is a VHDL (VHSIC Hardware Description Language description of a digital logic design suitable for implementation in an FPGA (field-programmable gate array) or ASIC (application-specific integrated circuit) that parses SpaceWire packets that conform to the RMAP standard. The RMAP packet protocol allows a network host to access and control a target device using address mapping. This capability allows SpaceWire devices to be managed in a standardized way that simplifies the hardware design of the device, as well as the development of the software that controls the device. The RMAP Target IP core has some features that are unique and not specified in the RMAP standard. One such feature is the ability to automatically abort transactions if the back-end logic does not respond to read/write requests within a predefined time. When a request times out, the RMAP Target IP core automatically retracts the request and returns a command response with an appropriate status in the response packet s header. Another such feature is the ability to control the SpaceWire node or router using RMAP transactions in the extended address range. This allows the SpaceWire network host to manage the SpaceWire network elements using RMAP packets, which reduces the number of protocols that the network host needs to support.

  15. A Dynamical Threshold for Cardiac Delayed Afterdepolarization-Mediated Triggered Activity.

    PubMed

    Liu, Michael B; Ko, Christopher Y; Song, Zhen; Garfinkel, Alan; Weiss, James N; Qu, Zhilin

    2016-12-06

    Ventricular myocytes are excitable cells whose voltage threshold for action potential (AP) excitation is ∼-60 mV at which I Na is activated to give rise to a fast upstroke. Therefore, for a short stimulus pulse to elicit an AP, a stronger stimulus is needed if the resting potential lies further away from the I Na threshold, such as in hypokalemia. However, for an AP elicited by a long duration stimulus or a diastolic spontaneous calcium release, we observed that the stimulus needed was lower in hypokalemia than in normokalemia in both computer simulations and experiments of rabbit ventricular myocytes. This observation provides insight into why hypokalemia promotes calcium-mediated triggered activity, despite the resting potential lying further away from the I Na threshold. To understand the underlying mechanisms, we performed bifurcation analyses and demonstrated that there is a dynamical threshold, resulting from a saddle-node bifurcation mainly determined by I K1 and I NCX . This threshold is close to the voltage at which I K1 is maximum, and lower than the I Na threshold. After exceeding this dynamical threshold, the membrane voltage will automatically depolarize above the I Na threshold due to the large negative slope of the I K1 -V curve. This dynamical threshold becomes much lower in hypokalemia, especially with respect to calcium, as predicted by our theory. Because of the saddle-node bifurcation, the system can automatically depolarize even in the absence of I Na to voltages higher than the I Ca,L threshold, allowing for triggered APs in single myocytes with complete I Na block. However, because I Na is important for AP propagation in tissue, blocking I Na can still suppress premature ventricular excitations in cardiac tissue caused by calcium-mediated triggered activity. This suppression is more effective in normokalemia than in hypokalemia due to the difference in dynamical thresholds. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Small functional If current in sinoatrial pacemaker cells of the brown trout (Salmo trutta fario) heart despite strong expression of HCN channel transcripts.

    PubMed

    Hassinen, Minna; Haverinen, Jaakko; Vornanen, Matti

    2017-12-01

    Funny current ( I f ), formed by hyperpolarization-activated cyclic nucleotide-gated channels (HCN channels), is supposed to be crucial for the membrane clock regulating the cardiac pacemaker mechanism. We examined the presence and activity of HCN channels in the brown trout ( Salmo trutta fario ) sinoatrial (SA) pacemaker cells and their putative role in heart rate ( f H ) regulation. Six HCN transcripts (HCN1, HCN2a, HCN2ba, HCN2bb, HCN3, and HCN4) were expressed in the brown trout heart. The total HCN transcript abundance was 4.0 and 4.9 times higher in SA pacemaker tissue than in atrium and ventricle, respectively. In the SA pacemaker, HCN3 and HCN4 were the main isoforms representing 35.8 ± 2.7 and 25.0 ± 1.5%, respectively, of the total HCN transcripts. Only a small I f with a mean current density of -1.2 ± 0.37 pA/pF at -140 mV was found in 4 pacemaker cells out of 16 spontaneously beating cells examined, despite the optimization of recording conditions for I f activity. I f was not found in any of the 24 atrial myocytes and 21 ventricular myocytes examined. HCN4 coexpressed with the MinK-related peptide 1 (MiRP1) β-subunit in CHO cells generated large I f currents. In contrast, HCN3 (+MiRP1) failed to produce I f in the same expression system. Cs + (2 mM), which blocked 84 ± 12% of the native I f , reversibly reduced f H 19.2 ± 3.6% of the excised multicellular pacemaker tissue from 53 ± 5 to 44 ± 5 beats/min ( P < 0.05). However, this effect was probably due to the reduction of I Kr , which was also inhibited (63.5 ± 4.6%) by Cs + These results strongly suggest that f H regulation in the brown trout heart is largely independent on I f . Copyright © 2017 the American Physiological Society.

  17. CUTSETS - MINIMAL CUT SET CALCULATION FOR DIGRAPH AND FAULT TREE RELIABILITY MODELS

    NASA Technical Reports Server (NTRS)

    Iverson, D. L.

    1994-01-01

    Fault tree and digraph models are frequently used for system failure analysis. Both type of models represent a failure space view of the system using AND and OR nodes in a directed graph structure. Fault trees must have a tree structure and do not allow cycles or loops in the graph. Digraphs allow any pattern of interconnection between loops in the graphs. A common operation performed on digraph and fault tree models is the calculation of minimal cut sets. A cut set is a set of basic failures that could cause a given target failure event to occur. A minimal cut set for a target event node in a fault tree or digraph is any cut set for the node with the property that if any one of the failures in the set is removed, the occurrence of the other failures in the set will not cause the target failure event. CUTSETS will identify all the minimal cut sets for a given node. The CUTSETS package contains programs that solve for minimal cut sets of fault trees and digraphs using object-oriented programming techniques. These cut set codes can be used to solve graph models for reliability analysis and identify potential single point failures in a modeled system. The fault tree minimal cut set code reads in a fault tree model input file with each node listed in a text format. In the input file the user specifies a top node of the fault tree and a maximum cut set size to be calculated. CUTSETS will find minimal sets of basic events which would cause the failure at the output of a given fault tree gate. The program can find all the minimal cut sets of a node, or minimal cut sets up to a specified size. The algorithm performs a recursive top down parse of the fault tree, starting at the specified top node, and combines the cut sets of each child node into sets of basic event failures that would cause the failure event at the output of that gate. Minimal cut set solutions can be found for all nodes in the fault tree or just for the top node. The digraph cut set code uses the same techniques as the fault tree cut set code, except it includes all upstream digraph nodes in the cut sets for a given node and checks for cycles in the digraph during the solution process. CUTSETS solves for specified nodes and will not automatically solve for all upstream digraph nodes. The cut sets will be output as a text file. CUTSETS includes a utility program that will convert the popular COD format digraph model description files into text input files suitable for use with the CUTSETS programs. FEAT (MSC-21873) and FIRM (MSC-21860) available from COSMIC are examples of programs that produce COD format digraph model description files that may be converted for use with the CUTSETS programs. CUTSETS is written in C-language to be machine independent. It has been successfully implemented on a Sun running SunOS, a DECstation running ULTRIX, a Macintosh running System 7, and a DEC VAX running VMS. The RAM requirement varies with the size of the models. CUTSETS is available in UNIX tar format on a .25 inch streaming magnetic tape cartridge (standard distribution) or on a 3.5 inch diskette. It is also available on a 3.5 inch Macintosh format diskette or on a 9-track 1600 BPI magnetic tape in DEC VAX FILES-11 format. Sample input and sample output are provided on the distribution medium. An electronic copy of the documentation in Macintosh Microsoft Word format is included on the distribution medium. Sun and SunOS are trademarks of Sun Microsystems, Inc. DEC, DeCstation, ULTRIX, VAX, and VMS are trademarks of Digital Equipment Corporation. UNIX is a registered trademark of AT&T Bell Laboratories. Macintosh is a registered trademark of Apple Computer, Inc.

  18. Integration of low level and ontology derived features for automatic weapon recognition and identification

    NASA Astrophysics Data System (ADS)

    Sirakov, Nikolay M.; Suh, Sang; Attardo, Salvatore

    2011-06-01

    This paper presents a further step of a research toward the development of a quick and accurate weapons identification methodology and system. A basic stage of this methodology is the automatic acquisition and updating of weapons ontology as a source of deriving high level weapons information. The present paper outlines the main ideas used to approach the goal. In the next stage, a clustering approach is suggested on the base of hierarchy of concepts. An inherent slot of every node of the proposed ontology is a low level features vector (LLFV), which facilitates the search through the ontology. Part of the LLFV is the information about the object's parts. To partition an object a new approach is presented capable of defining the objects concavities used to mark the end points of weapon parts, considered as convexities. Further an existing matching approach is optimized to determine whether an ontological object matches the objects from an input image. Objects from derived ontological clusters will be considered for the matching process. Image resizing is studied and applied to decrease the runtime of the matching approach and investigate its rotational and scaling invariance. Set of experiments are preformed to validate the theoretical concepts.

  19. Automatic segmentation of fluorescence lifetime microscopy images of cells using multiresolution community detection--a first study.

    PubMed

    Hu, D; Sarder, P; Ronhovde, P; Orthaus, S; Achilefu, S; Nussinov, Z

    2014-01-01

    Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean-square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering-based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean-square error with increasing resolution. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  20. Automatic Segmentation of Fluorescence Lifetime Microscopy Images of Cells Using Multi-Resolution Community Detection -A First Study

    PubMed Central

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Orthaus, Sandra; Achilefu, Samuel; Nussinov, Zohar

    2014-01-01

    Inspired by a multi-resolution community detection (MCD) based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Further, using the proposed method, the mean-square error (MSE) in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The MCD method appeared to perform better than a popular spectral clustering based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in MSE with increasing resolution. PMID:24251410

  1. Spreadsheets for Analyzing and Optimizing Space Missions

    NASA Technical Reports Server (NTRS)

    Some, Raphael R.; Agrawal, Anil K.; Czikmantory, Akos J.; Weisbin, Charles R.; Hua, Hook; Neff, Jon M.; Cowdin, Mark A.; Lewis, Brian S.; Iroz, Juana; Ross, Rick

    2009-01-01

    XCALIBR (XML Capability Analysis LIBRary) is a set of Extensible Markup Language (XML) database and spreadsheet- based analysis software tools designed to assist in technology-return-on-investment analysis and optimization of technology portfolios pertaining to outer-space missions. XCALIBR is also being examined for use in planning, tracking, and documentation of projects. An XCALIBR database contains information on mission requirements and technological capabilities, which are related by use of an XML taxonomy. XCALIBR incorporates a standardized interface for exporting data and analysis templates to an Excel spreadsheet. Unique features of XCALIBR include the following: It is inherently hierarchical by virtue of its XML basis. The XML taxonomy codifies a comprehensive data structure and data dictionary that includes performance metrics for spacecraft, sensors, and spacecraft systems other than sensors. The taxonomy contains >700 nodes representing all levels, from system through subsystem to individual parts. All entries are searchable and machine readable. There is an intuitive Web-based user interface. The software automatically matches technologies to mission requirements. The software automatically generates, and makes the required entries in, an Excel return-on-investment analysis software tool. The results of an analysis are presented in both tabular and graphical displays.

  2. A high-quality high-fidelity visualization of the September 11 attack on the World Trade Center.

    PubMed

    Rosen, Paul; Popescu, Voicu; Hoffmann, Christoph; Irfanoglu, Ayhan

    2008-01-01

    In this application paper, we describe the efforts of a multidisciplinary team towards producing a visualization of the September 11 Attack on the North Tower of New York's World Trade Center. The visualization was designed to meet two requirements. First, the visualization had to depict the impact with high fidelity, by closely following the laws of physics. Second, the visualization had to be eloquent to a nonexpert user. This was achieved by first designing and computing a finite-element analysis (FEA) simulation of the impact between the aircraft and the top 20 stories of the building, and then by visualizing the FEA results with a state-of-the-art commercial animation system. The visualization was enabled by an automatic translator that converts the simulation data into an animation system 3D scene. We built upon a previously developed translator. The translator was substantially extended to enable and control visualization of fire and of disintegrating elements, to better scale with the number of nodes and number of states, to handle beam elements with complex profiles, and to handle smoothed particle hydrodynamics liquid representation. The resulting translator is a powerful automatic and scalable tool for high-quality visualization of FEA results.

  3. Automated software configuration in the MONSOON system

    NASA Astrophysics Data System (ADS)

    Daly, Philip N.; Buchholz, Nick C.; Moore, Peter C.

    2004-09-01

    MONSOON is the next generation OUV-IR controller project being developed at NOAO. The design is flexible, emphasizing code re-use, maintainability and scalability as key factors. The software needs to support widely divergent detector systems ranging from multi-chip mosaics (for LSST, QUOTA, ODI and NEWFIRM) down to large single or multi-detector laboratory development systems. In order for this flexibility to be effective and safe, the software must be able to configure itself to the requirements of the attached detector system at startup. The basic building block of all MONSOON systems is the PAN-DHE pair which make up a single data acquisition node. In this paper we discuss the software solutions used in the automatic PAN configuration system.

  4. SeqPig: simple and scalable scripting for large sequencing data sets in Hadoop.

    PubMed

    Schumacher, André; Pireddu, Luca; Niemenmaa, Matti; Kallio, Aleksi; Korpelainen, Eija; Zanetti, Gianluigi; Heljanko, Keijo

    2014-01-01

    Hadoop MapReduce-based approaches have become increasingly popular due to their scalability in processing large sequencing datasets. However, as these methods typically require in-depth expertise in Hadoop and Java, they are still out of reach of many bioinformaticians. To solve this problem, we have created SeqPig, a library and a collection of tools to manipulate, analyze and query sequencing datasets in a scalable and simple manner. SeqPigscripts use the Hadoop-based distributed scripting engine Apache Pig, which automatically parallelizes and distributes data processing tasks. We demonstrate SeqPig's scalability over many computing nodes and illustrate its use with example scripts. Available under the open source MIT license at http://sourceforge.net/projects/seqpig/

  5. Design of an Intelligent Nursing Clinical Pathway and Nursing Order Support System for Traditional Chinese Medicine.

    PubMed

    Ding, Bao-Fen; Chang, Polun; Wang, Ping; Li, Hai-Ting; Kuo, Ming-Chuan

    2017-01-01

    With an in-depth analysis of nursing work in 14 hospitals over a period of two years, one unique total nursing information system framework was established where the nursing clinical pathways are used as the main frame and the nursing orders as the nodes on the frame. We used the nursing order concept with the principles of nursing process. A closed-loop management model composed of the nursing orders was set up to solve nursing problems. Based on the principles of traditional Chinese medicine, we further designed an intelligent support module to automatically deduct clinical nursing pathways to promote standardized management and improve the quality of nursing care. The system has successfully been implemented in some facilities since 2015.

  6. Injection Process Control of the Well at the Hydrodynamic Research of Coalbed

    NASA Astrophysics Data System (ADS)

    Odnokopylov, I. G.; Galtseva, O. V.; Krasnov, I. Yu; Smirnov, A. O.; Karpov, M. S.; Surzhikova, O. A.; Kuznetsov, V. V.; Li, J.

    2017-04-01

    This scientific work is devoted to the study results of water injection process into the well at the hydrodynamic research by using the high pressure unregulated pump. The injection process should be accompanied by the retention of some hydraulic parameters at constant level during some time. Various variants for use of mechatronic nodes for automatization of water injection process are considered. Scheme for reducing the load on the pump and equipment in hydraulic system and also for improving the quality control system with high accuracy is shown. Simulation results of injection process into the well at the pressure and consumption fixation and recommendations for the use of the proposed schemes depending on the technological process are given.

  7. Ultrafast and scalable cone-beam CT reconstruction using MapReduce in a cloud computing environment.

    PubMed

    Meng, Bowen; Pratx, Guillem; Xing, Lei

    2011-12-01

    Four-dimensional CT (4DCT) and cone beam CT (CBCT) are widely used in radiation therapy for accurate tumor target definition and localization. However, high-resolution and dynamic image reconstruction is computationally demanding because of the large amount of data processed. Efficient use of these imaging techniques in the clinic requires high-performance computing. The purpose of this work is to develop a novel ultrafast, scalable and reliable image reconstruction technique for 4D CBCT∕CT using a parallel computing framework called MapReduce. We show the utility of MapReduce for solving large-scale medical physics problems in a cloud computing environment. In this work, we accelerated the Feldcamp-Davis-Kress (FDK) algorithm by porting it to Hadoop, an open-source MapReduce implementation. Gated phases from a 4DCT scans were reconstructed independently. Following the MapReduce formalism, Map functions were used to filter and backproject subsets of projections, and Reduce function to aggregate those partial backprojection into the whole volume. MapReduce automatically parallelized the reconstruction process on a large cluster of computer nodes. As a validation, reconstruction of a digital phantom and an acquired CatPhan 600 phantom was performed on a commercial cloud computing environment using the proposed 4D CBCT∕CT reconstruction algorithm. Speedup of reconstruction time is found to be roughly linear with the number of nodes employed. For instance, greater than 10 times speedup was achieved using 200 nodes for all cases, compared to the same code executed on a single machine. Without modifying the code, faster reconstruction is readily achievable by allocating more nodes in the cloud computing environment. Root mean square error between the images obtained using MapReduce and a single-threaded reference implementation was on the order of 10(-7). Our study also proved that cloud computing with MapReduce is fault tolerant: the reconstruction completed successfully with identical results even when half of the nodes were manually terminated in the middle of the process. An ultrafast, reliable and scalable 4D CBCT∕CT reconstruction method was developed using the MapReduce framework. Unlike other parallel computing approaches, the parallelization and speedup required little modification of the original reconstruction code. MapReduce provides an efficient and fault tolerant means of solving large-scale computing problems in a cloud computing environment.

  8. VisIVO: A Library and Integrated Tools for Large Astrophysical Dataset Exploration

    NASA Astrophysics Data System (ADS)

    Becciani, U.; Costa, A.; Ersotelos, N.; Krokos, M.; Massimino, P.; Petta, C.; Vitello, F.

    2012-09-01

    VisIVO provides an integrated suite of tools and services that can be used in many scientific fields. VisIVO development starts in the Virtual Observatory framework. VisIVO allows users to visualize meaningfully highly-complex, large-scale datasets and create movies of these visualizations based on distributed infrastructures. VisIVO supports high-performance, multi-dimensional visualization of large-scale astrophysical datasets. Users can rapidly obtain meaningful visualizations while preserving full and intuitive control of the relevant parameters. VisIVO consists of VisIVO Desktop - a stand-alone application for interactive visualization on standard PCs, VisIVO Server - a platform for high performance visualization, VisIVO Web - a custom designed web portal, VisIVOSmartphone - an application to exploit the VisIVO Server functionality and the latest VisIVO features: VisIVO Library allows a job running on a computational system (grid, HPC, etc.) to produce movies directly with the code internal data arrays without the need to produce intermediate files. This is particularly important when running on large computational facilities, where the user wants to have a look at the results during the data production phase. For example, in grid computing facilities, images can be produced directly in the grid catalogue while the user code is running in a system that cannot be directly accessed by the user (a worker node). The deployment of VisIVO on the DG and gLite is carried out with the support of EDGI and EGI-Inspire projects. Depending on the structure and size of datasets under consideration, the data exploration process could take several hours of CPU for creating customized views and the production of movies could potentially last several days. For this reason an MPI parallel version of VisIVO could play a fundamental role in increasing performance, e.g. it could be automatically deployed on nodes that are MPI aware. A central concept in our development is thus to produce unified code that can run either on serial nodes or in parallel by using HPC oriented grid nodes. Another important aspect, to obtain as high performance as possible, is the integration of VisIVO processes with grid nodes where GPUs are available. We have selected CUDA for implementing a range of computationally heavy modules. VisIVO is supported by EGI-Inspire, EDGI and SCI-BUS projects.

  9. Ultrafast and scalable cone-beam CT reconstruction using MapReduce in a cloud computing environment

    PubMed Central

    Meng, Bowen; Pratx, Guillem; Xing, Lei

    2011-01-01

    Purpose: Four-dimensional CT (4DCT) and cone beam CT (CBCT) are widely used in radiation therapy for accurate tumor target definition and localization. However, high-resolution and dynamic image reconstruction is computationally demanding because of the large amount of data processed. Efficient use of these imaging techniques in the clinic requires high-performance computing. The purpose of this work is to develop a novel ultrafast, scalable and reliable image reconstruction technique for 4D CBCT/CT using a parallel computing framework called MapReduce. We show the utility of MapReduce for solving large-scale medical physics problems in a cloud computing environment. Methods: In this work, we accelerated the Feldcamp–Davis–Kress (FDK) algorithm by porting it to Hadoop, an open-source MapReduce implementation. Gated phases from a 4DCT scans were reconstructed independently. Following the MapReduce formalism, Map functions were used to filter and backproject subsets of projections, and Reduce function to aggregate those partial backprojection into the whole volume. MapReduce automatically parallelized the reconstruction process on a large cluster of computer nodes. As a validation, reconstruction of a digital phantom and an acquired CatPhan 600 phantom was performed on a commercial cloud computing environment using the proposed 4D CBCT/CT reconstruction algorithm. Results: Speedup of reconstruction time is found to be roughly linear with the number of nodes employed. For instance, greater than 10 times speedup was achieved using 200 nodes for all cases, compared to the same code executed on a single machine. Without modifying the code, faster reconstruction is readily achievable by allocating more nodes in the cloud computing environment. Root mean square error between the images obtained using MapReduce and a single-threaded reference implementation was on the order of 10−7. Our study also proved that cloud computing with MapReduce is fault tolerant: the reconstruction completed successfully with identical results even when half of the nodes were manually terminated in the middle of the process. Conclusions: An ultrafast, reliable and scalable 4D CBCT/CT reconstruction method was developed using the MapReduce framework. Unlike other parallel computing approaches, the parallelization and speedup required little modification of the original reconstruction code. MapReduce provides an efficient and fault tolerant means of solving large-scale computing problems in a cloud computing environment. PMID:22149842

  10. A two-step automatic sleep stage classification method with dubious range detection.

    PubMed

    Sousa, Teresa; Cruz, Aniana; Khalighi, Sirvan; Pires, Gabriel; Nunes, Urbano

    2015-04-01

    The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects' variability. Several studies have already identified the situations with the highest likelihood of misclassification in sleep scoring. Here, we took advantage of such information to develop an ASSC system based on knowledge of subjects' variability of some indicators that characterize sleep stages and on the American Academy of Sleep Medicine (AASM) rules. An ASSC system consisting of a two-step classifier is proposed. In the first step, epochs are classified using support vector machines (SVMs) spread into different nodes of a decision tree. In the post-processing step, the epochs suspected of misclassification (dubious classification) are tagged, and a new classification is suggested. Identification and correction are based on the AASM rules, and on misclassifications most commonly found/reported in automatic sleep staging. Six electroencephalographic and two electrooculographic channels were used to classify wake, non-rapid eye movement (NREM) sleep--N1, N2 and N3, and rapid eye movement (REM) sleep. The proposed system was tested in a dataset of 14 clinical polysomnographic records of subjects suspected of apnea disorders. Wake and REM epochs not falling in the dubious range, are classified with accuracy levels compatible with the requirements for clinical applications. The suggested correction assigned to the epochs that are tagged as dubious enhances the global results of all sleep stages. This approach provides reliable sleep staging results for non-dubious epochs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Long-term quality assurance of [(18)F]-fluorodeoxyglucose (FDG) manufacturing.

    PubMed

    Gaspar, Ludovit; Reich, Michal; Kassai, Zoltan; Macasek, Fedor; Rodrigo, Luis; Kruzliak, Peter; Kovac, Peter

    2016-01-01

    Nine years of experience with 2286 commercial synthesis allowed us to deliver comprehensive information on the quality of (18)F-FDG production. Semi-automated FDG production line using Cyclone 18/9 machine (IBA Belgium), TRACERLab MXFDG synthesiser (GE Health, USA) using alkalic hydrolysis, grade "A" isolator with dispensing robotic unit (Tema Sinergie, Italy), and automatic control system under GAMP5 (minus2, Slovakia) was assessed by TQM tools as highly reliable aseptic production line, fully compliant with Good Manufacturing Practice and just-in-time delivery of FDG radiopharmaceutical. Fluoride-18 is received in steady yield and of very high radioactive purity. Synthesis yields exhibited high variance connected probably with quality of disposable cassettes and chemicals sets. Most performance non-conformities within the manufacturing cycle occur at mechanical nodes of dispensing unit. The long-term monitoring of 2286 commercial synthesis indicated high reliability of automatic synthesizers. Shewhart chart and ANOVA analysis showed that minor non-compliances occurred were mostly caused by the declinations of less experienced staff from standard operation procedures, and also by quality of automatic cassettes. Only 15 syntheses were found unfinished and in 4 cases the product was out-of-specification of European Pharmacopoeia. Most vulnerable step of manufacturing was dispensing and filling in grade "A" isolator. Its cleanliness and sterility was fully controlled under the investigated period by applying hydrogen peroxide vapours (VHP). Our experience with quality assurance in the production of [(18)F]-fluorodeoxyglucose (FDG) at production facility of BIONT based on TRACERlab MXFDG production module can be used for bench-marking of the emerging manufacturing and automated manufacturing systems.

  12. Long-term quality assurance of [18F]-fluorodeoxyglucose (FDG) manufacturing

    PubMed Central

    Gaspar, Ludovit; Reich, Michal; Kassai, Zoltan; Macasek, Fedor; Rodrigo, Luis; Kruzliak, Peter; Kovac, Peter

    2016-01-01

    Nine years of experience with 2286 commercial synthesis allowed us to deliver comprehensive information on the quality of 18F-FDG production. Semi-automated FDG production line using Cyclone 18/9 machine (IBA Belgium), TRACERLab MXFDG synthesiser (GE Health, USA) using alkalic hydrolysis, grade “A” isolator with dispensing robotic unit (Tema Sinergie, Italy), and automatic control system under GAMP5 (minus2, Slovakia) was assessed by TQM tools as highly reliable aseptic production line, fully compliant with Good Manufacturing Practice and just-in-time delivery of FDG radiopharmaceutical. Fluoride-18 is received in steady yield and of very high radioactive purity. Synthesis yields exhibited high variance connected probably with quality of disposable cassettes and chemicals sets. Most performance non-conformities within the manufacturing cycle occur at mechanical nodes of dispensing unit. The long-term monitoring of 2286 commercial synthesis indicated high reliability of automatic synthesizers. Shewhart chart and ANOVA analysis showed that minor non-compliances occurred were mostly caused by the declinations of less experienced staff from standard operation procedures, and also by quality of automatic cassettes. Only 15 syntheses were found unfinished and in 4 cases the product was out-of-specification of European Pharmacopoeia. Most vulnerable step of manufacturing was dispensing and filling in grade “A” isolator. Its cleanliness and sterility was fully controlled under the investigated period by applying hydrogen peroxide vapours (VHP). Our experience with quality assurance in the production of [18F]-fluorodeoxyglucose (FDG) at production facility of BIONT based on TRACERlab MXFDG production module can be used for bench-marking of the emerging manufacturing and automated manufacturing systems. PMID:27508102

  13. A Numerical Study of Three Moving-Grid Methods for One-Dimensional Partial Differential Equations Which Are Based on the Method of Lines

    NASA Astrophysics Data System (ADS)

    Furzeland, R. M.; Verwer, J. G.; Zegeling, P. A.

    1990-08-01

    In recent years, several sophisticated packages based on the method of lines (MOL) have been developed for the automatic numerical integration of time-dependent problems in partial differential equations (PDEs), notably for problems in one space dimension. These packages greatly benefit from the very successful developments of automatic stiff ordinary differential equation solvers. However, from the PDE point of view, they integrate only in a semiautomatic way in the sense that they automatically adjust the time step sizes, but use just a fixed space grid, chosen a priori, for the entire calculation. For solutions possessing sharp spatial transitions that move, e.g., travelling wave fronts or emerging boundary and interior layers, a grid held fixed for the entire calculation is computationally inefficient, since for a good solution this grid often must contain a very large number of nodes. In such cases methods which attempt automatically to adjust the sizes of both the space and the time steps are likely to be more successful in efficiently resolving critical regions of high spatial and temporal activity. Methods and codes that operate this way belong to the realm of adaptive or moving-grid methods. Following the MOL approach, this paper is devoted to an evaluation and comparison, mainly based on extensive numerical tests, of three moving-grid methods for 1D problems, viz., the finite-element method of Miller and co-workers, the method published by Petzold, and a method based on ideas adopted from Dorfi and Drury. Our examination of these three methods is aimed at assessing which is the most suitable from the point of view of retaining the acknowledged features of reliability, robustness, and efficiency of the conventional MOL approach. Therefore, considerable attention is paid to the temporal performance of the methods.

  14. A feasibility study on porting the community land model onto accelerators using OpenACC

    DOE PAGES

    Wang, Dali; Wu, Wei; Winkler, Frank; ...

    2014-01-01

    As environmental models (such as Accelerated Climate Model for Energy (ACME), Parallel Reactive Flow and Transport Model (PFLOTRAN), Arctic Terrestrial Simulator (ATS), etc.) became more and more complicated, we are facing enormous challenges regarding to porting those applications onto hybrid computing architecture. OpenACC appears as a very promising technology, therefore, we have conducted a feasibility analysis on porting the Community Land Model (CLM), a terrestrial ecosystem model within the Community Earth System Models (CESM)). Specifically, we used automatic function testing platform to extract a small computing kernel out of CLM, then we apply this kernel into the actually CLM dataflowmore » procedure, and investigate the strategy of data parallelization and the benefit of data movement provided by current implementation of OpenACC. Even it is a non-intensive kernel, on a single 16-core computing node, the performance (based on the actual computation time using one GPU) of OpenACC implementation is 2.3 time faster than that of OpenMP implementation using single OpenMP thread, but it is 2.8 times slower than the performance of OpenMP implementation using 16 threads. On multiple nodes, MPI_OpenACC implementation demonstrated very good scalability on up to 128 GPUs on 128 computing nodes. This study also provides useful information for us to look into the potential benefits of “deep copy” capability and “routine” feature of OpenACC standards. In conclusion, we believe that our experience on the environmental model, CLM, can be beneficial to many other scientific research programs who are interested to porting their large scale scientific code using OpenACC onto high-end computers, empowered by hybrid computing architecture.« less

  15. Divide and Conquer (DC) BLAST: fast and easy BLAST execution within HPC environments

    DOE PAGES

    Yim, Won Cheol; Cushman, John C.

    2017-07-22

    Bioinformatics is currently faced with very large-scale data sets that lead to computational jobs, especially sequence similarity searches, that can take absurdly long times to run. For example, the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST and BLAST+) suite, which is by far the most widely used tool for rapid similarity searching among nucleic acid or amino acid sequences, is highly central processing unit (CPU) intensive. While the BLAST suite of programs perform searches very rapidly, they have the potential to be accelerated. In recent years, distributed computing environments have become more widely accessible andmore » used due to the increasing availability of high-performance computing (HPC) systems. Therefore, simple solutions for data parallelization are needed to expedite BLAST and other sequence analysis tools. However, existing software for parallel sequence similarity searches often requires extensive computational experience and skill on the part of the user. In order to accelerate BLAST and other sequence analysis tools, Divide and Conquer BLAST (DCBLAST) was developed to perform NCBI BLAST searches within a cluster, grid, or HPC environment by using a query sequence distribution approach. Scaling from one (1) to 256 CPU cores resulted in significant improvements in processing speed. Thus, DCBLAST dramatically accelerates the execution of BLAST searches using a simple, accessible, robust, and parallel approach. DCBLAST works across multiple nodes automatically and it overcomes the speed limitation of single-node BLAST programs. DCBLAST can be used on any HPC system, can take advantage of hundreds of nodes, and has no output limitations. Thus, this freely available tool simplifies distributed computation pipelines to facilitate the rapid discovery of sequence similarities between very large data sets.« less

  16. Developing Subdomain Allocation Algorithms Based on Spatial and Communicational Constraints to Accelerate Dust Storm Simulation

    PubMed Central

    Gui, Zhipeng; Yu, Manzhu; Yang, Chaowei; Jiang, Yunfeng; Chen, Songqing; Xia, Jizhe; Huang, Qunying; Liu, Kai; Li, Zhenlong; Hassan, Mohammed Anowarul; Jin, Baoxuan

    2016-01-01

    Dust storm has serious disastrous impacts on environment, human health, and assets. The developments and applications of dust storm models have contributed significantly to better understand and predict the distribution, intensity and structure of dust storms. However, dust storm simulation is a data and computing intensive process. To improve the computing performance, high performance computing has been widely adopted by dividing the entire study area into multiple subdomains and allocating each subdomain on different computing nodes in a parallel fashion. Inappropriate allocation may introduce imbalanced task loads and unnecessary communications among computing nodes. Therefore, allocation is a key factor that may impact the efficiency of parallel process. An allocation algorithm is expected to consider the computing cost and communication cost for each computing node to minimize total execution time and reduce overall communication cost for the entire simulation. This research introduces three algorithms to optimize the allocation by considering the spatial and communicational constraints: 1) an Integer Linear Programming (ILP) based algorithm from combinational optimization perspective; 2) a K-Means and Kernighan-Lin combined heuristic algorithm (K&K) integrating geometric and coordinate-free methods by merging local and global partitioning; 3) an automatic seeded region growing based geometric and local partitioning algorithm (ASRG). The performance and effectiveness of the three algorithms are compared based on different factors. Further, we adopt the K&K algorithm as the demonstrated algorithm for the experiment of dust model simulation with the non-hydrostatic mesoscale model (NMM-dust) and compared the performance with the MPI default sequential allocation. The results demonstrate that K&K method significantly improves the simulation performance with better subdomain allocation. This method can also be adopted for other relevant atmospheric and numerical modeling. PMID:27044039

  17. Image processing meta-algorithm development via genetic manipulation of existing algorithm graphs

    NASA Astrophysics Data System (ADS)

    Schalkoff, Robert J.; Shaaban, Khaled M.

    1999-07-01

    Automatic algorithm generation for image processing applications is not a new idea, however previous work is either restricted to morphological operates or impractical. In this paper, we show recent research result in the development and use of meta-algorithms, i.e. algorithms which lead to new algorithms. Although the concept is generally applicable, the application domain in this work is restricted to image processing. The meta-algorithm concept described in this paper is based upon out work in dynamic algorithm. The paper first present the concept of dynamic algorithms which, on the basis of training and archived algorithmic experience embedded in an algorithm graph (AG), dynamically adjust the sequence of operations applied to the input image data. Each node in the tree-based representation of a dynamic algorithm with out degree greater than 2 is a decision node. At these nodes, the algorithm examines the input data and determines which path will most likely achieve the desired results. This is currently done using nearest-neighbor classification. The details of this implementation are shown. The constrained perturbation of existing algorithm graphs, coupled with a suitable search strategy, is one mechanism to achieve meta-algorithm an doffers rich potential for the discovery of new algorithms. In our work, a meta-algorithm autonomously generates new dynamic algorithm graphs via genetic recombination of existing algorithm graphs. The AG representation is well suited to this genetic-like perturbation, using a commonly- employed technique in artificial neural network synthesis, namely the blueprint representation of graphs. A number of exam. One of the principal limitations of our current approach is the need for significant human input in the learning phase. Efforts to overcome this limitation are discussed. Future research directions are indicated.

  18. Lumping of degree-based mean-field and pair-approximation equations for multistate contact processes.

    PubMed

    Kyriakopoulos, Charalampos; Grossmann, Gerrit; Wolf, Verena; Bortolussi, Luca

    2018-01-01

    Contact processes form a large and highly interesting class of dynamic processes on networks, including epidemic and information-spreading networks. While devising stochastic models of such processes is relatively easy, analyzing them is very challenging from a computational point of view, particularly for large networks appearing in real applications. One strategy to reduce the complexity of their analysis is to rely on approximations, often in terms of a set of differential equations capturing the evolution of a random node, distinguishing nodes with different topological contexts (i.e., different degrees of different neighborhoods), such as degree-based mean-field (DBMF), approximate-master-equation (AME), or pair-approximation (PA) approaches. The number of differential equations so obtained is typically proportional to the maximum degree k_{max} of the network, which is much smaller than the size of the master equation of the underlying stochastic model, yet numerically solving these equations can still be problematic for large k_{max}. In this paper, we consider AME and PA, extended to cope with multiple local states, and we provide an aggregation procedure that clusters together nodes having similar degrees, treating those in the same cluster as indistinguishable, thus reducing the number of equations while preserving an accurate description of global observables of interest. We also provide an automatic way to build such equations and to identify a small number of degree clusters that give accurate results. The method is tested on several case studies, where it shows a high level of compression and a reduction of computational time of several orders of magnitude for large networks, with minimal loss in accuracy.

  19. HURON (HUman and Robotic Optimization Network) Multi-Agent Temporal Activity Planner/Scheduler

    NASA Technical Reports Server (NTRS)

    Hua, Hook; Mrozinski, Joseph J.; Elfes, Alberto; Adumitroaie, Virgil; Shelton, Kacie E.; Smith, Jeffrey H.; Lincoln, William P.; Weisbin, Charles R.

    2012-01-01

    HURON solves the problem of how to optimize a plan and schedule for assigning multiple agents to a temporal sequence of actions (e.g., science tasks). Developed as a generic planning and scheduling tool, HURON has been used to optimize space mission surface operations. The tool has also been used to analyze lunar architectures for a variety of surface operational scenarios in order to maximize return on investment and productivity. These scenarios include numerous science activities performed by a diverse set of agents: humans, teleoperated rovers, and autonomous rovers. Once given a set of agents, activities, resources, resource constraints, temporal constraints, and de pendencies, HURON computes an optimal schedule that meets a specified goal (e.g., maximum productivity or minimum time), subject to the constraints. HURON performs planning and scheduling optimization as a graph search in state-space with forward progression. Each node in the graph contains a state instance. Starting with the initial node, a graph is automatically constructed with new successive nodes of each new state to explore. The optimization uses a set of pre-conditions and post-conditions to create the children states. The Python language was adopted to not only enable more agile development, but to also allow the domain experts to easily define their optimization models. A graphical user interface was also developed to facilitate real-time search information feedback and interaction by the operator in the search optimization process. The HURON package has many potential uses in the fields of Operations Research and Management Science where this technology applies to many commercial domains requiring optimization to reduce costs. For example, optimizing a fleet of transportation truck routes, aircraft flight scheduling, and other route-planning scenarios involving multiple agent task optimization would all benefit by using HURON.

  20. Divide and Conquer (DC) BLAST: fast and easy BLAST execution within HPC environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yim, Won Cheol; Cushman, John C.

    Bioinformatics is currently faced with very large-scale data sets that lead to computational jobs, especially sequence similarity searches, that can take absurdly long times to run. For example, the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST and BLAST+) suite, which is by far the most widely used tool for rapid similarity searching among nucleic acid or amino acid sequences, is highly central processing unit (CPU) intensive. While the BLAST suite of programs perform searches very rapidly, they have the potential to be accelerated. In recent years, distributed computing environments have become more widely accessible andmore » used due to the increasing availability of high-performance computing (HPC) systems. Therefore, simple solutions for data parallelization are needed to expedite BLAST and other sequence analysis tools. However, existing software for parallel sequence similarity searches often requires extensive computational experience and skill on the part of the user. In order to accelerate BLAST and other sequence analysis tools, Divide and Conquer BLAST (DCBLAST) was developed to perform NCBI BLAST searches within a cluster, grid, or HPC environment by using a query sequence distribution approach. Scaling from one (1) to 256 CPU cores resulted in significant improvements in processing speed. Thus, DCBLAST dramatically accelerates the execution of BLAST searches using a simple, accessible, robust, and parallel approach. DCBLAST works across multiple nodes automatically and it overcomes the speed limitation of single-node BLAST programs. DCBLAST can be used on any HPC system, can take advantage of hundreds of nodes, and has no output limitations. Thus, this freely available tool simplifies distributed computation pipelines to facilitate the rapid discovery of sequence similarities between very large data sets.« less

  1. The application of improved NeuroEvolution of Augmenting Topologies neural network in Marcellus Shale lithofacies prediction

    NASA Astrophysics Data System (ADS)

    Wang, Guochang; Cheng, Guojian; Carr, Timothy R.

    2013-04-01

    The organic-rich Marcellus Shale was deposited in a foreland basin during Middle Devonian. In terms of mineral composition and organic matter richness, we define seven mudrock lithofacies: three organic-rich lithofacies and four organic-poor lithofacies. The 3D lithofacies model is very helpful to determine geologic and engineering sweet spots, and consequently useful for designing horizontal well trajectories and stimulation strategies. The NeuroEvolution of Augmenting Topologies (NEAT) is relatively new idea in the design of neural networks, and shed light on classification (i.e., Marcellus Shale lithofacies prediction). We have successfully enhanced the capability and efficiency of NEAT in three aspects. First, we introduced two new attributes of node gene, the node location and recurrent connection (RCC), to increase the calculation efficiency. Second, we evolved the population size from an initial small value to big, instead of using the constant value, which saves time and computer memory, especially for complex learning tasks. Third, in multiclass pattern recognition problems, we combined feature selection of input variables and modular neural network to automatically select input variables and optimize network topology for each binary classifier. These improvements were tested and verified by true if an odd number of its arguments are true and false otherwise (XOR) experiments, and were powerful for classification.

  2. Manual for automatic generation of finite element models of spiral bevel gears in mesh

    NASA Technical Reports Server (NTRS)

    Bibel, G. D.; Reddy, S.; Kumar, A.

    1994-01-01

    The goal of this research is to develop computer programs that generate finite element models suitable for doing 3D contact analysis of faced milled spiral bevel gears in mesh. A pinion tooth and a gear tooth are created and put in mesh. There are two programs: Points.f and Pat.f to perform the analysis. Points.f is based on the equation of meshing for spiral bevel gears. It uses machine tool settings to solve for an N x M mesh of points on the four surfaces, pinion concave and convex, and gear concave and convex. Points.f creates the file POINTS.OUT, an ASCI file containing N x M points for each surface. (N is the number of node points along the length of the tooth, and M is nodes along the height.) Pat.f reads POINTS.OUT and creates the file tl.out. Tl.out is a series of PATRAN input commands. In addition to the mesh density on the tooth face, additional user specified variables are the number of finite elements through the thickness, and the number of finite elements along the tooth full fillet. A full fillet is assumed to exist for both the pinion and gear.

  3. Infrastructure for Integration of Legacy Electrical Equipment into a Smart-Grid Using Wireless Sensor Networks.

    PubMed

    de Araújo, Paulo Régis C; Filho, Raimir Holanda; Rodrigues, Joel J P C; Oliveira, João P C M; Braga, Stephanie A

    2018-04-24

    At present, the standardisation of electrical equipment communications is on the rise. In particular, manufacturers are releasing equipment for the smart grid endowed with communication protocols such as DNP3, IEC 61850, and MODBUS. However, there are legacy equipment operating in the electricity distribution network that cannot communicate using any of these protocols. Thus, we propose an infrastructure to allow the integration of legacy electrical equipment to smart grids by using wireless sensor networks (WSNs). In this infrastructure, each legacy electrical device is connected to a sensor node, and the sink node runs a middleware that enables the integration of this device into a smart grid based on suitable communication protocols. This middleware performs tasks such as the translation of messages between the power substation control centre (PSCC) and electrical equipment in the smart grid. Moreover, the infrastructure satisfies certain requirements for communication between the electrical equipment and the PSCC, such as enhanced security, short response time, and automatic configuration. The paper’s contributions include a solution that enables electrical companies to integrate their legacy equipment into smart-grid networks relying on any of the above mentioned communication protocols. This integration will reduce the costs related to the modernisation of power substations.

  4. Priority Queue Based Reactive Buffer Management Policy for Delay Tolerant Network under City Based Environments.

    PubMed

    Ayub, Qaisar; Ngadi, Asri; Rashid, Sulma; Habib, Hafiz Adnan

    2018-01-01

    Delay Tolerant Network (DTN) multi-copy routing protocols are privileged to create and transmit multiple copies of each message that causes congestion and some messages are dropped. This process is known as reactive drop because messages were dropped re-actively to overcome buffer overflows. The existing reactive buffer management policies apply a single metric to drop source, relay and destine messages. Hereby, selection to drop a message is dubious because each message as source, relay or destine may have consumed dissimilar magnitude of network resources. Similarly, DTN has included time to live (ttl) parameter which defines lifetime of message. Hence, when ttl expires then message is automatically destroyed from relay nodes. However, time-to-live (ttl) is not applicable on messages reached at their destinations. Moreover, nodes keep replicating messages till ttl expires even-though large number of messages has already been dispersed. In this paper, we have proposed Priority Queue Based Reactive Buffer Management Policy (PQB-R) for DTN under City Based Environments. The PQB-R classifies buffered messages into source, relay and destine queues. Moreover, separate drop metric has been applied on individual queue. The experiment results prove that proposed PQB-R has reduced number of messages transmissions, message drop and increases delivery ratio.

  5. Priority Queue Based Reactive Buffer Management Policy for Delay Tolerant Network under City Based Environments

    PubMed Central

    Ngadi, Asri; Rashid, Sulma; Habib, Hafiz Adnan

    2018-01-01

    Delay Tolerant Network (DTN) multi-copy routing protocols are privileged to create and transmit multiple copies of each message that causes congestion and some messages are dropped. This process is known as reactive drop because messages were dropped re-actively to overcome buffer overflows. The existing reactive buffer management policies apply a single metric to drop source, relay and destine messages. Hereby, selection to drop a message is dubious because each message as source, relay or destine may have consumed dissimilar magnitude of network resources. Similarly, DTN has included time to live (ttl) parameter which defines lifetime of message. Hence, when ttl expires then message is automatically destroyed from relay nodes. However, time-to-live (ttl) is not applicable on messages reached at their destinations. Moreover, nodes keep replicating messages till ttl expires even-though large number of messages has already been dispersed. In this paper, we have proposed Priority Queue Based Reactive Buffer Management Policy (PQB-R) for DTN under City Based Environments. The PQB-R classifies buffered messages into source, relay and destine queues. Moreover, separate drop metric has been applied on individual queue. The experiment results prove that proposed PQB-R has reduced number of messages transmissions, message drop and increases delivery ratio. PMID:29438438

  6. DTS: The NOAO Data Transport System

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, M.; Semple, T.

    2014-05-01

    The NOAO Data Transport System (DTS) provides high-throughput, reliable, data transfer between telescopes, pipelines and archive centers located in the Northern and Southern hemispheres. It is a distributed application using XML-RPC for command and control, and either parallel-TCP or UDT protocols for bulk data transport. The system is data-agnostic, allowing arbitrary files or directories to be moved using the same infrastructure. Data paths are configurable in the system by connecting nodes as the source or destination of data in a queue. Each leg of a data path may be configured independently based on the network environment between the sites. A queueing model is currently implemented to manage the automatic movement of data, a streaming model is planned to support arbitrarily large transfers (e.g. as in a disk recovery scenario) or to provide a 'pass-thru' interface to minize overheads. A web-based monitor allows anyone to get a graphical overview of the DTS system as it runs, operators will be able to control individual nodes in the system. Through careful tuning of the network paths DTS is able to achieve in excess of 80-percent of the nominal wire speed using only commodity networks, making it ideal for long-haul transport of large volumes of data.

  7. A near-infrared fluorescence-based surgical navigation system imaging software for sentinel lymph node detection

    NASA Astrophysics Data System (ADS)

    Ye, Jinzuo; Chi, Chongwei; Zhang, Shuang; Ma, Xibo; Tian, Jie

    2014-02-01

    Sentinel lymph node (SLN) in vivo detection is vital in breast cancer surgery. A new near-infrared fluorescence-based surgical navigation system (SNS) imaging software, which has been developed by our research group, is presented for SLN detection surgery in this paper. The software is based on the fluorescence-based surgical navigation hardware system (SNHS) which has been developed in our lab, and is designed specifically for intraoperative imaging and postoperative data analysis. The surgical navigation imaging software consists of the following software modules, which mainly include the control module, the image grabbing module, the real-time display module, the data saving module and the image processing module. And some algorithms have been designed to achieve the performance of the software, for example, the image registration algorithm based on correlation matching. Some of the key features of the software include: setting the control parameters of the SNS; acquiring, display and storing the intraoperative imaging data in real-time automatically; analysis and processing of the saved image data. The developed software has been used to successfully detect the SLNs in 21 cases of breast cancer patients. In the near future, we plan to improve the software performance and it will be extensively used for clinical purpose.

  8. Use of Indocyanine Green for Detecting the Sentinel Lymph Node in Breast Cancer Patients: From Preclinical Evaluation to Clinical Validation

    PubMed Central

    Chi, Chongwei; Ye, Jinzuo; Ding, Haolong; He, De; Huang, Wenhe; Zhang, Guo-Jun; Tian, Jie

    2013-01-01

    Assessment of the sentinel lymph node (SLN) in patients with early stage breast cancer is vital in selecting the appropriate surgical approach. However, the existing methods, including methylene blue and nuclides, possess low efficiency and effectiveness in mapping SLNs, and to a certain extent exert side effects during application. Indocyanine green (ICG), as a fluorescent dye, has been proved reliable usage in SLN detection by several other groups. In this paper, we introduce a novel surgical navigation system to detect SLN with ICG. This system contains two charge-coupled devices (CCD) to simultaneously capture real-time color and fluorescent video images through two different bands. During surgery, surgeons only need to follow the fluorescence display. In addition, the system saves data automatically during surgery enabling surgeons to find the registration point easily according to image recognition algorithms. To test our system, 5 mice and 10 rabbits were used for the preclinical setting and 22 breast cancer patients were utilized for the clinical evaluation in our experiments. The detection rate was 100% and an average of 2.7 SLNs was found in 22 patients. Our results show that the usage of our surgical navigation system with ICG to detect SLNs in breast cancer patients is technically feasible. PMID:24358319

  9. Infrastructure for Integration of Legacy Electrical Equipment into a Smart-Grid Using Wireless Sensor Networks

    PubMed Central

    de Araújo, Paulo Régis C.; Filho, Raimir Holanda; Oliveira, João P. C. M.; Braga, Stephanie A.

    2018-01-01

    At present, the standardisation of electrical equipment communications is on the rise. In particular, manufacturers are releasing equipment for the smart grid endowed with communication protocols such as DNP3, IEC 61850, and MODBUS. However, there are legacy equipment operating in the electricity distribution network that cannot communicate using any of these protocols. Thus, we propose an infrastructure to allow the integration of legacy electrical equipment to smart grids by using wireless sensor networks (WSNs). In this infrastructure, each legacy electrical device is connected to a sensor node, and the sink node runs a middleware that enables the integration of this device into a smart grid based on suitable communication protocols. This middleware performs tasks such as the translation of messages between the power substation control centre (PSCC) and electrical equipment in the smart grid. Moreover, the infrastructure satisfies certain requirements for communication between the electrical equipment and the PSCC, such as enhanced security, short response time, and automatic configuration. The paper’s contributions include a solution that enables electrical companies to integrate their legacy equipment into smart-grid networks relying on any of the above mentioned communication protocols. This integration will reduce the costs related to the modernisation of power substations. PMID:29695099

  10. Drug insight: If inhibitors as specific heart-rate-reducing agents.

    PubMed

    Borer, Jeffrey S

    2004-12-01

    Heart rate is determined primarily by spontaneously repeating net inward current carried by sodium ions and potassium ions through hyperpolarization-activated cyclic-nucleotide-gated channels. Within the heart, these channels are found most abundantly in sinoatrial cardiomyocytes. The channels open in response to membrane hyperpolarization, modulated by local cAMP concentrations. They permit activation of the I(f) current, which can be blocked specifically by molecules characterized by linked benzazepinone and benzocyclobutane rings, and which are devoid of effects on cardiac conduction, inotropy or peripheral vascular tone. The resulting heart-rate reduction has been effective in angina prevention in clinical trials involving 4,000 patients, using the prototype I(f) inhibitor, ivabradine. No serious adverse events have been attributed to the treatment; the most prominent side-effect is dose-related, always reversible and often transient visual symptoms that seldom result in voluntary drug discontinuation.

  11. Surgical treatment for ectopic atrial tachycardia.

    PubMed

    Graffigna, A; Vigano, M; Pagani, F; Salerno, G

    1992-08-01

    Atrial tachycardia is an infrequent but potentially dangerous arrhythmia which often determines cardiac enlargement. Surgical ablation of the arrhythmia is effective and safe, provided a careful atrial mapping is performed and the surgical technique is tailored to the individual focus location. Eight patients underwent surgical ablation of ectopic atrial tachycardia between 1977 and 1990. Different techniques were adopted for each patient according to the anatomical location of the focus and possibly associated arrhythmias. Whenever possible, a closed heart procedure was chosen. In 1 patient a double focal origin was found and treated by separate procedures. In 1 patient with ostium secundum atrial septal defect and atrial flutter, surgical isolation of the right appendage and the ectopic focus was performed. In all patients ectopic atrial tachycardia was ablated with maintenance of the sinoatrial and atrioventricular nodal function as well as internodal conduction. In follow-up up to December 1991, no recurrency was recorded.

  12. Programming and Isolation of Highly Pure Physiologically and Pharmacologically Functional Sinus-Nodal Bodies from Pluripotent Stem Cells

    PubMed Central

    Jung, Julia Jeannine; Husse, Britta; Rimmbach, Christian; Krebs, Stefan; Stieber, Juliane; Steinhoff, Gustav; Dendorfer, Andreas; Franz, Wolfgang-Michael; David, Robert

    2014-01-01

    Summary Therapeutic approaches for “sick sinus syndrome” rely on electrical pacemakers, which lack hormone responsiveness and bear hazards such as infection and battery failure. These issues may be overcome via “biological pacemakers” derived from pluripotent stem cells (PSCs). Here, we show that forward programming of PSCs with the nodal cell inducer TBX3 plus an additional Myh6-promoter-based antibiotic selection leads to cardiomyocyte aggregates consisting of >80% physiologically and pharmacologically functional pacemaker cells. These induced sinoatrial bodies (iSABs) exhibited highly increased beating rates (300–400 bpm), coming close to those found in mouse hearts, and were able to robustly pace myocardium ex vivo. Our study introduces iSABs as highly pure, functional nodal tissue that is derived from PSCs and may be important for future cell therapies and drug testing in vitro. PMID:24936448

  13. Residential area streetlight intelligent monitoring management system based on ZigBee and GPRS

    NASA Astrophysics Data System (ADS)

    Liang, Guozhuang; Xu, Xiaoyu

    2017-05-01

    According to current situation of green environmental protection lighting policy and traditional residential lighting system automation degree, low energy efficiency, difficult to management and other problems, the residential area streetlight monitoring management system based on ZigBee and GPRS is proposed. This design is put forward by using sensor technology, ZigBee and GPRS wireless communication technology network. To realize intelligent lighting parameters adjustment, coordination control method of various kinds of sensors is used. The system through multiple ZigBee nodes topology network to collect street light's information, each subnet through the ZigBee coordinator and GPRS network to transmit data. The street lamps can be put on or off, or be adjusted the brightness automatic ally according to the surrounding environmental illumination.

  14. Using Mosix for Wide-Area Compuational Resources

    USGS Publications Warehouse

    Maddox, Brian G.

    2004-01-01

    One of the problems with using traditional Beowulf-type distributed processing clusters is that they require an investment in dedicated computer resources. These resources are usually needed in addition to pre-existing ones such as desktop computers and file servers. Mosix is a series of modifications to the Linux kernel that creates a virtual computer, featuring automatic load balancing by migrating processes from heavily loaded nodes to less used ones. An extension of the Beowulf concept is to run a Mosixenabled Linux kernel on a large number of computer resources in an organization. This configuration would provide a very large amount of computational resources based on pre-existing equipment. The advantage of this method is that it provides much more processing power than a traditional Beowulf cluster without the added costs of dedicating resources.

  15. Self-organizing maps for learning the edit costs in graph matching.

    PubMed

    Neuhaus, Michel; Bunke, Horst

    2005-06-01

    Although graph matching and graph edit distance computation have become areas of intensive research recently, the automatic inference of the cost of edit operations has remained an open problem. In the present paper, we address the issue of learning graph edit distance cost functions for numerically labeled graphs from a corpus of sample graphs. We propose a system of self-organizing maps (SOMs) that represent the distance measuring spaces of node and edge labels. Our learning process is based on the concept of self-organization. It adapts the edit costs in such a way that the similarity of graphs from the same class is increased, whereas the similarity of graphs from different classes decreases. The learning procedure is demonstrated on two different applications involving line drawing graphs and graphs representing diatoms, respectively.

  16. Performance benchmark of LHCb code on state-of-the-art x86 architectures

    NASA Astrophysics Data System (ADS)

    Campora Perez, D. H.; Neufeld, N.; Schwemmer, R.

    2015-12-01

    For Run 2 of the LHC, LHCb is replacing a significant part of its event filter farm with new compute nodes. For the evaluation of the best performing solution, we have developed a method to convert our high level trigger application into a stand-alone, bootable benchmark image. With additional instrumentation we turned it into a self-optimising benchmark which explores techniques such as late forking, NUMA balancing and optimal number of threads, i.e. it automatically optimises box-level performance. We have run this procedure on a wide range of Haswell-E CPUs and numerous other architectures from both Intel and AMD, including also the latest Intel micro-blade servers. We present results in terms of performance, power consumption, overheads and relative cost.

  17. Autonomic Cluster Management System (ACMS): A Demonstration of Autonomic Principles at Work

    NASA Technical Reports Server (NTRS)

    Baldassari, James D.; Kopec, Christopher L.; Leshay, Eric S.; Truszkowski, Walt; Finkel, David

    2005-01-01

    Cluster computing, whereby a large number of simple processors or nodes are combined together to apparently function as a single powerful computer, has emerged as a research area in its own right. The approach offers a relatively inexpensive means of achieving significant computational capabilities for high-performance computing applications, while simultaneously affording the ability to. increase that capability simply by adding more (inexpensive) processors. However, the task of manually managing and con.guring a cluster quickly becomes impossible as the cluster grows in size. Autonomic computing is a relatively new approach to managing complex systems that can potentially solve many of the problems inherent in cluster management. We describe the development of a prototype Automatic Cluster Management System (ACMS) that exploits autonomic properties in automating cluster management.

  18. Industrial implementation of spatial variability control by real-time SPC

    NASA Astrophysics Data System (ADS)

    Roule, O.; Pasqualini, F.; Borde, M.

    2016-10-01

    Advanced technology nodes require more and more information to get the wafer process well setup. The critical dimension of components decreases following Moore's law. At the same time, the intra-wafer dispersion linked to the spatial non-uniformity of tool's processes is not capable to decrease in the same proportions. APC systems (Advanced Process Control) are being developed in waferfab to automatically adjust and tune wafer processing, based on a lot of process context information. It can generate and monitor complex intrawafer process profile corrections between different process steps. It leads us to put under control the spatial variability, in real time by our SPC system (Statistical Process Control). This paper will outline the architecture of an integrated process control system for shape monitoring in 3D, implemented in waferfab.

  19. Simulation system of arrhythmia using ActiveX control.

    PubMed

    Takeuchi, Akihiro; Hirose, Minoru; Hamada, Atsushi; Ikeda, Noriaki

    2005-07-01

    A simulation system for arrhythmias has been developed using Windows-based software technology, ActiveX control. The cardiac module consists of six cells, the sinus, atrium, AV node, ventricle, and ectopic foci. The physiological properties of the cells, the automaticity and conduction delay, were modelled, respectively, by the phase response curve and the excitability recovery curve. Cell functions were implemented in the ActiveX control and incorporated into the cardiac module. The system draws the ECG sequence as a ladder diagram in real time. The system interactively shows diverse arrhythmias for various user settings of the cell function and bidirectional conduction between the cells. Users are able to experiment virtually by setting up a so-called electrophysiological stimulation. This system is useful for learning and for teaching the interaction between the cells and arrhythmias.

  20. Layout optimization with assist features placement by model based rule tables for 2x node random contact

    NASA Astrophysics Data System (ADS)

    Jun, Jinhyuck; Park, Minwoo; Park, Chanha; Yang, Hyunjo; Yim, Donggyu; Do, Munhoe; Lee, Dongchan; Kim, Taehoon; Choi, Junghoe; Luk-Pat, Gerard; Miloslavsky, Alex

    2015-03-01

    As the industry pushes to ever more complex illumination schemes to increase resolution for next generation memory and logic circuits, sub-resolution assist feature (SRAF) placement requirements become increasingly severe. Therefore device manufacturers are evaluating improvements in SRAF placement algorithms which do not sacrifice main feature (MF) patterning capability. There are known-well several methods to generate SRAF such as Rule based Assist Features (RBAF), Model Based Assist Features (MBAF) and Hybrid Assisted Features combining features of the different algorithms using both RBAF and MBAF. Rule Based Assist Features (RBAF) continue to be deployed, even with the availability of Model Based Assist Features (MBAF) and Inverse Lithography Technology (ILT). Certainly for the 3x nm node, and even at the 2x nm nodes and lower, RBAF is used because it demands less run time and provides better consistency. Since RBAF is needed now and in the future, what is also needed is a faster method to create the AF rule tables. The current method typically involves making masks and printing wafers that contain several experiments, varying the main feature configurations, AF configurations, dose conditions, and defocus conditions - this is a time consuming and expensive process. In addition, as the technology node shrinks, wafer process changes and source shape redesigns occur more frequently, escalating the cost of rule table creation. Furthermore, as the demand on process margin escalates, there is a greater need for multiple rule tables: each tailored to a specific set of main-feature configurations. Model Assisted Rule Tables(MART) creates a set of test patterns, and evaluates the simulated CD at nominal conditions, defocused conditions and off-dose conditions. It also uses lithographic simulation to evaluate the likelihood of AF printing. It then analyzes the simulation data to automatically create AF rule tables. It means that analysis results display the cost of different AF configurations as the space grows between a pair of main features. In summary, model based rule tables method is able to make it much easier to create rule tables, leading to faster rule-table creation and a lower barrier to the creation of more rule tables.

  1. A GeoNode-Based Multiscale Platform For Management, Visualization And Integration Of DInSAR Data With Different Geospatial Information Sources

    NASA Astrophysics Data System (ADS)

    Buonanno, Sabatino; Fusco, Adele; Zeni, Giovanni; Manunta, Michele; Lanari, Riccardo

    2017-04-01

    This work describes the implementation of an efficient system for managing, viewing, analyzing and updating remotely sensed data, with special reference to Differential Interferometric Synthetic Aperture Radar (DInSAR) data. The DInSAR products measure Earth surface deformation both in space and time, producing deformation maps and time series[1,2]. The use of these data in research or operational contexts requires tools that have to handle temporal and spatial variability with high efficiency. For this aim we present an implementation based on Spatial Data Infrastructure (SDI) for data integration, management and interchange, by using standard protocols[3]. SDI tools provide access to static datasets that operate only with spatial variability . In this paper we use the open source project GeoNode as framework to extend SDI infrastructure functionalities to ingest very efficiently DInSAR deformation maps and deformation time series. GeoNode allows to realize comprehensive and distributed infrastructure, following the standards of the Open Geospatial Consortium, Inc. - OGC, for remote sensing data management, analysis and integration [4,5]. In the current paper we explain the methodology used for manage the data complexity and data integration using the opens source project GeoNode. The solution presented in this work for the ingestion of DinSAR products is a very promising starting point for future developments of the OGC compliant implementation of a semi-automatic remote sensing data processing chain . [1] Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new Algorithm for Surface Deformation Monitoring based on Small Baseline Differential SAR Interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40, 11, pp. 2375-2383. [2] Lanari R., F. Casu, M. Manzo, G. Zeni,, P. Berardino, M. Manunta and A. Pepe (2007), An overview of the Small Baseline Subset Algorithm: a DInSAR Technique for Surface Deformation Analysis, P. Appl. Geophys., 164, doi: 10.1007/s00024-007-0192-9. [3] Nebert, D.D. (ed). 2000. Developing Spatial data Infrastructures: The SDI Cookbook. [4] Geonode (www.geonode.org) [5] Kolodziej, k. (ed). 2004. OGC OpenGIS Web Map Server Cookbook. Open Geospatial Consortium, 1.0.2 edition.

  2. Logic programming reveals alteration of key transcription factors in multiple myeloma.

    PubMed

    Miannay, Bertrand; Minvielle, Stéphane; Roux, Olivier; Drouin, Pierre; Avet-Loiseau, Hervé; Guérin-Charbonnel, Catherine; Gouraud, Wilfried; Attal, Michel; Facon, Thierry; Munshi, Nikhil C; Moreau, Philippe; Campion, Loïc; Magrangeas, Florence; Guziolowski, Carito

    2017-08-23

    Innovative approaches combining regulatory networks (RN) and genomic data are needed to extract biological information for a better understanding of diseases, such as cancer, by improving the identification of entities and thereby leading to potential new therapeutic avenues. In this study, we confronted an automatically generated RN with gene expression profiles (GEP) from a cohort of multiple myeloma (MM) patients and normal individuals using global reasoning on the RN causality to identify key-nodes. We modeled each patient by his or her GEP, the RN and the possible automatically detected repairs needed to establish a coherent flow of the information that explains the logic of the GEP. These repairs could represent cancer mutations leading to GEP variability. With this reasoning, unmeasured protein states can be inferred, and we can simulate the impact of a protein perturbation on the RN behavior to identify therapeutic targets. We showed that JUN/FOS and FOXM1 activities are altered in almost all MM patients and identified two survival markers for MM patients. Our results suggest that JUN/FOS-activation has a strong impact on the RN in view of the whole GEP, whereas FOXM1-activation could be an interesting way to perturb an MM subgroup identified by our method.

  3. Layout compliance for triple patterning lithography: an iterative approach

    NASA Astrophysics Data System (ADS)

    Yu, Bei; Garreton, Gilda; Pan, David Z.

    2014-10-01

    As the semiconductor process further scales down, the industry encounters many lithography-related issues. In the 14nm logic node and beyond, triple patterning lithography (TPL) is one of the most promising techniques for Metal1 layer and possibly Via0 layer. As one of the most challenging problems in TPL, recently layout decomposition efforts have received more attention from both industry and academia. Ideally the decomposer should point out locations in the layout that are not triple patterning decomposable and therefore manual intervention by designers is required. A traditional decomposition flow would be an iterative process, where each iteration consists of an automatic layout decomposition step and manual layout modification task. However, due to the NP-hardness of triple patterning layout decomposition, automatic full chip level layout decomposition requires long computational time and therefore design closure issues continue to linger around in the traditional flow. Challenged by this issue, we present a novel incremental layout decomposition framework to facilitate accelerated iterative decomposition. In the first iteration, our decomposer not only points out all conflicts, but also provides the suggestions to fix them. After the layout modification, instead of solving the full chip problem from scratch, our decomposer can provide a quick solution for a selected portion of layout. We believe this framework is efficient, in terms of performance and designer friendly.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Homer; Ashok Varikuti; Xinming Ou

    Various tools exist to analyze enterprise network systems and to produce attack graphs detailing how attackers might penetrate into the system. These attack graphs, however, are often complex and difficult to comprehend fully, and a human user may find it problematic to reach appropriate configuration decisions. This paper presents methodologies that can 1) automatically identify portions of an attack graph that do not help a user to understand the core security problems and so can be trimmed, and 2) automatically group similar attack steps as virtual nodes in a model of the network topology, to immediately increase the understandability ofmore » the data. We believe both methods are important steps toward improving visualization of attack graphs to make them more useful in configuration management for large enterprise networks. We implemented our methods using one of the existing attack-graph toolkits. Initial experimentation shows that the proposed approaches can 1) significantly reduce the complexity of attack graphs by trimming a large portion of the graph that is not needed for a user to understand the security problem, and 2) significantly increase the accessibility and understandability of the data presented in the attack graph by clearly showing, within a generated visualization of the network topology, the number and type of potential attacks to which each host is exposed.« less

  5. The Iqmulus Urban Showcase: Automatic Tree Classification and Identification in Huge Mobile Mapping Point Clouds

    NASA Astrophysics Data System (ADS)

    Böhm, J.; Bredif, M.; Gierlinger, T.; Krämer, M.; Lindenberg, R.; Liu, K.; Michel, F.; Sirmacek, B.

    2016-06-01

    Current 3D data capturing as implemented on for example airborne or mobile laser scanning systems is able to efficiently sample the surface of a city by billions of unselective points during one working day. What is still difficult is to extract and visualize meaningful information hidden in these point clouds with the same efficiency. This is where the FP7 IQmulus project enters the scene. IQmulus is an interactive facility for processing and visualizing big spatial data. In this study the potential of IQmulus is demonstrated on a laser mobile mapping point cloud of 1 billion points sampling ~ 10 km of street environment in Toulouse, France. After the data is uploaded to the IQmulus Hadoop Distributed File System, a workflow is defined by the user consisting of retiling the data followed by a PCA driven local dimensionality analysis, which runs efficiently on the IQmulus cloud facility using a Spark implementation. Points scattering in 3 directions are clustered in the tree class, and are separated next into individual trees. Five hours of processing at the 12 node computing cluster results in the automatic identification of 4000+ urban trees. Visualization of the results in the IQmulus fat client helps users to appreciate the results, and developers to identify remaining flaws in the processing workflow.

  6. A Real-Time Construction Safety Monitoring System for Hazardous Gas Integrating Wireless Sensor Network and Building Information Modeling Technologies.

    PubMed

    Cheung, Weng-Fong; Lin, Tzu-Hsuan; Lin, Yu-Cheng

    2018-02-02

    In recent years, many studies have focused on the application of advanced technology as a way to improve management of construction safety management. A Wireless Sensor Network (WSN), one of the key technologies in Internet of Things (IoT) development, enables objects and devices to sense and communicate environmental conditions; Building Information Modeling (BIM), a revolutionary technology in construction, integrates database and geometry into a digital model which provides a visualized way in all construction lifecycle management. This paper integrates BIM and WSN into a unique system which enables the construction site to visually monitor the safety status via a spatial, colored interface and remove any hazardous gas automatically. Many wireless sensor nodes were placed on an underground construction site and to collect hazardous gas level and environmental condition (temperature and humidity) data, and in any region where an abnormal status is detected, the BIM model will alert the region and an alarm and ventilator on site will start automatically for warning and removing the hazard. The proposed system can greatly enhance the efficiency in construction safety management and provide an important reference information in rescue tasks. Finally, a case study demonstrates the applicability of the proposed system and the practical benefits, limitations, conclusions, and suggestions are summarized for further applications.

  7. HIPAA-compliant automatic monitoring system for RIS-integrated PACS operation

    NASA Astrophysics Data System (ADS)

    Jin, Jin; Zhang, Jianguo; Chen, Xiaomeng; Sun, Jianyong; Yang, Yuanyuan; Liang, Chenwen; Feng, Jie; Sheng, Liwei; Huang, H. K.

    2006-03-01

    As a governmental regulation, Health Insurance Portability and Accountability Act (HIPAA) was issued to protect the privacy of health information that identifies individuals who are living or deceased. HIPAA requires security services supporting implementation features: Access control; Audit controls; Authorization control; Data authentication; and Entity authentication. These controls, which proposed in HIPAA Security Standards, are Audit trails here. Audit trails can be used for surveillance purposes, to detect when interesting events might be happening that warrant further investigation. Or they can be used forensically, after the detection of a security breach, to determine what went wrong and who or what was at fault. In order to provide security control services and to achieve the high and continuous availability, we design the HIPAA-Compliant Automatic Monitoring System for RIS-Integrated PACS operation. The system consists of two parts: monitoring agents running in each PACS component computer and a Monitor Server running in a remote computer. Monitoring agents are deployed on all computer nodes in RIS-Integrated PACS system to collect the Audit trail messages defined by the Supplement 95 of the DICOM standard: Audit Trail Messages. Then the Monitor Server gathers all audit messages and processes them to provide security information in three levels: system resources, PACS/RIS applications, and users/patients data accessing. Now the RIS-Integrated PACS managers can monitor and control the entire RIS-Integrated PACS operation through web service provided by the Monitor Server. This paper presents the design of a HIPAA-compliant automatic monitoring system for RIS-Integrated PACS Operation, and gives the preliminary results performed by this monitoring system on a clinical RIS-integrated PACS.

  8. Automatic Between-Pulse Analysis of DIII-D Experimental Data Performed Remotely on a Supercomputer at Argonne Leadership Computing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostuk, M.; Uram, T. D.; Evans, T.

    For the first time, an automatically triggered, between-pulse fusion science analysis code was run on-demand at a remotely located supercomputer at Argonne Leadership Computing Facility (ALCF, Lemont, IL) in support of in-process experiments being performed at DIII-D (San Diego, CA). This represents a new paradigm for combining geographically distant experimental and high performance computing (HPC) facilities to provide enhanced data analysis that is quickly available to researchers. Enhanced analysis improves the understanding of the current pulse, translating into a more efficient use of experimental resources, and to the quality of the resultant science. The analysis code used here, called SURFMN,more » calculates the magnetic structure of the plasma using Fourier transform. Increasing the number of Fourier components provides a more accurate determination of the stochastic boundary layer near the plasma edge by better resolving magnetic islands, but requires 26 minutes to complete using local DIII-D resources, putting it well outside the useful time range for between pulse analysis. These islands relate to confinement and edge localized mode (ELM) suppression, and may be controlled by adjusting coil currents for the next pulse. Argonne has ensured on-demand execution of SURFMN by providing a reserved queue, a specialized service that launches the code after receiving an automatic trigger, and with network access from the worker nodes for data transfer. Runs are executed on 252 cores of ALCF’s Cooley cluster and the data is available locally at DIII-D within three minutes of triggering. The original SURFMN design limits additional improvements with more cores, however our work shows a path forward where codes that benefit from thousands of processors can run between pulses.« less

  9. Automatic Between-Pulse Analysis of DIII-D Experimental Data Performed Remotely on a Supercomputer at Argonne Leadership Computing Facility

    DOE PAGES

    Kostuk, M.; Uram, T. D.; Evans, T.; ...

    2018-02-01

    For the first time, an automatically triggered, between-pulse fusion science analysis code was run on-demand at a remotely located supercomputer at Argonne Leadership Computing Facility (ALCF, Lemont, IL) in support of in-process experiments being performed at DIII-D (San Diego, CA). This represents a new paradigm for combining geographically distant experimental and high performance computing (HPC) facilities to provide enhanced data analysis that is quickly available to researchers. Enhanced analysis improves the understanding of the current pulse, translating into a more efficient use of experimental resources, and to the quality of the resultant science. The analysis code used here, called SURFMN,more » calculates the magnetic structure of the plasma using Fourier transform. Increasing the number of Fourier components provides a more accurate determination of the stochastic boundary layer near the plasma edge by better resolving magnetic islands, but requires 26 minutes to complete using local DIII-D resources, putting it well outside the useful time range for between pulse analysis. These islands relate to confinement and edge localized mode (ELM) suppression, and may be controlled by adjusting coil currents for the next pulse. Argonne has ensured on-demand execution of SURFMN by providing a reserved queue, a specialized service that launches the code after receiving an automatic trigger, and with network access from the worker nodes for data transfer. Runs are executed on 252 cores of ALCF’s Cooley cluster and the data is available locally at DIII-D within three minutes of triggering. The original SURFMN design limits additional improvements with more cores, however our work shows a path forward where codes that benefit from thousands of processors can run between pulses.« less

  10. TU-FG-209-12: Treatment Site and View Recognition in X-Ray Images with Hierarchical Multiclass Recognition Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, X; Mazur, T; Yang, D

    Purpose: To investigate an approach of automatically recognizing anatomical sites and imaging views (the orientation of the image acquisition) in 2D X-ray images. Methods: A hierarchical (binary tree) multiclass recognition model was developed to recognize the treatment sites and views in x-ray images. From top to bottom of the tree, the treatment sites are grouped hierarchically from more general to more specific. Each node in the hierarchical model was designed to assign images to one of two categories of anatomical sites. The binary image classification function of each node in the hierarchical model is implemented by using a PCA transformationmore » and a support vector machine (SVM) model. The optimal PCA transformation matrices and SVM models are obtained by learning from a set of sample images. Alternatives of the hierarchical model were developed to support three scenarios of site recognition that may happen in radiotherapy clinics, including two or one X-ray images with or without view information. The performance of the approach was tested with images of 120 patients from six treatment sites – brain, head-neck, breast, lung, abdomen and pelvis – with 20 patients per site and two views (AP and RT) per patient. Results: Given two images in known orthogonal views (AP and RT), the hierarchical model achieved a 99% average F1 score to recognize the six sites. Site specific view recognition models have 100 percent accuracy. The computation time to process a new patient case (preprocessing, site and view recognition) is 0.02 seconds. Conclusion: The proposed hierarchical model of site and view recognition is effective and computationally efficient. It could be useful to automatically and independently confirm the treatment sites and views in daily setup x-ray 2D images. It could also be applied to guide subsequent image processing tasks, e.g. site and view dependent contrast enhancement and image registration. The senior author received research grants from ViewRay Inc. and Varian Medical System.« less

  11. Automatic, unstructured mesh optimization for simulation and assessment of tide- and surge-driven hydrodynamics in a longitudinal estuary: St. Johns River

    NASA Astrophysics Data System (ADS)

    Bacopoulos, Peter

    2018-05-01

    A localized truncation error analysis with complex derivatives (LTEA+CD) is applied recursively with advanced circulation (ADCIRC) simulations of tides and storm surge for finite element mesh optimization. Mesh optimization is demonstrated with two iterations of LTEA+CD for tidal simulation in the lower 200 km of the St. Johns River, located in northeast Florida, and achieves more than an over 50% decrease in the number of mesh nodes, relating to a twofold increase in efficiency, at a zero cost to model accuracy. The recursively generated meshes using LTEA+CD lead to successive reductions in the global cumulative truncation error associated with the model mesh. Tides are simulated with root mean square error (RMSE) of 0.09-0.21 m and index of agreement (IA) values generally in the 80s and 90s percentage ranges. Tidal currents are simulated with RMSE of 0.09-0.23 m s-1 and IA values of 97% and greater. Storm tide due to Hurricane Matthew 2016 is simulated with RMSE of 0.09-0.33 m and IA values of 75-96%. Analysis of the LTEA+CD results shows the M2 constituent to dominate the node spacing requirement in the St. Johns River, with the M4 and M6 overtides and the STEADY constituent contributing some. Friction is the predominant physical factor influencing the target element size distribution, especially along the main river stem, while frequency (inertia) and Coriolis (rotation) are supplementary contributing factors. The combination of interior- and boundary-type computational molecules, providing near-full coverage of the model domain, renders LTEA+CD an attractive mesh generation/optimization tool for complex coastal and estuarine domains. The mesh optimization procedure using LTEA+CD is automatic and extensible to other finite element-based numerical models. Discussion is provided on the scope of LTEA+CD, the starting point (mesh) of the procedure, the user-specified scaling of the LTEA+CD results, and the iteration (termination) of LTEA+CD for mesh optimization.

  12. Thermal infrared panoramic imaging sensor

    NASA Astrophysics Data System (ADS)

    Gutin, Mikhail; Tsui, Eddy K.; Gutin, Olga; Wang, Xu-Ming; Gutin, Alexey

    2006-05-01

    Panoramic cameras offer true real-time, 360-degree coverage of the surrounding area, valuable for a variety of defense and security applications, including force protection, asset protection, asset control, security including port security, perimeter security, video surveillance, border control, airport security, coastguard operations, search and rescue, intrusion detection, and many others. Automatic detection, location, and tracking of targets outside protected area ensures maximum protection and at the same time reduces the workload on personnel, increases reliability and confidence of target detection, and enables both man-in-the-loop and fully automated system operation. Thermal imaging provides the benefits of all-weather, 24-hour day/night operation with no downtime. In addition, thermal signatures of different target types facilitate better classification, beyond the limits set by camera's spatial resolution. The useful range of catadioptric panoramic cameras is affected by their limited resolution. In many existing systems the resolution is optics-limited. Reflectors customarily used in catadioptric imagers introduce aberrations that may become significant at large camera apertures, such as required in low-light and thermal imaging. Advantages of panoramic imagers with high image resolution include increased area coverage with fewer cameras, instantaneous full horizon detection, location and tracking of multiple targets simultaneously, extended range, and others. The Automatic Panoramic Thermal Integrated Sensor (APTIS), being jointly developed by Applied Science Innovative, Inc. (ASI) and the Armament Research, Development and Engineering Center (ARDEC) combines the strengths of improved, high-resolution panoramic optics with thermal imaging in the 8 - 14 micron spectral range, leveraged by intelligent video processing for automated detection, location, and tracking of moving targets. The work in progress supports the Future Combat Systems (FCS) and the Intelligent Munitions Systems (IMS). The APTIS is anticipated to operate as an intelligent node in a wireless network of multifunctional nodes that work together to serve in a wide range of applications of homeland security, as well as serve the Army in tasks of improved situational awareness (SA) in defense and offensive operations, and as a sensor node in tactical Intelligence Surveillance Reconnaissance (ISR). The novel ViperView TM high-resolution panoramic thermal imager is the heart of the APTIS system. It features an aberration-corrected omnidirectional imager with small optics designed to match the resolution of a 640x480 pixels IR camera with improved image quality for longer range target detection, classification, and tracking. The same approach is applicable to panoramic cameras working in the visible spectral range. Other components of the ATPIS system include network communications, advanced power management, and wakeup capability. Recent developments include image processing, optical design being expanded into the visible spectral range, and wireless communications design. This paper describes the development status of the APTIS system.

  13. C-terminal modulatory domain controls coupling of voltage-sensing to pore opening in Cav1.3 L-type Ca(2+) channels.

    PubMed

    Lieb, Andreas; Ortner, Nadine; Striessnig, Jörg

    2014-04-01

    Activity of voltage-gated Cav1.3 L-type Ca(2+) channels is required for proper hearing as well as sinoatrial node and brain function. This critically depends on their negative activation voltage range, which is further fine-tuned by alternative splicing. Shorter variants miss a C-terminal regulatory domain (CTM), which allows them to activate at even more negative potentials than C-terminally long-splice variants. It is at present unclear whether this is due to an increased voltage sensitivity of the Cav1.3 voltage-sensing domain, or an enhanced coupling of voltage-sensor conformational changes to the subsequent opening of the activation gate. We studied the voltage-dependence of voltage-sensor charge movement (QON-V) and of current activation (ICa-V) of the long (Cav1.3L) and a short Cav1.3 splice variant (Cav1.342A) expressed in tsA-201 cells using whole cell patch-clamp. Charge movement (QON) of Cav1.3L displayed a much steeper voltage-dependence and a more negative half-maximal activation voltage than Cav1.2 and Cav3.1. However, a significantly higher fraction of the total charge had to move for activation of Cav1.3 half-maximal conductance (Cav1.3: 68%; Cav1.2: 52%; Cav3.1: 22%). This indicated a weaker coupling of Cav1.3 voltage-sensor charge movement to pore opening. However, the coupling efficiency was strengthened in the absence of the CTM in Cav1.342A, thereby shifting ICa-V by 7.2 mV to potentials that were more negative without changing QON-V. We independently show that the presence of intracellular organic cations (such as n-methyl-D-glucamine) induces a pronounced negative shift of QON-V and a more negative activation of ICa-V of all three channels. These findings illustrate that the voltage sensors of Cav1.3 channels respond more sensitively to depolarization than those of Cav1.2 or Cav3.1. Weak coupling of voltage sensing to pore opening is enhanced in the absence of the CTM, allowing short Cav1.342A splice variants to activate at lower voltages without affecting QON-V. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. [Autonomic contribution to the blood pressure and heart rate variability changes in early experimental hyperthyroidism].

    PubMed

    Safa-Tisseront, V; Ponchon, P; Blanc, J; Elghozi, J L

    1998-08-01

    A great deal of uncertainty persists regarding the exact nature of the interaction between autonomic nervous activity and thyroid hormones in the control of heart rate (HR) and blood pressure (BP). Thyrotoxicosis was produced by a daily intraperitoneal (i.p.) injection of L-thyroxine (0.5 mg/kg body wt in 1 ml of 5 mM NaOH for 5 days). Control rats received i.p. daily injections of the thyroxine solvant. Autonomic blockers were administered intravenously: atropine (0.5 mg/kg), atenolol (1 mg/kg), atenolol + atropine or prazosin (1 mg/kg). Eight animals were studied in each group. Thyroxine treatment was sufficient to induce a significant degree of tachycardia (423 +/- 6 vs 353 +/- 4 bpm; p < 0.001, unpaired Student's tests), systolic BP elevation (142 +/- 3 vs 127 +/- 2 mmHg; p < 0.001), pulse pressure increase (51 +/- 2 vs 41 +/- 2 mmHg, p < 0.01), cardiac hypertrophy (1.165 +/- 0.017 vs 1.006 +/- 0.012 g, p < 0.001), weight loss (-21 +/- 2 g; p < 0.001) and hyperthermia (37.8 +/- 0.1 vs 37.0 +/- 0.1 degrees C, p < 0.001). The intrinsic HR observed after double blockade (atenolol + atropine) was markedly increased after treatment with thyroxine (497 +/- 16 vs 373 +/- 10 bpm, p < 0.05). Vagal tone (difference between HR obtained after atenolol and intrinsic HR) was positively linearly related to intrinsic HR (r = 0.84; p < 0.01). Atenolol neither modified HR nor BP variability in rats with hyperthyrodism. The thyrotoxicosis was associated with a reduction of the 0.4 Hz component of BP variability (analyses on 102.4 sec segments, modulus 1.10 +/- 0.07 vs 1.41 +/- 0.06 mmHg; p < 0.01). Prazosin was without effect on this 0.4 Hz component in these animals. These data show a functional diminution of the vascular and cardiac sympathetic tone in experimental hyperthyroidism. Increased intrinsic HR resulting from the direct effect of thyroid hormone on the sinoatrial node is the main determinant of a tachycardia leading to a subsequent rise in cardiac output. The resulting BP elevation could reflexly induce a vagal activation and a sympathetic (vascular and cardiac) inhibition.

  15. 3D virtual human atria: A computational platform for studying clinical atrial fibrillation.

    PubMed

    Aslanidi, Oleg V; Colman, Michael A; Stott, Jonathan; Dobrzynski, Halina; Boyett, Mark R; Holden, Arun V; Zhang, Henggui

    2011-10-01

    Despite a vast amount of experimental and clinical data on the underlying ionic, cellular and tissue substrates, the mechanisms of common atrial arrhythmias (such as atrial fibrillation, AF) arising from the functional interactions at the whole atria level remain unclear. Computational modelling provides a quantitative framework for integrating such multi-scale data and understanding the arrhythmogenic behaviour that emerges from the collective spatio-temporal dynamics in all parts of the heart. In this study, we have developed a multi-scale hierarchy of biophysically detailed computational models for the human atria--the 3D virtual human atria. Primarily, diffusion tensor MRI reconstruction of the tissue geometry and fibre orientation in the human sinoatrial node (SAN) and surrounding atrial muscle was integrated into the 3D model of the whole atria dissected from the Visible Human dataset. The anatomical models were combined with the heterogeneous atrial action potential (AP) models, and used to simulate the AP conduction in the human atria under various conditions: SAN pacemaking and atrial activation in the normal rhythm, break-down of regular AP wave-fronts during rapid atrial pacing, and the genesis of multiple re-entrant wavelets characteristic of AF. Contributions of different properties of the tissue to mechanisms of the normal rhythm and arrhythmogenesis were investigated. Primarily, the simulations showed that tissue heterogeneity caused the break-down of the normal AP wave-fronts at rapid pacing rates, which initiated a pair of re-entrant spiral waves; and tissue anisotropy resulted in a further break-down of the spiral waves into multiple meandering wavelets characteristic of AF. The 3D virtual atria model itself was incorporated into the torso model to simulate the body surface ECG patterns in the normal and arrhythmic conditions. Therefore, a state-of-the-art computational platform has been developed, which can be used for studying multi-scale electrical phenomena during atrial conduction and AF arrhythmogenesis. Results of such simulations can be directly compared with electrophysiological and endocardial mapping data, as well as clinical ECG recordings. The virtual human atria can provide in-depth insights into 3D excitation propagation processes within atrial walls of a whole heart in vivo, which is beyond the current technical capabilities of experimental or clinical set-ups. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Heart Rate Fragmentation: A Symbolic Dynamical Approach.

    PubMed

    Costa, Madalena D; Davis, Roger B; Goldberger, Ary L

    2017-01-01

    Background: We recently introduced the concept of heart rate fragmentation along with a set of metrics for its quantification. The term was coined to refer to an increase in the percentage of changes in heart rate acceleration sign, a dynamical marker of a type of anomalous variability. The effort was motivated by the observation that fragmentation, which is consistent with the breakdown of the neuroautonomic-electrophysiologic control system of the sino-atrial node, could confound traditional short-term analysis of heart rate variability. Objective: The objectives of this study were to: (1) introduce a symbolic dynamical approach to the problem of quantifying heart rate fragmentation; (2) evaluate how the distribution of the different dynamical patterns ("words") varied with the participants' age in a group of healthy subjects and patients with coronary artery disease (CAD); and (3) quantify the differences in the fragmentation patterns between the two sample populations. Methods: The symbolic dynamical method employed here was based on a ternary map of the increment NN interval time series and on the analysis of the relative frequency of symbolic sequences (words) with a pre-defined set of features. We analyzed annotated, open-access Holter databases of healthy subjects and patients with CAD, provided by the University of Rochester Telemetric and Holter ECG Warehouse (THEW). Results: The degree of fragmentation was significantly higher in older individuals than in their younger counterparts. However, the fragmentation patterns were different in the two sample populations. In healthy subjects, older age was significantly associated with a higher percentage of transitions from acceleration/deceleration to zero acceleration and vice versa (termed "soft" inflection points). In patients with CAD, older age was also significantly associated with higher percentages of frank reversals in heart rate acceleration (transitions from acceleration to deceleration and vice versa , termed "hard" inflection points). Compared to healthy subjects, patients with CAD had significantly higher percentages of soft and hard inflection points, an increased percentage of words with a high degree of fragmentation and a decreased percentage of words with a lower degree of fragmentation. Conclusion: The symbolic dynamical method employed here was useful to probe the newly recognized property of heart rate fragmentation. The findings from these cross-sectional studies confirm that CAD and older age are associated with higher levels of heart rate fragmentation. Furthermore, fragmentation with healthy aging appears to be phenotypically different from fragmentation in the context of CAD.

  17. An Embedded Wireless Sensor Network with Wireless Power Transmission Capability for the Structural Health Monitoring of Reinforced Concrete Structures.

    PubMed

    Gallucci, Luca; Menna, Costantino; Angrisani, Leopoldo; Asprone, Domenico; Moriello, Rosario Schiano Lo; Bonavolontà, Francesco; Fabbrocino, Francesco

    2017-11-07

    Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC) structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN) that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM) approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.

  18. Distributed Learning, Recognition, and Prediction by ART and ARTMAP Neural Networks.

    PubMed

    Carpenter, Gail A.

    1997-11-01

    A class of adaptive resonance theory (ART) models for learning, recognition, and prediction with arbitrarily distributed code representations is introduced. Distributed ART neural networks combine the stable fast learning capabilities of winner-take-all ART systems with the noise tolerance and code compression capabilities of multilayer perceptrons. With a winner-take-all code, the unsupervised model dART reduces to fuzzy ART and the supervised model dARTMAP reduces to fuzzy ARTMAP. With a distributed code, these networks automatically apportion learned changes according to the degree of activation of each coding node, which permits fast as well as slow learning without catastrophic forgetting. Distributed ART models replace the traditional neural network path weight with a dynamic weight equal to the rectified difference between coding node activation and an adaptive threshold. Thresholds increase monotonically during learning according to a principle of atrophy due to disuse. However, monotonic change at the synaptic level manifests itself as bidirectional change at the dynamic level, where the result of adaptation resembles long-term potentiation (LTP) for single-pulse or low frequency test inputs but can resemble long-term depression (LTD) for higher frequency test inputs. This paradoxical behavior is traced to dual computational properties of phasic and tonic coding signal components. A parallel distributed match-reset-search process also helps stabilize memory. Without the match-reset-search system, dART becomes a type of distributed competitive learning network.

  19. Autonomic composite hydrogels by reactive printing: materials and oscillatory response.

    PubMed

    Kramb, R C; Buskohl, P R; Slone, C; Smith, M L; Vaia, R A

    2014-03-07

    Autonomic materials are those that automatically respond to a change in environmental conditions, such as temperature or chemical composition. While such materials hold incredible potential for a wide range of uses, their implementation is limited by the small number of fully-developed material systems. To broaden the number of available systems, we have developed a post-functionalization technique where a reactive Ru catalyst ink is printed onto a non-responsive polymer substrate. Using a succinimide-amine coupling reaction, patterns are printed onto co-polymer or biomacromolecular films containing primary amine functionality, such as polyacrylamide (PAAm) or poly-N-isopropyl acrylamide (PNIPAAm) copolymerized with poly-N-(3-Aminopropyl)methacrylamide (PAPMAAm). When the films are placed in the Belousov-Zhabotinsky (BZ) solution medium, the reaction takes place only inside the printed nodes. In comparison to alternative BZ systems, where Ru-containing monomers are copolymerized with base monomers, reactive printing provides facile tuning of a range of hydrogel compositions, as well as enabling the formation of mechanically robust composite monoliths. The autonomic response of the printed nodes is similar for all matrices in the BZ solution concentrations examined, where the period of oscillation decreases in response to increasing sodium bromate or nitric acid concentration. A temperature increase reduces the period of oscillations and temperature gradients are shown to function as pace-makers, dictating the direction of the autonomic response (chemical waves).

  20. A new network representation of the metabolism to detect chemical transformation modules.

    PubMed

    Sorokina, Maria; Medigue, Claudine; Vallenet, David

    2015-11-14

    Metabolism is generally modeled by directed networks where nodes represent reactions and/or metabolites. In order to explore metabolic pathway conservation and divergence among organisms, previous studies were based on graph alignment to find similar pathways. Few years ago, the concept of chemical transformation modules, also called reaction modules, was introduced and correspond to sequences of chemical transformations which are conserved in metabolism. We propose here a novel graph representation of the metabolic network where reactions sharing a same chemical transformation type are grouped in Reaction Molecular Signatures (RMS). RMS were automatically computed for all reactions and encode changes in atoms and bonds. A reaction network containing all available metabolic knowledge was then reduced by an aggregation of reaction nodes and edges to obtain a RMS network. Paths in this network were explored and a substantial number of conserved chemical transformation modules was detected. Furthermore, this graph-based formalism allows us to define several path scores reflecting different biological conservation meanings. These scores are significantly higher for paths corresponding to known metabolic pathways and were used conjointly to build association rules that should predict metabolic pathway types like biosynthesis or degradation. This representation of metabolism in a RMS network offers new insights to capture relevant metabolic contexts. Furthermore, along with genomic context methods, it should improve the detection of gene clusters corresponding to new metabolic pathways.

  1. Classification tree for the assessment of sedentary lifestyle among hypertensive.

    PubMed

    Castelo Guedes Martins, Larissa; Venícios de Oliveira Lopes, Marcos; Gomes Guedes, Nirla; Paixão de Menezes, Angélica; de Oliveira Farias, Odaleia; Alves Dos Santos, Naftale

    2016-04-01

    To develop a classification tree of clinical indicators for the correct prediction of the nursing diagnosis "Sedentary lifestyle" (SL) in people with high blood pressure (HTN). A cross-sectional study conducted in an outpatient care center specializing in high blood pressure and Mellitus diabetes located in northeastern Brazil. The sample consisted of 285 people between 19 and 59 years old diagnosed with high blood pressure and was applied an interview and physical examination, obtaining socio-demographic information, related factors and signs and symptoms that made the defining characteristics for the diagnosis under study. The tree was generated using the CHAID algorithm (Chi-square Automatic Interaction Detection). The construction of the decision tree allowed establishing the interactions between clinical indicators that facilitate a probabilistic analysis of multiple situations allowing quantify the probability of an individual presenting a sedentary lifestyle. The tree included the clinical indicator Choose daily routine without exercise as the first node. People with this indicator showed a probability of 0.88 of presenting the SL. The second node was composed of the indicator Does not perform physical activity during leisure, with 0.99 probability of presenting the SL with these two indicators. The predictive capacity of the tree was established at 69.5%. Decision trees help nurses who care HTN people in decision-making in assessing the characteristics that increase the probability of SL nursing diagnosis, optimizing the time for diagnostic inference.

  2. Machine learning and social network analysis applied to Alzheimer's disease biomarkers.

    PubMed

    Di Deco, Javier; González, Ana M; Díaz, Julia; Mato, Virginia; García-Frank, Daniel; Álvarez-Linera, Juan; Frank, Ana; Hernández-Tamames, Juan A

    2013-01-01

    Due to the fact that the number of deaths due Alzheimer is increasing, the scientists have a strong interest in early stage diagnostic of this disease. Alzheimer's patients show different kind of brain alterations, such as morphological, biochemical, functional, etc. Currently, using magnetic resonance imaging techniques is possible to obtain a huge amount of biomarkers; being difficult to appraise which of them can explain more properly how the pathology evolves instead of the normal ageing. Machine Learning methods facilitate an efficient analysis of complex data and can be used to discover which biomarkers are more informative. Moreover, automatic models can learn from historical data to suggest the diagnostic of new patients. Social Network Analysis (SNA) views social relationships in terms of network theory consisting of nodes and connections. The resulting graph-based structures are often very complex; there can be many kinds of connections between the nodes. SNA has emerged as a key technique in modern sociology. It has also gained a significant following in medicine, anthropology, biology, information science, etc., and has become a popular topic of speculation and study. This paper presents a review of machine learning and SNA techniques and then, a new approach to analyze the magnetic resonance imaging biomarkers with these techniques, obtaining relevant relationships that can explain the different phenotypes in dementia, in particular, different stages of Alzheimer's disease.

  3. [Analysis of the Characteristics of Infantile Small World Neural Network Node Properties Correlated with the Influencing Factors].

    PubMed

    Qu, Haibo; Lu, Su; Zhang, Wenjing; Xiao, Yuan; Ning, Gang; Sun, Huaiqiang

    2016-10-01

    We applied resting-state functional magnetic resonance imaging(rfMRI)combined with graph theory to analyze 90 regions of the infantile small world neural network of the whole brain.We tried to get the following two points clear:1 whether the parameters of the node property of the infantile small world neural network are correlated with the level of infantile intelligence development;2 whether the parameters of the infantile small world neural network are correlated with the children’s baseline parameters,i.e.,the demographic parameters such as gender,age,parents’ education level,etc.Twelve cases of healthy infants were included in the investigation(9males and 3females with the average age of 33.42±8.42 months.)We then evaluated the level of infantile intelligence of all the cases and graded by Gesell Development Scale Test.We used a Siemens 3.0T Trio imaging system to perform resting-state(rs)EPI scans,and collected the BOLD functional Magnetic Resonance Imaging(fMRI)data.We performed the data processing with Statistical Parametric Mapping 5(SPM5)based on Matlab environment.Furthermore,we got the attributes of the whole brain small world and node attributes of 90 encephalic regions of templates of Anatomatic Automatic Labeling(ALL).At last,we carried out correlation study between the above-mentioned attitudes,intelligence scale parameters and demographic data.The results showed that many node attributes of small world neural network were closely correlated with intelligence scale parameters.Betweeness was mainly centered in thalamus,superior frontal gyrus,and occipital lobe(negative correlation).The r value of superior occipital gyrus associated with the individual and social intelligent scale was-0.729(P=0.007);degree was mainly centered in amygdaloid nucleus,superior frontal gyrus,and inferior parietal gyrus(positive correlation).The r value of inferior parietal gyrus associated with the gross motor intelligent scale was 0.725(P=0.008);efficiency was mainly centered in inferior frontal gyrus,inferior parietal gyrus,and insular lobe(positive correlation).The r value of inferior parietal gyrus associated with the language intelligent scale was 0.738(P=0.006);Anoda cluster coefficient(anodalCp)was centered in frontal lobe,inferior parietal gyrus,and paracentral lobule(positive correlation);Node shortest path length(nlp)was centered in frontal lobe,inferior parietal gyrus,and insular lobe.The distribution of the encephalic regions in the left and right brain was different.However,no statistical significance was found between the correlation of monolithic attributes of small world and intelligence scale.The encephalic regions,in which node attributes of small world were related to other demographic indices,were mainly centered in temporal lobe,cuneus,cingulated gyrus,angular gyrus,and paracentral lobule areas.Most of them belong to the default mode network(DMN).The node attributes of small world neural network are widely related to infantile intelligence level,moreover the distribution is characteristic in different encephalic regions.The distribution of dominant encephalic is in accordance the related functions.The existing correlations reflect the ever changing small world nervous network during infantile development.

  4. IONCAP Prediction-Based Automatic Link Establishment (ALE) Frequency Selection for a Ten-Node Australian High-Frequency Network

    DTIC Science & Technology

    1994-07-11

    r. H %D -% P. Ilt %D 𔃺 in @ 1 %D% qv .~ m ’ S 4’ qwv nI"mm0" qva 0% 0% m% 0% 0% 0% 0% 4% 0% m’𔃾~ M 4 M enN9 e N N r4 V4 M P4 4 V4 4 N m 0%Cha %a 0% 0...3422). Reviewed and Approved: I 1 July 1994 Head, Submarine Electromagnetic Systems Department d REPORT DOCUMENTATION PAGE OMB Ao. 0700185 I I ow idd...SA me. muec de WW eew I igaid go Sevbad id WNmL SOW id S tlnm US kud.. uiliSŚy 1 1 aps 0" Wes ftf 12K0u -VAs.a mqgdumS asii Ut buADs Wila We~ham P

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weers, Jon; Anderson, Arlene

    All data submitted to the U.S. Department of Energy's Geothermal Data Repository (GDR) is eventually made public. The metadata for these data submissions is searchable in multiple data catalogs, including the GDR catalog and the data catalog on OpenEI.org. Because it is a node on the National Geothermal Data System (NGDS), all data on the GDR are also discoverable through both the regular Identifier (DOI), and as a byproduct of this assignment, these submissions are automatically registered in the Office of Science and Technical Information (OSTI) DataCite catalog. From there, these data are federated to additional sites both domestic andmore » international, including Science.gov and WorldWideScience.org. This paper will explore in detail the wide reach of data submitted to the GDR from and how this exposure can dramatically increase the utility of submitted data.« less

  6. Toward a More Robust Pruning Procedure for MLP Networks

    NASA Technical Reports Server (NTRS)

    Stepniewski, Slawomir W.; Jorgensen, Charles C.

    1998-01-01

    Choosing a proper neural network architecture is a problem of great practical importance. Smaller models mean not only simpler designs but also lower variance for parameter estimation and network prediction. The widespread utilization of neural networks in modeling highlights an issue in human factors. The procedure of building neural models should find an appropriate level of model complexity in a more or less automatic fashion to make it less prone to human subjectivity. In this paper we present a Singular Value Decomposition based node elimination technique and enhanced implementation of the Optimal Brain Surgeon algorithm. Combining both methods creates a powerful pruning engine that can be used for tuning feedforward connectionist models. The performance of the proposed method is demonstrated by adjusting the structure of a multi-input multi-output model used to calibrate a six-component wind tunnel strain gage.

  7. SeqPig: simple and scalable scripting for large sequencing data sets in Hadoop

    PubMed Central

    Schumacher, André; Pireddu, Luca; Niemenmaa, Matti; Kallio, Aleksi; Korpelainen, Eija; Zanetti, Gianluigi; Heljanko, Keijo

    2014-01-01

    Summary: Hadoop MapReduce-based approaches have become increasingly popular due to their scalability in processing large sequencing datasets. However, as these methods typically require in-depth expertise in Hadoop and Java, they are still out of reach of many bioinformaticians. To solve this problem, we have created SeqPig, a library and a collection of tools to manipulate, analyze and query sequencing datasets in a scalable and simple manner. SeqPigscripts use the Hadoop-based distributed scripting engine Apache Pig, which automatically parallelizes and distributes data processing tasks. We demonstrate SeqPig’s scalability over many computing nodes and illustrate its use with example scripts. Availability and Implementation: Available under the open source MIT license at http://sourceforge.net/projects/seqpig/ Contact: andre.schumacher@yahoo.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24149054

  8. Midbrain-Driven Emotion and Reward Processing in Alcoholism

    PubMed Central

    Müller-Oehring, E M; Jung, Y-C; Sullivan, E V; Hawkes, W C; Pfefferbaum, A; Schulte, T

    2013-01-01

    Alcohol dependence is associated with impaired control over emotionally motivated actions, possibly associated with abnormalities in the frontoparietal executive control network and midbrain nodes of the reward network associated with automatic attention. To identify differences in the neural response to alcohol-related word stimuli, 26 chronic alcoholics (ALC) and 26 healthy controls (CTL) performed an alcohol-emotion Stroop Match-to-Sample task during functional MR imaging. Stroop contrasts were modeled for color-word incongruency (eg, word RED printed in green) and for alcohol (eg, BEER), positive (eg, HAPPY) and negative (eg, MAD) emotional word content relative to congruent word conditions (eg, word RED printed in red). During color-Stroop processing, ALC and CTL showed similar left dorsolateral prefrontal activation, and CTL, but not ALC, deactivated posterior cingulate cortex/cuneus. An interaction revealed a dissociation between alcohol-word and color-word Stroop processing: ALC activated midbrain and parahippocampal regions more than CTL when processing alcohol-word relative to color-word conditions. In ALC, the midbrain region was also invoked by negative emotional Stroop words thereby showing significant overlap of this midbrain activation for alcohol-related and negative emotional processing. Enhanced midbrain activation to alcohol-related words suggests neuroadaptation of dopaminergic midbrain systems. We speculate that such tuning is normally associated with behavioral conditioning to optimize responses but here contributed to automatic bias to alcohol-related stimuli. PMID:23615665

  9. Computer aided stress analysis of long bones utilizing computer tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marom, S.A.

    1986-01-01

    A computer aided analysis method, utilizing computed tomography (CT) has been developed, which together with a finite element program determines the stress-displacement pattern in a long bone section. The CT data file provides the geometry, the density and the material properties for the generated finite element model. A three-dimensional finite element model of a tibial shaft is automatically generated from the CT file by a pre-processing procedure for a finite element program. The developed pre-processor includes an edge detection algorithm which determines the boundaries of the reconstructed cross-sectional images of the scanned bone. A mesh generation procedure than automatically generatesmore » a three-dimensional mesh of a user-selected refinement. The elastic properties needed for the stress analysis are individually determined for each model element using the radiographic density (CT number) of each pixel with the elemental borders. The elastic modulus is determined from the CT radiographic density by using an empirical relationship from the literature. The generated finite element model, together with applied loads, determined from existing gait analysis and initial displacements, comprise a formatted input for the SAP IV finite element program. The output of this program, stresses and displacements at the model elements and nodes, are sorted and displayed by a developed post-processor to provide maximum and minimum values at selected locations in the model.« less

  10. A Real-Time Construction Safety Monitoring System for Hazardous Gas Integrating Wireless Sensor Network and Building Information Modeling Technologies

    PubMed Central

    Cheung, Weng-Fong; Lin, Tzu-Hsuan; Lin, Yu-Cheng

    2018-01-01

    In recent years, many studies have focused on the application of advanced technology as a way to improve management of construction safety management. A Wireless Sensor Network (WSN), one of the key technologies in Internet of Things (IoT) development, enables objects and devices to sense and communicate environmental conditions; Building Information Modeling (BIM), a revolutionary technology in construction, integrates database and geometry into a digital model which provides a visualized way in all construction lifecycle management. This paper integrates BIM and WSN into a unique system which enables the construction site to visually monitor the safety status via a spatial, colored interface and remove any hazardous gas automatically. Many wireless sensor nodes were placed on an underground construction site and to collect hazardous gas level and environmental condition (temperature and humidity) data, and in any region where an abnormal status is detected, the BIM model will alert the region and an alarm and ventilator on site will start automatically for warning and removing the hazard. The proposed system can greatly enhance the efficiency in construction safety management and provide an important reference information in rescue tasks. Finally, a case study demonstrates the applicability of the proposed system and the practical benefits, limitations, conclusions, and suggestions are summarized for further applications. PMID:29393887

  11. Midbrain-driven emotion and reward processing in alcoholism.

    PubMed

    Müller-Oehring, E M; Jung, Y-C; Sullivan, E V; Hawkes, W C; Pfefferbaum, A; Schulte, T

    2013-09-01

    Alcohol dependence is associated with impaired control over emotionally motivated actions, possibly associated with abnormalities in the frontoparietal executive control network and midbrain nodes of the reward network associated with automatic attention. To identify differences in the neural response to alcohol-related word stimuli, 26 chronic alcoholics (ALC) and 26 healthy controls (CTL) performed an alcohol-emotion Stroop Match-to-Sample task during functional MR imaging. Stroop contrasts were modeled for color-word incongruency (eg, word RED printed in green) and for alcohol (eg, BEER), positive (eg, HAPPY) and negative (eg, MAD) emotional word content relative to congruent word conditions (eg, word RED printed in red). During color-Stroop processing, ALC and CTL showed similar left dorsolateral prefrontal activation, and CTL, but not ALC, deactivated posterior cingulate cortex/cuneus. An interaction revealed a dissociation between alcohol-word and color-word Stroop processing: ALC activated midbrain and parahippocampal regions more than CTL when processing alcohol-word relative to color-word conditions. In ALC, the midbrain region was also invoked by negative emotional Stroop words thereby showing significant overlap of this midbrain activation for alcohol-related and negative emotional processing. Enhanced midbrain activation to alcohol-related words suggests neuroadaptation of dopaminergic midbrain systems. We speculate that such tuning is normally associated with behavioral conditioning to optimize responses but here contributed to automatic bias to alcohol-related stimuli.

  12. Adaptive Bio-Inspired Wireless Network Routing for Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Alena, Richard I.; Lee, Charles

    2004-01-01

    Wireless mobile networks suffer connectivity loss when used in a terrain that has hills, and valleys when line of sight is interrupted or range is exceeded. To resolve this problem and achieve acceptable network performance, we have designed an adaptive, configurable, hybrid system to automatically route network packets along the best path between multiple geographically dispersed modules. This is very useful in planetary surface exploration, especially for ad-hoc mobile networks, where computational devices take an active part in creating a network infrastructure, and can actually be used to route data dynamically and even store data for later transmission between networks. Using inspiration from biological systems, this research proposes to use ant trail algorithms with multi-layered information maps (topographic maps, RF coverage maps) to determine the best route through ad-hoc network at real time. The determination of best route is a complex one, and requires research into the appropriate metrics, best method to identify the best path, optimizing traffic capacity, network performance, reliability, processing capabilities and cost. Real ants are capable of finding the shortest path from their nest to a food source without visual sensing through the use of pheromones. They are also able to adapt to changes in the environment using subtle clues. To use ant trail algorithms, we need to define the probability function. The artificial ant is, in this case, a software agent that moves from node to node on a network graph. The function to calculate the fitness (evaluate the better path) includes: length of the network edge, the coverage index, topology graph index, and pheromone trail left behind by other ant agents. Each agent modifies the environment in two different ways: 1) Local trail updating: As the ant moves between nodes it updates the amount of pheromone on the edge; and 2) Global trail updating: When all ants have completed a tour the ant that found the shortest route updates the edges in its path.

  13. The sedative and analgesic effects of detomidine-butorphanol and detomidine alone in donkeys.

    PubMed

    Joubert, K E; Briggs, P; Gerber, D; Gottschalk, R G

    1999-09-01

    Butorphanol and detomidine constitute an effective combination for sedation and analgesia in horses. This trial was undertaken to assess the effectiveness of this combination in donkeys. The detomidine and butorphanol were given intravenously one after the other. A dose of 10 microg/kg of detomidine and 25 microg/kg of butorphanol was used. Sedation is easily extended by additional doses of butorphanol. The average dose of detomidine was 11.24 microg/kg and that of butorphanol was 28.0 microg/kg. Four donkeys in the detomidine group required additional sedation and analgesia. Detomidine alone did not totally eliminate coronary band pain. Heart rates dropped significantly in the first minute after the injection of the combination. One donkey developed an atrioventricular block, while another developed a sino-atrial block. Four donkeys developed a Cheyne-Stokes respiratory pattern. The combination of detomidine and butorphanol is an effective combination for sedation and analgesia of donkeys for standing procedures.

  14. Synergistic nonuniform shortening of atrial refractory period induced by autonomic stimulation.

    PubMed

    Takei, M; Furukawa, Y; Narita, M; Ren, L M; Karasawa, Y; Murakami, M; Chiba, S

    1991-12-01

    We investigated the nonuniform effects of autonomic nerve stimulation of the effective refractory period (ERP) of the right atrium in the anesthetized dog. Stimulation of the discrete intracardiac sympathetic nerves to the sinoatrial (SA) nodal region uniformly shortened ERPs at three sites in the right atrium after administration of atropine. Right ansa subclavia (RS) stimulation similarly shortened ERPs in the absence of atropine. Stimulation of the discrete intracardiac parasympathetic nerves to the SA nodal region (SAP stimulation) shortened ERPs of the right atrium in a nonuniform manner. Simultaneous RS and SAP stimulation additively shortened ERPs at each site and decreased sinus rate much more than SAP stimulation alone. Shortening of ERP induced by SAP stimulation was greater than that induced by RS stimulation at similar absolute changes in heart rate. These results suggest that simultaneous activation of sympathetic and parasympathetic nerves nonuniformly shortens the ERP in the right atrium as the algebraic sum of the individual responses to each stimulation. However, parasympathetics exert the principal neural control over atrial ERP.

  15. Sequential visibility-graph motifs

    NASA Astrophysics Data System (ADS)

    Iacovacci, Jacopo; Lacasa, Lucas

    2016-04-01

    Visibility algorithms transform time series into graphs and encode dynamical information in their topology, paving the way for graph-theoretical time series analysis as well as building a bridge between nonlinear dynamics and network science. In this work we introduce and study the concept of sequential visibility-graph motifs, smaller substructures of n consecutive nodes that appear with characteristic frequencies. We develop a theory to compute in an exact way the motif profiles associated with general classes of deterministic and stochastic dynamics. We find that this simple property is indeed a highly informative and computationally efficient feature capable of distinguishing among different dynamics and robust against noise contamination. We finally confirm that it can be used in practice to perform unsupervised learning, by extracting motif profiles from experimental heart-rate series and being able, accordingly, to disentangle meditative from other relaxation states. Applications of this general theory include the automatic classification and description of physical, biological, and financial time series.

  16. A novel knowledge-based system for interpreting complex engineering drawings: theory, representation, and implementation.

    PubMed

    Lu, Tong; Tai, Chiew-Lan; Yang, Huafei; Cai, Shijie

    2009-08-01

    We present a novel knowledge-based system to automatically convert real-life engineering drawings to content-oriented high-level descriptions. The proposed method essentially turns the complex interpretation process into two parts: knowledge representation and knowledge-based interpretation. We propose a new hierarchical descriptor-based knowledge representation method to organize the various types of engineering objects and their complex high-level relations. The descriptors are defined using an Extended Backus Naur Form (EBNF), facilitating modification and maintenance. When interpreting a set of related engineering drawings, the knowledge-based interpretation system first constructs an EBNF-tree from the knowledge representation file, then searches for potential engineering objects guided by a depth-first order of the nodes in the EBNF-tree. Experimental results and comparisons with other interpretation systems demonstrate that our knowledge-based system is accurate and robust for high-level interpretation of complex real-life engineering projects.

  17. Automatically pairing measured findings across narrative abdomen CT reports.

    PubMed

    Sevenster, Merlijn; Bozeman, Jeffrey; Cowhy, Andrea; Trost, William

    2013-01-01

    Radiological measurements are one of the key variables in widely adopted guidelines (WHO, RECIST) that standardize and objectivize response assessment in oncology care. Measurements are typically described in free-text, narrative radiology reports. We present a natural language processing pipeline that extracts measurements from radiology reports and pairs them with extracted measurements from prior reports of the same clinical finding, e.g., lymph node or mass. A ground truth was created by manually pairing measurements in the abdomen CT reports of 50 patients. A Random Forest classifier trained on 15 features achieved superior results in an end-to-end evaluation of the pipeline on the extraction and pairing task: precision 0.910, recall 0.878, F-measure 0.894, AUC 0.988. Representing the narrative content in terms of UMLS concepts did not improve results. Applications of the proposed technology include data mining, advanced search and workflow support for healthcare professionals managing radiological measurements.

  18. Graph Structured Program Evolution: Evolution of Loop Structures

    NASA Astrophysics Data System (ADS)

    Shirakawa, Shinichi; Nagao, Tomoharu

    Recently, numerous automatic programming techniques have been developed and applied in various fields. A typical example is genetic programming (GP), and various extensions and representations of GP have been proposed thus far. Complex programs and hand-written programs, however, may contain several loops and handle multiple data types. In this chapter, we propose a new method called Graph Structured Program Evolution (GRAPE). The representation of GRAPE is a graph structure; therefore, it can represent branches and loops using this structure. Each programis constructed as an arbitrary directed graph of nodes and a data set. The GRAPE program handles multiple data types using the data set for each type, and the genotype of GRAPE takes the form of a linear string of integers. We apply GRAPE to three test problems, factorial, exponentiation, and list sorting, and demonstrate that the optimum solution in each problem is obtained by the GRAPE system.

  19. Monitoring of the infrastructure and services used to handle and automatically produce Alignment and Calibration conditions at CMS

    NASA Astrophysics Data System (ADS)

    Sipos, Roland; Govi, Giacomo; Franzoni, Giovanni; Di Guida, Salvatore; Pfeiffer, Andreas

    2017-10-01

    The CMS experiment at CERN LHC has a dedicated infrastructure to handle the alignment and calibration data. This infrastructure is composed of several services, which take on various data management tasks required for the consumption of the non-event data (also called as condition data) in the experiment activities. The criticality of these tasks imposes tights requirements for the availability and the reliability of the services executing them. In this scope, a comprehensive monitoring and alarm generating system has been developed. The system has been implemented based on the Nagios open source industry standard for monitoring and alerting services, and monitors the database back-end, the hosting nodes and key heart-beat functionalities for all the services involved. This paper describes the design, implementation and operational experience with the monitoring system developed and deployed at CMS in 2016.

  20. Wireless augmented reality communication system

    NASA Technical Reports Server (NTRS)

    Devereaux, Ann (Inventor); Agan, Martin (Inventor); Jedrey, Thomas (Inventor)

    2006-01-01

    The system of the present invention is a highly integrated radio communication system with a multimedia co-processor which allows true two-way multimedia (video, audio, data) access as well as real-time biomedical monitoring in a pager-sized portable access unit. The system is integrated in a network structure including one or more general purpose nodes for providing a wireless-to-wired interface. The network architecture allows video, audio and data (including biomedical data) streams to be connected directly to external users and devices. The portable access units may also be mated to various non-personal devices such as cameras or environmental sensors for providing a method for setting up wireless sensor nets from which reported data may be accessed through the portable access unit. The reported data may alternatively be automatically logged at a remote computer for access and viewing through a portable access unit, including the user's own.

  1. An Approach to Automated Fusion System Design and Adaptation

    PubMed Central

    Fritze, Alexander; Mönks, Uwe; Holst, Christoph-Alexander; Lohweg, Volker

    2017-01-01

    Industrial applications are in transition towards modular and flexible architectures that are capable of self-configuration and -optimisation. This is due to the demand of mass customisation and the increasing complexity of industrial systems. The conversion to modular systems is related to challenges in all disciplines. Consequently, diverse tasks such as information processing, extensive networking, or system monitoring using sensor and information fusion systems need to be reconsidered. The focus of this contribution is on distributed sensor and information fusion systems for system monitoring, which must reflect the increasing flexibility of fusion systems. This contribution thus proposes an approach, which relies on a network of self-descriptive intelligent sensor nodes, for the automatic design and update of sensor and information fusion systems. This article encompasses the fusion system configuration and adaptation as well as communication aspects. Manual interaction with the flexibly changing system is reduced to a minimum. PMID:28300762

  2. Computer-aided system design

    NASA Technical Reports Server (NTRS)

    Walker, Carrie K.

    1991-01-01

    A technique has been developed for combining features of a systems architecture design and assessment tool and a software development tool. This technique reduces simulation development time and expands simulation detail. The Architecture Design and Assessment System (ADAS), developed at the Research Triangle Institute, is a set of computer-assisted engineering tools for the design and analysis of computer systems. The ADAS system is based on directed graph concepts and supports the synthesis and analysis of software algorithms mapped to candidate hardware implementations. Greater simulation detail is provided by the ADAS functional simulator. With the functional simulator, programs written in either Ada or C can be used to provide a detailed description of graph nodes. A Computer-Aided Software Engineering tool developed at the Charles Stark Draper Laboratory (CSDL CASE) automatically generates Ada or C code from engineering block diagram specifications designed with an interactive graphical interface. A technique to use the tools together has been developed, which further automates the design process.

  3. An Approach to Automated Fusion System Design and Adaptation.

    PubMed

    Fritze, Alexander; Mönks, Uwe; Holst, Christoph-Alexander; Lohweg, Volker

    2017-03-16

    Industrial applications are in transition towards modular and flexible architectures that are capable of self-configuration and -optimisation. This is due to the demand of mass customisation and the increasing complexity of industrial systems. The conversion to modular systems is related to challenges in all disciplines. Consequently, diverse tasks such as information processing, extensive networking, or system monitoring using sensor and information fusion systems need to be reconsidered. The focus of this contribution is on distributed sensor and information fusion systems for system monitoring, which must reflect the increasing flexibility of fusion systems. This contribution thus proposes an approach, which relies on a network of self-descriptive intelligent sensor nodes, for the automatic design and update of sensor and information fusion systems. This article encompasses the fusion system configuration and adaptation as well as communication aspects. Manual interaction with the flexibly changing system is reduced to a minimum.

  4. Conducting real-time multiplayer experiments on the web.

    PubMed

    Hawkins, Robert X D

    2015-12-01

    Group behavior experiments require potentially large numbers of participants to interact in real time with perfect information about one another. In this paper, we address the methodological challenge of developing and conducting such experiments on the web, thereby broadening access to online labor markets as well as allowing for participation through mobile devices. In particular, we combine a set of recent web development technologies, including Node.js with the Socket.io module, HTML5 canvas, and jQuery, to provide a secure platform for pedagogical demonstrations and scalable, unsupervised experiment administration. Template code is provided for an example real-time behavioral game theory experiment which automatically pairs participants into dyads and places them into a virtual world. In total, this treatment is intended to allow those with a background in non-web-based programming to modify the template, which handles the technical server-client networking details, for their own experiments.

  5. Wireless Augmented Reality Communication System

    NASA Technical Reports Server (NTRS)

    Jedrey, Thomas (Inventor); Agan, Martin (Inventor); Devereaux, Ann (Inventor)

    2014-01-01

    The system of the present invention is a highly integrated radio communication system with a multimedia co-processor which allows true two-way multimedia (video, audio, data) access as well as real-time biomedical monitoring in a pager-sized portable access unit. The system is integrated in a network structure including one or more general purpose nodes for providing a wireless-to-wired interface. The network architecture allows video, audio and data (including biomedical data) streams to be connected directly to external users and devices. The portable access units may also be mated to various non-personal devices such as cameras or environmental sensors for providing a method for setting up wireless sensor nets from which reported data may be accessed through the portable access unit. The reported data may alternatively be automatically logged at a remote computer for access and viewing through a portable access unit, including the user's own.

  6. Wireless Augmented Reality Communication System

    NASA Technical Reports Server (NTRS)

    Agan, Martin (Inventor); Devereaux, Ann (Inventor); Jedrey, Thomas (Inventor)

    2016-01-01

    The system of the present invention is a highly integrated radio communication system with a multimedia co-processor which allows true two-way multimedia (video, audio, data) access as well as real-time biomedical monitoring in a pager-sized portable access unit. The system is integrated in a network structure including one or more general purpose nodes for providing a wireless-to-wired interface. The network architecture allows video, audio and data (including biomedical data) streams to be connected directly to external users and devices. The portable access units may also be mated to various non-personal devices such as cameras or environmental sensors for providing a method for setting up wireless sensor nets from which reported data may be accessed through the portable access unit. The reported data may alternatively be automatically logged at a remote computer for access and viewing through a portable access unit, including the user's own.

  7. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities

    DOE PAGES

    Kang, Dongwan D.; Froula, Jeff; Egan, Rob; ...

    2015-01-01

    Grouping large genomic fragments assembled from shotgun metagenomic sequences to deconvolute complex microbial communities, or metagenome binning, enables the study of individual organisms and their interactions. Because of the complex nature of these communities, existing metagenome binning methods often miss a large number of microbial species. In addition, most of the tools are not scalable to large datasets. Here we introduce automated software called MetaBAT that integrates empirical probabilistic distances of genome abundance and tetranucleotide frequency for accurate metagenome binning. MetaBAT outperforms alternative methods in accuracy and computational efficiency on both synthetic and real metagenome datasets. Lastly, it automatically formsmore » hundreds of high quality genome bins on a very large assembly consisting millions of contigs in a matter of hours on a single node. MetaBAT is open source software and available at https://bitbucket.org/berkeleylab/metabat.« less

  8. Finite element solution for energy conservation using a highly stable explicit integration algorithm

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Manhardt, P. D.

    1972-01-01

    Theoretical derivation of a finite element solution algorithm for the transient energy conservation equation in multidimensional, stationary multi-media continua with irregular solution domain closure is considered. The complete finite element matrix forms for arbitrarily irregular discretizations are established, using natural coordinate function representations. The algorithm is embodied into a user-oriented computer program (COMOC) which obtains transient temperature distributions at the node points of the finite element discretization using a highly stable explicit integration procedure with automatic error control features. The finite element algorithm is shown to posses convergence with discretization for a transient sample problem. The condensed form for the specific heat element matrix is shown to be preferable to the consistent form. Computed results for diverse problems illustrate the versatility of COMOC, and easily prepared output subroutines are shown to allow quick engineering assessment of solution behavior.

  9. Penalty-Based Finite Element Interface Technology for Analysis of Homogeneous and Composite Structures

    NASA Technical Reports Server (NTRS)

    Averill, Ronald C.

    2002-01-01

    An effective and robust interface element technology able to connect independently modeled finite element subdomains has been developed. This method is based on the use of penalty constraints and allows coupling of finite element models whose nodes do not coincide along their common interface. Additionally, the present formulation leads to a computational approach that is very efficient and completely compatible with existing commercial software. A significant effort has been directed toward identifying those model characteristics (element geometric properties, material properties, and loads) that most strongly affect the required penalty parameter, and subsequently to developing simple 'formulae' for automatically calculating the proper penalty parameter for each interface constraint. This task is especially critical in composite materials and structures, where adjacent sub-regions may be composed of significantly different materials or laminates. This approach has been validated by investigating a variety of two-dimensional problems, including composite laminates.

  10. Regularization with numerical extrapolation for finite and UV-divergent multi-loop integrals

    NASA Astrophysics Data System (ADS)

    de Doncker, E.; Yuasa, F.; Kato, K.; Ishikawa, T.; Kapenga, J.; Olagbemi, O.

    2018-03-01

    We give numerical integration results for Feynman loop diagrams such as those covered by Laporta (2000) and by Baikov and Chetyrkin (2010), and which may give rise to loop integrals with UV singularities. We explore automatic adaptive integration using multivariate techniques from the PARINT package for multivariate integration, as well as iterated integration with programs from the QUADPACK package, and a trapezoidal method based on a double exponential transformation. PARINT is layered over MPI (Message Passing Interface), and incorporates advanced parallel/distributed techniques including load balancing among processes that may be distributed over a cluster or a network/grid of nodes. Results are included for 2-loop vertex and box diagrams and for sets of 2-, 3- and 4-loop self-energy diagrams with or without UV terms. Numerical regularization of integrals with singular terms is achieved by linear and non-linear extrapolation methods.

  11. Photonics: From target recognition to lesion detection

    NASA Technical Reports Server (NTRS)

    Henry, E. Michael

    1994-01-01

    Since 1989, Martin Marietta has invested in the development of an innovative concept for robust real-time pattern recognition for any two-dimensioanal sensor. This concept has been tested in simulation, and in laboratory and field hardware, for a number of DOD and commercial uses from automatic target recognition to manufacturing inspection. We have now joined Rose Health Care Systems in developing its use for medical diagnostics. The concept is based on determining regions of interest by using optical Fourier bandpassing as a scene segmentation technique, enhancing those regions using wavelet filters, passing the enhanced regions to a neural network for analysis and initial pattern identification, and following this initial identification with confirmation by optical correlation. The optical scene segmentation and pattern confirmation are performed by the same optical module. The neural network is a recursive error minimization network with a small number of connections and nodes that rapidly converges to a global minimum.

  12. SDN architecture for optical packet and circuit integrated networks

    NASA Astrophysics Data System (ADS)

    Furukawa, Hideaki; Miyazawa, Takaya

    2016-02-01

    We have been developing an optical packet and circuit integrated (OPCI) network, which realizes dynamic optical path, high-density packet multiplexing, and flexible wavelength resource allocation. In the OPCI networks, a best-effort service and a QoS-guaranteed service are provided by employing optical packet switching (OPS) and optical circuit switching (OCS) respectively, and users can select these services. Different wavelength resources are assigned for OPS and OCS links, and the amount of their wavelength resources are dynamically changed in accordance with the service usage conditions. To apply OPCI networks into wide-area (core/metro) networks, we have developed an OPCI node with a distributed control mechanism. Moreover, our OPCI node works with a centralized control mechanism as well as a distributed one. It is therefore possible to realize SDN-based OPCI networks, where resource requests and a centralized configuration are carried out. In this paper, we show our SDN architecture for an OPS system that configures mapping tables between IP addresses and optical packet addresses and switching tables according to the requests from multiple users via a web interface. While OpenFlow-based centralized control protocol is coming into widespread use especially for single-administrative, small-area (LAN/data-center) networks. Here, we also show an interworking mechanism between OpenFlow-based networks (OFNs) and the OPCI network for constructing a wide-area network, and a control method of wavelength resource selection to automatically transfer diversified flows from OFNs to the OPCI network.

  13. The ground truth about metadata and community detection in networks.

    PubMed

    Peel, Leto; Larremore, Daniel B; Clauset, Aaron

    2017-05-01

    Across many scientific domains, there is a common need to automatically extract a simplified view or coarse-graining of how a complex system's components interact. This general task is called community detection in networks and is analogous to searching for clusters in independent vector data. It is common to evaluate the performance of community detection algorithms by their ability to find so-called ground truth communities. This works well in synthetic networks with planted communities because these networks' links are formed explicitly based on those known communities. However, there are no planted communities in real-world networks. Instead, it is standard practice to treat some observed discrete-valued node attributes, or metadata, as ground truth. We show that metadata are not the same as ground truth and that treating them as such induces severe theoretical and practical problems. We prove that no algorithm can uniquely solve community detection, and we prove a general No Free Lunch theorem for community detection, which implies that there can be no algorithm that is optimal for all possible community detection tasks. However, community detection remains a powerful tool and node metadata still have value, so a careful exploration of their relationship with network structure can yield insights of genuine worth. We illustrate this point by introducing two statistical techniques that can quantify the relationship between metadata and community structure for a broad class of models. We demonstrate these techniques using both synthetic and real-world networks, and for multiple types of metadata and community structures.

  14. Directional MAC approach for wireless body area networks.

    PubMed

    Hussain, Md Asdaque; Alam, Md Nasre; Kwak, Kyung Sup

    2011-01-01

    Wireless Body Area Networks (WBANs) designed for medical, sports, and entertainment applications, have drawn the attention of academia and industry alike. A WBAN is a special purpose network, designed to operate autonomously to connect various medical sensors and appliances, located inside and/or outside of a human body. This network enables physicians to remotely monitor vital signs of patients and provide real time feedback for medical diagnosis and consultations. The WBAN system can offer two significant advantages: patient mobility due to their use of portable monitoring devices and a location independent monitoring facility. With its appealing dimensions, it brings about a new set of challenges, which we do not normally consider in such small sensor networks. It requires a scalable network in terms of heterogeneous data traffic, low power consumption of sensor nodes, integration in and around the body networking and coexistence. This work presents a medium access control protocol for WBAN which tries to overcome the aforementioned challenges. We consider the use of multiple beam adaptive arrays (MBAA) at BAN Coordinator (BAN_C) node. When used as a BAN_C, an MBAA can successfully receive two or more overlapping packets at the same time. Each beam captures a different packet by automatically pointing its pattern toward one packet while annulling other contending packets. This paper describes how an MBAA can be integrated into a single hope star topology as a BAN_C. Simulation results show the performance of our proposed protocol.

  15. The remote supervisory and controlling experiment system of traditional Chinese medicine production based on Fieldbus

    NASA Astrophysics Data System (ADS)

    Zhan, Jinliang; Lu, Pei

    2006-11-01

    Since the quality of traditional Chinese medicine products are affected by raw material, machining and many other factors, it is difficult for traditional Chinese medicine production process especially the extracting process to ensure the steady and homogeneous quality. At the same time, there exist some quality control blind spots due to lacking on-line quality detection means. But if infrared spectrum analysis technology was used in traditional Chinese medicine production process on the basis of off-line analysis to real-time detect the quality of semi-manufactured goods and to be assisted by advanced automatic control technique, the steady and homogeneous quality can be obtained. It can be seen that the on-line detection of extracting process plays an important role in the development of Chinese patent medicines industry. In this paper, the design and implement of a traditional Chinese medicine extracting process monitoring experiment system which is based on PROFIBUS-DP field bus, OPC, and Internet technology is introduced. The system integrates intelligence node which gathering data, superior sub-system which achieving figure configuration and remote supervisory, during the process of traditional Chinese medicine production, monitors the temperature parameter, pressure parameter, quality parameter etc. And it can be controlled by the remote nodes in the VPN (Visual Private Network). Experiment and application do have proved that the system can reach the anticipation effect fully, and with the merits of operational stability, real-time, reliable, convenient and simple manipulation and so on.

  16. Defect window analysis by using SEM-contour based shape quantifying method for sub-20nm node production

    NASA Astrophysics Data System (ADS)

    Hibino, Daisuke; Hsu, Mingyi; Shindo, Hiroyuki; Izawa, Masayuki; Enomoto, Yuji; Lin, J. F.; Hu, J. R.

    2013-04-01

    The impact on yield loss due to systematic defect which remains after Optical Proximity Correction (OPC) modeling has increased, and achieving an acceptable yield has become more difficult in the leading technology beyond 20 nm node production. Furthermore Process-Window has become narrow because of the complexity of IC design and less process margin. In the past, the systematic defects have been inspected by human-eyes. However the judgment by human-eyes is sometime unstable and not accurate. Moreover an enormous amount of time and labor will have to be expended on the one-by-one judgment for several thousands of hot-spot defects. In order to overcome these difficulties and improve the yield and manufacturability, the automated system, which can quantify the shape difference with high accuracy and speed, is needed. Inspection points could be increased for getting higher yield, if the automated system achieves our goal. Defect Window Analysis (DWA) system by using high-precision-contour extraction from SEM image on real silicon and quantifying method which can calculate the difference between defect pattern and non-defect pattern automatically, which was developed by Hitachi High-Technologies, has been applied to the defect judgment instead of the judgment by human-eyes. The DWA result which describes process behavior might be feedback to design or OPC or mask. This new methodology and evaluation results will be presented in detail in this paper.

  17. IPv6 testing and deployment at Prague Tier 2

    NASA Astrophysics Data System (ADS)

    Kouba, Tomáŝ; Chudoba, Jiří; Eliáŝ, Marek; Fiala, Lukáŝ

    2012-12-01

    Computing Center of the Institute of Physics in Prague provides computing and storage resources for various HEP experiments (D0, Atlas, Alice, Auger) and currently operates more than 300 worker nodes with more than 2500 cores and provides more than 2PB of disk space. Our site is limited to one C-sized block of IPv4 addresses, and hence we had to move most of our worker nodes behind the NAT. However this solution demands more difficult routing setup. We see the IPv6 deployment as a solution that provides less routing, more switching and therefore promises higher network throughput. The administrators of the Computing Center strive to configure and install all provided services automatically. For installation tasks we use PXE and kickstart, for network configuration we use DHCP and for software configuration we use CFEngine. Many hardware boxes are configured via specific web pages or telnet/ssh protocol provided by the box itself. All our services are monitored with several tools e.g. Nagios, Munin, Ganglia. We rely heavily on the SNMP protocol for hardware health monitoring. All these installation, configuration and monitoring tools must be tested before we can switch completely to IPv6 network stack. In this contribution we present the tests we have made, limitations we have faced and configuration decisions that we have made during IPv6 testing. We also present testbed built on virtual machines that was used for all the testing and evaluation.

  18. Indoor 3D Route Modeling Based On Estate Spatial Data

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wen, Y.; Jiang, J.; Huang, W.

    2014-04-01

    Indoor three-dimensional route model is essential for space intelligence navigation and emergency evacuation. This paper is motivated by the need of constructing indoor route model automatically and as far as possible. By comparing existing building data sources, this paper firstly explained the reason why the estate spatial management data is chosen as the data source. Then, an applicable method of construction three-dimensional route model in a building is introduced by establishing the mapping relationship between geographic entities and their topological expression. This data model is a weighted graph consist of "node" and "path" to express the spatial relationship and topological structure of a building components. The whole process of modelling internal space of a building is addressed by two key steps: (1) each single floor route model is constructed, including path extraction of corridor using Delaunay triangulation algorithm with constrained edge, fusion of room nodes into the path; (2) the single floor route model is connected with stairs and elevators and the multi-floor route model is eventually generated. In order to validate the method in this paper, a shopping mall called "Longjiang New City Plaza" in Nanjing is chosen as a case of study. And the whole building space is constructed according to the modelling method above. By integrating of existing path finding algorithm, the usability of this modelling method is verified, which shows the indoor three-dimensional route modelling method based on estate spatial data in this paper can support indoor route planning and evacuation route design very well.

  19. Intermediate Templates Guided Groupwise Registration of Diffusion Tensor Images

    PubMed Central

    Jia, Hongjun; Yap, Pew-Thian; Wu, Guorong; Wang, Qian; Shen, Dinggang

    2010-01-01

    Registration of a population of diffusion tensor images (DTIs) is one of the key steps in medical image analysis, and it plays an important role in the statistical analysis of white matter related neurological diseases. However, pairwise registration with respect to a pre-selected template may not give precise results if the selected template deviates significantly from the distribution of images. To cater for more accurate and consistent registration, a novel framework is proposed for groupwise registration with the guidance from one or more intermediate templates determined from the population of images. Specifically, we first use a Euclidean distance, defined as a combinative measure based on the FA map and ADC map, for gauging the similarity of each pair of DTIs. A fully connected graph is then built with each node denoting an image and each edge denoting the distance between a pair of images. The root template image is determined automatically as the image with the overall shortest path length to all other images on the minimum spanning tree (MST) of the graph. Finally, a sequence of registration steps is applied to progressively warping each image towards the root template image with the help of intermediate templates distributed along its path to the root node on the MST. Extensive experimental results using diffusion tensor images of real subjects indicate that registration accuracy and fiber tract alignment are significantly improved, compared with the direct registration from each image to the root template image. PMID:20851197

  20. An Embedded Wireless Sensor Network with Wireless Power Transmission Capability for the Structural Health Monitoring of Reinforced Concrete Structures

    PubMed Central

    Gallucci, Luca; Menna, Costantino; Angrisani, Leopoldo; Asprone, Domenico

    2017-01-01

    Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC) structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN) that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM) approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions. PMID:29112128

Top