Science.gov

Sample records for sinorhizobium meliloti srna

  1. Denitrification in Sinorhizobium meliloti.

    PubMed

    Torres, María J; Rubia, María I; Bedmar, Eulogio J; Delgado, María J

    2011-12-01

    Denitrification is the complete reduction of nitrate or nitrite to N2, via the intermediates nitric oxide (NO) and nitrous oxide (N2O), and is coupled to energy conservation and growth under O2-limiting conditions. In Bradyrhizobium japonicum, this process occurs through the action of the napEDABC, nirK, norCBQD and nosRZDFYLX gene products. DNA sequences showing homology with nap, nirK, nor and nos genes have been found in the genome of the symbiotic plasmid pSymA of Sinorhizobium meliloti strain 1021. Whole-genome transcriptomic analyses have demonstrated that S. meliloti denitrification genes are induced under micro-oxic conditions. Furthermore, S. meliloti has also been shown to possess denitrifying activities in both free-living and symbiotic forms. Despite possessing and expressing the complete set of denitrification genes, S. meliloti is considered a partial denitrifier since it does not grow under anaerobic conditions with nitrate or nitrite as terminal electron acceptors. In the present paper, we show that, under micro-oxic conditions, S. meliloti is able to grow by using nitrate or nitrite as respiratory substrates, which indicates that, in contrast with anaerobic denitrifiers, O2 is necessary for denitrification by S. meliloti. Current knowledge of the regulation of S. meliloti denitrification genes is also included.

  2. 40 CFR 721.9518 - Sinorhizobium meliloti strain RMBPC-2.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sinorhizobium meliloti strain RMBPC-2... Substances § 721.9518 Sinorhizobium meliloti strain RMBPC-2. (a) Microorganism and significant new uses subject to reporting. (1) The microorganism identified as Sinorhizobium meliloti strain RMBPC-2 (PMN...

  3. Sulfite oxidation in Sinorhizobium meliloti.

    PubMed

    Wilson, Jeremy J; Kappler, Ulrike

    2009-12-01

    Sulfite-oxidizing enzymes (SOEs) are crucial for the metabolism of many cells and are particularly important in bacteria oxidizing inorganic or organic sulfur compounds. However, little is known about SOE diversity and metabolic roles. Sinorhizobium meliloti contains four candidate genes encoding SOEs of three different types, and in this work we have investigated the role of SOEs in S. meliloti and their possible link to the metabolism of the organosulfonate taurine. Low level SOE activity (approximately 1.4 U/mg) was present under all conditions tested while growth on taurine and thiosulfate induced high activities (5.5-8.8 U/mg) although S. meliloti cannot metabolize thiosulfate. Protein purification showed that although expression of two candidate genes matched SOE activity patterns, only a single group 2 SOE, SorT (SMc04049), is responsible for this activity. SorT is a heme-free, periplasmic homodimer (78 kDa) that has low homology to other bacterial SOEs. SorT has an apparent k(cat) of 343 s(-1) and high affinities for both sulfite (K(Mapp_pH8) 15.5 microM) and ferricyanide (K(Mapp_pH8) 3.44 microM), but not cytochrome c, suggesting a need for a high redox potential natural electron acceptor. K(Mapp_sulfite) was nearly invariant with pH which is in contrast to all other well characterized SOEs. SorT is part of an operon (SMc04049-04047) also containing a gene for a cytochrome c and an azurin, and these might be the natural electron acceptors for the enzyme. Phylogenetic analysis of SorT-related SOEs and enzymes of taurine degradation indicate that there is no link between the two processes.

  4. 40 CFR 721.9518 - Sinorhizobium meliloti strain RMBPC-2.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Substances § 721.9518 Sinorhizobium meliloti strain RMBPC-2. (a) Microorganism and significant new uses subject to reporting. (1) The microorganism identified as Sinorhizobium meliloti strain RMBPC-2 (PMN P-92... premanufacture notice or significant new use notice for this microorganism, the significant new use is any...

  5. 40 CFR 721.9518 - Sinorhizobium meliloti strain RMBPC-2.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Substances § 721.9518 Sinorhizobium meliloti strain RMBPC-2. (a) Microorganism and significant new uses subject to reporting. (1) The microorganism identified as Sinorhizobium meliloti strain RMBPC-2 (PMN P-92... premanufacture notice or significant new use notice for this microorganism, the significant new use is any...

  6. 40 CFR 721.9518 - Sinorhizobium meliloti strain RMBPC-2.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Substances § 721.9518 Sinorhizobium meliloti strain RMBPC-2. (a) Microorganism and significant new uses subject to reporting. (1) The microorganism identified as Sinorhizobium meliloti strain RMBPC-2 (PMN P-92... premanufacture notice or significant new use notice for this microorganism, the significant new use is any...

  7. 40 CFR 721.9518 - Sinorhizobium meliloti strain RMBPC-2.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Substances § 721.9518 Sinorhizobium meliloti strain RMBPC-2. (a) Microorganism and significant new uses subject to reporting. (1) The microorganism identified as Sinorhizobium meliloti strain RMBPC-2 (PMN P-92... premanufacture notice or significant new use notice for this microorganism, the significant new use is any...

  8. Diversity of field isolates of sinorhizobium meliloti nodulating alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most alfalfa seed is treated with a rhizobial inoculant consisting of one or more strains of Sinorhizobium meliloti before planting to enhance nodulation of seedlings. However, little is known about the persistence of inoculated strains later in the season. There is also a paucity of information on ...

  9. Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction.

    PubMed

    Santos, R; Hérouart, D; Sigaud, S; Touati, D; Puppo, A

    2001-01-01

    Reactive oxygen species are produced as an early event in plant defense response against avirulent pathogens. We show here that alfalfa responds to infection with Sinorhizobium meliloti by production of superoxide and hydrogen peroxide. This similarity in the early response to infection by pathogenic and symbiotic bacteria addresses the question of which mechanism rhizobia use to counteract the plant defense response.

  10. Transcriptome-based identification of the Sinorhizobium meliloti NodD1 regulon.

    PubMed

    Capela, Delphine; Carrere, Sébastien; Batut, Jacques

    2005-08-01

    The NodD1 regulon of Sinorhizobium meliloti was determined through the analysis of the S. meliloti transcriptome in response to the plant flavone luteolin and the overexpression of nodD1. Nine new genes regulated by both NodD1 and luteolin were identified, demonstrating that NodD1 controls few functions behind nodulation in S. meliloti.

  11. Functional analysis of the two cyclophilin isoforms of Sinorhizobium meliloti.

    PubMed

    Thomloudi, Eirini-Evangelia; Skagia, Aggeliki; Venieraki, Anastasia; Katinakis, Panagiotis; Dimou, Maria

    2017-02-01

    The nitrogen fixing Sinorhizobium meliloti possesses two genes, ppiA and ppiB, encoding two cyclophilin isoforms which belong to the superfamily of peptidyl prolyl cis/trans isomerases (PPIase, EC: 5.2.1.8). Here, we functionally characterize the two proteins and we demonstrate that both recombinant cyclophilins are able to isomerise the Suc-AAPF-pNA synthetic peptide but neither of them displays chaperone function in the citrate synthase thermal aggregation assay. Furthermore, we observe that the expression of both enzymes increases the viability of E. coli BL21 in the presence of abiotic stress conditions such as increased heat and salt concentration. Our results support and strengthen previous high-throughput studies implicating S. meliloti cyclophilins in various stress conditions.

  12. Biogeography of Sinorhizobium meliloti nodulating alfalfa in different Croatian regions.

    PubMed

    Donnarumma, Francesca; Bazzicalupo, Marco; Blažinkov, Mihaela; Mengoni, Alessio; Sikora, Sanjia; Babić, Katarina Huić

    2014-09-01

    Sinorhizobium meliloti is a nitrogen-fixing rhizobium symbiont of legumes, widespread in many temperate environments the high genetic diversity of which enables it to thrive as a symbiont of host legumes and free-living in soil. Soil type, together with geographic differences and host plant genotype, seem to be prominent factors in shaping rhizobial genetic diversity. While a large body of research supports the idea that the genetic structure of free-living microbial taxa exhibits a clear biogeographic pattern, few investigations have been performed on the biogeographic pattern of S. meliloti genotypes in a restricted geographic range. In the present study, a collection of 128 S. meliloti isolates from three different regions in Croatia was investigated to analyze the relationship between genetic diversity, geographic distribution, soil features and isolate phenotypes by using amplified fragment length polymorphism (AFLP) as a genome-wide scanning method. Results obtained led to the conclusion that the genotypes of isolates cluster according to the region of origin and that the differentiation of S. meliloti populations can be mainly ascribed to geographic isolation following an isolation-by-distance model, with a strong distance-decay relationship of genetic similarity with distance, in which local soil conditions are not the major component influencing the isolate phenotypes or their genomic differentiation.

  13. The Sinorhizobium meliloti stringent response affects multiple aspects of symbiosis.

    PubMed

    Wells, Derek H; Long, Sharon R

    2002-03-01

    Sinorhizobium meliloti and host legumes enter into a nitrogen-fixing, symbiotic relationship triggered by an exchange of signals between bacteria and plant. S. meliloti produces Nod factor, which elicits the formation of nodules on plant roots, and succinoglycan, an exopolysaccharide that allows for bacterial invasion and colonization of the host. The biosynthesis of these molecules is well defined, but the specific regulation of these compounds is not completely understood. Bacteria control complex regulatory networks by the production of ppGpp, the effector molecule of the stringent response, which induces physiological change in response to adverse growth conditions and can also control bacterial development and virulence. Through detailed analysis of an S. meliloti mutant incapable of producing ppGpp, we show that the stringent response is required for nodule formation and regulates the production of succinoglycan. Although it remains unknown whether these phenotypes are connected, we have isolated suppressor strains that restore both defects and potentially identify key downstream regulatory genes. These results indicate that the S. meliloti stringent response has roles in both succinoglycan production and nodule formation and, more importantly, that control of bacterial physiology in response to the plant and surrounding environment is critical to the establishment of a successful symbiosis.

  14. Natural Genomic Design in Sinorhizobium meliloti: Novel Genomic Architectures

    PubMed Central

    Guo, Xianwu; Flores, Margarita; Mavingui, Patrick; Fuentes, Sara Isabel; Hernández, Georgina; Dávila, Guillermo; Palacios, Rafael

    2003-01-01

    The complete nucleotide sequence of the genome of Sinorhizobium meliloti, the symbiont of alfalfa, was reported in 2001 by an international consortium of laboratories. The genome comprises a chromosome of 3.65 megabases (Mb) and two megaplasmids, pSymA and pSymB, of 1.35 Mb and 1.68 Mb, respectively. Based on the nucleotide sequence of the whole genome, we designed a pathway of consecutive rearrangements leading to novel genomic architectures. In a first step we obtained derivative strains containing two replicons; in a second step we obtained a strain containing the genetic information in one single replicon of 6.68 MB. From this last architecture we isolated revertants containing two replicons, and from these we could return to the original architecture showing the three replicons. We found that the relative frequency of excision of cointegrated replicons is higher at the site used for the cointegration than at other sites. This might conciliate two apparently opposed facts: the highly dynamic state of genomic architecture in S. meliloti and the common observation that different isolates and derived cellular clones of S. meliloti usually present the architecture of one chromosome and two distinct megaplasmids. Different aspects that must be considered to obtain full advantage of the strategy of natural genomic design are discussed. PMID:12902376

  15. Regulation of polyhydroxybutyrate accumulation in Sinorhizobium meliloti by the trans-encoded small RNA MmgR.

    PubMed

    Lagares, Antonio; Ceizel Borella, Germán; Linne, Uwe; Becker, Anke; Valverde, Claudio

    2017-02-06

    Riboregulation has a major role in the fine-tuning of multiple bacterial processes. Among the RNA players, trans-encoded untranslated small RNAs (sRNAs) regulate complex metabolic networks by tuning expression from multiple target genes in response to numerous signals. In Sinorhizobium meliloti, over 400 sRNAs are expressed under different stimuli. The sRNA MmgR-standing for Makes more granules Regulator-has been of particular interest to us since its sequence and structure are highly conserved among the α-proteobacteria, and its expression is regulated by the amount and quality of the bacterium's available nitrogen source. In this work, we explored the biological role of MmgR in S. meliloti 2011 by characterizing the effect of a deletion of the internal conserved core of mmgR (mmgR(Δ33-51)). This mutation resulted in higher amounts of polyhydroxybutyrate (PHB) distributed into more intracellular granules than are found in the wild-type strain. This phenotype was expressed upon cessation of balanced growth owing to a nitrogen depletion in the presence of surplus carbon (i. e., at a carbon:nitrogen molar ratio greater than 10). The normal PHB accumulation was complemented with a wild-type mmgR copy, but not with unrelated sRNA genes. Furthermore, the expression of mmgR limited PHB accumulation in the wild-type, regardless of the magnitude of the C surplus. Quantitative proteomic profiling and qRT-PCR revealed that the absence of MmgR results in a posttranscriptional overexpression of both PHB-phasin proteins (PhaP1, PhaP2). All together, our results indicate that the widely conserved α-proteobacterial MmgR sRNA fine-tunes the regulation of PHB storage in S. meliloti IMPORTANCE: High-throughput RNA sequencing has recently uncovered an overwhelming number of trans-encoded small RNAs (sRNAs) in diverse prokaryotes. In the nitrogen-fixing α-proteobacterial symbiont of alfalfa root nodules Sinorhizobium meliloti, only four out of hundreds of identified sRNA genes

  16. PCR Analysis of "expR" Gene Regulating Biosynthesis of Exopolysaccharides in "Sinorhizobium Meliloti"

    ERIC Educational Resources Information Center

    Sorroche, Fernando G.; Giordano, Walter

    2012-01-01

    Exopolysaccharide (EPS) production by the rhizobacterium "Sinorhizobium meliloti" is essential for root nodule formation on its legume host (alfalfa), and for establishment of a nitrogen-fixing symbiosis between the two partners. Production of EPS II (galactoglucan) by certain "S. meliloti" strains results in a mucoid colony…

  17. Nitrogen regulation in Sinorhizobium meliloti probed with whole genome arrays.

    PubMed

    Davalos, Marcela; Fourment, Joëlle; Lucas, Antoine; Bergès, Hélène; Kahn, Daniel

    2004-12-01

    Using whole genome arrays, we systematically investigated nitrogen regulation in the plant symbiotic bacterium Sinorhizobium meliloti. The use of glutamate instead of ammonium as a nitrogen source induced nitrogen catabolic genes independently of the carbon source, including two glutamine synthetase genes, various aminoacid transporters and the glnKamtB operon. These responses depended on both the ntrC and glnB nitrogen regulators. Glutamate repressible genes included glutamate synthase and a H+-translocating pyrophosphate synthase. The smc01041-ntrBC operon was negatively autoregulated in a glnB-dependent fashion, indicating an involvement of phosphorylated NtrC. In addition to the nitrogen response, glutamate remodelled expression of carbon metabolism by inhibiting expression of the Entner-Doudoroff and pentose phosphate pathways, and by stimulating gluconeogenetic genes independently of ntrC.

  18. Autoregulation of Sinorhizobium meliloti exoR gene expression.

    PubMed

    Lu, Hai-Yang; Cheng, Hai-Ping

    2010-07-01

    The successful nitrogen-fixing symbiosis between the gram-negative soil bacterium Sinorhizobium meliloti and its leguminous plant host alfalfa (Medicago sativa) requires the bacterial exopolysaccharide succinoglycan. Succinoglycan and flagellum production, along with the ability to metabolize more than 20 different carbon sources and control the expression of a large number of S. meliloti genes, is regulated by the ExoR-ExoS/ChvI signalling pathway. The ExoR protein interacts with and suppresses the sensing activities of ExoS, the membrane-bound sensor of the ExoS/ChvI two-component regulatory system. Here we show that exoR expression is clearly upregulated in the absence of any functional ExoR protein. This upregulation was suppressed by the presence of the wild-type ExoR protein but not by a mutated ExoR protein lacking signal peptide. The levels of exoR expression could be directly modified in real time by changing the levels of total ExoR protein. The expression of exoR was also upregulated by the constitutively active sensor mutation exoS96, and blocked by two single mutations, exoS* and exoS(supA), in the ExoS sensing domain. Presence of the wild-type ExoS protein further elevated the levels of exoR expression in the absence of functional ExoR protein, and reversed the effects of exoS96, exoS* and exoS(supA) mutations. Altogether, these data suggest that ExoR protein autoregulates exoR expression through the ExoS/ChvI system, allowing S. meliloti cells to maintain the levels of exoR expression based on the amount of total ExoR protein.

  19. Functional analysis of nine putative chemoreceptor proteins in Sinorhizobium meliloti.

    PubMed

    Meier, Veronika M; Muschler, Paul; Scharf, Birgit E

    2007-03-01

    The genome of the symbiotic soil bacterium Sinorhizobium meliloti contains eight genes coding for methyl-accepting chemotaxis proteins (MCPs) McpS to McpZ and one gene coding for a transducer-like protein, IcpA. Seven of the MCPs are localized in the cytoplasmic membrane via two membrane-spanning regions, whereas McpY and IcpA lack such hydrophobic regions. The periplasmic regions of McpU, McpV, and McpX contain the small-ligand-binding domain Cache. In addition, McpU possesses the ligand-binding domain TarH. By probing gene expression with lacZ fusions, we have identified mcpU and mcpX as being highly expressed. Deletion of any one of the receptor genes caused impairments in the chemotactic response toward most organic acids, amino acids, and sugars in a swarm plate assay. The data imply that chemoreceptor proteins in S. meliloti can sense more than one class of carbon source and suggest that many or all receptors work as an ensemble. Tactic responses were virtually eliminated for a strain lacking all nine receptor genes. Capillary assays revealed three important sensors for the strong attractant proline: McpU, McpX, and McpY. Receptor deletions variously affected free-swimming speed and attractant-induced chemokinesis. Noticeably, cells lacking mcpU were swimming 9% slower than the wild-type control. We infer that McpU inhibits the kinase activity of CheA in the absence of an attractant. Cells lacking one of the two soluble receptors were impaired in chemokinetic proficiency by more than 50%. We propose that the internal sensors, IcpA and the PAS domain containing McpY, monitor the metabolic state of S. meliloti.

  20. Interaction between Nitrogen and Phosphate Stress Responses in Sinorhizobium meliloti

    PubMed Central

    Hagberg, Kelly L.; Yurgel, Svetlana N.; Mulder, Monika; Kahn, Michael L.

    2016-01-01

    Bacteria have developed various stress response pathways to improve their assimilation and allocation of limited nutrients, such as nitrogen and phosphate. While both the nitrogen stress response (NSR) and phosphate stress response (PSR) have been studied individually, there are few experiments reported that characterize effects of multiple stresses on one or more pathways in Sinorhizobium meliloti, a facultatively symbiotic, nitrogen-fixing bacteria. The PII proteins, GlnB and GlnK, regulate the NSR activity, but analysis of global transcription changes in a PII deficient mutant suggest that the S. meliloti PII proteins may also regulate the PSR. PII double deletion mutants grow very slowly and pseudoreversion of the slow growth phenotype is common. To understand this phenomenon better, transposon mutants were isolated that had a faster growing phenotype. One mutation was in phoB, the response regulator for a two component regulatory system that is important in the PSR. phoB::Tn5 mutants had different phenotypes in the wild type compared to a PII deficient background. This led to the hypothesis that phosphate stress affects the NSR and conversely, that nitrogen stress affects the PSR. Our results show that phosphate availability affects glutamine synthetase activity and expression, which are often used as indicators of NSR activity, but that nitrogen availability did not affect alkaline phosphatase activity and expression, which are indicators of PSR activity. We conclude that the NSR is co-regulated by nitrogen and phosphate, whereas the PSR does not appear to be co-regulated by nitrogen in addition to its known phosphate regulation. PMID:27965651

  1. Phylogenetic distribution and evolutionary pattern of an α-proteobacterial small RNA gene that controls polyhydroxybutyrate accumulation in Sinorhizobium meliloti.

    PubMed

    Lagares, Antonio; Roux, Indra; Valverde, Claudio

    2016-06-01

    It has become clear that sRNAs play relevant regulatory functions in bacteria. However, a comprehensive understanding of their biological roles considering evolutionary aspects has not been achieved for most of them. Thus, we have characterized the evolutionary and phylogenetic aspects of the Sinorhizobium meliloti mmgR gene encoding the small RNA MmgR, which has been recently reported to be involved in the regulation of polyhydroxybutyrate accumulation in this bacterium. We constructed a covariance model from a multiple sequence and structure alignment of mmgR close homologs that allowed us to extend the search and to detect further remote homologs of the sRNA gene. From our results, mmgR seemed to evolve from a common ancestor of the α-proteobacteria that diverged from the order of Rickettsiales. We have found mmgR homologs in most current species of α-proteobacteria, with a few exceptions in which genomic reduction events or gene rearrangements seem to explain its absence. Furthermore, a strong microsyntenic relationship was found between a large set of mmgR homologs and homologs of a gene encoding a putative N-formyl glutamate amidohydrolase (NFGAH) that allowed us to trace back the evolutionary path of this group of mmgR orthologs. Among them, structure and sequence traits have been completely conserved throughout evolution, namely a Rho-independent terminator and a 10-mer (5'-UUUCCUCCCU-3') that is predicted to remain in a single-stranded region of the sRNA. We thus propose the definition of the new family of α-proteobacterial sRNAs αr8, as well as the subfamily αr8s1 which encompass S. meliloti mmgR orthologs physically linked with the downstream open reading frame encoding a putative NFGAH. So far, mmgR is the trans-encoded small RNA with the widest phylogenetic distribution of well recognized orthologs among α-proteobacteria. Expression of the expected MmgR transcript in rhizobiales other than S. meliloti (Sinorhizobium fredii, Rhizobium

  2. Diversity of Sinorhizobium meliloti from the Central Asian Alfalfa Gene Center

    PubMed Central

    Roumiantseva, Marina L.; Andronov, Evgeny E.; Sharypova, Larissa A.; Dammann-Kalinowski, Tatjana; Keller, Mathias; Young, J. Peter W.; Simarov, Boris V.

    2002-01-01

    Sinorhizobium meliloti was isolated from nodules and soil from western Tajikistan, a center of diversity of the host plants (Medicago, Melilotus, and Trigonella species). There was evidence of recombination, but significant disequilibrium, between and within the chromosome and megaplasmids. The most frequent alleles matched those in the published genome sequence. PMID:12200335

  3. The Sinorhizobium meliloti MsbA2 protein is essential for the legume symbiosis.

    PubMed

    Beck, Sebastian; Marlow, Victoria L; Woodall, Katy; Doerrler, William T; James, Euan K; Ferguson, Gail P

    2008-04-01

    Sinorhizobium meliloti is a beneficial legume symbiont, closely related to Brucella species, which are chronic mammalian pathogens. We discovered that the S. meliloti MsbA2 protein is essential to ensure the symbiotic interaction with the host plant, alfalfa. S. meliloti invades plant cells via plant-derived structures known as infection threads. However, in the absence of MsbA2, S. meliloti remains trapped within abnormally thickened infection threads and induces a heightened plant defence response, characterized by a substantial thickening of the nodule endodermis layer and the accumulation of polyphenolic compounds. The S. meliloti MsbA2 protein is homologous to the Escherichia coli lipopolysaccharide/phospholipid trafficking protein MsbA. However, MsbA2 was not essential for the membrane transport of either lipopolysaccharide or phospholipids in S. meliloti. We determined that the msbA2 gene is transcribed in free-living S. meliloti and that in the absence of MsbA2 the polysaccharide content of S. meliloti is altered. Consequently, we propose a model whereby the altered polysaccharide content of the S. meliloti msbA2 mutant could be responsible for its symbiotic defect by inducing an inappropriate host response.

  4. The stress-related, rhizobial small RNA RcsR1 destabilizes the autoinducer synthase encoding mRNA sinI in Sinorhizobium meliloti

    PubMed Central

    Baumgardt, Kathrin; Šmídová, Klára; Rahn, Helen; Lochnit, Günter; Robledo, Marta; Evguenieva-Hackenberg, Elena

    2016-01-01

    ABSTRACT Quorum sensing is a cell density-dependent communication system of bacteria relying on autoinducer molecules. During the analysis of the post-transcriptional regulation of quorum sensing in the nitrogen fixing plant symbiont Sinorhizobium meliloti, we predicted and verified a direct interaction between the 5'-UTR of sinI mRNA encoding the autoinducer synthase and a small RNA (sRNA), which we named RcsR1. In vitro, RcsR1 prevented cleavage in the 5'-UTR of sinI by RNase E and impaired sinI translation. In line with low ribosomal occupancy and transcript destabilization upon binding of RcsR1 to sinI, overproduction of RcsR1 in S. meliloti resulted in lower level and shorter half-life of sinI mRNA, and in decreased autoinducer amount. Although RcsR1 can influence quorum sensing via sinI, its level did not vary at different cell densities, but decreased under salt stress and increased at low temperature. We found that RcsR1 and its stress-related expression pattern, but not the interaction with sinI homologs, are conserved in Sinorhizobium, Rhizobium and Agrobacterium. Consistently, overproduction of RcsR1 in S. meliloti and Agrobacterium tumefaciens inhibited growth at high salinity. We identified conserved targets of RcsR1 and showed that most conserved interactions and the effect on growth under salt stress are mediated by the first stem-loop of RcsR1, while its central part is responsible for the species-specific interaction with sinI. We conclude that RcsR1 is an ancient, stress-related riboregulator in rhizobia and propose that it links stress responses to quorum sensing in S. meliloti. PMID:26588798

  5. The stress-related, rhizobial small RNA RcsR1 destabilizes the autoinducer synthase encoding mRNA sinI in Sinorhizobium meliloti.

    PubMed

    Baumgardt, Kathrin; Šmídová, Klára; Rahn, Helen; Lochnit, Günter; Robledo, Marta; Evguenieva-Hackenberg, Elena

    2016-05-03

    Quorum sensing is a cell density-dependent communication system of bacteria relying on autoinducer molecules. During the analysis of the post-transcriptional regulation of quorum sensing in the nitrogen fixing plant symbiont Sinorhizobium meliloti, we predicted and verified a direct interaction between the 5'-UTR of sinI mRNA encoding the autoinducer synthase and a small RNA (sRNA), which we named RcsR1. In vitro, RcsR1 prevented cleavage in the 5'-UTR of sinI by RNase E and impaired sinI translation. In line with low ribosomal occupancy and transcript destabilization upon binding of RcsR1 to sinI, overproduction of RcsR1 in S. meliloti resulted in lower level and shorter half-life of sinI mRNA, and in decreased autoinducer amount. Although RcsR1 can influence quorum sensing via sinI, its level did not vary at different cell densities, but decreased under salt stress and increased at low temperature. We found that RcsR1 and its stress-related expression pattern, but not the interaction with sinI homologs, are conserved in Sinorhizobium, Rhizobium and Agrobacterium. Consistently, overproduction of RcsR1 in S. meliloti and Agrobacterium tumefaciens inhibited growth at high salinity. We identified conserved targets of RcsR1 and showed that most conserved interactions and the effect on growth under salt stress are mediated by the first stem-loop of RcsR1, while its central part is responsible for the species-specific interaction with sinI. We conclude that RcsR1 is an ancient, stress-related riboregulator in rhizobia and propose that it links stress responses to quorum sensing in S. meliloti.

  6. A highly conserved protein of unknown function is required by Sinorhizobium meliloti for symbiosis and environmental stress protection.

    PubMed

    Davies, Bryan W; Walker, Graham C

    2008-02-01

    We report here the first characterization of the Sinorhizobium meliloti open reading frame SMc01113. The SMc01113 protein is a member of a highly conserved protein family, universal among bacteria. We demonstrate that the SMc01113 gene is absolutely required for S. meliloti symbiosis with alfalfa and also for the protection of the bacterium from a wide range of environmental stresses.

  7. Genomic characterization of Sinorhizobium meliloti AK21, a wild isolate from the Aral Sea Region.

    PubMed

    Molina-Sánchez, María Dolores; López-Contreras, José Antonio; Toro, Nicolás; Fernández-López, Manuel

    2015-01-01

    The symbiotic, nitrogen-fixing bacterium Sinorhizobium meliloti has been widely studied due to its ability to improve crop yields through direct interactions with leguminous plants. S. meliloti AK21 is a wild type strain that forms nodules on Medicago plants in saline and drought conditions in the Aral Sea Region. The aim of this work was to establish the genetic similarities and differences between S. meliloti AK21 and the reference strain S. meliloti 1021. Comparative genome hybridization with the model reference strain S. meliloti 1021 yielded 365 variable genes, grouped into 11 regions in the three main replicons in S. meliloti AK21. The most extensive regions of variability were found in the symbiotic plasmid pSymA, which also contained the largest number of orthologous and polymorphic sequences identified by suppression subtractive hybridization. This procedure identified a large number of divergent sequences and others without homology in the databases, the further investigation of which could provide new insight into the alternative metabolic pathways present in S. meliloti AK21. We identified a plasmid replication module from the repABC replicon family, together with plasmid mobilization-related genes (traG and a VirB9-like protein), which suggest that this indigenous isolate harbors an accessory plasmid. Furthermore, the transcriptomic profiles reflected differences in gene content and regulation between S. meliloti AK21 and S. meliloti 1021 (ExpR and PhoB regulons), but provided evidence for an as yet unknown, alternative mechanism involving activation of the cbb3 terminal oxidase. Finally, phenotypic microarrays characterization revealed a greater versatility of substrate use and chemical degradation than for S. meliloti 1021.

  8. Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics.

    PubMed

    del Val, Coral; Rivas, Elena; Torres-Quesada, Omar; Toro, Nicolás; Jiménez-Zurdo, José I

    2007-12-01

    Bacterial small non-coding RNAs (sRNAs) are being recognized as novel widespread regulators of gene expression in response to environmental signals. Here, we present the first search for sRNA-encoding genes in the nitrogen-fixing endosymbiont Sinorhizobium meliloti, performed by a genome-wide computational analysis of its intergenic regions. Comparative sequence data from eight related alpha-proteobacteria were obtained, and the interspecies pairwise alignments were scored with the programs eQRNA and RNAz as complementary predictive tools to identify conserved and stable secondary structures corresponding to putative non-coding RNAs. Northern experiments confirmed that eight of the predicted loci, selected among the original 32 candidates as most probable sRNA genes, expressed small transcripts. This result supports the combined use of eQRNA and RNAz as a robust strategy to identify novel sRNAs in bacteria. Furthermore, seven of the transcripts accumulated differentially in free-living and symbiotic conditions. Experimental mapping of the 5'-ends of the detected transcripts revealed that their encoding genes are organized in autonomous transcription units with recognizable promoter and, in most cases, termination signatures. These findings suggest novel regulatory functions for sRNAs related to the interactions of alpha-proteobacteria with their eukaryotic hosts.

  9. Identification of an Iron-Regulated, Hemin-Binding Outer Membrane Protein in Sinorhizobium meliloti

    PubMed Central

    Battistoni, Federico; Platero, Raúl; Duran, Rosario; Cerveñansky, Carlos; Battistoni, Julio; Arias, Alicia; Fabiano, Elena

    2002-01-01

    Rhizobia are soil bacteria that are able to establish symbiotic associations with leguminous hosts. In iron-limited environments these bacteria can use iron present in heme or heme compounds (hemoglobin, leghemoglobin). Here we report the presence in Sinorhizobium meliloti of an iron-regulated outer membrane protein that is able to bind hemin but not hemoglobin. Protein assignment was done by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Tryptic peptides correlated with the mass measurements obtained accounted for 54% of the translated sequence of a putative heme receptor gene present in the chromosome of S. meliloti 1021. The results which we obtained suggest that this protein (designated ShmR for Sinorhizobium heme receptor) is involved in high-affinity heme-mediated iron transport. PMID:12450806

  10. The complete genome sequence of the dominant Sinorhizobium meliloti field isolate SM11 extends the S. meliloti pan-genome.

    PubMed

    Schneiker-Bekel, Susanne; Wibberg, Daniel; Bekel, Thomas; Blom, Jochen; Linke, Burkhard; Neuweger, Heiko; Stiens, Michael; Vorhölter, Frank-Jörg; Weidner, Stefan; Goesmann, Alexander; Pühler, Alfred; Schlüter, Andreas

    2011-08-20

    Isolates of the symbiotic nitrogen-fixing species Sinorhizobium meliloti usually contain a chromosome and two large megaplasmids encoding functions that are absolutely required for the specific interaction of the microsymbiont with corresponding host plants leading to an effective symbiosis. The complete genome sequence, including the megaplasmids pSmeSM11c (related to pSymA) and pSmeSM11d (related to pSymB), was established for the dominant, indigenous S. meliloti strain SM11 that had been isolated during a long-term field release experiment with genetically modified S. meliloti strains. The chromosome, the largest replicon of S. meliloti SM11, is 3,908,022bp in size and codes for 3785 predicted protein coding sequences. The size of megaplasmid pSmeSM11c is 1,633,319bp and it contains 1760 predicted protein coding sequences whereas megaplasmid pSmeSM11d is 1,632,395bp in size and comprises 1548 predicted coding sequences. The gene content of the SM11 chromosome is quite similar to that of the reference strain S. meliloti Rm1021. Comparison of pSmeSM11c to pSymA of the reference strain revealed that many gene regions of these replicons are variable, supporting the assessment that pSymA is a major hot-spot for intra-specific differentiation. Plasmids pSymA and pSmeSM11c both encode unique genes. Large gene regions of pSmeSM11c are closely related to corresponding parts of Sinorhizobium medicae WSM419 plasmids. Moreover, pSmeSM11c encodes further novel gene regions, e.g. additional plasmid survival genes (partition, mobilisation and conjugative transfer genes), acdS encoding 1-aminocyclopropane-1-carboxylate deaminase involved in modulation of the phytohormone ethylene level and genes having predicted functions in degradative capabilities, stress response, amino acid metabolism and associated pathways. In contrast to Rm1021 pSymA and pSmeSM11c, megaplasmid pSymB of strain Rm1021 and pSmeSM11d are highly conserved showing extensive synteny with only few rearrangements

  11. Genome-wide profiling of Hfq-binding RNAs uncovers extensive post-transcriptional rewiring of major stress response and symbiotic regulons in Sinorhizobium meliloti.

    PubMed

    Torres-Quesada, Omar; Reinkensmeier, Jan; Schlüter, Jan-Philip; Robledo, Marta; Peregrina, Alexandra; Giegerich, Robert; Toro, Nicolás; Becker, Anke; Jiménez-Zurdo, Jose I

    2014-01-01

    The RNA chaperone Hfq is a global post-transcriptional regulator in bacteria. Here, we used RNAseq to analyze RNA populations from the legume symbiont Sinorhizobium meliloti that were co-immunoprecipitated (CoIP-RNA) with a FLAG-tagged Hfq in five growth/stress conditions. Hfq-bound transcripts (1315) were largely identified in stressed bacteria and derived from small RNAs (sRNAs), both trans-encoded (6.4%) and antisense (asRNAs; 6.3%), and mRNAs (86%). Pull-down with Hfq recovered a small proportion of annotated S. meliloti sRNAs (14% of trans-sRNAs and 2% of asRNAs) suggesting a discrete impact of this protein in sRNA pathways. Nonetheless, Hfq selectively stabilized CoIP-enriched sRNAs, anticipating that these interactions are functionally significant. Transcription of 26 Hfq-bound sRNAs was predicted to occur from promoters recognized by the major stress σ factors σ(E2) or σ(H1/2). Recovery rates of sRNAs in each of the CoIP-RNA libraries suggest a large impact of Hfq-assisted riboregulation in S. meliloti osmoadaptation. Hfq directly targeted 18% of the predicted S. meliloti mRNAs, which encode functionally diverse proteins involved in transport and metabolism, σ(E2)-dependent stress responses, quorum sensing, flagella biosynthesis, ribosome, and membrane assembly or symbiotic nitrogen fixation. Canonical targeting of the 5' regions of two of the ABC transporter mRNAs by the homologous Hfq-binding AbcR1 and AbcR2 sRNAs leading to inhibition of protein synthesis was confirmed in vivo. We therefore provide a comprehensive resource for the systems-level deciphering of hitherto unexplored S. meliloti stress and symbiotic post-transcriptional regulons and the identification of Hfq-dependent sRNA-mRNA regulatory pairs.

  12. [Sinorhizobium meliloti strains screening for efficient bactarization of Melilotus albus Medik].

    PubMed

    Patyka, V P; Ovsiienko, O L; Kalinichenko, A V

    2014-01-01

    The data presents about analytical selection of root nodule bacteria of Melilotus to obtain bacterial fertilizer under sweet clover, presowing inoculation of it seeds and form a legume-rhizobial effective symbiosis. From natural melilot population a number of new strains had been allocated, inoculation of them was contributed to an increase of height. biomass Melilotus albus Medik., and nitrogenase activity in comparison to the influence of the existing production strains. The identification of most effective strains Sinorhizobium meliloti had been determined.

  13. Evidences of autoregulation of hfq expression in Sinorhizobium meliloti strain 2011.

    PubMed

    Sobrero, Patricio; Valverde, Claudio

    2011-09-01

    Riboregulation comprises gene expression regulatory mechanisms that rely upon the activity of small non-coding RNAs (sRNAs) and in most cases RNA binding proteins. In γ-proteobacteria, the Sm-like protein Hfq is a key player in riboregulatory processes, because it promotes sRNA-mRNA interactions and influences mRNA polyadenylation or translation. In the α-proteobacterium Sinorhizobium meliloti, the large number of detected small RNA transcripts and the pleiotropic effects of hfq mutations lead to the hypothesis that riboregulatory mechanisms are important in this soil microorganism to adjust gene expression both in free-living conditions and as a nitrogen-fixing endosymbiont within legume root nodules. In this study, homology modeling of S. meliloti Hfq protein and cross-complementation experiments of S. meliloti and Escherichia coli mutants indicates that hfq ( Sm ) encodes an RNA chaperone that can be functionally exchanged by its homolog from E. coli. A transcriptional and translational analysis of S. meliloti hfq expression by means of lacZ reporter fusions strongly suggests that the S. meliloti Hfq protein autocontrols its expression at the translational level, a phenomenon that was evident in the natural host S. meliloti as well as in the heterologous host E. coli.

  14. Cloning and characterization of the pyruvate carboxylase from Sinorhizobium meliloti Rm1021.

    PubMed

    Dunn, M F; Araíza, G; Finan, T M

    2001-11-01

    The gene encoding pyruvate carboxylase (pyc) was isolated from a Sinorhizobium meliloti Rm1021 cosmid bank by complementation of a Rhizobium tropici pyc mutant. PYC-negative mutants of S. meliloti Rm1021 were isolated by transposon mutagenesis and were unable to grow with glucose or pyruvate as sole carbon sources, but were symbiotically competent in combination with alfalfa plants. PYC activity assays, pyc::lacZ gene fusion studies and an in vivo biotinylation assay showed that PYC activity in S. meliloti was dependent mainly on biotin availability and not on changes in gene transcription. The subunit and holo-enzyme molecular masses of the S. meliloti PYC indicated that the enzyme was an alpha4 homotetramer. The S. meliloti PYC had a high apparent Ka (0.23 mM) for the allosteric activator acetyl-CoA and was product-inhibited by sub-millimolar concentrations of oxaloacetate. In contrast to other bacterial alpha4-PYCs which have been characterized, the S. meliloti enzyme was not strongly inhibited by L-aspartate.

  15. Importance of trehalose biosynthesis for Sinorhizobium meliloti Osmotolerance and nodulation of Alfalfa roots.

    PubMed

    Domínguez-Ferreras, Ana; Soto, María J; Pérez-Arnedo, Rebeca; Olivares, José; Sanjuán, Juan

    2009-12-01

    The disaccharide trehalose is a well-known osmoprotectant, and trehalose accumulation through de novo biosynthesis is a common response of bacteria to abiotic stress. In this study, we have investigated the role of endogenous trehalose synthesis in the osmotolerance of Sinorhizobium meliloti. Genes coding for three possible trehalose synthesis pathways are present in the genome of S. meliloti 1021: OtsA, TreYZ, and TreS. Among these, OtsA has a major role in trehalose accumulation under all of the conditions tested and is the main system involved in osmoadaptation. Nevertheless, the other two systems are also important for growth in hyperosmotic medium. Genes for the three pathways are transcriptionally responsive to osmotic stress. The presence of at least one functional trehalose biosynthesis pathway is required for optimal competitiveness of S. meliloti to nodulate alfalfa roots.

  16. Development of a cultivation-independent approach for the study of genetic diversity of Sinorhizobium meliloti populations.

    PubMed

    Trabelsi, Darine; Pini, Francesco; Bazzicalupo, Marco; Biondi, Emanuele G; Aouani, Mohammed E; Mengoni, Alessio

    2010-01-01

    The development of a species-specific marker for the analysis of the genetic polymorphism of the nitrogen-fixing symbiotic bacterium Sinorhizobium meliloti directly from environmental DNA is reported. The marker is based on terminal-restriction fragment length polymorphism (T-RFLP) methodology targeting specifically the 16S-23S Ribosomal Intergenic Spacer of S. meliloti. Species-specificity and polymorphism of the marker were tested on DNA extracted from soil samples and from a collection of 130 S. meliloti bacterial isolates. These primers and the T-RFLP approach proved useful for the detection and analysis of polymorphism of S. meliloti populations.

  17. Identification of Sinorhizobium meliloti early symbiotic genes by use of a positive functional screen.

    PubMed

    Zhang, Xue-Song; Cheng, Hai-Ping

    2006-04-01

    The soil bacterium Sinorhizobium meliloti establishes nitrogen-fixing symbiosis with its leguminous host plant, alfalfa, following a series of continuous signal exchanges. The complexity of the changes of alfalfa root structures during symbiosis and the amount of S. meliloti genes with unknown functions raised the possibility that more S. meliloti genes may be required for early stages of the symbiosis. A positive functional screen of the entire S. meliloti genome for symbiotic genes was carried out using a modified in vivo expression technology. A group of genes and putative genes were found to be expressed in early stages of the symbiosis, and 23 of them were alfalfa root exudate inducible. These 23 genes were further separated into two groups based on their responses to apigenin, a known nodulation (nod) gene inducer. The group of six genes not inducible by apigenin included the lsrA gene, which is essential for the symbiosis, and the dgkA gene, which is involved in the synthesis of cyclic beta-1,2-glucan required for the S. meliloti-alfalfa symbiosis. In the group of 17 apigenin-inducible genes, most have not been previously characterized in S. meliloti, and none of them belongs to the nod gene family. The identification of this large group of alfalfa root exudate-inducible S. meliloti genes suggests that the interactions in the early stages of the S. meliloti and alfalfa symbiosis could be complex and that further characterization of these genes will lead to a better understanding of the symbiosis.

  18. Sinorhizobium meliloti putA Gene Regulation: a New Model within the Family Rhizobiaceae

    PubMed Central

    Soto, María José; Jiménez-Zurdo, José Ignacio; van Dillewijn, Pieter; Toro, Nicolás

    2000-01-01

    Proline dehydrogenase (PutA) is a bifunctional enzyme that catalyzes the oxidation of proline to glutamate. In Sinorhizobium meliloti, as in other microorganisms, the putA gene is transcriptionally activated in response to proline. In Rhodobacter capsulatus, Agrobacterium, and most probably in Bradyrhizobium, this activation is dependent on an Lrp-like protein encoded by the putR gene, located immediately upstream of putA. Interestingly, sequence and genetic analysis of the region upstream of the S. meliloti putA gene did not reveal such a putR locus or any other encoded transcriptional activator of putA. Furthermore, results obtained with an S. meliloti putA null mutation indicate the absence of any proline-responsive transcriptional activator and that PutA serves as an autogenous repressor. Therefore, the model of S. meliloti putA regulation completely diverges from that of its Rhizobiaceae relatives and resembles more that of enteric bacteria. However, some differences have been found with the latter model: (i) S. meliloti putA gene is not catabolite repressed, and (ii) the gene encoding for the major proline permease (putP) does not form part of an operon with the putA gene. PMID:10715000

  19. An orphan LuxR homolog of Sinorhizobium meliloti affects stress adaptation and competition for nodulation.

    PubMed

    Patankar, Arati V; González, Juan E

    2009-02-01

    The Sin/ExpR quorum-sensing system of Sinorhizobium meliloti plays an important role in the symbiotic association with its host plant, Medicago sativa. The LuxR-type response regulators of the Sin system include the synthase (SinI)-associated SinR and the orphan regulator ExpR. Interestingly, the S. meliloti Rm1021 genome codes for four additional putative orphan LuxR homologs whose regulatory roles remain to be identified. These response regulators contain the characteristic domains of the LuxR family of proteins, which include an N-terminal autoinducer/response regulatory domain and a C-terminal helix-turn-helix domain. This study elucidates the regulatory role of one of the orphan LuxR-type response regulators, NesR. Through expression and phenotypic analyses, nesR was determined to affect the active methyl cycle of S. meliloti. Moreover, nesR was shown to influence nutritional and stress response activities in S. meliloti. Finally, the nesR mutant was deficient in competing with the wild-type strain for plant nodulation. Taken together, these results suggest that NesR potentially contributes to the adaptability of S. meliloti when it encounters challenges such as high osmolarity, nutrient starvation, and/or competition for nodulation, thus increasing its chances for survival in the stressful rhizosphere.

  20. Development of a Functional Genomics Platform for Sinorhizobium meliloti: Construction of an ORFeome

    PubMed Central

    Schroeder, Brenda K.; House, Brent L.; Mortimer, Michael W.; Yurgel, Svetlana N.; Maloney, Scott C.; Ward, Kristel L.; Kahn, Michael L.

    2005-01-01

    The nitrogen-fixing, symbiotic bacterium Sinorhizobium meliloti reduces molecular dinitrogen to ammonia in a specific symbiotic context, supporting the nitrogen requirements of various forage legumes, including alfalfa. Determining the DNA sequence of the S. meliloti genome was an important step in plant-microbe interaction research, adding to the considerable information already available about this bacterium by suggesting possible functions for many of the >6,200 annotated open reading frames (ORFs). However, the predictive power of bioinformatic analysis is limited, and putting the role of these genes into a biological context will require more definitive functional approaches. We present here a strategy for genetic analysis of S. meliloti on a genomic scale and report the successful implementation of the first step of this strategy by constructing a set of plasmids representing 100% of the 6,317 annotated ORFs cloned into a mobilizable plasmid by using efficient PCR and recombination protocols. By using integrase recombination to insert these ORFs into other plasmids in vitro or in vivo (B. L. House et al., Appl. Environ. Microbiol. 70:2806-2815, 2004), this ORFeome can be used to generate various specialized genetic materials for functional analysis of S. meliloti, such as operon fusions, mutants, and protein expression plasmids. The strategy can be generalized to many other genome projects, and the S. meliloti clones should be useful for investigators wanting an accessible source of cloned genes encoding specific enzymes. PMID:16204497

  1. Global analysis of cell cycle gene expression of the legume symbiont Sinorhizobium meliloti.

    PubMed

    De Nisco, Nicole J; Abo, Ryan P; Wu, C Max; Penterman, Jon; Walker, Graham C

    2014-03-04

    In α-proteobacteria, strict regulation of cell cycle progression is necessary for the specific cellular differentiation required for adaptation to diverse environmental niches. The symbiotic lifestyle of Sinorhizobium meliloti requires a drastic cellular differentiation that includes genome amplification. To achieve polyploidy, the S. meliloti cell cycle program must be altered to uncouple DNA replication from cell division. In the α-proteobacterium Caulobacter crescentus, cell cycle-regulated transcription plays an important role in the control of cell cycle progression but this has not been demonstrated in other α-proteobacteria. Here we describe a robust method for synchronizing cell growth that enabled global analysis of S. meliloti cell cycle-regulated gene expression. This analysis identified 462 genes with cell cycle-regulated transcripts, including several key cell cycle regulators, and genes involved in motility, attachment, and cell division. Only 28% of the 462 S. meliloti cell cycle-regulated genes were also transcriptionally cell cycle-regulated in C. crescentus. Furthermore, CtrA- and DnaA-binding motif analysis revealed little overlap between the cell cycle-dependent regulons of CtrA and DnaA in S. meliloti and C. crescentus. The predicted S. meliloti cell cycle regulon of CtrA, but not that of DnaA, was strongly conserved in more closely related α-proteobacteria with similar ecological niches as S. meliloti, suggesting that the CtrA cell cycle regulatory network may control functions of central importance to the specific lifestyles of α-proteobacteria.

  2. Draft genome sequence of Sinorhizobium meliloti RU11/001, a model organism for flagellum structure, motility and chemotaxis.

    PubMed

    Wibberg, Daniel; Blom, Jochen; Rückert, Christian; Winkler, Anika; Albersmeier, Andreas; Pühler, Alfred; Schlüter, Andreas; Scharf, Birgit E

    2013-12-01

    Sinorhizobium meliloti of the order Rhizobiales is a symbiotic nitrogen-fixing bacterium nodulating plants of the genera Medicago, Trigonella and Melilotus and hence is of great agricultural importance. In its free-living state it is motile and capable of modulating its movement patterns in response to chemical attractants. Here, the draft genome consisting of a circular chromosome, the megaplasmids pSymA and pSymB and three accessory plasmids of Sinorhizobium meliloti RU11/001, a model organism for flagellum structure, motility and chemotaxis, is reported.

  3. ShmR is essential for utilization of heme as a nutritional iron source in Sinorhizobium meliloti.

    PubMed

    Amarelle, Vanesa; O'Brian, Mark R; Fabiano, Elena

    2008-10-01

    The bacterium Sinorhizobium meliloti is able to use heme as a nutritional iron source. Here, we show that the iron-regulated shmR gene encodes an outer membrane protein required for growth on heme. Furthermore, an shmR mutant is resistant to the toxic heme analog gallium protoporphyrin. Thus, the receptor protein of the heme transport system has been identified in S. meliloti.

  4. Biodegradation of 3,3',4,4'-tetrachlorobiphenyl by Sinorhizobium meliloti NM.

    PubMed

    Wang, Xiaomi; Teng, Ying; Luo, Yongming; Dick, Richard P

    2016-02-01

    A rhizobial strain, Sinorhizobium meliloti NM, could use 3,3',4,4'-tetrachloro-biphenyl (PCB 77) as the sole carbon and energy source for growth in mineral salt medium. The degradation efficiency of PCB 77 by strain NM and the bacterial growth increased with a decrease in PCB 77 concentration (5-0.25mgL(-1)). The addition of secondary carbon sources, phenolic acids and one surfactant influenced PCB 77 degradation, rhizobial growth and biofilm formation. The highest degradation efficiency was observed in the presence of caffeic acid. Benzoate and chloride ions were detected as the PCB 77 metabolites. The up-regulation of benzoate metabolism-related gene expression was also observed using quantitative reverse transcription-polymerase chain reaction. This report is the first to demonstrate Sinorhizobium using coplanar tetrachlorobiphenyl as a sole carbon and energy source, indicating the potential wide benefit to the field of rhizobia-assisted bioremediation.

  5. A newly isolated and identified vitamin B12 producing strain: Sinorhizobium meliloti 320.

    PubMed

    Dong, Huina; Li, Sha; Fang, Huan; Xia, Miaomiao; Zheng, Ping; Zhang, Dawei; Sun, Jibin

    2016-10-01

    Vitamin B12 (Cobalamin, VB12) has several physiological functions and is widely used in pharmaceutical and food industries. A new unicellular species was extracted from China farmland, and the strain could produce VB12 which was identified by HPLC and HPLC-MS/MS. 16S rDNA analysis reveals this strain belongs to the species Sinorhizobium meliloti and we named it S. meliloti 320. Its whole genome information indicates that this strain has a complete VB12 synthetic pathway, which paves the way for further metabolic engineering studies. The optimal carbon and nitrogen sources are sucrose and corn steep liquor (CSL) plus peptone. The optimal combination of sucrose and CSL was obtained by response surface methodology as they are the most suitable carbon and nitrogen sources, respectively. This strain could produce 140 ± 4.2 mg L(-1) vitamin B12 after incubating for 7 days in the optimal medium.

  6. Transcriptomic Analysis of Sinorhizobium meliloti and Medicago truncatula Symbiosis Using Nitrogen Fixation-Deficient Nodules.

    PubMed

    Lang, Claus; Long, Sharon R

    2015-08-01

    The bacterium Sinorhizobium meliloti interacts symbiotically with legume plant hosts such as Medicago truncatula to form nitrogen-fixing root nodules. During symbiosis, plant and bacterial cells differentiate in a coordinated manner, resulting in specialized plant cells that contain nitrogen-fixing bacteroids. Both plant and bacterial genes are required at each developmental stage of symbiosis. We analyzed gene expression in nodules formed by wild-type bacteria on six plant mutants with defects in nitrogen fixation. We observed differential expression of 482 S. meliloti genes with functions in cell envelope homeostasis, cell division, stress response, energy metabolism, and nitrogen fixation. We simultaneously analyzed gene expression in M. truncatula and observed differential regulation of host processes that may trigger bacteroid differentiation and control bacterial infection. Our analyses of developmentally arrested plant mutants indicate that plants use distinct means to control bacterial infection during early and late symbiotic stages.

  7. Isolation and regulation of Sinorhizobium meliloti 1021 loci induced by oxygen limitation.

    PubMed

    Trzebiatowski, J R; Ragatz, D M; de Bruijn, F J

    2001-08-01

    Eleven Sinorhizobium meliloti 1021 loci whose expression was induced under low oxygen concentrations were identified in a collection of 5,000 strains carrying Tn5-1063 (luxAB) transcriptional reporter gene fusions. The 11 Tn5-1063-tagged loci were cloned and characterized. The dependence of the expression of the tagged loci on the FixL/FixJ oxygen-sensing two-component regulatory system was examined. Three of the loci were found to be dependent upon fixL and fixJ for their expression, while one locus showed a partial dependence. The remaining seven loci showed fixL- and fixJ-independent induction of expression in response to oxygen limitation. This suggests that in S. meliloti, additional regulatory system(s) exist that respond either directly or indirectly to oxygen limitation conditions.

  8. A LuxR Homolog Controls Production of Symbiotically Active Extracellular Polysaccharide II by Sinorhizobium meliloti

    PubMed Central

    Pellock, Brett J.; Teplitski, Max; Boinay, Ryan P.; Bauer, W. Dietz; Walker, Graham C.

    2002-01-01

    Production of complex extracellular polysaccharides (EPSs) by the nitrogen-fixing soil bacterium Sinorhizobium meliloti is required for efficient invasion of root nodules on the host plant alfalfa. Any one of three S. meliloti polysaccharides, succinoglycan, EPS II, or K antigen, can mediate infection thread initiation and extension (root nodule invasion) on alfalfa. Of these three polysaccharides, the only symbiotically active polysaccharide produced by S. meliloti wild-type strain Rm1021 is succinoglycan. The expR101 mutation is required to turn on production of symbiotically active forms of EPS II in strain Rm1021. In this study, we have determined the nature of the expR101 mutation in S. meliloti. The expR101 mutation, a spontaneous dominant mutation, results from precise, reading frame-restoring excision of an insertion sequence from the coding region of expR, a gene whose predicted protein product is highly homologous to the Rhizobium leguminosarum bv. viciae RhiR protein and a number of other homologs of Vibrio fischeri LuxR that function as receptors for N-acylhomoserine lactones (AHLs) in quorum-sensing regulation of gene expression. S. meliloti ExpR activates transcription of genes involved in EPS II production in a density-dependent fashion, and it does so at much lower cell densities than many quorum-sensing systems. High-pressure liquid chromatographic fractionation of S. meliloti culture filtrate extracts revealed at least three peaks with AHL activity, one of which activated ExpR-dependent expression of the expE operon. PMID:12193623

  9. A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina.

    PubMed

    Sorroche, Fernando G; Spesia, Mariana B; Zorreguieta, Angeles; Giordano, Walter

    2012-06-01

    Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodule formation on roots of alfalfa plants. S. meliloti produces two exopolysaccharides (EPSs), termed EPS I and EPS II, that are both able to promote symbiosis. EPS I and EPS II are secreted in two major fractions that reflect differing degrees of subunit polymerization, designated high- and low-molecular-weight fractions. We reported previously that EPSs are crucial for autoaggregation and biofilm formation in S. meliloti reference strains and isogenic mutants. However, the previous observations were obtained by use of "domesticated" laboratory strains, with mutations resulting from successive passages under unnatural conditions, as has been documented for reference strain Rm1021. In the present study, we analyzed the autoaggregation and biofilm formation abilities of native S. meliloti strains isolated from root nodules of alfalfa plants grown in four regions of Argentina. 16S rRNA gene analysis of all the native isolates revealed a high degree of identity with reference S. meliloti strains. PCR analysis of the expR gene of all the isolates showed that, as in the case of reference strain Rm8530, this gene is not interrupted by an insertion sequence (IS) element. A positive correlation was found between autoaggregation and biofilm formation abilities in these rhizobia, indicating that both processes depend on the same physical adhesive forces. Extracellular complementation experiments using mutants of the native strains showed that autoaggregation was dependent on EPS II production. Our results indicate that a functional EPS II synthetic pathway and its proper regulation are essential for cell-cell interactions and surface attachment of S. meliloti.

  10. A Positive Correlation between Bacterial Autoaggregation and Biofilm Formation in Native Sinorhizobium meliloti Isolates from Argentina

    PubMed Central

    Sorroche, Fernando G.; Spesia, Mariana B.; Zorreguieta, Ángeles

    2012-01-01

    Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodule formation on roots of alfalfa plants. S. meliloti produces two exopolysaccharides (EPSs), termed EPS I and EPS II, that are both able to promote symbiosis. EPS I and EPS II are secreted in two major fractions that reflect differing degrees of subunit polymerization, designated high- and low-molecular-weight fractions. We reported previously that EPSs are crucial for autoaggregation and biofilm formation in S. meliloti reference strains and isogenic mutants. However, the previous observations were obtained by use of “domesticated” laboratory strains, with mutations resulting from successive passages under unnatural conditions, as has been documented for reference strain Rm1021. In the present study, we analyzed the autoaggregation and biofilm formation abilities of native S. meliloti strains isolated from root nodules of alfalfa plants grown in four regions of Argentina. 16S rRNA gene analysis of all the native isolates revealed a high degree of identity with reference S. meliloti strains. PCR analysis of the expR gene of all the isolates showed that, as in the case of reference strain Rm8530, this gene is not interrupted by an insertion sequence (IS) element. A positive correlation was found between autoaggregation and biofilm formation abilities in these rhizobia, indicating that both processes depend on the same physical adhesive forces. Extracellular complementation experiments using mutants of the native strains showed that autoaggregation was dependent on EPS II production. Our results indicate that a functional EPS II synthetic pathway and its proper regulation are essential for cell-cell interactions and surface attachment of S. meliloti. PMID:22492433

  11. Regulation of Sinorhizobium meliloti 1021 rrnA-reporter gene fusions in response to cold shock.

    PubMed

    Gustafson, Ann M; O'Connell, Kevin P; Thomashow, Michael F

    2002-09-01

    We previously reported that mutants of Sinorhizobium meliloti 1021 carrying luxAB insertions in each of the three 16S rRNA genes exhibited a dramatic (> or = 28-fold) increase in luminescence following a temperature downshift from 30 to 15 degrees C. These results raised the possibility that the rRNA operons (rrn) of S. meliloti were cold shock loci. In testing this possibility, we found that fusion of the S. meliloti 1021 rrnA promoter to two different reporter genes, luxAB and uidA, resulted in hybrid genes that were transiently upregulated (as measured by transcript accumulation) about four- to sixfold in response to a temperature downshift. These results are consistent with the hypothesis that the rrn promoters are transiently upregulated in response to cold shock. However, much of the apparent cold shock regulation of the initial luxAB insertions was due to an unexpected mechanism: an apparent temperature-dependent inhibition of translation. Specifically, the rrnA sequences from +1 to +172 (relative to the start of transcription) were found to greatly decrease the ability of S. meliloti to translate hybrid rrn-luxAB transcripts into active protein at 30 degrees C. This effect, however, was largely eliminated at 15 degrees C. Possible mechanisms for the apparent transient increase in rrnA promoter activity and temperature-dependent inhibition of translation are discussed.

  12. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase

    PubMed Central

    Sahonero-Canavesi, Diana X.; Sohlenkamp, Christian; Sandoval-Calderón, Mario; Lamsa, Anne; Pogliano, Kit; López-Lara, Isabel M.; Geiger, Otto

    2016-01-01

    Summary Phospholipids are well known for their membrane forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth. PMID:25711932

  13. An omp gene enhances cell tolerance of Cu(II) in Sinorhizobium meliloti CCNWSX0020.

    PubMed

    Li, Zhefei; Lu, Mingmei; Wei, Gehong

    2013-09-01

    The main aim of this work was to study molecular characterization of a DNA fragment conferring resistance to Cu(II) in Sinorhizobium meliloti CCNWSX0020. The strain CCNWSX0020, resistant to 1.4 mmol l(-1) Cu(II) in tryptone-yeast extract medium was isolated from Medicago lupulina growing in mine tailings of Fengxian County, China. The availability of the complete genome sequence of S. meliloti CCNWSX0020 provides an opportunity for investigating genes that play significant roles in Cu(II) resistance. A copper resistance gene, with a length of 1,445 bp, encoding 481 amino acids, designated omp, was identified by cDNA-amplified fragment length polymorphism from S. meliloti CCNWSX0020. The expression of omp gene strongly increased in the presence of Cu(II). The omp-defective mutants display sensitivities to Cu(II) compared with their wild types. The Cu(II)-sensitive phenotype of the mutant was complemented by a 1.5-kb DNA fragment containing omp gene. BLAST analysis revealed that this gene encoded a hypothetical outer membrane protein with 75 % similarity to outer membrane efflux protein in Rhizobium leguminosarum bv. viciae 3841. These studies suggested that the omp product was involved in the Cu(II) tolerance of S. meliloti CCNWSX0020.

  14. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase.

    PubMed

    Sahonero-Canavesi, Diana X; Sohlenkamp, Christian; Sandoval-Calderón, Mario; Lamsa, Anne; Pogliano, Kit; López-Lara, Isabel M; Geiger, Otto

    2015-09-01

    Phospholipids are well known for their membrane-forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth.

  15. Structural analysis of succinoglycan oligosaccharides from Sinorhizobium meliloti strains with different host compatibility phenotypes.

    PubMed

    Simsek, Senay; Wood, Karl; Reuhs, Bradley L

    2013-05-01

    Sinorhizobium meliloti NRG247 has a Fix(+) phenotype on Medicago truncatula A20 and is Fix(-) on M. truncatula A17, and the phenotype is reversed with S. meliloti NRG185. As the succinoglycan was shown to impact host specificity, an analysis of the succinoglycan oligosaccharides produced by each strain was conducted. The symbiotically active succinoglycan trimeric oligosaccharides (STOs) from the two S. meliloti strains were compared by chromatography and mass spectrometry, and the analysis of the S. meliloti NRG247 oligosaccharides showed that this strain produces an abundance of STO trimer 1 (T1), containing no succinate (i.e., three nonsuccinylated repeats), yet the low-molecular-weight pool contained no nonsuccinylated monomers (potential repeats). This showed that STO T1 is likely to be the active signal on M. truncatula A20 and that the biosynthesis of the STOs is not a random polymerization of the monomer population. The results also suggest that the fully succinylated STO T7 is required for the infection of M. truncatula A17.

  16. Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti.

    PubMed

    van Noorden, Giel E; Kerim, Tursun; Goffard, Nicolas; Wiblin, Robert; Pellerone, Flavia I; Rolfe, Barry G; Mathesius, Ulrike

    2007-06-01

    We used proteome analysis to identify proteins induced during nodule initiation and in response to auxin in Medicago truncatula. From previous experiments, which found a positive correlation between auxin levels and nodule numbers in the M. truncatula supernodulation mutant sunn (supernumerary nodules), we hypothesized (1) that auxin mediates protein changes during nodulation and (2) that auxin responses might differ between the wild type and the supernodulating sunn mutant during nodule initiation. Increased expression of the auxin response gene GH3:beta-glucuronidase was found during nodule initiation in M. truncatula, similar to treatment of roots with auxin. We then used difference gel electrophoresis and tandem mass spectrometry to compare proteomes of wild-type and sunn mutant roots after 24 h of treatment with Sinorhizobium meliloti, auxin, or a control. We identified 131 of 270 proteins responding to treatment with S. meliloti and/or auxin, and 39 of 89 proteins differentially displayed between the wild type and sunn. The majority of proteins changed similarly in response to auxin and S. meliloti after 24 h in both genotypes, supporting hypothesis 1. Proteins differentially accumulated between untreated wild-type and sunn roots also showed changes in auxin response, consistent with altered auxin levels in sunn. However, differences between the genotypes after S. meliloti inoculation were largely not due to differential auxin responses. The role of the identified candidate proteins in nodule initiation and the requirement for their induction by auxin could be tested in future functional studies.

  17. Sinorhizobium meliloti YbeY is an endoribonuclease with unprecedented catalytic features, acting as silencing enzyme in riboregulation.

    PubMed

    Saramago, Margarida; Peregrina, Alexandra; Robledo, Marta; Matos, Rute G; Hilker, Rolf; Serrania, Javier; Becker, Anke; Arraiano, Cecilia M; Jiménez-Zurdo, José I

    2016-12-06

    Structural and biochemical features suggest that the almost ubiquitous bacterial YbeY protein may serve catalytic and/or Hfq-like protective functions central to small RNA (sRNA)-mediated regulation and RNA metabolism. We have biochemically and genetically characterized the YbeY ortholog of the legume symbiont Sinorhizobium meliloti (SmYbeY). Co-immunoprecipitation (CoIP) with a FLAG-tagged SmYbeY yielded a poor enrichment in RNA species, compared to Hfq CoIP-RNA uncovered previously by a similar experimental setup. Purified SmYbeY behaved as a monomer that indistinctly cleaved single- and double-stranded RNA substrates, a unique ability among bacterial endoribonucleases. SmYbeY-mediated catalysis was supported by the divalent metal ions Mg(2+), Mn(2+) and Ca(2+), which influenced in a different manner cleavage efficiency and reactivity patterns, with Ca(2+) specifically blocking activity on double-stranded and some structured RNA molecules. SmYbeY loss-of-function compromised expression of core energy and RNA metabolism genes, whilst promoting accumulation of motility, late symbiotic and transport mRNAs. Some of the latter transcripts are known Hfq-binding sRNA targets and might be SmYbeY substrates. Genetic reporter and in vitro assays confirmed that SmYbeY is required for sRNA-mediated down-regulation of the amino acid ABC transporter prbA mRNA. We have thus discovered a bacterial endoribonuclease with unprecedented catalytic features, acting also as gene silencing enzyme.

  18. Cloning-free genome engineering in Sinorhizobium meliloti advances applications of Cre/loxP site-specific recombination.

    PubMed

    Döhlemann, Johannes; Brennecke, Meike; Becker, Anke

    2016-09-10

    The soil-dwelling α-proteobacterium Sinorhizobium meliloti serves as model for studies of symbiotic nitrogen fixation, a highly important process in sustainable agriculture. Here, we report advancements of the genetic toolbox accelerating genome editing in S. meliloti. The hsdMSR operon encodes a type-I restriction-modification (R-M) system. Transformation of S. meliloti is counteracted by the restriction endonuclease HsdR degrading DNA which lacks the appropriate methylation pattern. We provide a stable S. meliloti hsdR deletion mutant showing enhanced transformation with Escherichia coli-derived plasmid DNA and demonstrate that using an E. coli plasmid donor, expressing S. meliloti methyl transferase genes, is an alternative strategy of increasing the transformation efficiency of S. meliloti. Furthermore, we devise a novel cloning-free genome editing (CFGE) method for S. meliloti, Agrobacterium tumefaciens and Xanthomonas campestris, and demonstrate the applicability of this method for intricate applications of the Cre/lox recombination system in S. meliloti. An enhanced Cre/lox system, allowing for serial deletions of large genomic regions, was established. An assay of lox spacer mutants identified a set of lox sites mediating specific recombination. The availability of several non-promiscuous Cre recognition sites enables simultaneous specific Cre/lox recombination events. CFGE combined with Cre/lox recombination is put forward as powerful approach for targeted genome editing, involving serial steps of manipulation to expedite the genetic accessibility of S. meliloti as chassis.

  19. Cell Cycle Control by the Master Regulator CtrA in Sinorhizobium meliloti.

    PubMed

    Pini, Francesco; De Nisco, Nicole J; Ferri, Lorenzo; Penterman, Jon; Fioravanti, Antonella; Brilli, Matteo; Mengoni, Alessio; Bazzicalupo, Marco; Viollier, Patrick H; Walker, Graham C; Biondi, Emanuele G

    2015-05-01

    In all domains of life, proper regulation of the cell cycle is critical to coordinate genome replication, segregation and cell division. In some groups of bacteria, e.g. Alphaproteobacteria, tight regulation of the cell cycle is also necessary for the morphological and functional differentiation of cells. Sinorhizobium meliloti is an alphaproteobacterium that forms an economically and ecologically important nitrogen-fixing symbiosis with specific legume hosts. During this symbiosis S. meliloti undergoes an elaborate cellular differentiation within host root cells. The differentiation of S. meliloti results in massive amplification of the genome, cell branching and/or elongation, and loss of reproductive capacity. In Caulobacter crescentus, cellular differentiation is tightly linked to the cell cycle via the activity of the master regulator CtrA, and recent research in S. meliloti suggests that CtrA might also be key to cellular differentiation during symbiosis. However, the regulatory circuit driving cell cycle progression in S. meliloti is not well characterized in both the free-living and symbiotic state. Here, we investigated the regulation and function of CtrA in S. meliloti. We demonstrated that depletion of CtrA cause cell elongation, branching and genome amplification, similar to that observed in nitrogen-fixing bacteroids. We also showed that the cell cycle regulated proteolytic degradation of CtrA is essential in S. meliloti, suggesting a possible mechanism of CtrA depletion in differentiated bacteroids. Using a combination of ChIP-Seq and gene expression microarray analysis we found that although S. meliloti CtrA regulates similar processes as C. crescentus CtrA, it does so through different target genes. For example, our data suggest that CtrA does not control the expression of the Fts complex to control the timing of cell division during the cell cycle, but instead it negatively regulates the septum-inhibiting Min system. Our findings provide valuable

  20. The Sinorhizobium meliloti essential porin RopA1 is a target for numerous bacteriophages.

    PubMed

    Crook, Matthew B; Draper, Alicia L; Guillory, R Jordan; Griffitts, Joel S

    2013-08-01

    The symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti harbors a gene, SMc02396, which encodes a predicted outer membrane porin that is conserved in many symbiotic and pathogenic bacteria in the order Rhizobiales. Here, this gene (renamed ropA1) is shown to be required for infection by two commonly utilized transducing bacteriophages (ΦM12 and N3). Mapping of S. meliloti mutations conferring resistance to ΦM12, N3, or both phages simultaneously revealed diverse mutations mapping within the ropA1 open reading frame. Subsequent tests determined that RopA1, lipopolysaccharide, or both are required for infection by all of a larger collection of Sinorhizobium-specific phages. Failed attempts to disrupt or delete ropA1 suggest that this gene is essential for viability. Phylogenetic analysis reveals that ropA1 homologs in many Rhizobiales species are often found as two genetically linked copies and that the intraspecies duplicates are always more closely related to each other than to homologs in other species, suggesting multiple independent duplication events.

  1. Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis.

    PubMed

    Penterman, Jon; Abo, Ryan P; De Nisco, Nicole J; Arnold, Markus F F; Longhi, Renato; Zanda, Matteo; Walker, Graham C

    2014-03-04

    The α-proteobacterium Sinorhizobium meliloti establishes a chronic intracellular infection during the symbiosis with its legume hosts. Within specialized host cells, S. meliloti differentiates into highly polyploid, enlarged nitrogen-fixing bacteroids. This differentiation is driven by host cells through the production of defensin-like peptides called "nodule-specific cysteine-rich" (NCR) peptides. Recent research has shown that synthesized NCR peptides exhibit antimicrobial activity at high concentrations but cause bacterial endoreduplication at sublethal concentrations. We leveraged synchronized S. meliloti populations to determine how treatment with a sublethal NCR peptide affects the cell cycle and physiology of bacteria at the molecular level. We found that at sublethal levels a representative NCR peptide specifically blocks cell division and antagonizes Z-ring function. Gene-expression profiling revealed that the cell division block was produced, in part, through the substantial transcriptional response elicited by sublethal NCR treatment that affected ∼15% of the genome. Expression of critical cell-cycle regulators, including ctrA, and cell division genes, including genes required for Z-ring function, were greatly attenuated in NCR-treated cells. In addition, our experiments identified important symbiosis functions and stress responses that are induced by sublethal levels of NCR peptides and other antimicrobial peptides. Several of these stress-response pathways also are found in related α-proteobacterial pathogens and might be used by S. meliloti to sense host cues during infection. Our data suggest a model in which, in addition to provoking stress responses, NCR peptides target intracellular regulatory pathways to drive S. meliloti endoreduplication and differentiation during symbiosis.

  2. Nitric oxide is required for an optimal establishment of the Medicago truncatula–Sinorhizobium meliloti symbiosis

    PubMed Central

    del Giudice, Jennifer; Cam, Yvan; Damiani, Isabelle; Fung-Chat, Franck; Meilhoc, Eliane; Bruand, Claude; Brouquisse, Renaud; Puppo, Alain; Boscari, Alexandre

    2011-01-01

    Nitric oxide (NO) is a gaseous molecule that participates in numerous plant signalling pathways. It is involved in plant responses to pathogens and development processes such as seed germination, flowering and stomatal closure. Using a permeable NO-specific fluorescent probe and a bacterial reporter strain expressing the lacZ gene under the control of a NO-responsive promoter, we detected NO production in the first steps, during infection threads growth, of the Medicago truncatula–Sinorhizobium meliloti symbiotic interaction. Nitric oxide was also detected, by confocal microscopy, in nodule primordia. Depletion of NO caused by cPTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethyl imidazoline-1-oxyl-3-oxide), an NO scavenger, resulted in a significant delay in nodule appearance. The overexpression of a bacterial hmp gene, encoding a flavohaemoglobin able to scavenge NO, under the control of a nodule-specific promoter (pENOD20) in transgenic roots, led to the same phenotype. The NO scavenging resulting from these approaches provoked the downregulation of plant genes involved in nodule development, such as MtCRE1 and MtCCS52A. Furthermore, an Hmp-overexpressing S. meliloti mutant strain was found to be less competitive than the wild type in the nodulation process. Taken together, these results indicate that NO is required for an optimal establishment of the M. truncatula–S. meliloti symbiotic interaction. PMID:21457261

  3. Desiccation induces viable but Non-Culturable cells in Sinorhizobium meliloti 1021

    PubMed Central

    2012-01-01

    Sinorhizobium meliloti is a microorganism commercially used in the production of e.g. Medicago sativa seed inocula. Many inocula are powder-based and production includes a drying step. Although S. meliloti survives drying well, the quality of the inocula is reduced during this process. In this study we determined survival during desiccation of the commercial strains 102F84 and 102F85 as well as the model strain USDA1021. The survival of S. meliloti 1021 was estimated during nine weeks at 22% relative humidity. We found that after an initial rapid decline of colony forming units, the decline slowed to a steady 10-fold reduction in colony forming units every 22 days. In spite of the reduction in colony forming units, the fraction of the population identified as viable (42-54%) based on the Baclight live/dead stain did not change significantly over time. This change in the ability of viable cells to form colonies shows (i) an underestimation of the survival of rhizobial cells using plating methods, and that (ii) in a part of the population desiccation induces a Viable But Non Culturable (VBNC)-like state, which has not been reported before. Resuscitation attempts did not lead to a higher recovery of colony forming units indicating the VBNC state is stable under the conditions tested. This observation has important consequences for the use of rhizobia. Finding methods to resuscitate this fraction may increase the quality of powder-based seed inocula. PMID:22260437

  4. Two Sinorhizobium meliloti glutaredoxins regulate iron metabolism and symbiotic bacteroid differentiation.

    PubMed

    Benyamina, Sofiane M; Baldacci-Cresp, Fabien; Couturier, Jérémy; Chibani, Kamel; Hopkins, Julie; Bekki, Abdelkader; de Lajudie, Philippe; Rouhier, Nicolas; Jacquot, Jean-Pierre; Alloing, Geneviève; Puppo, Alain; Frendo, Pierre

    2013-03-01

    Legumes interact symbiotically with bacteria of the Rhizobiaceae to form nitrogen-fixing root nodules. We investigated the contribution of the three glutaredoxin (Grx)-encoding genes present in the Sinorhizobium meliloti genome to this symbiosis. SmGRX1 (CGYC active site) and SmGRX3 (CPYG) recombinant proteins displayed deglutathionylation activity in the 2-hydroethyldisulfide assay, whereas SmGRX2 (CGFS) did not. Mutation of SmGRX3 did not affect S. meliloti growth or symbiotic capacities. In contrast, SmGRX1 and SmGRX2 mutations decreased the growth of free-living bacteria and the nitrogen fixation capacity of bacteroids. Mutation of SmGRX1 led to nodule abortion and an absence of bacteroid differentiation, whereas SmGRX2 mutation decreased nodule development without modifying bacteroid development. The higher sensitivity of the Smgrx1 mutant strain as compared with wild-type strain to oxidative stress was associated with larger amounts of glutathionylated proteins. The Smgrx2 mutant strain displayed significantly lower levels of activity than the wild type for two iron-sulfur-containing enzymes, aconitase and succinate dehydrogenase. This lower level of activity could be associated with deregulation of the transcriptional activity of the RirA iron regulator and higher intracellular iron content. Thus, two S. meliloti Grx proteins are essential for symbiotic nitrogen fixation, playing independent roles in bacterial differentiation and the regulation of iron metabolism.

  5. Site-Specific Ser/Thr/Tyr Phosphoproteome of Sinorhizobium meliloti at Stationary Phase.

    PubMed

    Liu, Tao; Tian, Chang Fu; Chen, Wen Xin

    2015-01-01

    Sinorhizobium meliloti, a facultative microsymbiont of alfalfa, should fine-tune its cellular processes to live saprophytically in soils characterized with limited nutrients and diverse stresses. In this study, TiO2 enrichment and LC-MS/MS were used to uncover the site-specific Ser/Thr/Tyr phosphoproteome of S. meliloti in minimum medium at stationary phase. There are a total of 96 unique phosphorylated sites, with a Ser/Thr/Tyr distribution of 63:28:5, in 77 proteins. Phosphoproteins identified in S. meliloti showed a wide distribution pattern regarding to functional categories, such as replication, transcription, translation, posttranslational modification, transport and metabolism of amino acids, carbohydrate, inorganic ion, succinoglycan etc. Ser/Thr/Tyr phosphosites identified within the conserved motif in proteins of key cellular function indicate a crucial role of phosphorylation in modulating cellular physiology. Moreover, phosphorylation in proteins involved in processes related to rhizobial adaptation was also discussed, such as those identified in SMa0114 and PhaP2 (polyhydroxybutyrate synthesis), ActR (pH stress and microaerobic adaption), SupA (potassium stress), chaperonin GroEL2 (viability and potentially symbiosis), and ExoP (succinoglycan synthesis and secretion). These Ser/Thr/Tyr phosphosites identified herein would be helpful for our further investigation and understanding of the role of phosphorylation in rhizobial physiology.

  6. Proline auxotrophy in Sinorhizobium meliloti results in a plant-specific symbiotic phenotype.

    PubMed

    diCenzo, George C; Zamani, Maryam; Cowie, Alison; Finan, Turlough M

    2015-12-01

    In order to effectively manipulate rhizobium-legume symbioses for our benefit, it is crucial to first gain a complete understanding of the underlying genetics and metabolism. Studies with rhizobium auxotrophs have provided insight into the requirement for amino acid biosynthesis during the symbiosis; however, a paucity of available L-proline auxotrophs has limited our understanding of the role of L-proline biosynthesis. Here, we examined the symbiotic phenotypes of a recently described Sinorhizobium meliloti L-proline auxotroph. Proline auxotrophy was observed to result in a host-plant-specific phenotype. The S. meliloti auxotroph displayed reduced symbiotic capability with alfalfa (Medicago sativa) due to a decrease in nodule mass formed and therefore a reduction in nitrogen fixed per plant. However, the proline auxotroph formed nodules on white sweet clover (Melilotus alba) that failed to fix nitrogen. The rate of white sweet clover nodulation by the auxotroph was slightly delayed, but the final number of nodules per plant was not impacted. Examination of white sweet clover nodules by confocal microscopy and transmission electron microscopy revealed the presence of the S. meliloti proline auxotroph cells within the host legume cells, but few differentiated bacteroids were identified compared with the bacteroid-filled plant cells of WT nodules. Overall, these results indicated that L-proline biosynthesis is a general requirement for a fully effective nitrogen-fixing symbiosis, likely due to a transient requirement during bacteroid differentiation.

  7. ExpR is not required for swarming but promotes sliding in Sinorhizobium meliloti.

    PubMed

    Nogales, Joaquina; Bernabéu-Roda, Lydia; Cuéllar, Virginia; Soto, María J

    2012-04-01

    Swarming is a mode of translocation dependent on flagellar activity that allows bacteria to move rapidly across surfaces. In several bacteria, swarming is a phenotype regulated by quorum sensing. It has been reported that the swarming ability of the soil bacterium Sinorhizobium meliloti Rm2011 requires a functional ExpR/Sin quorum-sensing system. However, our previous published results demonstrate that strains Rm1021 and Rm2011, both known to have a disrupted copy of expR, are able to swarm on semisolid minimal medium. In order to clarify these contradictory results, the role played by the LuxR-type regulator ExpR has been reexamined. Results obtained in this work revealed that S. meliloti can move over semisolid surfaces using at least two different types of motility. One type is flagellum-independent surface spreading or sliding, which is positively influenced by a functional expR gene mainly through the production of exopolysaccharide II (EPS II). To a lesser extent, EPS II-deficient strains can also slide on surfaces by a mechanism that is at least dependent on the siderophore rhizobactin 1021. The second type of surface translocation shown by S. meliloti is swarming, which is greatly dependent on flagella and rhizobactin 1021 but does not require ExpR. We have extended our study to demonstrate that the production of normal amounts of succinoglycan (EPS I) does not play a relevant role in surface translocation but that its overproduction facilitates both swarming and sliding motilities.

  8. Sinorhizobium meliloti chemotaxis to quaternary ammonium compounds is mediated by the chemoreceptor McpX.

    PubMed

    Webb, Benjamin A; Karl Compton, K; Castañeda Saldaña, Rafael; Arapov, Timofey D; Keith Ray, W; Helm, Richard F; Scharf, Birgit E

    2017-01-01

    The bacterium Sinorhizobium meliloti is attracted to seed exudates of its host plant alfalfa (Medicago sativa). Since quaternary ammonium compounds (QACs) are exuded by germinating seeds, we assayed chemotaxis of S. meliloti towards betonicine, choline, glycine betaine, stachydrine and trigonelline. The wild type displayed a positive response to all QACs. Using LC-MS, we determined that each germinating alfalfa seed exuded QACs in the nanogram range. Compared to the closely related nonhost species, spotted medic (Medicago arabica), unique profiles were released. Further assessments of single chemoreceptor deletion strains revealed that an mcpX deletion strain displayed little to no response to these compounds. Differential scanning fluorimetry showed interaction of the isolated periplasmic region of McpX (McpX(PR) and McpX34-306 ) with QACs. Isothermal titration calorimetry experiments revealed tight binding to McpX(PR) with dissociation constants (Kd ) in the nanomolar range for choline and glycine betaine, micromolar Kd for stachydrine and trigonelline and a Kd in the millimolar range for betonicine. Our discovery of S. meliloti chemotaxis to plant-derived QACs adds another role to this group of compounds, which are known to serve as nutrient sources, osmoprotectants and cell-to-cell signalling molecules. This is the first report of a chemoreceptor that mediates QACs taxis through direct binding.

  9. Two new Sinorhizobium meliloti LysR-type transcriptional regulators required for nodulation.

    PubMed

    Luo, Li; Yao, Shi-Yi; Becker, Anke; Rüberg, Silvia; Yu, Guan-Qiao; Zhu, Jia-Bi; Cheng, Hai-Ping

    2005-07-01

    The establishment of an effective nitrogen-fixing symbiosis between Sinorhizobium meliloti and its legume host alfalfa (Medicago sativa) depends on the timely expression of nodulation genes that are controlled by LysR-type regulators. Ninety putative genes coding for LysR-type transcriptional regulators were identified in the recently sequenced S. meliloti genome. All 90 putative lysR genes were mutagenized using plasmid insertions as a first step toward determining their roles in symbiosis. Two new LysR-type symbiosis regulator genes, lsrA and lsrB, were identified in the screening. Both the lsrA and lsrB genes are expressed in free-living S. meliloti cells, but they are not required for cell growth. An lsrA1 mutant was defective in symbiosis and elicited only white nodules that exhibited no nitrogenase activity. Cells of the lsrA1 mutant were recovered from the white nodules, suggesting that the lsrA1 mutant was blocked early in nodulation. An lsrB1 mutant was deficient in symbiosis and elicited a mixture of pink and white nodules on alfalfa plants. These plants exhibited lower overall nitrogenase activity than plants inoculated with the wild-type strain, which is consistent with the fact that most of the alfalfa plants inoculated with the lsrB1 mutant were short and yellow. Cells of the lsrB1 mutant were recovered from both pink and white nodules, suggesting that lsrB1 mutants could be blocked at multiple points during nodulation. The identification of two new LysR-type symbiosis transcriptional regulators provides two new avenues for understanding the complex S. meliloti-alfalfa interactions which occur during symbiosis.

  10. [Root Nodule Bacteria Sinorhizobium meliloti: Tolerance to Salinity and Bacterial Genetic Determinants].

    PubMed

    Roumiantseva, M L; Muntyan, V S

    2015-01-01

    The theoretical and experimental data on salt tolerance of root nodule bacteria Sinorhizobium meliloti (Ensifer meliloti), an alfalfa symbiont, and on genetic determination of this feature are reviewed. Extensive data on the genes affecting adaptation of proteobacteria are provided, as well as on the groups of genes with activity depending on the osmolarity of the medium. Structural and functional polymorphism of the bet genes involved in betaine synthesis and transport in S. meliloti is discussed. The phenotypic and. genotypic polymorphism in 282 environmental rhizobial strains isolated from the centers of alfalfa diversity affected by aridity and salinity is discussed. The isolates from the Aral Sea area and northern Caucasus were shown to possess the betC gene represented by two types of alleles: the dominant A-type allele found in Rm 1021 and the less common divergent E-type allele, which was revealed in regions at the frequencies at the frequencies of 0.35 and 0.48, respectively. In the isolates with the salt-tolerant phenotype, which were isolated from root nodules and subsequently formed less effective symbioses with alfalfa, the frequency of E-type alleles was 2.5 times higher. Analysis of the nucleotide and amino acid sequences of the E-type allele of the betC gene revealed that establishment of this allele in the population was a result of positive selection. It is concluded that diversification of the functionally diverse bet genes occurring in S. meliloti affects the salt tolerance and symbiotic effectivity of rhizobia.

  11. nifH promoter activity is regulated by DNA supercoiling in Sinorhizobium meliloti.

    PubMed

    Liu, Yan-Jie; Hu, Biao; Zhu, Jia-Bi; Shen, Shan-Jiong; Yu, Guan-Qiao

    2005-04-01

    In prokaryotes, DNA supercoiling regulates the expression of many genes; for example, the expression of Klebsiella pneumoniae nifLA operon depends on DNA negative supercoiling in anaerobically grown cells, which indicates that DNA supercoiling might play a role in gene regulation of the anaerobic response. Since the expression of the nifH promoter in Sinorhizobium meliloti is not repressed by oxygen, it is proposed that the status of DNA supercoiling may not affect the expression of the nifH promoter. We tested this hypothesis by analyzing nifH promoter activity in wild-type and gyr- Escherichia coli in the presence and absence of DNA gyrase inhibitors. Our results show that gene expression driven by the S. meliloti nifH promoter requires the presence of active DNA gyrase. Because DNA gyrase increases the number of negative superhelical turns in DNA in the presence of ATP, our data indicate that negative supercoiling is also important for nifH promoter activity. Our study also shows that the DNA supercoiling-dependent S. meliloti nifH promoter activity is related to the trans-acting factors NtrC and NifA that activate it. DNA supercoiling appeared to have a stronger effect on NtrC-activated nifH promoter activity than on NifA-activated promoter activity. Collectively, these results from the S. meliloti nifH promoter model system seem to indicate that, in addition to regulating gene expression during anaerobic signaling, DNA supercoiling may also provide a favorable topology for trans-acting factor binding and promoter activation regardless of oxygen status.

  12. Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti.

    PubMed

    Peck, Melicent C; Fisher, Robert F; Long, Sharon R

    2006-08-01

    NodD1 is a member of the NodD family of LysR-type transcriptional regulators that mediates the expression of nodulation (nod) genes in the soil bacterium Sinorhizobium meliloti. Each species of rhizobia establishes a symbiosis with a limited set of leguminous plants. This host specificity results in part from a NodD-dependent upregulation of nod genes in response to a cocktail of flavonoids in the host plant's root exudates. To demonstrate that NodD is a key determinant of host specificity, we expressed nodD genes from different species of rhizobia in a strain of S. meliloti lacking endogenous NodD activity. We observed that nod gene expression was initiated in response to distinct sets of flavonoid inducers depending on the source of NodD. To better understand the effects of flavonoids on NodD, we assayed the DNA binding activity of S. meliloti NodD1 treated with the flavonoid inducer luteolin. In the presence of luteolin, NodD1 exhibited increased binding to nod gene promoters compared to binding in the absence of luteolin. Surprisingly, although they do not stimulate nod gene expression in S. meliloti, the flavonoids naringenin, eriodictyol, and daidzein also stimulated an increase in the DNA binding affinity of NodD1 to nod gene promoters. In vivo competition assays demonstrate that noninducing flavonoids act as competitive inhibitors of luteolin, suggesting that both inducing and noninducing flavonoids are able to directly bind to NodD1 and mediate conformational changes at nod gene promoters but that only luteolin is capable of promoting the downstream changes necessary for nod gene induction.

  13. Cyclic Di-GMP Regulates Multiple Cellular Functions in the Symbiotic Alphaproteobacterium Sinorhizobium meliloti

    PubMed Central

    Schäper, Simon; Krol, Elizaveta; Skotnicka, Dorota; Kaever, Volkhard; Hilker, Rolf; Søgaard-Andersen, Lotte

    2015-01-01

    ABSTRACT Sinorhizobium meliloti undergoes major lifestyle changes between planktonic states, biofilm formation, and symbiosis with leguminous plant hosts. In many bacteria, the second messenger 3′,5′-cyclic di-GMP (c-di-GMP, or cdG) promotes a sessile lifestyle by regulating a plethora of processes involved in biofilm formation, including motility and biosynthesis of exopolysaccharides (EPS). Here, we systematically investigated the role of cdG in S. meliloti Rm2011 encoding 22 proteins putatively associated with cdG synthesis, degradation, or binding. Single mutations in 21 of these genes did not cause evident changes in biofilm formation, motility, or EPS biosynthesis. In contrast, manipulation of cdG levels by overproducing endogenous or heterologous diguanylate cyclases (DGCs) or phosphodiesterases (PDEs) affected these processes and accumulation of N-Acyl-homoserine lactones in the culture supernatant. Specifically, individual overexpression of the S. meliloti genes pleD, SMb20523, SMb20447, SMc01464, and SMc03178 encoding putative DGCs and of SMb21517 encoding a single-domain PDE protein had an impact and resulted in increased levels of cdG. Compared to the wild type, an S. meliloti strain that did not produce detectable levels of cdG (cdG0) was more sensitive to acid stress. However, it was symbiotically potent, unaffected in motility, and only slightly reduced in biofilm formation. The SMc01790-SMc01796 locus, homologous to the Agrobacterium tumefaciens uppABCDEF cluster governing biosynthesis of a unipolarly localized polysaccharide, was found to be required for cdG-stimulated biofilm formation, while the single-domain PilZ protein McrA was identified as a cdG receptor protein involved in regulation of motility. IMPORTANCE We present the first systematic genome-wide investigation of the role of 3′,5′-cyclic di-GMP (c-di-GMP, or cdG) in regulation of motility, biosynthesis of exopolysaccharides, biofilm formation, quorum sensing, and symbiosis in a

  14. Alkalinity of Lanzarote soils is a factor shaping rhizobial populations with Sinorhizobium meliloti being the predominant microsymbiont of Lotus lancerottensis.

    PubMed

    León-Barrios, Milagros; Pérez-Yépez, Juan; Dorta, Paola; Garrido, Ana; Jiménez, Concepción

    2017-02-02

    Lotus lancerottensis is an endemic species that grows widely throughout Lanzarote Island (Canary Is.). Characterization of 48 strains isolated from root nodules of plants growing in soils from eleven locations on the island showed that 38 isolates (79.1%) belonged to the species Sinorhizobium meliloti, whereas only six belonged to Mesorhizobium sp., the more common microsymbionts for the Lotus. Other genotypes containing only one isolate were classified as Pararhizobium sp., Sinorhizobium sp., Phyllobacterium sp. and Bradyrhizobium-like. Strains of S. meliloti were distributed along the island and, in most of the localities they were exclusive or major microsymbionts of L. lancerottensis. Phylogeny of the nodulation nodC gene placed the S. meliloti strains within symbiovar lancerottense and the mesorhizobial strains with the symbiovar loti. Although strains from both symbiovars produced effective N2-fixing nodules, S. meliloti symbiovar lancerottense was clearly the predominant microsymbiont of L. lancerottensis. This fact correlated with the better adaptation of strains of this species to the alkaline soils of Lanzarote, as in vitro characterization showed that while the mesorhizobial strains were inhibited by alkaline pH, S. meliloti strains grew well at pH 9.

  15. Role of the Sinorhizobium meliloti Global Regulator Hfq in Gene Regulation and Symbiosis

    PubMed Central

    Long, Sharon R.; Teplitski, Max

    2016-01-01

    The RNA-binding protein Hfq is a global regulator which controls diverse cellular processes in bacteria. To begin understanding the role of Hfq in the Sinorhizobium meliloti–Medicago truncatula nitrogen-fixing symbiosis, we defined free-living and symbiotic phenotypes of an hfq mutant. Over 500 transcripts were differentially accumulated in the hfq mutant of S. meliloti Rm1021 when grown in a shaking culture. Consistent with transcriptome-wide changes, the hfq mutant displayed dramatic alterations in metabolism of nitrogen-containing compounds, even though its carbon source utilization profiles were nearly identical to the wild type. The hfq mutant had reduced motility and was impaired for growth at alkaline pH. A deletion of hfq resulted in a reduced symbiotic efficiency, although the mutant was still able to initiate nodule development and differentiate into bacteroids. PMID:20192823

  16. Regulation of fixLJ by Hfq Controls Symbiotically Important Genes in Sinorhizobium meliloti.

    PubMed

    Gao, Mengsheng; Nguyen, Hahn; Salas González, Isai; Teplitski, Max

    2016-11-01

    The RNA-binding chaperone Hfq plays critical roles in the establishment and functionality of the symbiosis between Sinorhizobium meliloti and its legume hosts. A mutation in hfq reduces symbiotic efficiency resulting in a Fix(-) phenotype, characterized by the inability of the bacterium to fix nitrogen. At least in part, this is due to the ability of Hfq to regulate the fixLJ operon, which encodes a sensor kinase-response regulator pair that controls expression of the nitrogenase genes. The ability of Hfq to bind fixLJ in vitro and in planta was demonstrated with gel shift and coimmunoprecipitation experiments. Two (ARN)2 motifs in the fixLJ message were the likely sites through which Hfq exerted its posttranscriptional control. Consistent with the regulatory effects of Hfq, downstream genes controlled by FixLJ (such as nifK, noeB) were also subject to Hfq regulation in planta.

  17. Directed construction and analysis of a Sinorhizobium meliloti pSymA deletion mutant library.

    PubMed

    Yurgel, Svetlana N; Mortimer, Michael W; Rice, Jennifer T; Humann, Jodi L; Kahn, Michael L

    2013-03-01

    Resources from the Sinorhizobium meliloti Rm1021 open reading frame (ORF) plasmid libraries were used in a medium-throughput method to construct a set of 50 overlapping deletion mutants covering all of the Rm1021 pSymA megaplasmid except the replicon region. Each resulting pSymA derivative carried a defined deletion of approximately 25 ORFs. Various phenotypes, including cytochrome c respiration activity, the ability of the mutants to grow on various carbon and nitrogen sources, and the symbiotic effectiveness of the mutants with alfalfa, were analyzed. This approach allowed us to systematically evaluate the potential impact of regions of Rm1021 pSymA for their free-living and symbiotic phenotypes.

  18. Crystallization and preliminary crystallographic studies of the recombinant dihydropyrimidinase from Sinorhizobium meliloti CECT4114

    SciTech Connect

    Martínez-Rodríguez, Sergio; González-Ramírez, Luis Antonio; Clemente-Jiménez, Josefa María; Rodríguez-Vico, Felipe; Las Heras-Vázquez, Francisco Javier; Gavira, Jose A.; García-Ruíz, Juan Manuel

    2006-12-01

    The dihydropyrimidinase from S. meliloti CECT4114, with activity towards both hydantoin and dihydrouracil substrates, was crystallized, and diffraction data were collected to 1.85 Å resolution. Dihydropyrimidinases are involved in the reductive pathway of pyrimidine degradation, catalysing the hydrolysis of 5,6-dihydrouracil and 5,6-dihydrothymine to the corresponding N-carbamoyl β-amino acids. This enzyme has often been referred to as hydantoinase owing to its industrial application in the production of optically pure amino acids starting from racemic mixtures of 5-monosubstituted hydantoins. Recombinant dihydropyrimidinase from Sinorhizobium meliloti CECT4114 (SmelDhp) has been expressed, purified and crystallized. Crystallization was performed using the counter-diffusion method with capillaries of 0.3 mm inner diameter. Crystals of SmelDhp suitable for data collection and structure determination were grown in the presence of agarose at 0.1%(w/v) in order to ensure mass transport controlled by diffusion. X-ray data were collected to a resolution of 1.85 Å. The crystal belongs to the orthorhombic space group C222{sub 1}, with unit-cell parameters a = 124.89, b = 126.28, c = 196.10 Å and two molecules in the asymmetric unit. A molecular-replacement solution has been determined and refinement is in progress.

  19. A symbiotic mutant of Sinorhizobium meliloti reveals a novel genetic pathway involving succinoglycan biosynthetic functions.

    PubMed

    Griffitts, Joel S; Long, Sharon R

    2008-03-01

    A large-scale screen for symbiotic mutants was carried out using the model root nodulating bacterium Sinorhizobium meliloti. Several mutations in the previously uncharacterized gene msbA2 were isolated. msbA2 encodes a member of the ATP-binding cassette exporter family. This protein family is known to export a wide variety of compounds from bacterial cells. S. meliloti MsbA2 is required for the invasion of nodule tissue, with msbA2 mutant cells stimulating nodule primordium morphogenesis, but failing to invade plant tissue beyond the epidermal cell layer. msbA2 mutants do not exhibit any of the free-living traits often found to correlate with symbiotic defects, suggesting that MsbA2 may take part in a specifically symbiotic function. In strains that overproduce the symbiotic signalling polysaccharide succinoglycan, loss of MsbA2 function is extremely deleterious. This synthetic lethal phenotype can be suppressed by disrupting the succinoglycan biosynthetic genes exoY or exoA. It can also be suppressed by disrupting putative glycosyltransferase-encoding genes found upstream of msbA2. Finally, the symbiotic phenotype of a msbA2 null mutant is suppressed by secondary mutations in these upstream transferase genes, indicating that the msbA2 mutant phenotype may be caused by an inhibitory accumulation of a novel polysaccharide that is synthesized from succinoglycan precursors.

  20. Spatiotemporal choreography of chromosome and megaplasmids in the Sinorhizobium meliloti cell cycle.

    PubMed

    Frage, Benjamin; Döhlemann, Johannes; Robledo, Marta; Lucena, Daniella; Sobetzko, Patrick; Graumann, Peter L; Becker, Anke

    2016-06-01

    A considerable share of bacterial species maintains multipartite genomes. Precise coordination of genome replication and segregation with cell growth and division is vital for proliferation of these bacteria. The α-proteobacterium Sinorhizobium meliloti possesses a tripartite genome composed of one chromosome and the megaplasmids pSymA and pSymB. Here, we investigated the spatiotemporal pattern of segregation of these S. meliloti replicons at single cell level. Duplication of chromosomal and megaplasmid origins of replication occurred spatially and temporally separated, and only once per cell cycle. Tracking of FROS (fluorescent repressor operator system)-labelled origins revealed a strict temporal order of segregation events commencing with the chromosome followed by pSymA and then by pSymB. The repA2B2C2 region derived from pSymA was sufficient to confer the spatiotemporal behaviour of this megaplasmid to a small plasmid. Altering activity of the ubiquitous prokaryotic replication initiator DnaA, either positively or negatively, resulted in an increase in replication initiation events or G1 arrest of the chromosome only. This suggests that interference with DnaA activity does not affect replication initiation control of the megaplasmids.

  1. Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome

    PubMed Central

    Mauchline, T. H.; Fowler, J. E.; East, A. K.; Sartor, A. L.; Zaheer, R.; Hosie, A. H. F.; Poole, P. S.; Finan, T. M.

    2006-01-01

    The number of solute-binding protein-dependent transporters in rhizobia is dramatically increased compared with the majority of other bacteria so far sequenced. This increase may be due to the high affinity of solute-binding proteins for solutes, permitting the acquisition of a broad range of growth-limiting nutrients from soil and the rhizosphere. The transcriptional induction of these transporters was studied by creating a suite of plasmid and integrated fusions to nearly all ATP-binding cassette (ABC) and tripartite ATP-independent periplasmic (TRAP) transporters of Sinorhizobium meliloti. In total, specific inducers were identified for 76 transport systems, amounting to ≈47% of the ABC uptake systems and 53% of the TRAP transporters in S. meliloti. Of these transport systems, 64 are previously uncharacterized in Rhizobia and 24 were induced by solutes not known to be transported by ABC- or TRAP-uptake systems in any organism. This study provides a global expression map of one of the largest transporter families (transportome) and an invaluable tool to both understand their solute specificity and the relationships between members of large paralogous families. PMID:17101990

  2. Extracellular polymeric substances from copper-tolerance Sinorhizobium meliloti immobilize Cu²⁺.

    PubMed

    Hou, Wenjie; Ma, Zhanqiang; Sun, Liangliang; Han, Mengsha; Lu, Jianjun; Li, Zhenxiu; Mohamad, Osama Abdalla; Wei, Gehong

    2013-10-15

    The copper tolerance gene of wild-type heavy metal-tolerance Sinorhizobium meliloti CCNWSX0020 was mutated by transposon Tn5-a. The mutant was sensitive up to 1.4mM Cu(2+). Production, components, surface morphology, and functional groups of extracellular polymeric substances (EPS) of the wild-type strains were compared with sensitive mutant in immobilization of Cu(2+). EPS produced by S. meliloti CCNWSX0020 restricts uptake of Cu(2+). The cell wall EPS were categorized based on the compactness and fastness: soluble EPS (S-EPS), loosely bound EPS (LB-EPS), and tightly bound EPS (TB-EPS). LB-EPS played a more important role than S-EPS and TB-EPS in Cu(2+) immobilization. Scanning electron microscopy (SEM) analysis LB-EPS had rough surface and many honeycomb pores, making them conducive to copper entry; therefore, they may play a role as a microbial protective barrier. Fourier transform-infrared (FT-IR) analysis further confirm that proteins and carbohydrates were the main extracellular compounds which had functional groups such as carboxyl (COOH), hydroxyl (OH), and amide (NH), primarily involved in metal ion binding.

  3. Rhizobial galactoglucan determines the predatory pattern of Myxococcus xanthus and protects Sinorhizobium meliloti from predation.

    PubMed

    Pérez, Juana; Jiménez-Zurdo, José I; Martínez-Abarca, Francisco; Millán, Vicenta; Shimkets, Lawrence J; Muñoz-Dorado, José

    2014-07-01

    Myxococcus xanthus is a social bacterium that preys on prokaryotic and eukaryotic microorganisms. Co-culture of M. xanthus with reference laboratory strains and field isolates of the legume symbiont Sinorhizobium meliloti revealed two different predatory patterns that resemble frontal and wolf-pack attacks. Use of mutants impaired in the two types of M. xanthus surface motility (A or adventurous and S or social motility) and a csgA mutant, which is unable to form macroscopic travelling waves known as ripples, has demonstrated that both motility systems but not rippling are required for efficient predation. To avoid frontal attack and reduce killing rates, rhizobial cells require a functional expR gene. ExpR regulates expression of genes involved in a variety of functions. The use of S. meliloti mutants impaired in several of these functions revealed that the exopolysaccharide galactoglucan (EPS II) is the major determinant of the M. xanthus predatory pattern. The data also suggest that this biopolymer confers an ecological advantage to rhizobial survival in soil, which may have broad environmental implications.

  4. [Influence of salt stress on the genetically polymorphic system of Sinorhizobium meliloti-Medicago truncatula].

    PubMed

    Kurchak, O N; Provorov, N A; Onishchuk, O P; Vorobyov, N I; Roumiantseva, M L; Simarov, B V

    2014-07-01

    The impacts of salt stress (75 mM NaC1) on the ecological efficiency of the genetically polymorphic Sinorhizobium meliloti-Medicago truncatula system were studied. Its impact on a symbiotic system results in an increase of the partners' variability for symbiotic traits and of the symbiosis integrity as indicated by: a) the specificity of the partners' interactions--the nonadditive inputs of their genotypes into the variation of symbiotic parameters; and b) the correlative links between these parameters. The structure of the nodDI locus and the content correlates to the efficiency of the symbiosis between S. meliloti and M. truncatula genotypes under stress conditions more sufficiently than in the absence of stress. Correlations between the symbiotic efficiency of rhizobia strains and their growth rate outside symbiosis are expressed under stress conditions, not in the absence of stress. Under salt stress symbiotic effectiveness was decreased for M. truncatula line F83005.5, which was salt sensitive for mineral nutrition. The inhibition of symbiotic activity for this line is linked with decreased nodule formation, whereas for Jemalong 6 and DZA315.16 lines it is associated with repressed N2-fixation. It was demonstrated for the first time that salt stress impairs the M. truncatula habitus (the mass : height ratio increased 2- to 6-fold), which in the salt-resistant cultivar Jemalong 6 is normalized as the result of rhizobia inoculation.

  5. rptA, a novel gene from Ensifer (Sinorhizobium) meliloti involved in conjugal transfer.

    PubMed

    Pistorio, Mariano; Torres Tejerizo, Gonzalo A; Del Papa, María Florencia; Giusti, María de los Angeles; Lozano, Mauricio; Lagares, Antonio

    2013-08-01

    We approached the identification of Ensifer (Sinorhizobium) meliloti conjugal functions by random Tn5-B13 mutagenesis of the pSmeLPU88a plasmid of E. meliloti strain LPU88 and the subsequent selection of those mutants that had lost the ability to mobilize the small plasmid pSmeLPU88b. The Tn5-B13-insertion site of one of the mutants was cloned as an EcoRI-restricted DNA fragment that after subsequent isolation and sequencing demonstrated that a small open reading frame of 522 bp (designated rptA, for rhizobium plasmid transfer A) had been disrupted. The predicted gene product encoded by the rptA sequence shows a significant similarity to two hypothetical proteins of the plasmid pSmed03 of Ensifer medicae WSM419 and other rhizobia plasmids. No significant similarity was found to any protein sequence of known function registered in the databases. Although the rptA gene was required for pSmeLPU88b-plasmid mobilization in the strain 2011 background, it was not required in the original strain LPU88 background.

  6. Functional diversity of five homologous Cu+-ATPases present in Sinorhizobium meliloti.

    PubMed

    Patel, Sarju J; Padilla-Benavides, Teresita; Collins, Jessica M; Argüello, José M

    2014-06-01

    Copper is an important element in host-microbe interactions, acting both as a catalyst in enzymes and as a potential toxin. Cu(+)-ATPases drive cytoplasmic Cu(+) efflux and protect bacteria against metal overload. Many pathogenic and symbiotic bacteria contain multiple Cu(+)-ATPase genes within particular genetic environments, suggesting alternative roles for each resulting protein. This hypothesis was tested by characterizing five homologous Cu(+)-ATPases present in the symbiotic organism Sinorhizobium meliloti. Mutation of each gene led to different phenotypes and abnormal nodule development in the alfalfa host. Distinct responses were detected in free-living S. meliloti mutant strains exposed to metal and redox stresses. Differential gene expression was detected under Cu(+), oxygen or nitrosative stress. These observations suggest that CopA1a maintains the cytoplasmic Cu(+) quota and its expression is controlled by Cu(+) levels. CopA1b is also regulated by Cu(+) concentrations and is required during symbiosis for bacteroid maturation. CopA2-like proteins, FixI1 and FixI2, are necessary for the assembly of two different cytochrome c oxidases at different stages of bacterial life. CopA3 is a phylogenetically distinct Cu(+)-ATPase that does not contribute to Cu(+) tolerance. It is regulated by redox stress and required during symbiosis. We postulated a model where non-redundant homologous Cu(+)-ATPases, operating under distinct regulation, transport Cu(+) to different target proteins.

  7. Purification and characterization of laccase from Sinorhizobium meliloti and analysis of the lacc gene.

    PubMed

    Pawlik, Anna; Wójcik, Magdalena; Rułka, Karol; Motyl-Gorzel, Karolina; Osińska-Jaroszuk, Monika; Wielbo, Jerzy; Marek-Kozaczuk, Monika; Skorupska, Anna; Rogalski, Jerzy; Janusz, Grzegorz

    2016-11-01

    The soil native bacterial strains were screened for laccase activity. Bacterial strain L3.8 with high laccase activity was identified as Sinorhizobium meliloti. The crude intracellular L3.8 enzyme extract was able to oxidize typical diagnostic substrates of plant and fungal laccases. Laccase L3.8 was purified 81-fold with a yield of 19.5%. The molecular mass of the purified bacterial laccase was found to be 70.0kDa and its pI was 4.77. UV-vis spectrum showed that L3.8 protein is a multicopper oxidase. The carbohydrate content of the purified enzyme was estimated at 3.2%. Moreover, the laccase active fraction was characterized in terms of kinetics, temperature, and pH optima as well as the effect of various chemical compounds on the laccase activity, and antioxidant properties, which indicated that the L3.8 laccase had unique properties that might be important in biotechnological applications. The lacc gene encoding S. meliloti laccase was cloned and characterized. The full-length sequence of 1950bp encoded a protein of 649 aa preceded by a signal peptide consisting of 26aa. Laccase L3.8 shared significant structural features characteristic of other laccases, including the conserved regions of four histidine-rich copper-binding sites. Potential biotechnological importance of a newly identified laccase is discussed.

  8. Entropy-driven motility of Sinorhizobium meliloti on a semi-solid surface.

    PubMed

    Dilanji, Gabriel E; Teplitski, Max; Hagen, Stephen J

    2014-06-07

    Sinorhizobium meliloti growing on soft agar can exhibit an unusual surface spreading behaviour that differs from other bacterial surface motilities. Bacteria in the colony secrete an exopolysaccharide-rich mucoid fluid that expands outward on the surface, carrying within it a suspension of actively dividing cells. The moving slime disperses the cells in complex and dynamic patterns indicative of simultaneous bacterial growth, swimming and aggregation. We find that while flagellar swimming is required to maintain the cells in suspension, the spreading and the associated pattern formation are primarily driven by the secreted exopolysaccharide EPS II, which creates two entropy-increasing effects: an osmotic flow of water from the agar to the mucoid fluid and a crowding or depletion attraction between the cells. Activation of these physical/chemical phenomena may be a useful function for the high molecular weight EPS II, a galactoglucan whose biosynthesis is tightly regulated by the ExpR/SinI/SinR quorum-sensing system: unlike bacterial colonies that spread via bacterium-generated, physical propulsive forces, S. meliloti under quorum conditions may use EPS II to activate purely entropic forces within its environment, so that it can disperse by passively 'surfing' on those forces.

  9. Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions.

    PubMed

    Becker, Anke; Bergès, Hélène; Krol, Elizaveta; Bruand, Claude; Rüberg, Silvia; Capela, Delphine; Lauber, Emmanuelle; Meilhoc, Eliane; Ampe, Frédéric; de Bruijn, Frans J; Fourment, Joëlle; Francez-Charlot, Anne; Kahn, Daniel; Küster, Helge; Liebe, Carine; Pühler, Alfred; Weidner, Stefan; Batut, Jacques

    2004-03-01

    Sinorhizobium meliloti is an alpha-proteobacterium that alternates between a free-living phase in bulk soil or in the rhizosphere of plants and a symbiotic phase within the host plant cells, where the bacteria ultimately differentiate into nitrogen-fixing organelle-like cells, called bacteroids. As a step toward understanding the physiology of S. meliloti in its free-living and symbiotic forms and the transition between the two, gene expression profiles were determined under two sets of biological conditions: growth under oxic versus microoxic conditions, and in free-living versus symbiotic state. Data acquisition was based on both macro- and microarrays. Transcriptome profiles highlighted a profound modification of gene expression during bacteroid differentiation, with 16% of genes being altered. The data are consistent with an overall slow down of bacteroid metabolism during adaptation to symbiotic life and acquisition of nitrogen fixation capability. A large number of genes of unknown function, including potential regulators, that may play a role in symbiosis were identified. Transcriptome profiling in response to oxygen limitation indicated that up to 5% of the genes were oxygen regulated. However, the microoxic and bacteroid transcriptomes only partially overlap, implying that oxygen contributes to a limited extent to the control of symbiotic gene expression.

  10. Role of potassium uptake systems in Sinorhizobium meliloti osmoadaptation and symbiotic performance.

    PubMed

    Domínguez-Ferreras, Ana; Muñoz, Socorro; Olivares, José; Soto, María J; Sanjuán, Juan

    2009-04-01

    Stimulation of potassium uptake is the most rapid response to an osmotic upshock in bacteria. This cation accumulates by a number of different transport systems whose importance has not been previously addressed for rhizobia. In silico analyses reveal the presence of genes encoding four possible potassium uptake systems in the genome of Sinorhizobium meliloti 1021: Kup1, Kup2, Trk, and Kdp. The study of the relevance of these systems under a number of different growth conditions and in symbiosis showed that the integrity of Kup1 or Trk is essential for growth under laboratory conditions even in osmotically balanced media and the absence of both systems leads to a reduced infectivity and competitiveness of the bacteria in alfalfa roots. Trk is the main system involved in the accumulation of potassium after an osmotic upshift and the most important system for growth of S. meliloti under hyperosmotic conditions. The other three systems, especially Kup1, are also relevant during the osmotic adaptation of the cell, and the relative importance of the Kdp system increases at low potassium concentrations.

  11. Ferrous iron chelating property of low-molecular weight succinoglycans isolated from Sinorhizobium meliloti.

    PubMed

    Cho, Eunae; Choi, Jae Min; Kim, Hwanhee; Tahir, Muhammad Nazir; Choi, Youngjin; Jung, Seunho

    2013-04-01

    Iron is an essential nutrient for nitrogen-fixing legume root nodules, and the chelation of ferrous iron plays an important role in the mobility and availability of iron to the legume. In the present study, we investigated the iron-binding properties of low-molecular weight succinoglycans isolated from the nitrogen-fixing bacterium, Sinorhizobium meliloti. The low-molecular weight succinoglycans comprising three monomers (M1-M3), four dimers (D1-D4), and six trimers (T1-T6) of the succinoglycan repeating unit were purified by various chromatographic techniques. Interestingly, the colorimetric ferrozine method showed that the succinoglycans T6, M3, and D3 demonstrated a ferrous iron chelating ability of 83, 63, and 38 % per mg, respectively. The individual binding constants were determined as 43703, 2313, and 760 M(-1) for succinoglycans T6, M3, and D3 using ultraviolet-visible spectroscopy. The complexation of succinoglycan and ferrous iron can cause structural changes, which were analyzed by circular dichroism spectroscopy. Furthermore, the complex could provide antioxidant activity through an anti-Fenton reaction. These results demonstrate that the low-molecular weight succinoglycans can effectively modulate iron biochemistry as a novel ferrous iron-acquisition system of S. meliloti.

  12. Construction and Expression of Sugar Kinase Transcriptional Gene Fusions by Using the Sinorhizobium meliloti ORFeome▿

    PubMed Central

    Humann, Jodi L.; Schroeder, Brenda K.; Mortimer, Michael W.; House, Brent L.; Yurgel, Svetlana N.; Maloney, Scott C.; Ward, Kristel L.; Fallquist, Heather M.; Ziemkiewicz, Hope T.; Kahn, Michael L.

    2008-01-01

    The Sinorhizobium meliloti ORFeome project cloned 6,314 open reading frames (ORFs) into a modified Gateway entry vector system from which the ORFs could be transferred to destination vectors in vivo via bacterial conjugation. In this work, a reporter gene destination vector, pMK2030, was constructed and used to generate ORF-specific transcriptional fusions to β-glucuronidase (gusA) and green fluorescent protein (gfp) reporter genes. A total of 6,290 ORFs were successfully transferred from the entry vector library into pMK2030. To demonstrate the utility of this system, reporter plasmids corresponding to 30 annotated sugar kinase genes were integrated into the S. meliloti SM1021 and/or SM8530 genome. Expression of these genes was measured using a high-throughput β-glucuronidase assay to track expression on nine different carbon sources. Six ORFs integrated into SM1021 and SM8530 had different basal levels of expression in the two strains. The annotated activities of three other sugar kinases were also confirmed. PMID:18791020

  13. Entropy-driven motility of Sinorhizobium meliloti on a semi-solid surface

    PubMed Central

    Dilanji, Gabriel E.; Teplitski, Max; Hagen, Stephen J.

    2014-01-01

    Sinorhizobium meliloti growing on soft agar can exhibit an unusual surface spreading behaviour that differs from other bacterial surface motilities. Bacteria in the colony secrete an exopolysaccharide-rich mucoid fluid that expands outward on the surface, carrying within it a suspension of actively dividing cells. The moving slime disperses the cells in complex and dynamic patterns indicative of simultaneous bacterial growth, swimming and aggregation. We find that while flagellar swimming is required to maintain the cells in suspension, the spreading and the associated pattern formation are primarily driven by the secreted exopolysaccharide EPS II, which creates two entropy-increasing effects: an osmotic flow of water from the agar to the mucoid fluid and a crowding or depletion attraction between the cells. Activation of these physical/chemical phenomena may be a useful function for the high molecular weight EPS II, a galactoglucan whose biosynthesis is tightly regulated by the ExpR/SinI/SinR quorum-sensing system: unlike bacterial colonies that spread via bacterium-generated, physical propulsive forces, S. meliloti under quorum conditions may use EPS II to activate purely entropic forces within its environment, so that it can disperse by passively ‘surfing’ on those forces. PMID:24741008

  14. Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in Sinorhizobium meliloti

    PubMed Central

    diCenzo, George C.; Checcucci, Alice; Bazzicalupo, Marco; Mengoni, Alessio; Viti, Carlo; Dziewit, Lukasz; Finan, Turlough M.; Galardini, Marco; Fondi, Marco

    2016-01-01

    The genome of about 10% of bacterial species is divided among two or more large chromosome-sized replicons. The contribution of each replicon to the microbial life cycle (for example, environmental adaptations and/or niche switching) remains unclear. Here we report a genome-scale metabolic model of the legume symbiont Sinorhizobium meliloti that is integrated with carbon utilization data for 1,500 genes with 192 carbon substrates. Growth of S. meliloti is modelled in three ecological niches (bulk soil, rhizosphere and nodule) with a focus on the role of each of its three replicons. We observe clear metabolic differences during growth in the tested ecological niches and an overall reprogramming following niche switching. In silico examination of the inferred fitness of gene deletion mutants suggests that secondary replicons evolved to fulfil a specialized function, particularly host-associated niche adaptation. Thus, genes on secondary replicons might potentially be manipulated to promote or suppress host interactions for biotechnological purposes. PMID:27447951

  15. Inactivation of group II intron RmInt1 in the Sinorhizobium meliloti genome.

    PubMed

    Molina-Sánchez, María Dolores; Toro, Nicolás

    2015-07-09

    Group II introns are self-splicing catalytic RNAs that probably originated in bacteria and act as mobile retroelements. The dispersal and dynamics of group II intron spread within a bacterial genome are thought to follow a selection-driven extinction model. Likewise, various studies on the evolution of group II introns have suggested that they are evolving toward an inactive form by fragmentation, with the loss of the intron 3'-terminus, but with some intron fragments remaining and continuing to evolve in the genome. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti, but some strains of this species have no RmInt1 introns. We studied the splicing ability and mobility of the three full-length RmInt1 copies harbored by S. meliloti 1021, and obtained evidence suggesting that specific mutations may lead to the impairment of intron splicing and retrohoming. Our data suggest that the RmInt1 copies in this strain are undergoing a process of inactivation.

  16. The underlying process of early ecological and genetic differentiation in a facultative mutualistic Sinorhizobium meliloti population.

    PubMed

    Toro, Nicolás; Villadas, Pablo J; Molina-Sánchez, María Dolores; Navarro-Gómez, Pilar; Vinardell, José M; Cuesta-Berrio, Lidia; Rodríguez-Carvajal, Miguel A

    2017-04-06

    The question of how genotypic and ecological units arise and spread in natural microbial populations remains controversial in the field of evolutionary biology. Here, we investigated the early stages of ecological and genetic differentiation in a highly clonal sympatric Sinorhizobium meliloti population. Whole-genome sequencing revealed that a large DNA region of the symbiotic plasmid pSymB was replaced in some isolates with a similar synteny block carrying densely clustered SNPs and displaying gene acquisition and loss. Two different versions of this genomic island of differentiation (GID) generated by multiple genetic exchanges over time appear to have arisen recently, through recombination in a particular clade within this population. In addition, these isolates display resistance to phages from the same geographic region, probably due to the modification of surface components by the acquired genes. Our results suggest that an underlying process of early ecological and genetic differentiation in S. meliloti is primarily triggered by acquisition of genes that confer resistance to soil phages within particular large genomic DNA regions prone to recombination.

  17. Sinorhizobium meliloti chemoreceptor McpU mediates chemotaxis toward host plant exudates through direct proline sensing.

    PubMed

    Webb, Benjamin A; Hildreth, Sherry; Helm, Richard F; Scharf, Birgit E

    2014-06-01

    Bacterial chemotaxis is an important attribute that aids in establishing symbiosis between rhizobia and their legume hosts. Plant roots and seeds exude a spectrum of molecules into the soil to attract their bacterial symbionts. The alfalfa symbiont Sinorhizobium meliloti possesses eight chemoreceptors to sense its environment and mediate chemotaxis toward its host. The methyl accepting chemotaxis protein McpU is one of the more abundant S. meliloti chemoreceptors and an important sensor for the potent attractant proline. We established a dominant role of McpU in sensing molecules exuded by alfalfa seeds. Mass spectrometry analysis determined that a single germinating seed exudes 3.72 nmol of proline, producing a millimolar concentration near the seed surface which can be detected by the chemosensory system of S. meliloti. Complementation analysis of the mcpU deletion strain verified McpU as the key proline sensor. A structure-based homology search identified tandem Cache (calcium channels and chemotaxis receptors) domains in the periplasmic region of McpU. Conserved residues Asp-155 and Asp-182 of the N-terminal Cache domain were determined to be important for proline sensing by evaluating mutant strains in capillary and swim plate assays. Differential scanning fluorimetry revealed interaction of the isolated periplasmic region of McpU (McpU40-284) with proline and the importance of Asp-182 in this interaction. Using isothermal titration calorimetry, we determined that proline binds with a Kd (dissociation constant) of 104 μM to McpU40-284, while binding was abolished when Asp-182 was substituted by Glu. Our results show that McpU is mediating chemotaxis toward host plants by direct proline sensing.

  18. Genetic and biochemical characterization of arginine biosynthesis in Sinorhizobium meliloti 1021.

    PubMed

    Hernández, Victor M; Girard, Lourdes; Hernández-Lucas, Ismael; Vázquez, Alejandra; Ortíz-Ortíz, Catalina; Díaz, Rafael; Dunn, Michael F

    2015-08-01

    L-Ornithine production in the alfalfa microsymbiont Sinorhizobium meliloti occurs as an intermediate step in arginine biosynthesis. Ornithine is required for effective symbiosis but its synthesis in S. meliloti has been little studied. Unlike most bacteria, S. meliloti 1021 is annotated as encoding two enzymes producing ornithine: N-acetylornithine (NAO) deacetylase (ArgE) hydrolyses NAO to acetate and ornithine, and glutamate N-acetyltransferase (ArgJ) transacetylates l-glutamate with the acetyl group from NAO, forming ornithine and N-acetylglutamate (NAG). NAG is the substrate for the second step of arginine biosynthesis catalysed by NAG kinase (ArgB). Inactivation of argB in strain 1021 resulted in arginine auxotrophy. The activity of purified ArgB was significantly inhibited by arginine but not by ornithine. The purified ArgJ was highly active in NAO deacetylation/glutamate transacetylation and was significantly inhibited by ornithine but not by arginine. The purified ArgE protein (with a 6His-Sumo affinity tag) was also active in deacetylating NAO. argE and argJ single mutants, and an argEJ double mutant, are arginine prototrophs. Extracts of the double mutant contained aminoacylase (Ama) activity that deacetylated NAO to form ornithine. The purified products of three candidate ama genes (smc00682 (hipO1), smc02256 (hipO2) and smb21279) all possessed NAO deacetylase activity. hipO1 and hipO2, but not smb21279, expressed in trans functionally complemented an Escherichia coli ΔargE : : Km mutant. We conclude that Ama activity accounts for the arginine prototrophy of the argEJ mutant. Transcriptional assays of argB, argE and argJ, fused to a promoterless gusA gene, showed that their expression was not significantly affected by exogenous arginine or ornithine.

  19. Role of oxyR from Sinorhizobium meliloti in regulating the expression of catalases.

    PubMed

    Luo, Li; Qi, Ming-Sheng; Yao, Shi-Yi; Cheng, Hai-Ping; Zhu, Jia-Bi; Yu, Guan-Qiao

    2005-06-01

    The process of symbiotic nitrogen fixation results in the generation of reactive oxygen species such as the superoxide anion (O2-) and hydrogen peroxide (H2O2). The response of rhizobia to these toxic oxygen species is an important factor in nodulation and nitrogen fixation. In Sinorhizobium meliloti, one oxyR homologue and three catalase genes, katA, katB, and katC were detected by sequence analysis. This oxyR gene is located next to and divergently from katA on the chromosome. To investigate the possible roles of oxyR in regulating the expression of catalases at the transcriptional level in S. meliloti, an insertion mutant of this gene was constructed. The mutant was more sensitive and less adaptive to H2O2 than the wild type strain, and total catalase/peroxidase activity was reduced approximately fourfold with the OxyR mutation relative to controls. The activities of KatA and KatB and the expression of katA::lacZ and katB::lacZ promoter fusions were increased in the mutant strain compared with the parental strain grown in the absence of H2O2, indicating that katA and katB are repressed by OxyR. However, when exposed to H2O2, katA expression was also increased in both S. meliloti and Escherichia coli. When exposed to H2O2, OxyR is converted from a reduced to an oxidized form in E. coli. We concluded that the reduced form of OxyR functions as a repressor of katA and katB expression. Thus, in the presence of H2O2, reduced OxyR is converted to the oxidized form of OxyR that then results in increased katA expression. We further showed that oxyR expression is autoregulated via negative feedback.

  20. Biotin limitation in Sinorhizobium meliloti strain 1021 alters transcription and translation.

    PubMed

    Heinz, Elke B; Streit, Wolfgang R

    2003-02-01

    Most Sinorhizobium meliloti strains lack several key genes involved in microbial biotin biosynthesis, and it is assumed that this may be a special adaptation which allows the microbe to down-regulate metabolic activities in the absence of a host plant. To further explore this hypothesis, we employed two different strategies. (i) Searches of the S. meliloti genome database in combination with the construction of nine different gusA reporter fusions identified three genes involved in a biotin starvation response in this microbe. A gene coding for a protein-methyl carboxyl transferase (pcm) exhibited 13.6-fold-higher transcription under biotin-limiting conditions than cells grown in the presence of 40 nM biotin. Consistent with this observation, biotin-limiting conditions resulted in a significantly decreased survival of pcm mutant cells compared to parental cells or cells grown in the presence of 40 nM biotin. Further studies indicated that the autoinducer synthase gene, sinI, was transcribed at a 4.5-fold-higher level in early stationary phase in biotin-starved cells than in biotin-supplemented cells. Lastly, we observed that open reading frame smc02283, which codes for a putative copper resistance protein (CopC), was 21-fold down-regulated in response to biotin starvation. (ii) In a second approach, proteome analysis identified 10 proteins which were significantly down-regulated under the biotin-limiting conditions. Among the proteins identified by using matrix-assisted laser desorption ionization-time of flight mass spectrometry were the pi subunit of the RNA polymerase and the 50S ribosomal protein L7/L12 (L8) subunit, indicating that biotin-limiting conditions generally affect transcription and translation in S. meliloti.

  1. Expression and regulation of phosphate stress inducible genes in Sinorhizobium meliloti.

    PubMed

    Summers, M L; Elkins, J G; Elliott, B A; McDermott, T R

    1998-11-01

    Sinorhizobium meliloti 104A14 was mutated with transposon Tn5B22, which creates lacZ transcriptional fusions when inserted in the correct orientation relative to the promoter. This promoter reporter allowed us to identify six phosphate stress inducible (psi) genes in S. meliloti that are up-regulated in response to inorganic phosphate (Pi) starvation. The transposon and flanking DNA were cloned from each psi::Tn5B22 reporter mutant and the junction DNA sequenced. High identity/similarity of the inferred peptides with those in major data bases allowed identification of the following genes: dnaK, expC, pssB, ackA, vipC, and prkA. The prkA homolog was also found to be up-regulated in response to carbon starvation and when nitrate replaced ammonium as the nitrogen source. Through allele replacement techniques, PhoB- mutants were generated for the expC, ackA, vipC, and pssB reporter strains. Loss of a functional PhoB resulted in the absence of Pi-sensitive induction in all four genes. These experiments suggest the Pho regulon in S. meliloti includes genes that presumably are not directly linked to Pi acquisition or assimilation. The psi strains were tested for their symbiotic properties under growth conditions that were Pi-limiting or Pi-nonlimiting for the host plant. All were Nod+ and Fix+ except the reporter strain of dnaK transcription, which was less effective than the wild-type strain under both P treatments, indicating DnaK is required for optimum symbiotic function.

  2. An extracytoplasmic function sigma factor acts as a general stress response regulator in Sinorhizobium meliloti.

    PubMed

    Sauviac, Laurent; Philippe, Heinui; Phok, Kounthéa; Bruand, Claude

    2007-06-01

    Sinorhizobium meliloti genes transcriptionally up-regulated after heat stress, as well as upon entry into stationary phase, were identified by microarray analyses. Sixty stress response genes were thus found to be up-regulated under both conditions. One of them, rpoE2 (smc01506), encodes a putative extracytoplasmic function (ECF) sigma factor. We showed that this sigma factor controls its own transcription and is activated by various stress conditions, including heat and salt, as well as entry into stationary phase after either carbon or nitrogen starvation. We also present evidence that the product of the gene cotranscribed with rpoE2 negatively regulates RpoE2 activity, and we therefore propose that it plays the function of anti-sigma factor. By combining transcriptomic, bioinformatic, and quantitative reverse transcription-PCR analyses, we identified 44 RpoE2-controlled genes and predicted the number of RpoE2 targets to be higher. Strikingly, more than one-third of the 60 stress response genes identified in this study are RpoE2 targets. Interestingly, two genes encoding proteins with known functions in stress responses, namely, katC and rpoH2, as well as a second ECF-encoding gene, rpoE5, were found to be RpoE2 regulated. Altogether, these data suggest that RpoE2 is a major global regulator of the general stress response in S. meliloti. Despite these observations, and although this sigma factor is well conserved among alphaproteobacteria, no in vitro nor in planta phenotypic difference from the wild-type strain could be detected for rpoE2 mutants. This therefore suggests that other important actors in the general stress response have still to be identified in S. meliloti.

  3. Sinorhizobium meliloti Chemoreceptor McpU Mediates Chemotaxis toward Host Plant Exudates through Direct Proline Sensing

    PubMed Central

    Webb, Benjamin A.; Hildreth, Sherry; Helm, Richard F.

    2014-01-01

    Bacterial chemotaxis is an important attribute that aids in establishing symbiosis between rhizobia and their legume hosts. Plant roots and seeds exude a spectrum of molecules into the soil to attract their bacterial symbionts. The alfalfa symbiont Sinorhizobium meliloti possesses eight chemoreceptors to sense its environment and mediate chemotaxis toward its host. The methyl accepting chemotaxis protein McpU is one of the more abundant S. meliloti chemoreceptors and an important sensor for the potent attractant proline. We established a dominant role of McpU in sensing molecules exuded by alfalfa seeds. Mass spectrometry analysis determined that a single germinating seed exudes 3.72 nmol of proline, producing a millimolar concentration near the seed surface which can be detected by the chemosensory system of S. meliloti. Complementation analysis of the mcpU deletion strain verified McpU as the key proline sensor. A structure-based homology search identified tandem Cache (calcium channels and chemotaxis receptors) domains in the periplasmic region of McpU. Conserved residues Asp-155 and Asp-182 of the N-terminal Cache domain were determined to be important for proline sensing by evaluating mutant strains in capillary and swim plate assays. Differential scanning fluorimetry revealed interaction of the isolated periplasmic region of McpU (McpU40-284) with proline and the importance of Asp-182 in this interaction. Using isothermal titration calorimetry, we determined that proline binds with a Kd (dissociation constant) of 104 μM to McpU40-284, while binding was abolished when Asp-182 was substituted by Glu. Our results show that McpU is mediating chemotaxis toward host plants by direct proline sensing. PMID:24657863

  4. Sinorhizobium meliloti CpdR1 is critical for co-ordinating cell cycle progression and the symbiotic chronic infection.

    PubMed

    Kobayashi, Hajime; De Nisco, Nicole J; Chien, Peter; Simmons, Lyle A; Walker, Graham C

    2009-08-01

    ATP-driven proteolysis plays a major role in regulating the bacterial cell cycle, development and stress responses. In the nitro -fixing symbiosis with host plants, Sinorhizobium meliloti undergoes a profound cellular differentiation, including endoreduplication of the ome. The regulatory mechanisms governing the alterations of the S. meliloti cell cycle in planta are largely unknown. Here, we report the characterization of two cpdR homologues, cpdR1 and cpdR2, of S. meliloti that encode single-domain response regulators. In Caulobacter crescentus, CpdR controls the polar localization of the ClpXP protease, thereby mediating the regulated proteolysis of key protein(s), such as CtrA, involved in cell cycle progression. The S. meliloti cpdR1-null mutant can invade the host cytoplasm, however, the intracellular bacteria are unable to differentiate into bacteroids. We show that S. meliloti CpdR1 has a polar localization pattern and a role in ClpX positioning similar to C. crescentus CpdR, suggesting a conserved function of CpdR proteins among alpha-proteobacteria. However, in S. meliloti, free-living cells of the cpdR1-null mutant show a striking morphology of irregular coccoids and aberrant DNA replication. Thus, we demonstrate that CpdR1 mediates the co-ordination of cell cycle events, which are critical for both the free-living cell division and the differentiation required for the chronic intracellular infection.

  5. Effect of Microgravity on Sinorhizobium meliloti: Initial Results from the SyNRGE Experiment

    NASA Technical Reports Server (NTRS)

    Roberts, Michael S.; Stutte, Gary W.

    2011-01-01

    SyNRGE (Symbiotic Nodulation in a Reduced Gravity Environment) was a sortie mission on STS-135 in the Biological Research in Canisters (BRIe) hardware to study the effect of microgravity on a plant-microbe symbiosis resulting in biological nitrogen fixation. Medicago truncatula, a model species of the legume family, was innoculated with its bacterial symbiont, Sinorhizobium meliloti, to observe early events associated with infection and nodulation in Petri Dish Fixation Units (PDFUs). Two sets of experiments were conducted in orbit and in 24-hour delayed ground controls. Experiment one was designed to determine if S. meliloti infect M. truncatula and initiate physiological changes associated with nodule formation. Roots of five-day-old M. truncatula cultivar Jemalong A17 (Enodll::gus) were innoculated 24 hr before launch with either S. meliloti strain 1021 or strain ABS7 and integrated into BRIC-PDFU hardware placed in a 4 C Cold Bag for launch on Atlantis. Innoculated plants and uninoculated controls were maintained in the dark at ambient temperature in the middeck of STS-135 for 11 days before fixation in RNA/ate/M by crew activation of the PDFU. Experiment two was designed to determine if microgravity altered the process of bacterial infection and host plant nodule formation. Seeds of two M. truncatula cultivar Jemalong A17 lines, the Enodll::gus used in experiment 1, and SUNN, a super-nodulating mutant of A17, were germinated on orbit for 11 days in the middeck cabin and returned to Earth alive inside of BRIC-PDFU's at 4 C S. meliloti strains 1021 and ABS7 were cultivated separately in broth culture on orbit and also returned to Earth alive. After landing, flight- and ground-grown plants and bacteria were transferred from BRIC-PDFU's into Nunc(TradeMark) 4-well plates for reciprocity crosses. Rates of plant growth and nodule development on Buffered Nodulation Medium (lacking nitrogen) were measured for 14 days. Bacteria cultivated in microgravity in the

  6. Contribution of Individual Chemoreceptors to Sinorhizobium meliloti Chemotaxis Towards Amino Acids of Host and Nonhost Seed Exudates.

    PubMed

    Webb, Benjamin A; Helm, Richard F; Scharf, Birgit E

    2016-03-01

    Plant seeds and roots exude a spectrum of molecules into the soil that attract bacteria to the spermosphere and rhizosphere, respectively. The alfalfa symbiont Sinorhizobium meliloti utilizes eight chemoreceptors (McpT to McpZ and IcpA) to mediate chemotaxis. Using a modified hydrogel capillary chemotaxis assay that allows data quantification and larger throughput screening, we defined the role of S. meliloti chemoreceptors in sensing its host, Medicago sativa, and a closely related nonhost, Medicago arabica. S. meliloti wild type and most single-deletion strains displayed comparable chemotaxis responses to host or nonhost seed exudate. However, while the mcpZ mutant responded like wild type to M. sativa exudate, its reaction to M. arabica exudate was reduced by 80%. Even though the amino acid (AA) amounts released by both plant species were similar, synthetic AA mixtures that matched exudate profiles contributed differentially to the S. meliloti wild-type response to M. sativa (23%) and M. arabica (37%) exudates, with McpU identified as the most important chemoreceptor for AA. Our results show that S. meliloti is equally attracted to host and nonhost legumes; however, AA play a greater role in attraction to M. arabica than to M. sativa, with McpZ being specifically important in sensing M. arabica.

  7. Novel mixed-linkage β-glucan activated by c-di-GMP in Sinorhizobium meliloti

    PubMed Central

    Pérez-Mendoza, Daniel; Rodríguez-Carvajal, Miguel Ángel; Romero-Jiménez, Lorena; Farias, Gabriela de Araujo; Lloret, Javier; Gallegos, María Trinidad; Sanjuán, Juan

    2015-01-01

    An artificial increase of cyclic diguanylate (c-di-GMP) levels in Sinorhizobium meliloti 8530, a bacterium that does not carry known cellulose synthesis genes, leads to overproduction of a substance that binds the dyes Congo red and calcofluor. Sugar composition and methylation analyses and NMR studies identified this compound as a linear mixed-linkage (1→3)(1→4)-β-d-glucan (ML β-glucan), not previously described in bacteria but resembling ML β-glucans found in plants and lichens. This unique polymer is hydrolyzed by the specific endoglucanase lichenase, but, unlike lichenan and barley glucan, it generates a disaccharidic →4)-β-d-Glcp-(1→3)-β-d-Glcp-(1→ repeating unit. A two-gene operon bgsBA required for production of this ML β-glucan is conserved among several genera within the order Rhizobiales, where bgsA encodes a glycosyl transferase with domain resemblance and phylogenetic relationship to curdlan synthases and to bacterial cellulose synthases. ML β-glucan synthesis is subjected to both transcriptional and posttranslational regulation. bgsBA transcription is dependent on the exopolysaccharide/quorum sensing ExpR/SinI regulatory system, and posttranslational regulation seems to involve allosteric activation of the ML β-glucan synthase BgsA by c-di-GMP binding to its C-terminal domain. To our knowledge, this is the first report on a linear mixed-linkage (1→3)(1→4)-β-glucan produced by a bacterium. The S. meliloti ML β-glucan participates in bacterial aggregation and biofilm formation and is required for efficient attachment to the roots of a host plant, resembling the biological role of cellulose in other bacteria. PMID:25650430

  8. The RpiR-like repressor IolR regulates inositol catabolism in Sinorhizobium meliloti.

    PubMed

    Kohler, Petra R A; Choong, Ee-Leng; Rossbach, Silvia

    2011-10-01

    Sinorhizobium meliloti, the nitrogen-fixing symbiont of alfalfa, has the ability to catabolize myo-, scyllo-, and D-chiro-inositol. Functional inositol catabolism (iol) genes are required for growth on these inositol isomers, and they play a role during plant-bacterium interactions. The inositol catabolism genes comprise the chromosomally encoded iolA (mmsA) and the iolY(smc01163)RCDEB genes, as well as the idhA gene located on the pSymB plasmid. Reverse transcriptase assays showed that the iolYRCDEB genes are transcribed as one operon. The iol genes were weakly expressed without induction, but their expression was strongly induced by myo-inositol. The putative transcriptional regulator of the iol genes, IolR, belongs to the RpiR-like repressor family. Electrophoretic mobility shift assays demonstrated that IolR recognized a conserved palindromic sequence (5'-GGAA-N6-TTCC-3') in the upstream regions of the idhA, iolY, iolR, and iolC genes. Complementation assays found IolR to be required for the repression of its own gene and for the downregulation of the idhA-encoded myo-inositol dehydrogenase activity in the presence and absence of inositol. Further expression studies indicated that the late pathway intermediate 2-keto-5-deoxy-D-gluconic acid 6-phosphate (KDGP) functions as the true inducer of the iol genes. The iolA (mmsA) gene encoding methylmalonate semialdehyde dehydrogenase was not regulated by IolR. The S. meliloti iolA (mmsA) gene product seems to be involved in more than only the inositol catabolic pathway, since it was also found to be essential for valine catabolism, supporting its more recent annotation as mmsA.

  9. Population genomics of the facultatively mutualistic bacteria Sinorhizobium meliloti and S. medicae.

    PubMed

    Epstein, Brendan; Branca, Antoine; Mudge, Joann; Bharti, Arvind K; Briskine, Roman; Farmer, Andrew D; Sugawara, Masayuki; Young, Nevin D; Sadowsky, Michael J; Tiffin, Peter

    2012-01-01

    The symbiosis between rhizobial bacteria and legume plants has served as a model for investigating the genetics of nitrogen fixation and the evolution of facultative mutualism. We used deep sequence coverage (>100×) to characterize genomic diversity at the nucleotide level among 12 Sinorhizobium medicae and 32 S. meliloti strains. Although these species are closely related and share host plants, based on the ratio of shared polymorphisms to fixed differences we found that horizontal gene transfer (HGT) between these species was confined almost exclusively to plasmid genes. Three multi-genic regions that show the strongest evidence of HGT harbor genes directly involved in establishing or maintaining the mutualism with host plants. In both species, nucleotide diversity is 1.5-2.5 times greater on the plasmids than chromosomes. Interestingly, nucleotide diversity in S. meliloti but not S. medicae is highly structured along the chromosome - with mean diversity (θ(π)) on one half of the chromosome five times greater than mean diversity on the other half. Based on the ratio of plasmid to chromosome diversity, this appears to be due to severely reduced diversity on the chromosome half with less diversity, which is consistent with extensive hitchhiking along with a selective sweep. Frequency-spectrum based tests identified 82 genes with a signature of adaptive evolution in one species or another but none of the genes were identified in both species. Based upon available functional information, several genes identified as targets of selection are likely to alter the symbiosis with the host plant, making them attractive targets for further functional characterization.

  10. Novel mixed-linkage β-glucan activated by c-di-GMP in Sinorhizobium meliloti.

    PubMed

    Pérez-Mendoza, Daniel; Rodríguez-Carvajal, Miguel Ángel; Romero-Jiménez, Lorena; Farias, Gabriela de Araujo; Lloret, Javier; Gallegos, María Trinidad; Sanjuán, Juan

    2015-02-17

    An artificial increase of cyclic diguanylate (c-di-GMP) levels in Sinorhizobium meliloti 8530, a bacterium that does not carry known cellulose synthesis genes, leads to overproduction of a substance that binds the dyes Congo red and calcofluor. Sugar composition and methylation analyses and NMR studies identified this compound as a linear mixed-linkage (1 → 3)(1 → 4)-β-D-glucan (ML β-glucan), not previously described in bacteria but resembling ML β-glucans found in plants and lichens. This unique polymer is hydrolyzed by the specific endoglucanase lichenase, but, unlike lichenan and barley glucan, it generates a disaccharidic → 4)-β-D-Glcp-(1 → 3)-β-D-Glcp-(1 → repeating unit. A two-gene operon bgsBA required for production of this ML β-glucan is conserved among several genera within the order Rhizobiales, where bgsA encodes a glycosyl transferase with domain resemblance and phylogenetic relationship to curdlan synthases and to bacterial cellulose synthases. ML β-glucan synthesis is subjected to both transcriptional and posttranslational regulation. bgsBA transcription is dependent on the exopolysaccharide/quorum sensing ExpR/SinI regulatory system, and posttranslational regulation seems to involve allosteric activation of the ML β-glucan synthase BgsA by c-di-GMP binding to its C-terminal domain. To our knowledge, this is the first report on a linear mixed-linkage (1 → 3)(1 → 4)-β-glucan produced by a bacterium. The S. meliloti ML β-glucan participates in bacterial aggregation and biofilm formation and is required for efficient attachment to the roots of a host plant, resembling the biological role of cellulose in other bacteria.

  11. Mutations in rpoBC suppress the defects of a Sinorhizobium meliloti relA mutant.

    PubMed

    Wells, Derek H; Long, Sharon R

    2003-09-01

    The nitrogen-fixing symbiosis between Sinorhizobium meliloti and Medicago sativa requires complex physiological adaptation by both partners. One method by which bacteria coordinately control physiological adaptation is the stringent response, which is triggered by the presence of the nucleotide guanosine tetraphosphate (ppGpp). ppGpp, produced by the RelA enzyme, is thought to bind to and alter the ability of RNA polymerase (RNAP) to initiate and elongate transcription and affect the affinity of the core enzyme for various sigma factors. An S. meliloti relA mutant which cannot produce ppGpp was previously shown to be defective in the ability to form nodules. This mutant also overproduces a symbiotically necessary exopolysaccharide called succinoglycan. The work presented here encompasses the analysis of suppressor mutants, isolated from host plants, that suppress the symbiotic defects of the relA mutant. All suppressor mutations are extragenic and map to either rpoB or rpoC, which encode the beta and beta' subunits of RNAP. Phenotypic, structural, and gene expression analyses reveal that suppressor mutants can be divided into two classes; one is specific in its effect on stringent response-regulated genes and shares striking similarity with suppressor mutants of Escherichia coli strains that lack ppGpp, and another reduces transcription of all genes tested in comparison to that in the relA parent strain. Our findings indicate that the ability to successfully establish symbiosis is tightly coupled with the bacteria's ability to undergo global physiological adjustment via the stringent response.

  12. Alfalfa forage digestibility, quality and yield under future climate change scenarios vary with Sinorhizobium meliloti strain.

    PubMed

    Sanz-Sáez, Álvaro; Erice, Gorka; Aguirreolea, Jone; Muñoz, Fernando; Sánchez-Díaz, Manuel; Irigoyen, Juan José

    2012-05-15

    Elevated CO(2) may decrease alfalfa forage quality and in vitro digestibility through a drop in crude protein and an enhancement of fibre content. The aim of the present study was to analyse the effect of elevated CO(2), elevated temperature and Sinorhizobium meliloti strains (102F78, 102F34 and 1032 GMI) on alfalfa yield, forage quality and in vitro dry matter digestibility. This objective is in line with the selection of S. meliloti strains in order to maintain high forage yield and quality under future climate conditions. Plants inoculated with the 102F34 strain showed more DM production than those inoculated with 1032GMI; however, these strains did not show significant differences with 102F78 plants. Neutral or acid detergent fibres were not enhanced in plants inoculated with the 102F34 strain under elevated CO(2) or temperature and hence, in vitro dry matter digestibility was unaffected. Crude protein content, an indicator of forage quality, was negatively related to shoot yield. Plants inoculated with 102F78 showed a similar shoot yield to those inoculated with 102F34, but had higher crude protein content at elevated CO(2) and temperature. Under these climate change conditions, 102F78 inoculated plants produced higher quality forage. However, the higher digestibility of plants inoculated with the 102F34 strain under any CO(2) or temperature conditions makes them more suitable for growing under climate change conditions. In general, elevated CO(2) in combination with high temperature (Climate Change scenario) reduced IVDMD and CP content and enhanced fibre content, which means that animal production will be negatively affected.

  13. Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti

    SciTech Connect

    Galardini, Marco; Mengoni, Alessio; Brilli, Matteo; Pini, Francesco; Fioravanti, Antonella; Lucas, Susan; Lapidus, Alla L.; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Sam; Land, Miriam L; Hauser, Loren John; Woyke, Tanja; Mikhailova, Natalia; Ivanova, N; Daligault, Hajnalka E.; Bruce, David; Detter, J. Chris; Tapia, Roxanne; Han, Cliff; Teshima, Hazuki; Mocali, Stefano; Bazzicalupo, Marco; Biondi, Emanuele

    2011-01-01

    Background: Sinorhizobium meliloti is a model system for the studies of symbiotic nitrogen fixation. An extensive polymorphism at the genetic and phenotypic level is present in natural populations of this species, especially in relation with symbiotic promotion of plant growth. AK83 and BL225C are two nodule-isolated strains with diverse symbiotic phenotypes; BL225C is more efficient in promoting growth of the Medicago sativa plants than strain AK83. In order to investigate the genetic determinants of the phenotypic diversification of S. meliloti strains AK83 and BL225C, we sequenced the complete genomes for these two strains. Results: With sizes of 7.14 Mbp and 6.97 Mbp, respectively, the genomes of AK83 and BL225C are larger than the laboratory strain Rm1021. The core genome of Rm1021, AK83, BL225C strains included 5124 orthologous groups, while the accessory genome was composed by 2700 orthologous groups. While Rm1021 and BL225C have only three replicons (Chromosome, pSymA and pSymB), AK83 has also two plasmids, 260 and 70 Kbp long. We found 65 interesting orthologous groups of genes that were present only in the accessory genome, consequently responsible for phenotypic diversity and putatively involved in plant-bacterium interaction. Notably, the symbiosis inefficient AK83 lacked several genes required for microaerophilic growth inside nodules, while several genes for accessory functions related to competition, plant invasion and bacteroid tropism were identified only in AK83 and BL225C strains. Presence and extent of polymorphism in regulons of transcription factors involved in symbiotic interaction were also analyzed. Our results indicate that regulons are flexible, with a large number of accessory genes, suggesting that regulons polymorphism could also be a key determinant in the variability of symbiotic performances among the analyzed strains.

  14. Population Genomics of the Facultatively Mutualistic Bacteria Sinorhizobium meliloti and S. medicae

    PubMed Central

    Epstein, Brendan; Branca, Antoine; Mudge, Joann; Bharti, Arvind K.; Briskine, Roman; Farmer, Andrew D.; Sugawara, Masayuki; Young, Nevin D.; Sadowsky, Michael J.; Tiffin, Peter

    2012-01-01

    The symbiosis between rhizobial bacteria and legume plants has served as a model for investigating the genetics of nitrogen fixation and the evolution of facultative mutualism. We used deep sequence coverage (>100×) to characterize genomic diversity at the nucleotide level among 12 Sinorhizobium medicae and 32 S. meliloti strains. Although these species are closely related and share host plants, based on the ratio of shared polymorphisms to fixed differences we found that horizontal gene transfer (HGT) between these species was confined almost exclusively to plasmid genes. Three multi-genic regions that show the strongest evidence of HGT harbor genes directly involved in establishing or maintaining the mutualism with host plants. In both species, nucleotide diversity is 1.5–2.5 times greater on the plasmids than chromosomes. Interestingly, nucleotide diversity in S. meliloti but not S. medicae is highly structured along the chromosome – with mean diversity (θπ) on one half of the chromosome five times greater than mean diversity on the other half. Based on the ratio of plasmid to chromosome diversity, this appears to be due to severely reduced diversity on the chromosome half with less diversity, which is consistent with extensive hitchhiking along with a selective sweep. Frequency-spectrum based tests identified 82 genes with a signature of adaptive evolution in one species or another but none of the genes were identified in both species. Based upon available functional information, several genes identified as targets of selection are likely to alter the symbiosis with the host plant, making them attractive targets for further functional characterization. PMID:22876202

  15. Roles of poly-3-hydroxybutyrate (PHB) and glycogen in symbiosis of Sinorhizobium meliloti with Medicago sp.

    PubMed

    Wang, Chunxia; Saldanha, Marsha; Sheng, Xiaoyan; Shelswell, Kristopher J; Walsh, Keith T; Sobral, Bruno W S; Charles, Trevor C

    2007-02-01

    Poly-3-hydroxybutyrate (PHB) and glycogen are major carbon storage compounds in Sinorhizobium meliloti. The roles of PHB and glycogen in rhizobia-legume symbiosis are not fully understood. Glycogen synthase mutations were constructed by in-frame deletion (glgA1) or insertion (glgA2). These mutations were combined with a phbC mutation to make all combinations of double and triple mutants. PHB was not detectable in any of the mutants containing the phbC mutation; glycogen was not detectable in any of the mutants containing the glgA1 mutation. PHB levels were significantly lower in the glgA1 mutant, while glycogen levels were increased in the phbC mutant. Exopolysaccharide (EPS) was not detected in any of the phbC mutants, while the glgA1 and glgA2 mutants produced levels of EPS similar to the wild-type. Symbiotic properties of these strains were investigated on Medicago truncatula and Medicago sativa. The results indicated that the strains unable to synthesize PHB, or glycogen, were still able to form nodules and fix nitrogen. However, phbC mutations caused greater nodule formation delay on M. truncatula than on M. sativa. Time-course studies showed that (1) the ability to synthesize PHB is important for N(2) fixation in M. truncatula nodules and younger M. sativa nodules, and (2) the blocking of glycogen synthesis resulted in lower levels of N(2) fixation on M. truncatula and older nodules on M. sativa. These data have important implications for understanding how PHB and glycogen function in the interactions of S. meliloti with Medicago spp.

  16. Quorum sensing restrains growth and is rapidly inactivated during domestication of Sinorhizobium meliloti.

    PubMed

    Charoenpanich, Pornsri; Soto, Maria J; Becker, Anke; McIntosh, Matthew

    2015-04-01

    Microbial cooperative behaviours, such as quorum sensing (QS), improve survival and this explains their prevalence throughout the microbial world. However, relatively little is known about the mechanisms by which cooperation promotes survival. Furthermore, cooperation typically requires costly contributions, e.g. exopolysaccharides, which are produced from limited resources. Inevitably, cooperation is vulnerable to damaging mutations which results in mutants that are relieved of the burden of contributing but nonetheless benefit from the contributions of their parent. Unless somehow prevented, such mutants may outcompete and replace the parent. The bacterium Sinorhizobium meliloti uses QS to activate the production of copious levels of exopolysaccharide (EPS). Domestication of this bacterium is typified by the appearance of spontaneous mutants incapable of EPS production, which take advantage of EPS production by the parent and outcompete the parent. We found that all of the mutants were defect in QS, implying that loss of QS is a typical consequence of the domestication of this bacterium. This instability was traced to several QS-regulated processes, including a QS-dependent restraint of growth, providing the mutant with a significant growth advantage. A model is proposed whereby QS restrains population growth to prevent overcrowding and prepares the population for the survival of severe conditions.

  17. Hydrogen peroxide-regulated genes in the Medicago truncatula-Sinorhizobium meliloti symbiosis.

    PubMed

    Andrio, Emilie; Marino, Daniel; Marmeys, Anthony; de Segonzac, Marion Dunoyer; Damiani, Isabelle; Genre, Andrea; Huguet, Stéphanie; Frendo, Pierre; Puppo, Alain; Pauly, Nicolas

    2013-04-01

    Reactive oxygen species (ROS), particularly hydrogen peroxide (H(2)O(2)), play an important role in signalling in various cellular processes. The involvement of H(2)O(2) in the Medicago truncatula-Sinorhizobium meliloti symbiotic interaction raises questions about its effect on gene expression. A transcriptome analysis was performed on inoculated roots of M. truncatula in which ROS production was inhibited with diphenylene iodonium (DPI). In total, 301 genes potentially regulated by ROS content were identified 2 d after inoculation. These genes included MtSpk1, which encodes a putative protein kinase and is induced by exogenous H(2)O(2) treatment. MtSpk1 gene expression was also induced by nodulation factor treatment. MtSpk1 transcription was observed in infected root hair cells, nodule primordia and the infection zone of mature nodules. Analysis with a fluorescent protein probe specific for H(2)O(2) showed that MtSpk1 expression and H(2)O(2) were similarly distributed in the nodule infection zone. Finally, the establishment of symbiosis was impaired by MtSpk1 downregulation with an artificial micro-RNA. Several genes regulated by H(2)O(2) during the establishment of rhizobial symbiosis were identified. The involvement of MtSpk1 in the establishment of the symbiosis is proposed.

  18. Genetic redundancy is prevalent within the 6.7 Mb Sinorhizobium meliloti genome.

    PubMed

    diCenzo, George C; Finan, Turlough M

    2015-08-01

    Biological pathways are frequently identified via a genetic loss-of-function approach. While this approach has proven to be powerful, it is imperfect as illustrated by well-studied pathways continuing to have missing steps. One potential limiting factor is the masking of phenotypes through genetic redundancy. The prevalence of genetic redundancy in bacterial species has received little attention, although isolated examples of functionally redundant gene pairs exist. Here, we made use of a strain of Sinorhizobium meliloti whose genome was reduced by 45 % through the complete removal of a megaplasmid and a chromid (3 Mb of the 6.7 Mb genome was removed) to begin quantifying the level of genetic redundancy within a large bacterial genome. A mutagenesis of the strain with the reduced genome identified a set of transposon insertions precluding growth of this strain on minimal medium. Transfer of these mutations to the wild-type background revealed that 10-15 % of these chromosomal mutations were located within duplicated genes, as they did not prevent growth of cells with the full genome. The functionally redundant genes were involved in a variety of metabolic pathways, including central carbon metabolism, transport, and amino acid biosynthesis. These results indicate that genetic redundancy may be prevalent within large bacterial genomes. Failing to account for redundantly encoded functions in loss-of-function studies will impair our understanding of a broad range of biological processes and limit our ability to use synthetic biology in the construction of designer cell factories.

  19. Genetic analysis of signal integration by the Sinorhizobium meliloti sensor kinase FeuQ.

    PubMed

    VanYperen, Ryan D; Orton, Taylor S; Griffitts, Joel S

    2015-02-01

    Two-component signalling systems allow bacteria to recognize and respond to diverse environmental stimuli. Auxiliary proteins can provide an additional layer of control to these systems. The Sinorhizobium meliloti FeuPQ two-component system is required for symbiotic development and is negatively regulated by the auxiliary small periplasmic protein FeuN. This study explores the mechanistic basis of this regulation. We provide evidence that FeuN directly interacts with the sensor kinase FeuQ. Isolation and characterization of an extensive set of FeuN-insensitive and FeuN-mimicking variants of FeuQ reveal specific FeuQ residues (periplasmic and intracellular) that control the transmission of FeuN-specific signalling information. Similar analysis of the FeuN protein highlights short patches of compatibly charged residues on each protein that probably engage one another, giving rise to the downstream effects on target gene expression. The accumulated evidence suggests that the periplasmic interaction between FeuN and FeuQ introduces an intracellular conformational change in FeuQ, resulting in an increase in its ability to remove phosphate from its cognate response regulator FeuP. These observations underline the complex manner in which membrane-spanning sensor kinases interface with the extracytoplasmic environment and convert that information to changes in intracellular processes.

  20. Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation.

    PubMed

    Rinaudi, Luciana; Fujishige, Nancy A; Hirsch, Ann M; Banchio, Erika; Zorreguieta, Angeles; Giordano, Walter

    2006-11-01

    Rhizobia are non-spore-forming soil bacteria that fix atmospheric nitrogen into ammonia in a symbiosis with legume roots. However, in the absence of a legume host, rhizobia manage to survive and hence must have evolved strategies to adapt to diverse environmental conditions. The capacity to respond to variations in nutrient availability enables the persistence of rhizobial species in soil, and consequently improves their ability to colonize and to survive in the host plant. Rhizobia, like many other soil bacteria, persist in nature most likely in sessile communities known as biofilms, which are most often composed of multiple microbial species. We have been employing in vitro assays to study environmental parameters that might influence biofilm formation in the Medicago symbiont Sinorhizobium meliloti. These parameters include carbon source, amount of nitrate, phosphate, calcium and magnesium as well as the effects of osmolarity and pH. The microtiter plate assay facilitates the detection of subtle differences in rhizobial biofilms in response to these parameters, thereby providing insight into how environmental stress or nutritional status influences rhizobial survival. Nutrients such as sucrose, phosphate and calcium enhance biofilm formation as their concentrations increase, whereas extreme temperatures and pH negatively affect biofilm formation.

  1. A Sinorhizobium meliloti osmosensory two-component system required for cyclic glucan export and symbiosis.

    PubMed

    Griffitts, Joel S; Carlyon, Rebecca E; Erickson, Jacob H; Moulton, Jason L; Barnett, Melanie J; Toman, Carol J; Long, Sharon R

    2008-07-01

    screen for novel symbiotic mutants of the nitrogen-fixing legume symbiont Sinorhizobium meliloti uncovered a crucial role for the putative response regulator FeuP in the symbiotic infection process. Transcriptome analysis shows that FeuP controls the transcription of at least 16 genes, including ndvA, which encodes an ATP-dependent exporter of cyclic beta glucans. Loss of feuP function gives rise to traits associated with cyclic beta glucan biosynthetic defects, including poor growth and motility under hypoosmotic conditions, and the inability to invade plant tissue during the early stages of symbiotic infection. Analysis of cyclic glucans indicates that the feuP mutant is able to synthesize intracellular cyclic beta glucans, but is unable to export them. Cyclic beta glucan export can be restored to feuP mutant cells by constitutive expression of ndvA; likewise, the symbiotic phenotype of a feuP mutant is rescued by ectopic ndvA expression. We further show that the linked sensor kinase gene, feuQ, is also important for modulating ndvA transcription, and that signalling through the FeuP/FeuQ pathway is responsive to extracellular osmotic conditions, with low osmolarity stimulating ndvA expression.

  2. The response to nitric oxide of the nitrogen-fixing symbiont Sinorhizobium meliloti.

    PubMed

    Meilhoc, Eliane; Cam, Yvan; Skapski, Agnès; Bruand, Claude

    2010-06-01

    Nitric oxide (NO) is crucial in animal- and plant-pathogen interactions, during which it participates in host defense response and resistance. Indications for the presence of NO during the symbiotic interaction between the model legume Medicago truncatula and its symbiont Sinorhizobium meliloti have been reported but the role of NO in symbiosis is far from being elucidated. Our objective was to understand the role or roles played by NO in symbiosis. As a first step toward this goal, we analyzed the bacterial response to NO in culture, using a transcriptomic approach. We identified approximately 100 bacterial genes whose expression is upregulated in the presence of NO. Surprisingly, most of these genes are regulated by the two-component system FixLJ, known to control the majority of rhizobial genes expressed in planta in mature nodules, or the NO-dedicated regulator NnrR. Among the genes responding to NO is hmp, encoding a putative flavohemoglobin. We report that an hmp mutant displays a higher sensitivity toward NO in culture and leads to a reduced nitrogen fixation efficiency in planta. Because flavohemoglobins are known to detoxify NO in numerous bacterial species, this result is the first indication of the importance of the bacterial NO response in symbiosis.

  3. Analysis of differences between Sinorhizobium meliloti 1021 and 2011 strains using the host calcium spiking response.

    PubMed

    Wais, Rebecca J; Wells, Derek H; Long, Sharon R

    2002-12-01

    In the Rhizobium-legume symbiosis, compatible partners recognize each other through an exchange of signals. Plant inducers act together with bacterial transcriptional activators, the NodD proteins, to regulate the expression of bacterial biosynthetic nodulation (nod) genes. These genes direct the synthesis of a lipochito-oligosaccharide signal called Nod factor (NF). NFs elicit an early host response, root hair calcium spiking, that is initiated in root hair cells within 15 min of NF or live Rhizobium inoculation. We used calcium spiking as an assay to compare two closely related strains of Sinorhizobium meliloti, Rm1021 and Rm2011, derived from the same field isolate. We found that the two strains show a kinetic difference in the calcium spiking assay: Rm1021 elicits calcium spiking in host root hairs as rapidly as purified NF, whereas Rm2011 shows a significant delay. This difference can be overcome by raising expression levels of either the NodD transcriptional activators or GroEL, a molecular chaperone that affects expression of the biosynthetic nod genes. We further demonstrate that the delay in triggering calcium spiking exhibited by Rm2011 is correlated with a reduced amount of nod gene expression compared with Rm1021. Therefore, calcium spiking is a useful tool in detecting subtle differences in bacterial gene expression that affect the early stages of the Rhizobium-legume symbiosis.

  4. Local and systemic proteomic changes in medicago truncatula at an early phase of Sinorhizobium meliloti infection.

    PubMed

    Molesini, Barbara; Cecconi, Daniela; Pii, Youry; Pandolfini, Tiziana

    2014-02-07

    A symbiotic association with N-fixing bacteria facilitates the growth of leguminous plants under nitrogen-limiting conditions. The establishment of the symbiosis requires signal exchange between the host and the bacterium, which leads to the formation of root nodules, inside which bacteria are hosted. The formation of nodules is controlled through local and systemic mechanisms, which involves root-shoot communication. Our study was aimed at investigating the proteomic changes occurring in shoots and concomitantly in roots of Medicago truncatula at an early stage of Sinorhizobium meliloti infection. The principal systemic effects consisted in alteration of chloroplast proteins, induction of proteins responsive to biotic stress, and changes in proteins involved in hormonal signaling and metabolism. The most relevant local effect was the induction of proteins involved in the utilization of photosynthates and C-consuming processes (such as sucrose synthase and fructose-bisphosphate aldolase). In addition, some redox enzymes such as peroxiredoxin and ascorbate peroxidase showed an altered abundance. The analysis of local and systemic proteome changes suggests the occurrence of a stress response in the shoots and the precocious alteration of energy metabolism in roots and shoots. Furthermore, our data indicate the possibility that ABA and ethylene participate in the communicative network between root and shoot in the control of rhizobial infection.

  5. Novel Sinorhizobium meliloti quorum sensing positive and negative regulatory feedback mechanisms respond to phosphate availability.

    PubMed

    McIntosh, Matthew; Meyer, Stefan; Becker, Anke

    2009-12-01

    The Sin quorum sensing system of Sinorhizobium meliloti depends upon at least three genes, sinR, sinI and expR, and N-acyl homoserine lactones (AHLs) as signals to regulate multiple processes in its free-living state in the rhizosphere and in the development towards symbiosis with its plant host. In this study, we have characterized novel mechanisms of transcription control through which the system regulates itself. At low AHL levels a positive feedback loop activates expression of sinI (AHL synthase), resulting in amplification of AHL levels. At high AHL levels, expression of sinI is reduced by a negative feedback loop. These feedback mechanisms are mediated by the LuxR-type regulators ExpR and SinR. Expression of sinR and expR is regulated by ExpR in the presence of AHLs. A novel ExpR binding site in the promoter of sinR is responsible for the reduction of expression of this gene. In addition, expression of sinR, upon which sinI expression is dependent, is induced by phoB during growth under phosphate-limiting conditions. This indicates that this response ensures quorum sensing in phosphate-restricted growth.

  6. Nitric oxide is formed in Medicago truncatula-Sinorhizobium meliloti functional nodules.

    PubMed

    Baudouin, Emmanuel; Pieuchot, Laurent; Engler, Gilbert; Pauly, Nicolas; Puppo, Alain

    2006-09-01

    Nitric oxide (NO) has recently gained interest as a major signaling molecule during plant development and response to environmental cues. Its role is particularly crucial for plant-pathogen interactions, during which it participates in the control of plant defense response and resistance. Indication for the presence of NO during symbiotic interactions has also been reported. Here, we defined when and where NO is produced during Medicago truncatula-Sinorhizobium meliloti symbiosis. Using the NO-specific fluorescent probe 4,5-diaminofluorescein diacetate, NO production was detected by confocal microscopy in functional nodules. NO production was localized in the bacteroid-containing cells of the nodule fixation zone. The infection of Medicago roots with bacterial strains impaired in nitrogenase or nitrite reductase activities lead to the formation of nodules with an unaffected NO level, indicating that neither nitrogen fixation nor denitrification pathways are required for NO production. On the other hand, the NO synthase inhibitor N-methyl-L-arginine impaired NO detection, suggesting that a NO synthase may participate to NO production in nodules. These data indicate that a NO production occurs in functional nodules. The location of such a production in fully metabolically active cells raises the hypothesis of a new function for NO during this interaction unrelated to defense and cell-death activation.

  7. Purification and characterization of pyridoxine 5'-phosphate phosphatase from Sinorhizobium meliloti.

    PubMed

    Tazoe, Masaaki; Ichikawa, Keiko; Hoshino, Tatsuo

    2005-12-01

    Here we report the purification and biochemical characterization of a pyridoxine 5'-phosphate phosphatase involved in the biosynthesis of pyridoxine in Sinorhizobium meliloti. The phosphatase was localized in the cytoplasm and purified to electrophoretic homogeneity by a combination of EDTA/lysozyme treatment and five chromatography steps. Gel-filtration chromatography with Sephacryl S-200 and SDS/PAGE demonstrated that the protein was a monomer with a molecular size of approximately 29 kDa. The protein required divalent metal ions for pyridoxine 5'-phosphate phosphatase activity, and specifically catalyzed the removal of Pi from pyridoxine and pyridoxal 5'-phosphates at physiological pH (about 7.5). It was inactive on pyridoxamine 5'-phosphate and other physiologically important phosphorylated compounds. The enzyme had the same Michaelis constant (K(m)) of 385 muM for pyridoxine and pyridoxal 5'-phosphates, but its specific constant [maximum velocity (V(max))/K(m)] was nearly 2.5 times higher for the former than for the latter.

  8. RirA is the iron response regulator of the rhizobactin 1021 biosynthesis and transport genes in Sinorhizobium meliloti 2011.

    PubMed

    Viguier, Caroline; O Cuív, Páraic; Clarke, Paul; O'Connell, Michael

    2005-05-15

    The genes encoding the biosynthesis and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti, are negatively regulated by iron. Mutagenesis of rirA, the rhizobial iron regulator, resulted in abolition of the iron responsive regulation of the biosynthesis and transport genes. Bioassay analysis revealed that the siderophore is produced in the presence of iron in a rirA mutant. RNA analysis and GFP fusions supported the conclusion that RirA is the mediator of iron-responsive transcriptional repression of the two transcripts encoding the biosynthesis and transport genes. RirA in S. meliloti appears to fulfil the role often observed for Fur in other bacterial species. The regulator was found to mediate the iron-responsive expression of two additional genes, smc02726 and dppA1, repressing the former while activating the latter. The rirA mutant nodulated the host plant Medicago sativa (alfalfa) and fixed nitrogen as effectively as the wild type.

  9. The Sinorhizobium meliloti LysR family transcriptional factor LsrB is involved in regulation of glutathione biosynthesis.

    PubMed

    Lu, Dawei; Tang, Guirong; Wang, Dong; Luo, Li

    2013-10-01

    Glutathione, a key antioxidant in Sinorhizobium meliloti, is required for the development of alfalfa (Medicago sativa) nitrogen-fixing nodules. This tripeptide can be synthesized by both γ-glutamyl cysteine synthetase (GshA) and glutathione synthetase (GshB) in Escherichia coli and S. meliloti. Genetic evidence has indicated that the null mutant of S. meliloti gshA or gshB1 does not establish efficient symbiosis on alfalfa. However, the transcriptional regulation of gshA and gshB has not been well understood. Here, S. meliloti LsrB, a member of LysR family transcriptional factors, was found to positively regulate glutathione biosynthesis by activating the transcription of gshA and gshB1 under both free-living and symbiotic conditions. The decrease in glutathione production in the lsrB in-frame deletion mutant (lsrB1-2) was determined by using quadrupole time-of-flight liquid chromatography-mass spectrometry. The expression of gshA and gshB1 was correspondingly reduced in the mutant under free-living and symbiotic conditions by analyses of real-time quantitative reverse transcription-polymerase chain reaction and promoter-GUS fusions. Interestingly, LsrB positively regulated the transcription of oxyR, which encodes another member of LysR family regulators and responds to oxidative stresses in S. meliloti. The oxyR null mutant produced less glutathione, in which the transcription of gshA was consistently down-regulated. These findings demonstrate that glutathione biosynthesis is positively regulated by both LsrB and OxyR in S. meliloti.

  10. Insights into the history of a bacterial group II intron remnant from the genomes of the nitrogen-fixing symbionts Sinorhizobium meliloti and Sinorhizobium medicae.

    PubMed

    Toro, N; Martínez-Rodríguez, L; Martínez-Abarca, F

    2014-10-01

    Group II introns are self-splicing catalytic RNAs that act as mobile retroelements. In bacteria, they are thought to be tolerated to some extent because they self-splice and home preferentially to sites outside of functional genes, generally within intergenic regions or in other mobile genetic elements, by mechanisms including the divergence of DNA target specificity to prevent target site saturation. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti and was first described in the GR4 strain. Like other bacterial group II introns, RmInt1 tends to evolve toward an inactive form by fragmentation, with loss of the 3' terminus. We identified genomic evidence of a fragmented intron closely related to RmInt1 buried in the genome of the extant S. meliloti/S. medicae species. By studying this intron, we obtained evidence for the occurrence of intron insertion before the divergence of ancient rhizobial species. This fragmented group II intron has thus existed for a long time and has provided sequence variation, on which selection can act, contributing to diverse genetic rearrangements, and to generate pan-genome divergence after strain differentiation. The data presented here suggest that fragmented group II introns within intergenic regions closed to functionally important neighboring genes may have been microevolutionary forces driving adaptive evolution of these rhizobial species.

  11. Glucose 6-phosphate dehydrogenase is required for sucrose and trehalose to be efficient osmoprotectants in Sinorhizobium meliloti.

    PubMed

    Barra, Lise; Pica, Nathalie; Gouffi, Kamila; Walker, Graham C; Blanco, Carlos; Trautwetter, Annie

    2003-12-12

    Inactivation of the zwf gene in Sinorhizobium meliloti induces an osmosensitive phenotype and the loss of osmoprotection by trehalose and sucrose, but not by ectoine and glycine betaine. This phenotype is not linked to a defect in the biosynthesis of endogenous solutes. zwf expression is induced by high osmolarity, sucrose and trehalose, but is repressed by betaine. A zwf mutant is more sensitive than its parental strain to superoxide ions, suggesting that glucose 6-phosphate dehydrogenase involvement in the osmotic response most likely results from the production of reactive oxygen species during osmotic stress.

  12. Molecular Cloning, Purification, and Biochemical Characterization of Hydantoin Racemase from the Legume Symbiont Sinorhizobium meliloti CECT 4114

    PubMed Central

    Martínez-Rodríguez, Sergio; Javier Las Heras-Vázquez, Francisco; Mingorance-Cazorla, Lydia; Clemente-Jiménez, Josefa María; Rodríguez-Vico, Felipe

    2004-01-01

    Hydantoin racemase from Sinorhizobium meliloti was functionally expressed in Escherichia coli. The native form of the enzyme was a homotetramer with a molecular mass of 100 kDa. The optimum temperature and pH for the enzyme were 40°C and 8.5, respectively. The enzyme showed a slight preference for hydantoins with short rather than long aliphatic side chains or those with aromatic rings. Substrates, which showed no detectable activity toward the enzyme, were found to exhibit competitive inhibition. PMID:14711700

  13. Sinorhizobium meliloti flavin secretion and bacteria-host interaction: role of the bifunctional RibBA protein.

    PubMed

    Yurgel, Svetlana N; Rice, Jennifer; Domreis, Elizabeth; Lynch, Joseph; Sa, Na; Qamar, Zeeshan; Rajamani, Sathish; Gao, Mengsheng; Roje, Sanja; Bauer, Wolfgang D

    2014-05-01

    Sinorhizobium meliloti, the nitrogen-fixing bacterial symbiont of Medicago spp. and other legumes, secretes a considerable amount of riboflavin. This precursor of the cofactors flavin mononucleotide and flavin adenine dinucleotide is a bioactive molecule that has a beneficial effect on plant growth. The ribBA gene of S. meliloti codes for a putative bifunctional enzyme with dihydroxybutanone phosphate synthase and guanosine triphosphate (GTP) cyclohydrolase II activities, catalyzing the initial steps of the riboflavin biosynthesis pathway. We show here that an in-frame deletion of ribBA does not cause riboflavin auxotrophy or affect the ability of S. meliloti to establish an effective symbiosis with the host plant but does affect the ability of the bacteria to secrete flavins, colonize host-plant roots, and compete for nodulation. A strain missing the RibBA protein retains considerable GTP cyclohydrolase II activity. Based on these results, we hypothesize that S. meliloti has two partly interchangeable modules for biosynthesis of riboflavin, one fulfilling the internal need for flavins in bacterial metabolism and the other producing riboflavin for secretion. Our data also indicate that bacteria-derived flavins play a role in communication between rhizobia and the legume host and that the RibBA protein is important in this communication process even though it is not essential for riboflavin biosynthesis and symbiosis.

  14. The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti.

    PubMed

    Gonzalez-Rizzo, Silvina; Crespi, Martin; Frugier, Florian

    2006-10-01

    Legumes develop different types of lateral organs from their primary root, lateral roots and nodules, the latter depending on a symbiotic interaction with Sinorhizobium meliloti. Phytohormones have been shown to function in the control of these organogeneses. However, related signaling pathways have not been identified in legumes. We cloned and characterized the expression of Medicago truncatula genes encoding members of cytokinin signaling pathways. RNA interference of the cytokinin receptor homolog Cytokinin Response1 (Mt CRE1) led to cytokinin-insensitive roots, which showed an increased number of lateral roots and a strong reduction in nodulation. Both the progression of S. meliloti infection and nodule primordia formation were affected. We also identified two cytokinin signaling response regulator genes, Mt RR1 and Mt RR4, which are induced early during the symbiotic interaction. Induction of these genes by S. meliloti infection is altered in mutants affected in the Nod factor signaling pathway; conversely, cytokinin regulation of the early nodulin Nodule Inception1 (Mt NIN) depends on Mt CRE1. Hence, cytokinin signaling mediated by a single receptor, Mt CRE1, leads to an opposite control of symbiotic nodule and lateral root organogenesis. Mt NIN, Mt RR1, and Mt RR4 define a common pathway activated during early S. meliloti interaction, allowing crosstalk between plant cytokinins and bacterial Nod factors signals.

  15. 'Ca. Liberibacter asiaticus' proteins orthologous with pSymA-encoded proteins of Sinorhizobium meliloti: hypothetical roles in plant host interation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A nitrogen-fixing alfalfa-nodulating microsymbiont, Sinorhizobium meliloti, has a genome consisting of a 3.5 Mbp circular chromosome and two megaplasmids totaling 3.0 Mbp, one a 1.3 Mbp pSymA carrying nonessential ‘accessory’ genes including nif, nod and others involved in plant interaction. Predict...

  16. Ca. Liberibacter asiaticus genes orthologous with pSymA-borne genes of Sinorhizobium meliloti: suggested roles in eukaryotic host interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Ca. Liberibacter asiaticus,’ is a psyllid-vectored, obligate phytopathogen associated with citrus huanglongbing disease. Sinorhizobium meliloti strain 1021, a nitrogen-fixing, root-nodulating bacterial microsymbiont of alfalfa, has a 3.5 Mbp circular chromosome and two megaplasmids including 1.3 Mb...

  17. Rhizobia from Lanzarote, the Canary Islands, that nodulate Phaseolus vulgars have characteristics in common with Sinorhizobium meliloti isolates from mainland Spain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common bean and Medicago rhizobia isolated from five locations on the island of Lanzarote, the Canary Islands, by partial analysis of 10 chromosomal genes were shown to exhibit close similarity to Sinorhizobium meliloti. Several bean isolates from Lanzarote, mainland Spain and Tunisia nodulated Leu...

  18. Draft genome sequence of Sinorhizobium meliloti CCNWSX0020, a nitrogen-fixing symbiont with copper tolerance capability isolated from lead-zinc mine tailings.

    PubMed

    Li, Zhefei; Ma, Zhanqiang; Hao, Xiuli; Wei, Gehong

    2012-03-01

    Sinorhizobium meliloti CCNWSX0020 was isolated from Medicago lupulina plants growing in lead-zinc mine tailings, which can establish a symbiotic relationship with Medicago species. Also, the genome of this bacterium contains a number of protein-coding sequences related to metal tolerance. We anticipate that the genomic sequence provides valuable information to explore environmental bioremediation.

  19. Contributions of Sinorhizobium meliloti Transcriptional Regulator DksA to Bacterial Growth and Efficient Symbiosis with Medicago sativa

    PubMed Central

    Wippel, Kathrin

    2016-01-01

    ABSTRACT The stringent response, mediated by the (p)ppGpp synthetase RelA and the RNA polymerase-binding protein DksA, is triggered by limiting nutrient conditions. For some bacteria, it is involved in regulation of virulence. We investigated the role of two DksA-like proteins from the Gram-negative nitrogen-fixing symbiont Sinorhizobium meliloti in free-living culture and in interaction with its host plant Medicago sativa. The two paralogs, encoded by the genes SMc00469 and SMc00049, differ in the constitution of two major domains required for function in canonical DksA: the DXXDXA motif at the tip of a coiled-coil domain and a zinc finger domain. Using mutant analyses of single, double, and triple deletions for SMc00469 (designated dksA), SMc00049, and relA, we found that the ΔdksA mutant but not the ΔSMc00049 mutant showed impaired growth on minimal medium, reduced nodulation on the host plant, and lower nitrogen fixation activity in early nodules, while its nod gene expression was normal. The ΔrelA mutant showed severe pleiotropic phenotypes under all conditions tested. Only S. meliloti dksA complemented the metabolic defects of an Escherichia coli dksA mutant. Modifications of the DXXDXA motif in SMc00049 failed to establish DksA function. Our results imply a role for transcriptional regulator DksA in the S. meliloti-M. sativa symbiosis. IMPORTANCE The stringent response is a bacterial transcription regulation process triggered upon nutritional stress. Sinorhizobium meliloti, a soil bacterium establishing agriculturally important root nodule symbioses with legume plants, undergoes constant molecular adjustment during host interaction. Analyzing the components of the stringent response in this alphaproteobacterium helps understand molecular control regarding the development of plant interaction. Using mutant analyses, we describe how the lack of DksA influences symbiosis with Medicago sativa and show that a second paralogous S. meliloti protein cannot

  20. Nuclear magnetic resonance structure and dynamics of the response regulator Sma0114 from Sinorhizobium meliloti.

    PubMed

    Sheftic, Sarah R; Garcia, Preston P; White, Emma; Robinson, Victoria L; Gage, Daniel J; Alexandrescu, Andrei T

    2012-09-04

    Receiver domains control intracellular responses triggered by signal transduction in bacterial two-component systems. Here, we report the solution nuclear magnetic resonance structure and dynamics of Sma0114 from the bacterium Sinorhizobium meliloti, the first such characterization of a receiver domain from the HWE-kinase family of two-component systems. The structure of Sma0114 adopts a prototypical α(5)/β(5) Rossman fold but has features that set it apart from other receiver domains. The fourth β-strand of Sma0114 houses a PFxFATGY sequence motif, common to many HWE-kinase-associated receiver domains. This sequence motif in Sma0114 may substitute for the conserved Y-T coupling mechanism, which propagates conformational transitions in the 455 (α4-β5-α5) faces of receiver domains, to prime them for binding downstream effectors once they become activated by phosphorylation. In addition, the fourth α-helix of the consensus 455 face in Sma0114 is replaced with a segment that shows high flexibility on the pico- to nanosecond time scale by (15)N relaxation data. Secondary structure prediction analysis suggests that the absence of helix α4 may be a conserved property of the HWE-kinase-associated family of receiver domains to which Sma0114 belongs. In spite of these differences, Sma0114 has a conserved active site, binds divalent metal ions such as Mg(2+) and Ca(2+) that are required for phosphorylation, and exhibits micro- to millisecond active-site dynamics similar to those of other receiver domains. Taken together, our results suggest that Sma0114 has a conserved active site but differs from typical receiver domains in the structure of the 455 face that is used to effect signal transduction following activation.

  1. Cyclic mononucleotide- and Clr-dependent gene regulation in Sinorhizobium meliloti.

    PubMed

    Krol, Elizaveta; Klaner, Christina; Gnau, Petra; Kaever, Volkhard; Essen, Lars-Oliver; Becker, Anke

    2016-10-01

    To identify physiological processes affected by cAMP in the plant-symbiotic nitrogen-fixing α-proteobacterium Sinorhizobium meliloti Rm2011, cAMP levels were artificially increased by overexpression of its cognate adenylate/guanylate cyclase gene cyaJ. This resulted in high accumulation of cAMP in the culture supernatant, decreased swimming motility and increased production of succinoglycan, an exopolysaccharide involved in host invasion. Weaker, similar phenotypic changes were induced by overexpression of cyaB and cyaG1. Effects on swimming motility and succinoglycan production were partially dependent on clr encoding a cyclic AMP receptor-like protein. Transcriptome profiling of an cyaJ-overexpressing strain identified 72 upregulated and 82 downregulated genes. A considerable number of upregulated genes are related to polysaccharide biosynthesis and osmotic stress response. These included succinoglycan biosynthesis genes, genes of the putative polysaccharide synthesis nodP2-exoF3 cluster and feuN, the first gene of the operon encoding the FeuNPQ regulatory system. Downregulated genes were mostly related to respiration, central metabolism and swimming motility. Promoter-probe studies in the presence of externally added cAMP revealed 18 novel Clr-cAMP-regulated genes. Moreover, the addition of cGMP into the growth medium also promoted clr-dependent gene regulation. In vitro binding of Clr-cAMP and Clr-cGMP to the promoter regions of SMc02178, SMb20906,SMc04190, SMc00925, SMc01136 and cyaF2 required the DNA motif (A/C/T)GT(T/C)(T/C/A)C (N4) G(G/A)(T/A)ACA. Furthermore, SMc02178, SMb20906,SMc04190and SMc00653 promoters were activated by Clr-cAMP/cGMP in Escherichia coli as heterologous host. These findings suggest direct activation of these 7 genes by Clr-cAMP/cGMP.

  2. The Plasmid Mobilome of the Model Plant-Symbiont Sinorhizobium meliloti: Coming up with New Questions and Answers.

    PubMed

    Lagares, Antonio; Sanjuán, Juan; Pistorio, Mariano

    2014-10-01

    Rhizobia are Gram-negative Alpha- and Betaproteobacteria living in the underground which have the ability to associate with legumes for the establishment of nitrogen-fixing symbioses. Sinorhizobium meliloti in particular-the symbiont of Medicago, Melilotus, and Trigonella spp.-has for the past decades served as a model organism for investigating, at the molecular level, the biology, biochemistry, and genetics of a free-living and symbiotic soil bacterium of agricultural relevance. To date, the genomes of seven different S. meliloti strains have been fully sequenced and annotated, and several other draft genomic sequences are also available. The vast amount of plasmid DNA that S. meliloti frequently bears (up to 45% of its total genome), the conjugative ability of some of those plasmids, and the extent of the plasmid diversity has provided researchers with an extraordinary system to investigate functional and structural plasmid molecular biology within the evolutionary context surrounding a plant-associated model bacterium. Current evidence indicates that the plasmid mobilome in S. meliloti is composed of replicons varying greatly in size and having diverse conjugative systems and properties along with different evolutionary stabilities and biological roles. While plasmids carrying symbiotic functions (pSyms) are known to have high structural stability (approaching that of chromosomes), the remaining plasmid mobilome (referred to as the non-pSym, functionally cryptic, or accessory compartment) has been shown to possess remarkable diversity and to be highly active in conjugation. In light of the modern genomic and current biochemical data on the plasmids of S. meliloti, the current article revises their main structural components, their transfer and regulatory mechanisms, and their potential as vehicles in shaping the evolution of the rhizobial genome.

  3. ExpR coordinates the expression of symbiotically important, bundle-forming Flp pili with quorum sensing in Sinorhizobium meliloti.

    PubMed

    Zatakia, Hardik M; Nelson, Cassandra E; Syed, Umair J; Scharf, Birgit E

    2014-04-01

    Type IVb pili in enteropathogenic bacteria function as a host colonization factor by mediating tight adherence to host cells, but their role in bacterium-plant symbiosis is currently unknown. The genome of the symbiotic soil bacterium Sinorhizobium meliloti contains two clusters encoding proteins for type IVb pili of the Flp (fimbrial low-molecular-weight protein) subfamily. To establish the role of Flp pili in the symbiotic interaction of S. meliloti and its host, Medicago sativa, we deleted pilA1, which encodes the putative pilin subunit in the chromosomal flp-1 cluster and conducted competitive nodulation assays. The pilA1 deletion strain formed 27% fewer nodules than the wild type. Transmission electron microscopy revealed the presence of bundle-forming pili protruding from the polar and lateral region of S. meliloti wild-type cells. The putative pilus assembly ATPase CpaE1 fused to mCherry showed a predominantly unilateral localization. Transcriptional reporter gene assays demonstrated that expression of pilA1 peaks in early stationary phase and is repressed by the quorum-sensing regulator ExpR, which also controls production of exopolysaccharides and motility. Binding of acyl homoserine lactone-activated ExpR to the pilA1 promoter was confirmed with electrophoretic mobility shift assays. A 17-bp consensus sequence for ExpR binding was identified within the 28-bp protected region by DNase I footprinting analyses. Our results show that Flp pili are important for efficient symbiosis of S. meliloti with its plant host. The temporal inverse regulation of exopolysaccharides and pili by ExpR enables S. meliloti to achieve a coordinated expression of cellular processes during early stages of host interaction.

  4. Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant.

    PubMed

    Jones, Kathryn M; Sharopova, Natalya; Lohar, Dasharath P; Zhang, Jennifer Q; VandenBosch, Kathryn A; Walker, Graham C

    2008-01-15

    Sinorhizobium meliloti forms symbiotic, nitrogen-fixing nodules on the roots of Medicago truncatula. The bacteria invade and colonize the roots through structures called infection threads. S. meliloti unable to produce the exopolysaccharide succinoglycan are unable to establish a symbiosis because they are defective in initiating the production of infection threads and in invading the plant. Here, we use microarrays representing 16,000 M. truncatula genes to compare the differential transcriptional responses of this host plant to wild-type and succinoglycan-deficient S. meliloti at the early time point of 3 days postinoculation. This report describes an early divergence in global plant gene expression responses caused by a rhizobial defect in succinoglycan production, rather than in Nod factor production. The microarray data show that M. truncatula inoculated with wild-type, succinoglycan-producing S. meliloti more strongly express genes encoding translation components, protein degradation machinery, and some nodulins than plants inoculated with succinoglycan-deficient bacteria. This finding is consistent with wild-type-inoculated plants having received a signal, distinct from the well characterized Nod factor, to alter their metabolic activity and prepare for invasion. In contrast, M. truncatula inoculated with succinoglycan-deficient S. meliloti more strongly express an unexpectedly large number of genes in two categories: plant defense responses and unknown functions. One model consistent with our results is that appropriate symbiotically active exopolysaccharides act as signals to plant hosts to initiate infection thread formation and that, in the absence of this signal, plants terminate the infection process, perhaps via a defense response.

  5. l-Hydroxyproline and d-Proline Catabolism in Sinorhizobium meliloti

    PubMed Central

    Chen, Siyun; White, Catharine E.; diCenzo, George C.; Zhang, Ye; Stogios, Peter J.; Savchenko, Alexei

    2016-01-01

    ABSTRACT Sinorhizobium meliloti forms N2-fixing root nodules on alfalfa, and as a free-living bacterium, it can grow on a very broad range of substrates, including l-proline and several related compounds, such as proline betaine, trans-4-hydroxy-l-proline (trans-4-l-Hyp), and cis-4-hydroxy-d-proline (cis-4-d-Hyp). Fourteen hyp genes are induced upon growth of S. meliloti on trans-4-l-Hyp, and of those, hypMNPQ encodes an ABC-type trans-4-l-Hyp transporter and hypRE encodes an epimerase that converts trans-4-l-Hyp to cis-4-d-Hyp in the bacterial cytoplasm. Here, we present evidence that the HypO, HypD, and HypH proteins catalyze the remaining steps in which cis-4-d-Hyp is converted to α-ketoglutarate. The HypO protein functions as a d-amino acid dehydrogenase, converting cis-4-d-Hyp to Δ1-pyrroline-4-hydroxy-2-carboxylate, which is deaminated by HypD to α-ketoglutarate semialdehyde and then converted to α-ketoglutarate by HypH. The crystal structure of HypD revealed it to be a member of the N-acetylneuraminate lyase subfamily of the (α/β)8 protein family and is consistent with the known enzymatic mechanism for other members of the group. It was also shown that S. meliloti can catabolize d-proline as both a carbon and a nitrogen source, that d-proline can complement l-proline auxotrophy, and that the catabolism of d-proline is dependent on the hyp cluster. Transport of d-proline involves the HypMNPQ transporter, following which d-proline is converted to Δ1-pyrroline-2-carboxylate (P2C) largely via HypO. The P2C is converted to l-proline through the NADPH-dependent reduction of P2C by the previously uncharacterized HypS protein. Thus, overall, we have now completed detailed genetic and/or biochemical characterization of 9 of the 14 hyp genes. IMPORTANCE Hydroxyproline is abundant in proteins in animal and plant tissues and serves as a carbon and a nitrogen source for bacteria in diverse environments, including the rhizosphere, compost, and the mammalian gut

  6. Ectoine-induced proteins in Sinorhizobium meliloti include an Ectoine ABC-type transporter involved in osmoprotection and ectoine catabolism.

    PubMed

    Jebbar, Mohamed; Sohn-Bösser, Linda; Bremer, Erhard; Bernard, Théophile; Blanco, Carlos

    2005-02-01

    To understand the mechanisms of ectoine-induced osmoprotection in Sinorhizobium meliloti, a proteomic examination of S. meliloti cells grown in minimal medium supplemented with ectoine was undertaken. This revealed the induction of 10 proteins. The protein products of eight genes were identified by using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Five of these genes, with four other genes whose products were not detected on two-dimensional gels, belong to the same gene cluster, which is localized on the pSymB megaplasmid. Four of the nine genes encode the characteristic components of an ATP-binding cassette transporter that was named ehu, for ectoine/hydroxyectoine uptake. This transporter was encoded by four genes (ehuA, ehuB, ehuC, and ehuD) that formed an operon with another gene cluster that contains five genes, named eutABCDE for ectoine utilization. On the basis of sequence homologies, eutABCDE encode enzymes with putative and hypothetical functions in ectoine catabolism. Analysis of the properties of ehuA and eutA mutants suggests that S. meliloti possesses at least one additional ectoine catabolic pathway as well as a lower-affinity transport system for ectoine and hydroxyectoine. The expression of ehuB, as determined by measurements of UidA activity, was shown to be induced by ectoine and hydroxyectoine but not by glycine betaine or by high osmolality.

  7. The outer membrane protein TolC from Sinorhizobium meliloti affects protein secretion, polysaccharide biosynthesis, antimicrobial resistance, and symbiosis.

    PubMed

    Cosme, Ana M; Becker, Anke; Santos, Mário R; Sharypova, Larissa A; Santos, Pedro M; Moreira, Leonilde M

    2008-07-01

    Sinorhizobium meliloti is capable of establishing a symbiotic nitrogen fixation relationship with Medicago sativa. During this process, it must cope with diverse environments and has evolved different types of transport systems that help its propagation in the plant roots. TolC protein family members are the outer-membrane components of several transport systems involved in the export of diverse molecules, playing an important role in bacterial survival. In this work, we have characterized the protein TolC from S. meliloti 2011. An insertional mutation in the tolC gene strongly affected the resistance phenotype to antimicrobial agents and induced higher susceptibility to osmotic and oxidative stresses. Immunodetection experiments and comparison of the extracellular proteins present in the supernatant of the wild-type versus tolC mutant strains showed that the calcium-binding protein ExpE1, the endoglycanase ExsH, and the product of open reading frame SMc04171, a putative hemolysin-type calcium-binding protein, are secreted by a TolC-dependent secretion system. In the absence of TolC, neither succinoglycan nor galactoglucan were detected in the culture supernatant. Moreover, S. meliloti tolC mutant induced a reduced number of nonfixing nitrogen nodules in M. sativa roots. Taken together, our results confirm the importance of TolC in protein secretion, exopolysaccharide biosynthesis, antimicrobials resistance, and symbiosis.

  8. Transient Accumulation of Glycine Betaine and Dynamics of Endogenous Osmolytes in Salt-Stressed Cultures of Sinorhizobium meliloti

    PubMed Central

    Talibart, R.; Jebbar, M.; Gouffi, K.; Pichereau, V.; Gouesbet, G.; Blanco, C.; Bernard, T.; Pocard, J.

    1997-01-01

    The fate of exogenously supplied glycine betaine and the dynamics of endogenous osmolytes were investigated throughout the growth cycle of salt-stressed cultures of strains of Sinorhizobium meliloti which differ in their ability to use glycine betaine as a growth substrate, but not as an osmoprotectant. We present (sup13)C nuclear magnetic resonance spectral and radiotracer evidence which demonstrates that glycine betaine is only transiently accumulated as a cytoplasmic osmolyte in young cultures of wild-type strains 102F34 and RCR2011. Specifically, these strains accumulate glycine betaine as a preferred osmolyte which virtually prevents the accumulation of endogenous osmolytes during the lag and early exponential phases of growth. Then, betaine levels in stressed cells decrease abruptly during the second half of the exponential phase. At this stage, the levels of glutamate and the dipeptide N-acetylglutaminylglutamine amide increase sharply so that the two endogenous solutes supplant glycine betaine in the ageing culture, in which it becomes a minor osmolyte because it is progressively catabolized. Ultimately, glycine betaine disappears when stressed cells reach the stationary phase. At this stage, wild-type strains of S. meliloti also accumulate the disaccharide trehalose as a third major endogenous osmolyte. By contrast, glycine betaine is always the dominant osmolyte and strongly suppresses the buildup of endogenous osmolytes at all stages of the growth cycle of a mutant strain, S. meliloti GMI766, which does not catabolize this exogenous osmoprotectant under any growth conditions. PMID:16535748

  9. Identification of a TRAP transporter for malonate transport and its expression regulated by GtrA from Sinorhizobium meliloti.

    PubMed

    Chen, Ai-Min; Wang, Yong-Bao; Jie, Sun; Yu, Ai-Yuan; Luo, Li; Yu, Guan-Qiao; Zhu, Jia-Bi; Wang, Yan-Zhang

    2010-09-01

    Sinorhizobium meliloti can live as a saprophyte in soil or as a nitrogen-fixing symbiont inside the root nodule cells of alfalfa and related legumes by utilizing different organic compounds as its carbon source. Here we have identified the matPQMAB operon in S. meliloti 1021. Within this operon, matP, matQ and the M region of the fused gene matMA encode an extracytoplasmic solute receptor, a small transmembrane protein and a large transmembrane protein, consisting of three components of the tripartite ATP-independent periplasmic (TRAP) transporter for malonate transport. The A region of the fused gene matMA and matB encode malonate-metabolizing enzymes, malonyl-CoA decarboxylase and malonyl-CoA synthetase. The null mutant of each matPQMAB gene is unable to grow on M9 minimal medium containing malonate as the sole carbon source. However, these mutants can induce the formation of efficient nitrogen-fixing root nodules on alfalfa. The matPQMAB operon is expressed in free-living bacterial cells and symbiotic bacterial cells from infection threads and root nodules. The GntR family transcriptional regulator, GtrA, specifically binds the promoter of the matPQMAB operon, positively regulating its expression. Moreover, the matPQMAB can be transcriptionally induced by malonate. These results suggested that a C(3)-dicarboxylic acid TRAP transporter is responsible for malonate transport in S. meliloti.

  10. The Sinorhizobium meliloti ntrX gene is involved in succinoglycan production, motility, and symbiotic nodulation on alfalfa.

    PubMed

    Wang, Dong; Xue, Haiying; Wang, Yiwen; Yin, Ruochun; Xie, Fang; Luo, Li

    2013-12-01

    Rhizobia establish a symbiotic relationship with their host legumes to induce the formation of nitrogen-fixing nodules. This process is regulated by many rhizobium regulators, including some two-component regulatory systems (TCSs). NtrY/NtrX, a TCS that was first identified in Azorhizobium caulinodans, is required for free-living nitrogen metabolism and symbiotic nodulation on Sesbania rostrata. However, its functions in a typical rhizobium such as Sinorhizobium meliloti remain unclear. Here we found that the S. meliloti response regulator NtrX but not the histidine kinase NtrY is involved in the regulation of exopolysaccharide production, motility, and symbiosis with alfalfa. A plasmid insertion mutant of ntrX formed mucous colonies, which overproduced succinoglycan, an exopolysaccharide, by upregulating its biosynthesis genes. This mutant also exhibited motility defects due to reduced flagella and decreased expression of flagellins and regulatory genes. The regulation is independent of the known regulatory systems of ExoR/ExoS/ChvI, EmmABC, and ExpR. Alfalfa plants inoculated with the ntrX mutant were small and displayed symptoms of nitrogen starvation. Interestingly, the deletion mutant of ntrY showed a phenotype similar to that of the parent strain. These findings demonstrate that the S. meliloti NtrX is a new regulator of succinoglycan production and motility that is not genetically coupled with NtrY.

  11. Partial complementation of Sinorhizobium meliloti bacA mutant phenotypes by the Mycobacterium tuberculosis BacA protein.

    PubMed

    Arnold, M F F; Haag, A F; Capewell, S; Boshoff, H I; James, E K; McDonald, R; Mair, I; Mitchell, A M; Kerscher, B; Mitchell, T J; Mergaert, P; Barry, C E; Scocchi, M; Zanda, M; Campopiano, D J; Ferguson, G P

    2013-01-01

    The Sinorhizobium meliloti BacA ABC transporter protein plays an important role in its nodulating symbiosis with the legume alfalfa (Medicago sativa). The Mycobacterium tuberculosis BacA homolog was found to be important for the maintenance of chronic murine infections, yet its in vivo function is unknown. In the legume plant as well as in the mammalian host, bacteria encounter host antimicrobial peptides (AMPs). We found that the M. tuberculosis BacA protein was able to partially complement the symbiotic defect of an S. meliloti BacA-deficient mutant on alfalfa plants and to protect this mutant in vitro from the antimicrobial activity of a synthetic legume peptide, NCR247, and a recombinant human β-defensin 2 (HBD2). This finding was also confirmed using an M. tuberculosis insertion mutant. Furthermore, M. tuberculosis BacA-mediated protection of the legume symbiont S. meliloti against legume defensins as well as HBD2 is dependent on its attached ATPase domain. In addition, we show that M. tuberculosis BacA mediates peptide uptake of the truncated bovine AMP, Bac7(1-16). This process required a functional ATPase domain. We therefore suggest that M. tuberculosis BacA is important for the transport of peptides across the cytoplasmic membrane and is part of a complete ABC transporter. Hence, BacA-mediated protection against host AMPs might be important for the maintenance of latent infections.

  12. The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula.

    PubMed

    Tellström, Verena; Usadel, Björn; Thimm, Oliver; Stitt, Mark; Küster, Helge; Niehaus, Karsten

    2007-02-01

    In the establishment of symbiosis between Medicago truncatula and the nitrogen-fixing bacterium Sinorhizobium meliloti, the lipopolysaccharide (LPS) of the microsymbiont plays an important role as a signal molecule. It has been shown in cell cultures that the LPS is able to suppress an elicitor-induced oxidative burst. To investigate the effect of S. meliloti LPS on defense-associated gene expression, a microarray experiment was performed. For evaluation of the M. truncatula microarray datasets, the software tool MapMan, which was initially developed for the visualization of Arabidopsis (Arabidopsis thaliana) datasets, was adapted by assigning Medicago genes to the ontology originally created for Arabidopsis. This allowed functional visualization of gene expression of M. truncatula suspension-cultured cells treated with invertase as an elicitor. A gene expression pattern characteristic of a defense response was observed. Concomitant treatment of M. truncatula suspension-cultured cells with invertase and S. meliloti LPS leads to a lower level of induction of defense-associated genes compared to induction rates in cells treated with invertase alone. This suppression of defense-associated transcriptional rearrangement affects genes induced as well as repressed by elicitation and acts on transcripts connected to virtually all kinds of cellular processes. This indicates that LPS of the symbiont not only suppresses fast defense responses as the oxidative burst, but also exerts long-term influences, including transcriptional adjustment to pathogen attack. These data indicate a role for LPS during infection of the plant by its symbiotic partner.

  13. The Sinorhizobium meliloti sensor histidine kinase CbrA contributes to free-living cell cycle regulation.

    PubMed

    Sadowski, Craig S; Wilson, Daniel; Schallies, Karla B; Walker, Graham; Gibson, Katherine E

    2013-08-01

    Sinorhizobium meliloti is alternately capable of colonizing the soil as a free-living bacterium or establishing a chronic intracellular infection with its legume host for the purpose of nitrogen fixation. We previously identified the S. meliloti two-component sensor histidine kinase CbrA as playing an important role in regulating exopolysaccharide production, flagellar motility and symbiosis. Phylogenetic analysis of CbrA has highlighted its evolutionary relatedness to the Caulobacter crescentus sensor histidine kinases PleC and DivJ, which are involved in CtrA-dependent cell cycle regulation through the shared response regulator DivK. We therefore became interested in testing whether CbrA plays a role in regulating S. meliloti cell cycle processes. We find the loss of cbrA results in filamentous cell growth accompanied by cells that contain an aberrant genome complement, indicating CbrA plays a role in regulating cell division and possibly DNA segregation. S. meliloti DivK localizes to the old cell pole during distinct phases of the cell cycle in a phosphorylation-dependent manner. Loss of cbrA results in a significantly decreased rate of DivK polar localization when compared with the wild-type, suggesting CbrA helps regulate cell cycle processes by modulating DivK phosphorylation status as a kinase. Consistent with a presumptive decrease in DivK phosphorylation and activity, we also find the steady-state level of CtrA increased in cbrA mutants. Our data therefore demonstrate that CbrA contributes to free-living cell cycle regulation, which in light of its requirement for symbiosis, points to the potential importance of cell cycle regulation for establishing an effective host interaction.

  14. Variation of Microbial Rhizosphere Communities in Response to Crop Species, Soil Origin, and Inoculation with Sinorhizobium meliloti L33.

    PubMed

    Miethling, R; Wieland, G; Backhaus, H; Tebbe, C C

    2000-07-01

    A greenhouse study with soil-plant microcosms was conducted in order to compare the effect of crop species, soil origin, and a bacterial inoculant on the establishment of microbial communities colonizing plant roots. Two crop species, alfalfa (Medicago sativa) and rye (Secale cereale), were grown separately in two soils collected from agricultural fields at different locations and with differing histories of leguminous crop rotation. A subset of microcosms was inoculated at 10(6) cfu g(-1) soil with the luciferase marker gene-tagged Sinorhizobium meliloti strain L33, a symbiotic partner of M. sativa. Microbial consortia were collected from the rhizospheres of alfalfa after 10 weeks of incubation and from rye after 11 weeks. S. meliloti L33 populations were one to two orders of magnitude higher in the rhizospheres of alfalfa than of rye. In soil with previous alfalfa cultivation, 80% of the alfalfa nodules were colonized by indigenous bacteria, while in the other soil alfalfa was colonized almost exclusively (>90%) with S. meliloti L33. Three community-level targeting approaches were used to characterize the variation of the extracted microbial rhizosphere consortia: (1) Community level physiological profiles (CLPP), (2) fatty acid methyl ester analysis (FAME), and (3) diversity of PCR amplified 16S rRNA target sequences from directly extracted ribosomes, determined by temperature gradient gel electrophoresis (TGGE). All approaches identified the crop species as the major determinant of microbial community characteristics. Consistently, the influence of soil was of minor importance, while a modification of the alfalfa-associated microbial community structure after inoculation with S. meliloti L33 was only consistently observed by using TGGE.

  15. sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti.

    PubMed

    Gao, Mengsheng; Chen, Hancai; Eberhard, Anatol; Gronquist, Matthew R; Robinson, Jayne B; Rolfe, Barry G; Bauer, Wolfgang D

    2005-12-01

    Quorum sensing (QS) in Sinorhizobium meliloti, the N-fixing bacterial symbiont of Medicago host plants, involves at least half a dozen different N-acyl homoserine lactone (AHL) signals and perhaps an equal number of AHL receptors. The accumulation of 55 proteins was found to be dependent on SinI, the AHL synthase, and/or on ExpR, one of the AHL receptors. Gas chromatography-mass spectrometry and electrospray ionization tandem mass spectrometry identified 3-oxo-C(14)-homoserine lactone (3-oxo-C(14)-HSL), C(16)-HSL, 3-oxo-C(16)-HSL, C(16:1)-HSL, and 3-oxo-C(16:1)-HSL as the sinI-dependent AHL QS signals accumulated by the 8530 expR(+) strain under the conditions used for proteome analysis. The 8530 expR(+) strain secretes additional, unidentified QS-active compounds. Addition of 200 nM C(14)-HSL or C(16:1)-HSL, two of the known SinI AHLs, affected the levels of 75% of the proteins, confirming that their accumulation is QS regulated. A number of the QS-regulated proteins have functions plausibly related to symbiotic interactions with the host, including ExpE6, IdhA, MocB, Gor, PckA, LeuC, and AglE. Seven of 10 single-crossover beta-glucuronidase (GUS) transcriptional reporters in genes corresponding to QS-regulated proteins showed significantly different activities in the sinI and expR mutant backgrounds and in response to added SinI AHLs. The sinI mutant and several of the single-crossover strains were significantly delayed in the ability to initiate nodules on the primary root of the host plant, Medicago truncatula, indicating that sinI-dependent QS regulation and QS-regulated proteins contribute importantly to the rate or efficiency of nodule initiation. The sinI and expR mutants were also defective in surface swarming motility. The sinI mutant was restored to normal swarming by 5 nM C(16:1)-HSL.

  16. Sinorhizobium meliloti Functionally Replaces 3-Oxoacyl-Acyl Carrier Protein Reductase (FabG) by Overexpressing NodG During Fatty Acid Synthesis.

    PubMed

    Mao, Ya-Hui; Li, Feng; Ma, Jin-Cheng; Hu, Zhe; Wang, Hai-Hong

    2016-06-01

    In Sinorhizobium meliloti, the nodG gene is located in the nodFEG operon of the symbiotic plasmid. Although strong sequence similarity (53% amino acid identities) between S. meliloti NodG and Escherichia coli FabG was reported in 1992, it has not been determined whether S. meliloti NodG plays a role in fatty acid synthesis. We report that expression of S. meliloti NodG restores the growth of the E. coli fabG temperature-sensitive mutant CL104 under nonpermissive conditions. Using in vitro assays, we demonstrated that NodG is able to catalyze the reduction of the 3-oxoacyl-ACP intermediates in E. coli fatty acid synthetic reaction. Moreover, although deletion of the S. meliloti nodG gene does not cause any growth defects, upon overexpression of nodG from a plasmid, the S. meliloti fabG gene encoding the canonical 3-oxoacyl-ACP reductase (OAR) can be disrupted without any effects on growth or fatty acid composition. This indicates that S. meliloti nodG encodes an OAR and can play a role in fatty acid synthesis when expressed at sufficiently high levels. Thus, a bacterium can simultaneously possess two or more OARs that can play a role in fatty acid synthesis. Our data also showed that, although SmnodG increases alfalfa nodulation efficiency, it is not essential for alfalfa nodulation.

  17. Fur Is Involved in Manganese-Dependent Regulation of mntA (sitA) Expression in Sinorhizobium meliloti

    PubMed Central

    Platero, Raúl; Peixoto, Lucía; O'Brian, Mark R.; Fabiano, Elena

    2004-01-01

    Fur is a transcriptional regulator involved in iron-dependent control of gene expression in many bacteria. In this work we analyzed the phenotype of a fur mutant in Sinorhizobium meliloti, an α-proteobacterium that fixes N2 in association with host plants. We demonstrated that some functions involved in high-affinity iron transport, siderophore production, and iron-regulated outer membrane protein expression respond to iron in a Fur-independent manner. However, manganese-dependent expression of the MntABCD manganese transport system was lost in a fur strain as discerned by constitutive expression of a mntA::gfp fusion reporter gene in the mutant. Thus, Fur directly or indirectly regulates a manganese-dependent function. The data indicate a novel function for a bacterial Fur protein in mediating manganese-dependent regulation of gene expression. PMID:15240318

  18. A thioredoxin of Sinorhizobium meliloti CE52G is required for melanin production and symbiotic nitrogen fixation.

    PubMed

    Castro-Sowinski, Susana; Matan, Ofra; Bonafede, Paula; Okon, Yaacov

    2007-08-01

    A miniTn5-induced mutant of a melanin-producing strain of Sinorhizobium meliloti (CE52G) that does not produce melanin was mapped to a gene identified as a probable thioredoxin gene. It was proved that the thiol-reducing activity of the mutant was affected. Addition to the growth medium of substrates that induce the production of melanin (L-tyrosine, guaiacol, orcinol) increased the thioredoxin-like (trxL) mRNA level in the wild-type strain. The mutant strain was affected in the response to paraquat-induced oxidative stress, symbiotic nitrogen fixation, and both laccase and tyrosinase activities. The importance of thioredoxin in melanin production in bacteria, through the regulation of laccase or tyrosinase activities, or both, by the redox state of structural or catalytic SH groups, is discussed.

  19. Identification and Analysis of Medicago truncatula Auxin Transporter Gene Families Uncover their Roles in Responses to Sinorhizobium meliloti Infection.

    PubMed

    Shen, Chenjia; Yue, Runqing; Bai, Youhuang; Feng, Rong; Sun, Tao; Wang, Xiaofei; Yang, Yanjun; Tie, Shuanggui; Wang, Huizhong

    2015-10-01

    Auxin transport plays a pivotal role in the interaction between legume species and nitrogen-fixing bacteria to form symbioses. Auxin influx carriers auxin resistant 1/like aux 1 (AUX/LAX), efflux carriers pin-formed (PIN) and efflux/conditional P-glycoprotein (PGP/ABCB) are three major protein families participating in auxin polar transport. We used the latest Medicago truncatula genome sequence to characterize and analyze the M. truncatula LAX (MtLAX), M. truncatula PIN (MtPIN) and M. truncatula ABCB (MtABCB) families. Transient expression experiments indicated that three representative auxin transporters (MtLAX3, MtPIN7 and MtABCB1) showed cell plasma membrane localizations. The expression of most MtLAX, MtPIN and MtABCB genes was up-regulated in the roots and was down-regulated in the shoots by Sinorhizobium meliloti infection in the wild type (WT). However, the expression of these genes was down-regulated in both the roots and shoots of an infection-resistant mutant, dmi3. The different expression patterns between the WT and the mutant roots indicated that auxin relocation may be involved in rhizobial infection responses. Furthermore, IAA contents were significantly up-regulated in the shoots and down-regulated in the roots after Sinorhizobium meliloti infection in the WT. Inoculation of roots with rhizobia may reduce the auxin loading from shoots to roots by inhibiting the expression of most auxin transporter genes. However, the rate of change of gene expression and IAA contents in the dmi3 mutant were obviously lower than in the WT. The identification and expression analysis of auxin transporter genes helps us to understand the roles of auxin in the regulation of nodule formation in M. truncatula.

  20. Fructose Uptake in Sinorhizobium meliloti Is Mediated by a High-Affinity ATP-Binding Cassette Transport System

    PubMed Central

    Lambert, Annie; Østerås, Magne; Mandon, Karine; Poggi, Marie-Christine; Le Rudulier, Daniel

    2001-01-01

    By transposon mutagenesis, we have isolated a mutant of Sinorhizobium meliloti which is totally unable to grow on fructose as sole carbon source as a consequence of its inability to transport this sugar. The cloning and sequencing analysis of the chromosomal DNA region flanking the TnphoA insertion revealed the presence of six open reading frames (ORFs) organized in two loci, frcRS and frcBCAK, transcribed divergently. The frcBCA genes encode the characteristic components of an ATP-binding cassette transporter (FrcB, a periplasmic substrate binding protein, FrcC, an integral membrane permease, and FrcA, an ATP-binding cytoplasmic protein), which is the unique high-affinity (Km of 6 μM) fructose uptake system in S. meliloti. The FrcK protein shows homology with some kinases, while FrcR is probably a transcriptional regulator of the repressor-ORF-kinase family. The expression of S. meliloti frcBCAK in Escherichia coli, which transports fructose only via the phosphotransferase system, resulted in the detection of a periplasmic fructose binding activity, demonstrating that FrcB is the binding protein of the Frc transporter. The analysis of substrate specificities revealed that the Frc system is also a high-affinity transporter for ribose and mannose, which are both fructose competitors for the binding to the periplasmic FrcB protein. However, the Frc mutant was still able to grow on these sugars as sole carbon source, demonstrating the presence of at least one other uptake system for mannose and ribose in S. meliloti. The expression of the frcBC genes as determined by measurements of alkaline phosphatase activity was shown to be induced by mannitol and fructose, but not by mannose, ribose, glucose, or succinate, suggesting that the Frc system is primarily targeted towards fructose. Neither Nod nor Fix phenotypes were impared in the TnphoA mutant, demonstrating that fructose uptake is not essential for nodulation and nitrogen fixation, although FrcB protein is

  1. Fructose uptake in Sinorhizobium meliloti is mediated by a high-affinity ATP-binding cassette transport system.

    PubMed

    Lambert, A; Østerås, M; Mandon, K; Poggi, M C; Le Rudulier, D

    2001-08-01

    By transposon mutagenesis, we have isolated a mutant of Sinorhizobium meliloti which is totally unable to grow on fructose as sole carbon source as a consequence of its inability to transport this sugar. The cloning and sequencing analysis of the chromosomal DNA region flanking the TnphoA insertion revealed the presence of six open reading frames (ORFs) organized in two loci, frcRS and frcBCAK, transcribed divergently. The frcBCA genes encode the characteristic components of an ATP-binding cassette transporter (FrcB, a periplasmic substrate binding protein, FrcC, an integral membrane permease, and FrcA, an ATP-binding cytoplasmic protein), which is the unique high-affinity (K(m) of 6 microM) fructose uptake system in S. meliloti. The FrcK protein shows homology with some kinases, while FrcR is probably a transcriptional regulator of the repressor-ORF-kinase family. The expression of S. meliloti frcBCAK in Escherichia coli, which transports fructose only via the phosphotransferase system, resulted in the detection of a periplasmic fructose binding activity, demonstrating that FrcB is the binding protein of the Frc transporter. The analysis of substrate specificities revealed that the Frc system is also a high-affinity transporter for ribose and mannose, which are both fructose competitors for the binding to the periplasmic FrcB protein. However, the Frc mutant was still able to grow on these sugars as sole carbon source, demonstrating the presence of at least one other uptake system for mannose and ribose in S. meliloti. The expression of the frcBC genes as determined by measurements of alkaline phosphatase activity was shown to be induced by mannitol and fructose, but not by mannose, ribose, glucose, or succinate, suggesting that the Frc system is primarily targeted towards fructose. Neither Nod nor Fix phenotypes were impared in the TnphoA mutant, demonstrating that fructose uptake is not essential for nodulation and nitrogen fixation, although FrcB protein is

  2. Crystallization and preliminary crystallographic studies of an active-site mutant hydantoin racemase from Sinorhizobium meliloti CECT4114

    SciTech Connect

    Martínez-Rodríguez, Sergio; González-Ramírez, Luis Antonio; Clemente-Jiménez, Josefa María; Rodríguez-Vico, Felipe; Las Heras-Vázquez, Francisco Javier; Gavira, Jose Antonio García-Ruiz, Juan Ma.

    2008-01-01

    Crystals of an active-site mutated hydantoin racemase from S. meliloti have been obtained in the presence and absence of d,l-5-isopropyl-hydantoin and characterized by X-ray diffraction. A recombinant active-site mutant of hydantoin racemase (C76A) from Sinorhizobium meliloti CECT 4114 (SmeHyuA) has been crystallized in the presence and absence of the substrate d,l-5-isopropyl hydantoin. Crystals of the SmeHyuA mutant suitable for data collection and structure determination were grown using the counter-diffusion method. X-ray data were collected to resolutions of 2.17 and 1.85 Å for the free and bound enzymes, respectively. Both crystals belong to space group R3 and contain two molecules of SmeHyuA per asymmetric unit. The crystals of the free and complexed SmeHyuA have unit-cell parameters a = b = 85.43, c = 152.37 Å and a = b = 85.69, c = 154.38 Å, crystal volumes per protein weight (V{sub M}) of 1.94 and 1.98 Å{sup 3} Da{sup −1} and solvent contents of 36.7 and 37.9%, respectively.

  3. Massive parallel insertion site sequencing of an arrayed Sinorhizobium meliloti signature-tagged mini-Tn 5 transposon mutant library.

    PubMed

    Serrania, Javier; Johner, Tobias; Rupp, Oliver; Goesmann, Alexander; Becker, Anke

    2017-02-21

    Transposon mutagenesis in conjunction with identification of genomic transposon insertion sites is a powerful tool for gene function studies. We have implemented a protocol for parallel determination of transposon insertion sites by Illumina sequencing involving a hierarchical barcoding method that allowed for tracking back insertion sites to individual clones of an arrayed signature-tagged transposon mutant library. This protocol was applied to further characterize a signature-tagged mini-Tn 5 mutant library comprising about 12,000 mutants of the symbiotic nitrogen-fixing alphaproteobacterium Sinorhizobium meliloti (Pobigaylo et al., 2006; Appl. Environ. Microbiol. 72, 4329-4337). Previously, insertion sites have been determined for 5000 mutants of this library. Combining an adapter-free, inverse PCR method for sequencing library preparation with next generation sequencing, we identified 4473 novel insertion sites, increasing the total number of transposon mutants with known insertion site to 9562. The number of protein-coding genes that were hit at least once by a transposon increased by 1231 to a total number of 3673 disrupted genes, which represents 59% of the predicted protein-coding genes in S. meliloti.

  4. Next-Generation Annotation of Prokaryotic Genomes with EuGene-P: Application to Sinorhizobium meliloti 2011

    PubMed Central

    Sallet, Erika; Roux, Brice; Sauviac, Laurent; Jardinaud, Marie-Franc¸oise; Carrère, Sébastien; Faraut, Thomas; de Carvalho-Niebel, Fernanda; Gouzy, Jérôme; Gamas, Pascal; Capela, Delphine; Bruand, Claude; Schiex, Thomas

    2013-01-01

    The availability of next-generation sequences of transcripts from prokaryotic organisms offers the opportunity to design a new generation of automated genome annotation tools not yet available for prokaryotes. In this work, we designed EuGene-P, the first integrative prokaryotic gene finder tool which combines a variety of high-throughput data, including oriented RNA-Seq data, directly into the prediction process. This enables the automated prediction of coding sequences (CDSs), untranslated regions, transcription start sites (TSSs) and non-coding RNA (ncRNA, sense and antisense) genes. EuGene-P was used to comprehensively and accurately annotate the genome of the nitrogen-fixing bacterium Sinorhizobium meliloti strain 2011, leading to the prediction of 6308 CDSs as well as 1876 ncRNAs. Among them, 1280 appeared as antisense to a CDS, which supports recent findings that antisense transcription activity is widespread in bacteria. Moreover, 4077 TSSs upstream of protein-coding or non-coding genes were precisely mapped providing valuable data for the study of promoter regions. By looking for RpoE2-binding sites upstream of annotated TSSs, we were able to extend the S. meliloti RpoE2 regulon by ∼3-fold. Altogether, these observations demonstrate the power of EuGene-P to produce a reliable and high-resolution automatic annotation of prokaryotic genomes. PMID:23599422

  5. Genome-engineered Sinorhizobium meliloti for the production of poly(lactic-co-3-hydroxybutyric) acid copolymer.

    PubMed

    Tran, Tam T; Charles, Trevor C

    2016-02-01

    Economically competitive commercial production of biodegradable bioplastics with desirable properties is an important goal. In this study, we demonstrate the use of chromosome engineering of an alternative bacterial host, Sinorhizobium meliloti, for production of the copolymer, poly(lactate-co-3-hydroxybutyrate). Codon-optimized genes for 2 previously engineered enzymes, Clostridium propionicum propionate CoA transferase (Pct532Cp) and Pseudomonas sp. strain MBEL 6-19 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1400Ps6-19), were introduced into S. meliloti Rm1021 by chromosome integration, replacing the native phbC gene. On the basis of phenotypic analysis and detection of polymer product by gas chromatography analysis, synthesis and accumulation of the copolymer was confirmed. The chromosome integrant strain, with the introduced genes under the control of the native phbC promoter, is able to produce over 15% cell dry mass of poly(lactate-co-3-hydroxybutyrate), containing 30 mol% lactate, from growth on mannitol. We were also able to purify the polymer from the culture and confirm the structure by NMR and GC-MS. To our knowledge, this is the first demonstration of production of this copolymer in the Alphaproteobacteria. Further optimization of this system may eventually yield strains that are able to produce economically viable commercial product.

  6. Transcriptional regulator LsrB of Sinorhizobium meliloti positively regulates the expression of genes involved in lipopolysaccharide biosynthesis.

    PubMed

    Tang, Guirong; Wang, Ying; Luo, Li

    2014-09-01

    Rhizobia induce nitrogen-fixing nodules on host legumes, which is important in agriculture and ecology. Lipopolysaccharide (LPS) produced by rhizobia is required for infection or bacteroid survival in host cells. Genes required for LPS biosynthesis have been identified in several Rhizobium species. However, the regulation of their expression is not well understood. Here, Sinorhizobium meliloti LsrB, a member of the LysR family of transcriptional regulators, was found to be involved in LPS biosynthesis by positively regulating the expression of the lrp3-lpsCDE operon. An lsrB in-frame deletion mutant displayed growth deficiency, sensitivity to the detergent sodium dodecyl sulfate, and acidic pH compared to the parent strain. This mutant produced slightly less LPS due to lower expression of the lrp3 operon. Analysis of the transcriptional start sites of the lrp3 and lpsCDE gene suggested that they constitute one operon. The expression of lsrB was positively autoregulated. The promoter region of lrp3 was specifically precipitated by anti-LsrB antibodies in vivo. The promoter DNA fragment containing TN11A motifs was bound by the purified LsrB protein in vitro. These new findings suggest that S. meliloti LsrB is associated with LPS biosynthesis, which is required for symbiotic nitrogen fixation on some ecotypes of alfalfa plants.

  7. Sinorhizobium meliloti Controls Nitric Oxide-Mediated Post-Translational Modification of a Medicago truncatula Nodule Protein.

    PubMed

    Blanquet, Pauline; Silva, Liliana; Catrice, Olivier; Bruand, Claude; Carvalho, Helena; Meilhoc, Eliane

    2015-12-01

    Nitric oxide (NO) is involved in various plant-microbe interactions. In the symbiosis between soil bacterium Sinorhizobium meliloti and model legume Medicago truncatula, NO is required for an optimal establishment of the interaction but is also a signal for nodule senescence. Little is known about the molecular mechanisms responsible for NO effects in the legume-rhizobium interaction. Here, we investigate the contribution of the bacterial NO response to the modulation of a plant protein post-translational modification in nitrogen-fixing nodules. We made use of different bacterial mutants to finely modulate NO levels inside M. truncatula root nodules and to examine the consequence on tyrosine nitration of the plant glutamine synthetase, a protein responsible for assimilation of the ammonia released by nitrogen fixation. Our results reveal that S. meliloti possesses several proteins that limit inactivation of plant enzyme activity via NO-mediated post-translational modifications. This is the first demonstration that rhizobia can impact the course of nitrogen fixation by modulating the activity of a plant protein.

  8. (Homo)glutathione depletion modulates host gene expression during the symbiotic interaction between Medicago truncatula and Sinorhizobium meliloti.

    PubMed

    Pucciariello, Chiara; Innocenti, Gilles; Van de Velde, Willem; Lambert, Annie; Hopkins, Julie; Clément, Mathilde; Ponchet, Michel; Pauly, Nicolas; Goormachtig, Sofie; Holsters, Marcelle; Puppo, Alain; Frendo, Pierre

    2009-11-01

    Under nitrogen-limiting conditions, legumes interact with symbiotic rhizobia to produce nitrogen-fixing root nodules. We have previously shown that glutathione and homoglutathione [(h)GSH] deficiencies impaired Medicago truncatula symbiosis efficiency, showing the importance of the low M(r) thiols during the nodulation process in the model legume M. truncatula. In this study, the plant transcriptomic response to Sinorhizobium meliloti infection under (h)GSH depletion was investigated using cDNA-amplified fragment length polymorphism analysis. Among 6,149 expression tags monitored, 181 genes displayed significant differential expression between inoculated control and inoculated (h)GSH depleted roots. Quantitative reverse transcription polymerase chain reaction analysis confirmed the changes in mRNA levels. This transcriptomic analysis shows a down-regulation of genes involved in meristem formation and a modulation of the expression of stress-related genes in (h)GSH-depleted plants. Promoter-beta-glucuronidase histochemical analysis showed that the putative MtPIP2 aquaporin might be up-regulated during nodule meristem formation and that this up-regulation is inhibited under (h)GSH depletion. (h)GSH depletion enhances the expression of salicylic acid (SA)-regulated genes after S. meliloti infection and the expression of SA-regulated genes after exogenous SA treatment. Modification of water transport and SA signaling pathway observed under (h)GSH deficiency contribute to explain how (h)GSH depletion alters the proper development of the symbiotic interaction.

  9. Characterization of a two-component regulatory system that regulates succinate-mediated catabolite repression in Sinorhizobium meliloti.

    PubMed

    Garcia, Preston P; Bringhurst, Ryan M; Arango Pinedo, Catalina; Gage, Daniel J

    2010-11-01

    When they are available, Sinorhizobium meliloti utilizes C(4)-dicarboxylic acids as preferred carbon sources for growth while suppressing the utilization of some secondary carbon sources such as α- and β-galactosides. The phenomenon of using succinate as the sole carbon source in the presence of secondary carbon sources is termed succinate-mediated catabolite repression (SMCR). Genetic screening identified the gene sma0113 as needed for strong SMCR when S. meliloti was grown in succinate plus lactose, maltose, or raffinose. sma0113 and the gene immediately downstream, sma0114, encode the proteins Sma0113, an HWE histidine kinase with five PAS domains, and Sma0114, a CheY-like response regulator lacking a DNA-binding domain. sma0113 in-frame deletion mutants show a relief of catabolite repression compared to the wild type. sma0114 in-frame deletion mutants overproduce polyhydroxybutyrate (PHB), and this overproduction requires sma0113. Sma0113 may use its five PAS domains for redox level or energy state monitoring and use that information to regulate catabolite repression and related responses.

  10. Nitrogen metabolism in Sinorhizobium meliloti-alfalfa symbiosis: dissecting the role of GlnD and PII proteins.

    PubMed

    Yurgel, Svetlana N; Rice, Jennifer; Kahn, Michael L

    2012-03-01

    To contribute nitrogen for plant growth and establish an effective symbiosis with alfalfa, Sinorhizobium meliloti Rm1021 needs normal operation of the GlnD protein, a bifunctional uridylyltransferase/uridylyl-cleavage enzyme that measures cellular nitrogen status and initiates a nitrogen stress response (NSR). However, the only two known targets of GlnD modification in Rm1021, the PII proteins GlnB and GlnK, are not necessary for effectiveness. We introduced a Tyr→Phe variant of GlnB, which cannot be uridylylated, into a glnBglnK background to approximate the expected state in a glnD-sm2 mutant, and this strain was effective. These results suggested that unmodified PII does not inhibit effectiveness. We also generated a glnBglnK-glnD triple mutant and used this and other mutants to dissect the role of these proteins in regulating the free-living NSR and nitrogen metabolism in symbiosis. The glnD-sm2 mutation was dominant to the glnBglnK mutations in symbiosis but recessive in some free-living phenotypes. The data show that the GlnD protein has a role in free-living growth and in symbiotic nitrogen exchange that does not depend on the PII proteins, suggesting that S. meliloti GlnD can communicate with the cell by alternate mechanisms.

  11. Medicago truncatula increases its iron-uptake mechanisms in response to volatile organic compounds produced by Sinorhizobium meliloti.

    PubMed

    Orozco-Mosqueda, Maria del Carmen; Macías-Rodríguez, Lourdes I; Santoyo, Gustavo; Farías-Rodríguez, Rodolfo; Valencia-Cantero, Eduardo

    2013-11-01

    Medicago truncatula represents a model plant species for understanding legume-bacteria interactions. M. truncatula roots form a specific root-nodule symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti. Symbiotic nitrogen fixation generates high iron (Fe) demands for bacterial nitrogenase holoenzyme and plant leghemoglobin proteins. Leguminous plants acquire Fe via "Strategy I," which includes mechanisms such as rhizosphere acidification and enhanced ferric reductase activity. In the present work, we analyzed the effect of S. meliloti volatile organic compounds (VOCs) on the Fe-uptake mechanisms of M. truncatula seedlings under Fe-deficient and Fe-rich conditions. Axenic cultures showed that both plant and bacterium modified VOC synthesis in the presence of the respective symbiotic partner. Importantly, in both Fe-rich and -deficient experiments, bacterial VOCs increased the generation of plant biomass, rhizosphere acidification, ferric reductase activity, and chlorophyll content in plants. On the basis of our results, we propose that M. truncatula perceives its symbiont through VOC emissions, and in response, increases Fe-uptake mechanisms to facilitate symbiosis.

  12. Negative Regulation of Ectoine Uptake and Catabolism in Sinorhizobium meliloti: Characterization of the EhuR Gene.

    PubMed

    Yu, Qinli; Cai, Hanlin; Zhang, Yanfeng; He, Yongzhi; Chen, Lincai; Merritt, Justin; Zhang, Shan; Dong, Zhiyang

    2017-01-01

    Ectoine has osmoprotective effects on Sinorhizobium meliloti that differ from its effects in other bacteria. Ectoine does not accumulate in S. meliloti cells; instead, it is degraded. The products of the ehuABCD-eutABCDE operon were previously discovered to be responsible for the uptake and catabolism of ectoine in S. meliloti However, the mechanism by which ectoine is involved in the regulation of the ehuABCD-eutABCDE operon remains unclear. The ehuR gene, which is upstream of and oriented in the same direction as the ehuABCD-eutABCDE operon, encodes a member of the MocR/GntR family of transcriptional regulators. Quantitative reverse transcription-PCR and promoter-lacZ reporter fusion experiments revealed that EhuR represses transcription of the ehuABCD-eutABCDE operon, but this repression is inhibited in the presence of ectoine. Electrophoretic mobility shift assays and DNase I footprinting assays revealed that EhuR bound specifically to the DNA regions overlapping the -35 region of the ehuA promoter and the +1 region of the ehuR promoter. Surface plasmon resonance assays further demonstrated direct interactions between EhuR and the two promoters, although EhuR was found to have higher affinity for the ehuA promoter than for the ehuR promoter. In vitro, DNA binding by EhuR could be directly inhibited by a degradation product of ectoine. Our work demonstrates that EhuR is an important negative transcriptional regulator involved in the regulation of ectoine uptake and catabolism and is likely regulated by one or more end products of ectoine catabolism.

  13. Cell growth inhibition upon deletion of four toxin-antitoxin loci from the megaplasmids of Sinorhizobium meliloti.

    PubMed

    Milunovic, Branislava; diCenzo, George C; Morton, Richard A; Finan, Turlough M

    2014-02-01

    Toxin and antitoxin (TA) gene pairs are addiction systems that are present in many microbial genomes. Sinorhizobium meliloti is an N2-fixing bacterial symbiont of alfalfa and other leguminous plants, and its genome consists of three large replicons, a circular chromosome (3.7 Mb) and the megaplasmids pSymA (1.4 Mb) and pSymB (1.7 Mb). S. meliloti carries 211 predicted type II TA genes, each encoding a toxin or an antitoxin. We constructed defined deletion strains that collectively removed the entire pSymA and pSymB megaplasmids except for their oriV regions. Of approximately 100 TA genes on pSymA and pSymB, we identified four whose loss was associated with cell death or stasis unless copies of the genes were supplied in trans. Orthologs of three of these loci have been characterized in other organisms (relB/E [sma0471/sma0473], Fic [DOC] [sma2105], and VapC [PIN] [orf2230/sma2231]), and this report contains the first experimental proof that RES/Xre (smb21127/smb21128) loci can function as a TA system. Transcriptome sequencing (RNA-seq) analysis did not reveal transcriptional differences between the TA systems to account for why deletion of the four "active" systems resulted in cell toxicity. These data suggest that severe cell growth phenotypes result from the loss of a few TA systems and that loss of most TA systems may result in more subtle phenotypes. These four TA systems do not appear to play a direct role in the S. meliloti-alfalfa symbiosis, as strains lacking these TA systems had a symbiotic N2 fixation phenotype that was indistinguishable from the wild type.

  14. Sinorhizobium meliloti SyrA mediates the transcriptional regulation of genes involved in lipopolysaccharide sulfation and exopolysaccharide biosynthesis.

    PubMed

    Keating, David H

    2007-03-01

    Sinorhizobium meliloti is a gram-negative soil bacterium found either in free-living form or as a nitrogen-fixing endosymbiont of leguminous plants such as Medicago sativa (alfalfa). S. meliloti synthesizes an unusual sulfate-modified form of lipopolysaccharide (LPS). A recent study reported the identification of a gene, lpsS, which encodes an LPS sulfotransferase activity in S. meliloti. Mutants bearing a disrupted version of lpsS exhibit an altered symbiosis, in that they elicit more nodules than wild type. However, under free-living conditions, the lpsS mutant displayed no change in LPS sulfation. These data suggest that the expression of lpsS is differentially regulated, such that it is transcriptionally repressed during free-living conditions but upregulated during symbiosis. Here, I show that the expression of lpsS is upregulated in strains that constitutively express the symbiotic regulator SyrA. SyrA is a small protein that lacks an apparent DNA binding domain and is predicted to be located in the cytoplasmic membrane yet is sufficient to upregulate lpsS transcription. Furthermore, SyrA can mediate the transcriptional upregulation of exo genes involved in the biosynthesis of the symbiotic exopolysaccharide succinoglycan. The SyrA-mediated transcriptional upregulation of lpsS and exo transcription is blocked in mutants harboring a mutation in chvI, which encodes the response regulator of a conserved two-component system. Thus, SyrA likely acts indirectly to promote transcriptional upregulation of lpsS and exo genes through a mechanism that requires the ExoS/ChvI two-component system.

  15. Two RpoH homologs responsible for the expression of heat shock protein genes in Sinorhizobium meliloti.

    PubMed

    Ono, Y; Mitsui, H; Sato, T; Minamisawa, K

    2001-02-01

    We identified two rpoH-related genes encoding sigma32-like proteins from Sinorhizobium meliloti, a nitrogen-fixing root-nodule symbiont of alfalfa. The genes, rpoH1 and rpoH2, are functionally similar to rpoH of Escherichia coli because they partially complemented an E. coli rpoH null mutant. We obtained evidence indicating that these genes are involved in the heat shock response in S. meliloti. Following an increase in temperature, synthesis of several putative heat shock proteins (Hsps) was induced in cultures of wild-type cells: the most prominent were 66- and 60-kDa proteins, both of which are suggested to represent GroEL species. The other Hsps could divided into two groups based on differences in synthesis kinetics: synthesis of the first group peaked 5-10 min, and expression of the other group 30 min, after temperature upshift. In the rpoH1 mutant, inducible synthesis of the former group was markedly reduced, whereas that of the latter group was not affected. Synthesis of both the 66- and 60-kDa proteins was partially reduced. While no appreciable effect was observed in the rpoH2 single mutant, the rpoH2 mutation had a synergistic effect on the 60-kDa protein in the rpoH1- background. The results indicate that two distinct mechanisms are involved in the heat shock response of S. meliloti: one requires the rpoH1 function, while rpoH2 can substitute in part for the rpoH1 function. Moreover, the rpoH1 mutant and rpoH1 rpoH2 double mutant exhibited Nod+ Fix- and Nod- phenotypes, respectively, on alfalfa.

  16. Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition.

    PubMed

    Palma, F; López-Gómez, M; Tejera, N A; Lluch, C

    2013-07-01

    In this work we have investigated the contribution of pretreatment with 0.1 and 0.5mM salicylic acid (SA) to the protection against salt stress in root nodules of Medicago sativa in symbiosis with Sinorhizobium meliloti. SA alleviated the inhibition induced by salinity in the plant growth and photosynthetic capacity of M. sativa-S. meliloti symbiosis. In addition, SA prevented the inhibition of the nitrogen fixation capacity under salt stress since nodule biomass was not affected by salinity in SA pretreated plants. Antioxidant enzymes peroxidase (POX), superoxide dismutase (SOD), ascorbate peroxidase (APX), dehidroascorbate reductase (DHAR) and glutathione reductase (GR), key in the main pathway that scavenges H2O2 in plants, were induced by SA pretreatments which suggest that SA may participate in the redox balance in root nodules under salt stress. Catalase activity (CAT) was inhibited around 40% by SA which could be behind the increase of H2O2 detected in nodules of plants pretreated with SA. The accumulation of polyamines (PAs) synthesized in response to salinity was prevented by SA which together with the induction of 1-aminocyclopropane-l-carboxylic acid (ACC) content suggest the prevalence of the ethylene signaling pathway induced by SA in detriment of the synthesis of PAs. In conclusion, SA alleviated the negative effect of salt stress in the M. sativa-S. meliloti symbiosis through the increased level of nodule biomass and the induction of the nodular antioxidant metabolism under salt stress. The H2O2 accumulation and the PAs inhibition induced by SA in nodules of M. sativa suggest that SA activates a hypersensitive response dependent on ethylene.

  17. Role and Regulation of ACC Deaminase Gene in Sinorhizobium meliloti: Is It a Symbiotic, Rhizospheric or Endophytic Gene?

    PubMed Central

    Checcucci, Alice; Azzarello, Elisa; Bazzicalupo, Marco; De Carlo, Anna; Emiliani, Giovanni; Mancuso, Stefano; Spini, Giulia; Viti, Carlo; Mengoni, Alessio

    2017-01-01

    Plant-associated bacteria exhibit a number of different strategies and specific genes allow bacteria to communicate and metabolically interact with plant tissues. Among the genes found in the genomes of plant-associated bacteria, the gene encoding the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) is one of the most diffused. This gene is supposed to be involved in the cleaving of plant-produced ACC, the precursor of the plant stress-hormone ethylene toning down the plant response to infection. However, few reports are present on the actual role in rhizobia, one of the most investigated groups of plant-associated bacteria. In particular, still unclear is the origin and the role of acdS in symbiotic competitiveness and on the selective benefit it may confer to plant symbiotic rhizobia. Here we present a phylogenetic and functional analysis of acdS orthologs in the rhizobium model-species Sinorhizobium meliloti. Results showed that acdS orthologs present in S. meliloti pangenome have polyphyletic origin and likely spread through horizontal gene transfer, mediated by mobile genetic elements. When acdS ortholog from AK83 strain was cloned and assayed in S. meliloti 1021 (lacking acdS), no modulation of plant ethylene levels was detected, as well as no increase in fitness for nodule occupancy was found in the acdS-derivative strain compared to the parental one. Surprisingly, AcdS was shown to confer the ability to utilize formamide and some dipeptides as sole nitrogen source. Finally, acdS was shown to be negatively regulated by a putative leucine-responsive regulator (LrpL) located upstream to acdS sequence (acdR). acdS expression was induced by root exudates of both legumes and non-leguminous plants. We conclude that acdS in S. meliloti is not directly related to symbiotic interaction, but it could likely be involved in the rhizospheric colonization or in the endophytic behavior. PMID:28194158

  18. Role and Regulation of ACC Deaminase Gene in Sinorhizobium meliloti: Is It a Symbiotic, Rhizospheric or Endophytic Gene?

    PubMed

    Checcucci, Alice; Azzarello, Elisa; Bazzicalupo, Marco; De Carlo, Anna; Emiliani, Giovanni; Mancuso, Stefano; Spini, Giulia; Viti, Carlo; Mengoni, Alessio

    2017-01-01

    Plant-associated bacteria exhibit a number of different strategies and specific genes allow bacteria to communicate and metabolically interact with plant tissues. Among the genes found in the genomes of plant-associated bacteria, the gene encoding the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) is one of the most diffused. This gene is supposed to be involved in the cleaving of plant-produced ACC, the precursor of the plant stress-hormone ethylene toning down the plant response to infection. However, few reports are present on the actual role in rhizobia, one of the most investigated groups of plant-associated bacteria. In particular, still unclear is the origin and the role of acdS in symbiotic competitiveness and on the selective benefit it may confer to plant symbiotic rhizobia. Here we present a phylogenetic and functional analysis of acdS orthologs in the rhizobium model-species Sinorhizobium meliloti. Results showed that acdS orthologs present in S. meliloti pangenome have polyphyletic origin and likely spread through horizontal gene transfer, mediated by mobile genetic elements. When acdS ortholog from AK83 strain was cloned and assayed in S. meliloti 1021 (lacking acdS), no modulation of plant ethylene levels was detected, as well as no increase in fitness for nodule occupancy was found in the acdS-derivative strain compared to the parental one. Surprisingly, AcdS was shown to confer the ability to utilize formamide and some dipeptides as sole nitrogen source. Finally, acdS was shown to be negatively regulated by a putative leucine-responsive regulator (LrpL) located upstream to acdS sequence (acdR). acdS expression was induced by root exudates of both legumes and non-leguminous plants. We conclude that acdS in S. meliloti is not directly related to symbiotic interaction, but it could likely be involved in the rhizospheric colonization or in the endophytic behavior.

  19. Role of Specific Quorum-Sensing Signals in the Regulation of Exopolysaccharide II Production within Sinorhizobium meliloti Spreading Colonies

    PubMed Central

    Gao, Mengsheng; Coggin, Andrew; Yagnik, Kruti; Teplitski, Max

    2012-01-01

    Background Quorum sensing (QS) in Sinorhizobium meliloti involves at least half a dozen different N-acyl homoserine lactone (AHL) signals. These signals are produced by SinI, the sole AHL synthase in S. meliloti Rm8530. The sinI gene is regulated by two LuxR-type transcriptional regulators, SinR and ExpR. Mutations in sinI, sinR and expR abolish the production of exopolysaccharide II (EPS II). Methodology/Principal Findings This study investigated a new type of coordinated surface spreading of Rm8530 that can be categorized as swarming. Motility assays on semi-solid surfaces revealed that both flagella and EPS II are required for this type of motility. The production of EPS II depends on AHLs produced by SinI. Of these AHLs, only C16:1- and 3-oxo-C16:1-homoserine lactones (HSLs) stimulated swarming in an ExpR-dependent manner. These two AHLs induced the strongest response in the wggR reporter fusions. WggR is a positive regulator of the EPS II biosynthesis gene expression. The levels of the wggR activation correlated with the extent of swarming. Furthermore, swarming of S. meliloti required the presence of the high molecular weight (HMW) fraction of EPS II. Within swarming colonies, a recombinase-based RIVET reporter in the wggR gene was resolved in 30% of the cells, indicating an enhanced regulation of EPS II production in the subpopulation of cells, which was sufficient to support swarming of the entire colony. Conclusions/Significance Swarming behavior of S. meliloti Rm8530 on semi-solid surfaces is found to be dependent on the functional QS regulatory cascades. Even though multiple AHL signals are produced by the bacterium, only two AHLs species, C16:1- and 3-oxo-C16:1-HSLs, affected swarming by up-regulating the expression of wggR. While EPS II is produced by Rm8530 as high and low molecular weight fractions, only the HMW EPS II facilitated initial stages of swarming, thus, suggesting a function for this polymer. PMID:22912712

  20. Modulation of Sinorhizobium meliloti quorum sensing by Hfq-mediated post-transcriptional regulation of ExpR.

    PubMed

    Gao, Mengsheng; Tang, Ming; Guerich, Lois; Salas-Gonzalez, Isai; Teplitski, Max

    2015-02-01

    In Sinorhizobium meliloti, the timing of quorum sensing (QS)-dependent gene expression is controlled at multiple levels. RNA binding protein Hfq contributes to the regulation of QS signal production, and this regulation is exerted both in the manner that involves the acyl homoserine lactone receptor ExpR, and via expR-independent mechanisms. In the expR+ strain of S. meliloti, deletion of hfq resulted in the hyper-accumulation of QS signals at low population densities, increased diversity of the QS signals in mid-to-late exponential phase and then led to a sharp decrease in QS signal accumulation in stationary phase. Quantitative polymerase chain reaction revealed that the accumulation of expR and sinI (but not sinR) mRNA was increased in the late exponential phase in an hfq-dependent manner. A translational, but not transcriptional, expR-uidA reporter was controlled by hfq, while both transcriptional and translational sinI-uidA reporters were regulated in the hfq-dependent manner. In co-immunoprecipation experiments, expR mRNA was bound to and then released from Hfq, similar to the positive controls (small regulatory RNA SmrC9, SmrC15, SmrC16 and SmrC45). Neither sinI nor sinR transcripts were detected in the pool of RNA heat-released from Hfq-RNA complexes. Therefore, post-transcriptional regulator Hfq controls the production and perception of QS signals, and at higher population densities this control is mediated directly via interactions with expR.

  1. Complexation precedes phosphorylation for two-component regulatory system FixL/FixJ of Sinorhizobium meliloti.

    PubMed

    Tuckerman, J R; Gonzalez, G; Gilles-Gonzalez, M A

    2001-05-04

    The FixL/FixJ two-component regulatory system of Sinorhizobium meliloti controls the expression of nitrogen fixation genes in response to O2. When phosphorylated, the transcription factor FixJ binds to the nifA and fixK promoters in S. meliloti and induces expression of the corresponding genes, both of which encode key transcription activators. Phosphorylation of FixJ has been proposed to occur via the following cascade. The sensor kinase FixL reacts with ATP independently of FixJ, transferring a phosphoryl group to one of its own histidine residues. Dissociation of O2 from a heme-binding PAS domain in FixL greatly accelerates the rate of this autophosphorylation. The phosphoryl group is rapidly transferred from phospho-FixL to an aspartate residue on FixJ. The resulting phospho-FixJ is short-lived, due to a FixL-catalyzed hydrolysis of the aspartyl phosphate. Here, we show that phosphorylation of FixLJ, i.e. the complex of FixL with FixJ, is at least tenfold faster than the phosphorylation of FixL without FixJ. We further show that a phospho-FixJ phosphatase, thought to reside in FixL, is absent from this complex. These results indicate that FixLJ reacts with ATP as a unit and much more efficiently than FixL alone, and that autophosphorylation and phosphoryl transfer do not occur independently, in sequence, but rather in a closely coupled processive reaction. These findings highlight the possible influence of synergistic interactions of the regulatory components in two-component-system signal transduction.

  2. DNA double-strand break repair is involved in desiccation resistance of Sinorhizobium meliloti, but is not essential for its symbiotic interaction with Medicago truncatula.

    PubMed

    Dupuy, Pierre; Gourion, Benjamin; Sauviac, Laurent; Bruand, Claude

    2016-11-23

    The soil bacterium Sinorhizobium meliloti, a nitrogen-fixing symbiont of legume plants, is exposed to numerous stress conditions in nature, some of which cause the formation of harmful DNA double strand breaks (DSB). In particular, the reactive oxygen (ROS) and nitrogen (RNS) species produced during symbiosis, and the desiccation occurring in dry soils, are conditions which induce DSB. Two major systems of DSB repair are known in S. meliloti: homologous recombination (HR) and non-homologous end-joining (NHEJ). However, their role in the resistance to ROS, RNS and desiccation has never been examined in this bacterial species, and the importance of DSB repair in the symbiotic interaction has not been properly evaluated. Here, we constructed S. meliloti strains deficient in HR (by deleting the recA gene) or in NHEJ (by deleting the four ku genes) or both. Interestingly, we observed that ku and/or recA genes are involved in S. meliloti resistance to ROS and RNS. Nevertheless, a S. meliloti strain deficient in both HR and NHEJ was not altered in its ability to establish and maintain an efficient nitrogen-fixing symbiosis with Medicago truncatula, showing that rhizobial DSB repair is not essential for this process. This result suggests either that DSB formation in S. meliloti is efficiently prevented during symbiosis, or that DSB are not detrimental for symbiosis efficiency. In contrast, we found for the first time that both recA and ku genes are involved in S. meliloti resistance to desiccation, suggesting that DSB repair could be important for rhizobium persistence in the soil.

  3. Evidence that the exoH gene of Sinorhizobium meliloti does not appear to influence symbiotic effectiveness with Medicago truncatula 'Jemalong A17'.

    PubMed

    Zribi, Kais; Mhadhbi, Haythem; Badri, Yazid; Aouani, Mohamed Elarbi; van Berkum, Peter

    2010-12-01

    The purpose of this study was to identify strains of Sinorhizobium meliloti that formed either an effective or completely ineffective symbiosis with Medicago truncatula L. 'Jemalong A17' and, subsequently, to determine whether differences existed between their exoH genes. Sinorhizobium meliloti TII7 and A5 formed an effective and ineffective symbiosis with M. truncatula 'Jemalong A17', respectively. Using a multilocus sequence typing method, both strains were shown to have chromosomes identical with S. meliloti Rm1021 and RCR2011. The 2260-bp segments of DNA stretching from the 3' end of exoI through open reading frames of hypothetical proteins SM_b20952 and SM_b20953 through exoH into the 5' end of exoK in strains TII7 and Rm1021 differed by a single nucleotide at base 127 of the hypothetical protein SM_b20953. However, the derived amino acid sequences of the exoH genes of effective TII7, ineffective A5, and strain Rm1021 were shown to be identical with each other. Therefore, it would seem unlikely that the gene product of exoH is directly involved with the low efficiency of a symbiosis of strain Rm1021 with M. truncatula 'Jemalong A17'. Complementation or complete genome sequence analyses involving strains TII7 and A5 might be useful approaches to investigate the molecular bases for the differential symbiotic response with M. truncatula 'Jemalong A17'.

  4. Crystallization and preliminary crystallographic studies of an active-site mutant hydantoin racemase from Sinorhizobium meliloti CECT4114

    PubMed Central

    Martínez-Rodríguez, Sergio; González-Ramírez, Luis Antonio; Clemente-Jiménez, Josefa María; Rodríguez-Vico, Felipe; Las Heras-Vázquez, Francisco Javier; Gavira, Jose Antonio; García-Ruiz, Juan Ma.

    2008-01-01

    A recombinant active-site mutant of hydantoin racemase (C76A) from Sinorhizobium meliloti CECT 4114 (SmeHyuA) has been crystallized in the presence and absence of the substrate d,l-5-isopropyl hydantoin. Crystals of the SmeHyuA mutant suitable for data collection and structure determination were grown using the counter-diffusion method. X-ray data were collected to resolutions of 2.17 and 1.85 Å for the free and bound enzymes, respectively. Both crystals belong to space group R3 and contain two molecules of SmeHyuA per asymmetric unit. The crystals of the free and complexed SmeHyuA have unit-cell parameters a = b = 85.43, c = 152.37 Å and a = b = 85.69, c = 154.38 Å, crystal volumes per protein weight (V M) of 1.94 and 1.98 Å3 Da−1 and solvent contents of 36.7 and 37.9%, respectively. PMID:18097103

  5. Effect of a Sinorhizobium meliloti Strain with a Modified putA Gene on the Rhizosphere Microbial Community of Alfalfa

    PubMed Central

    van Dillewijn, Pieter; Villadas, Pablo J.; Toro, Nicolás

    2002-01-01

    The success of a rhizobial inoculant in the soil depends to a large extent on its capacity to compete against indigenous strains. M403, a Sinorhizobium meliloti strain with enhanced competitiveness for nodule occupancy, was recently constructed by introducing a plasmid containing an extra copy of a modified putA (proline dehydrogenase) gene. This strain and M401, a control strain carrying the same plasmid without the modified gene, were used as soil inoculants for alfalfa in a contained field release experiment at León, Spain. In this study, we determined the effects of these two strains on the indigenous microbial community. 16S rRNA genes were obtained from the rhizosphere of alfalfa inoculated with strain M403 or strain M401 or from noninoculated plants by amplification of DNA from soil with bacterial group-specific primers. These genes were analyzed and compared by restriction fragment length polymorphism and temperature gradient gel electrophoresis. The results allowed us to differentiate between alterations in the microbial community apparently caused by inoculation and by the rhizosphere effect and seasonal fluctuations induced by the alfalfa plants and by the environment. Only moderate inoculation-dependent effects could be detected, while the alfalfa plants appeared to have a much stronger influence on the microbial community. PMID:12200266

  6. Architecture of infection thread networks in developing root nodules induced by the symbiotic bacterium Sinorhizobium meliloti on Medicago truncatula.

    PubMed

    Monahan-Giovanelli, Hannah; Pinedo, Catalina Arango; Gage, Daniel J

    2006-02-01

    During the course of the development of nitrogen-fixing root nodules induced by Sinorhizobium meliloti on the model plant Medicago truncatula, tubules called infection threads are cooperatively constructed to deliver the bacterial symbiont from the root surface to cells in the interior of the root and developing nodule. Three-dimensional reconstructions of infection threads inside M. truncatula nodules showed that the threads formed relatively simple, tree-like networks. Some characteristics of thread networks, such as branch length, branch density, and branch surface-to-volume ratios, were remarkably constant across nodules in different stages of development. The overall direction of growth of the networks changed as nodules developed. In 5-d-old nodules, the overall growth of the network was directed inward toward the root. However, well-defined regions of these young networks displayed an outward growth bias, indicating that they were likely in the process of repolarizing their direction of development in response to the formation of the outward-growing nodule meristem. In 10- and 30-d-old nodules, the branches of the network grew outward toward the meristem and away from the roots on which the nodules developed.

  7. Plant-activated bacterial receptor adenylate cyclases modulate epidermal infection in the Sinorhizobium meliloti-Medicago symbiosis.

    PubMed

    Tian, Chang Fu; Garnerone, Anne-Marie; Mathieu-Demazière, Céline; Masson-Boivin, Catherine; Batut, Jacques

    2012-04-24

    Legumes and soil bacteria called rhizobia have coevolved a facultative nitrogen-fixing symbiosis. Establishment of the symbiosis requires bacterial entry via root hair infection threads and, in parallel, organogenesis of nodules that subsequently are invaded by bacteria. Tight control of nodulation and infection is required to maintain the mutualistic character of the interaction. Available evidence supports a passive bacterial role in nodulation and infection after the microsymbiont has triggered the symbiotic plant developmental program. Here we identify in Sinorhizobium meliloti, the Medicago symbiont, a cAMP-signaling regulatory cascade consisting of three receptor-like adenylate cyclases, a Crp-like regulator, and a target gene of unknown function. The cascade is activated specifically by a plant signal during nodule organogenesis. Cascade inactivation results in a hyperinfection phenotype consisting of abortive epidermal infection events uncoupled from nodulation. These findings show that, in response to a plant signal, rhizobia play an active role in the control of infection. We suggest that rhizobia may modulate the plant's susceptibility to infection. This regulatory loop likely aims at optimizing legume infection.

  8. The Sinorhizobium meliloti EmrR regulator is required for efficient colonization of Medicago sativa root nodules.

    PubMed

    Santos, Mário R; Marques, Andreia T; Becker, Jörg D; Moreira, Leonilde M

    2014-04-01

    The nitrogen-fixing bacterium Sinorhizobium meliloti must adapt to diverse conditions encountered during its symbiosis with leguminous plants. We characterized a new symbiotically relevant gene, emrR (SMc03169), whose product belongs to the TetR family of repressors and is divergently transcribed from emrAB genes encoding a putative major facilitator superfamily-type efflux pump. An emrR deletion mutant produced more succinoglycan, displayed increased cell-wall permeability, and exhibited higher tolerance to heat shock. It also showed lower tolerance to acidic conditions, a reduced production of siderophores, and lower motility and biofilm formation. The simultaneous deletion of emrA and emrR genes restored the mentioned traits to the wild-type phenotype, except for survival under heat shock, which was lower than that displayed by the wild-type strain. Furthermore, the ΔemrR mutant as well as the double ΔemrAR mutant was impaired in symbiosis with Medicago sativa; it formed fewer nodules and competed poorly with the wild-type strain for nodule colonization. Expression profiling of the ΔemrR mutant showed decreased expression of genes involved in Nod-factor and rhizobactin biosynthesis and in stress responses. Expression of genes directing the biosynthesis of succinoglycan and other polysaccharides were increased. EmrR may therefore be involved in a regulatory network targeting membrane and cell wall modifications in preparation for colonization of root hairs during symbiosis.

  9. Involvement of abscisic acid in the response of Medicago sativa plants in symbiosis with Sinorhizobium meliloti to salinity.

    PubMed

    Palma, F; López-Gómez, M; Tejera, N A; Lluch, C

    2014-06-01

    Legumes are classified as salt-sensitive crops with their productivity particularly affected by salinity. Abcisic acid (ABA) plays an important role in the response to environmental stresses as signal molecule which led us to study its role in the response of nitrogen fixation and antioxidant metabolism in root nodules of Medicago sativa under salt stress conditions. Adult plants inoculated with Sinorhizobium meliloti were treated with 1 μM and 10 μM ABA two days before 200 mM salt addition. Exogenous ABA together with the salt treatment provoked a strong induction of the ABA content in the nodular tissue which alleviated the inhibition induced by salinity in the plant growth and nitrogen fixation. Antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) were induced by ABA pre-treatments under salt stress conditions which together with the reduction of the lipid peroxidation, suggest a role for ABA as signal molecule in the activation of the nodular antioxidant metabolism. Interaction between ABA and polyamines (PAs), described as anti-stress molecules, was studied being detected an induction of the common polyamines spermidine (Spd) and spermine (Spm) levels by ABA under salt stress conditions. In conclusion, ABA pre-treatment improved the nitrogen fixation capacity under salt stress conditions by the induction of the nodular antioxidant defenses which may be mediated by the common PAs Spd and Spm that seems to be involved in the anti-stress response induced by ABA.

  10. Detailed studies of the binding mechanism of the Sinorhizobium meliloti transcriptional activator ExpG to DNA.

    PubMed

    Baumgarth, Birgit; Bartels, Frank Wilco; Anselmetti, Dario; Becker, Anke; Ros, Robert

    2005-01-01

    The exopolysaccharide galactoglucan promotes the establishment of symbiosis between the nitrogen-fixing Gram-negative soil bacterium Sinorhizobium meliloti 2011 and its host plant alfalfa. The transcriptional regulator ExpG activates expression of galactoglucan biosynthesis genes by direct binding to the expA1, expG/expD1 and expE1 promoter regions. ExpG is a member of the MarR family of regulatory proteins. Analysis of target sequences of an ExpG(His)(6) fusion protein in the exp promoter regions resulted in the identification of a binding site composed of a conserved palindromic region and two associated sequence motifs. Association and dissociation kinetics of the specific binding of ExpG(His)(6) to this binding site were characterized by standard biochemical methods and by single-molecule spectroscopy based on the atomic force microscope (AFM). Dynamic force spectroscopy indicated a distinct difference in the kinetics between the wild-type binding sequence and two mutated binding sites, leading to a closer understanding of the ExpG-DNA interaction.

  11. The succinoglycan endoglycanase encoded by exoK is required for efficient symbiosis of Sinorhizobium meliloti 1021 with the host plants Medicago truncatula and Medicago sativa (Alfalfa).

    PubMed

    Mendis, Hajeewaka C; Queiroux, Clothilde; Brewer, Tess E; Davis, Olivia M; Washburn, Brian K; Jones, Kathryn M

    2013-09-01

    The acidic polysaccharide succinoglycan produced by the nitrogen-fixing rhizobial symbiont Sinorhizobium meliloti 1021 is required for this bacterium to invade the host plant Medicago truncatula and to efficiently invade the host plant M. sativa (alfalfa). The β-glucanase enzyme encoded by exoK has previously been demonstrated to cleave succinoglycan and participate in producing the low molecular weight form of this polysaccharide. Here, we show that exoK is required for efficient S. meliloti invasion of both M. truncatula and alfalfa. Deletion mutants of exoK have a substantial reduction in symbiotic productivity on both of these plant hosts. Insertion mutants of exoK have an even less productive symbiosis than the deletion mutants with the host M. truncatula that is caused by a secondary effect of the insertion itself, and may be due to a polar effect on the expression of the downstream exoLAMON genes.

  12. Conjugal transfer of the Sinorhizobium meliloti 1021 symbiotic plasmid is governed through the concerted action of one- and two-component signal transduction regulators.

    PubMed

    Nogales, Joaquina; Blanca-Ordóñez, Helena; Olivares, José; Sanjuán, Juan

    2013-03-01

    Conjugal transfer of Sinorhizobium meliloti and Rhizobium etli symbiotic plasmids are repressed by the transcriptional regulator RctA. Here we report on new key players in the signal transduction cascade towards S. meliloti pSym conjugation. We have identified S. meliloti pSymA gene SMa0974 as an orthologue of the R. etli rctB gene which is required to antagonize repression by RctA. In S. meliloti two additional genes, rctR and rctC participate in control of rctB expression. rctR (SMa0955) encodes a protein of the GntR family of transcriptional regulators involved in repression of rctB. A rctR mutant promotes pSymA conjugal transfer and displays increased transcription of tra, virB and rctB genes even in presence of wild-type rctA gene. Among genes repressed by RctR, rctC (SMa0961) encodes a response regulator required to activate rctB transcription and therefore for derepression of plasmid conjugative functions. We conclude that in both R. etli and S. meliloti pSym conjugal transfer is derepressed via rctB, however the regulatory cascades to achieve activation of rctB are probably different. Upstream of rctB, the S. meliloti pSym conjugal transfer is regulated through the concerted action of genes representing one- (rctR) and two-component (rctC) signal transduction systems in response to yet unidentified signals.

  13. The LuxR Homolog ExpR, in Combination with the Sin Quorum Sensing System, Plays a Central Role in Sinorhizobium meliloti Gene Expression†

    PubMed Central

    Hoang, Hanh H.; Becker, Anke; González, Juan E.

    2004-01-01

    Quorum sensing, a population density-dependent mechanism for bacterial communication and gene regulation, plays a crucial role in the symbiosis between alfalfa and its symbiont Sinorhizobium meliloti. The Sin system, one of three quorum sensing systems present in S. meliloti, controls the production of the symbiotically active exopolysaccharide EPS II. Based on DNA microarray data, the Sin system also seems to regulate a multitude of S. meliloti genes, including genes that participate in low-molecular-weight succinoglycan production, motility, and chemotaxis, as well as other cellular processes. Most of the regulation by the Sin system is dependent on the presence of the ExpR regulator, a LuxR homolog. Gene expression profiling data indicate that ExpR participates in additional cellular processes that include nitrogen fixation, metabolism, and metal transport. Based on our microarray analysis we propose a model for the regulation of gene expression by the Sin/ExpR quorum sensing system and another possible quorum sensing system(s) in S. meliloti. PMID:15292148

  14. Brucella melitensis MucR, an orthologue of Sinorhizobium meliloti MucR, is involved in resistance to oxidative, detergent, and saline stresses and cell envelope modifications.

    PubMed

    Mirabella, A; Terwagne, M; Zygmunt, M S; Cloeckaert, A; De Bolle, X; Letesson, J J

    2013-02-01

    Brucella spp. and Sinorhizobium meliloti are alphaproteobacteria that share not only an intracellular lifestyle in their respective hosts, but also a crucial requirement for cell envelope components and their timely regulation for a successful infectious cycle. Here, we report the characterization of Brucella melitensis mucR, which encodes a zinc finger transcriptional regulator that has previously been shown to be involved in cellular and mouse infections at early time points. MucR modulates the surface properties of the bacteria and their resistance to environmental stresses (i.e., oxidative stress, cationic peptide, and detergents). We show that B. melitensis mucR is a functional orthologue of S. meliloti mucR, because it was able to restore the production of succinoglycan in an S. meliloti mucR mutant, as detected by calcofluor staining. Similar to S. meliloti MucR, B. melitensis MucR also represses its own transcription and flagellar gene expression via the flagellar master regulator ftcR. More surprisingly, we demonstrate that MucR regulates a lipid A core modification in B. melitensis. These changes could account for the attenuated virulence of a mucR mutant. These data reinforce the idea that there is a common conserved circuitry between plant symbionts and animal pathogens that regulates the relationship they have with their hosts.

  15. Queuosine biosynthesis is required for sinorhizobium meliloti-induced cytoskeletal modifications on HeLa Cells and symbiosis with Medicago truncatula.

    PubMed

    Marchetti, Marta; Capela, Delphine; Poincloux, Renaud; Benmeradi, Nacer; Auriac, Marie-Christine; Le Ru, Aurélie; Maridonneau-Parini, Isabelle; Batut, Jacques; Masson-Boivin, Catherine

    2013-01-01

    Rhizobia are symbiotic soil bacteria able to intracellularly colonize legume nodule cells and form nitrogen-fixing symbiosomes therein. How the plant cell cytoskeleton reorganizes in response to rhizobium colonization has remained poorly understood especially because of the lack of an in vitro infection assay. Here, we report on the use of the heterologous HeLa cell model to experimentally tackle this question. We observed that the model rhizobium Sinorhizobium meliloti, and other rhizobia as well, were able to trigger a major reorganization of actin cytoskeleton of cultured HeLa cells in vitro. Cell deformation was associated with an inhibition of the three major small RhoGTPases Cdc42, RhoA and Rac1. Bacterial entry, cytoskeleton rearrangements and modulation of RhoGTPase activity required an intact S. meliloti biosynthetic pathway for queuosine, a hypermodifed nucleoside regulating protein translation through tRNA, and possibly mRNA, modification. We showed that an intact bacterial queuosine biosynthetic pathway was also required for effective nitrogen-fixing symbiosis of S. meliloti with its host plant Medicago truncatula, thus indicating that one or several key symbiotic functions of S. meliloti are under queuosine control. We discuss whether the symbiotic defect of que mutants may originate, at least in part, from an altered capacity to modify plant cell actin cytoskeleton.

  16. Gene expression of Medicago sativa inoculated with Sinorhizobium meliloti as modulated by the xenobiotics cadmium and fluoranthene.

    PubMed

    Neumann, H; Werner, D

    2000-01-01

    Alfalfa plants (Medicago sativa cv. Europe) inoculated with Sinorhizobium meliloti 2011 (formerly Rhizobium meliloti, de Lajudie et al., 1994) were cultivated for 14 days under standardized growth conditions in mineral medium with addition of the heavy metal cadmium or the polycyclic aromatic hydrocarbon fluoranthene. These xenobiotics significantly reduced the numbers of root nodules before any visible damage to the plant could be detected. EC10, EC50, and EC90 (effective concentrations reducing nodulation, shoot and root fresh weight by 10, 50, or 90% compared to the control without pollutant) were calculated. EC50 for cadmium ranged from 5.8 microM (nodulation) to more than 20 microM (root fresh weight). Testing fluoranthene resulted in an EC50 of 2.5 microg cm(-2) for nodulation, and EC50 values of more than 35 microg cm(-2) for shoot and root biomass production, indicating that the effect parameter nodulation is 10-fold more sensitive than shoot and root fresh weight. With mRNA differential display techniques the effects of both xenobiotics on gene expression in alfalfa root systems were studied. 37 differentially displayed transcripts were detected. Two of them, called DDMs1 and DDMs2, were confirmed by northern hybridization to be down-regulated in the presence of the xenobiotics. The expression of transcript DDMs1 was enhanced in alfalfa control plants inoculated with rhizobia, the transcript level was increased 2.5-3-fold compared to non-inoculated plants. This positive effect of nodulation was suppressed, partly by 35 microg cm(-2) fluoranthene and totally by 20 microM cadmium. The decrease in DDMs1 transcription was highly affected by the cadmium concentration with an EC50 of 5.9 microM. Compared to nodulation, almost identical EC10, EC50, and EC90 values were found for DDMs1 expression. Sequence analysis of DDMs1 revealed a significant overall homology (50% identity) to a hypothetical protein from Arabidopsis thaliana with high similarity to a copper

  17. Effects of engineered Sinorhizobium meliloti on cytokinin synthesis and tolerance of alfalfa to extreme drought stress.

    PubMed

    Xu, Ji; Li, Xiao-Lin; Luo, Li

    2012-11-01

    Cytokinin is required for the initiation of leguminous nitrogen fixation nodules elicited by rhizobia and the delay of the leaf senescence induced by drought stress. A few free-living rhizobia have been found to produce cytokinin. However, the effects of engineered rhizobia capable of synthesizing cytokinin on host tolerance to abiotic stresses have not yet been described. In this study, two engineered Sinorhizobium strains overproducing cytokinin were constructed. The tolerance of inoculated alfalfa plants to severe drought stress was assessed. The engineered strains, which expressed the Agrobacterium ipt gene under the control of different promoters, synthesized more zeatins than the control strain under free-living conditions, but their own growth was not affected. After a 4-week inoculation period, the effects of engineered strains on alfalfa growth and nitrogen fixation were similar to those of the control strain under nondrought conditions. After being subjected to severe drought stress, most of the alfalfa plants inoculated with engineered strains survived, and the nitrogenase activity in their root nodules showed no apparent change. A small elevation in zeatin concentration was observed in the leaves of these plants. The expression of antioxidant enzymes increased, and the level of reactive oxygen species decreased correspondingly. Although the ipt gene was transcribed in the bacteroids of engineered strains, the level of cytokinin in alfalfa nodules was identical to that of the control. These findings suggest that engineered Sinorhizobium strains synthesizing more cytokinin could improve the tolerance of alfalfa to severe drought stress without affecting alfalfa nodulation or nitrogen fixation.

  18. Polychlorinated Biphenyl Rhizoremediation by Pseudomonas fluorescens F113 Derivatives, Using a Sinorhizobium meliloti nod System To Drive bph Gene Expression

    PubMed Central

    Villacieros, Marta; Whelan, Clare; Mackova, Martina; Molgaard, Jesper; Sánchez-Contreras, María; Lloret, Javier; Aguirre de Cárcer, Daniel; Oruezábal, Roke I.; Bolaños, Luis; Macek, Thomas; Karlson, Ulrich; Dowling, David N.; Martín, Marta; Rivilla, Rafael

    2005-01-01

    Rhizoremediation of organic chemicals requires high-level expression of biodegradation genes in bacterial strains that are excellent rhizosphere colonizers. Pseudomonas fluorescens F113 is a biocontrol strain that was shown to be an excellent colonizer of numerous plant rhizospheres, including alfalfa. Although a derivative of F113 expressing polychlorinated biphenyl (PCB) biodegradation genes (F113pcb) has been reported previously, this strain shows a low level of bph gene expression, limiting its rhizoremediation potential. Here, a high-level expression system was designed from rhizobial nod gene regulatory relays. Nod promoters were tested in strain F113 by using β-galactosidase transcriptional fusions. This analysis showed that nodbox 4 from Sinorhizobium meliloti has a high level of expression in F113 that is dependent on an intact nodD1 gene. A transcriptional fusion of a nodbox cassette containing the nodD1 gene and nodbox 4 fused to a gfp gene was expressed in the alfalfa rhizosphere. The bph operon from Burkholderia sp. strain LB400 was cloned under the control of the nodbox cassette and was inserted as a single copy into the genome of F113, generating strain F113L::1180. This new genetically modified strain has a high level of BphC activity and grows on biphenyl as a sole carbon and energy source at a growth rate that is more than three times higher than that of F113pcb. Degradation of PCBs 3, 4, 5, 17, and 25 was also much faster in F113L::1180 than in F113pcb. Finally, the modified strain cometabolized PCB congeners present in Delor103 better than strain LB400, the donor of the bph genes used. PMID:15870360

  19. RNase E affects the expression of the acyl-homoserine lactone synthase gene sinI in Sinorhizobium meliloti.

    PubMed

    Baumgardt, Kathrin; Charoenpanich, Pornsri; McIntosh, Matthew; Schikora, Adam; Stein, Elke; Thalmann, Sebastian; Kogel, Karl-Heinz; Klug, Gabriele; Becker, Anke; Evguenieva-Hackenberg, Elena

    2014-04-01

    Quorum sensing of Sinorhizobium meliloti relies on N-acyl-homoserine lactones (AHLs) as autoinducers. AHL production increases at high population density, and this depends on the AHL synthase SinI and two transcriptional regulators, SinR and ExpR. Our study demonstrates that ectopic expression of the gene rne, coding for RNase E, an endoribonuclease that is probably essential for growth, prevents the accumulation of AHLs at detectable levels. The ectopic rne expression led to a higher level of rne mRNA and a lower level of sinI mRNA independently of the presence of ExpR, the AHL receptor, and AHLs. In line with this, IPTG (isopropyl-β-D-thiogalactopyranoside)-induced overexpression of rne resulted in a shorter half-life of sinI mRNA and a strong reduction of AHL accumulation. Moreover, using translational sinI-egfp fusions, we found that sinI expression is specifically decreased upon induced overexpression of rne, independently of the presence of the global posttranscriptional regulator Hfq. The 28-nucleotide 5' untranslated region (UTR) of sinI mRNA was sufficient for this effect. Random amplification of 5' cDNA ends (5'-RACE) analyses revealed a potential RNase E cleavage site at position +24 between the Shine-Dalgarno site and the translation start site. We postulate therefore that RNase E-dependent degradation of sinI mRNA from the 5' end is one of the steps mediating a high turnover of sinI mRNA, which allows the Sin quorum-sensing system to respond rapidly to changes in transcriptional control of AHL production.

  20. Isolation and characterization of mutant Sinorhizobium meliloti NodD1 proteins with altered responses to luteolin.

    PubMed

    Peck, Melicent C; Fisher, Robert F; Bliss, Robert; Long, Sharon R

    2013-08-01

    NodD1, a member of the NodD family of LysR-type transcriptional regulators (LTTRs), mediates nodulation (nod) gene expression in the soil bacterium Sinorhizobium meliloti in response to the plant-secreted flavonoid luteolin. We used genetic screens and targeted approaches to identify NodD1 residues that show altered responses to luteolin during the activation of nod gene transcription. Here we report four types of NodD1 mutants. Type I (NodD1 L69F, S104L, D134N, and M193I mutants) displays reduced or no activation of nod gene expression. Type II (NodD1 K205N) is constitutively active but repressed by luteolin. Type III (NodD1 L280F) demonstrates enhanced activity with luteolin compared to that of wild-type NodD1. Type IV (NodD1 D284N) shows moderate constitutive activity yet can still be induced by luteolin. In the absence of luteolin, many mutants display a low binding affinity for nod gene promoter DNA in vitro. Several mutants also show, as does wild-type NodD1, increased affinity for nod gene promoters with added luteolin. All of the NodD1 mutant proteins can homodimerize and heterodimerize with wild-type NodD1. Based on these data and the crystal structures of several LTTRs, we present a structural model of wild-type NodD1, identifying residues important for inducer binding, protein multimerization, and interaction with RNA polymerase at nod gene promoters.

  1. FixJ: a major regulator of the oxygen limitation response and late symbiotic functions of Sinorhizobium meliloti.

    PubMed

    Bobik, Christine; Meilhoc, Eliane; Batut, Jacques

    2006-07-01

    Sinorhizobium meliloti exists either in a free-living state in the soil or in symbiosis within legume nodules, where the bacteria differentiate into nitrogen-fixing bacteroids. Expression of genes involved in nitrogen fixation and associated respiration is governed by two intermediate regulators, NifA and FixK, respectively, which are controlled by a two-component regulatory system FixLJ in response to low-oxygen conditions. In order to identify the FixLJ regulon, gene expression profiles were determined in microaerobic free-living cells as well as during the symbiotic life of the bacterium for the wild type and a fixJ null-mutant strain. We identified 122 genes activated by FixJ in either state, including 87 novel targets. FixJ controls 74% of the genes induced in microaerobiosis (2% oxygen) and the majority of genes expressed in mature bacteroids. Ninety-seven percent of FixJ-activated genes are located on the symbiotic plasmid pSymA. Transcriptome profiles of a nifA and a fixK mutant showed that NifA activates a limited number of genes, all specific to the symbiotic state, whereas FixK controls more than 90 genes, involved in free-living and/or symbiotic life. This study also revealed that FixJ has no other direct targets besides those already known. FixJ is involved in the regulation of functions such as denitrification or amino acid/polyamine metabolism and transport. Mutations in selected novel FixJ targets did not affect the ability of the bacteria to form nitrogen-fixing nodules on Medicago sativa roots. From these results, we propose an updated model of the FixJ regulon.

  2. Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain.

    PubMed

    Bianco, Carmen; Defez, Roberto

    2009-01-01

    The abiotic stress resistance of wild-type Sinorhizobium meliloti 1021 was compared with that of RD64, a derivative of the 1021 strain harbouring an additional pathway for the synthesis of indole-3-acetic acid (IAA), expressed in both free-living bacteria and bacteroids. It is shown here that the IAA-overproducing RD64 strain accumulated a higher level of trehalose as its endogenous osmolyte and showed an increased tolerance to several stress conditions (55 degrees C, 4 degrees C, UV-irradiation, 0.5 M NaCl, and pH 3). Medicago truncatula plants nodulated by RD64 (Mt-RD64) showed re-modulation of phytohormones, with a higher IAA content in nodules and roots and a decreased IAA level in shoots as compared with plants nodulated by the wild-type strain 1021 (Mt-1021). The response of nodulated M. truncatula plants to salt stress, when 0.3 M NaCl was applied, was analysed. For Mt-RD64 plants higher internal proline contents, almost unchanged hydrogen peroxide levels, and enhanced activity of antioxidant enzymes (superoxide dismutase, total peroxidase, glutathione reductase, and ascorbate peroxidase) were found compared with Mt-1021 plants. These results were positively correlated with reduced symptoms of senescence, lower expression of ethylene signalling genes, lower reduction of shoot dry weight, and better nitrogen-fixing capacity observed for these plants. Upon re-watering, after 0.3 M NaCl treatment, Mt-1021 plants almost die whereas Mt-RD64 plants showed visual signs of recovery. Finally, the shoot dry weight of Mt-RD64 plants treated with 0.15 M NaCl was not statistically different from that of Mt-1021 plants grown under non-stressed conditions.

  3. Identification and characterization of a NaCl-responsive genetic locus involved in survival during desiccation in Sinorhizobium meliloti.

    PubMed

    Vriezen, Jan A C; de Bruijn, Frans J; Nüsslein, Klaus

    2013-09-01

    The Rhizobiaceae are a bacterial family of enormous agricultural importance due to the ability of its members to fix atmospheric nitrogen in an intimate relationship with plants. Their survival as naturally occurring soil bacteria in agricultural soils as well as popular seed inocula is affected directly by drought and salinity. Survival after desiccation in the presence of NaCl is enabled by underlying genetic mechanisms in the model organism Sinorhizobium meliloti 1021. Since salt stress parallels a loss in water activity, the identification of NaCl-responsive loci may identify loci involved in survival during desiccation. This approach enabled identification of the loci asnO and ngg by their reduced ability to grow on increased NaCl concentrations, likely due to their inability to produce the osmoprotectant N-acetylglutaminylglutamine (NAGGN). In addition, the mutant harboring ngg::Tn5luxAB was affected in its ability to survive desiccation and responded to osmotic stress. The desiccation sensitivity may have been due to secondary functions of Ngg (N-acetylglutaminylglutamine synthetase)-like cell wall metabolism as suggested by the presence of a d-alanine-d-alanine ligase (dAla-dAla) domain and by sensitivity of the mutant to β-lactam antibiotics. asnO::Tn5luxAB is expressed during the stationary phase under normal growth conditions. Amino acid sequence similarity to enzymes producing β-lactam inhibitors and increased resistance to β-lactam antibiotics may indicate that asnO is involved in the production of a β-lactam inhibitor.

  4. The Medicago truncatula N5 gene encoding a root-specific lipid transfer protein is required for the symbiotic interaction with Sinorhizobium meliloti.

    PubMed

    Pii, Youry; Astegno, Alessandra; Peroni, Elisa; Zaccardelli, Massimo; Pandolfini, Tiziana; Crimi, Massimo

    2009-12-01

    The Medicago truncatula N5 gene is induced in roots after Sinorhizobium meliloti infection and it codes for a putative lipid transfer protein (LTP), a family of plant small proteins capable of binding and transferring lipids between membranes in vitro. Various biological roles for plant LTP in vivo have been proposed, including defense against pathogens and modulation of plant development. The aim of this study was to shed light on the role of MtN5 in the symbiotic interaction between M. truncatula and S. meliloti. MtN5 cDNA was cloned and the mature MtN5 protein expressed in Escherichia coli. The lipid binding capacity and antimicrobial activity of the recombinant MtN5 protein were tested in vitro. MtN5 showed the capacity to bind lysophospholipids and to inhibit M. truncatula pathogens and symbiont growth in vitro. Furthermore, MtN5 was upregulated in roots after infection with either the fungal pathogen Fusarium semitectum or the symbiont S. meliloti. Upon S. meliloti infection, MtN5 was induced starting from 1 day after inoculation (dpi). It reached the highest concentration at 3 dpi and it was localized in the mature nodules. MtN5-silenced roots were impaired in nodulation, showing a 50% of reduction in the number of nodules compared with control roots. On the other hand, transgenic roots overexpressing MtN5 developed threefold more nodules with respect to control roots. Here, we demonstrate that MtN5 possesses biochemical features typical of LTP and that it is required for the successful symbiotic association between M. truncatula and S. meliloti.

  5. Genome-Wide Identification and Expression Profiling Analysis of the Aux/IAA Gene Family in Medicago truncatula during the Early Phase of Sinorhizobium meliloti Infection

    PubMed Central

    Zhang, Lei; Sun, Tao; Xu, Luqin; Tie, Shuanggui; Wang, Huizhong

    2014-01-01

    Background Auxin/indoleacetic acid (Aux/IAA) genes, coding a family of short-lived nuclear proteins, play key roles in wide variety of plant developmental processes, including root system regulation and responses to environmental stimulus. However, how they function in auxin signaling pathway and symbiosis with rhizobial in Medicago truncatula are largely unknown. The present study aims at gaining deeper insight on distinctive expression and function features of Aux/IAA family genes in Medicago truncatula during nodule formation. Principal Findings Using the latest updated draft of the full Medicago truncatula genome, a comprehensive identification and analysis of IAA genes were performed. The data indicated that MtIAA family genes are distributed in all the M. truncatula chromosomes except chromosome 6. Most of MtIAA genes are responsive to exogenous auxin and express in tissues-specific manner. To understand the biological functions of MtIAA genes involved in nodule formation, quantitative real-time polymerase chain reaction (qRT-PCR) was used to test the expression profiling of MtIAA genes during the early phase of Sinorhizobium meliloti (S. meliloti) infection. The expression patterns of most MtIAA genes were down-regulated in roots and up-regulated in shoots by S. meliloti infection. The differences in expression responses between roots and shoots caused by S. meliloti infection were alleviated by 1-NOA application. Conclusion The genome-wide identification, evolution and expression pattern analysis of MtIAA genes were performed in this study. The data helps us to understand the roles of MtIAA-mediated auxin signaling in nodule formation during the early phase of S. meliloti infection. PMID:25226164

  6. Nodulation by Sinorhizobium meliloti originated from a mining soil alleviates Cd toxicity and increases Cd-phytoextraction in Medicago sativa L.

    PubMed Central

    Ghnaya, Tahar; Mnassri, Majda; Ghabriche, Rim; Wali, Mariem; Poschenrieder, Charlotte; Lutts, Stanley; Abdelly, Chedly

    2015-01-01

    Besides their role in nitrogen supply to the host plants as a result of symbiotic N fixation, the association between legumes and Rhizobium could be useful for the rehabilitation of metal-contaminated soils by phytoextraction. A major limitation presents the metal-sensitivity of the bacterial strains. The aim of this work was to explore the usefulness of Sinorhizobium meliloti originated from a mining site for Cd phytoextraction by Medicago sativa. Inoculated and non-inoculated plants were cultivated for 60 d on soils containing 50 and/or 100 mg Cd kg−1 soil. The inoculation hindered the occurrence of Cd- induced toxicity symptoms that appeared in the shoots of non-inoculated plants. This positive effect of S. meliloti colonization was accompanied by an increase in biomass production and improved nutrient acquisition comparatively to non-inoculated plants. Nodulation enhanced Cd absorption by the roots and Cd translocation to the shoots. The increase of plant biomass concomitantly with the increase of Cd shoot concentration in inoculated plants led to higher potential of Cd-phytoextraction in these plants. In the presence of 50 mg Cd kg−1 in the soil, the amounts of Cd extracted in the shoots were 58 and 178 μg plant−1 in non-inoculated and inoculated plants, respectively. This study demonstrates that this association M. sativa-S. meliloti may be an efficient biological system to extract Cd from contaminated soils. PMID:26528320

  7. MotD of Sinorhizobium meliloti and Related α-Proteobacteria Is the Flagellar-Hook-Length Regulator and Therefore Reassigned as FliK

    PubMed Central

    Eggenhofer, Elke; Rachel, Reinhard; Haslbeck, Martin; Scharf, Birgit

    2006-01-01

    The flagella of the soil bacterium Sinorhizobium meliloti differ from the enterobacterial paradigm in the complex filament structure and modulation of the flagellar rotary speed. The mode of motility control in S. meliloti has a molecular corollary in two novel periplasmic motility proteins, MotC and MotE, that are present in addition to the ubiquitous MotA/MotB energizing proton channel. A fifth motility gene is located in the mot operon downstream of the motB and motC genes. Its gene product was originally designated MotD, a cytoplasmic motility protein having an unknown function. We report here reassignment of MotD as FliK, the regulator of flagellar hook length. The FliK gene is one of the few flagellar genes not annotated in the contiguous flagellar regulon of S. meliloti. Characteristic for its class, the 475-residue FliK protein contains a conserved, compactly folded Flg hook domain in its carboxy-terminal region. Deletion of fliK leads to formation of prolonged flagellar hooks (polyhooks) with missing filament structures. Extragenic suppressor mutations all mapped in the cytoplasmic region of the transmembrane export protein FlhB and restored assembly of a flagellar filament, and thus motility, in the presence of polyhooks. The structural properties of FliK are consistent with its function as a substrate specificity switch of the flagellar export apparatus for switching from rod/hook-type substrates to filament-type substrates. PMID:16513744

  8. Sinorhizobium meliloti mutants lacking phosphotransferase system enzyme HPr or EIIA are altered in diverse processes, including carbon metabolism, cobalt requirements, and succinoglycan production.

    PubMed

    Pinedo, Catalina Arango; Bringhurst, Ryan M; Gage, Daniel J

    2008-04-01

    Sinorhizobium meliloti is a member of the Alphaproteobacteria that fixes nitrogen when it is in a symbiotic relationship. Genes for an incomplete phosphotransferase system (PTS) have been found in the genome of S. meliloti. The genes present code for Hpr and ManX (an EIIA(Man)-type enzyme). HPr and EIIA regulate carbon utilization in other bacteria. hpr and manX in-frame deletion mutants exhibited altered carbon metabolism and other phenotypes. Loss of HPr resulted in partial relief of succinate-mediated catabolite repression, extreme sensitivity to cobalt limitation, rapid die-off during stationary phase, and altered succinoglycan production. Loss of ManX decreased expression of melA-agp and lac, the operons needed for utilization of alpha- and beta-galactosides, slowed growth on diverse carbon sources, and enhanced accumulation of high-molecular-weight succinoglycan. A strain with both hpr and manX deletions exhibited phenotypes similar to those of the strain with a single hpr deletion. Despite these strong phenotypes, deletion mutants exhibited wild-type nodulation and nitrogen fixation when they were inoculated onto Medicago sativa. The results show that HPr and ManX (EIIA(Man)) are involved in more than carbon regulation in S. meliloti and suggest that the phenotypes observed occur due to activity of HPr or one of its phosphorylated forms.

  9. A fadD mutant of Sinorhizobium meliloti shows multicellular swarming migration and is impaired in nodulation efficiency on alfalfa roots.

    PubMed

    Soto, María José; Fernández-Pascual, Mercedes; Sanjuan, Juan; Olivares, José

    2002-01-01

    Swarming is a form of bacterial translocation that involves cell differentiation and is characterized by a rapid and co-ordinated population migration across solid surfaces. We have isolated a Tn5 mutant of Sinorhizobium meliloti GR4 showing conditional swarming. Swarm cells from the mutant strain QS77 induced on semi-solid minimal medium in response to different signals are hyperflagellated and about twice as long as wild-type cells. Genetic and physiological characterization of the mutant strain indicates that QS77 is altered in a gene encoding a homologue of the FadD protein (long-chain fatty acyl-CoA ligase) of several microorganisms. Interestingly and similar to a less virulent Xanthomonas campestris fadD(rpfB) mutant, QS77 is impaired in establishing an association with its host plant. In trans expression of multicopy fadD restored growth on oleate, control of motility and the symbiotic phenotype of QS77, as well as acyl-CoA synthetase activity of an Escherichia coli fadD mutant. The S. meliloti QS77 strain shows a reduction in nod gene expression as well as a differential regulation of motility genes in response to environmental conditions. These data suggest that, in S. meliloti, fatty acid derivatives may act as intracellular signals controlling motility and symbiotic performance through gene expression.

  10. Involvement of the Sinorhizobium meliloti leuA gene in activation of nodulation genes by NodD1 and luteolin.

    PubMed

    Sanjuán-Pinilla, Julio M; Muñoz, Socorro; Nogales, Joaquina; Olivares, José; Sanjuán, Juan

    2002-07-01

    The role of leucine biosynthesis by Sinorhizobium meliloti in the establishment of nitrogen-fixing symbiosis with alfalfa ( Medicago sativa) was investigated. The leuA gene from S. meliloti, encoding alpha-isopropylmalate synthase, which catalyses the first specific step in the leucine biosynthetic pathway, was characterized. S. melilotiLeuA(-) mutants were Leu auxotrophs and lacked alpha-isopropylmalate synthase activity. In addition, leuA auxotrophs were unable to nodulate alfalfa. Alfalfa roots did not seem to secrete enough leucine to support growth of leucine auxotrophs in the rhizosphere. Thus, this growth limitation probably imposes the inability to initiate symbiosis. However, in addition to the leucine auxotrophy, leuA strains were impaired in activation of nodulation genes by the transcriptional activator NodD1 in response to the plant flavone luteolin. By contrast, nod gene activation by NodD3, which does not involve plant-derived inducers, was unaffected. Our results suggest that a leucine-related metabolic intermediate may be involved in activation of nodulation genes by NodD1 and luteolin. This kind of control could be of relevance as a way to link bacterial physiological status to the response to plant signals and initiation of symbiosis.

  11. Dual control of Sinorhizobium meliloti RpoE2 sigma factor activity by two PhyR-type two-component response regulators.

    PubMed

    Bastiat, Bénédicte; Sauviac, Laurent; Bruand, Claude

    2010-04-01

    RpoE2 is an extracytoplasmic function (ECF) sigma factor involved in the general stress response of Sinorhizobium meliloti, the nitrogen-fixing symbiont of the legume plant alfalfa. RpoE2 orthologues are widely found among alphaproteobacteria, where they play various roles in stress resistance and/or host colonization. In this paper, we report a genetic and biochemical investigation of the mechanisms of signal transduction leading to S. meliloti RpoE2 activation in response to stress. We showed that RpoE2 activity is negatively controlled by two paralogous anti-sigma factors, RsiA1 (SMc01505) and RsiA2 (SMc04884), and that RpoE2 activation by stress requires two redundant paralogous PhyR-type response regulators, RsiB1 (SMc01504) and RsiB2 (SMc00794). RsiB1 and RsiB2 do not act at the level of rpoE2 transcription but instead interact with the anti-sigma factors, and we therefore propose that they act as anti-anti-sigma factors to relieve RpoE2 inhibition in response to stress. This model closely resembles a recently proposed model of activation of RpoE2-like sigma factors in Methylobacterium extorquens and Bradyrhizobium japonicum, but the existence of two pairs of anti- and anti-anti-sigma factors in S. meliloti adds an unexpected level of complexity, which may allow the regulatory system to integrate multiple stimuli.

  12. Medicago sativa--Sinorhizobium meliloti Symbiosis Promotes the Bioaccumulation of Zinc in Nodulated Roots.

    PubMed

    Zribi, Kais; Nouairi, Issam; Slama, Ines; Talbi-Zribi, Ons; Mhadhbi, Haythem

    2015-01-01

    In this study we investigated effects of Zn supply on germination, growth, inorganic solutes (Zn, Ca, Fe, and Mg) partitioning and nodulation of Medicago sativa This plant was cultivated with and without Zn (2 mM). Treatments were plants without (control) and with Zn tolerant strain (S532), Zn intolerant strain (S112) and 2 mM urea nitrogen fertilisation. Results showed that M. sativa germinates at rates of 50% at 2 mM Zn. For plants given nitrogen fertilisation, Zn increased plant biomass production. When grown with symbionts, Zn supply had no effect on nodulation. Moreover, plants with S112 showed a decrease of shoot and roots biomasses. However, in symbiosis with S532, an increase of roots biomass was observed. Plants in symbiosis with S. meliloti accumulated more Zn in their roots than nitrogen fertilised plants. Zn supply results in an increase of Ca concentration in roots of fertilised nitrogen plants. However, under Zn supply, Fe concentration decreased in roots and increased in nodules of plants with S112. Zn supply showed contrasting effects on Mg concentrations for plants with nitrogen fertilisation (increase) and plants with S112 (decrease). The capacity of M. sativa to accumulate Zn in their nodulated roots encouraged its use in phytostabilisation processes.

  13. Differential Effects of Dimethylsulfoniopropionate, Dimethylsulfonioacetate, and Other S-Methylated Compounds on the Growth of Sinorhizobium meliloti at Low and High Osmolarities

    PubMed Central

    Pichereau, Vianney; Pocard, Jean-Alain; Hamelin, Jack; Blanco, Carlos; Bernard, Théophile

    1998-01-01

    An extract from the marine alga Ulva lactuca was highly osmoprotective in salt-stressed cultures of Sinorhizobium meliloti 102F34. This beneficial activity was due to algal 3-dimethylsulfoniopropionate (DMSP), which was accumulated as a dominant compatible solute and strongly reduced the accumulation of endogenous osmolytes in stressed cells. Synthetic DMSP also acted as a powerful osmoprotectant and was accumulated as a nonmetabolizable cytosolic osmolyte (up to a concentration of 1,400 nmol/mg of protein) throughout the growth cycles of the stressed cultures. In contrast, 2-dimethylsulfonioacetate (DMSA), the sulfonium analog of the universal osmoprotectant glycine betaine (GB), was highly toxic to unstressed cells and was not osmoprotective in stressed cells of wild-type strains of S. meliloti. Nonetheless, the transport and accumulation of DMSA, like the transport and accumulation of DMSP and GB, were osmoregulated and increased fourfold in stressed cells of strain 102F34. Strikingly, DMSA was not toxic and became highly osmoprotective in mutants that are impaired in their ability to demethylate GB and DMSA. Furthermore, 2-methylthioacetate and thioglycolic acid (TGA), the demethylation products of DMSA, were excreted, apparently as a mechanism of cellular detoxification. Also, exogenous TGA and DMSA displayed similar inhibitory effects in strain 102F34. Thus, on the basis of these findings and other physiological and biochemical evidence, we infer that the toxicity of DMSA in wild-type strains of S. meliloti stems from its catabolism via the GB demethylation pathway. This is the first report describing the toxicity of DMSA in any organism and a metabolically stable osmoprotectant (DMSP) in S. meliloti. PMID:16349544

  14. Genome-wide identification, expression analysis of GH3 family genes in Medicago truncatula under stress-related hormones and Sinorhizobium meliloti infection.

    PubMed

    Yang, Yanjun; Yue, Runqing; Sun, Tao; Zhang, Lei; Chen, Wei; Zeng, Houqing; Wang, Huizhong; Shen, Chenjia

    2015-01-01

    Auxin plays a pivotal role in the regulation of plant growth and development by controlling the expression of auxin response genes rapidly. As one of the major auxin early response gene families, Gretchen Hagen 3 (GH3) genes are involved in auxin homeostasis by conjugating excess auxins to amino acids. However, how GH3 genes function in environmental stresses and rhizobial infection responses in Medicago truncatula are largely unknown. Here, based on the latest updated M. truncatula genome, a comprehensive identification and expression profiling analysis of MtGH3 genes were performed. Our data showed that most of MtGH3 genes were expressed in tissue-specific manner and were responsive to environmental stress-related hormones. To understand the possible roles of MtGH3 genes involved in symbiosis establishment between M. truncatula and symbiotic bacteria, quantitative real-time polymerase chain reaction (qRT-PCR) was used to test the expressions of MtGH3 genes during the early phase of Sinorhizobium meliloti infection. The expression levels of most MtGH3 genes were upregulated in shoots and downregulated in roots by S. meliloti infection. The differences in expression responses to S. meliloti infection between roots and shoots were in agreement with the results of free indoleacetic acid (IAA) content measurements. The identification and expression analysis of MtGH3 genes at the early phase of S. meliloti infection may help us to understand the role of GH3-mediated IAA homeostasis in the regulation of nodule formation in model legumes M. truncatula.

  15. A Sinorhizobium meliloti-specific N-acyl homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation.

    PubMed

    Veliz-Vallejos, Debora F; van Noorden, Giel E; Yuan, Mengqi; Mathesius, Ulrike

    2014-01-01

    N-acyl homoserine lactones (AHLs) act as quorum sensing signals that regulate cell-density dependent behaviors in many gram-negative bacteria, in particular those important for plant-microbe interactions. AHLs can also be recognized by plants, and this may influence their interactions with bacteria. Here we tested whether the exposure to AHLs affects the nodule-forming symbiosis between legume hosts and rhizobia. We treated roots of the model legume, Medicago truncatula, with a range of AHLs either from its specific symbiont, Sinorhizobium meliloti, or from the potential pathogens, Pseudomonas aeruginosa and Agrobacterium vitis. We found increased numbers of nodules formed on root systems treated with the S. meliloti-specific AHL, 3-oxo-C14-homoserine lactone, at a concentration of 1 μM, while the other AHLs did not result in significant changes to nodule numbers. We did not find any evidence for altered nodule invasion by the rhizobia. Quantification of flavonoids that could act as nod gene inducers in S. meliloti did not show any correlation with increased nodule numbers. The effects of AHLs were specific for an increase in nodule numbers, but not lateral root numbers or root length. Increased nodule numbers following 3-oxo-C14-homoserine lactone treatment were under control of autoregulation of nodulation and were still observed in the autoregulation mutant, sunn4 (super numeric nodules4). However, increases in nodule numbers by 3-oxo-C14-homoserine lactone were not found in the ethylene-insensitive sickle mutant. A comparison between M. truncatula with M. sativa (alfalfa) and Trifolium repens (white clover) showed that the observed effects of AHLs on nodule numbers were specific to M. truncatula, despite M. sativa nodulating with the same symbiont. We conclude that plant perception of the S. meliloti-specific 3-oxo-C14-homoserine lactone influences nodule numbers in M. truncatula via an ethylene-dependent, but autoregulation-independent mechanism.

  16. Mutation in the ntrR gene, a member of the vap gene family, increases the symbiotic efficiency of Sinorhizobium meliloti.

    PubMed

    Oláh, B; Kiss, E; Györgypál, Z; Borzi, J; Cinege, G; Csanádi, G; Batut, J; Kondorosi, A; Dusha, I

    2001-07-01

    In specific plant organs, namely the root nodules of alfalfa, fixed nitrogen (ammonia) produced by the symbiotic partner Sinorhizobium meliloti supports the growth of the host plant in nitrogen-depleted environment. Here, we report that a derivative of S. meliloti carrying a mutation in the chromosomal ntrR gene induced nodules with enhanced nitrogen fixation capacity, resulting in an increased dry weight and nitrogen content of alfalfa. The efficient nitrogen fixation is a result of the higher expression level of the nifH gene, encoding one of the subunits of the nitrogenase enzyme, and nifA, the transcriptional regulator of the nif operon. The ntrR gene, controlled negatively by its own product and positively by the symbiotic regulator syrM, is expressed in the same zone of nodules as the nif genes. As a result of the nitrogen-tolerant phenotype of the strain, the beneficial effect of the mutation on efficiency is not abolished in the presence of the exogenous nitrogen source. The ntrR mutant is highly competitive in nodule occupancy compared with the wild-type strain. Sequence analysis of the mutant region revealed a new cluster of genes, termed the "ntrPR operon," which is highly homologous to a group of vap-related genes of various pathogenic bacteria that are presumably implicated in bacterium-host interactions. On the basis of its favorable properties, the strain is a good candidate for future agricultural utilization.

  17. Sinorhizobium meliloti fur-like (Mur) protein binds a fur box-like sequence present in the mntA promoter in a manganese-responsive manner.

    PubMed

    Platero, Raúl; de Lorenzo, Víctor; Garat, Beatriz; Fabiano, Elena

    2007-08-01

    In Sinorhizobium meliloti, the Mur(Sm) protein, a homologue of the ferric uptake regulator (Fur), mediates manganese-dependent regulation of the MntABCD manganese uptake system. In this study, we analyzed Mur(Sm) binding to the promoter region of the S. meliloti mntA gene. We demonstrated that Mur(Sm) protein binds with high affinity to the promoter region of mntA gene in a manganese-responsive manner. Moreover, the results presented here indicate that two monomers, or one dimer, of Mur(Sm) binds the DNA. The binding region was identified by DNase I footprinting analysis and covers a region of about 30 bp long that contains a palindromic sequence. The Mur(Sm) binding site, present in the mntA promoter region, is similar to a Fur box; however, manganese-activated Mur(Sm) binds a canonical Fur box with very low affinity. Furthermore, the data obtained indicate that Mur(Sm) responds to physiological concentrations of manganese.

  18. Sinorhizobium meliloti Fur-Like (Mur) Protein Binds a Fur Box-Like Sequence Present in the mntA Promoter in a Manganese-Responsive Manner▿

    PubMed Central

    Platero, Raúl; de Lorenzo, Víctor; Garat, Beatriz; Fabiano, Elena

    2007-01-01

    In Sinorhizobium meliloti, the MurSm protein, a homologue of the ferric uptake regulator (Fur), mediates manganese-dependent regulation of the MntABCD manganese uptake system. In this study, we analyzed MurSm binding to the promoter region of the S. meliloti mntA gene. We demonstrated that MurSm protein binds with high affinity to the promoter region of mntA gene in a manganese-responsive manner. Moreover, the results presented here indicate that two monomers, or one dimer, of MurSm binds the DNA. The binding region was identified by DNase I footprinting analysis and covers a region of about 30 bp long that contains a palindromic sequence. The MurSm binding site, present in the mntA promoter region, is similar to a Fur box; however, manganese-activated MurSm binds a canonical Fur box with very low affinity. Furthermore, the data obtained indicate that MurSm responds to physiological concentrations of manganese. PMID:17557847

  19. A consolidated analysis of the physiologic and molecular responses induced under acid stress in the legume-symbiont model-soil bacterium Sinorhizobium meliloti.

    PubMed

    Draghi, W O; Del Papa, M F; Hellweg, C; Watt, S A; Watt, T F; Barsch, A; Lozano, M J; Lagares, A; Salas, M E; López, J L; Albicoro, F J; Nilsson, J F; Torres Tejerizo, G A; Luna, M F; Pistorio, M; Boiardi, J L; Pühler, A; Weidner, S; Niehaus, K; Lagares, A

    2016-07-11

    Abiotic stresses in general and extracellular acidity in particular disturb and limit nitrogen-fixing symbioses between rhizobia and their host legumes. Except for valuable molecular-biological studies on different rhizobia, no consolidated models have been formulated to describe the central physiologic changes that occur in acid-stressed bacteria. We present here an integrated analysis entailing the main cultural, metabolic, and molecular responses of the model bacterium Sinorhizobium meliloti growing under controlled acid stress in a chemostat. A stepwise extracellular acidification of the culture medium had indicated that S. meliloti stopped growing at ca. pH 6.0-6.1. Under such stress the rhizobia increased the O2 consumption per cell by more than 5-fold. This phenotype, together with an increase in the transcripts for several membrane cytochromes, entails a higher aerobic-respiration rate in the acid-stressed rhizobia. Multivariate analysis of global metabolome data served to unequivocally correlate specific-metabolite profiles with the extracellular pH, showing that at low pH the pentose-phosphate pathway exhibited increases in several transcripts, enzymes, and metabolites. Further analyses should be focused on the time course of the observed changes, its associated intracellular signaling, and on the comparison with the changes that operate during the sub lethal acid-adaptive response (ATR) in rhizobia.

  20. A consolidated analysis of the physiologic and molecular responses induced under acid stress in the legume-symbiont model-soil bacterium Sinorhizobium meliloti

    PubMed Central

    Draghi, W. O.; Del Papa, M. F.; Hellweg, C.; Watt, S. A.; Watt, T. F.; Barsch, A.; Lozano, M. J.; Lagares, A.; Salas, M. E.; López, J. L.; Albicoro, F. J.; Nilsson, J. F.; Torres Tejerizo, G. A.; Luna, M. F.; Pistorio, M.; Boiardi, J. L.; Pühler, A.; Weidner, S.; Niehaus, K.; Lagares, A.

    2016-01-01

    Abiotic stresses in general and extracellular acidity in particular disturb and limit nitrogen-fixing symbioses between rhizobia and their host legumes. Except for valuable molecular-biological studies on different rhizobia, no consolidated models have been formulated to describe the central physiologic changes that occur in acid-stressed bacteria. We present here an integrated analysis entailing the main cultural, metabolic, and molecular responses of the model bacterium Sinorhizobium meliloti growing under controlled acid stress in a chemostat. A stepwise extracellular acidification of the culture medium had indicated that S. meliloti stopped growing at ca. pH 6.0–6.1. Under such stress the rhizobia increased the O2 consumption per cell by more than 5-fold. This phenotype, together with an increase in the transcripts for several membrane cytochromes, entails a higher aerobic-respiration rate in the acid-stressed rhizobia. Multivariate analysis of global metabolome data served to unequivocally correlate specific-metabolite profiles with the extracellular pH, showing that at low pH the pentose-phosphate pathway exhibited increases in several transcripts, enzymes, and metabolites. Further analyses should be focused on the time course of the observed changes, its associated intracellular signaling, and on the comparison with the changes that operate during the sub lethal acid-adaptive response (ATR) in rhizobia. PMID:27404346

  1. Sinorhizobium meliloti low molecular mass phosphotyrosine phosphatase SMc02309 modifies activity of the UDP-glucose pyrophosphorylase ExoN involved in succinoglycan biosynthesis.

    PubMed

    Medeot, Daniela B; Romina Rivero, María; Cendoya, Eugenia; Contreras-Moreira, Bruno; Rossi, Fernando A; Fischer, Sonia E; Becker, Anke; Jofré, Edgardo

    2016-03-01

    In Gram-negative bacteria, tyrosine phosphorylation has been shown to play a role in the control of exopolysaccharide (EPS) production. This study demonstrated that the chromosomal ORF SMc02309 from Sinorhizobium meliloti 2011 encodes a protein with significant sequence similarity to low molecular mass protein-tyrosine phosphatases (LMW-PTPs), such as the Escherichia coli Wzb. Unlike other well-characterized EPS biosynthesis gene clusters, which contain neighbouring LMW-PTPs and kinase, the S. meliloti succinoglycan (EPS I) gene cluster located on megaplasmid pSymB does not encode a phosphatase. Biochemical assays revealed that the SMc02309 protein hydrolyses p-nitrophenyl phosphate (p-NPP) with kinetic parameters similar to other bacterial LMW-PTPs. Furthermore, we show evidence that SMc02309 is not the LMW-PTP of the bacterial tyrosine-kinase (BY-kinase) ExoP. Nevertheless, ExoN, a UDP-glucose pyrophosphorylase involved in the first stages of EPS I biosynthesis, is phosphorylated at tyrosine residues and constitutes an endogenous substrate of the SMc02309 protein. Additionally, we show that the UDP-glucose pyrophosphorylase activity is modulated by SMc02309-mediated tyrosine dephosphorylation. Moreover, a mutation in the SMc02309 gene decreases EPS I production and delays nodulation on Medicago sativa roots.

  2. Comparative toxicity assessment of CeO2 and ZnO nanoparticles towards Sinorhizobium meliloti, a symbiotic alfalfa associated bacterium: use of advanced microscopic and spectroscopic techniques.

    PubMed

    Bandyopadhyay, Susmita; Peralta-Videa, Jose R; Plascencia-Villa, Germán; José-Yacamán, Miguel; Gardea-Torresdey, Jorge L

    2012-11-30

    Cerium oxide (CeO(2)) and zinc oxide (ZnO) nanoparticles (NPs) are extensively used in a variety of instruments and consumer goods. These NPs are of great concern because of potential toxicity towards human health and the environment. The present work aimed to assess the toxic effects of 10nm CeO(2) and ZnO NPs towards the nitrogen fixing bacterium Sinorhizobium meliloti. Toxicological parameters evaluated included UV/Vis measurement of minimum inhibitory concentration, disk diffusion tests, and dynamic growth. Ultra high-resolution scanning transmission electron microscopy (STEM) and infrared spectroscopy (FTIR) were utilized to determine the spatial distribution of NPs and macromolecule changes in bacterial cells, respectively. Results indicate that ZnO NPs were more toxic than CeO(2) NPs in terms of inhibition of dynamic growth and viable cells counts. STEM images revealed that CeO(2) and ZnO NPs were found on bacterial cell surfaces and ZnO NPs were internalized into the periplasmic space of the cells. FTIR spectra showed changes in protein and polysaccharide structures of extra cellular polymeric substances present in bacterial cell walls treated with both NPs. The growth data showed that CeO(2) NPs have a bacteriostatic effect, whereas ZnO NPs is bactericidal to S. meliloti. Overall, ZnO NPs were found to be more toxic than CeO(2) NPs.

  3. The DivJ, CbrA and PleC system controls DivK phosphorylation and symbiosis in Sinorhizobium meliloti.

    PubMed

    Pini, Francesco; Frage, Benjamin; Ferri, Lorenzo; De Nisco, Nicole J; Mohapatra, Saswat S; Taddei, Lucilla; Fioravanti, Antonella; Dewitte, Frederique; Galardini, Marco; Brilli, Matteo; Villeret, Vincent; Bazzicalupo, Marco; Mengoni, Alessio; Walker, Graham C; Becker, Anke; Biondi, Emanuele G

    2013-10-01

    Sinorhizobium meliloti is a soil bacterium that invades the root nodules it induces on Medicago sativa, whereupon it undergoes an alteration of its cell cycle and differentiates into nitrogen-fixing, elongated and polyploid bacteroid with higher membrane permeability. In Caulobacter crescentus, a related alphaproteobacterium, the principal cell cycle regulator, CtrA, is inhibited by the phosphorylated response regulator DivK. The phosphorylation of DivK depends on the histidine kinase DivJ, while PleC is the principal phosphatase for DivK. Despite the importance of the DivJ in C. crescentus, the mechanistic role of this kinase has never been elucidated in other Alphaproteobacteria. We show here that the histidine kinases DivJ together with CbrA and PleC participate in a complex phosphorylation system of the essential response regulator DivK in S. meliloti. In particular, DivJ and CbrA are involved in DivK phosphorylation and in turn CtrA inactivation, thereby controlling correct cell cycle progression and the integrity of the cell envelope. In contrast, the essential PleC presumably acts as a phosphatase of DivK. Interestingly, we found that a DivJ mutant is able to elicit nodules and enter plant cells, but fails to establish an effective symbiosis suggesting that proper envelope and/or low CtrA levels are required for symbiosis.

  4. Genetic and functional characterization of a yet-unclassified rhizobial Dtr (DNA-transfer-and-replication) region from a ubiquitous plasmid conjugal system present in Sinorhizobium meliloti, in Sinorhizobium medicae, and in other nonrhizobial Gram-negative bacteria.

    PubMed

    Giusti, María de los Ángeles; Pistorio, Mariano; Lozano, Mauricio J; Tejerizo, Gonzalo A Torres; Salas, María Eugenia; Martini, María Carla; López, José Luis; Draghi, Walter O; Del Papa, María Florencia; Pérez-Mendoza, Daniel; Sanjuán, Juan; Lagares, Antonio

    2012-05-01

    Rhizobia are Gram-negative bacteria that live in soils and associate with leguminous plants to establish nitrogen-fixing symbioses. The ability of these bacteria to undergo horizontal gene transfer (HGT) is thought to be one of the main features to explain both the origin of their symbiotic life-style and the plasticity and dynamics of their genomes. In our laboratory we have previously characterized at the species level the non-pSym plasmid mobilome in Sinorhizobium meliloti, the symbiont of Medicago spp., and have found a high incidence of conjugal activity in many plasmids (Pistorio et al., 2008). In this work we characterized the Dtr (DNA-transfer-and-replication) region of one of those plasmids, pSmeLPU88b. This mobilization region was found to represent a previously unclassified Dtr type in rhizobia (hereafter type-IV), highly ubiquitous in S. meliloti and found in other genera of Gram-negative bacteria as well; including Agrobacterium, Ochrobactrum, and Chelativorans. The oriT of the type-IV Dtr described here could be located by function within a DNA fragment of 278 bp, between the divergent genes parA and mobC. The phylogenetic analysis of the cognate relaxase MobZ indicated that this protein groups close to the previously defined MOB(P3) and MOB(P4) type of enzymes, but is located in a separate and novel cluster that we have designated MOB(P0). Noteworthy, MOB(P0) and MOB(P4) relaxases were frequently associated with plasmids present in rhizospheric soil bacteria. A comparison of the nod-gene locations with the phylogenetic topology of the rhizobial relaxases revealed that the symbiotic genes are found on diverse plasmids bearing any of the four Dtr types, thus indicating that pSym plasmids are not specifically associated with any particular mobilization system. Finally, we demonstrated that the type-IV Dtr promoted the mobilization of plasmids from S. meliloti to Sinorhizobium medicae as well as from these rhizobia to other bacteria by means of their own

  5. Biosynthesis of UDP-xylose and UDP-arabinose in Sinorhizobium meliloti 1021: first characterization of a bacterial UDP-xylose synthase, and UDP-xylose 4-epimerase.

    PubMed

    Gu, Xiaogang; Lee, Sung G; Bar-Peled, Maor

    2011-01-01

    Sinorhizobium meliloti is a soil bacterium that fixes nitrogen after being established inside nodules that can form on the roots of several legumes, including Medicago truncatula. A mutation in an S. meliloti gene (lpsB) required for lipopolysaccharide synthesis has been reported to result in defective nodulation and an increase in the synthesis of a xylose-containing glycan. Glycans containing xylose as well as arabinose are also formed by other rhizobial species, but little is known about their structures and the biosynthetic pathways leading to their formation. To gain insight into the biosynthesis of these glycans and their biological roles, we report the identification of an operon in S. meliloti 1021 that contains two genes encoding activities not previously described in bacteria. One gene encodes a UDP-xylose synthase (Uxs) that converts UDP-glucuronic acid to UDP-xylose, and the second encodes a UDP-xylose 4-epimerase (Uxe) that interconverts UDP-xylose and UDP-arabinose. Similar genes were also identified in other rhizobial species, including Rhizobium leguminosarum, suggesting that they have important roles in the life cycle of this agronomically important class of bacteria. Functional studies established that recombinant SmUxs1 is likely to be active as a dimer and is inhibited by NADH and UDP-arabinose. SmUxe is inhibited by UDP-galactose, even though this nucleotide sugar is not a substrate for the 4-epimerase. Unambiguous evidence for the conversions of UDP-glucuronic acid to UDP-α-D-xylose and then to UDP-β-L-arabinose (UDP-arabinopyranose) was obtained using real-time (1)H-NMR spectroscopy. Our results provide new information about the ability of rhizobia to form UDP-xylose and UDP-arabinose, which are then used for the synthesis of xylose- and arabinose-containing glycans.

  6. Dual Control of Sinorhizobium meliloti RpoE2 Sigma Factor Activity by Two PhyR-Type Two-Component Response Regulators▿ †

    PubMed Central

    Bastiat, Bénédicte; Sauviac, Laurent; Bruand, Claude

    2010-01-01

    RpoE2 is an extracytoplasmic function (ECF) sigma factor involved in the general stress response of Sinorhizobium meliloti, the nitrogen-fixing symbiont of the legume plant alfalfa. RpoE2 orthologues are widely found among alphaproteobacteria, where they play various roles in stress resistance and/or host colonization. In this paper, we report a genetic and biochemical investigation of the mechanisms of signal transduction leading to S. meliloti RpoE2 activation in response to stress. We showed that RpoE2 activity is negatively controlled by two paralogous anti-sigma factors, RsiA1 (SMc01505) and RsiA2 (SMc04884), and that RpoE2 activation by stress requires two redundant paralogous PhyR-type response regulators, RsiB1 (SMc01504) and RsiB2 (SMc00794). RsiB1 and RsiB2 do not act at the level of rpoE2 transcription but instead interact with the anti-sigma factors, and we therefore propose that they act as anti-anti-sigma factors to relieve RpoE2 inhibition in response to stress. This model closely resembles a recently proposed model of activation of RpoE2-like sigma factors in Methylobacterium extorquens and Bradyrhizobium japonicum, but the existence of two pairs of anti- and anti-anti-sigma factors in S. meliloti adds an unexpected level of complexity, which may allow the regulatory system to integrate multiple stimuli. PMID:20154128

  7. A Sinorhizobium meliloti RpoH-Regulated Gene Is Involved in Iron-Sulfur Protein Metabolism and Effective Plant Symbiosis under Intrinsic Iron Limitation

    PubMed Central

    Sasaki, Shohei; Minamisawa, Kiwamu

    2016-01-01

    ABSTRACT In Sinorhizobium meliloti, RpoH-type sigma factors have a global impact on gene expression during heat shock and play an essential role in symbiosis with leguminous plants. Using mutational analysis of a set of genes showing highly RpoH-dependent expression during heat shock, we identified a gene indispensable for effective symbiosis. This gene, designated sufT, was located downstream of the sufBCDS homologs that specify the iron-sulfur (Fe/S) cluster assembly pathway. The identified transcription start site was preceded by an RpoH-dependent promoter consensus sequence. SufT was related to a conserved protein family of unknown molecular function, of which some members are involved in Fe/S cluster metabolism in diverse organisms. A sufT mutation decreased bacterial growth in both rich and minimal media, tolerance to stresses such as iron starvation, and activities of some Fe/S cluster-dependent enzymes. These results support the involvement of SufT in SUF (sulfur mobilization) system-mediated Fe/S protein metabolism. Furthermore, we isolated spontaneous pseudorevertants of the sufT mutant with partially recovered growth; each of them had a mutation in rirA. This gene encodes a global iron regulator whose loss increases the intracellular iron content. Deletion of rirA in the original sufT mutant improved growth and restored Fe/S enzyme activities and effective symbiosis. These results suggest that enhanced iron availability compensates for the lack of SufT in the maintenance of Fe/S proteins. IMPORTANCE Although RpoH-type sigma factors of the RNA polymerase are present in diverse proteobacteria, their role as global regulators of protein homeostasis has been studied mainly in the enteric gammaproteobacterium Escherichia coli. In the soil alphaproteobacterium Sinorhizobium meliloti, the rpoH mutations have a strong impact on symbiosis with leguminous plants. We found that sufT is a unique member of the S. meliloti RpoH regulon; sufT contributes to Fe

  8. Genes Conferring Copper Resistance in Sinorhizobium meliloti CCNWSX0020 Also Promote the Growth of Medicago lupulina in Copper-Contaminated Soil

    PubMed Central

    Li, Zhefei; Ma, Zhanqiang; Hao, Xiuli; Rensing, Christopher

    2014-01-01

    Sinorhizobium meliloti CCNWSX0020, isolated from root nodules of Medicago lupulina growing in gold mine tailings in the northwest of China, displayed both copper resistance and growth promotion of leguminous plants in copper-contaminated soil. Nevertheless, the genetic and biochemical mechanisms responsible for copper resistance in S. meliloti CCNWSX0020 remained uncharacterized. To investigate genes involved in copper resistance, an S. meliloti CCNWSX0020 Tn5 insertion library of 14,000 mutants was created. Five copper-sensitive mutants, named SXa-1, SXa-2, SXc-1, SXc-2, and SXn, were isolated, and the disrupted regions involved were identified by inverse PCR and subsequent sequencing. Both SXa-1 and SXa-2 carried a transposon insertion in lpxXL (SM0020_18047), encoding the LpxXL C-28 acyltransferase; SXc-1 and SXc-2 carried a transposon insertion in merR (SM0020_29390), encoding the regulatory activator; SXn contained a transposon insertion in omp (SM0020_18792), encoding a hypothetical outer membrane protein. The results of reverse transcriptase PCR (RT-PCR) combined with transposon gene disruptions revealed that SM0020_05862, encoding an unusual P-type ATPase, was regulated by the MerR protein. Analysis of the genome sequence showed that this P-type ATPase did not contain an N-terminal metal-binding domain or a CPC motif but rather TPCP compared with CopA from Escherichia coli. Pot experiments were carried out to determine whether growth and copper accumulation of the host plant M. lupulina were affected in the presence of the wild type or the different mutants. Soil samples were subjected to three levels of copper contamination, namely, the uncontaminated control and 47.36 and 142.08 mg/kg, and three replicates were conducted for each treatment. The results showed that the wild-type S. meliloti CCNWSX0020 enabled the host plant to grow better and accumulate copper ions. The plant dry weight and copper content of M. lupulina inoculated with the 5 copper

  9. Genes conferring copper resistance in Sinorhizobium meliloti CCNWSX0020 also promote the growth of Medicago lupulina in copper-contaminated soil.

    PubMed

    Li, Zhefei; Ma, Zhanqiang; Hao, Xiuli; Rensing, Christopher; Wei, Gehong

    2014-03-01

    Sinorhizobium meliloti CCNWSX0020, isolated from root nodules of Medicago lupulina growing in gold mine tailings in the northwest of China, displayed both copper resistance and growth promotion of leguminous plants in copper-contaminated soil. Nevertheless, the genetic and biochemical mechanisms responsible for copper resistance in S. meliloti CCNWSX0020 remained uncharacterized. To investigate genes involved in copper resistance, an S. meliloti CCNWSX0020 Tn5 insertion library of 14,000 mutants was created. Five copper-sensitive mutants, named SXa-1, SXa-2, SXc-1, SXc-2, and SXn, were isolated, and the disrupted regions involved were identified by inverse PCR and subsequent sequencing. Both SXa-1 and SXa-2 carried a transposon insertion in lpxXL (SM0020_18047), encoding the LpxXL C-28 acyltransferase; SXc-1 and SXc-2 carried a transposon insertion in merR (SM0020_29390), encoding the regulatory activator; SXn contained a transposon insertion in omp (SM0020_18792), encoding a hypothetical outer membrane protein. The results of reverse transcriptase PCR (RT-PCR) combined with transposon gene disruptions revealed that SM0020_05862, encoding an unusual P-type ATPase, was regulated by the MerR protein. Analysis of the genome sequence showed that this P-type ATPase did not contain an N-terminal metal-binding domain or a CPC motif but rather TPCP compared with CopA from Escherichia coli. Pot experiments were carried out to determine whether growth and copper accumulation of the host plant M. lupulina were affected in the presence of the wild type or the different mutants. Soil samples were subjected to three levels of copper contamination, namely, the uncontaminated control and 47.36 and 142.08 mg/kg, and three replicates were conducted for each treatment. The results showed that the wild-type S. meliloti CCNWSX0020 enabled the host plant to grow better and accumulate copper ions. The plant dry weight and copper content of M. lupulina inoculated with the 5 copper

  10. The tRNAarg gene and engA are essential genes on the 1.7-Mb pSymB megaplasmid of Sinorhizobium meliloti and were translocated together from the chromosome in an ancestral strain.

    PubMed

    diCenzo, George; Milunovic, Branislava; Cheng, Jiujun; Finan, Turlough M

    2013-01-01

    Bacterial genomes with two (or more) chromosome-like replicons are known, and these appear to be particularly frequent in alphaproteobacteria. The genome of the N(2)-fixing alfalfa symbiont Sinorhizobium meliloti 1021 contains a 3.7-Mb chromosome and 1.4-Mb (pSymA) and 1.7-Mb (pSymB) megaplasmids. In this study, the tRNA(arg) and engA genes, located on the pSymB megaplasmid, are shown to be essential for growth. These genes could be deleted from pSymB when copies were previously integrated into the chromosome. However, in the closely related strain Sinorhizobium fredii NGR234, the tRNA(arg) and engA genes are located on the chromosome, in a 69-kb region designated the engA-tRNA(arg)-rmlC region. This region includes bacA, a gene that is important for intracellular survival during host-bacterium interactions for S. meliloti and the related alphaproteobacterium Brucella abortus. The engA-tRNA(arg)-rmlC region lies between the kdgK and dppF2 (NGR_c24410) genes on the S. fredii chromosome. Synteny analysis showed that kdgK and dppF2 orthologues are adjacent to each other on the chromosomes of 15 sequenced strains of S. meliloti and Sinorhizobium medicae, whereas the 69-kb engA-tRNA(arg)-rmlC region is present on the pSymB-equivalent megaplasmids. This and other evidence strongly suggests that the engA-tRNA(arg)-rmlC region translocated from the chromosome to the progenitor of pSymB in an ancestor common to S. meliloti and S. medicae. To our knowledge, this work represents one of the first experimental demonstrations that essential genes are present on a megaplasmid.

  11. Identification and characterization of the intracellular poly-3-hydroxybutyrate depolymerase enzyme PhaZ of Sinorhizobium meliloti

    PubMed Central

    2010-01-01

    Background S. meliloti forms indeterminate nodules on the roots of its host plant alfalfa (Medicago sativa). Bacteroids of indeterminate nodules are terminally differentiated and, unlike their non-terminally differentiated counterparts in determinate nodules, do not accumulate large quantities of Poly-3-hydroxybutyrate (PHB) during symbiosis. PhaZ is in intracellular PHB depolymerase; it represents the first enzyme in the degradative arm of the PHB cycle in S. meliloti and is the only enzyme in this half of the PHB cycle that remains uncharacterized. Results The S. meliloti phaZ gene was identified by in silico analysis, the ORF was cloned, and a S. meliloti phaZ mutant was constructed. This mutant exhibited increased PHB accumulation during free-living growth, even when grown under non-PHB-inducing conditions. The phaZ mutant demonstrated no reduction in symbiotic capacity; interestingly, analysis of the bacteroids showed that this mutant also accumulated PHB during symbiosis. This mutant also exhibited a decreased capacity to tolerate long-term carbon starvation, comparable to that of other PHB cycle mutants. In contrast to other PHB cycle mutants, the S. meliloti phaZ mutant did not exhibit any decrease in rhizosphere competitiveness; however, this mutant did exhibit a significant increase in succinoglycan biosynthesis. Conclusions S. meliloti bacteroids retain the capacity to synthesize PHB during symbiosis; interestingly, accumulation does not occur at the expense of symbiotic performance. phaZ mutants are not compromised in their capacity to compete for nodulation in the rhizosphere, perhaps due to increased succinoglycan production resulting from upregulation of the succinoglycan biosynthetic pathway. The reduced survival capacity of free-living cells unable to access their accumulated stores of PHB suggests that PHB is a crucial metabolite under adverse conditions. PMID:20346169

  12. Pseudoazurin from Sinorhizobium meliloti as an electron donor to copper-containing nitrite reductase: influence of the redox partner on the reduction potentials of the enzyme copper centers.

    PubMed

    Ferroni, Félix M; Marangon, Jacopo; Neuman, Nicolás I; Cristaldi, Julio C; Brambilla, Silvina M; Guerrero, Sergio A; Rivas, María G; Rizzi, Alberto C; Brondino, Carlos D

    2014-08-01

    Pseudoazurin (Paz) is the physiological electron donor to copper-containing nitrite reductase (Nir), which catalyzes the reduction of NO2 (-) to NO. The Nir reaction mechanism involves the reduction of the type 1 (T1) copper electron transfer center by the external physiological electron donor, intramolecular electron transfer from the T1 copper center to the T2 copper center, and nitrite reduction at the type 2 (T2) copper catalytic center. We report the cloning, expression, and characterization of Paz from Sinorhizobium meliloti 2011 (SmPaz), the ability of SmPaz to act as an electron donor partner of S. meliloti 2011 Nir (SmNir), and the redox properties of the metal centers involved in the electron transfer chain. Gel filtration chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis together with UV-vis and EPR spectroscopies revealed that as-purified SmPaz is a mononuclear copper-containing protein that has a T1 copper site in a highly distorted tetrahedral geometry. The SmPaz/SmNir interaction investigated electrochemically showed that SmPaz serves as an efficient electron donor to SmNir. The formal reduction potentials of the T1 copper center in SmPaz and the T1 and T2 copper centers in SmNir, evaluated by cyclic voltammetry and by UV-vis- and EPR-mediated potentiometric titrations, are against an efficient Paz T1 center to Nir T1 center to Nir T2 center electron transfer. EPR experiments proved that as a result of the SmPaz/SmNir interaction in the presence of nitrite, the order of the reduction potentials of SmNir reversed, in line with T1 center to T2 center electron transfer being thermodynamically more favorable.

  13. 24-Epibrassinolide ameliorates salt stress effects in the symbiosis Medicago truncatula-Sinorhizobium meliloti and regulates the nodulation in cross-talk with polyamines.

    PubMed

    López-Gómez, Miguel; Hidalgo-Castellanos, Javier; Lluch, Carmen; Herrera-Cervera, José A

    2016-11-01

    Brassinosteroids (BRs) are steroid plant hormones that have been shown to be involved in the response to salt stress in cross-talk with other plant growth regulators such as polyamines (PAs). In addition, BRs are involved in the regulation of the nodulation in the rhizobium-legume symbiosis through the alteration of the PAs content in leaves. In this work, we have studied the effect of exogenous 24-epibrassinolide (EBL) in the response to salinity of nitrogen fixation in the symbiosis Medicago truncatula-Sinorhizobium meliloti. Foliar spraying of EBL restored the growth of plants subjected to salt stress and provoked an increment of the nitrogenase activity. In general, PAs levels in leaves and nodules decreased by the salt and EBL treatments, however, the co-treatment with NaCl and EBL augmented the foliar spermine (Spm) concentration. This increment of the Spm levels was followed by a reduction of the membrane oxidative damage and a diminution of the proline accumulation. The effect of BRs on the symbiotic interaction was evaluated by the addition of 0.01, 0.1 and 0.5 μM EBL to the growing solution, which provoked a reduction of the nodule number and an increment of the PAs levels in shoot. In conclusion, foliar treatment with EBL had a protective effect against salt stress in the M. truncatula-S. meliloti symbiosis mediated by an increment of the Spm levels. Treatment of roots with EBL incremented PAs levels in shoot and reduced the nodule number which suggests a cross-talk between PAs and BRs in the nodule suppression and the protection against salt stress.

  14. Sinorhizobium meliloti sigma factors RpoE1 and RpoE4 are activated in stationary phase in response to sulfite.

    PubMed

    Bastiat, Bénédicte; Sauviac, Laurent; Picheraux, Carole; Rossignol, Michel; Bruand, Claude

    2012-01-01

    Rhizobia are soil bacteria able to establish a nitrogen-fixing symbiosis with legume plants. Both in soil and in planta, rhizobia spend non-growing periods resembling the stationary phase of in vitro-cultured bacteria. The primary objective of this work was to better characterize gene regulation in this biologically relevant growth stage in Sinorhizobium meliloti. By a tap-tag/mass spectrometry approach, we identified five sigma factors co-purifying with the RNA polymerase in stationary phase: the general stress response regulator RpoE2, the heat shock sigma factor RpoH2, and three extra-cytoplasmic function sigma factors (RpoE1, RpoE3 and RpoE4) belonging to the poorly characterized ECF26 subgroup. We then showed that RpoE1 and RpoE4 i) are activated upon metabolism of sulfite-generating compounds (thiosulfate and taurine), ii) display overlapping regulatory activities, iii) govern a dedicated sulfite response by controlling expression of the sulfite dehydrogenase SorT, iv) are activated in stationary phase, likely as a result of endogenous sulfite generation during bacterial growth. We showed that SorT is required for optimal growth of S. meliloti in the presence of sulfite, suggesting that the response governed by RpoE1 and RpoE4 may be advantageous for bacteria in stationary phase either by providing a sulfite detoxification function or by contributing to energy production through sulfite respiration. This paper therefore reports the first characterization of ECF26 sigma factors, the first description of sigma factors involved in control of sulphur metabolism, and the first indication that endogenous sulfite may act as a signal for regulation of gene expression upon entry of bacteria in stationary phase.

  15. Overexpression of BetS, a Sinorhizobium meliloti high-affinity betaine transporter, in bacteroids from Medicago sativa nodules sustains nitrogen fixation during early salt stress adaptation.

    PubMed

    Boscari, Alexandre; Van de Sype, Ghislaine; Le Rudulier, Daniel; Mandon, Karine

    2006-08-01

    Sinorhizobium meliloti possesses several betaine transporters to cope with salt stress, and BetS represents a crucial high-affinity glycine and proline betaine uptake system involved in the rapid acquisition of betaines by cells subjected to osmotic upshock. Using a transcriptional lacZ (beta-galactosidase) fusion, we showed that betS is expressed during the establishment of the symbiosis and in mature nitrogen-fixing nodules. However, neither Nod nor Fix phenotypes were impaired in a betS mutant. BetS is functional in isolated bacteroids, and its activity is strongly activated by high osmolarity. In bacteroids from a betS mutant, glycine betaine and proline betaine uptake was reduced by 85 to 65%, indicating that BetS is a major component of the overall betaine uptake activity in bacteroids in response to osmotic stress. Upon betS overexpression (strain UNA349) in free-living cells, glycine betaine transport was 2.3-fold higher than in the wild-type strain. Interestingly, the accumulation of proline betaine, the endogenous betaine synthesized by alfalfa plants, was 41% higher in UNA349 bacteroids from alfalfa plants subjected to 1 week of salinization (0.3 M NaCl) than in wild-type bacteroids. In parallel, a much better maintenance of nitrogen fixation activity was observed in 7-day-salinized plants nodulated with the overexpressing strain than in wild-type nodulated plants. Taken altogether, these results are consistent with the major role of BetS as an emergency system involved in the rapid uptake of betaines in isolated and in planta osmotically stressed bacteroids of S. meliloti.

  16. A mutant GlnD nitrogen sensor protein leads to a nitrogen-fixing but ineffective Sinorhizobium meliloti symbiosis with alfalfa.

    PubMed

    Yurgel, Svetlana N; Kahn, Michael L

    2008-12-02

    The nitrogen-fixing symbiosis between rhizobia and legume plants is a model of coevolved nutritional complementation. The plants reduce atmospheric CO(2) by photosynthesis and provide carbon compounds to symbiotically associated bacteria; the rhizobia use these compounds to reduce (fix) atmospheric N(2) to ammonia, a form of nitrogen the plants can use. A key feature of symbiotic N(2) fixation is that N(2) fixation is uncoupled from bacterial nitrogen stress metabolism so that the rhizobia generate "excess" ammonia and release this ammonia to the plant. In the symbiosis between Sinorhizobium meliloti and alfalfa, mutations in GlnD, the major bacterial nitrogen stress response sensor protein, led to a symbiosis in which nitrogen was fixed (Fix(+)) but was not effective (Eff(-)) in substantially increasing plant growth. Fixed (15)N(2) was transported to the shoots, but most fixed (15)N was not present in the plant after 24 h. Analysis of free-living S. meliloti strains with mutations in genes related to nitrogen stress response regulation (glnD, glnB, ntrC, and ntrA) showed that catabolism of various nitrogen-containing compounds depended on the NtrC and GlnD components of the nitrogen stress response cascade. However, only mutants of GlnD with an amino terminal deletion had the unusual Fix(+)Eff(-) symbiotic phenotype, and the data suggest that these glnD mutants export fixed nitrogen in a form that the plants cannot use. These results indicate that bacterial nitrogen stress regulation is important to symbiotic productivity and suggest that GlnD may act in a novel way to influence symbiotic behavior.

  17. The Pattern of Secreted Molecules During the Co-Inoculation of Alfalfa Plants With Sinorhizobium meliloti and Delftia sp. strain JD2: An Interaction That Improves Plant Yield.

    PubMed

    Morel, M A; Cagide, C; Minteguiaga, M A; Dardanelli, M S; Castro-Sowinski, S

    2015-02-01

    Delftia sp. strain JD2 is a plant-growth-promoting bacterium that enhances legume nodulation and growth, acting as nodule-assisting bacterium during the co-inoculation of plants with rhizobial strains. In this work, we evaluate how the co-inoculation of alfalfa with Sinorhizobium meliloti U143 and JD2 increases plant yield under greenhouse conditions and we analyze the pattern of secreted bioactive compounds which may be involved in the microbe-plant communication. The chemical composition of extracellular cultures (EC) produced in hydroponic conditions (collected 4, 7, and 14 days after bacterial treatment) were characterized using different chromatographic and elucidation techniques. In addition, we assessed the effect that plant irrigation with cell-free EC, produced during co-inoculation experiments, would have on plant yield. Results showed increased alfalfa shoot and root matter, suggesting that U143-JD2 co-inoculation might be a beneficial agricultural practice. The pattern of secreted secondary metabolites among treatments showed important differences. Qualitative and quantitative changes in phenolic compounds (including flavonoids), organic acids, and volatile compounds were detected during the early microbe-plant interaction, suggesting that the production of some molecules positively affects the microbe-plant association. Finally, the irrigation of co-inoculated plants with cell-free EC under greenhouse conditions increased plant yield over agronomic expectations. This effect might be attributed to the bioactive secondary metabolites incorporated during the irrigation.

  18. Biochemical characterization of a nitrogen-type phosphotransferase system reveals that enzyme EI(Ntr) integrates carbon and nitrogen signaling in Sinorhizobium meliloti.

    PubMed

    Goodwin, Reed A; Gage, Daniel J

    2014-05-01

    In Sinorhizobium meliloti, catabolite repression is influenced by a noncanonical nitrogen-type phosphotransferase system (PTS(Ntr)). In this PTS(Ntr), the protein HPr is phosphorylated on histidine-22 by the enzyme EI(Ntr) and the flux of phosphate through this residue onto downstream proteins leads to an increase in succinate-mediated catabolite repression (SMCR). In order to explore the molecular determinants of HPr phosphorylation by EI(Ntr), both proteins were purified and the activity of EI(Ntr) was measured. Experimentally determined kinetic parameters of EI(Ntr) activity were significantly slower than those determined for the carbohydrate-type EI in Escherichia coli. Enzymatic assays showed that glutamine, a signal of nitrogen availability in many Gram-negative bacteria, strongly inhibits EI(Ntr). Binding experiments using the isolated GAF domain of EI(Ntr) (EIGAF) showed that it is the domain responsible for detection of glutamine. EI(Ntr) activity was not affected by α-ketoglutarate, and no binding between the EIGAF and α-ketoglutarate could be detected. These data suggest that in S. melilloti, EI(Ntr) phosphorylation of HPr is regulated by signals from both carbon metabolism (phosphoenolpyruvate) and nitrogen metabolism (glutamine).

  19. Insertion of transposon Tn5tac1 in the Sinorhizobium meliloti malate dehydrogenase (mdh) gene results in conditional polar effects on downstream TCA cycle genes.

    PubMed

    Dymov, Sergiy I; Meek, David J J; Steven, Blaire; Driscoll, Brian T

    2004-12-01

    To isolate Sinorhizobium meliloti mutants deficient in malate dehydrogenase (MDH) activity, random transposon Tn5tac1 insertion mutants were screened for conditional lethal phenotypes on complex medium. Tn5tac1 has an outward-oriented isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible promoter (Ptac). The insertion in strain Rm30049 was mapped to the mdh gene, which was found to lie directly upstream of the genes encoding succinyl-CoA synthetase (sucCD) and 2-oxoglutarate dehydrogenase (sucAB and lpdA). Rm30049 required IPTG for wild-type growth in complex media, and had a complex growth phenotype in minimal media with different carbon sources. The mdh:: Tn5tacl insertion eliminated MDH activity under all growth conditions, and activities of succinyl-CoA synthetase, 2-oxoglutarate dehydrogenase, and succinate dehydrogenase were affected by the addition of IPTG. Reverse-transcriptase polymerase chain reaction (RT-PCR) studies confirmed that expression from Ptac was induced by IPTG and leaky in its absence. Alfalfa plants inoculated with Rm30049 were chlorotic and stunted, with small white root nodules, and had shoot dry weight and percent-N content values similar to those of uninoculated plants. Cosmid clone pDS15 restored MDH activity to Rm30049, complemented both the mutant growth and symbiotic phenotypes, and was found to carry six complete (sdhB, mdh, sucCDAB) and two partial (IpdA, sdhA) tricarboxylic acid cycle genes.

  20. A vapBC-type toxin-antitoxin module of Sinorhizobium meliloti influences symbiotic efficiency and nodule senescence of Medicago sativa.

    PubMed

    Lipuma, Justine; Cinege, Gyöngyi; Bodogai, Monica; Oláh, Boglárka; Kiers, Aurélie; Endre, Gabriella; Dupont, Laurence; Dusha, Ilona

    2014-12-01

    The symbiotic nitrogen-fixing soil bacterium Sinorhizobium meliloti carries a large number of toxin-antitoxin (TA) modules both on the chromosome and megaplasmids. One of them, the vapBC-5 module that belongs to the type II systems was characterized here. It encodes an active toxin vapC-5, and was shown to be controlled negatively by the complex of its own proteins. Different mutants of the vapBC-5 genes exhibited diverse effects on symbiotic efficiency during interaction with the host plant Medicago sativa. The absence of the entire vapBC-5 region had no influence on nodule formation and nitrogen fixation properties. The strain carrying an insertion in the antitoxin gene showed a reduced nitrogen fixation capacity resulting in a lower plant yield. In contrast, when the toxin gene was mutated, the strain developed more efficient symbiosis with the host plant. The nitrogen fixing root nodules had a delayed senescent phenotype and contained elevated level of plant-derived molecules characteristic of later steps of nodule development. The longer bacteroid viability and abundance of active nitrogen fixing zone resulted in increased production of plant material. These data indicate that modification of the toxin/antitoxin production may influence bacteroid metabolism and may have an impact on the adaptation to changing environmental conditions.

  1. Plant and Bacterial Symbiotic Mutants Define Three Transcriptionally Distinct Stages in the Development of the Medicago truncatula/Sinorhizobium meliloti Symbiosis1

    PubMed Central

    Mitra, Raka Mustaphi; Long, Sharon Rugel

    2004-01-01

    In the Medicago truncatula/Sinorhizobium meliloti symbiosis, the plant undergoes a series of developmental changes simultaneously, creating a root nodule and allowing bacterial entry and differentiation. Our studies of plant genes reveal novel transcriptional regulation during the establishment of the symbiosis and identify molecular markers that distinguish classes of plant and bacterial symbiotic mutants. We have identified three symbiotically regulated plant genes encoding a β,1–3 endoglucanase (MtBGLU1), a lectin (MtLEC4), and a cysteine-containing protein (MtN31). MtBGLU1 is down-regulated in the plant 24 h after exposure to the bacterial signal, Nod factor. The non-nodulating plant mutant dmi1 is defective in the ability to down-regulate MtBGLU1. MtLEC4 and MtN31 are induced 1 and 2 weeks after bacterial inoculation, respectively. We examined the regulation of these two genes and three previously identified genes (MtCAM1, ENOD2, and MtLB1) in plant symbiotic mutants and wild-type plants inoculated with bacterial symbiotic mutants. Plant (bit1, rit1, and Mtsym1) and bacterial (exoA and exoH) mutants with defects in the initial stages of invasion are unable to induce MtLEC4, MtN31, MtCAM1, ENOD2, and MtLB1. Bacterial mutants (fixJ and nifD) and a subset of plant mutants (dnf2, dnf3, dnf4, dnf6, and dnf7) defective for nitrogen fixation induce the above genes. The bacA bacterial mutant, which senesces upon deposition into plant cells, and two plant mutants with defects in nitrogen fixation (dnf1 and dnf5) induce MtLEC4 and ENOD2 but not MtN31, MtCAM1, or MtLB1. These data suggest the presence of at least three transcriptionally distinct developmental stages during invasion of M. truncatula by S. meliloti. PMID:14739349

  2. A putative bifunctional histidine kinase/phosphatase of the HWE family exerts positive and negative control on the Sinorhizobium meliloti general stress response.

    PubMed

    Sauviac, Laurent; Bruand, Claude

    2014-07-01

    The EcfG-type sigma factor RpoE2 is the regulator of the general stress response in Sinorhizobium meliloti. RpoE2 activity is negatively regulated by two NepR-type anti-sigma factors (RsiA1/A2), themselves under the control of two anti-anti-sigma factors (RsiB1/B2) belonging to the PhyR family of response regulators. The current model of RpoE2 activation suggests that in response to stress, RsiB1/B2 are activated by phosphorylation of an aspartate residue in their receiver domain. Once activated, RsiB1/B2 become able to interact with the anti-sigma factors and release RpoE2, which can then associate with the RNA polymerase to transcribe its target genes. The purpose of this work was to identify and characterize proteins involved in controlling the phosphorylation status of RsiB1/B2. Using in vivo approaches, we show that the putative histidine kinase encoded by the rsiC gene (SMc01507), located downstream from rpoE2, is able to both positively and negatively regulate the general stress response. In addition, our data suggest that the negative action of RsiC results from inhibition of RsiB1/B2 phosphorylation. From these observations, we propose that RsiC is a bifunctional histidine kinase/phosphatase responsible for RsiB1/B2 phosphorylation or dephosphorylation in the presence or absence of stress, respectively. Two proteins were previously proposed to control PhyR phosphorylation in Caulobacter crescentus and Sphingomonas sp. strain FR1. However, these proteins contain a Pfam:HisKA_2 domain of dimerization and histidine phosphotransfer, whereas S. meliloti RsiC harbors a Pfam:HWE_HK domain instead. Therefore, this is the first report of an HWE_HK-containing protein controlling the general stress response in Alphaproteobacteria.

  3. Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil.

    PubMed

    Bandyopadhyay, Susmita; Plascencia-Villa, Germán; Mukherjee, Arnab; Rico, Cyren M; José-Yacamán, Miguel; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-05-15

    ZnO nanoparticles (NPs) are reported as potentially phytotoxic in hydroponic and soil media. However, studies on ZnO NPs toxicity in a plant inoculated with bacterium in soil are limited. In this study, ZnO NPs, bulk ZnO, and ZnCl₂ were exposed to the symbiotic alfalfa (Medicago sativa L.)-Sinorhizobium meliloti association at concentrations ranging from 0 to 750 mg/kg soil. Plant growth, Zn bioaccumulation, dry biomass, leaf area, total protein, and catalase (CAT) activity were measured in 30 day-old plants. Results showed 50% germination reduction by bulk ZnO at 500 and 750 mg/kg and all ZnCl₂ concentrations. ZnO NPs and ionic Zn reduced root and shoot biomass by 80% and 25%, respectively. Conversely, bulk ZnO at 750 mg/kg increased shoot and root biomass by 225% and 10%, respectively, compared to control. At 500 and 750 mg/kg, ZnCl₂ reduced CAT activity in stems and leaves. Total leaf protein significantly decreased as external ZnCl₂ concentration increased. STEM-EDX imaging revealed the presence of ZnO particles in the root, stem, leaf, and nodule tissues. ZnO NPs showed less toxicity compared to ZnCl₂ and bulk ZnO found to be growth enhancing on measured traits. These findings are significant to reveal the toxicity effects of different Zn species (NPs, bulk, and ionic Zn) into environmentally important plant-bacterial system in soil.

  4. GlnB/GlnK PII proteins and regulation of the Sinorhizobium meliloti Rm1021 nitrogen stress response and symbiotic function.

    PubMed

    Yurgel, Svetlana N; Rice, Jennifer; Mulder, Monika; Kahn, Michael L

    2010-05-01

    The Sinorhizobium meliloti Rm1021 Delta glnD-sm2 mutant, which is predicted to make a GlnD nitrogen sensor protein truncated at its amino terminus, fixes nitrogen in symbiosis with alfalfa, but the plants cannot use this nitrogen for growth (S. N. Yurgel and M. L. Kahn, Proc. Natl. Acad. Sci. U. S. A. 105:18958-18963, 2008). The mutant also has a generalized nitrogen stress response (NSR) defect. These results suggest a connection between GlnD, symbiotic metabolism, and the NSR, but the nature of this connection is unknown. In many bacteria, GlnD modifies the PII proteins, GlnB and GlnK, as it transduces a measurement of bacterial nitrogen status to a cellular response. We have now constructed and analyzed Rm1021 mutants missing GlnB, GlnK, or both proteins. Rm1021 Delta glnK Delta glnB was much more defective in its NSR than either single mutant, suggesting that GlnB and GlnK overlap in regulating the NSR in free-living Rm1021. The single mutants and the double mutant all formed an effective symbiosis, indicating that symbiotic nitrogen exchange could occur without the need for either GlnB or GlnK. N-terminal truncation of the GlnD protein interfered with PII protein modification in vitro, suggesting either that unmodified PII proteins were responsible for the glnD mutant's ineffective phenotype or that connecting GlnD and appropriate symbiotic behavior does not require the PII proteins.

  5. A comparative genomics screen identifies a Sinorhizobium meliloti 1021 sodM-like gene strongly expressed within host plant nodules

    PubMed Central

    2012-01-01

    Background We have used the genomic data in the Integrated Microbial Genomes system of the Department of Energy’s Joint Genome Institute to make predictions about rhizobial open reading frames that play a role in nodulation of host plants. The genomic data was screened by searching for ORFs conserved in α-proteobacterial rhizobia, but not conserved in closely-related non-nitrogen-fixing α-proteobacteria. Results Using this approach, we identified many genes known to be involved in nodulation or nitrogen fixation, as well as several new candidate genes. We knocked out selected new genes and assayed for the presence of nodulation phenotypes and/or nodule-specific expression. One of these genes, SMc00911, is strongly expressed by bacterial cells within host plant nodules, but is expressed minimally by free-living bacterial cells. A strain carrying an insertion mutation in SMc00911 is not defective in the symbiosis with host plants, but in contrast to expectations, this mutant strain is able to out-compete the S. meliloti 1021 wild type strain for nodule occupancy in co-inoculation experiments. The SMc00911 ORF is predicted to encode a “SodM-like” (superoxide dismutase-like) protein containing a rhodanese sulfurtransferase domain at the N-terminus and a chromate-resistance superfamily domain at the C-terminus. Several other ORFs (SMb20360, SMc01562, SMc01266, SMc03964, and the SMc01424-22 operon) identified in the screen are expressed at a moderate level by bacteria within nodules, but not by free-living bacteria. Conclusions Based on the analysis of ORFs identified in this study, we conclude that this comparative genomics approach can identify rhizobial genes involved in the nitrogen-fixing symbiosis with host plants, although none of the newly identified genes were found to be essential for this process. PMID:22587634

  6. Cultural conditions required for the induction of an adaptive acid-tolerance response (ATR) in Sinorhizobium meliloti and the question as to whether or not the ATR helps rhizobia improve their symbiosis with alfalfa at low pH.

    PubMed

    Draghi, Walter O; Del Papa, María Florencia; Pistorio, Mariano; Lozano, Mauricio; de Los Angeles Giusti, María; Torres Tejerizo, Gonzalo A; Jofré, Edgardo; Boiardi, José Luis; Lagares, Antonio

    2010-01-01

    Sinorhizobium meliloti associates with Medicago and Melilotus species to develop nitrogen-fixing symbioses. The agricultural relevance of these associations, the worldwide distribution of acid soils, and the remarkable acid sensitivity of the microsymbiont have all stimulated research on the responses of the symbionts to acid environments. We show here that an adaptive acid-tolerance response (ATR) can be induced in S. meliloti, as shown previously for Sinorhizobium medicae, when the bacteria are grown in batch cultures at the slightly acid pH of 6.1. In marked contrast, no increased tolerance to hydrogen ions is obtained if rhizobia are grown in a chemostat under continuous cultivation at the same pH. The adaptive ATR appears as a complex process triggered by an increased hydrogen-ion concentration, but operative only if other--as yet unknown--concomitant factors that depend on the culture conditions are present (although not provided under continuous cultivation). Although the stability of the ATR and its influence on acid tolerance has been characterized in rhizobia, no data have been available on the effect of the adapted state on symbiosis. Coinoculation experiments showed that acid-adapted indicator rhizobia (ATR+) were present in >90% of the nodules when nodulation was performed at pH 5.6, representing a >30% increase in occupancy compared with a control test. We show that the ATR represents a clear advantage in competing for nodulation at low pH. It is not yet clear whether such an effect results from an improved performance in the acid environment during preinfection, an enhanced ability to initiate infections, or both conditions. The practical use of ATR+ rhizobia will depend on validation experiments with soil microcosms and on field testing, as well as on the possibility of preserving the physiology of ATR+ bacteria in inoculant formulations.

  7. Salt-tolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N2-fixation with Phaseolus vulgaris constitute a novel biovar (bv. mediterranense) of Sinorhizobium meliloti.

    PubMed

    Mnasri, Bacem; Mrabet, Moncef; Laguerre, Gisèle; Aouani, Mohamed Elarbi; Mhamdi, Ridha

    2007-01-01

    Nodulation of common bean was explored in six oases in the south of Tunisia. Nineteen isolates were characterized by PCR-RFLP of 16S rDNA. Three species of rhizobia were identified, Rhizobium etli, Rhizobium gallicum and Sinorhizobium meliloti. The diversity of the symbiotic genes was then assessed by PCR-RFLP of nodC and nifH genes. The majority of the symbiotic genotypes were conserved between oases and other soils of the north of the country. Sinorhizobia isolated from bean were then compared with isolates from Medicago truncatula plants grown in the oases soils. All the nodC types except for nodC type p that was specific to common bean isolates were shared by both hosts. The four isolates with nodC type p induced N(2)-fixing effective nodules on common bean but did not nodulate M. truncatula and Medicago sativa. The phylogenetic analysis of nifH and nodC genes showed that these isolates carry symbiotic genes different from those previously characterized among Medicago and bean symbionts, but closely related to those of S. fredii Spanish and Tunisian isolates effective in symbiosis with common bean but unable to nodulate soybean. The creation of a novel biovar shared by S. meliloti and S. fredii, bv. mediterranense, was proposed.

  8. Molecular modeling and computational analyses suggests that the Sinorhizobium meliloti periplasmic regulator protein ExoR adopts a superhelical fold and is controlled by a unique mechanism of proteolysis.

    PubMed

    Wiech, Eliza M; Cheng, Hai-Ping; Singh, Shaneen M

    2015-03-01

    The Sinorhizobium meliloti periplasmic ExoR protein and the ExoS/ChvI two-component system form a regulatory mechanism that directly controls the transformation of free-living to host-invading cells. In the absence of crystal structures, understanding the molecular mechanism of interaction between ExoR and the ExoS sensor, which is believed to drive the key regulatory step in the invasion process, remains a major challenge. In this study, we present a theoretical structural model of the active form of ExoR protein, ExoRm , generated using computational methods. Our model suggests that ExoR possesses a super-helical fold comprising 12 α-helices forming six Sel1-like repeats, including two that were unidentified in previous studies. This fold is highly conducive to mediating protein-protein interactions and this is corroborated by the identification of putative protein binding sites on the surface of the ExoRm protein. Our studies reveal two novel insights: (a) an extended conformation of the third Sel1-like repeat that might be important for ExoR regulatory function and (b) a buried proteolytic site that implies a unique proteolytic mechanism. This study provides new and interesting insights into the structure of S. meliloti ExoR, lays the groundwork for elaborating the molecular mechanism of ExoRm cleavage, ExoRm -ExoS interactions, and studies of ExoR homologs in other bacterial host interactions.

  9. Influence of the poly-3-hydroxybutyrate (PHB) granule-associated proteins (PhaP1 and PhaP2) on PHB accumulation and symbiotic nitrogen fixation in Sinorhizobium meliloti Rm1021.

    PubMed

    Wang, Chunxia; Sheng, Xiaoyan; Equi, Raymie C; Trainer, Maria A; Charles, Trevor C; Sobral, Bruno W S

    2007-12-01

    Sinorhizobium meliloti cells store excess carbon as intracellular poly-3-hydroxybutyrate (PHB) granules that assist survival under fluctuating nutritional conditions. PHB granule-associated proteins (phasins) are proposed to regulate PHB synthesis and granule formation. Although the enzymology and genetics of PHB metabolism in S. meliloti have been well characterized, phasins have not yet been described for this organism. Comparison of the protein profiles of the wild type and a PHB synthesis mutant revealed two major proteins absent from the mutant. These were identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) as being encoded by the SMc00777 (phaP1) and SMc02111 (phaP2) genes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins associated with PHB granules followed by MALDI-TOF confirmed that PhaP1 and PhaP2 were the two major phasins. Double mutants were defective in PHB production, while single mutants still produced PHB, and unlike PHB synthesis mutants that have reduced exopolysaccharide, the double mutants had higher exopolysaccharide levels. Medicago truncatula plants inoculated with the double mutant exhibited reduced shoot dry weight (SDW), although there was no corresponding reduction in nitrogen fixation activity. Whether the phasins are involved in a metabolic regulatory response or whether the reduced SDW is due to a reduction in assimilation of fixed nitrogen rather than a reduction in nitrogen fixation activity remains to be established.

  10. Identification of rhtX and fptX, novel genes encoding proteins that show homology and function in the utilization of the siderophores rhizobactin 1021 by Sinorhizobium meliloti and pyochelin by Pseudomonas aeruginosa, respectively.

    PubMed

    Cuív, Páraic O; Clarke, Paul; Lynch, Damien; O'Connell, Michael

    2004-05-01

    Rhizobactin 1021 is a hydroxymate siderophore produced by the soil bacterium Sinorhizobium meliloti 2011. A regulon comprising rhtA, encoding the outer membrane receptor protein for the ferrisiderophore; the biosynthesis operon rhbABCDEF; and rhrA, the Ara-C-like regulator of the receptor and biosynthesis genes has been previously described. We report the discovery of a gene, located upstream of rhbA and named rhtX (for "rhizobactin transport"), which is required, in addition to rhtA, to confer the ability to utilize rhizobactin 1021 on a strain of S. meliloti that does not naturally utilize the siderophore. Rhizobactin 1021 is structurally similar to aerobactin, which is transported in Escherichia coli via the IutA outer membrane receptor and the FhuCDB inner membrane transport system. E. coli expressing iutA and fhuCDB was found to also transport rhizobactin 1021. We demonstrated that RhtX alone could substitute for FhuCDB to transport rhizobactin 1021 in E. coli. RhtX shows similarity to a number of uncharacterized proteins which are encoded proximal to genes that are either known to be or predicted to be involved in iron acquisition. Among these is PA4218 of Pseudomonas aeruginosa, which is located close to the gene cluster that functions in pyochelin biosynthesis and outer membrane transport. PA4218 was mutated by allelic replacement, and the mutant was found to have a pyochelin utilization-defective phenotype. It is proposed that PA4218 be named fptX (for "ferripyochelin transport"). RhtX and FptX appear to be members of a novel family of permeases that function as single-subunit transporters of siderophores.

  11. HmuS and HmuQ of Ensifer/Sinorhizobium meliloti degrade heme in vitro and participate in heme metabolism in vivo.

    PubMed

    Amarelle, Vanesa; Rosconi, Federico; Lázaro-Martínez, Juan Manuel; Buldain, Graciela; Noya, Francisco; O'Brian, Mark R; Fabiano, Elena

    2016-04-01

    Ensifer meliloti is a nitrogen-fixing symbiont of the alfalfa legume able to use heme as an iron source. The transport mechanism involved in heme acquisition in E. meliloti has been identified and characterized, but the fate of heme once inside the cell is not known. In silico analysis of E. meliloti 1021 genome revealed no canonical heme oxygenases although two genes encoding putative heme degrading enzymes, smc01518 and hmuS, were identified. SMc01518 is similar to HmuQ of Bradyrhizobium japonicum, which is weakly homologous to the Staphylococcus aureus IsdG heme-degrading monooxygenase, whereas HmuS is homolog to Pseudomonas aeruginosa PhuS, a protein reported as a heme chaperone and as a heme degrading enzyme. Recombinant HmuQ and HmuS were able to bind hemin with a 1:1 stoichiometry and displayed a Kd value of 5 and 4 µM, respectively. HmuS degrades heme in vitro to the biliverdin isomers IX-β and IX-δ in an equimolar ratio. The HmuQ recombinant protein degrades heme to biliverdin IX-δ only. Additionally, in this work we demonstrate that humS and hmuQ gene expression is regulated by iron and heme in a RirA dependent manner and that both proteins are involved in heme metabolism in E. meliloti in vivo.

  12. Sinorhizobium meliloti-induced chitinase gene expression in Medicago truncatula ecotype R108-1: a comparison between symbiosis-specific class V and defence-related class IV chitinases.

    PubMed

    Salzer, Peter; Feddermann, Nadja; Wiemken, Andres; Boller, Thomas; Staehelin, Christian

    2004-08-01

    The Medicago truncatula (Gaertn.) ecotypes Jemalong A17 and R108-1 differ in Sinorhizobium meliloti-induced chitinase gene expression. The pathogen-inducible class IV chitinase gene, Mtchit 4, was strongly induced during nodule formation of the ecotype Jemalong A17 with the S. meliloti wild-type strain 1021. In the ecotype R108-1, the S. meliloti wild types Sm1021 and Sm41 did not induce Mtchit 4 expression. On the other hand, expression of the putative class V chitinase gene, Mtchit 5, was found in roots of M. truncatula cv. R108-1 nodulated with either of the rhizobial strains. Mtchit 5 expression was specific for interactions with rhizobia. It was not induced in response to fungal pathogen attack, and not induced in roots colonized with arbuscular mycorrhizal (AM) fungi. Elevated Mtchit 5 gene expression was first detectable in roots forming nodule primordia. In contrast to Mtchit 4, expression of Mtchit 5 was stimulated by purified Nod factors. Conversely, Mtchit 4 expression was strongly elevated in nodules formed with the K-antigen-deficient mutant PP699. Expression levels of Mtchit 5 were similarly increased in nodules formed with PP699 and its parental wild-type strain Sm41. Phylogenetic analysis of the deduced amino acid sequences of Mtchit 5 (calculated molecular weight = 41,810 Da, isoelectric point pH 7.7) and Mtchit 4 (calculated molecular weight 30,527 Da, isoelectric point pH 4.9) revealed that the putative Mtchit 5 chitinase forms a separate clade within class V chitinases of plants, whereas the Mtchit 4 chitinase clusters with pathogen-induced class IV chitinases from other plants. These findings demonstrate that: (i) Rhizobium-induced chitinase gene expression in M. truncatula occurs in a plant ecotype-specific manner, (ii) Mtchit 5 is a putative chitinase gene that is specifically induced by rhizobia, and (iii) rhizobia-specific and defence-related chitinase genes are differentially influenced by rhizobial Nod factors and K antigens.

  13. Specific binding of the regulatory protein ExpG to promoter regions of the galactoglucan biosynthesis gene cluster of Sinorhizobium meliloti--a combined molecular biology and force spectroscopy investigation.

    PubMed

    Bartels, Frank Wilco; Baumgarth, Birgit; Anselmetti, Dario; Ros, Robert; Becker, Anke

    2003-08-01

    Specific protein-DNA interaction is fundamental for all aspects of gene transcription. We focus on a regulatory DNA-binding protein in the Gram-negative soil bacterium Sinorhizobium meliloti 2011, which is capable of fixing molecular nitrogen in a symbiotic interaction with alfalfa plants. The ExpG protein plays a central role in regulation of the biosynthesis of the exopolysaccharide galactoglucan, which promotes the establishment of symbiosis. ExpG is a transcriptional activator of exp gene expression. We investigated the molecular mechanism of binding of ExpG to three associated target sequences in the exp gene cluster with standard biochemical methods and single molecule force spectroscopy based on the atomic force microscope (AFM). Binding of ExpG to expA1, expG-expD1, and expE1 promoter fragments in a sequence specific manner was demonstrated, and a 28 bp conserved region was found. AFM force spectroscopy experiments confirmed the specific binding of ExpG to the promoter regions, with unbinding forces ranging from 50 to 165 pN in a logarithmic dependence from the loading rates of 70-79000 pN/s. Two different regimes of loading rate-dependent behaviour were identified. Thermal off-rates in the range of k(off)=(1.2+/-1.0) x 10(-3)s(-1) were derived from the lower loading rate regime for all promoter regions. In the upper loading rate regime, however, these fragments exhibited distinct differences which are attributed to the molecular binding mechanism.

  14. Sinorhizobium meliloti Nia is a P1B-5-ATPase expressed in the nodule during plant symbiosis and is involved in Ni and Fe transport

    PubMed Central

    Subramanian, Poorna; Stemmler, Timothy L.; Argüello, José M.; Rosenzweig, Amy C.

    2013-01-01

    The P1B-ATPases are a ubiquitous family of metal transporters. These transporters are classified into subfamilies on the basis of substrate specificity, which is conferred by conserved amino acids in the last three transmembrane domains. Five subfamilies have been identified to date, and representative members of four (P1B-1 to P1B-4) have been studied. The fifth family (P1B-5), of which some members contain a C-terminal hemerythrin (Hr) domain, is less well characterized. The S. meliloti Sma1163 gene encodes for a P1B-5-ATPase, denoted Nia (Nickel/iron ATPase), that is induced by exogenous Fe2+ and Ni2+. The nia mutant accumulates nickel and iron, suggesting a possible role in detoxification of these two elements under free-living conditions, as well as in symbiosis, when the highest expression levels are measured. This function is supported by an inhibitory effect of Fe2+ and Ni2+ on the pNPPase activity, and by the ability of Nia to bind Fe2+ in the transmembrane domain. Optical and X-ray absorption spectroscopic studies of the isolated Hr domain confirm the presence of a dinuclear iron center and suggest that this domain might function as an iron sensor. PMID:24056637

  15. Multiple Ku orthologues mediate DNA non-homologous end-joining in the free-living form and during chronic infection of Sinorhizobium meliloti.

    PubMed

    Kobayashi, Hajime; Simmons, Lyle A; Yuan, Daniel S; Broughton, William J; Walker, Graham C

    2008-01-01

    The bacterial non-homologous end-joining (NHEJ) apparatus is a two-component system that uses Ku and LigD to repair DNA double-strand breaks. Although the reaction mechanism has been extensively studied, much less is known about the physiological role of bacterial NHEJ. Recent studies suggest that NHEJ acts under conditions where DNA replication is reduced or absent (such as in a spore or stationary phase). Interestingly, genes encoding Ku and LigD have been identified in a wide range of bacteria that can chronically infect eukaryotic hosts. Strikingly, Sinohizobium meliloti, an intracellular symbiont of legume plants, carries four genes encoding Ku homologues (sku1 to sku4). Deletion analysis of the sku genes indicated that all Ku homologues are functional. One of these genes, sku2, is strongly expressed in free-living cells, as well as in bacteroid cells residing inside of the host plant. To visualize the NHEJ apparatus in vivo, SKu2 protein was fused to yellow fluorescent protein (YFP). Ionizing radiation (IR) induced focus formation of SKu2-YFP in free-living cells in a dosage-dependent manner. Moreover, SKu2-YFP foci formed in response to IR in non-dividing bacteroids, indicating that NHEJ system is functional even during the chronic infection phase of symbiosis.

  16. A survey of sRNA families in α-proteobacteria

    PubMed Central

    del Val, Coral; Romero-Zaliz, Rocío; Torres-Quesada, Omar; Peregrina, Alexandra; Toro, Nicolás; Jiménez-Zurdo, Jose I

    2012-01-01

    We have performed a computational comparative analysis of six small non-coding RNA (sRNA) families in α-proteobacteria. Members of these families were first identified in the intergenic regions of the nitrogen-fixing endosymbiont S. meliloti by a combined bioinformatics screen followed by experimental verification. Consensus secondary structures inferred from covariance models for each sRNA family evidenced in some cases conserved motifs putatively relevant to the function of trans-encoded base-pairing sRNAs i.e., Hfq-binding signatures and exposed anti Shine-Dalgarno sequences. Two particular family models, namely αr15 and αr35, shared own sub-structural modules with the Rfam model suhB (RF00519) and the uncharacterized sRNA family αr35b, respectively. A third sRNA family, termed αr45, has homology to the cis-acting regulatory element speF (RF00518). However, new experimental data further confirmed that the S. meliloti αr45 representative is an Hfq-binding sRNA processed from or expressed independently of speF, thus refining the Rfam speF model annotation. All the six families have members in phylogenetically related plant-interacting bacteria and animal pathogens of the order of the Rhizobiales, some occurring with high levels of paralogy in individual genomes. In silico and experimental evidences predict differential regulation of paralogous sRNAs in S. meliloti 1021. The distribution patterns of these sRNA families suggest major contributions of vertical inheritance and extensive ancestral duplication events to the evolution of sRNAs in plant-interacting bacteria. PMID:22418845

  17. Rhizobia from Lanzarote, the Canary Islands, that nodulate Phaseolus vulgaris have characteristics in common with LMW RNA group II Sinorhizobium meliloti of Medicago, Melilotus and Trigonella from soils of mainland Spain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several isolates from nodules of Phaseolus vulgaris grown in soil of Lanzarote, an island of the Canaries, had electrophoretic LMW RNA patterns identical with a less common pattern within S. meliloti (assigned as group II) obtained from nodules of alfalfa and alfalfa-related legumes grown in northe...

  18. ShmR Is Essential for Utilization of Heme as a Nutritional Iron Source in Sinorhizobium meliloti▿

    PubMed Central

    Amarelle, Vanesa; O'Brian, Mark R.; Fabiano, Elena

    2008-01-01

    The bacterium Sinorhizobium meliloti is able to use heme as a nutritional iron source. Here, we show that the iron-regulated shmR gene encodes an outer membrane protein required for growth on heme. Furthermore, an shmR mutant is resistant to the toxic heme analog gallium protoporphyrin. Thus, the receptor protein of the heme transport system has been identified in S. meliloti. PMID:18757569

  19. Importance of unusually modified lipid A in Sinorhizobium stress resistance and legume symbiosis.

    PubMed

    Ferguson, Gail P; Datta, Anup; Carlson, Russ W; Walker, Graham C

    2005-04-01

    Sinorhizobium meliloti, a legume symbiont and Brucella abortus, a phylogenetically related mammalian pathogen, both require their BacA proteins to establish chronic intracellular infections in their respective hosts. The lipid A molecules of S. meliloti and B. abortus are unusually modified with a very-long-chain fatty acid (VLCFA; C > or = 28) and we discovered that BacA is involved in this unusual modification. This observation raised the possibility that the unusual lipid A modification could be crucial for the chronic infection of both S. meliloti and B. abortus. We investigated this by constructing and characterizing S. meliloti mutants in the lpxXL and acpXL genes, which encode an acyl transferase and acyl carrier protein directly involved in the biosynthesis of VLCFA-modified lipid A. Our analysis revealed that the unusually modified lipid A is important, but not crucial, for S. meliloti chronic infection and that BacA must have an additional function, which in combination with its observed effect on the lipid A in the free-living form of S. meliloti, is essential for the chronic infection. Additionally, we discovered that in the absence of VLCFAs, S. meliloti produces novel pentaacylated lipid A species, modified with unhydroxylated fatty acids, which are important for stress resistance.

  20. Probing for pH-regulated genes in Sinorhizobium medicae using transcriptional analysis.

    PubMed

    Tiwari, Ravi P; Reeve, Wayne G; Fenner, Beau J; Dilworth, Michael J; Glenn, Andrew R; Howieson, John G

    2004-01-01

    The low pH sensitivity of Sinorhizobium species is one of the major causes of reduced productivity of Medicago species (such as lucerne) sown in acidic soils. To investigate the pH response of an acid-tolerant Sinorhizobium medicae strain, a pool of random promoter fusions to gusA was created using minitransposon insertional mutagenesis. Acid-activated expression was identified in 11 mutants; rhizobial DNA flanking insertions in 10 mutants could be cloned and the DNA sequences obtained were used to interrogate the genome database of Sinorhizobium meliloti strain 1021. Acid activated expression was detected for fixNO, kdpC, lpiA, and phrR and for genes encoding a putative lipoprotein, two ABC-transporter components, a putative DNA ligase and a MPA1-family protein. These findings implicate cytochrome synthesis, potassium ion cycling, lipid biosynthesis and transport processes as key components of pH response in S. medicae.

  1. Permanent draft genome sequences of the symbiotic nitrogen fixing Ensifer meliloti strains BO21CC and AK58

    PubMed Central

    Galardini, Marco; Bazzicalupo, Marco; Biondi, Emanuele; Brambilla, Eveline; Brilli, Matteo; Bruce, David; Chain, Patrick; Chen, Amy; Daligault, Hajnalka; Davenport, Karen Walston; Deshpande, Shweta; Detter, John C.; Goodwin, Lynne A.; Han, Cliff; Han, James; Huntemann, Marcel; Ivanova, Natalia; Klenk, Hans-Peter; Kyrpides, Nikos C.; Markowitz, Victor; Mavrommatis, Kostas; Mocali, Stefano; Nolan, Matt; Pagani, Ioanna; Pati, Amrita; Pini, Francesco; Pitluck, Sam; Spini, Giulia; Szeto, Ernest; Teshima, Hazuki; Woyke, Tanja; Mengoni, Alessio

    2013-01-01

    Ensifer (syn. Sinorhizobium) meliloti is an important symbiotic bacterial species that fixes nitrogen. Strains BO21CC and AK58 were previously investigated for their substrate utilization and their plant-growth promoting abilities showing interesting features. Here, we describe the complete genome sequence and annotation of these strains. BO21CC and AK58 genomes are 6,985,065 and 6,974,333 bp long with 6,746 and 6,992 genes predicted, respectively. PMID:24976889

  2. Permanent draft genome sequences of the symbiotic nitrogen fixing Ensifer meliloti strains BO21CC and AK58.

    PubMed

    Galardini, Marco; Bazzicalupo, Marco; Biondi, Emanuele; Brambilla, Eveline; Brilli, Matteo; Bruce, David; Chain, Patrick; Chen, Amy; Daligault, Hajnalka; Davenport, Karen Walston; Deshpande, Shweta; Detter, John C; Goodwin, Lynne A; Han, Cliff; Han, James; Huntemann, Marcel; Ivanova, Natalia; Klenk, Hans-Peter; Kyrpides, Nikos C; Markowitz, Victor; Mavrommatis, Kostas; Mocali, Stefano; Nolan, Matt; Pagani, Ioanna; Pati, Amrita; Pini, Francesco; Pitluck, Sam; Spini, Giulia; Szeto, Ernest; Teshima, Hazuki; Woyke, Tanja; Mengoni, Alessio

    2013-12-20

    Ensifer (syn. Sinorhizobium) meliloti is an important symbiotic bacterial species that fixes nitrogen. Strains BO21CC and AK58 were previously investigated for their substrate utilization and their plant-growth promoting abilities showing interesting features. Here, we describe the complete genome sequence and annotation of these strains. BO21CC and AK58 genomes are 6,985,065 and 6,974,333 bp long with 6,746 and 6,992 genes predicted, respectively.

  3. Symbiotic diversity of Ensifer meliloti strains recovered from various legume species in Tunisia.

    PubMed

    Mnasri, Bacem; Badri, Yazid; Saïdi, Sabrine; de Lajudie, Philippe; Mhamdi, Ridha

    2009-12-01

    Ensifer meliloti (formerly Sinorhizobium meliloti) was first considered as a specific microsymbiont of Medicago, Melilotus and Trigonella. However, strains of E. meliloti were recovered from root nodules of various legume species and their symbiotic status still remains unclear. Here, we further investigate the specificity of these strains. A collection of 47 E. meliloti strains isolated in Tunisia from root nodules of Medicago truncatula, Medicago sativa, Medicago ciliaris, Medicago laciniata, Medicago marina, Medicago scutellata, Phaseolus vulgaris, Cicer arietinum, Argyrolobium uniflorum, Lotus creticus, Lotus roudairei, Ononis natrix, Retama raetam, Genista saharae, Acacia tortilis, Hedysarum carnosum and Hippocrepis bicontorta were examined by REP-PCR fingerprinting, PCR-RFLPs of the 16S-23S rDNA IGS, the nifH gene and nifD-K intergenic spacer, and sequencing of 16S rRNA and nodA genes. Their nodulation range was also assessed by cross-inoculation experiments. No clear correlation was found between chromosomal backgrounds and host plants of origin. The nodulation polyvalence of the species E. meliloti was associated with a high symbiotic heterogeneity. On the basis of PCR-RFLP data from the nifH gene and nifD-K intergenic spacer, E. meliloti strains isolated from non-Medicago legumes harboured distinct genes and possessed wider host ranges. Some strains did not nodulate Medicago species. On the basis of nodA phylogeny, the majority of the Tunisian strains, including strains from Medicago, harboured distinct nodA alleles more related to those found in E. medicae than those found in E. meliloti. However, more work is still needed to characterize this group further. The diversity observed among M. laciniata isolates, which was supported by nodA phylogeny, nifH typing and the efficiency profile on M. ciliaris, indicated that what was thought to be bv. medicaginis is certainly heterogeneous.

  4. The genus name Ensifer Casida 1982 takes priority over Sinorhizobium Chen et al. 1988, and Sinorhizobium morelense Wang et al. 2002 is a later synonym of Ensifer adhaerens Casida 1982. Is the combination "Sinorhizobium adhaerens" (Casida 1982) Willems et al. 2003 legitimate? Request for an Opinion.

    PubMed

    Young, J M

    2003-11-01

    The synonymy of the genera Ensifer and Sinorhizobium was recently reported, but it was proposed that the later-named genus, Sinorhizobium, take priority in nomenclature. There is no justification in the International Code of Nomenclature of Bacteria (Prokaryotes) for this step; Ensifer is the correct name of the genus, with Ensifer adhaerens as the type species. Species previously allocated to Sinorhizobium are here proposed as the new combinations Ensifer arboris, Ensifer fredii, Ensifer kostiensis, Ensifer kummerowiae, Ensifer medicae, Ensifer meliloti, Ensifer saheli, Ensifer terangae and Ensifer xinjiangensis. Sinorhizobium morelense was proposed in 2002 [Wang, E. T., Tan, Z. Y., Willems, A., Fernández-López, M., Reinhold-Hurek, B. & Martínez-Romero, E., Int J Syst Evol Microbiol 52, 1687-1693, 2002], but a consideration of all published data indicate that it is a nitrogen-fixing genomovar and later heterotypic synonym of Ensifer adhaerens. A Request for an Opinion is made as to whether or not the combination "Sinorhizobium adhaerens" (Casida 1982) Willems et al. 2003 is legitimate.

  5. Lack of trehalose catabolism in Sinorhizobium species increases their nodulation competitiveness on certain host genotypes.

    PubMed

    Ampomah, Osei Yaw; Jensen, John Beck; Bhuvaneswari, T V

    2008-07-01

    The role of host and bacterial genotypes in determining the competitiveness of trehalose utilization mutants of Sinorhizobium meliloti and Sinorhizobium medicae was investigated here. Trehalose utilization mutants of S. meliloti and S. medicae were obtained by mutagenesis of their trehalose utilization gene thuB. The mutant strains and the wild type were coinoculated on three cultivars of alfalfa (Medicago sativa) and two cultivars of Medicago truncatula and assessed for competitiveness in root colonization, and nodule occupancy. The thuB mutants formed more nodules than their parent strains on two of the three alfalfa lines tested and on one of the two M. truncatula lines tested. They were not more competitive on the other alfalfa and M. truncatula lines. Their competitiveness for nodule occupancy did not correlate positively with their ability to colonize these roots but correlated with the extent of thuB induction in the infection threads. Induction of thuB was shown to be dependent on the concentration of trehalose in the environment. These results suggest a direct role for host trehalose metabolism in early plant-symbiont interactions and show that the ability to manage host-induced stresses during infection, rather than the ability to colonize the root, is critical for competitive nodulation.

  6. Protection of Sinorhizobium against host cysteine-rich antimicrobial peptides is critical for symbiosis.

    PubMed

    Haag, Andreas F; Baloban, Mikhail; Sani, Monica; Kerscher, Bernhard; Pierre, Olivier; Farkas, Attila; Longhi, Renato; Boncompagni, Eric; Hérouart, Didier; Dall'angelo, Sergio; Kondorosi, Eva; Zanda, Matteo; Mergaert, Peter; Ferguson, Gail P

    2011-10-01

    Sinorhizobium meliloti differentiates into persisting, nitrogen-fixing bacteroids within root nodules of the legume Medicago truncatula. Nodule-specific cysteine-rich antimicrobial peptides (NCR AMPs) and the bacterial BacA protein are essential for bacteroid development. However, the bacterial factors central to the NCR AMP response and the in planta role of BacA are unknown. We investigated the hypothesis that BacA is critical for the bacterial response towards NCR AMPs. We found that BacA was not essential for NCR AMPs to induce features of S. meliloti bacteroids in vitro. Instead, BacA was critical to reduce the amount of NCR AMP-induced membrane permeabilization and bacterial killing in vitro. Within M. truncatula, both wild-type and BacA-deficient mutant bacteria were challenged with NCR AMPs, but this resulted in persistence of the wild-type bacteria and rapid cell death of the mutant bacteria. In contrast, BacA was dispensable for bacterial survival in an M. truncatula dnf1 mutant defective in NCR AMP transport to the bacterial compartment. Therefore, BacA is critical for the legume symbiosis by protecting S. meliloti against the bactericidal effects of NCR AMPs. Host AMPs are ubiquitous in nature and BacA proteins are essential for other chronic host infections by symbiotic and pathogenic bacteria. Hence, our findings suggest that BacA-mediated protection of bacteria against host AMPs is a critical stage in the establishment of different prolonged host infections.

  7. Autotransmissible resident plasmid of Rhizobium meliloti.

    PubMed

    Bedmar, E J; Olivares, J

    1980-01-01

    A resident plasmid of wild-type strains of Rhizobium meliloti of 59.6 megadaltons has been shown to be transferred at a high frequency to "cured" strains of this bacterial species. This plasmid, named pEZ1, that confers phage-sensitivity to cells carrying it is also transmissible to Escherichia coli and from it to "cured" R. meliloti strains.

  8. Two different stable low molecular weight RNA (LMW RNA) profiles within Sinorhizobium meliloti and within Sinorhizobium medicae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    LMW RNA profiles of 179 isolates from Medicago, Melilotus and Trigonella species growing in a field site in northern Spain were analysed. Four different LMW RNA profiles designated I through IV were identified. Most of the isolates displayed either LMW RNA profile I or III (37 and 45%, respectively)...

  9. NAD(P)+-Malic Enzyme Mutants of Sinorhizobium sp. Strain NGR234, but Not Azorhizobium caulinodans ORS571, Maintain Symbiotic N2 Fixation Capabilities

    PubMed Central

    Zhang, Ye; Aono, Toshihiro; Poole, Phillip

    2012-01-01

    C4-dicarboxylic acids appear to be metabolized via the tricarboxylic acid (TCA) cycle in N2-fixing bacteria (bacteroids) within legume nodules. In Sinorhizobium meliloti bacteroids from alfalfa, NAD+-malic enzyme (DME) is required for N2 fixation, and this activity is thought to be required for the anaplerotic synthesis of pyruvate. In contrast, in the pea symbiont Rhizobium leguminosarum, pyruvate synthesis occurs via either DME or a pathway catalyzed by phosphoenolpyruvate carboxykinase (PCK) and pyruvate kinase (PYK). Here we report that dme mutants of the broad-host-range Sinorhizobium sp. strain NGR234 formed nodules whose level of N2 fixation varied from 27 to 83% (plant dry weight) of the wild-type level, depending on the host plant inoculated. NGR234 bacteroids had significant PCK activity, and while single pckA and single dme mutants fixed N2 at reduced rates, a pckA dme double mutant had no N2-fixing activity (Fix−). Thus, NGR234 bacteroids appear to synthesize pyruvate from TCA cycle intermediates via DME or PCK pathways. These NGR234 data, together with other reports, suggested that the completely Fix− phenotype of S. meliloti dme mutants may be specific to the alfalfa-S. meliloti symbiosis. We therefore examined the ME-like genes azc3656 and azc0119 from Azorhizobium caulinodans, as azc3656 mutants were previously shown to form Fix− nodules on the tropical legume Sesbania rostrata. We found that purified AZC3656 protein is an NAD(P)+-malic enzyme whose activity is inhibited by acetyl-coenzyme A (acetyl-CoA) and stimulated by succinate and fumarate. Thus, whereas DME is required for symbiotic N2 fixation in A. caulinodans and S. meliloti, in other rhizobia this activity can be bypassed via another pathway(s). PMID:22307295

  10. Plasticity of archaeal C/D box sRNA biogenesis.

    PubMed

    Tripp, Vanessa; Martin, Roman; Orell, Alvaro; Alkhnbashi, Omer S; Backofen, Rolf; Randau, Lennart

    2017-01-01

    Archaeal and eukaryotic organisms contain sets of C/D box s(no)RNAs with guide sequences that determine ribose 2'-O-methylation sites of target RNAs. The composition of these C/D box sRNA sets is highly variable between organisms and results in varying RNA modification patterns which are important for ribosomal RNA folding and stability. Little is known about the genomic organization of C/D box sRNA genes in archaea. Here, we aimed to obtain first insights into the biogenesis of these archaeal C/D box sRNAs and analyzed the genetic context of more than 300 archaeal sRNA genes. We found that the majority of these genes do not possess independent promoters but are rather located at positions that allow for co-transcription with neighboring genes and their start or stop codons were frequently incorporated into the conserved boxC and D motifs. The biogenesis of plasmid-encoded C/D box sRNA variants was analyzed in vivo in Sulfolobus acidocaldarius. It was found that C/D box sRNA maturation occurs independent of their genetic context and relies solely on the presence of intact RNA kink-turn structures. The observed plasticity of C/D box sRNA biogenesis is suggested to enable their accelerated evolution and, consequently, allow for adjustments of the RNA modification landscape.

  11. Genetic basis for denitrification in Ensifer meliloti

    PubMed Central

    2014-01-01

    Background Denitrification is defined as the dissimilatory reduction of nitrate or nitrite to nitric oxide (NO), nitrous oxide (N2O), or dinitrogen gas (N2). N2O is a powerful atmospheric greenhouse gas and cause of ozone layer depletion. Legume crops might contribute to N2O production by providing nitrogen-rich residues for decomposition or by associating with rhizobia that are able to denitrify under free-living and symbiotic conditions. However, there are limited direct empirical data concerning N2O production by endosymbiotic bacteria associated with legume crops. Analysis of the Ensifer meliloti 1021 genome sequence revealed the presence of the napEFDABC, nirK, norECBQD and nosRZDFYLX denitrification genes. It was recently reported that this bacterium is able to grow using nitrate respiration when cells are incubated with an initial O2 concentration of 2%; however, these cells were unable to use nitrate respiration when initially incubated anoxically. The involvement of the nap, nirK, nor and nos genes in E. meliloti denitrification has not been reported. Results E. meliloti nap, nirK and norC mutant strains exhibited defects in their ability to grow using nitrate as a respiratory substrate. However, E meliloti nosZ was not essential for growth under these conditions. The E. meliloti napA, nirK, norC and nosZ genes encode corresponding nitrate, nitrite, nitric oxide and nitrous oxide reductases, respectively. The NorC component of the E. meliloti nitric oxide reductase has been identified as a c-type cytochrome that is 16 kDa in size. Herein, we also show that maximal expression of the E. meliloti napA, nirK, norC and nosZ genes occurred when cells were initially incubated anoxically with nitrate. Conclusion The E. meliloti napA, nirK, norC and nosZ genes are involved in nitrate respiration and in the expression of denitrification enzymes in this bacterium. Our findings expand the short list of rhizobia for which denitrification gene function has been

  12. A Rhizobium meliloti symbiotic regulatory gene.

    PubMed

    Szeto, W W; Zimmerman, J L; Sundaresan, V; Ausubel, F M

    1984-04-01

    We have characterized a Rhizobium meliloti regulatory gene required for the expression of two closely linked symbiotic operons, the nitrogenase operon (nifHDK genes) and the "P2" operon. This regulatory gene maps to a 1.8 kb region located 5.5 kb upstream of the nifHDK operon. The regulatory gene is required for the accumulation of nifHDK and P2 mRNA and for the derepression of an R. meliloti nifH-lacZ fusion plasmid during symbiotic growth. The nifH and P2 promoters can be activated in free-living cultures of R. meliloti containing plasmids that produce the Escherichia coli ntrC(glnG) or the Klebsiella pneumoniae nifA regulatory gene products constitutively. The R. meliloti regulatory gene hybridizes to E. coli ntrC(glnG) and, to a lesser extent, to K. pneumoniae nifA DNA. Our results suggest that the R. meliloti regulatory gene acts as a positive transcriptional activator and that it is related to the K. pneumoniae nif regulatory genes.

  13. Sinorhizobium meliloti pSymB carries genes necessary for arabinose transport and catabolism.

    PubMed

    Poysti, Nathan J; Loewen, Erin D M; Wang, Zexi; Oresnik, Ivan J

    2007-03-01

    Arabinose is a known component of plant cell walls and is found in the rhizosphere. In this work, a previously undeleted region of the megaplasmid pSymB was identified as encoding genes necessary for arabinose catabolism, by Tn5-B20 random mutagenesis and subsequent complementation. Transcription of this region was measured by beta-galactosidase assays of Tn5-B20 fusions, and shown to be strongly inducible by arabinose, and moderately so by galactose and seed exudate. Accumulation of [(3)H]arabinose in mutants and wild-type was measured, and the results suggested that this operon is necessary for arabinose transport. Although catabolite repression of the arabinose genes by succinate or glucose was not detected at the level of transcription, both glucose and galactose were found to inhibit accumulation of arabinose when present in excess. To determine if glucose was also taken up by the arabinose transport proteins, [(14)C]glucose uptake rates were measured in wild-type and arabinose mutant strains. No differences in glucose uptake rates were detected between wild-type and arabinose catabolism mutant strains, indicating that excess glucose did not compete with arabinose for transport by the same system. Arabinose mutants were tested for the ability to form nitrogen-fixing nodules on alfalfa, and to compete with the wild-type for nodule occupancy. Strains unable to utilize arabinose did not display any symbiotic defects, and were not found to be less competitive than wild-type for nodule occupancy in co-inoculation experiments. Moreover, the results suggest that other loci are required for arabinose catabolism, including a gene encoding arabinose dehydrogenase.

  14. SINORHIZOBIUM MELILOTI ELECTROTRANSPORANT CONTAINING ORTHO-DECHLORINATION GENE SHOWS ENHANCED PCB-DECHLORINATION. (R828770)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. Involvement of the SmeAB Multidrug Efflux Pump in Resistance to Plant Antimicrobials and Contribution to Nodulation Competitiveness in Sinorhizobium meliloti▿†

    PubMed Central

    Eda, Shima; Mitsui, Hisayuki; Minamisawa, Kiwamu

    2011-01-01

    The contributions of multicomponent-type multidrug efflux pumps to antimicrobial resistance and nodulation ability in Sinorhizobium meliloti were comprehensively analyzed. Computational searches identified genes in the S. meliloti strain 1021 genome encoding 1 pump from the ATP-binding cassette family, 3 pumps from the major facilitator superfamily, and 10 pumps from the resistance-nodulation-cell division family, and subsequently, these genes were deleted either individually or simultaneously. Antimicrobial susceptibility tests demonstrated that deletion of the smeAB pump genes resulted in increased susceptibility to a range of antibiotics, dyes, detergents, and plant-derived compounds and, further, that specific deletion of the smeCD or smeEF genes in a ΔsmeAB background caused a further increase in susceptibility to certain antibiotics. Competitive nodulation experiments revealed that the smeAB mutant was defective in competing with the wild-type strain for nodulation. The introduction of a plasmid carrying smeAB into the smeAB mutant restored antimicrobial resistance and nodulation competitiveness. These findings suggest that the SmeAB pump, which is a major multidrug efflux system of S. meliloti, plays an important role in nodulation competitiveness by mediating resistance toward antimicrobial compounds produced by the host plant. PMID:21398477

  16. Two Plant Bacteria, S. meliloti and Ca. Liberibacter asiaticus, Share Functional znuABC Homologues That Encode for a High Affinity Zinc Uptake System

    PubMed Central

    Vahling-Armstrong, Cheryl M.; Zhou, Huasong; Benyon, Lesley; Morgan, J. Kent; Duan, Yongping

    2012-01-01

    The Znu system, encoded for by znuABC, can be found in multiple genera of bacteria and has been shown to be responsible for the import of zinc under low zinc conditions. Although this high-affinity uptake system is known to be important for both growth and/or pathogenesis in bacteria, it has not been functionally characterized in a plant-associated bacterium. A single homologue of this system has been identified in the plant endosymbiont, Sinorhizobium meliloti, while two homologous systems were found in the destructive citrus pathogen, Candidatus Liberibacter asiaticus. To understand the role of these protein homologues, a complementation assay was devised allowing the individual genes that comprise the system to be assayed independently for their ability to reinstate a partially-inactivated Znu system. Results from the assays have demonstrated that although all of the genes from S. meliloti were able to restore activity, only one of the two Ca. Liberibacter asiaticus encoded gene clusters contained genes that were able to functionally complement the system. Additional analysis of the gene clusters reveals that distinct modes of regulation may also exist between the Ca. Liberibacter asiaticus and S. meliloti import systems despite the intracellular-plant niche common to both of these bacteria. PMID:22655039

  17. The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages

    PubMed Central

    Mraheil, Mobarak A.; Billion, André; Mohamed, Walid; Mukherjee, Krishnendu; Kuenne, Carsten; Pischimarov, Jordan; Krawitz, Christian; Retey, Julia; Hartsch, Thomas; Chakraborty, Trinad; Hain, Torsten

    2011-01-01

    Small non-coding RNAs (sRNAs) are widespread effectors of post-transcriptional gene regulation in bacteria. Currently extensive information exists on the sRNAs of Listeria monocytogenes expressed during growth in extracellular environments. We used deep sequencing of cDNAs obtained from fractioned RNA (<500 nt) isolated from extracellularly growing bacteria and from L. monocytogenes infected macrophages to catalog the sRNA repertoire during intracellular bacterial growth. Here, we report on the discovery of 150 putative regulatory RNAs of which 71 have not been previously described. A total of 29 regulatory RNAs, including small non-coding antisense RNAs, are specifically expressed intracellularly. We validated highly expressed sRNAs by northern blotting and demonstrated by the construction and characterization of isogenic mutants of rli31, rli33-1 and rli50* for intracellular expressed sRNA candidates, that their expression is required for efficient growth of bacteria in macrophages. All three mutants were attenuated when assessed for growth in mouse and insect models of infection. Comparative genomic analysis revealed the presence of lineage specific sRNA candidates and the absence of sRNA loci in genomes of naturally occurring infection-attenuated bacteria, with additional loss in non-pathogenic listerial genomes. Our analyses reveal extensive sRNA expression as an important feature of bacterial regulation during intracellular growth. PMID:21278422

  18. Genetic basis of sRNA quantitative variation analyzed using an experimental population derived from an elite rice hybrid.

    PubMed

    Wang, Jia; Yao, Wen; Zhu, Dan; Xie, Weibo; Zhang, Qifa

    2015-03-30

    We performed a genetic analysis of sRNA abundance in flag leaf from an immortalized F2 (IMF2) population in rice. We identified 53,613,739 unique sRNAs and 165,797 sRNA expression traits (s-traits). A total of 66,649 s-traits mapped 40,049 local-sQTLs and 30,809 distant-sQTLs. By defining 80,362 sRNA clusters, 22,263 sRNA cluster QTLs (scQTLs) were recovered for 20,249 of all the 50,139 sRNA cluster expression traits (sc-traits). The expression levels for most of s-traits from the same genes or the same sRNA clusters were slightly positively correlated. While genetic co-regulation between sRNAs from the same mother genes and between sRNAs and their mother genes was observed for a portion of the sRNAs, most of the sRNAs and their mother genes showed little co-regulation. Some sRNA biogenesis genes were located in distant-sQTL hotspots and showed correspondence with specific length classes of sRNAs suggesting their important roles in the regulation and biogenesis of the sRNAs.

  19. sRNA154 a newly identified regulator of nitrogen fixation in Methanosarcina mazei strain Gö1.

    PubMed

    Prasse, Daniela; Förstner, Konrad U; Jäger, Dominik; Backofen, Rolf; Schmitz, Ruth A

    2017-03-15

    Trans-encoded sRNA154 is exclusively expressed under nitrogen (N)-deficiency in Methanosarcina mazei strain Gö1. The sRNA154 deletion strain showed a significant decrease in growth under N-limitation, pointing towards a regulatory role of sRNA154 in N-metabolism. Aiming to elucidate its regulatory function we characterized sRNA154 by means of biochemical and genetic approaches. 24 homologs of sRNA154 were identified in recently reported draft genomes of Methanosarcina strains, demonstrating high conservation in sequence and predicted secondary structure with two highly conserved single stranded loops. Transcriptome studies of sRNA154 deletion mutants by an RNA-seq approach uncovered nifH- and nrpA-mRNA, encoding the α-subunit of nitrogenase and the transcriptional activator of the nitrogen fixation (nif)-operon, as potential targets besides other components of the N-metabolism. Furthermore, results obtained from stability, complementation and western blot analysis, as well as in silico target predictions combined with electrophoretic mobility shift-assays, argue for a stabilizing effect of sRNA154 on the polycistronic nif-mRNA and nrpA-mRNA by binding with both loops. Further identified N-related targets were studied, which demonstrates that translation initiation of glnA2-mRNA, encoding glutamine synthetase2, appears to be affected by sRNA154 masking the ribosome binding site, whereas glnA1-mRNA appears to be stabilized by sRNA154. Overall, we propose that sRNA154 has a crucial regulatory role in N-metabolism in M. mazei by stabilizing the polycistronic mRNA encoding nitrogenase and glnA1-mRNA, as well as allowing a feed forward regulation of nif-gene expression by stabilizing nrpA-mRNA. Consequently, sRNA154 represents the first archaeal sRNA, for which a positive posttranscriptional regulation is demonstrated as well as inhibition of translation initiation.

  20. Identification of metE as a Second Target of the sRNA scr5239 in Streptomyces coelicolor

    PubMed Central

    Vockenhuber, Michael-Paul; Heueis, Nona; Suess, Beatrix

    2015-01-01

    While transcriptional regulation of the primary and secondary metabolism of the model organism Streptomyces coelicolor is well studied, little is still known about the role small noncoding RNAs (sRNAs) play in regulating gene expression in this organism. Here, we report the identification of a second target of the sRNA scr5239, an sRNA highly conserved in streptomycetes. The 159 nt long sRNA binds its target, the mRNA of the cobalamin independent methionine synthase metE (SCO0985), at the 5’ end of its open reading frame thereby repressing translation. We show that a high methionine level induces expression of scr5239 itself. This leads, in a negative feedback loop, to the repression of methionine biosynthesis. In contrast to the first reported target of this sRNA, the agarase dagA, this interaction seems to be conserved in a wide number of streptomycetes. PMID:25785836

  1. Identification of metE as a second target of the sRNA scr5239 in Streptomyces coelicolor.

    PubMed

    Vockenhuber, Michael-Paul; Heueis, Nona; Suess, Beatrix

    2015-01-01

    While transcriptional regulation of the primary and secondary metabolism of the model organism Streptomyces coelicolor is well studied, little is still known about the role small noncoding RNAs (sRNAs) play in regulating gene expression in this organism. Here, we report the identification of a second target of the sRNA scr5239, an sRNA highly conserved in streptomycetes. The 159 nt long sRNA binds its target, the mRNA of the cobalamin independent methionine synthase metE (SCO0985), at the 5' end of its open reading frame thereby repressing translation. We show that a high methionine level induces expression of scr5239 itself. This leads, in a negative feedback loop, to the repression of methionine biosynthesis. In contrast to the first reported target of this sRNA, the agarase dagA, this interaction seems to be conserved in a wide number of streptomycetes.

  2. Compatibility of a wild type and its genetically modified Sinorhizobium strain with two mycorrhizal fungi on Medicago species as affected by drought stress.

    PubMed

    Vázquez, M M.; Azcón, R; Barea, J M.

    2001-07-01

    The effect of double inoculation with two strains of Sinorhizobium meliloti [the wild type (WT) strain GR4 and its genetically modified (GM) derivative GR4(pCK3)], and two species of arbuscular mycorrhizal (AM) fungi (Glomus deserticola and Glomus intraradices) was examined in a microcosm system on three species of Medicago (M. nolana, M. rigidula, M. rotata). Two water regimes (80 and 100% water holding capacity, WHC) were assayed. The efficiency of each AM fungus increasing plant growth, nutrient content, nodulation and water-stress tolerance was related to the Sinorhizobium strains and Medicago species. This indicates selective and specific compatibilities between microsymbionts and the common host plant. Differential effects of the mycorrhizal isolates were not associated with their colonizing ability. Nodulation and mycorrhizal dependency (MD) changed in each plant genotype in accordance with the Sinorhizobium strain and AM fungi involved. Generally, Medicago sp. MD decreased under water-stress conditions even when these conditions did not affect AM colonization (%). Proline accumulation in non-mycorrhizal plant leaves was increased by water stress, except in M. rotata plants. Differences in proline accumulation in AM-colonized plants suggest that both the AM fungus and the Sinorhizobium strain were able to induce different degrees of osmotic adjustment. Mycorrhizal plants nodulated by the WT strain accumulated more proline in M. rigidula and M. rotata under water stress than non-mycorrhizal plants. Conversely, mycorrhizal plants nodulated by the GM strain accumulated less proline in response to both AM colonization and drought. These results indicated changes in the synthesis of this nitrogenous osmoregulator product associated with microbial inoculation and drought tolerance. Mycorrhizal plants nodulated by the GM Sinorhizobium strain seem to suffer less from the detrimental effect of water stress, since under water limitation relative plant growth

  3. A Novel Mechanism of Host-Pathogen Interaction through sRNA in Bacterial Outer Membrane Vesicles

    PubMed Central

    Koeppen, Katja; Hampton, Thomas H.; Jarek, Michael; Scharfe, Maren; Gerber, Scott A.; Mielcarz, Daniel W.; Demers, Elora G.; Dolben, Emily L.; Hammond, John H.; Hogan, Deborah A.; Stanton, Bruce A.

    2016-01-01

    Bacterial outer membrane vesicle (OMV)-mediated delivery of proteins to host cells is an important mechanism of host-pathogen communication. Emerging evidence suggests that OMVs contain differentially packaged short RNAs (sRNAs) with the potential to target host mRNA function and/or stability. In this study, we used RNA-Seq to characterize differentially packaged sRNAs in Pseudomonas aeruginosa OMVs, and to show transfer of OMV sRNAs to human airway cells. We selected one sRNA for further study based on its stable secondary structure and predicted mRNA targets. Our candidate sRNA (sRNA52320), a fragment of a P. aeruginosa methionine tRNA, was abundant in OMVs and reduced LPS-induced as well as OMV-induced IL-8 secretion by cultured primary human airway epithelial cells. We also showed that sRNA52320 attenuated OMV-induced KC cytokine secretion and neutrophil infiltration in mouse lung. Collectively, these findings are consistent with the hypothesis that sRNA52320 in OMVs is a novel mechanism of host-pathogen interaction whereby P. aeruginosa reduces the host immune response. PMID:27295279

  4. Retargeting a Dual-Acting sRNA for Multiple mRNA Transcript Regulation.

    PubMed

    Lahiry, Ashwin; Stimple, Samuel D; Wood, David W; Lease, Richard A

    2017-01-24

    Multitargeting small regulatory RNAs (sRNAs) represent a potentially useful tool for metabolic engineering applications. Natural multitargeting sRNAs govern bacterial gene expression by binding to the translation initiation regions of protein-coding mRNAs through base pairing. We designed an Escherichia coli based genetic system to create and assay dual-acting retargeted-sRNA variants. The variants can be assayed for coordinate translational regulation of two alternate mRNA leaders fused to independent reporter genes. Accordingly, we began with the well-characterized E. coli native DsrA sRNA. The merits of using DsrA include its well-characterized separation of function into two independently folded stem-loop domains, wherein alterations at one stem do not necessarily abolish activity at the other stem. Expression of the sRNA and each reporter mRNA was independently controlled by small inducer molecules, allowing precise quantification of the regulatory effects of each sRNA:mRNA interaction in vivo with a microtiter plate assay. Using this system, we semirationally designed DsrA variants screened in E. coli for their ability to regulate key mRNA leader sequences from the Clostridium acetobutylicum n-butanol synthesis pathway. To coordinate intervention at two points in a metabolic pathway, we created bifunctional sRNA prototypes by combining sequences from two singly retargeted DsrA variants. This approach constitutes a platform for designing sRNAs to specifically target arbitrary mRNA transcript sequences, and thus provides a generalizable tool for retargeting and characterizing multitarget sRNAs for metabolic engineering.

  5. A FIELD STUDY WITH GENETICALLY ENGINEERED ALFALFA INOCULATED WITH RECOMBINANT SINORHIZOBIUM MELILOTI: EFFECTS ON THE SOIL ECOSYSTEM

    EPA Science Inventory

    The agricultural use of genetically engineered plants and microorganisms has become increasingly common. Because genetically engineered plants and microorganisms can produce compounds foreign to their environment, there is concern that they may become established outside of thei...

  6. SINORHIZOBIUM MELILOTI ELECTROTRANSPORANT CONTAINING ORTHO-DECHLORINATION GENE SHOWS ENHANCED PCB-DECHLORINATION. (R828770C008)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. A Functional myo-Inositol Dehydrogenase Gene Is Required for Efficient Nitrogen Fixation and Competitiveness of Sinorhizobium fredii USDA191 To Nodulate Soybean (Glycine max [L.] Merr.)

    PubMed Central

    Jiang, Guoqiao; Krishnan, Ammulu Hari; Kim, Yong-Woong; Wacek, Thomas J.; Krishnan, Hari B.

    2001-01-01

    Inositol derivative compounds provide a nutrient source for soil bacteria that possess the ability to degrade such compounds. Rhizobium strains that are capable of utilizing certain inositol derivatives are better colonizers of their host plants. We have cloned and determined the nucleotide sequence of the myo-inositol dehydrogenase gene (idhA) of Sinorhizobium fredii USDA191, the first enzyme responsible for inositol catabolism. The deduced IdhA protein has a molecular mass of 34,648 Da and shows significant sequence similarity with protein sequences of Sinorhizobium meliloti IdhA and MocA; Bacillus subtilis IolG, YrbE, and YucG; and Streptomyces griseus StrI. S. fredii USDA191 idhA mutants revealed no detectable myo-inositol dehydrogenase activity and failed to grow on myo-inositol as a sole carbon source. Northern blot analysis and idhA-lacZ fusion expression studies indicate that idhA is inducible by myo-inositol. S. fredii USDA191 idhA mutant was drastically affected in its ability to reduce nitrogen and revealed deteriorating bacteroids inside the nodules. The number of bacteria recovered from such nodules was about threefold lower than the number of bacteria isolated from nodules initiated by S. fredii USDA191. In addition, the idhA mutant was also severely affected in its ability to compete with the wild-type strain in nodulating soybean. Under competitive conditions, nodules induced on soybean roots were predominantly occupied by the parent strain, even when the idhA mutant was applied at a 10-fold numerical advantage. Thus, we conclude that a functional idhA gene is required for efficient nitrogen fixation and for competitive nodulation of soybeans by S. fredii USDA191. PMID:11274120

  8. [ITS-polymorphism of salt-tolerant and salt-sensitive native isolates of Sinorhizoblum meliloti--symbionts of alfalfa, clover and fenugreek plants].

    PubMed

    Rumiantseva, M L; Muntian, V S; Mengoni, A; Simarov, B V

    2014-04-01

    Polymorphism of rrs-rrl sequence of ribosomal operons (intergenic sequence, ITS) was studied among 81 isolates of Sinorhizobium meliloti (AK001-AK210) derived from the collection of alfalfa nodulating bacteria of the Laboratory of genetics of ARRIAM, by using species-specific primers FGPS 1490/FGPL132VM. Isolates were obtained from nodules of different species of wild host plants from Medicago, Melilotus and Trigonella genera grown in salinized North-Western region of Kazakhstan. The typical structure of ITS, similar to that of test strain Rm1021, was dominant in native rhizobia population, while in one third of the isolates (33.3%) this sequence was divergent. Among the latter, the ITS type of strain AK83 (RCAM00182) was dominant. Here, we show for the first time that isolates with reduced level of salt-tolerance had more diverse intergenic sequences of rrn-operons. No phylogenetic separation was observed between isolates grouped on the basis of their tolerance or sensitivity towards 0.6 M NaCl. However, the frequency of divergent ITS types within the two groups of rhizobia depended on the host symbiotic preference observed in natural environment, allowing to speculate about the existence of a chromosome types specific for S. meliloti isolates with differential salt tolerance. In conclusion, we propose that in the area subjected to secondary salinization, which are also the centre of introgressive hybridization of alfalfa, micro-evolutionary processes, affecting rrn-operons and associated with salt adaptation, are also occurring in symbiotic root nodule bacteria populations.

  9. An RpoS-dependent sRNA regulates the expression of a chaperone involved in protein folding

    PubMed Central

    Silva, Inês Jesus; Ortega, Álvaro Darío; Viegas, Sandra Cristina; García-del Portillo, Francisco; Arraiano, Cecília Maria

    2013-01-01

    Small noncoding RNAs (sRNAs) are usually expressed in the cell to face a variety of stresses. In this report we disclose the first target for SraL (also known as RyjA), a sRNA present in many bacteria, which is highly induced in stationary phase. We also demonstrate that this sRNA is directly transcribed by the major stress σ factor σS (RpoS) in Salmonella enterica serovar Typhimurium. We show that SraL sRNA down-regulates the expression of the chaperone Trigger Factor (TF), encoded by the tig gene. TF is one of the three major chaperones that cooperate in the folding of the newly synthesized cytosolic proteins and is the only ribosome-associated chaperone known in bacteria. By use of bioinformatic tools and mutagenesis experiments, SraL was shown to directly interact with the 5′ UTR of the tig mRNA a few nucleotides upstream of the Shine-Dalgarno region. Namely, point mutations in the sRNA (SraL*) abolished the repression of tig mRNA and could only down-regulate a tig transcript target with the respective compensatory mutations. We have also validated in vitro that SraL forms a stable duplex with the tig mRNA. This work constitutes the first report of a small RNA affecting protein folding. Taking into account that both SraL and TF are very well conserved in enterobacteria, this work will have important repercussions in the field. PMID:23893734

  10. Novel small RNA (sRNA) landscape of the starvation-stress response transcriptome of Salmonella enterica serovar typhimurium.

    PubMed

    Amin, Shivam V; Roberts, Justin T; Patterson, Dillon G; Coley, Alexander B; Allred, Jonathan A; Denner, Jason M; Johnson, Justin P; Mullen, Genevieve E; O'Neal, Trenton K; Smith, Jason T; Cardin, Sara E; Carr, Hank T; Carr, Stacie L; Cowart, Holly E; DaCosta, David H; Herring, Brendon R; King, Valeria M; Polska, Caroline J; Ward, Erin E; Wise, Alice A; McAllister, Kathleen N; Chevalier, David; Spector, Michael P; Borchert, Glen M

    2016-01-01

    Small RNAs (sRNAs) are short (∼50-200 nucleotides) noncoding RNAs that regulate cellular activities across bacteria. Salmonella enterica starved of a carbon-energy (C) source experience a host of genetic and physiological changes broadly referred to as the starvation-stress response (SSR). In an attempt to identify novel sRNAs contributing to SSR control, we grew log-phase, 5-h C-starved and 24-h C-starved cultures of the virulent Salmonella enterica subspecies enterica serovar Typhimurium strain SL1344 and comprehensively sequenced their small RNA transcriptomes. Strikingly, after employing a novel strategy for sRNA discovery based on identifying dynamic transcripts arising from "gene-empty" regions, we identify 58 wholly undescribed Salmonella sRNA genes potentially regulating SSR averaging an ∼1,000-fold change in expression between log-phase and C-starved cells. Importantly, the expressions of individual sRNA loci were confirmed by both comprehensive transcriptome analyses and northern blotting of select candidates. Of note, we find 43 candidate sRNAs share significant sequence identity to characterized sRNAs in other bacteria, and ∼70% of our sRNAs likely assume characteristic sRNA structural conformations. In addition, we find 53 of our 58 candidate sRNAs either overlap neighboring mRNA loci or share significant sequence complementarity to mRNAs transcribed elsewhere in the SL1344 genome strongly suggesting they regulate the expression of transcripts via antisense base-pairing. Finally, in addition to this work resulting in the identification of 58 entirely novel Salmonella enterica genes likely participating in the SSR, we also find evidence suggesting that sRNAs are significantly more prevalent than currently appreciated and that Salmonella sRNAs may actually number in the thousands.

  11. Novel small RNA (sRNA) landscape of the starvation-stress response transcriptome of Salmonella enterica serovar typhimurium

    PubMed Central

    Amin, Shivam V.; Roberts, Justin T.; Patterson, Dillon G.; Coley, Alexander B.; Allred, Jonathan A.; Denner, Jason M.; Johnson, Justin P.; Mullen, Genevieve E.; O'Neal, Trenton K.; Smith, Jason T.; Cardin, Sara E.; Carr, Hank T.; Carr, Stacie L.; Cowart, Holly E.; DaCosta, David H.; Herring, Brendon R.; King, Valeria M.; Polska, Caroline J.; Ward, Erin E.; Wise, Alice A.; McAllister, Kathleen N.; Chevalier, David; Spector, Michael P.; Borchert, Glen M.

    2016-01-01

    ABSTRACT Small RNAs (sRNAs) are short (∼50–200 nucleotides) noncoding RNAs that regulate cellular activities across bacteria. Salmonella enterica starved of a carbon-energy (C) source experience a host of genetic and physiological changes broadly referred to as the starvation-stress response (SSR). In an attempt to identify novel sRNAs contributing to SSR control, we grew log-phase, 5-h C-starved and 24-h C-starved cultures of the virulent Salmonella enterica subspecies enterica serovar Typhimurium strain SL1344 and comprehensively sequenced their small RNA transcriptomes. Strikingly, after employing a novel strategy for sRNA discovery based on identifying dynamic transcripts arising from “gene-empty” regions, we identify 58 wholly undescribed Salmonella sRNA genes potentially regulating SSR averaging an ∼1,000-fold change in expression between log-phase and C-starved cells. Importantly, the expressions of individual sRNA loci were confirmed by both comprehensive transcriptome analyses and northern blotting of select candidates. Of note, we find 43 candidate sRNAs share significant sequence identity to characterized sRNAs in other bacteria, and ∼70% of our sRNAs likely assume characteristic sRNA structural conformations. In addition, we find 53 of our 58 candidate sRNAs either overlap neighboring mRNA loci or share significant sequence complementarity to mRNAs transcribed elsewhere in the SL1344 genome strongly suggesting they regulate the expression of transcripts via antisense base-pairing. Finally, in addition to this work resulting in the identification of 58 entirely novel Salmonella enterica genes likely participating in the SSR, we also find evidence suggesting that sRNAs are significantly more prevalent than currently appreciated and that Salmonella sRNAs may actually number in the thousands. PMID:26853797

  12. C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA

    PubMed Central

    Santiago-Frangos, Andrew; Kavita, Kumari; Schu, Daniel J.; Gottesman, Susan

    2016-01-01

    The bacterial Sm protein and RNA chaperone Hfq stabilizes small noncoding RNAs (sRNAs) and facilitates their annealing to mRNA targets involved in stress tolerance and virulence. Although an arginine patch on the Sm core is needed for Hfq’s RNA chaperone activity, the function of Hfq’s intrinsically disordered C-terminal domain (CTD) has remained unclear. Here, we use stopped flow spectroscopy to show that the CTD of Escherichia coli Hfq is not needed to accelerate RNA base pairing but is required for the release of dsRNA. The Hfq CTD also mediates competition between sRNAs, offering a kinetic advantage to sRNAs that contact both the proximal and distal faces of the Hfq hexamer. The change in sRNA hierarchy caused by deletion of the Hfq CTD in E. coli alters the sRNA accumulation and the kinetics of sRNA regulation in vivo. We propose that the Hfq CTD displaces sRNAs and annealed sRNA⋅mRNA complexes from the Sm core, enabling Hfq to chaperone sRNA–mRNA interactions and rapidly cycle between competing targets in the cell. PMID:27681631

  13. An inhibitor of eIF2 activity in the sRNA pool of eukaryotic cells.

    PubMed

    Centrella, Michael; Porter, David L; McCarthy, Thomas L

    2011-08-15

    Eukaryotic protein synthesis is a multi-step and highly controlled process that includes an early initiation complex containing eukaryotic initiation factor 2 (eIF2), GTP, and methionine-charged initiator methionyl-tRNA (met-tRNAi). During studies to reconstruct formation of the ternary complex containing these molecules, we detected a potent inhibitor in low molecular mass RNA (sRNA) preparations of eukaryotic tRNA. The ternary complex inhibitor (TCI) was retained in the total sRNA pool after met-tRNAi was charged by aminoacyl tRNA synthetase, co-eluted with sRNA by size exclusion chromatography, but resolved from met-tRNAi by ion exchange chromatography. The adverse effect of TCI was not overcome by high GTP or magnesium omission and was independent of GTP regeneration. Rather, TCI suppressed the rate of ternary complex formation, and disrupted protein synthesis and the accumulation of heavy polymeric ribosomes in reticulocyte lysates in vitro. Lastly, a component or components in ribosome depleted cell lysate significantly reversed TCI activity. Since assembly of the met-tRNAi/eIF2/GTP ternary complex is integral to protein synthesis, awareness of TCI is important to avoid confusion in studies of translation initiation. A clear definition of TCI may also allow a better appreciation of physiologic or pathologic situations, factors, and events that control protein synthesis in vivo.

  14. Sibling sRNA RyfA1 Influences Shigella dysenteriae Pathogenesis

    PubMed Central

    Fris, Megan E.; Broach, William H.; Klim, Sarah E.; Coschigano, Peter W.; Carroll, Ronan K.; Caswell, Clayton C.; Murphy, Erin R.

    2017-01-01

    Small regulatory RNAs (sRNAs) of Shigella dysenteriae and other pathogens are vital for the regulation of virulence-associated genes and processes. Here, we characterize RyfA1, one member of a sibling pair of sRNAs produced by S. dysenteriae. Unlike its nearly identical sibling molecule, RyfA2, predicted to be encoded almost exclusively by non-pathogenic species, the presence of a gene encoding RyfA1, or a RyfA1-like molecule, is strongly correlated with virulence in a variety of enteropathogens. In S. dysenteriae, the overproduction of RyfA1 negatively impacts the virulence-associated process of cell-to-cell spread as well as the expression of ompC, a gene encoding a major outer membrane protein important for the pathogenesis of Shigella. Interestingly, the production of RyfA1 is controlled by a second sRNA, here termed RyfB1, the first incidence of one regulatory small RNA controlling another in S. dysenteriae or any Shigella species. PMID:28134784

  15. Ultra Deep Sequencing of Listeria monocytogenes sRNA Transcriptome Revealed New Antisense RNAs

    PubMed Central

    Behrens, Sebastian; Widder, Stefanie; Mannala, Gopala Krishna; Qing, Xiaoxing; Madhugiri, Ramakanth; Kefer, Nathalie; Mraheil, Mobarak Abu; Rattei, Thomas; Hain, Torsten

    2014-01-01

    Listeria monocytogenes, a gram-positive pathogen, and causative agent of listeriosis, has become a widely used model organism for intracellular infections. Recent studies have identified small non-coding RNAs (sRNAs) as important factors for regulating gene expression and pathogenicity of L. monocytogenes. Increased speed and reduced costs of high throughput sequencing (HTS) techniques have made RNA sequencing (RNA-Seq) the state-of-the-art method to study bacterial transcriptomes. We created a large transcriptome dataset of L. monocytogenes containing a total of 21 million reads, using the SOLiD sequencing technology. The dataset contained cDNA sequences generated from L. monocytogenes RNA collected under intracellular and extracellular condition and additionally was size fractioned into three different size ranges from <40 nt, 40–150 nt and >150 nt. We report here, the identification of nine new sRNAs candidates of L. monocytogenes and a reevaluation of known sRNAs of L. monocytogenes EGD-e. Automatic comparison to known sRNAs revealed a high recovery rate of 55%, which was increased to 90% by manual revision of the data. Moreover, thorough classification of known sRNAs shed further light on their possible biological functions. Interestingly among the newly identified sRNA candidates are antisense RNAs (asRNAs) associated to the housekeeping genes purA, fumC and pgi and potentially their regulation, emphasizing the significance of sRNAs for metabolic adaptation in L. monocytogenes. PMID:24498259

  16. Biochemical and Molecular Phylogenetic Study of Agriculturally Useful Association of a Nitrogen-Fixing Cyanobacterium and Nodule Sinorhizobium with Medicago sativa L.

    PubMed Central

    Karaushu, E. V.; Kravzova, T. R.; Vorobey, N. A.; Kiriziy, D. A.; Olkhovich, O. P.; Taran, N. Yu.; Kots, S. Ya.; Omarova, E.

    2015-01-01

    Seed inoculation with bacterial consortium was found to increase legume yield, providing a higher growth than the standard nitrogen treatment methods. Alfalfa plants were inoculated by mono- and binary compositions of nitrogen-fixing microorganisms. Their physiological and biochemical properties were estimated. Inoculation by microbial consortium of Sinorhizobium meliloti T17 together with a new cyanobacterial isolate Nostoc PTV was more efficient than the single-rhizobium strain inoculation. This treatment provides an intensification of the processes of biological nitrogen fixation by rhizobia bacteria in the root nodules and an intensification of plant photosynthesis. Inoculation by bacterial consortium stimulates growth of plant mass and rhizogenesis and leads to increased productivity of alfalfa and to improving the amino acid composition of plant leaves. The full nucleotide sequence of the rRNA gene cluster and partial sequence of the dinitrogenase reductase (nifH) gene of Nostoc PTV were deposited to GenBank (JQ259185.1, JQ259186.1). Comparison of these gene sequences of Nostoc PTV with all sequences present at the GenBank shows that this cyanobacterial strain does not have 100% identity with any organisms investigated previously. Phylogenetic analysis showed that this cyanobacterium clustered with high credibility values with Nostoc muscorum. PMID:26114100

  17. Biochemical and Molecular Phylogenetic Study of Agriculturally Useful Association of a Nitrogen-Fixing Cyanobacterium and Nodule Sinorhizobium with Medicago sativa L.

    PubMed

    Karaushu, E V; Lazebnaya, I V; Kravzova, T R; Vorobey, N A; Lazebny, O E; Kiriziy, D A; Olkhovich, O P; Taran, N Yu; Kots, S Ya; Popova, A A; Omarova, E; Koksharova, O A

    2015-01-01

    Seed inoculation with bacterial consortium was found to increase legume yield, providing a higher growth than the standard nitrogen treatment methods. Alfalfa plants were inoculated by mono- and binary compositions of nitrogen-fixing microorganisms. Their physiological and biochemical properties were estimated. Inoculation by microbial consortium of Sinorhizobium meliloti T17 together with a new cyanobacterial isolate Nostoc PTV was more efficient than the single-rhizobium strain inoculation. This treatment provides an intensification of the processes of biological nitrogen fixation by rhizobia bacteria in the root nodules and an intensification of plant photosynthesis. Inoculation by bacterial consortium stimulates growth of plant mass and rhizogenesis and leads to increased productivity of alfalfa and to improving the amino acid composition of plant leaves. The full nucleotide sequence of the rRNA gene cluster and partial sequence of the dinitrogenase reductase (nifH) gene of Nostoc PTV were deposited to GenBank (JQ259185.1, JQ259186.1). Comparison of these gene sequences of Nostoc PTV with all sequences present at the GenBank shows that this cyanobacterial strain does not have 100% identity with any organisms investigated previously. Phylogenetic analysis showed that this cyanobacterium clustered with high credibility values with Nostoc muscorum.

  18. Comprehensive processing of high throughput small RNA sequencing data including quality checking, normalization and differential expression analysis using the UEA sRNA Workbench.

    PubMed

    Beckers, Matthew L; Mohorianu, Irina; Stocks, Matthew B; Applegate, Christopher; Dalmay, Tamas; Moulton, Vincent

    2017-03-13

    Recently High Throughput Sequencing (HTS) has revealed compelling details about the small RNA (sRNA) population in eukaryotes. These 20-25 nt non-coding RNAs can influence gene expression by acting as guides for the sequence-specific regulatory mechanism known as RNA silencing. The increase in sequencing depth and number of samples per project enables a better understanding of the role sRNAs play by facilitating the study of expression patterns. However, the intricacy of the biological hypotheses coupled with a lack of appropriate tools often leads to inadequate mining of the available data and thus, an incomplete description of the biological mechanisms involved. To enable a comprehensive study of differential expression in sRNA datasets we present a new interactive pipeline that guides researchers through the various stages of data pre-processing and analysis. This includes various tools, some of which we specifically developed for sRNA analysis, for quality checking and normalization of sRNA samples as well as tools for the detection of differentially expressed sRNAs and identification of the resulting expression patterns. The pipeline is available within the UEA sRNA Workbench, a user-friendly software package for the processing of sRNA datasets. We demonstrate the use of the pipeline on a H. sapiens dataset; additional examples on a B. terrestris dataset and on an A. thaliana dataset are described in the supplementary information. A comparison with existing approaches is also included, which exemplifies some of the issues that need to be addressed for sRNA analysis, and how the new pipeline may be used to do this.

  19. Metabolism of Tryptophan and Tryptophan Analogs by Rhizobium meliloti1

    PubMed Central

    Williams, Myron N. V.; Signer, Ethan R.

    1990-01-01

    The alfalfa symbiont Rhizobium meliloti Rm1021 produces indole-3-acetic acid in a regulated manner when supplied with exogenous tryptophan. Mutants with altered response to tryptophan analogs still produce indole-3-acetic acid, but are Fix− because bacteria do not fully differentiate into the nitrogen-fixing bacteriod form. These mutations are in apparently essential genes tightly linked to a dominant streptomycin resistance locus. Images Figure 2 PMID:16667364

  20. alpha-Ketoglutarate dehydrogenase mutant of Rhizobium meliloti.

    PubMed Central

    Duncan, M J; Fraenkel, D G

    1979-01-01

    A mutant of Rhizobium meliloti selected as unable to grow on L-arabinose also failed to grow on acetate or pyruvate. It grew, but slower than the parental strain, on many other carbon sources. Assay showed it to lack alpha-ketoglutarate dehydrogenase (kgd) activity, and revertants of normal growth phenotype contained the activity again. Other enzymes of the tricarboxylic acid cycle and of the glyoxylate cycle were present in both mutant and parent strains. Enzymes of pyruvate metabolism were also assayed. L-Arabinose degradation in R. meliloti was found to differ from the known pathway in R. japonicum, since the former strain lacked 2-keto-o-deoxy-L-arabonate aldolase but contained alpha-ketoglutarate semialdehyde dehydrogenase; thus, it is likely that R. meliloti has the L-arabinose pathway leading to alpha-ketoglutarate rather than the one to glycolaldehyde and pyruvate. This finding accounts for the L-arabinose negativity of the mutant. Resting cells of the mutant were able to metabolize the three substrates which did not allow growth. PMID:762018

  1. A novel Hfq-dependent sRNA that is under FNR control and is synthesized in oxygen limitation in Neisseria meningitidis.

    PubMed

    Fantappiè, Laura; Oriente, Francesca; Muzzi, Alessandro; Serruto, Davide; Scarlato, Vincenzo; Delany, Isabel

    2011-04-01

    Small non-coding RNAs (sRNA) are emerging as key elements of post-transcriptional gene regulation in bacteria. The conserved Hfq protein is thought to function as an RNA chaperone and facilitate base-pairing between sRNAs and mRNA targets. In this study we identify a novel sRNA of Neisseria meningitidis through global gene expression studies of regulated transcripts in the Hfq mutant. The synthesis of this sRNA, named AniS, is anaerobically induced through activation of its promoter by the FNR global regulator. Whole-genome expression analyses led to the identification of putative mRNA targets, two of which are predicted to base pair with AniS. We show that Hfq binds the AniS transcript in vitro and is necessary for the downregulation of the identified target mRNAs in vivo. Contrary to many Hfq-dependent sRNA of the Enterobacteriaceae, Hfq promotes decay of AniS in N. meningitidis. Our analysis shows that the AniS regulator is part of the FNR regulon and may be responsible for the downregulation of FNR-repressed genes. Furthermore the presence of similar conserved regulatory sequences in all Neisseria spp. to date suggests that an analogous FNR-regulated sRNA, with a variable 5' sequence, may be ubiquitous to all commensals and pathogens of the Genus.

  2. Rhizobia with different symbiotic efficiencies nodulate Acaciella angustissima in Mexico, including Sinorhizobium chiapanecum sp. nov. which has common symbiotic genes with Sinorhizobium mexicanum

    PubMed Central

    Rincón-Rosales, Reiner; Lloret, Lourdes; Ponce, Edith; Martínez-Romero, Esperanza

    2009-01-01

    Bacteria from nodules of the legume Acaciella angustissima native to the south of Mexico were characterized genetically and their nodulation and competitiveness were evaluated. Phylogenetic studies derived from rpoB gene sequences indicated that A. angustissima is nodulated by Sinorhizobium mexicanum, Rhizobium tropici, Mesorhizobium plurifarium and Agrobacterium tumefaciens and by bacteria related to Sinorhizobium americanum, Sinorhizobium terangae, Rhizobium etli and Rhizobium gallicum. A new lineage related to S. terangae is recognized based on the sequences of gyrA, nolR, recA, rpoB and rrs genes, DNA–DNA hybridization and phenotypic characteristics. The name for this new species is Sinorhizobium chiapanecum and its type strain is ITTG S70T. The symbiotic genes nodA and nifH were similar to those from S. mexicanum strains, which are Acaciella symbionts as well, with nodA gene sequences grouped within a cluster of nod genes from strains that nodulate plants from the Mimosoideae subfamily of the Leguminosae. Sinorhizobium isolates were the most frequently obtained from A. angustissima nodules and were among the best strains to promote plant growth in A. angustissima and to compete in interstrain nodule competition assays. Lateral transfer of symbiotic genes is not evident among the genera that nodulate A. angustissima (Rhizobium, Sinorhizobium and Mesorhizobium) but may occur among the sympatric and closely related sinorhizobia that nodulate Acaciella. PMID:19120461

  3. Antibacterial activity of silver nanoparticles target sara through srna-teg49, a key mediator of hfq, in staphylococcus aureus

    PubMed Central

    Tian, Hu; Liao, Qiande; Liu, Meizhou; Hou, Jianhong; Zhang, Yangde; Liu, Ju

    2015-01-01

    Attributed to its antimicrobial effect, Silver nanoparticles (AgNPs) is widely used in various fields, such as biomedicine, textiles, health care products and food, etc. However, the antibacterial mechanism of AgNPs in staphylococcus aureus (S. aureus) by regulating sRNA expression remains largely unknown. Objectives: This study was performed to investigate the involvement of the antibacterial mechanism of AgNPs through sRNA-TEG49, a key mediator of Hfq, in S. aureus. Methods: Through the antimicrobial tests of AgNPs, its antibacterial laps and minimum inhibitory concentration was measured. A hierarchical cluster analysis of the differentially expressed sRNA in S. aureus was performed to investigate the relationship between AgNPs and sRNA. Expression of genes was analyzed by real-time PCR. Results: In the present study we found that at the concentrations higher than 1 mg/L, AgNPs could completely restrain bacteria growth, and the antibacterial activity of AgNPs apparently declined at the concentrations lower than 1 mg/L. S. aureus exposure to AgNPs, the expression of sRNA-TEG49, Hfq and sarA was significantly up-regulated in wild-type S. aureus. Moreover, Hfq loss-of-function inhibited the expression of sRNA-TEG49 in mutant-type S. aureus. Furthermore, sRNA-TEG49 loss-of-function associated with down-regulation the expression of sarA in mutant-type S. aureus. Conclusions: It was reasonable that Hfq regulated a distinct underlying molecular and antibacterial mechanism of AgNPs by forming a positive feedback loop with sRNA-TEG49. These observations suggested that Hfq plays an important role in the antibacterial mechanism of AgNPs by regulating sRNA-TEG49 expression, via its target sarA. PMID:26131167

  4. sRNA roles in regulating transcriptional regulators: Lrp and SoxS regulation by sRNAs

    PubMed Central

    Lee, Hyun-Jung; Gottesman, Susan

    2016-01-01

    Post-transcriptional regulation of transcription factors contributes to regulatory circuits. We created translational reporter fusions for multiple central regulators in Escherichia coli and examined the effect of Hfq-dependent non-coding RNAs on these fusions. This approach yields an ‘RNA landscape,’ identifying Hfq-dependent sRNAs that regulate a given fusion. No significant sRNA regulation of crp or fnr was detected. hns was regulated only by DsrA, as previously reported. Lrp and SoxS were both found to be regulated post-transcriptionally. Lrp, ‘leucine-responsive regulatory protein,’ regulates genes involved in amino acid biosynthesis and catabolism and other cellular functions. sRNAs DsrA, MicF and GcvB each independently downregulate the lrp translational fusion, confirming previous reports for MicF and GcvB. MicF and DsrA interact with an overlapping site early in the lrp ORF, while GcvB acts upstream at two independent sites in the long lrp leader. Surprisingly, GcvB was found to be responsible for significant downregulation of lrp after oxidative stress; MicF also contributed. SoxS, an activator of genes used to combat oxidative stress, is negatively regulated by sRNA MgrR. This study demonstrates that while not all global regulators are subject to sRNA regulation, post-transcriptional control by sRNAs allows multiple environmental signals to affect synthesis of the transcriptional regulator. PMID:27137887

  5. Alfalfa microsymbionts from different ITS and nodC lineages of Ensifer meliloti and Ensifer medicae symbiovar meliloti establish efficient symbiosis with alfalfa in Spanish acid soils.

    PubMed

    Ramírez-Bahena, Martha-Helena; Vargas, Margarita; Martín, María; Tejedor, Carmen; Velázquez, Encarna; Peix, Álvaro

    2015-06-01

    Alfalfa (Medicago sativa L.) is an important crop worldwide whose cropping in acid soils is hampered by the poor nodulation and yield commonly attributed to the sensitivity of its endosymbionts to acid pH. In this work, we isolated several acid-tolerant strains from alfalfa nodules in three acid soils in northwestern Spain. After grouping by RAPD fingerprinting, most strains were identified as Ensifer meliloti and only two strains as Ensifer medicae according to their 16S-23S intergenic spacer (ITS) sequences that allowed the differentiation of two groups within each one of these species. The two ITS groups of E. meliloti and the ITS group I of E. medicae have been previously found in Medicago nodules; however, the group II of E. medicae has been only found to date in Prosopis alba nodules. The analysis of the nodC gene showed that all strains isolated in this study belong to the symbiovar meliloti, grouping with the type strains of E. meliloti or E. medicae, but some harboured nodC gene alleles different from those found to date in alfalfa nodules. The strains of E. medicae belong to the symbiovar meliloti which should be also recognised in this species, although they harboured a nodC allele phylogenetically divergent to those from E. meliloti strains. Microcosm experiments showed that inoculation of alfalfa with selected acid-tolerant strains significantly increased yields in acid soils representing a suitable agricultural practice for alfalfa cropping in these soils.

  6. Rhizobium meliloti mutants that overproduce the R. meliloti acidic Calcofluor-binding exopolysaccharide

    SciTech Connect

    Doherty, D.; Glazebrook, J.; Walker, G.C. ); Leigh, J.A. )

    1988-09-01

    The acidic Calcofluor-binding exopolysaccharide of Rhizobium meliloti Rm1021 plays one or more critical roles in nodule invasion and possible in nodule development. Two loci, exoR and exoS, that effect the regulation of synthesis of this exopolysaccharide were identified by screening for derivatives of strain Rm1021 that formed mucoid colonies that fluoresced extremely brightly under UV light when grown on medium containing Calcofluor. The exopolysaccharide produced in large quantities by the exoR95::Tn5 and exoS96::Tn5 strains was indistinguishable from that produced by the parental strain Rm1021, and its synthesis required the function of at least the exoA, exoB, and exoF genes. Both the exoR and exoS loci were located on the chromosome, and the exo96::Tn5 mutation was 84% linked to the trp-33 mutation by {Phi}M12 transduction. Synthesis of the Calcofluor-binding exopolysaccharide by strain Rm1021 was greatly stimulated by starvation for ammonia. In contrast, the exoR95::Tn5 mutant produced high levels of exopolysaccharide regardless of the presence or absence of ammonia in the medium. The exoS96::Tn5 mutant produced elevated amounts of exopolysaccharide in the presence of ammonia, but higher amounts were observed after starvation for ammonia. The presence of either mutation increased the level of expression of exoF::TnphoA and exoP::TnphoA fusions. Analyses of results obtained when alfalfa seedlings were inoculated with the exoR95::Tn5 strain indicated that the mutant strain could not invade nodules. However, pseudorevertants that retained the original exoR95::Tn5 mutant but acquired unlinked suppressors so that they produced an approximately normal amount of exopolysaccharide were able to invade nodules and fix nitrogen.

  7. The Symbiotic Biofilm of Sinorhizobium fredii SMH12, Necessary for Successful Colonization and Symbiosis of Glycine max cv Osumi, Is Regulated by Quorum Sensing Systems and Inducing Flavonoids via NodD1

    PubMed Central

    Pérez-Montaño, Francisco; Jiménez-Guerrero, Irene; Del Cerro, Pablo; Baena-Ropero, Irene; López-Baena, Francisco Javier; Ollero, Francisco Javier; Bellogín, Ramón; Lloret, Javier; Espuny, Rosario

    2014-01-01

    Bacterial surface components, especially exopolysaccharides, in combination with bacterial Quorum Sensing signals are crucial for the formation of biofilms in most species studied so far. Biofilm formation allows soil bacteria to colonize their surrounding habitat and survive common environmental stresses such as desiccation and nutrient limitation. This mode of life is often essential for survival in bacteria of the genera Mesorhizobium, Sinorhizobium, Bradyrhizobium, and Rhizobium. The role of biofilm formation in symbiosis has been investigated in detail for Sinorhizobium meliloti and Bradyrhizobium japonicum. However, for S. fredii this process has not been studied. In this work we have demonstrated that biofilm formation is crucial for an optimal root colonization and symbiosis between S. fredii SMH12 and Glycine max cv Osumi. In this bacterium, nod-gene inducing flavonoids and the NodD1 protein are required for the transition of the biofilm structure from monolayer to microcolony. Quorum Sensing systems are also required for the full development of both types of biofilms. In fact, both the nodD1 mutant and the lactonase strain (the lactonase enzyme prevents AHL accumulation) are defective in soybean root colonization. The impairment of the lactonase strain in its colonization ability leads to a decrease in the symbiotic parameters. Interestingly, NodD1 together with flavonoids activates certain quorum sensing systems implicit in the development of the symbiotic biofilm. Thus, S. fredii SMH12 by means of a unique key molecule, the flavonoid, efficiently forms biofilm, colonizes the legume roots and activates the synthesis of Nod factors, required for successfully symbiosis. PMID:25166872

  8. Method for Testing Degree of Infectivity of Rhizobium meliloti Strains.

    PubMed

    Olivares, J; Casadesús, J; Bedmar, E J

    1980-05-01

    The infectiveness of different strains of Rhizobium meliloti was tested with a technique that uses the addition of tetracycline to the root medium. To stop the infection, the antibiotic was added some time after the inoculation of Medicago sativa plants. A coefficient of infectivity for each strain was calculated according to the number of nodules that appeared with and without the addition of the antibiotic. This method seems useful in infectivity studies and is simpler and easier to perform than the test of competence between strains.

  9. Method for Testing Degree of Infectivity of Rhizobium meliloti Strains

    PubMed Central

    Olivares, José; Casadesús, Josep; Bedmar, Eulogio J.

    1980-01-01

    The infectiveness of different strains of Rhizobium meliloti was tested with a technique that uses the addition of tetracycline to the root medium. To stop the infection, the antibiotic was added some time after the inoculation of Medicago sativa plants. A coefficient of infectivity for each strain was calculated according to the number of nodules that appeared with and without the addition of the antibiotic. This method seems useful in infectivity studies and is simpler and easier to perform than the test of competence between strains. PMID:16345574

  10. A new cis-encoded sRNA, BsrH, regulating the expression of hemH gene in Brucella abortus 2308.

    PubMed

    Peng, Xiaowei; Dong, Hao; Wu, Qingmin

    2015-01-01

    A total of 129 sRNA candidates were identified in Brucella abortus 2308 in our previous work, and one candidate with potential to regulate expression of hemH gene was further analyzed in this study. We found that the novel sRNA can inhibit the expression of hemH and called it BsrH (Brucella sRNA regulating HemH). The expression level of BsrH was tested in four different stress conditions. A significant upregulation was detected during the growth in acidic and Brucella minimal media, as well as in the presence of hydroxyl peroxide, while iron deficiency caused the opposite effect. As expected, BsrH strongly affected the survival ratio of the Brucella cells under iron-limitation conditions, though overexpression of BsrH did not affect Brucella virulence. Thus, we conclude that BsrH plays a regulatory role in bacterial heme biosynthesis and can be considered as the first Brucella sRNA involved in stress responses.

  11. The VrrA sRNA controls a stationary phase survival factor Vrp of Vibrio cholerae.

    PubMed

    Sabharwal, Dharmesh; Song, Tianyan; Papenfort, Kai; Wai, Sun Nyunt

    2015-01-01

    Small non-coding RNAs (sRNAs) are emerging regulatory elements in bacteria. The Vibrio cholerae sRNA VrrA has previously been shown to down-regulate outer membrane proteins (OmpA and OmpT) and biofilm matrix protein (RbmC) by base-pairing with the 5' region of the corresponding mRNAs. In this study, we present an additional target of VrrA in V. cholerae, the mRNA coding for the ribosome binding protein Vrp. Vrp is homologous to ribosome-associated inhibitor A (RaiA) of Escherichia coli which facilitates stationary phase survival through ribosome hibernation. We show that VrrA down-regulates Vrp protein synthesis by base-pairing to the 5' region of vrp mRNA and that the regulation requires the RNA chaperone protein, Hfq. We further demonstrate that Vrp is highly expressed during stationary phase growth and associates with the ribosome of V. cholerae. The effect of the Vrp protein in starvation survival is synergistic with that of the VC2530 protein, a homolog of the E. coli hibernation promoting factor HPF, suggesting a combined role for these proteins in ribosome hibernation in V. cholerae. Vrp and VC2530 are important for V. cholerae starvation survival under nutrient deficient conditions. While VC2530 is down-regulated in cells lacking vrrA, mutation of vrp results in VC2530 activation. This is the first report indicating a regulatory role for an sRNA, modulating stationary factors involved in bacterial ribosome hibernation.

  12. Improvement of Phosphate Solubilization and Medicago Plant Yield by an Indole-3-Acetic Acid-Overproducing Strain of Sinorhizobium meliloti▿ †

    PubMed Central

    Bianco, Carmen; Defez, Roberto

    2010-01-01

    Nitrogen (N) and phosphorus (P) are the most limiting factors for plant growth. Some microorganisms improve the uptake and availability of N and P, minimizing chemical fertilizer dependence. It has been published that the RD64 strain, a Sinorhizobium meliloti 1021 strain engineered to overproduce indole-3-acetic acid (IAA), showed improved nitrogen fixation ability compared to the wild-type 1021 strain. Here, we present data showing that RD64 is also highly effective in mobilizing P from insoluble sources, such as phosphate rock (PR). Under P-limiting conditions, the higher level of P-mobilizing activity of RD64 than of the 1021 wild-type strain is connected with the upregulation of genes coding for the high-affinity P transport system, the induction of acid phosphatase activity, and the increased secretion into the growth medium of malic, succinic, and fumaric acids. Medicago truncatula plants nodulated by RD64 (Mt-RD64), when grown under P-deficient conditions, released larger amounts of another P-solubilizing organic acid, 2-hydroxyglutaric acid, than plants nodulated by the wild-type strain (Mt-1021). It has already been shown that Mt-RD64 plants exhibited higher levels of dry-weight production than Mt-1021 plants. Here, we also report that P-starved Mt-RD64 plants show significant increases in both shoot and root fresh weights when compared to P-starved Mt-1021 plants. We discuss how, in a Rhizobium-legume model system, a balanced interplay of different factors linked to bacterial IAA overproduction rather than IAA production per se stimulates plant growth under stressful environmental conditions and, in particular, under P starvation. PMID:20511434

  13. Bacterial Molecular Signals in the Sinorhizobium fredii-Soybean Symbiosis

    PubMed Central

    López-Baena, Francisco J.; Ruiz-Sainz, José E.; Rodríguez-Carvajal, Miguel A.; Vinardell, José M.

    2016-01-01

    Sinorhizobium (Ensifer) fredii (S. fredii) is a rhizobial species exhibiting a remarkably broad nodulation host-range. Thus, S. fredii is able to effectively nodulate dozens of different legumes, including plants forming determinate nodules, such as the important crops soybean and cowpea, and plants forming indeterminate nodules, such as Glycyrrhiza uralensis and pigeon-pea. This capacity of adaptation to different symbioses makes the study of the molecular signals produced by S. fredii strains of increasing interest since it allows the analysis of their symbiotic role in different types of nodule. In this review, we analyze in depth different S. fredii molecules that act as signals in symbiosis, including nodulation factors, different surface polysaccharides (exopolysaccharides, lipopolysaccharides, cyclic glucans, and K-antigen capsular polysaccharides), and effectors delivered to the interior of the host cells through a symbiotic type 3 secretion system. PMID:27213334

  14. Transport and catabolism of D-mannose in Rhizobium meliloti.

    PubMed Central

    Arias, A; Gardiol, A; Martínez-Drets, G

    1982-01-01

    Rhizobium meliloti L5-30 grows on D-mannose as the sole carbon source. The catabolic pathway of D-mannose was characterized. The following activities were present: mannose transport system, mannokinase, and mannosephosphate isomerase. Several mannose-negative mutants were selected; they were classified into three functional groups: group I, mannokinase and mannosephosphate isomerase defective: group II, mannokinase defective; and group III, mannosephosphate isomerase defective. Mannose uptake was an active process, since it was inhibited by azide, dinitrophenol, and cyanide, but not by fluoride or arsenate. Growth on succinate repressed mannose uptake activity. The mannose transport system was present in all the mutants. Uptake studies showed that mannose-negative mutants did not metabolize this sugar. PMID:6286588

  15. Genetic regulation of nitrogen fixation in Rhizobium meliloti.

    PubMed

    Cebolla, A; Palomares, A J

    1994-12-01

    The soil bacterium Rhizobium meliloti fixes dinitrogen when associated with root nodules formed on its plant host, Medicago sativa (alfalfa). The expression of most of the known genes required for nitrogen fixation (nif and fix genes), including the structural genes for nitrogenase, is induced in response to a decrease in oxygen concentration. Induction of nif and fix gene expression by low oxygen is physiologically relevant because a low-oxygen environment is maintained in root nodules to prevent inactivation of the highly oxygen-sensitive nitrogenase enzyme. The genes responsible for sensing and transducing the low oxygen signal, fixL and fixJ, encode proteins (FixL and FixJ, respectively) that are homologous to a large family of bacterial proteins involved in signal transduction, the two component regulatory system proteins. The two components consist of a sensor protein, to which FixL is homologous, and a response regulator protein, to which FixJ is homologous. The sensor protein respond to an activating signal by autophosphorylating and then transferring the phosphate to its cognate response regulator protein. The phosphorylated response regulator, which is often a transcriptional activator, is then able to activate its target. A cascade model of nif and fix gene regulation in R. meliloti has been proposed, whereby FixL acts as an oxygen sensor as the initial event in the cascade and transmits this information to FixJ. FixJ, which possesses a putative helix-turn-helix DNA-binding motif, then activates transcription of the nifA and fixK genes. The nifA and fixK gene products, are transcriptional activators of at least 14 other nif and fix genes.

  16. Variation in Preference for Rhizobium meliloti Within and Between Medicago sativa Cultivars Grown in Soil †

    PubMed Central

    Bromfield, E. S. P.

    1984-01-01

    Variation in nodulation preferences for Rhizobium strains within and between Medicago sativa cultivars was assessed in the greenhouse with plants grown in Leonard jars and two soils of diverse origin (Lanark and Ottawa), using inocula consisting of effective individual or paired strains of R. meliloti which could be recognized by high-concentration antibiotic resistance. The results indicated considerable variability in host preferences for R. meliloti among plants within cultivars but not between cultivars. The implications of this variation are discussed from the point of view of possible improvement of symbiotic nitrogen fixation. With one exception, the differences in nodulation success between inoculant R. meliloti strains were consistent in Leonard jars and both soils. All introduced strains formed significantly more nodules in Renfrew soil containing few native rhizobia than in Ottawa soil with a large resident R. meliloti population. Plants grown in Lanark soil without inoculation were ineffectively nodulated by native rhizobia and yielded significantly less growth than those receiving inoculation. In contrast, the yield of inoculated plants in Ottawa soil did not significantly differ from those without inoculation due to effective nodulation by native R. meliloti. The data indicated synergistic effects on yield by certain paired strain inocula relative to the same strains inoculated individually in Lanark but not in Ottawa soil or Leonard jars. PMID:16346682

  17. A cis-encoded sRNA, Hfq and mRNA secondary structure act independently to suppress IS200 transposition.

    PubMed

    Ellis, Michael J; Trussler, Ryan S; Haniford, David B

    2015-07-27

    IS200 is found throughout Enterobacteriaceae and transposes at a notoriously low frequency. In addition to the transposase protein (TnpA), IS200 encodes an uncharacterized Hfq-binding sRNA that is encoded opposite to the tnpA 5'UTR. In the current work we asked if this sRNA represses tnpA expression. We show here that the IS200 sRNA (named art200 for antisense regulator of transposase IS200) basepairs with tnpA to inhibit translation initiation. Unexpectedly, art200-tnpA pairing is limited to 40 bp, despite 90 nt of perfect complementarity. Additionally, we show that Hfq and RNA secondary structure in the tnpA 5'UTR each repress tnpA expression in an art200-independent manner. Finally, we show that disrupting translational control of tnpA expression leads to increased IS200 transposition in E. coli. The current work provides new mechanistic insight into why IS200 transposition is so strongly suppressed. The possibility of art200 acting in trans to regulate a yet-unidentified target is discussed as well as potential applications of the IS200 system for designing novel riboregulators.

  18. A cis-encoded sRNA, Hfq and mRNA secondary structure act independently to suppress IS200 transposition

    PubMed Central

    Ellis, Michael J.; Trussler, Ryan S.; Haniford, David B.

    2015-01-01

    IS200 is found throughout Enterobacteriaceae and transposes at a notoriously low frequency. In addition to the transposase protein (TnpA), IS200 encodes an uncharacterized Hfq-binding sRNA that is encoded opposite to the tnpA 5'UTR. In the current work we asked if this sRNA represses tnpA expression. We show here that the IS200 sRNA (named art200 for antisense regulator of transposase IS200) basepairs with tnpA to inhibit translation initiation. Unexpectedly, art200-tnpA pairing is limited to 40 bp, despite 90 nt of perfect complementarity. Additionally, we show that Hfq and RNA secondary structure in the tnpA 5'UTR each repress tnpA expression in an art200-independent manner. Finally, we show that disrupting translational control of tnpA expression leads to increased IS200 transposition in E. coli. The current work provides new mechanistic insight into why IS200 transposition is so strongly suppressed. The possibility of art200 acting in trans to regulate a yet-unidentified target is discussed as well as potential applications of the IS200 system for designing novel riboregulators. PMID:26044710

  19. SAS solution structures of the apo and Mg2+/BeF3(-)-bound receiver domain of DctD from Sinorhizobium meliloti.

    PubMed

    Nixon, B Tracy; Yennawar, Hemant P; Doucleff, Michaeleen; Pelton, Jeffrey G; Wemmer, David E; Krueger, Susan; Kondrashkina, Elena

    2005-10-25

    Two-component signal transduction is the predominant information processing mechanism in prokaryotes and is also present in single-cell eukaryotes and higher plants. A phosphorylation-based switch is commonly used to activate as many as 40 different types of output domains in more than 6000 two-component response regulators that can be identified in the sequence databases. Previous biochemical and crystallographic studies showed that phosphorylation of the two-component receiver domain of DctD causes a switch between alternative dimeric forms, but it was unclear from the crystal lattice of the activated protein precisely which of four possible dimeric configurations is the biologically relevant one [Park, S., et al. (2002) FASEB J. 16, 1964-1966]. Here we report solution structures of the apo and activated DctD receiver domain derived from small angle scattering data. The apo dimer closely resembles that seen in the crystal structure, and the solution data for the activated protein eliminate two of the possible four dimeric conformations seen in the crystal lattice and strongly implicate one as the biologically relevant structure. These results corroborate the previously proposed model for how receiver domains regulate their downstream AAA+ ATPase domains.

  20. Replicon-dependent differentiation of symbiosis-related genes in Sinorhizobium strains nodulating Glycine max.

    PubMed

    Guo, Hui Juan; Wang, En Tao; Zhang, Xing Xing; Li, Qin Qin; Zhang, Yan Ming; Tian, Chang Fu; Chen, Wen Xin

    2014-02-01

    In order to investigate the genetic differentiation of Sinorhizobium strains nodulating Glycine max and related microevolutionary mechanisms, three housekeeping genes (SMc00019, truA, and thrA) and 16 symbiosis-related genes on the chromosome (7 genes), pSymA (6 genes), and pSymB (3 genes) were analyzed. Five distinct species were identified among the test strains by calculating the average nucleotide identity (ANI) of SMc00019-truA-thrA: Sinorhizobium fredii, Sinorhizobium sojae, Sinorhizobium sp. I, Sinorhizobium sp. II, and Sinorhizobium sp. III. These species assignments were also supported by population genetics and phylogenetic analyses of housekeeping genes and symbiosis-related genes on the chromosome and pSymB. Different levels of genetic differentiation were observed among these species or different replicons. S. sojae was the most divergent from the other test species and was characterized by its low intraspecies diversity and limited geographic distribution. Intergenic recombination dominated the evolution of 19 genes from different replicons. Intraspecies recombination happened frequently in housekeeping genes and symbiosis-related genes on the chromosome and pSymB, whereas pSymA genes showed a clear pattern of lateral-transfer events between different species. Moreover, pSymA genes were characterized by a lower level of polymorphism and recombination than those on the chromosome and pSymB. Taken together, genes from different replicons of rhizobia might be involved in the establishment of symbiosis with legumes, but these symbiosis-related genes might have evolved differently according to their corresponding replicons.

  1. RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria

    PubMed Central

    Vogel, Jörg; Bartels, Verena; Tang, Thean Hock; Churakov, Gennady; Slagter-Jäger, Jacoba G.; Hüttenhofer, Alexander; Wagner, E. Gerhart H.

    2003-01-01

    Recent bioinformatics-aided searches have identified many new small RNAs (sRNAs) in the intergenic regions of the bacterium Escherichia coli. Here, a shot-gun cloning approach (RNomics) was used to generate cDNA libraries of small sized RNAs. Besides many of the known sRNAs, we found new species that were not predicted previously. The present work brings the number of sRNAs in E.coli to 62. Experimental transcription start site mapping showed that some sRNAs were encoded from independent genes, while others were processed from mRNA leaders or trailers, indicative of a parallel transcriptional output generating sRNAs co-expressed with mRNAs. Two of these RNAs (SroA and SroG) consist of known (THI and RFN) riboswitch elements. We also show that two recently identified sRNAs (RyeB and SraC/RyeA) interact, resulting in RNase III-dependent cleavage. To the best of our knowledge, this represents the first case of two non-coding RNAs interacting by a putative antisense mechanism. In addition, intracellular metabolic stabilities of sRNAs were determined, including ones from previous screens. The wide range of half-lives (<2 to >32 min) indicates that sRNAs cannot generally be assumed to be metabolically stable. The experimental characterization of sRNAs analyzed here suggests that the definition of an sRNA is more complex than previously assumed. PMID:14602901

  2. Antagonistic functions between the RNA chaperone Hfq and an sRNA regulate sensitivity to the antibiotic colicin

    PubMed Central

    Salvail, Hubert; Caron, Marie-Pier; Bélanger, Justine; Massé, Eric

    2013-01-01

    The RNA chaperone Hfq is a key regulator of the function of small RNAs (sRNAs). Hfq has been shown to facilitate sRNAs binding to target mRNAs and to directly regulate translation through the action of sRNAs. Here, we present evidence that Hfq acts as the repressor of cirA mRNA translation in the absence of sRNA. Hfq binding to cirA prevents translation initiation, which correlates with cirA mRNA instability. In contrast, RyhB pairing to cirA mRNA promotes changes in RNA structure that displace Hfq, thereby allowing efficient translation as well as mRNA stabilization. Because CirA is a receptor for the antibiotic colicin Ia, in addition to acting as an Fur (Ferric Uptake Regulator)-regulated siderophore transporter, translational activation of cirA mRNA by RyhB promotes colicin sensitivity under conditions of iron starvation. Altogether, these results indicate that Fur and RyhB modulate an unexpected feed-forward loop mechanism related to iron physiology and colicin sensitivity. PMID:24065131

  3. Dual-function sRNA encoded peptide SR1P modulates moonlighting activity of B. subtilis GapA

    PubMed Central

    Gimpel, Matthias; Brantl, Sabine

    2016-01-01

    ABSTRACT SR1 is a dual-function sRNA from B. subtilis that acts as a base-pairing regulatory RNA and as a peptide-encoding mRNA. Both functions of SR1 are highly conserved. Previously, we uncovered that the SR1 encoded peptide SR1P binds the glycolytic enzyme GapA resulting in stabilization of gapA mRNA. Here, we demonstrate that GapA interacts with RNases Y and J1, and this interaction was RNA-independent. About 1% of GapA molecules purified from B. subtilis carry RNase J1 and about 2% RNase Y. In contrast to the GapA/RNase Y interaction, the GapA/RNaseJ1 interaction was stronger in the presence of SR1P. GapA/SR1P-J1/Y displayed in vitro RNase activity on known RNase J1 substrates. Moreover, the RNase J1 substrate SR5 has altered half-lives in a ΔgapA strain and a Δsr1 strain, suggesting in vivo functions of the GapA/SR1P/J1 interaction. Our results demonstrate that the metabolic enzyme GapA moonlights in recruiting RNases while GapA bound SR1P promotes binding of RNase J1 and enhances its activity. PMID:27449348

  4. Exogenous suppression of the symbiotic deficiencies of Rhizobium meliloti exo mutants.

    PubMed Central

    Urzainqui, A; Walker, G C

    1992-01-01

    The acidic exopolysaccharide (EPS I) produced by Rhizobium meliloti during symbiosis with Medicago sativa has been shown to be required for the proper development of nitrogen-fixing nodules. Cloned DNA from the exo region of R. meliloti is shown to stimulate production of the low-molecular-weight form of this exopolysaccharide, and in this report we show that the symbiotic deficiencies of two exo mutants of R. meliloti, the exoA and exoH mutants, can be rescued by the addition of this low-molecular-weight material at the time of inoculation. For exoA and exoH mutants, rescue with a preparation containing low-molecular-weight exopolysaccharide induces the formation of nitrogen-fixing nodules which appear somewhat later and at a reduced efficiency compared with wild-type-induced nodules; however, microscopic analysis of these nodules reveals similar nodule morphology and the presence of large numbers of bacteroids in each. Images PMID:1577707

  5. A 13C-NMR study of exopolysaccharide synthesis in Rhizobium meliloti Su47 strain

    NASA Astrophysics Data System (ADS)

    Tavernier, P.; Portais, J.-C.; Besson, I.; Courtois, J.; Courtois, B.; Barbotin, J.-N.

    1998-02-01

    Metabolic pathways implied in the synthesis of succinoglycan produced by the Su47 strain of R. meliloti were evaluated by 13C-NMR spectroscopy after incubation with [1{-}13C] or [2{-}13C] glucose. The biosynthesis of this polymer by R. meliloti from glucose occurred by a direct polymerisation of the introduced glucose and by the pentose phosphate pathway. Les voies métaboliques impliquées dans la synthèse du succinoglycane produit par la souche Su47 de R. meliloti ont été évaluées par la spectroscopie de RMN du carbone 13 après incubation des cellules avec du [1{-}13C] ou [2{-}13C] glucose. La biosynthèse de ce polymère à partir du glucose se produit par polymérisation directe du glucose et par la voie des pentoses phosphate.

  6. Rhizobium meliloti mutants unable to synthesize anthranilate display a novel symbiotic phenotype.

    PubMed Central

    Barsomian, G D; Urzainqui, A; Lohman, K; Walker, G C

    1992-01-01

    Analyses of Rhizobium meliloti trp auxotrophs suggest that anthranilate biosynthesis by the R. meliloti trpE(G) gene product is necessary during nodule development for establishment of an effective symbiosis. trpE(G) mutants, as well as mutants blocked earlier along this pathway in aromatic amino acid biosynthesis, form nodules on alfalfa that have novel defects. In contrast, R. meliloti trp mutants blocked later in the tryptophan-biosynthetic pathway form normal, pink, nitrogen-fixing nodules. trpE(G) mutants form two types of elongated, defective nodules containing unusually extended invasion zones on alfalfa. One type contains bacteroids in its base and is capable of nitrogen fixation, while the other lacks bacteroids and cannot fix nitrogen. The trpE(G) gene is expressed in normal nodules. Models are discussed to account for these observations, including one in which anthranilate is postulated to act as an in planta siderophore. Images PMID:1320610

  7. Common loci for Agrobacterium tumefaciens and Rhizobium meliloti exopolysaccharide synthesis and their roles in plant interactions

    SciTech Connect

    Cangelosi, G.A.; Hung, L.; Puvanesarajah, V.; Stacey, G.; Ozga, D.A.; Leigh, J.A.; Nester, E.W.

    1987-05-01

    The authors isolated approximately 100 analogous EPS-deficient (Exo) mutants of the closely related plant pathogen Agrobacterium tumefaciens, including strains whose EPS deficiencies were specifically complemented by each of five cloned, R. meliloti exo loci. They also cloned A. tumefaciens genes which complemented EPS defects in three of the R. meliloti Exo mutants. In two of these cases, symbiotic defects were also complemented. All of the A. tumefaciens Exo mutants formed normal crown gall tumors on four different plant hosts, except ExoC mutants, which were nontumorigenic and unable to attach to plant cells in vitro. Like their R. meliloti counterparts, A. tumefaciens Exo mutants were deficient in production of succinoglycan, the major acidic EPS species produced by both genera. A. tumefaciens ExoC mutants also produced extremely low levels of another major EPS, cyclic 1,2-..beta..-D-glucan. This deficiency has been noted previously in a different set of nontumorigenic, attachment-defective A. tumefaciens mutants.

  8. Structure and Biological Roles of Sinorhizobium fredii HH103 Exopolysaccharide

    PubMed Central

    Acosta-Jurado, Sebastián; Soto, María J.; Margaret, Isabel; Crespo-Rivas, Juan C.; Sanjuan, Juan; Temprano, Francisco; Gil-Serrano, Antonio; Ruiz-Sainz, José E.; Vinardell, José M.

    2014-01-01

    Here we report that the structure of the Sinorhizobium fredii HH103 exopolysaccharide (EPS) is composed of glucose, galactose, glucuronic acid, pyruvic acid, in the ratios 5∶2∶2∶1 and is partially acetylated. A S. fredii HH103 exoA mutant (SVQ530), unable to produce EPS, not only forms nitrogen fixing nodules with soybean but also shows increased competitive capacity for nodule occupancy. Mutant SVQ530 is, however, less competitive to nodulate Vigna unguiculata. Biofilm formation was reduced in mutant SVQ530 but increased in an EPS overproducing mutant. Mutant SVQ530 was impaired in surface motility and showed higher osmosensitivity compared to its wild type strain in media containing 50 mM NaCl or 5% (w/v) sucrose. Neither S. fredii HH103 nor 41 other S. fredii strains were recognized by soybean lectin (SBL). S. fredii HH103 mutants affected in exopolysaccharides (EPS), lipopolysaccharides (LPS), cyclic glucans (CG) or capsular polysaccharides (KPS) were not significantly impaired in their soybean-root attachment capacity, suggesting that these surface polysaccharides might not be relevant in early attachment to soybean roots. These results also indicate that the molecular mechanisms involved in S. fredii attachment to soybean roots might be different to those operating in Bradyrhizobium japonicum. PMID:25521500

  9. Rhizobium meliloti chromosomal loci required for suppression of exopolysaccharide mutations by lipopolysaccharide

    SciTech Connect

    Williams, M.N.V.; Brzoska, P.M.; Signer, E.R. ); Hollingsworth, R.I. )

    1990-11-01

    Mutants of alfalfa symbiont Rhizobium meliloti SU47 that fail to make extracellular polysaccharide (exo mutants) induce the formation of nodules that are devoid of bacteria and consequently do not fix nitrogen. This Fix{sup {minus}} phenotype can be suppressed by an R. meliloti Rm41 gene that affects lipopolysaccharide structure. Here we describe mutations preventing suppression that map at two new chromosomal loci, lpsY and lpsX, present in both strains. Two other lps mutations isolated previously from SU47 also prevented suppression.

  10. Complete genome sequence of the broad-host-range strain Sinorhizobium fredii USDA257

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we announce the complete genome sequence of the symbiotic and nitrogen fixing bacterium Sinorhizobium fredii USDA257. The genome shares a high degree of similarity with the closely related broad-host-range strains S. fredii NGR234 and HH103. Most striking, the USDA257 genome encodes for a wealt...

  11. Effect of Plasmid pIJ1008 from Rhizobium leguminosarum on Symbiotic Function of Rhizobium meliloti.

    PubMed

    Bedmar, E J; Brewin, N J; Phillips, D A

    1984-04-01

    Plasmid pIJ1008, which carries determinants for uptake hydrogenase (Hup) activity, was transferred from Rhizobium leguminosarum to Rhizobium meliloti without impairing the capacity of the latter species to form root nodules on alfalfa. The plasmid was still present in rhizobia reisolated from the root nodules of 12 different alfalfa cultivars, but only low levels of Hup activity were detected in alfalfa.

  12. Flavonoids Released Naturally from Alfalfa Seeds Enhance Growth Rate of Rhizobium meliloti1

    PubMed Central

    Hartwig, Ueli A.; Joseph, Cecillia M.; Phillips, Donald A.

    1991-01-01

    Alfalfa (Medicago sativa L.) releases different flavonoids from seeds and roots. Imbibing seeds discharge 3′,4′,5,7-substituted flavonoids; roots exude 5-deoxy molecules. Many, but not all, of these flavonoids induce nodulation (nod) genes in Rhizobium meliloti. The dominant flavonoid released from alfalfa seeds is identified here as quercetin-3-O-galactoside, a molecule that does not induce nod genes. Low concentrations (1-10 micromolar) of this compound, as well as luteolin-7-O-glucoside, another major flavonoid released from germinating seeds, and the aglycones, quercetin and luteolin, increase growth rate of R. meliloti in a defined minimal medium. Tests show that the 5,7-dihydroxyl substitution pattern on those molecules was primarily responsible for the growth effect, thus explaining how 5-deoxy flavonoids in root exudates fail to enhance growth of R. meliloti. Luteolin increases growth by a mechanism separate from its capacity to induce rhizobial nod genes, because it still enhanced growth rate of R. meliloti lacking functional copies of the three known nodD genes. Quercetin and luteolin also increased growth rate of Pseudomonas putida. They had no effect on growth rate of Bacillus subtilis or Agrobacterium tumefaciens, but they slowed growth of two fungal pathogens of alfalfa. These results suggest that alfalfa can create ecochemical zones for controlling soil microbes by releasing structurally different flavonoids from seeds and roots. PMID:16668056

  13. Gene fusion vehicles for the analysis of gene expression in Rhizobium meliloti.

    PubMed Central

    Kahn, M L; Timblin, C R

    1984-01-01

    A set of plasmid cloning vehicles was developed to facilitate the construction of gene or operon fusions in Rhizobium meliloti. The vehicles also contain a broad-host-range replicon and could be introduced into bacteria either by transformation or by transduction, using bacteriophage P2. Insertion of foreign DNA into a unique restriction endonuclease cleavage site promotes the synthesis of either the Escherichia coli lactose operon or the kanamycin phosphotransferase gene from transposon Tn5. Expression of the lactose operon could be detected by observing the color of Rhizobium colonies on medium that contained a chromogenic indicator. We also determined the growth conditions that make it possible to select either for or against the expression of the E. coli lactose operon in R. meliloti. Recombinant plasmids were constructed by inserting MboI restriction fragments of R. meliloti DNA into one of the vehicles, pMK353 . Expression of beta-galactosidase by a number of these recombinants was measured in both R. meliloti and E. coli. PMID:6327625

  14. The Impact of 18 Ancestral and Horizontally-Acquired Regulatory Proteins upon the Transcriptome and sRNA Landscape of Salmonella enterica serovar Typhimurium.

    PubMed

    Colgan, Aoife M; Kröger, Carsten; Diard, Médéric; Hardt, Wolf-Dietrich; Puente, José L; Sivasankaran, Sathesh K; Hokamp, Karsten; Hinton, Jay C D

    2016-08-01

    We know a great deal about the genes used by the model pathogen Salmonella enterica serovar Typhimurium to cause disease, but less about global gene regulation. New tools for studying transcripts at the single nucleotide level now offer an unparalleled opportunity to understand the bacterial transcriptome, and expression of the small RNAs (sRNA) and coding genes responsible for the establishment of infection. Here, we define the transcriptomes of 18 mutants lacking virulence-related global regulatory systems that modulate the expression of the SPI1 and SPI2 Type 3 secretion systems of S. Typhimurium strain 4/74. Using infection-relevant growth conditions, we identified a total of 1257 coding genes that are controlled by one or more regulatory system, including a sub-class of genes that reflect a new level of cross-talk between SPI1 and SPI2. We directly compared the roles played by the major transcriptional regulators in the expression of sRNAs, and discovered that the RpoS (σ38) sigma factor modulates the expression of 23% of sRNAs, many more than other regulatory systems. The impact of the RNA chaperone Hfq upon the steady state levels of 280 sRNA transcripts is described, and we found 13 sRNAs that are co-regulated with SPI1 and SPI2 virulence genes. We report the first example of an sRNA, STnc1480, that is subject to silencing by H-NS and subsequent counter-silencing by PhoP and SlyA. The data for these 18 regulatory systems is now available to the bacterial research community in a user-friendly online resource, SalComRegulon.

  15. The Impact of 18 Ancestral and Horizontally-Acquired Regulatory Proteins upon the Transcriptome and sRNA Landscape of Salmonella enterica serovar Typhimurium

    PubMed Central

    Colgan, Aoife M.; Diard, Médéric; Hardt, Wolf-Dietrich; Puente, José L.; Sivasankaran, Sathesh K.; Hokamp, Karsten; Hinton, Jay C. D.

    2016-01-01

    We know a great deal about the genes used by the model pathogen Salmonella enterica serovar Typhimurium to cause disease, but less about global gene regulation. New tools for studying transcripts at the single nucleotide level now offer an unparalleled opportunity to understand the bacterial transcriptome, and expression of the small RNAs (sRNA) and coding genes responsible for the establishment of infection. Here, we define the transcriptomes of 18 mutants lacking virulence-related global regulatory systems that modulate the expression of the SPI1 and SPI2 Type 3 secretion systems of S. Typhimurium strain 4/74. Using infection-relevant growth conditions, we identified a total of 1257 coding genes that are controlled by one or more regulatory system, including a sub-class of genes that reflect a new level of cross-talk between SPI1 and SPI2. We directly compared the roles played by the major transcriptional regulators in the expression of sRNAs, and discovered that the RpoS (σ38) sigma factor modulates the expression of 23% of sRNAs, many more than other regulatory systems. The impact of the RNA chaperone Hfq upon the steady state levels of 280 sRNA transcripts is described, and we found 13 sRNAs that are co-regulated with SPI1 and SPI2 virulence genes. We report the first example of an sRNA, STnc1480, that is subject to silencing by H-NS and subsequent counter-silencing by PhoP and SlyA. The data for these 18 regulatory systems is now available to the bacterial research community in a user-friendly online resource, SalComRegulon. PMID:27564394

  16. Antagonistic control of the turnover pathway for the global regulatory sRNA CsrB by the CsrA and CsrD proteins

    PubMed Central

    Vakulskas, Christopher A.; Leng, Yuanyuan; Abe, Hazuki; Amaki, Takumi; Okayama, Akihiro; Babitzke, Paul; Suzuki, Kazushi; Romeo, Tony

    2016-01-01

    The widely conserved protein CsrA (carbon storage regulator A) globally regulates bacterial gene expression at the post-transcriptional level. In many species, CsrA activity is governed by untranslated sRNAs, CsrB and CsrC in Escherichia coli, which bind to multiple CsrA dimers, sequestering them from lower affinity mRNA targets. Both the synthesis and turnover of CsrB/C are regulated. Their turnover requires the housekeeping endonuclease RNase E and is activated by the presence of a preferred carbon source via the binding of EIIAGlc of the glucose transport system to the GGDEF-EAL domain protein CsrD. We demonstrate that the CsrB 3′ segment contains the features necessary for CsrD-mediated decay. RNase E cleavage in an unstructured segment located immediately upstream from the intrinsic terminator is necessary for subsequent degradation to occur. CsrA stabilizes CsrB against RNase E cleavage by binding to two canonical sites adjacent to the necessary cleavage site, while CsrD acts by overcoming CsrA-mediated protection. Our genetic, biochemical and structural studies establish a molecular framework for sRNA turnover by the CsrD-RNase E pathway. We propose that CsrD evolution was driven by the selective advantage of decoupling Csr sRNA decay from CsrA binding, connecting it instead to the availability of a preferred carbon source. PMID:27235416

  17. A Novel Mechanism Underlying the Innate Immune Response Induction upon Viral-Dependent Replication of Host Cell mRNA: A Mistake of +sRNA Viruses' Replicases

    PubMed Central

    Delgui, Laura R.; Colombo, María I.

    2017-01-01

    Viruses are lifeless particles designed for setting virus-host interactome assuring a new generation of virions for dissemination. This interactome generates a pressure on host organisms evolving mechanisms to neutralize viral infection, which places the pressure back onto virus, a process known as virus-host cell co-evolution. Positive-single stranded RNA (+sRNA) viruses are an important group of viral agents illustrating this interesting phenomenon. During replication, their genomic +sRNA is employed as template for translation of viral proteins; among them the RNA-dependent RNA polymerase (RdRp) is responsible of viral genome replication originating double-strand RNA molecules (dsRNA) as intermediates, which accumulate representing a potent threat for cellular dsRNA receptors to initiate an antiviral response. A common feature shared by these viruses is their ability to rearrange cellular membranes to serve as platforms for genome replication and assembly of new virions, supporting replication efficiency increase by concentrating critical factors and protecting the viral genome from host anti-viral systems. This review summarizes current knowledge regarding cellular dsRNA receptors and describes prototype viruses developing replication niches inside rearranged membranes. However, for several viral agents it's been observed both, a complex rearrangement of cellular membranes and a strong innate immune antiviral response induction. So, we have included recent data explaining the mechanism by, even though viruses have evolved elegant hideouts, host cells are still able to develop dsRNA receptors-dependent antiviral response. PMID:28164038

  18. A Novel Mechanism Underlying the Innate Immune Response Induction upon Viral-Dependent Replication of Host Cell mRNA: A Mistake of +sRNA Viruses' Replicases.

    PubMed

    Delgui, Laura R; Colombo, María I

    2017-01-01

    Viruses are lifeless particles designed for setting virus-host interactome assuring a new generation of virions for dissemination. This interactome generates a pressure on host organisms evolving mechanisms to neutralize viral infection, which places the pressure back onto virus, a process known as virus-host cell co-evolution. Positive-single stranded RNA (+sRNA) viruses are an important group of viral agents illustrating this interesting phenomenon. During replication, their genomic +sRNA is employed as template for translation of viral proteins; among them the RNA-dependent RNA polymerase (RdRp) is responsible of viral genome replication originating double-strand RNA molecules (dsRNA) as intermediates, which accumulate representing a potent threat for cellular dsRNA receptors to initiate an antiviral response. A common feature shared by these viruses is their ability to rearrange cellular membranes to serve as platforms for genome replication and assembly of new virions, supporting replication efficiency increase by concentrating critical factors and protecting the viral genome from host anti-viral systems. This review summarizes current knowledge regarding cellular dsRNA receptors and describes prototype viruses developing replication niches inside rearranged membranes. However, for several viral agents it's been observed both, a complex rearrangement of cellular membranes and a strong innate immune antiviral response induction. So, we have included recent data explaining the mechanism by, even though viruses have evolved elegant hideouts, host cells are still able to develop dsRNA receptors-dependent antiviral response.

  19. The Conserved Dcw Gene Cluster of R. sphaeroides Is Preceded by an Uncommonly Extended 5' Leader Featuring the sRNA UpsM.

    PubMed

    Weber, Lennart; Thoelken, Clemens; Volk, Marcel; Remes, Bernhard; Lechner, Marcus; Klug, Gabriele

    2016-01-01

    Cell division and cell wall synthesis mechanisms are similarly conserved among bacteria. Consequently some bacterial species have comparable sets of genes organized in the dcw (division and cell wall) gene cluster. Dcw genes, their regulation and their relative order within the cluster are outstandingly conserved among rod shaped and gram negative bacteria to ensure an efficient coordination of growth and division. A well studied representative is the dcw gene cluster of E. coli. The first promoter of the gene cluster (mraZ1p) gives rise to polycistronic transcripts containing a 38 nt long 5' UTR followed by the first gene mraZ. Despite reported conservation we present evidence for a much longer 5' UTR in the gram negative and rod shaped bacterium Rhodobacter sphaeroides and in the family of Rhodobacteraceae. This extended 268 nt long 5' UTR comprises a Rho independent terminator, which in case of termination gives rise to a non-coding RNA (UpsM). This sRNA is conditionally cleaved by RNase E under stress conditions in an Hfq- and very likely target mRNA-dependent manner, implying its function in trans. These results raise the question for the regulatory function of this extended 5' UTR. It might represent the rarely described case of a trans acting sRNA derived from a riboswitch with exclusive presence in the family of Rhodobacteraceae.

  20. Posttranscriptional regulation of PhbR, the transcriptional activator of polyhydroxybutyrate synthesis, by iron and the sRNA ArrF in Azotobacter vinelandii.

    PubMed

    Muriel-Millán, Luis Felipe; Castellanos, Mildred; Hernandez-Eligio, Jose Alberto; Moreno, Soledad; Espín, Guadalupe

    2014-03-01

    Azotobacter vinelandii is a Gram-negative bacterium able to synthesize poly-β-hydroxybutyrate (PHB), a biodegradable plastic of industrial interest. The phbBAC operon encodes the enzymes of PHB synthesis and is activated by the transcriptional regulator PhbR and the sigma factor RpoS. Iron limitation has been previously reported to increase PHB accumulation in A. vinelandii; however, the mechanism by which iron controls PHB synthesis is unknown. Under iron starvation in Escherichia coli, the RyhB sRNA modulates the translation of genes involved in iron homeostasis. ArrF is the RyhB analogue in A. vinelandii and similarly increases in quantity during Fe(2+) depletion. In this study, we evaluate the effect of iron and ArrF on PHB accumulation, and on phbR and phbBAC expression in A. vinelandii strain UW136. Using transcriptional and translational fusions of phbR and phbB with gusA reporter gene, we found that iron limitation increased the expression of phbBAC at the transcriptional level and posttranscriptionally increased the expression of phbR. We also found that the ArrF sRNA is a positive regulator of phbR expression at the posttranscriptional level. Collectively, these data suggest that iron limitation increases the translation of phbR through ArrF.

  1. Box C/D sRNA stem ends act as stabilizing anchors for box C/D di-sRNPs

    PubMed Central

    Yip, W. S. Vincent; Shigematsu, Hideki; Taylor, David W.; Baserga, Susan J.

    2016-01-01

    Ribosomal RNA (rRNA) modifications are essential for ribosome function in all cellular organisms. Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze 2′-O-methylation, one rRNA modification type in Eukarya and Archaea. Negatively stained electron microscopy (EM) models of archaeal box C/D sRNPs have demonstrated the dimeric sRNP (di-sRNP) architecture, which has been corroborated by nuclear magnetic resonance (NMR) studies. Due to limitations of the structural techniques, the orientation of the box C/D sRNAs has remained unclear. Here, we have used cryo-EM to elucidate the sRNA orientation in a M. jannaschii box C/D di-sRNP. The cryo-EM reconstruction suggests a parallel orientation of the two sRNAs. Biochemical and structural analyses of sRNPs assembled with mutant sRNAs indicate a potential interaction between the sRNA stem ends. Our results suggest that the parallel arrangement of the sRNAs juxtaposes their stem ends into close proximity to allow for a stabilizing interaction that helps maintain the di-sRNP architecture. PMID:27342279

  2. The Conserved Dcw Gene Cluster of R. sphaeroides Is Preceded by an Uncommonly Extended 5’ Leader Featuring the sRNA UpsM

    PubMed Central

    Weber, Lennart; Thoelken, Clemens; Volk, Marcel; Remes, Bernhard; Lechner, Marcus; Klug, Gabriele

    2016-01-01

    Cell division and cell wall synthesis mechanisms are similarly conserved among bacteria. Consequently some bacterial species have comparable sets of genes organized in the dcw (division and cell wall) gene cluster. Dcw genes, their regulation and their relative order within the cluster are outstandingly conserved among rod shaped and gram negative bacteria to ensure an efficient coordination of growth and division. A well studied representative is the dcw gene cluster of E. coli. The first promoter of the gene cluster (mraZ1p) gives rise to polycistronic transcripts containing a 38 nt long 5’ UTR followed by the first gene mraZ. Despite reported conservation we present evidence for a much longer 5’ UTR in the gram negative and rod shaped bacterium Rhodobacter sphaeroides and in the family of Rhodobacteraceae. This extended 268 nt long 5’ UTR comprises a Rho independent terminator, which in case of termination gives rise to a non-coding RNA (UpsM). This sRNA is conditionally cleaved by RNase E under stress conditions in an Hfq- and very likely target mRNA-dependent manner, implying its function in trans. These results raise the question for the regulatory function of this extended 5’ UTR. It might represent the rarely described case of a trans acting sRNA derived from a riboswitch with exclusive presence in the family of Rhodobacteraceae. PMID:27802301

  3. Cellular Response of Sinorhizobium sp. Strain A2 during Arsenite Oxidation

    PubMed Central

    Fukushima, Koh; Huang, He; Hamamura, Natsuko

    2015-01-01

    Arsenic (As) is a widely distributed toxic element in the environment and microorganisms have developed resistance mechanisms in order to tolerate it. The cellular response of the chemoorganotrophic arsenite (As[III])-oxidizing α-Proteobacteria, Sinorhizobium sp. strain A2, to arsenic was examined in the present study. Several proteins associated with arsenite oxidase and As resistance were shown to be accumulated in the presence of As(III). A shift in central carbon metabolism from the tricarboxylic acid pathway to glyoxylate pathway was also observed in response to oxidative stress. Our results revealed the strategy of the As(III)-oxidizing Sinorhizobium strain to mitigate arsenic toxicity and oxidative damage by multiple metabolic adaptations. PMID:26477790

  4. Effect of Plasmid pIJ1008 from Rhizobium leguminosarum on Symbiotic Function of Rhizobium meliloti

    PubMed Central

    Bedmar, E. J.; Brewin, N. J.; Phillips, D. A.

    1984-01-01

    Plasmid pIJ1008, which carries determinants for uptake hydrogenase (Hup) activity, was transferred from Rhizobium leguminosarum to Rhizobium meliloti without impairing the capacity of the latter species to form root nodules on alfalfa. The plasmid was still present in rhizobia reisolated from the root nodules of 12 different alfalfa cultivars, but only low levels of Hup activity were detected in alfalfa. PMID:16346527

  5. Definition and evolution of a new symbiovar, sv. rigiduloides, among Ensifer meliloti efficiently nodulating Medicago species.

    PubMed

    Gubry-Rangin, Cécile; Béna, Gilles; Cleyet-Marel, Jean-Claude; Brunel, Brigitte

    2013-10-01

    Understanding functional diversity is one of the main goals of microbial ecology, and definition of new bacterial ecotypes contributes significantly to this objective. Nitrogen-fixing bacteria provide a good system for investigation of ecotypes/biovars/symbiovars, as they present different specific associations with several host plants. This specific symbiosis is reflected both in the nodulation and fixation efficiency and in genetic characters of the bacteria, and several biovars have already been described in the bacterial species Ensifer meliloti. In the present study, the species affiliation of E. meliloti strains trapped from nodules sampled from Medicago rigiduloïdes roots was analyzed using housekeeping recA genes and DNA-DNA hybridization. The genetic diversity of these isolates was also investigated using several symbiotic markers: nodulation (nodA, nodB, nodC) and nitrogen fixation (nifH) genes, as well as the performance of phenotypic tests of nodulation capacity and nitrogen fixation efficiency. These analyses led to the proposal of a new bacterial symbiovar, E. meliloti sv. rigiduloides, that fixed nitrogen efficiently on M. rigiduloïdes, but not on Medicago truncatula. Using phylogenetic reconstructions, including the different described symbiovars, several hypotheses of lateral gene transfer and gene loss are proposed to explain the emergence of symbiovars within this species. The widespread geographical distribution of this symbiovar around the Mediterranean Basin, in contrast to restriction of M. rigiduloïdes to Eastern European countries, suggests that these isolates might also be associated with other plant species. The description of a new symbiovar within E. meliloti confirms the need for accurate bacterial ecological classification, especially for analysis of bacterial populations.

  6. Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti.

    PubMed Central

    Smith, L T; Pocard, J A; Bernard, T; Le Rudulier, D

    1988-01-01

    Intracellular accumulation of glycine betaine has been shown to confer an enhanced level of osmotic stress tolerance in Rhizobium meliloti. In this study, we used a physiological approach to investigate the mechanism by which glycine betaine is accumulated in osmotically stressed R. meliloti. Results from growth experiments, 14C labeling of intermediates, and enzyme activity assays are presented. The results provide evidence for the pathway of biosynthesis and degradation of glycine betaine and the osmotic effects on this pathway. High osmolarity in the medium decreased the activities of the enzymes involved in the degradation of glycine betaine but not those of enzymes that lead to its biosynthesis from choline. Thus, the concentration of the osmoprotectant glycine betaine is increased in stressed cells. This report demonstrates the ability of the osmolarity of the growth medium to regulate the use of glycine betaine as a carbon and nitrogen source or as an osmoprotectant. The mechanisms of osmoregulation in R. meliloti and Escherichia coli are compared. PMID:3290197

  7. Stable Tagging of Rhizobium meliloti with the Firefly Luciferase Gene for Environmental Monitoring

    PubMed Central

    Cebolla, Angel; Ruiz-Berraquero, Francisco; Palomares, Antonio Jose

    1993-01-01

    A system for stable tagging of gram-negative bacteria with the firefly luciferase gene, luc, is described. A previously constructed fusion constitutively expressing luc from the λpR promoter was used. Stable integration into the bacterial genome was achieved by use of mini-Tn5 delivery vectors. The procedure developed was applied for tagging of representative gram-negative bacteria, such as Escherichia coli, Rhizobium meliloti, Pseudomonas putida, and Agrobacterium tumefaciens. The system permitted the detection of tagged R. meliloti in the presence of more than 105 CFU per plate without the use of any selective markers (such as antibiotic resistance genes). No significant differences in growth rates or soil survival were found between the marked strain and the wild-type strain. Studies of bioluminescent R. meliloti also revealed a good correlation between cell biomass and bioluminescence. The firefly luciferase tagging system is an easy, safe, and sensitive method for the detection and enumeration of bacteria in the environment. Images PMID:16349015

  8. Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti

    SciTech Connect

    Smith, L.T.; Pocard, J.A.; Bernard, T.; Le Rudulier, D.

    1988-07-01

    Intracellular accumulation of glycine betaine has been shown to confer an enhanced level of osmotic stress tolerance in Rhizobium meliloti. In this study, the authors used a physiological approach to investigate the mechanism by which glycine betaine is accumulated in osmotically stressed R. meliloti. Results from growth experiments, /sup 14/C labeling of intermediates, and enzyme activity assays are presented. The results provide evidence for the pathway of biosynthesis and degradation of glycine betaine and the osmotic effects on this pathway. High osmolarity in the medium decreased the activities of the enzymes involved in the degradation of glycine betaine but not those of enzymes that lead to its biosynthesis from choline. Thus, the concentration of the osmoprotectant glycine betaine is increased in stressed cells. This report demonstrates the ability of the osmolarity of the growth medium to regulate the use of glycine betaine as a carbon and nitrogen source or as an osmoprotectant. The mechanisms of osmoregulation in R. meliloti and Escherichia coli are compared.

  9. A Medical Research and Evaluation Facility (MREF) and Studies Supporting the Medical Chemical Defense Program

    DTIC Science & Technology

    2005-03-01

    8 2.7 Sinorhizobium meliloti Toxicity Test-New Mexico State University (Las Cruces, N M...problems. NRL continues to analyze chemicals and data will be added as it becomes available. 2.7 Sinorhizobium meliloti Toxicity Test-New Mexico State...University (Las Cruces, NM) This test uses the bacterium Sinorhizobium meliloti , a bacterium that readily reduces a tetrazolium dye. The dye is normally

  10. Sinorhizobium morelense sp. nov., a Leucaena leucocephala-associated bacterium that is highly resistant to multiple antibiotics.

    PubMed

    Wang, En Tao; Tan, Zhi Yuan; Willems, Anne; Fernández-López, Manuel; Reinhold-Hurek, Barbara; Martínez-Romero, Esperanza

    2002-09-01

    Sinorhizobium morelense sp. nov. is described to designate a group of bacteria isolated from root nodules of Leucaena leucocephala. S. morelense shows 98% 16S rRNA gene sequence similarity to some Sinorhizobium species and to Ensifer adhaerens. This novel species is distinguished from other Sinorhizobium species and from E. adhaerens by DNA-DNA hybridization, 165 rRNA gene restriction fragments and sequence and some distinctive phenotypic features. Strains of this species are highly resistant to some antibiotics, such as carbenicillin (1 mg ml(-1)), kanamycin (500 microg ml(-1)) and erythromycin (300 microg ml(-1)). They do not form nodules, but a nodulating strain, Lc57, is closely related to the novel species. Strain Lc04T (= LMG 21331T = CFN E1007T) is designated as the type strain of this novel species.

  11. Genomic characterization of eight Ensifer strains isolated from pristine caves and a whole genome phylogeny of Ensifer (Sinorhizobium).

    PubMed

    Kumar, Heerman Kumar Sandra; Gan, Han Ming; Tan, Mun Hua; Eng, Wilhelm Wei Han; Barton, Hazel A; Hudson, André O; Savka, Michael A

    2017-01-01

    A total of eight Ensifer sp. strains were isolated from two pristine cave environments. One strain was isolated from a cave water pool located in the Wind Cave National Park, South Dakota, USA and the remaining seven strains were isolated from Lechuguilla Cave of Carlsbad Caverns National Park, New Mexico, USA. Whole genome sequencing and comparative genomic analyses of the eight isolates compared to various type strains from the genera Ensifer and Sinorhizobium demonstrates that although members in these genera can be phylogenetically separated into two distinct clades, the percentage of conserved proteins (POCP) between various type strains from Ensifer and Sinorhizobium are consistently higher than 50%, providing strong genomic evidence to support the classification of the genera Ensifer and Sinorhizobium into a single genus.

  12. Genomic characterization of eight Ensifer strains isolated from pristine caves and a whole genome phylogeny of Ensifer (Sinorhizobium)

    PubMed Central

    Kumar, Heerman Kumar Sandra; Gan, Han Ming; Tan, Mun Hua; Eng, Wilhelm Wei Han; Barton, Hazel A.; Hudson, André O.; Savka, Michael A.

    2017-01-01

    A total of eight Ensifer sp. strains were isolated from two pristine cave environments. One strain was isolated from a cave water pool located in the Wind Cave National Park, South Dakota, USA and the remaining seven strains were isolated from Lechuguilla Cave of Carlsbad Caverns National Park, New Mexico, USA. Whole genome sequencing and comparative genomic analyses of the eight isolates compared to various type strains from the genera Ensifer and Sinorhizobium demonstrates that although members in these genera can be phylogenetically separated into two distinct clades, the percentage of conserved proteins (POCP) between various type strains from Ensifer and Sinorhizobium are consistently higher than 50%, providing strong genomic evidence to support the classification of the genera Ensifer and Sinorhizobium into a single genus. PMID:28138345

  13. Ensifer meliloti bv. lancerottense establishes nitrogen-fixing symbiosis with Lotus endemic to the Canary Islands and shows distinctive symbiotic genotypes and host range.

    PubMed

    León-Barrios, Milagros; Lorite, María José; Donate-Correa, Javier; Sanjuán, Juan

    2009-09-01

    Eleven strains were isolated from root nodules of Lotus endemic to the Canary Islands and they belonged to the genus Ensifer, a genus never previously described as a symbiont of Lotus. According to their 16S rRNA and atpD gene sequences, two isolates represented minority genotypes that could belong to previously undescribed Ensifer species, but most of the isolates were classified within the species Ensifer meliloti. These isolates nodulated Lotus lancerottensis, Lotus corniculatus and Lotus japonicus, whereas Lotus tenuis and Lotus uliginosus were more restrictive hosts. However, effective nitrogen fixation only occurred with the endemic L. lancerottensis. The E. meliloti strains did not nodulate Medicago sativa, Medicago laciniata Glycine max or Glycine soja, but induced non-fixing nodules on Phaseolus vulgaris roots. nodC and nifH symbiotic gene phylogenies showed that the E. meliloti symbionts of Lotus markedly diverged from strains of Mesorhizobium loti, the usual symbionts of Lotus, as well as from the three biovars (bv. meliloti, bv. medicaginis, and bv. mediterranense) so far described within E. meliloti. Indeed, the nodC and nifH genes from the E. meliloti isolates from Lotus represented unique symbiotic genotypes. According to their symbiotic gene sequences and host range, the Lotus symbionts would represent a new biovar of E. meliloti for which bv. lancerottense is proposed.

  14. Anoxic growth of Ensifer meliloti 1021 by N2O-reduction, a potential mitigation strategy

    PubMed Central

    Bueno, Emilio; Mania, Daniel; Frostegard, Ǻsa; Bedmar, Eulogio J.; Bakken, Lars R.; Delgado, Maria J.

    2015-01-01

    Denitrification in agricultural soils is a major source of N2O. Legume crops enhance N2O emission by providing N-rich residues, thereby stimulating denitrification, both by free-living denitrifying bacteria and by the symbiont (rhizobium) within the nodules. However, there are limited data concerning N2O production and consumption by endosymbiotic bacteria associated with legume crops. It has been reported that the alfalfa endosymbiont Ensifer meliloti strain 1021, despite possessing and expressing the complete set of denitrification enzymes, is unable to grow via nitrate respiration under anoxic conditions. In the present study, we have demonstrated by using a robotized incubation system that this bacterium is able to grow through anaerobic respiration of N2O to N2. N2O reductase (N2OR) activity was not dependent on the presence of nitrogen oxyanions or NO, thus the expression could be induced by oxygen depletion alone. When incubated at pH 6, E. meliloti was unable to reduce N2O, corroborating previous observations found in both, extracted soil bacteria and Paracoccus denitrificans pure cultures, where expression of functional N2O reductase is difficult at low pH. Furthermore, the presence in the medium of highly reduced C-substrates, such as butyrate, negatively affected N2OR activity. The emission of N2O from soils can be lowered if legumes plants are inoculated with rhizobial strains overexpressing N2O reductase. This study demonstrates that strains like E. meliloti 1021, which do not produce N2O but are able to reduce the N2O emitted by other organisms, could act as even better N2O sinks. PMID:26074913

  15. Anoxic growth of Ensifer meliloti 1021 by N2O-reduction, a potential mitigation strategy.

    PubMed

    Bueno, Emilio; Mania, Daniel; Frostegard, Ǻsa; Bedmar, Eulogio J; Bakken, Lars R; Delgado, Maria J

    2015-01-01

    Denitrification in agricultural soils is a major source of N2O. Legume crops enhance N2O emission by providing N-rich residues, thereby stimulating denitrification, both by free-living denitrifying bacteria and by the symbiont (rhizobium) within the nodules. However, there are limited data concerning N2O production and consumption by endosymbiotic bacteria associated with legume crops. It has been reported that the alfalfa endosymbiont Ensifer meliloti strain 1021, despite possessing and expressing the complete set of denitrification enzymes, is unable to grow via nitrate respiration under anoxic conditions. In the present study, we have demonstrated by using a robotized incubation system that this bacterium is able to grow through anaerobic respiration of N2O to N2. N2O reductase (N2OR) activity was not dependent on the presence of nitrogen oxyanions or NO, thus the expression could be induced by oxygen depletion alone. When incubated at pH 6, E. meliloti was unable to reduce N2O, corroborating previous observations found in both, extracted soil bacteria and Paracoccus denitrificans pure cultures, where expression of functional N2O reductase is difficult at low pH. Furthermore, the presence in the medium of highly reduced C-substrates, such as butyrate, negatively affected N2OR activity. The emission of N2O from soils can be lowered if legumes plants are inoculated with rhizobial strains overexpressing N2O reductase. This study demonstrates that strains like E. meliloti 1021, which do not produce N2O but are able to reduce the N2O emitted by other organisms, could act as even better N2O sinks.

  16. Isolation and characterization of a gene coding for a novel aspartate aminotransferase from Rhizobium meliloti.

    PubMed Central

    Alfano, J R; Kahn, M L

    1993-01-01

    Aspartate aminotransferase (AAT) is an important enzyme in aspartate catabolism and biosynthesis and, by converting tricarboxylic acid cycle intermediates to amino acids, AAT is also significant in linking carbon metabolism with nitrogen metabolism. To examine the role of AAT in symbiotic nitrogen fixation further, plasmids encoding three different aminotransferases from Rhizobium meliloti 104A14 were isolated by complementation of an Escherichia coli auxotroph that lacks three aminotransferases. pJA10 contained a gene, aatB, that coded for a previously undescribed AAT, AatB. pJA30 encoded an aromatic aminotransferase, TatA, that had significant AAT activity, and pJA20 encoded a branched-chain aminotransferase designated BatA. Genes for the latter two enzymes, tatA and batA, were previously isolated from R. meliloti. aatB is distinct from but hybridizes to aatA, which codes for AatA, a protein required for symbiotic nitrogen fixation. The DNA sequence of aatB contained an open reading frame that could encode a protein 410 amino acids long and with a monomer molecular mass of 45,100 Da. The amino acid sequence of aatB is unusual, and AatB appears to be a member of a newly described class of AATs. AatB expressed in E. coli has a Km for aspartate of 5.3 mM and a Km for 2-oxoglutarate of 0.87 mM. Its pH optimum is between 8.0 and 8.5. Mutations were constructed in aatB and tatA and transferred to the genome of R. meliloti 104A14. Both mutants were prototrophs and were able to carry out symbiotic nitrogen fixation. Images PMID:8320232

  17. Genetic structure of natural populations of the nitrogen-fixing bacterium Rhizobium meliloti.

    PubMed Central

    Eardly, B D; Materon, L A; Smith, N H; Johnson, D A; Rumbaugh, M D; Selander, R K

    1990-01-01

    The genetic structure of populations of the symbiotic nitrogen-fixing soil bacterium Rhizobium meliloti was examined by analysis of electrophoretically demonstrable allelic variation in 14 metabolic, presumably chromosomal, enzyme genes. A total of 232 strains were examined, most of which were isolated from southwest Asia, where there is an unsurpassed number of indigenous host species for R. meliloti. The collection consisted of 115 isolates recovered from annual species of Medicago in Syria, Turkey, and Jordan; 85 isolates cultured from two perennial species of Medicago (M. sativa [alfalfa] and M. falcata) in northern Pakistan and Nepal; and 32 isolates collected at various localities in North and South America, Europe, South Africa, New Zealand, and Australia, largely from M. sativa. Fifty distinctive multilocus genotypes (electrophoretic types [ETs]) were identified, and cluster analysis revealed two primary phylogenetic divisions separated at a genetic distance of 0.83. By the criterion of genetic differentiation conventionally applied in defining species limits among members of the family Enterobacteriaceae and certain other bacteria, the two primary divisions of R. meliloti represent distinct evolutionary species. Division A included 35 ETs represented by 209 strains from the eastern Mediterranean basin, northern Pakistan, Nepal, and various other localities worldwide. This division contained the nine commercial alfalfa inoculant strains examined. Division B included 15 ETs represented by 23 isolates, 21 of which were isolated from annual medic species growing in previously uninoculated soils in the eastern Mediterranean basin. The two remaining strains in division B, both representing the same ET, were isolated in the United States and Australia.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:1689982

  18. A nopA deletion mutant of Sinorhizobium fredii USDA257, a soybean symbiont, is impaired in nodulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sinorhizobium fredii USDA257 employs type III secretion system (T3SS) to deliver effector proteins into the host cells through filamentous surface appendages, called pili. The NopA protein is the major component of USDA257 pili. The promoter region of USDA257 nopA posses a well conserved tts box. Se...

  19. Characterization of NopA, A Major Component of the Surface Appendages Elaborated by Sinorhizobium fredii USDA257

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sinorhizobium fredii USDA257 is a Gram-negative bacterium that forms nitrogen-fixing nodules on diverse legumes, including soybeans. In spite of its broad host-range, USDA257 exhibits remarkable soybean cultivar specificity. USDA257 forms nitrogen-fixing nodules on primitive soybean cultivars such a...

  20. Genome sequence of the Medicago-nodulating Ensifer meliloti commercial inoculant strain RRI128

    PubMed Central

    Reeve, Wayne; Ballard, Ross; Drew, Elizabeth; Tian, Rui; Bräu, Lambert; Goodwin, Lynne; Huntemann, Marcel; Han, James; Tatiparthi, Reddy; Chen, Amy; Mavrommatis, Konstantinos; Markowitz, Victor; Palaniappan, Krishna; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; Kyrpides, Nikos

    2014-01-01

    Ensifer meliloti strain RRI128 is an aerobic, motile, Gram-negative, non-spore-forming rod. RRI128 was isolated from a nodule recovered from the roots of barrel medic (Medicago truncatula) grown in the greenhouse and inoculated with soil collected from Victoria, Australia. The strain is used in commercial inoculants in Australia. RRI128 nodulates and forms an effective symbiosis with a diverse range of lucerne cultivars (Medicago sativa) and several species of annual medic (M. truncatula, Medicago littoralis and Medicago tornata), but forms an ineffective symbiosis with Medicago polymorpha. Here we describe the features of E. meliloti strain RRI128, together with genome sequence information and annotation. The 6,900,273 bp draft genome is arranged into 156 scaffolds of 157 contigs, contains 6,683 protein-coding genes and 87 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project. PMID:25197447

  1. Genome sequence of the Medicago-nodulating Ensifer meliloti commercial inoculant strain RRI128.

    PubMed

    Reeve, Wayne; Ballard, Ross; Drew, Elizabeth; Tian, Rui; Bräu, Lambert; Goodwin, Lynne; Huntemann, Marcel; Han, James; Tatiparthi, Reddy; Chen, Amy; Mavrommatis, Konstantinos; Markowitz, Victor; Palaniappan, Krishna; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; Kyrpides, Nikos

    2014-06-15

    Ensifer meliloti strain RRI128 is an aerobic, motile, Gram-negative, non-spore-forming rod. RRI128 was isolated from a nodule recovered from the roots of barrel medic (Medicago truncatula) grown in the greenhouse and inoculated with soil collected from Victoria, Australia. The strain is used in commercial inoculants in Australia. RRI128 nodulates and forms an effective symbiosis with a diverse range of lucerne cultivars (Medicago sativa) and several species of annual medic (M. truncatula, Medicago littoralis and Medicago tornata), but forms an ineffective symbiosis with Medicago polymorpha. Here we describe the features of E. meliloti strain RRI128, together with genome sequence information and annotation. The 6,900,273 bp draft genome is arranged into 156 scaffolds of 157 contigs, contains 6,683 protein-coding genes and 87 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

  2. Rhizobium meliloti produces a family of sulfated lipooligosaccharides exhibiting different degrees of plant host specificity.

    PubMed Central

    Schultze, M; Quiclet-Sire, B; Kondorosi, E; Virelizer, H; Glushka, J N; Endre, G; Géro, S D; Kondorosi, A

    1992-01-01

    We have shown that a Rhizobium meliloti strain overexpressing nodulation genes excreted high amounts of a family of N-acylated and 6-O-sulfated N-acetyl-beta-1,4-D-glucosamine penta-, tetra-, and trisaccharide Nod factors. Either a C(16:2) or a C(16:3) acyl chain is attached to the nonreducing end subunit, whereas the sulfate group is bound to the reducing glucosamine. One of the tetrasaccharides is identical to the previously described NodRm-1 factor. The two pentasaccharides as well as NodRm-1 were purified and tested for biological activity. In the root hair deformation assay the pentasaccharides show similar activities on the host plants Medicago sativa and Melilotus albus and on the non-host plant Vicia sativa at a dilution of up to 0.01-0.001 microM, in contrast to NodRm-1, which displays a much higher specific activity for Medicago and Melilotus than for Vicia. The active concentration range of the pentasaccharides is more narrow on Medicago than on Melilotus and Vicia. In addition to root hair deformation, the different Nod factors were shown to induce nodule formation on M. sativa. We suggest that the production of a series of active signal molecules with different degrees of specificity might be important in controlling the symbiosis of R. meliloti with several different host plants or under different environmental conditions. Images PMID:1729688

  3. Rhizobium meliloti exopolysaccharide mutants elicit feedback regulation of nodule formation in alfalfa

    SciTech Connect

    Caetano-Anolles, G.; Lagares, A.; Bauer, W.D. )

    1990-02-01

    Nodule formation by wild-type Rhizobium meliloti is strongly suppressed in younger parts of alfalfa (Medicago sativum L.) root systems as a feedback response to development of the first nodules. Mutants of R. meliloti deficient in exopolysaccharide synthesis can induce the formation of organized nodular structures (pseudonodules) on alfalfa roots but are defective in their ability to invade and multiply within host tissues. The formation of empty pseudonodules by exo mutants was found to elicit a feedback suppression of nodule formation similar to that elicited by the wild-type bacteria. Inoculation of an exo mutant onto one side of a split-root system 24 hours before inoculation of the second side with wild-type cells suppressed wild-type nodule formation on the second side in proportion to the extent of pseudonodule formation by the exo mutants. The formation of pseudonodules is thus sufficient to elicit systemic feedback control of nodulation in the host root system: infection thread development and internal proliferation of the bacteria are not required for elicitation of feedback. Pseudonodule formation by the exo mutants was found to be strongly suppressed in split-root systems by prior inoculation on the opposite side with the wild type. Thus, feedback control elicited by the wild-type inhibits Rhizobium-induced redifferentiation of host root cells.

  4. A second exopolysaccharide of Rhizobium meliloti strain SU47 that can function in root nodule invasion

    SciTech Connect

    Zhan, Hangjun; Levery, S.B.; Lee, C.C.; Leigh, J.A. )

    1989-05-01

    Rhizobium meliloti strain SU47 produces the calcofluor-binding exopolysaccharide, succinoglycan, that is required for alfalfa root nodule invasion. Strains derived from R. meliloti SU47 secreted an acidic exopolysaccharide, EPSb, that replaced succinoglycan in nodule invasion. EPSb, which has not formerly been identified among the Rhizobiaceae, consisted of the repeating unit 4,6-O-(1-carboxyethylidene)-{alpha}-D-Galp1{yields}3(X-O-Ac)-{beta}-D-Glcp1{yields}3. EPSb synthesis occurred either in strains containing a mutation in a locus designated mucR or in strains with a recombinant cosmid pMuc. mucR mapped slightly counterclockwise from pyr49 on the chromosome, while pMuc contained genes mapping to the megaplasmid pRmeSU47b. In exoA, -F, and -H mutants, which are deficient in normal succinoglycan secretion and nodule invasion, a transposon Tn5 insertion in mucR or the presence of pMuc resulted in EPSb secretion and a restoration of nodule invasion on Medicago sativa and Melilotus alba. Mutants in exoB and exoC were incapable of succinoglycan and EPSb secretion as well as nodule invasion. A mutant that secreted succinoglycan but was incapable of EPSb secretion invaded nodules normally.

  5. Regulation of glutamine synthetase II activity in Rhizobium meliloti 104A14.

    PubMed Central

    Shatters, R G; Somerville, J E; Kahn, M L

    1989-01-01

    Most rhizobia contain two glutamine synthetase (GS) enzymes: GSI, encoded by glnA, and GSII, encoded by glnII. We have found that WSU414, a Rhizobium meliloti 104A14 glutamine auxotroph derived from a glnA parental strain, is an ntrA mutant. The R. meliloti glnII promoter region contains DNA sequences similar to those found in front of other genes that require ntrA for their transcription. No GSII was found in the glnA ntrA mutant, and when a translational fusion of glnII to the Escherichia coli lacZ gene was introduced into WSU414, no beta-galactosidase was expressed. These results indicate that ntrA is required for glnII expression. The ntrA mutation did not prevent the expression of GSI. In free-living culture, the level of GSII and of the glnII-lacZ fusion protein was regulated by altering transcription in response to available nitrogen. No GSII protein was detected in alfalfa, pea, or soybean nodules when anti-GSII-specific antiserum was used. Images PMID:2570059

  6. Cryptic plasmid and rifampin resistance in Rhizobium meliloti influencing nodulation competitiveness.

    PubMed Central

    Bromfield, E S; Lewis, D M; Barran, L R

    1985-01-01

    An assessment was made of the relative contributions of a spontaneous mutation to rifampin resistance and a cryptic plasmid, pTA2, to competitive nodulation of Medicago sativa by a strain of Rhizobium meliloti. This was facilitated by use of rifampin-resistant derivatives of this strain in which pTA2 was originally present, cured, or reintroduced. Both curing of pTA2 and spontaneous mutation to rifampin resistance significantly influenced nodulating competitiveness, but the effect of rifampin resistance was greater and such that the contribution of pTA2 was evident only in cases in which paired competitors had the common rifampin resistance background. The data suggest that rifampin-resistant derivatives contain an altered RNA polymerase insensitive to the action of rifampin. All R. meliloti derivatives had symbiotic characteristics and phage susceptibility patterns similar to those of the wild type. Plasmid pTA2 transfer or other genetic interchange was not detected in nodules of M. sativa inoculated with paired competitors. Images PMID:2995316

  7. Family of glycosyl transferases needed for the synthesis of succinoglycan by Rhizobium meliloti.

    PubMed Central

    Glucksmann, M A; Reuber, T L; Walker, G C

    1993-01-01

    Rhizobium meliloti produces an acidic exopolysaccharide, termed succinoglycan or EPS I, that is important for invasion of the nodules that it elicits on its host, Medicago sativa. Succinoglycan is a high-molecular-weight polymer composed of repeating octasaccharide subunits. These subunits are synthesized on membrane-bound isoprenoid lipid carriers, beginning with a galactose residue followed by seven glucose residues, and modified by the addition of acetate, succinate, and pyruvate. Biochemical characterizations of lipid-linked succinoglycan biosynthetic intermediates from previously identified exo mutant strains have been carried out in our laboratory (T. L. Reuber and G. C. Walker, Cell 74:269-280, 1993) to determine where each mutation blocks the biosynthetic pathway. We have carried out a fine structure genetic analysis of a portion of the cluster of exo genes present on the second symbiotic megaplasmid of R. meliloti and have identified several new genes. In addition, the DNA sequence of 16 kb of the exo cluster was determined and the genetic map was correlated with the DNA sequence. In this paper we present the sequence of a family of glycosyl transferases required for the synthesis of succinoglycan and discuss their functions. PMID:8226645

  8. MicL, a new σE-dependent sRNA, combats envelope stress by repressing synthesis of Lpp, the major outer membrane lipoprotein

    PubMed Central

    Guo, Monica S.; Updegrove, Taylor B.; Gogol, Emily B.; Shabalina, Svetlana A.; Gross, Carol A.; Storz, Gisela

    2014-01-01

    In enteric bacteria, the transcription factor σE maintains membrane homeostasis by inducing synthesis of proteins involved in membrane repair and two small regulatory RNAs (sRNAs) that down-regulate synthesis of abundant membrane porins. Here, we describe the discovery of a third σE-dependent sRNA, MicL (mRNA-interfering complementary RNA regulator of Lpp), transcribed from a promoter located within the coding sequence of the cutC gene. MicL is synthesized as a 308-nucleotide (nt) primary transcript that is processed to an 80-nt form. Both forms possess features typical of Hfq-binding sRNAs but surprisingly target only a single mRNA, which encodes the outer membrane lipoprotein Lpp, the most abundant protein of the cell. We show that the copper sensitivity phenotype previously ascribed to inactivation of the cutC gene is actually derived from the loss of MicL and elevated Lpp levels. This observation raises the possibility that other phenotypes currently attributed to protein defects are due to deficiencies in unappreciated regulatory RNAs. We also report that σE activity is sensitive to Lpp abundance and that MicL and Lpp comprise a new σE regulatory loop that opposes membrane stress. Together MicA, RybB, and MicL allow σE to repress the synthesis of all abundant outer membrane proteins in response to stress. PMID:25030700

  9. Mitochondrial COI and 16sRNA evidence for a single species hypothesis of E. vitis, J. formosana and E. onukii in East Asia.

    PubMed

    Fu, Jian-Yu; Han, Bao-Yu; Xiao, Qiang

    2014-01-01

    Tea green leafhopper is one of the most damaging tea pests in main tea production regions of East Asia. For lack of recognized morphological characters, the dominant species of tea green leafhoppers in Mainland China, Taiwan and Japan have always been named as Empoasca vitis Göthe, Jacobiasca formosana Paoli and Empoasca onukii MATSUDA, respectively. Furthermore, nothing is known about the genetic relationships among them. In this study, we collected six populations from Mainland China, four populations from Japan and one population from Taiwan, and examined the genetic distances in the COI and 16sRNA regions of mtDNA among them. The results showed that the genetic distances based on single gene or the combined sequences among eleven leafhopper populations were 0.3-1.2%, which were all less than the species boundary of 2%. Moreover, there were at least two haplotypes shared by two distinct populations from different regions. The phylogenetic analysis based on single gene or combined sets also supported that tea green leafhoppers from Mainland China, Taiwan and Japan were closely related to each other, and there were at least two specimens from different regions clustered ahead of those from the same region. Therefore, we propose that the view of recognizing the dominant species of tea green leafhoppers in three adjacent tea production regions of East Asia as different species is unreliable or questionable and suggest that they are a single species.

  10. Mitochondrial COI and 16sRNA Evidence for a Single Species Hypothesis of E. vitis, J. formosana and E. onukii in East Asia

    PubMed Central

    Fu, Jian-Yu; Han, Bao-Yu; Xiao, Qiang

    2014-01-01

    Tea green leafhopper is one of the most damaging tea pests in main tea production regions of East Asia. For lack of recognized morphological characters, the dominant species of tea green leafhoppers in Mainland China, Taiwan and Japan have always been named as Empoasca vitis Göthe, Jacobiasca formosana Paoli and Empoasca onukii MATSUDA, respectively. Furthermore, nothing is known about the genetic relationships among them. In this study, we collected six populations from Mainland China, four populations from Japan and one population from Taiwan, and examined the genetic distances in the COI and 16sRNA regions of mtDNA among them. The results showed that the genetic distances based on single gene or the combined sequences among eleven leafhopper populations were 0.3–1.2%, which were all less than the species boundary of 2%. Moreover, there were at least two haplotypes shared by two distinct populations from different regions. The phylogenetic analysis based on single gene or combined sets also supported that tea green leafhoppers from Mainland China, Taiwan and Japan were closely related to each other, and there were at least two specimens from different regions clustered ahead of those from the same region. Therefore, we propose that the view of recognizing the dominant species of tea green leafhoppers in three adjacent tea production regions of East Asia as different species is unreliable or questionable and suggest that they are a single species. PMID:25506929

  11. The sRNA NsiR4 is involved in nitrogen assimilation control in cyanobacteria by targeting glutamine synthetase inactivating factor IF7.

    PubMed

    Klähn, Stephan; Schaal, Christoph; Georg, Jens; Baumgartner, Desirée; Knippen, Gernot; Hagemann, Martin; Muro-Pastor, Alicia M; Hess, Wolfgang R

    2015-11-10

    Glutamine synthetase (GS), a key enzyme in biological nitrogen assimilation, is regulated in multiple ways in response to varying nitrogen sources and levels. Here we show a small regulatory RNA, NsiR4 (nitrogen stress-induced RNA 4), which plays an important role in the regulation of GS in cyanobacteria. NsiR4 expression in the unicellular Synechocystis sp. PCC 6803 and in the filamentous, nitrogen-fixing Anabaena sp. PCC 7120 is stimulated through nitrogen limitation via NtcA, the global transcriptional regulator of genes involved in nitrogen metabolism. NsiR4 is widely conserved throughout the cyanobacterial phylum, suggesting a conserved function. In silico target prediction, transcriptome profiling on pulse overexpression, and site-directed mutagenesis experiments using a heterologous reporter system showed that NsiR4 interacts with the 5'UTR of gifA mRNA, which encodes glutamine synthetase inactivating factor (IF)7. In Synechocystis, we observed an inverse relationship between the levels of NsiR4 and the accumulation of IF7 in vivo. This NsiR4-dependent modulation of gifA (IF7) mRNA accumulation influenced the glutamine pool and thus [Formula: see text] assimilation via GS. As a second target, we identified ssr1528, a hitherto uncharacterized nitrogen-regulated gene. Competition experiments between WT and an ΔnsiR4 KO mutant showed that the lack of NsiR4 led to decreased acclimation capabilities of Synechocystis toward oscillating nitrogen levels. These results suggest a role for NsiR4 in the regulation of nitrogen metabolism in cyanobacteria, especially for the adaptation to rapid changes in available nitrogen sources and concentrations. NsiR4 is, to our knowledge, the first identified bacterial sRNA regulating the primary assimilation of a macronutrient.

  12. Ensifer meliloti is the preferred symbiont of Medicago arborea in eastern Morocco soils.

    PubMed

    Guerrouj, Kamal; Pérez-Valera, Eduardo; Abdelmoumen, Hanaa; Bedmar, Eulogio J; Missbah El Idrissi, Mustapha

    2013-08-01

    Polyphasic characterization of 61 bacteria isolated from root nodules of Medicago arborea (Medic tree) plants growing in 4 arid soils of the arid eastern area of Morocco was studied. All the isolates characterized were fast growers. The phenotypic, symbiotic, and cultural characteristics analyzed allowed the description of a broad physiological diversity among the isolates. The results obtained suggest that the phenotype of these rhizobia might have evolved to adapt to the local conditions. The genetic characterization consisted of an analysis of the rep-PCR (repetitive extragenic palindromic polymerase chain reaction) fingerprints and a PCR-based RFLP (restriction fragment length polymorphism) of the 16S rDNA patterns. The diversity of the isolates was investigated by rep-PCR, giving a similarity of 62%, delineated into 3 clusters, 4 groups, and 6 subclusters. This wide diversity was also observed by a phenotypic approach, where the carbohydrate assimilation test was the most discriminating. The results show a relationship between rep-PCR fingerprinting and sugar assimilation, which are complementary in diversity investigation. The nearly complete 16S rRNA gene sequence from representative strains of each soil showed they are closely related to members of the genus Ensifer of the family Rhizobiaceae within the Alphaproteobacteria and shows the highest similitude values (99.93%/100%) with Ensifer meliloti LMG 6133(T) (X67222). Sequencing of the symbiotic nodC gene from 7 representative strains revealed they had 94.89% identity with the nodC sequence of the type strain E. meliloti LMG 6133(T) (EF428922). Therefore, the 61 M. arborea isolates from the 4 different soils have the same phylogenetic affiliation, which proves the restricted host specificity among M. arborea species.

  13. IMMUNE DIFFUSION ANALYSIS OF THE EXTRACELLULAR SOLUBLE ANTIGENS OF TWO STRAINS OF RHIZOBIUM MELILOTI

    PubMed Central

    Dudman, W. F.

    1964-01-01

    Dudman, W. F. (Commonwealth Scientific and Industrial Research Organization, Canberra, Australia). Immune diffusion analysis of the extracellular soluble antigens of two strains of Rhizobium meliloti. J. Bacteriol. 88:782–794. 1964.—Immune diffusion techniques applied to cultures of two strains of Rhizobium meliloti grown in liquid defined medium showed the presence of multiple antigens. Improved resolution of precipitin patterns was obtained with concentrated antigens separated from the cultures as the extracellular soluble fraction or as suspensions of washed cells. The extracellular fraction contained the same diffusible antigens as the washed cells, but additional antigens were found in the cells after ultrasonic disruption. The extracellular soluble antigens were shown by analysis to contain polysaccharide and protein components. In immune diffusion systems, they gave rise to three groups of precipitin bands, two of which were characterized as polysaccharides by their susceptibility to periodate oxidation, and the third as protein by its lability to heat. All the extracellular antigens of both strains were shared except a fast-diffusing polysaccharide, which was specific for each strain. Despite the sharing of all but one of their antigens, cells of these strains showed only a low degree of cross-agglutination, suggesting that their surfaces are dominated by the specific polysaccharide. No differences could be found in the composition of the polysaccharides in the unfractionated extracellular antigens of the two strains, the main components of which were glucose (66%) and galactose (12%) in the presence of several other unidentified sugars in smaller amounts. The pattern of precipitin bands produced in immune diffusion systems by the extracellular soluble fraction could be changed by altering the cultural conditions. Images PMID:14208519

  14. Integration Host Factor Is Required for RpoN-Dependent hrpL Gene Expression and Controls Motility by Positively Regulating rsmB sRNA in Erwinia amylovora.

    PubMed

    Lee, Jae Hoon; Zhao, Youfu

    2016-01-01

    Erwinia amylovora requires an hrp-type III secretion system (T3SS) to cause disease. It has been reported that HrpL, the master regulator of T3SS, is transcriptionally regulated by sigma factor 54 (RpoN), YhbH, and HrpS. In this study, the role of integration host factor (IHF) in regulating hrpL and T3SS gene expression was investigated. IHF is a nucleoid-associated protein that regulates gene expression by influencing nucleoid structure and DNA bending. Our results showed that both ihfA and ihfB mutants of E. amylovora did not induce necrotic lesions on pear fruits. Growth of both mutants was greatly reduced, and expression of the hrpL and T3SS genes was significantly down-regulated as compared with those of the wild type. In addition, expression of the ihfA, but not the ihfB gene, was under auto-suppression by IHF. Furthermore, both ihfA and ihfB mutants were hypermotile, due to significantly reduced expression of small RNA (sRNA) rsmB. Electrophoresis mobility shift assay further confirmed that IHF binds to the promoters of the hrpL and ihfA genes, as well as the rsmB sRNA gene. These results indicate that IHF is required for RpoN-dependent hrpL gene expression and virulence, and controls motility by positively regulating the rsmB sRNA in E. amylovora.

  15. Genome sequence of Ensifer meliloti strain WSM1022; a highly effective microsymbiont of the model legume Medicago truncatula A17

    PubMed Central

    Terpolilli, Jason; Hill, Yvette; Tian, Rui; Howieson, John; Bräu, Lambert; Goodwin, Lynne; Han, James; Liolios, Konstantinos; Huntemann, Marcel; Pati, Amrita; Woyke, Tanja; Mavromatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Reeve, Wayne

    2013-01-01

    Ensifer meliloti WSM1022 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago. WSM1022 was isolated in 1987 from a nodule recovered from the roots of the annual Medicago orbicularis growing on the Cyclades Island of Naxos in Greece. WSM1022 is highly effective at fixing nitrogen with M. truncatula and other annual species such as M. tornata and M. littoralis and is also highly effective with the perennial M. sativa (alfalfa or lucerne). In common with other characterized E. meliloti strains, WSM1022 will nodulate but fixes poorly with M. polymorpha and M. sphaerocarpos and does not nodulate M. murex. Here we describe the features of E. meliloti WSM1022, together with genome sequence information and its annotation. The 6,649,661 bp high-quality-draft genome is arranged into 121 scaffolds of 125 contigs containing 6,323 protein-coding genes and 75 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project. PMID:24976888

  16. Genome sequence of Ensifer meliloti strain WSM1022; a highly effective microsymbiont of the model legume Medicago truncatula A17.

    PubMed

    Terpolilli, Jason; Hill, Yvette; Tian, Rui; Howieson, John; Bräu, Lambert; Goodwin, Lynne; Han, James; Liolios, Konstantinos; Huntemann, Marcel; Pati, Amrita; Woyke, Tanja; Mavromatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Reeve, Wayne

    2013-12-20

    Ensifer meliloti WSM1022 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago. WSM1022 was isolated in 1987 from a nodule recovered from the roots of the annual Medicago orbicularis growing on the Cyclades Island of Naxos in Greece. WSM1022 is highly effective at fixing nitrogen with M. truncatula and other annual species such as M. tornata and M. littoralis and is also highly effective with the perennial M. sativa (alfalfa or lucerne). In common with other characterized E. meliloti strains, WSM1022 will nodulate but fixes poorly with M. polymorpha and M. sphaerocarpos and does not nodulate M. murex. Here we describe the features of E. meliloti WSM1022, together with genome sequence information and its annotation. The 6,649,661 bp high-quality-draft genome is arranged into 121 scaffolds of 125 contigs containing 6,323 protein-coding genes and 75 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

  17. Genetics and biochemistry of the Rhizobium meliloti acidic extracellular heteropolysaccharide and its role in nodulation: Annual report for the period 1 June 1986-31 May 1987

    SciTech Connect

    Leigh, J.A.

    1987-01-01

    This document briefly describes studies of the genetics and biochemistry of Rhizobium meliloti exopolysaccharides and their role in alfalfa root nodule formation. Previously the author demonstrated that a large set of mutants (Exo/sup -/) of R. meliloti failed to secrete succinoglycan, an acidic exopolysaccharide of known structure. These mutations belonged to five different loci in the R. meliloti genome. All of the mutants shared the inability to enter alfalfa root nodules, providing strong correlative evidence that succinoglycan is involved in a certain phase in nodule development. In the past year, this research group characterized mutants that were previously designated ''haloless'' mutants. These mutants were thought to be unable to degrade the secreted polysaccharide into diffusible fragments that ordinarily form a halo of binding of a polysaccharide specific dye surrounding a colony of growth. The research team discovered a second acidic exopolysaccharide that is synthesized by certain mutant derivatives of our strain of R. meliloti. This polysaccharide appeared quite distinct from succinoglycan by NMR spectroscopy and appeared to replace succinoglycan in a Tn5-induced mutant called ''halo-clearing'', and in wild type strains containing a certain cosmid from the R. meliloti clone bank. 2 figs.

  18. Influence of Location, Host Cultivar, and Inoculation on the Composition of Naturalized Populations of Rhizobium meliloti in Medicago sativa Nodules †

    PubMed Central

    Bromfield, E. S. P.; Sinha, Indu B.; Wolynetz, M. S.

    1986-01-01

    A phage typing system was used to evaluate the composition of indigenous populations of Rhizobium meliloti inhabiting nodules of Medicago sativa cultivars grown with and without inoculation at two field sites during 1983 and 1984. Soil at both locations contained established populations of R. meliloti at planting. Analysis of 1,920 nodule isolates revealed 55 unique phage types of indigenous R. meliloti at one site and 65 indigenous types at the other location. The distributions of phage types differed markedly between locations. At one site, the nodule population was dominated by two phage types; seven others occurred consistently but at lower frequency, and the remainder were encountered infrequently. No indigenous types predominated at the other location, although nine occurred more frequently than the remaining types. Indigenous R. meliloti predominated in nodules from inoculated plots at both sites, with inoculant recovery varying between 10 and 38% in each of two years. The frequency of occurrence of particular phage types at one location was significantly influenced by both M. sativa cultivar and inoculation. At this location, the interaction of cultivar and inoculation on the incidence of phage types suggests that the presence of an inoculant strain differentially affected nodule occupancy of M. sativa cultivars by members of the indigenous R. meliloti population. At both sites, the frequency of specific phage types differed between years. The data emphasize the importance of understanding the ecology and characteristics of indigenous Rhizobium populations as a prerequisite for elucidating problems of inoculant establishment and persistence in competitive situations. Images PMID:16347054

  19. Sinorhizobium meliloti strains TII7 and A5 by Multilocus Sequence Typing (MLST) have chromsomes identical with Rm1021 and form an effective and ineffective symbiosis with Medicago truncatula line Jemalong A17, respectively

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The strains TII7 and A5 formed an effective and ineffective symbiosis with Medicago truncatula Jemalong A17, respectively. Both were shown to have identical chromsomes with strains Rm1021 and RCR2011 using a Multilocus Sequence Typing method. The 2260 bp segments of DNA stretching from the 3’ end ...

  20. Expression of the Apyrase-Like APY1 Genes in Roots of Medicago truncatula Is Induced Rapidly and Transiently by Stress and Not by Sinorhizobium meliloti or Nod Factors1

    PubMed Central

    Navarro-Gochicoa, Maria-Teresa; Camut, Sylvie; Niebel, Andreas; Cullimore, Julie V.

    2003-01-01

    The model legume Medicago truncatula contains at least six apyrase-like genes, five of which (MtAPY1;1, MtAPY1;2, MtAPY1;3, MtAPY1;4, and MtAPY1;5) are members of a legume-specific family, whereas a single gene (MtAPY2) has closer homologs in Arabidopsis. Phylogenetic analysis has revealed that the proteins encoded by these two plant gene families are more similar to yeast (Saccharomyces cerevisiae) GDA1 and to two proteins encoded by newly described mammalian genes (ENP5 and 6) than they are to mammalian CD39- and CD39-like proteins. Northern analyses and analyses of the frequencies of expressed sequence tags (ESTs) in different cDNA libraries suggest that in roots, leaves, and flowers, the more highly expressed genes are MtAPY1;3/MtAPY2, MtAPY1;3/MtAPY1;5 and MtAPY1;2/MtAPY1;3 respectively. In roots, at least four of the MtAPY1 genes are induced transiently within 3 to 6 h by a stress response that seems to be ethylene independent because it occurs after treatment with an ethylene synthesis inhibitor and also in the skl ethylene-insensitive mutant. This response also occurs in roots of the following symbiotic mutants: dmi1, dmi2, dmi3, nsp, hcl, pdl, lin, and skl. No evidence was obtained for a rapid, transient, and specific induction of the MtAPY genes in roots in response to rhizobia or rhizobial lipochitooligosaccharidic Nod factors. Thus, our data suggest that the apyrase-like genes, which in several legumes have been implicated to play a role in the legume-rhizobia symbiosis (with some members being described as early nodulin genes), are not regulated symbiotically by rhizobia in M. truncatula. PMID:12644663

  1. Expression of the apyrase-like APY1 genes in roots of Medicago truncatula is induced rapidly and transiently by stress and not by Sinorhizobium meliloti or Nod factors.

    PubMed

    Navarro-Gochicoa, Maria-Teresa; Camut, Sylvie; Niebel, Andreas; Cullimore, Julie V

    2003-03-01

    The model legume Medicago truncatula contains at least six apyrase-like genes, five of which (MtAPY1;1, MtAPY1;2, MtAPY1;3, MtAPY1;4, and MtAPY1;5) are members of a legume-specific family, whereas a single gene (MtAPY2) has closer homologs in Arabidopsis. Phylogenetic analysis has revealed that the proteins encoded by these two plant gene families are more similar to yeast (Saccharomyces cerevisiae) GDA1 and to two proteins encoded by newly described mammalian genes (ENP5 and 6) than they are to mammalian CD39- and CD39-like proteins. Northern analyses and analyses of the frequencies of expressed sequence tags (ESTs) in different cDNA libraries suggest that in roots, leaves, and flowers, the more highly expressed genes are MtAPY1;3/MtAPY2, MtAPY1;3/MtAPY1;5 and MtAPY1;2/MtAPY1;3 respectively. In roots, at least four of the MtAPY1 genes are induced transiently within 3 to 6 h by a stress response that seems to be ethylene independent because it occurs after treatment with an ethylene synthesis inhibitor and also in the skl ethylene-insensitive mutant. This response also occurs in roots of the following symbiotic mutants: dmi1, dmi2, dmi3, nsp, hcl, pdl, lin, and skl. No evidence was obtained for a rapid, transient, and specific induction of the MtAPY genes in roots in response to rhizobia or rhizobial lipochitooligosaccharidic Nod factors. Thus, our data suggest that the apyrase-like genes, which in several legumes have been implicated to play a role in the legume-rhizobia symbiosis (with some members being described as early nodulin genes), are not regulated symbiotically by rhizobia in M. truncatula.

  2. The symbiotic defect of Rhizobium meliloti exopolysaccharide mutants is suppressed by lpsZ sup + , a gene involved in lipopolysaccharide biosynthesis

    SciTech Connect

    Williams, M.N.V.; Klein, S.; Signer, E.R. ); Hollingsworth, R.I. )

    1990-05-01

    exo mutants of Rhizobium meliloti SU47, which fail to secrete acidic extracellular polysaccharide (EPS), induce Fix{sup {minus}} nodules on alfalfa. However, mutants of R. meliloti Rm41 carrying the same exo lesions induce normal Fix{sup +} nodules. The authors show that such induction is due to a gene from strain Rm41, which they call lpsZ{sup +}, that is missing in strain SU47. lpsZ{sup +} does not restore EPS production but instead alters the composition an structure of lipopolysaccharide. In both SU47 and Rm41, either lpsZ{sup +} or exo{sup +} is sufficient for normal nodulation. This suggests that in R. meliloti EPS and lipopolysaccharide can perform the same function in nodule development.

  3. Isolation and characterization of a DNA replication origin from the 1,700-kilobase-pair symbiotic megaplasmid pSym-b of Rhizobium meliloti.

    PubMed Central

    Margolin, W; Long, S R

    1993-01-01

    A 4-kb fragment active as an autonomously replicating sequence (ARS) from the Rhizobium meliloti symbiotic megaplasmid pSym-b was isolated by selecting for sequences that allowed a normally nonreplicative pBR322 derivative to replicate in R. meliloti. The resulting Escherichia coli-R. meliloti shuttle plasmid (mini-pSym-b) containing the ARS also replicated in the closely related Agrobacterium tumefaciens, but only in strains carrying pSym-b, suggesting that a megaplasmid-encoded trans-acting factor is required. The copy number of mini-pSym-b was approximately the same as that of the resident megaplasmid, and mini-pSym-b was unstable in the absence of antibiotic selection. An 0.8-kb DNA subfragment was sufficient for replication in both R. meliloti and A. tumefaciens. The minimal ARS exhibited several sequence motifs common to other replication origins, such as an AT-rich region, three potential DnA binding sites, a potential 13-mer sequence, and several groups of short direct repeats. Hybridization experiments indicated that there may be a related ARS on the other megaplasmid, pSym-a. The pSym-b ARS was mapped near exoA, within a region nonessential for pSym-b replication. These results suggest that the R. meliloti megaplasmids share conserved replication origins and that pSym-b contains multiple replication origins. Since the mini-pSym-b shuttle vector can coexist with IncP-1 broad-host-range plasmids, it is also now possible to use two compatible plasmids for cloning and genetic manipulation in R. meliloti. Images PMID:8407832

  4. Complete genome sequence of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419

    SciTech Connect

    Reeve, Wayne; Chain, Patrick S. G.; O'Hara, Graham; Ardley, Julie; Nandesena, Kemanthi; Brau, Lambert; Tiwari, Ravi; Malfatti, Stephanie; Kiss, Hajnalka; Lapidus, Alla L.; Copeland, A; Nolan, Matt; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Ivanova, N; Mavromatis, K; Markowitz, Victor; Kyrpides, Nikos C; Gollagher, Margaret; Yates, Ron; Dilworth, Michael; Howieson, John

    2010-01-01

    Ensifer (Sinorhizobium) medicae is an effective nitrogen fixing microsymbiont of a diverse range of annual Medicago (medic) species. Strain WSM419 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from a M. murex root nodule collected in Sardinia, Italy in 1981. WSM419 was manufactured commercially in Australia as an inoculant for annual medics during 1985 to 1993 due to its nitrogen fixation, saprophytic competence and acid tolerance properties. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first report of a complete genome sequence for a microsymbiont of the group of annual medic species adapted to acid soils. We reveal that its genome size is 6,817,576 bp encoding 6,518 protein-coding genes and 81 RNA only encoding genes. The genome contains a chromosome of size 3,781,904 bp and 3 plasmids of size 1,570,951 bp, 1,245,408 bp and 219,313 bp. The smallest plasmid is a feature unique to this medic microsymbiont.

  5. Evidence of Autoinducer-Dependent and -Independent Heterogeneous Gene Expression in Sinorhizobium fredii NGR234

    PubMed Central

    Grote, Jessica; Krysciak, Dagmar; Schorn, Andrea; Dahlke, Renate I.; Soonvald, Liina; Müller, Johannes; Hense, Burkhard A.; Schwarzfischer, Michael; Sauter, Margret; Schmeisser, Christel

    2014-01-01

    Populations of genetically identical Sinorhizobium fredii NGR234 cells differ significantly in their expression profiles of autoinducer (AI)-dependent and AI-independent genes. Promoter fusions of the NGR234 AI synthase genes traI and ngrI showed high levels of phenotypic heterogeneity during growth in TY medium on a single-cell level. However, adding very high concentrations of N-(3-oxooctanoyl-)-l-homoserine lactone resulted in a more homogeneous expression profile. Similarly, the lack of internally synthesized AIs in the background of the NGR234-ΔtraI or the NGR234-ΔngrI mutant resulted in a highly homogenous expression of the corresponding promoter fusions in the population. Expression studies with reporter fusions of the promoter regions of the quorum-quenching genes dlhR and qsdR1 and the type IV pilus gene cluster located on pNGR234b suggested that factors other than AI molecules affect NGR234 phenotypic heterogeneity. Further studies with root exudates and developing Arabidopsis thaliana seedlings provide the first evidence that plant root exudates have strong effects on the heterogeneity of AI synthase and quorum-quenching genes in NGR234. Therefore, plant-released octopine appears to play a key role in modulation of heterogeneous gene expression. PMID:25002427

  6. Complete genome sequence of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419

    PubMed Central

    Reeve, Wayne; Chain, Patrick; O’Hara, Graham; Ardley, Julie; Nandesena, Kemanthi; Bräu, Lambert; Tiwari, Ravi; Malfatti, Stephanie; Kiss, Hajnalka; Lapidus, Alla; Copeland, Alex; Nolan, Matt; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Ivanova, Natalia; Mavromatis, Konstantinos; Markowitz, Victor; Kyrpides, Nikos; Gollagher, Margaret; Yates, Ron; Dilworth, Michael; Howieson, John

    2010-01-01

    Ensifer (Sinorhizobium) medicae is an effective nitrogen fixing microsymbiont of a diverse range of annual Medicago (medic) species. Strain WSM419 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from a M. murex root nodule collected in Sardinia, Italy in 1981. WSM419 was manufactured commercially in Australia as an inoculant for annual medics during 1985 to 1993 due to its nitrogen fixation, saprophytic competence and acid tolerance properties. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first report of a complete genome sequence for a microsymbiont of the group of annual medic species adapted to acid soils. We reveal that its genome size is 6,817,576 bp encoding 6,518 protein-coding genes and 81 RNA only encoding genes. The genome contains a chromosome of size 3,781,904 bp and 3 plasmids of size 1,570,951 bp, 1,245,408 bp and 219,313 bp. The smallest plasmid is a feature unique to this medic microsymbiont. PMID:21304680

  7. [Root colonization and nodulation of Sinorhizobium fredii HN01DL in Glycine max rhizosphere].

    PubMed

    Li, Youguo; Zhou, Junchu

    2003-08-01

    Rhizobox-soil microcosms studies on the colonization, dispersal and nodulation of Sinorhizobium fredii HN01DL marked with luxAB gene in Glycine max rhizosphere showed that the colonization dynamics and the density of HN01DL in non-sterilized rhizobox-soil microcosms were different from those in sterilized rhizobox-soil microcosms. The colonization density of the former reached the maximum (8.65 log cfu.g-1 root) 12 days after the coated seeds planted, and that of the latter decreased rapidly at the early stage and achieved the maximum (6.88 log cfu.g-1 root) 15 days afterwards. Furthermore, the colonization density of HN01DL reached the maximum (7.05 log cfu.g-1 root) in section A (0-4 cm) of root system 5 days after seeds planted, decreased slowly and kept a relative stable level until 19 days, and began to rise up again 33 days afterwards. The strain could also disperse to the place of 16 cm from seed to root tip by 46 days after seed planted. HN01DL maintained a constantly higher colonization density level in section A of root system, formed the largest number of luminescent nodules (total 16.3, dominantly located in main root of section A), and had the highest luminescent percentage (68.8%). The luminescent nodule percentage decreased gradually along section A to E of root system, and no luminescent nodule was detected in section E of root system.

  8. A Rhizobium meliloti mutant that forms ineffective pseudonodules in alfalfa produces exopolysaccharide but fails to form beta-(1----2) glucan.

    PubMed Central

    Geremia, R A; Cavaignac, S; Zorreguieta, A; Toro, N; Olivares, J; Ugalde, R A

    1987-01-01

    A mutant of Rhizobium meliloti that elicited the formation of inactive nodules in alfalfa was found not to form beta-(1----2) glucan in vivo or in vitro. It was nonmotile because it lacks flagella. The 235-kilodalton protein which acts as an intermediate in beta-(1----2) glucan synthesis was undetectable in the mutant. These properties of the mutant are common to those of chvB mutants of Agrobacterium tumefaciens. Exopolysaccharide formation by the R. meliloti mutant was about double that by the wild type. Images PMID:3804979

  9. Role of motility and chemotaxis in efficiency of nodulation by Rhizobium meliloti. [Medicago sation

    SciTech Connect

    Caetano-Anolles, G.; Wall, L.G.; De Micheli, A.T.; Macchi, E.M.; Bauer, W.D.; Favelukes, G. )

    1988-04-01

    Spontaneous mutants of Rhizobium meliloti L5-30 defective in motility or chemotaxis were isolated and compared against the parent with respect to symbiotic competence. Each of the mutants were able to generate normal nodules on the host plant alfalfa (Medicago sativa), but had slightly delayed nodule formation, diminished nodulation int he initially susceptible region of the host root, and relatively low representation in nodules following co-inoculation with equal numbers of the parent. When inoculated in growth pouches with increasing dosages of the parental strain, the number of nodules formed in the initially susceptible region of the root increased sigmoidally, with an optimum concentration of about 10{sup 5} to 10{sup 6} bacteria/plant. The dose-response behavior of the nonmotile and nonchemotactic mutants was similar, but they required 10- to 30-fold higher concentrations of bacteria to generate the same number of nodules. The distribution frequencies of nodules at different positions along the primary root were very similar for the mutants and parent, indicating that reduced nodulation by the mutants in dose-response experiments probably reflects reduced efficiency of nodule initiation rather than developmentally delayed nodule initiation. The number of bacteria that firmly adsorbed to the host root surface during several hours of incubation was 5- to 20-fold greater for the parent than the mutants.

  10. Genetic diversity of an Italian Rhizobium meliloti population from different Medicago sativa varieties.

    PubMed Central

    Paffetti, D; Scotti, C; Gnocchi, S; Fancelli, S; Bazzicalupo, M

    1996-01-01

    We investigated the genetic diversity of 96 Rhizobium meliloti strains isolated from nodules of four Medicago sativa varieties from distinct geographic areas and planted in two different northern Italian soils. The 96 isolates, which were phenotypically indistinguishable, were analyzed for DNA polymorphism with the following three methods: (i) a randomly amplified polymorphic DNA (RAPD) method, (ii) a restriction fragment length polymorphism (RFLP) analysis of the 16S-23S ribosomal operon spacer region, and (iii) an RFLP analysis of a 25-kb region of the pSym plasmid containing nod genes. Although the bacteria which were studied constituted a unique genetic population, a considerable level of genetic diversity was found. The new analysis of molecular variance (AMOVA) method was used to estimate the variance among the RAPD patterns. The results indicated that there was significant genetic diversity among strains nodulating different varieties. The AMOVA method was confirmed to be a useful tool for investigating the genetic variation in an intraspecific population. Moreover, the data obtained with the two RFLP methods were consistent with the RAPD results. The genetic diversity of the population was found to reside on the whole bacterial genome, as suggested by the RAPD analysis results, and seemed to be distributed on both the chromosome and plasmid pSym. PMID:8779566

  11. Ensifer meliloti overexpressing Escherichia coli phytase gene ( appA) improves phosphorus (P) acquisition in maize plants

    NASA Astrophysics Data System (ADS)

    Sharma, Vikas; Kumar, Ajit; Archana, G.; Kumar, G. Naresh

    2016-10-01

    The Escherichia coli phytase gene appA encoding enzyme AppA was cloned in a broad host range plasmid pBBR1MCS2 ( lac promoter), termed pVA1, and transformed into the Ensifer meliloti 1020. Transformation of pVA1 in Ensifer meliloti { E. m (pVA1)} increased its phosphatase and phytase activity by ˜9- and ˜50-fold, respectively, compared to the transformants containing empty plasmid as control { E. m (pBBR1MCS2)}. The western blot experiments using rabbit anti-AppA antibody showed that AppA is translocated into the periplasm of the host after its expression. Ensifer meliloti harboring AppA protein { E. m (pVA1)} and { E. m (pBBR1MCS2)} could acidify the unbuffered phytate minimal media (pH 8.0) containing Ca-phytate or Na-phytate as sole organic P (Po) source to below pH 5.0 and released P. However, both { E. m (pVA1)} and { E. m (pBBR1MCS2)} neither dropped pH of the medium nor released P when the medium was buffered at pH 8.0 using Tris-Cl, indicating that acidification of medium was important for the enzymatic hydrolysis of phytate. Further experiments proved that maize plants inoculated with { E. m. (pVA1)} showed increase in growth under sterile semi solid agar (SSA) medium containing Na-phytate as sole P source. The present study could be helpful in generating better transgenic bioinoculants harboring phosphate mineralization properties that ultimately promote plant growth.

  12. Ensifer meliloti overexpressing Escherichia coli phytase gene (appA) improves phosphorus (P) acquisition in maize plants.

    PubMed

    Sharma, Vikas; Kumar, Ajit; Archana, G; Kumar, G Naresh

    2016-10-01

    The Escherichia coli phytase gene appA encoding enzyme AppA was cloned in a broad host range plasmid pBBR1MCS2 (lac promoter), termed pVA1, and transformed into the Ensifer meliloti 1020. Transformation of pVA1 in Ensifer meliloti {E. m (pVA1)} increased its phosphatase and phytase activity by ∼9- and ∼50-fold, respectively, compared to the transformants containing empty plasmid as control {E. m (pBBR1MCS2)}. The western blot experiments using rabbit anti-AppA antibody showed that AppA is translocated into the periplasm of the host after its expression. Ensifer meliloti harboring AppA protein {E. m (pVA1)} and {E. m (pBBR1MCS2)} could acidify the unbuffered phytate minimal media (pH 8.0) containing Ca-phytate or Na-phytate as sole organic P (Po) source to below pH 5.0 and released P. However, both {E. m (pVA1)} and {E. m (pBBR1MCS2)} neither dropped pH of the medium nor released P when the medium was buffered at pH 8.0 using Tris-Cl, indicating that acidification of medium was important for the enzymatic hydrolysis of phytate. Further experiments proved that maize plants inoculated with {E. m. (pVA1)} showed increase in growth under sterile semi solid agar (SSA) medium containing Na-phytate as sole P source. The present study could be helpful in generating better transgenic bioinoculants harboring phosphate mineralization properties that ultimately promote plant growth.

  13. Comparison of nucleic acid content in populations of free-living and symbiotic Rhizobium meliloti by flow microfluorometry.

    PubMed Central

    Paau, A S; Lee, D; Cowles, J R

    1977-01-01

    Populations of symbiotic Rhizobium meliloti extracted from alfalfa nodules were shown by flow microfluorometry to contain a significant number of bacteroids with higher nucleic acid content than the free-living rhizobia. Bacteroids with lower nucleic acid content than the free-living bacteria were not detected in significant quantities in these populations. These results indicate that the incapability of bacteroids to reestablish growth in nutrient media may not be caused by a decrease in nucleic acid content of the symbiotic rhizobia. PMID:838682

  14. Disruption of the Glycine Cleavage System Enables Sinorhizobium Fredii USDA257 to Form Nitrogen-fixing Nodules on Agonomically Improved North American Soybean Cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The symbiosis between Sinorhizobium fredii USDA257 and soybean [Glycine max (L.) Merr.] exhibits a high degree of cultivar specificity. USDA257 nodulates primitive soybean cultivars but fails to nodulate agronomically improved cultivars such as McCall. In this study we provide evidence for the invol...

  15. Distinct cell surface appendages produced by Sinorhizobium fredii USDA257 and S. fredii USDA191, cultivar-specific and nonspecific symbionts of soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sinorhizobium fredii USDA257 and S. fredii USDA191 are fast-growing rhizobia that form nitrogen-fixing nodules on soybean roots. In contrast to USDA191, USDA257 exhibits cultivar specificity and can form nodules only on primitive soybean cultivars. In response to flavonoids released from soybean ro...

  16. Implication of nifA in regulation of genes located on a Rhizobium meliloti cryptic plasmid that affect nodulation efficiency.

    PubMed Central

    Sanjuan, J; Olivares, J

    1989-01-01

    We examined the contribution of a cryptic plasmid, pRmeGR4b, to the nodulation of Medicago sativa by strain GR4 of Rhizobium meliloti. A 905-base-pair PstI DNA fragment in pRmeGR4b was found to hybridize DNA of the R. meliloti fixA promoter region as a probe. Sequence analysis of the PstI fragment showed a 206-base-pair region displaying high homology with the DNA upstream of the RNA start points of the P1 and P2 symbiotic promoters. Putative nif promoter consensus sequences were conserved in this DNA segment. Expression of DNA downstream of the nif promoterlike sequence, monitored by beta-galactosidase activity of different lacZ fusions, was demonstrated to depend on a functional nifA gene, both in microaerobically free-living cells and in nodules. Individual transposon Tn3-HoHo1 insertions in this DNA region caused a reduced nodulation competitiveness. This new symbiotic region, occupying approximately 5 kilobases of pRmeGR4b DNA, was called nfe (nodule formation efficiency). Images PMID:2546913

  17. Attenuation of Symbiotic Effectiveness by Rhizobium meliloti SAF22 Related to the Presence of a Cryptic Plasmid

    PubMed Central

    Velazquez, E.; Mateos, P. F.; Pedrero, P.; Dazzo, F. B.; Martinez-Molina, E.

    1995-01-01

    Several wild-type strains of Rhizobium meliloti isolated from alfalfa nodules exhibited different plasmid profiles, yet did not differ in growth rate in yeast-mannitol medium, utilization of 43 different carbon sources, intrinsic resistance to 14 antibiotics, or detection of 16 enzyme activities. In contrast, three measures of effectiveness in symbiotic nitrogen fixation with alfalfa (shoot length, dry weight, and nitrogen content) indicated that R. meliloti SAF22, whose plasmid profile differs from those of the other strains tested, is significantly less effective than other wild-type strains in symbiotic nitrogen fixation. Light microscopy of nodules infected with strain SAF22 showed an abnormal center of nitrogen fixation zone III, with bacteria occupying a smaller portion of the infected host cells and vacuoles occupying a significantly larger portion of adjacent uninfected host cells. In contrast, the effective nodules infected with other wild types or plasmid pRmSAF22c-cured segregants of SAF22 did not display this cytological abnormality. PMID:16535033

  18. Morphology of root nodules and nodule-like structures formed by Rhizobium and Agrobacterium strains containing a Rhizobium meliloti megaplasmid

    PubMed Central

    1983-01-01

    We examined expression of the megaplasmid pRme41b of Rhizobium meliloti in two different Rhizobium sp. Strains and in Agrobacterium tumefaciens. Transfer of pRme41b into these bacteria was facilitated by insertion of a recombinant plasmid coding for mobilization functions of RP4 into the nif region (Kondorosi, A., E. Kondorosi, C.E. Pankhurst, W. J. Broughton, and Z. Banfalvi, 1982, Mol. Gen. Genet., 188:433-439). In all cases, transconjugants formed nodule-like structures on the roots of Medicago sativa. These structures were largely composed of meristematic cells but they were not invaded by bacteria. Bacteria were found only within infection threads in root hairs, and within intercellular spaces of the outermost cells of the structures. The donor strain of R. meliloti containing pAK11 or pAK12 in pRme41b initially produced nodules on M. sativa that did not fix nitrogen (Fix- ). In these nodules, bacteria were released from infection threads into the host cells but they did not multiply appreciably. Any bacteroids formed degenerated prematurely. In some cases, however, reversion to a Fix+ phenotype occurred after 4 to 6 wk. Bacteria released into newly infected cells in these nodules showed normal development into bacteriods. PMID:6885919

  19. Rhizobium meliloti produces a family of sulfated lipo-oligosaccharides exhibiting different degrees of plant host specificity

    SciTech Connect

    Schultze, M.; Kondorosi, E.; Quiclet-Sire, B.; Gero, S.D. ); Virelizier, H. ); Glushka, J.N. ); Endre, G.; Kondorosi, A. Inst. of Genetics, Szeged )

    1992-01-01

    The authors have shown that a Rhizobium meliloti strain over expressing nodulation genes excreted high amounts of a family of N-acylated and 6-O-sulfated N-acetyl-{beta}-1,4-D-glucosamine penta-, tetra-, and trisaccharide Nod factors. Either a C{sub 16:2} or a C{sub 16:3} acyl chain is attached to the nonreducing end subunit, whereas the sulfate group is bound to the reducing glucosamine. In the root hair deformation assay the pentasaccharides show similar activities on the host plants Medicago sativa and Melilotus albus and on the non-host plant Vicia sativa at a dilution of up to 0.01-0.001 {mu}M, in contrast to NodRm-1, which displays a much higher specific activity for Medicago and melilotus than for Vicia. The active concentration range of the pentasaccharides is more narrow on medicago than on Melilotus and Vicia. In addition to root hair deformation, the different Nod factors were shown to induce nodule formation on M. sativa. They suggest that the production of a series of active signal molecules with different degrees of specificity might be important in controlling the symbiosis of R. meliloti with several different host plants or under different environmental conditions.

  20. Genetic analysis of the Rhizobium meliloti bacA gene: functional interchangeability with the Escherichia coli sbmA gene and phenotypes of mutants.

    PubMed

    Ichige, A; Walker, G C

    1997-01-01

    The Rhizobium meliloti bacA gene encodes a function that is essential for bacterial differentiation into bacteroids within plant cells in the symbiosis between R. meliloti and alfalfa. An Escherichia coli homolog of BacA, SbmA, is implicated in the uptake of microcin B17, microcin J25 (formerly microcin 25), and bleomycin. When expressed in E. coli with the lacZ promoter, the R. meliloti bacA gene was found to suppress all the known defects of E. coli sbmA mutants, namely, increased resistance to microcin B17, microcin J25, and bleomycin, demonstrating the functional similarity between the two proteins. The R. meliloti bacA386::Tn(pho)A mutant, as well as a newly constructed bacA deletion mutant, was found to show increased resistance to bleomycin. However, it also showed increased resistance to certain aminoglycosides and increased sensitivity to ethanol and detergents, suggesting that the loss of bacA function causes some defect in membrane integrity. The E. coli sbmA gene suppressed all these bacA mutant phenotypes as well as the Fix- phenotype when placed under control of the bacA promoter. Taken together, these results strongly suggest that the BacA and SbmA proteins are functionally similar and thus provide support for our previous hypothesis that BacA may be required for uptake of some compound that plays an important role in bacteroid development. However, the additional phenotypes of bacA mutants identified in this study suggest the alternative possibility that BacA may be needed for membrane integrity, which is likely to be critically important during the early stages of bacterial differentiation within plant cells.

  1. Cloning and sequencing of the gltX gene, encoding the glutamyl-tRNA synthetase of Rhizobium meliloti A2.

    PubMed Central

    Laberge, S; Gagnon, Y; Bordeleau, L M; Lapointe, J

    1989-01-01

    The gltX gene, coding for the glutamyl-tRNA synthetase of Rhizobium meliloti A2, was cloned by using as probe a synthetic oligonucleotide corresponding to the amino acid sequence of a segment of the glutamyl-tRNA synthetase. The codons chosen for this 42-mer were those most frequently used in a set of R. meliloti genes. DNA sequence analysis revealed an open reading frame of 484 codons, encoding a polypeptide of Mr 54,166 containing the amino acid sequences of an NH2-terminal and various internal fragments of the enzyme. Compared with the amino acid sequence of the glutamyl-tRNA synthetase of Escherichia coli, the N-terminal third of the R. meliloti enzyme was strongly conserved (52% identity); the second third was moderately conserved (38% identity) and included a few highly conserved segments, whereas no significant similarity was found in the C-terminal third. These results suggest that the C-terminal part of the protein is probably not involved in the recognition of substrates, a feature shared with other aminoacyl-tRNA synthetases. Images PMID:2661539

  2. Conservation of gene order and content in the circular chromosomes of 'Candidatus Liberibacter' asiaticus and other rhizbiales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The intracellular plant pathogen ‘Ca. Liberibacter asiaticus’ is a member of the Rhizobiales, as are the nitrogen fixing Sinorhizobium meliloti and Bradyrhizobium japonicum, the plant pathogen Agrobacterium tumefaciens and the intracellular mammalian pathogen Bartonella henselae. Whole genome compar...

  3. Comparison of the 'Ca Liberibacter asiaticus' genome adapted for an intracellular lifestyle with other members of the rhizobiales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An intracellular plant pathogen ‘Ca. Liberibacter asiaticus,’ a member of the Rhizobiales, is related to Sinorhizobium meliloti, Bradyrhizobium japonicum, Agrobacterium tumefaciens and Bartonella henselae, an intracellular mammalian pathogen. Whole chromosome comparisons identified at least 52 clust...

  4. Identification of Sinorhizobium (Ensifer) medicae based on a specific genomic sequence unveiled by M13-PCR fingerprinting.

    PubMed

    Dourado, Ana Catarina; Alves, Paula I L; Tenreiro, Tania; Ferreira, Eugénio M; Tenreiro, Rogério; Fareleira, Paula; Crespo, M Teresa Barreto

    2009-12-01

    A collection of nodule isolates from Medicago polymorpha obtained from southern and central Portugal was evaluated by M13-PCR fingerprinting and hierarchical cluster analysis. Several genomic clusters were obtained which, by 16S rRNA gene sequencing of selected representatives, were shown to be associated with particular taxonomic groups of rhizobia and other soil bacteria. The method provided a clear separation between rhizobia and co-isolated non-symbiotic soil contaminants. Ten M13-PCR groups were assigned to Sinorhizobium (Ensifer) medicae and included all isolates responsible for the formation of nitrogen-fixing nodules upon re-inoculation of M. polymorpha test-plants. In addition, enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprinting indicated a high genomic heterogeneity within the major M13- PCR clusters of S. medicae isolates. Based on nucleotide sequence data of an M13-PCR amplicon of ca. 1500 bp, observed only in S. medicae isolates and spanning locus Smed_3707 to Smed_3709 from the pSMED01 plasmid sequence of S. medicae WSM419 genome's sequence, a pair of PCR primers was designed and used for direct PCR amplification of a 1399-bp sequence within this fragment. Additional in silico and in vitro experiments, as well as phylogenetic analysis, confirmed the specificity of this primer combination and therefore the reliability of this approach in the prompt identification of S. medicae isolates and their distinction from other soil bacteria.

  5. Concurrent synthesis and release of nod-gene-inducing flavonoids from alfalfa roots. [Medicago sativa L. ; Rhizobium meliloti

    SciTech Connect

    Maxwell, C.A.; Phillips, D.A. )

    1990-08-01

    Flavonoid signals from alfalfa (Medicago sativa L.) induce transcription of nodulation (nod) genes in Rhizobium meliloti. Alfalfa roots release three major nod-gene inducers: 4{prime},7-dihydroxyflavanone, 4{prime},7-dihydroxyflavone, and 4,4{prime}-dihydroxy-2{prime}-methoxychalcone. The objective of the present study was to define temporal relationships between synthesis and exudation for those flavonoids. Requirements for concurrent flavonoid biosynthesis were assessed by treating roots of intact alfalfa seedlings with (U-{sup 14}C)-L-phenylalanine in the presence or absence of the phenylalanine ammonia-lyase inhibitor L-2-aminoxy-3-phenylpropionic acid (AOPP). In the absence of AOPP, each of the three flavonoids in exudates contained {sup 14}C. In the presence of AOPP, {sup 14}C labeling and release of all the exuded nod-gene inducers were reduced significantly. AOPP inhibited labeling and release of the strongest nod-gene inducer, methoxychalcone, by more than 90%. The release process responsible for exudation of nod-gene inducers appears to be specific rather than a general phenomenon such as a sloughing off of cells during root growth.

  6. Quantifying the rate of biofilm growth of S. meliloti strains in microfluidics via the diffusion coefficient of microspheres

    NASA Astrophysics Data System (ADS)

    Dorian, Matthew; Seitaridou, Effrosyni

    2014-03-01

    Understanding the rate of biofilm growth is essential for studying genes and preventing unwanted biofilms. In this study, the diffusion coefficient (D) of polystyrene microspheres was used to quantify biofilm growth rates of Sinorhizobia meliloti, a nitrogen fixing bacteria that forms a symbiotic relationship with alfalfa plants. Five strains were studied, two wild types (8530 expR+ and 1021) and three mutants in the exopolysaccharide (EPS I, EPS II) synthesis (8530 exoY , 9034 expG , and 9030-2 expA 1); 1021 and 9030-2 expA 1 are known to be unable to form biofilms. Each strain was inserted into a microfluidic channel with the microspheres. As the cultures grew, the spheres' D values were obtained every 24 hours for 4 days using fluorescence microscopy. Although the D values for 9030-2 expA 1 were inconclusive, 8530 expR+ , 8530 exoY , and 9034 expG showed significant decreases in D between 3 days of growth (| z | > 2 . 25 , p < 0 . 025). The data also indicated that 8530 expR+ and 8530 exoY grew at similar rates. There was no significant change in D for 1021 (χ2(2) = 5 . 76 , p > 0 . 05), which shows the lack of a structured biofilm community. Thus, D can be used as an indicator of the presence of a biofilm and its development.

  7. The exoD gene of Rhizobium meliloti encodes a novel function needed for alfalfa nodule invasion.

    PubMed Central

    Reed, J W; Walker, G C

    1991-01-01

    During the symbiotic interaction between alfalfa and the nitrogen-fixing bacterium Rhizobium meliloti, the bacterium induces the formation of nodules on the plant roots and then invades these nodules. Among the bacterial genes required for nodule invasion are the exo genes, involved in production of an extracellular polysaccharide, and the ndv genes, needed for production of a periplasmic cyclic glucan. Mutations in the exoD gene result in altered exopolysaccharide production and in a nodule invasion defect. In this work we show that the stage of symbiotic arrest of exoD mutants is similar to that of other exo and ndv mutants. However, the effects of exoD mutations on exopolysaccharide production and growth on various media are different from the effects of other exo and ndv mutations. Finally, exoD mutations behave differently from other exo mutations in their ability to be suppressed or complemented extracellularly. The results suggest that exoD represents a new class of Rhizobium genes required for nodule invasion, distinct from the other exo genes and the ndv genes. We discuss models for the function of exoD. PMID:1987158

  8. A plasmid of Rhizobium meliloti 41 encodes catabolism of two compounds from root exudate of Calystegium sepium.

    PubMed Central

    Tepfer, D; Goldmann, A; Pamboukdjian, N; Maille, M; Lepingle, A; Chevalier, D; Dénarié, J; Rosenberg, C

    1988-01-01

    Our objectives were to identify substances produced by plant roots that might act as nutritional mediators of specific plant-bacterium relationships and to delineate the bacterial genes responsible for catabolizing these substances. We discovered new compounds, which we call calystegins, that have the characteristics of nutritional mediators. They were detected in only 3 of 105 species of higher plants examined: Calystegia sepium, Convolvulus arvensis (both of the Convolvulaceae family), and Atropa belladonna. Calystegins are abundant in organs in contact with the rhizosphere and are not found, or are observed only in small quantities, in aerial plant parts. Just as the synthesis of calystegins is infrequent in the plant kingdom, their catabolism is rare among rhizosphere bacteria that associate with plants and influence their growth. Of 42 such bacteria tested, only one (Rhizobium meliloti 41) was able to catabolize calystegins and use them as a sole source of carbon and nitrogen. The calystegin catabolism gene(s) (cac) in this strain is located on a self-transmissible plasmid (pRme41a), which is not essential to nitrogen-fixing symbiosis with legumes. We suggest that under natural conditions calystegins provide an exclusive carbon and nitrogen source to rhizosphere bacteria which are able to catabolize these compounds. Calystegins (and the corresponding microbial catabolic genes) might be used to analyze and possibly modify rhizosphere ecology. Images PMID:2981046

  9. In vitro sulfotransferase activity of Rhizobium meliloti NodH protein: lipochitooligosaccharide nodulation signals are sulfated after synthesis of the core structure.

    PubMed Central

    Schultze, M; Staehelin, C; Röhrig, H; John, M; Schmidt, J; Kondorosi, E; Schell, J; Kondorosi, A

    1995-01-01

    The Rhizobium common nod gene products NodABC are involved in the synthesis of the core lipochitooligosaccharide (Nod factor) structure, whereas the products of the host-specific nod genes are necessary for diverse structural modifications, which vary in different Rhizobium species. The sulfate group attached to the Rhizobium meliloti Nod signal is necessary for activity on the host plant alfalfa, while its absence renders the Nod factor active on the non-host plant vetch. This substituent is therefore a major determinant of host specificity. The exact biosynthetic pathway of Nod factors has not been fully elucidated. In particular, it is not known why some chemical modifications are introduced with high fidelity whereas others are inaccurate, giving rise to a family of different Nod factor structures produced by a single Rhizobium strain. Using protein extracts and partially purified recombinant NodH protein obtained from Escherichia coli expressing the R. meliloti nodH gene, we demonstrate here NodH-dependent in vitro sulfotransferase activity. Kinetic analyses with Nod factors, chitooligosaccharides, and their deacetylated derivatives revealed that Nod factors are the preferred substrate for the sulfate transfer. Moreover, the tetrameric Nod factor, NodRm-IV, was a better substrate than the trimer, NodRm-III, or the pentamer, NodRm-V. These data suggest that the core lipochitooligosaccharide structure must be synthesized prior to its host-specific modification with a sulfate group. Since in R. meliloti tetrameric Nod factors are the most abundant and the most active ones, high affinity of NodH for the appropriate tetrameric substrate guarantees its modification and thus contributes to the fidelity of host-specific behavior. Images Fig. 5 PMID:7708710

  10. NopC Is a Rhizobium-Specific Type 3 Secretion System Effector Secreted by Sinorhizobium (Ensifer) fredii HH103

    PubMed Central

    Medina, Carlos; Ollero, Francisco Javier; López-Baena, Francisco Javier

    2015-01-01

    Sinorhizobium (Ensifer) fredii HH103 is a broad host-range nitrogen-fixing bacterium able to nodulate many legumes, including soybean. In several rhizobia, root nodulation is influenced by proteins secreted through the type 3 secretion system (T3SS). This specialized secretion apparatus is a common virulence mechanism of many plant and animal pathogenic bacteria that delivers proteins, called effectors, directly into the eukaryotic host cells where they interfere with signal transduction pathways and promote infection by suppressing host defenses. In rhizobia, secreted proteins, called nodulation outer proteins (Nops), are involved in host-range determination and symbiotic efficiency. S. fredii HH103 secretes at least eight Nops through the T3SS. Interestingly, there are Rhizobium-specific Nops, such as NopC, which do not have homologues in pathogenic bacteria. In this work we studied the S. fredii HH103 nopC gene and confirmed that its expression was regulated in a flavonoid-, NodD1- and TtsI-dependent manner. Besides, in vivo bioluminescent studies indicated that the S. fredii HH103 T3SS was expressed in young soybean nodules and adenylate cyclase assays confirmed that NopC was delivered directly into soybean root cells by means of the T3SS machinery. Finally, nodulation assays showed that NopC exerted a positive effect on symbiosis with Glycine max cv. Williams 82 and Vigna unguiculata. All these results indicate that NopC can be considered a Rhizobium-specific effector secreted by S. fredii HH103. PMID:26569401

  11. Exopolysaccharide Production by Sinorhizobium fredii HH103 Is Repressed by Genistein in a NodD1-Dependent Manner.

    PubMed

    Acosta-Jurado, Sebastián; Navarro-Gómez, Pilar; Murdoch, Piedad Del Socorro; Crespo-Rivas, Juan-Carlos; Jie, Shi; Cuesta-Berrio, Lidia; Ruiz-Sainz, José-Enrique; Rodríguez-Carvajal, Miguel-Ángel; Vinardell, José-María

    2016-01-01

    In the rhizobia-legume symbiotic interaction, bacterial surface polysaccharides, such as exopolysaccharide (EPS), lipopolysaccharide (LPS), K-antigen polysaccharide (KPS) or cyclic glucans (CG), appear to play crucial roles either acting as signals required for the progression of the interaction and/or preventing host defence mechanisms. The symbiotic significance of each of these polysaccharides varies depending on the specific rhizobia-legume couple. In this work we show that the production of exopolysaccharide by Sinorhizobium fredii HH103, but not by other S. fredii strains such as USDA257 or NGR234, is repressed by nod gene inducing flavonoids such as genistein and that this repression is dependent on the presence of a functional NodD1 protein. In agreement with the importance of EPS for bacterial biofilms, this reduced EPS production upon treatment with flavonoids correlates with decreased biofilm formation ability. By using quantitative RT-PCR analysis we show that expression of the exoY2 and exoK genes is repressed in late stationary cultures of S. fredii HH103 upon treatment with genistein. Results presented in this work show that in S. fredii HH103 EPS production is regulated just in the opposite way than other bacterial signals such as Nod factors and type 3 secreted effectors: it is repressed by flavonoids and NodD1 and enhanced by the nod repressor NolR. These results are in agreement with our previous observations showing that lack of EPS production by S. fredii HH103 is not only non-detrimental but even beneficial for symbiosis with soybean.

  12. Exopolysaccharide Production by Sinorhizobium fredii HH103 Is Repressed by Genistein in a NodD1-Dependent Manner

    PubMed Central

    Acosta-Jurado, Sebastián; Navarro-Gómez, Pilar; Murdoch, Piedad del Socorro; Crespo-Rivas, Juan-Carlos; Jie, Shi; Cuesta-Berrio, Lidia; Ruiz-Sainz, José-Enrique; Rodríguez-Carvajal, Miguel-Ángel

    2016-01-01

    In the rhizobia-legume symbiotic interaction, bacterial surface polysaccharides, such as exopolysaccharide (EPS), lipopolysaccharide (LPS), K-antigen polysaccharide (KPS) or cyclic glucans (CG), appear to play crucial roles either acting as signals required for the progression of the interaction and/or preventing host defence mechanisms. The symbiotic significance of each of these polysaccharides varies depending on the specific rhizobia-legume couple. In this work we show that the production of exopolysaccharide by Sinorhizobium fredii HH103, but not by other S. fredii strains such as USDA257 or NGR234, is repressed by nod gene inducing flavonoids such as genistein and that this repression is dependent on the presence of a functional NodD1 protein. In agreement with the importance of EPS for bacterial biofilms, this reduced EPS production upon treatment with flavonoids correlates with decreased biofilm formation ability. By using quantitative RT-PCR analysis we show that expression of the exoY2 and exoK genes is repressed in late stationary cultures of S. fredii HH103 upon treatment with genistein. Results presented in this work show that in S. fredii HH103 EPS production is regulated just in the opposite way than other bacterial signals such as Nod factors and type 3 secreted effectors: it is repressed by flavonoids and NodD1 and enhanced by the nod repressor NolR. These results are in agreement with our previous observations showing that lack of EPS production by S. fredii HH103 is not only non-detrimental but even beneficial for symbiosis with soybean. PMID:27486751

  13. Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil.

    PubMed

    Di Gregorio, Simona; Barbafieri, Meri; Lampis, Silvia; Sanangelantoni, Anna Maria; Tassi, Eliana; Vallini, Giovanni

    2006-04-01

    The process of EDTA-assisted lead phytoextraction from the Bovisa (Milan, Italy) brownfield soil was optimized in microcosms vegetated with Brassica juncea. An autochthonous plant growth-promoting rhizobacterium (PGPR), Sinorhizobium sp. Pb002, was isolated from the rhizosphere of B. juncea grown on the Pb-contaminated soil in presence of 2 mM EDTA. The strain was augmented (10(8) CFU g(-1) soil) in vegetated microcosms to stimulate B. juncea biomass production and, hence, its phytoextraction potential. Triton X-100 was also added to microcosms at 5 and 10 times the critical micelle concentration (cmc) to increase the permeability of root barriers to the EDTA-Pb complexes. Triton X-100 amendment determined an increase in Pb concentration within plant tissues. However it contextually exerted a phytotoxic effect. Sinorhizobium sp. Pb002 augmentation was crucial to plant survival in presence of both bioavailable lead and Triton X-100. The combination of the two treatments produced up to 56% increase in the efficiency of lead phytoextraction by B. juncea. The effects of these treatments on the structure of the soil bacterial community were evaluated by 16S rDNA denaturing gradient gel electrophoresis (DGGE).

  14. Lipo-chitooligosaccharide Nodulation Signals from Rhizobium meliloti Induce Their Rapid Degradation by the Host Plant Alfalfa.

    PubMed Central

    Staehelin, C.; Schultze, M.; Kondorosi, E.; Kondorosi, A.

    1995-01-01

    Extracellular enzymes from alfalfa (Medicago sativa L.) involved in the degradation of nodulation (Nod) factors could be distinguished by their different cleavage specificities and were separated by lectin affinity chromatography. A particular glycoprotein was able to release an acylated lipo-disaccharide from all tested Nod factors having an oligosaccharide chain length of four or five residues. Structural modifications of the basic lipo-chitooligosaccharide did not affect the cleavage site and had only weak influence on the cleavage efficiency of Nod factors tested. The acylated lipo-trisaccharide was resistant to degradation. When alfalfa roots were preincubated with Nod factors at nanomolar concentrations, the activity of the dimer-forming enzyme was stimulated up to 6-fold within a few hours. The inducing activity of Nod factors decreased in the order NodRm-IV(C16:2,Ac,S) > NodRm-IV(C16:2,S) and NodRm-V(C16:2,Ac,S) > NodRm-V(C16:2,S) > NodRm-IV(C16:0,S) > NodRm-IV(C16:2). Pretreatment with NodRm-III(C16:2) as well as unmodified chitooligosaccharides did not stimulate the dimer-forming enzyme. Roots preincubated with Rhizobium meliloti showed similar stimulation of the dimer-forming activity. Mutant strains unable to produce Nod factors did not enhance the hydrolytic activity. These results indicate a rapid feedback inactivation of Nod signals after their perception by the host plant alfalfa. PMID:12228566

  15. Distribution of hydrogen-metabolizing bacteria in alfalfa field soil. [Medicago sativa L. ; Convolvulus arvensis L. ; Rhizobium meliloti

    SciTech Connect

    Cunningham, S.D.; Kapulnik, Y.; Phillips, D.A.

    1986-11-01

    H/sub 2/ evolved by alfalfa root nodules during the process of N/sub 2/ fixation may be an important factor influencing the distribution of soil bacteria. To test this hypothesis under field conditions, over 700 bacterial isolates were obtained from fallow soil or from the 3-mm layer of soil surrounding alfalfa (Medicago sativa L.) root nodules, alfalfa roots, or bindweed (Convolvulus arvensis L.) roots. Bacteria were isolated under either aerobic or microaerophilic conditions and were tested for their capacity to metabolize H/sub 2/. Isolates showing net H/sub 2/ uptake and /sup 3/H/sub 2/ incorporation activity under laboratory conditions were assigned a Hup/sup +/ phenotype, whereas organisms with significant H/sub 2/ output capacity were designated as a Hout/sup +/ phenotype. Under aerobic isolation conditions two Hup/sup +/ isolates were obtained, whereas under microaerophilic conditions five Hup/sup +/ and two Hout/sup +/ isolates were found. The nine isolates differed on the basis of 24 standard bacteriological characteristics or fatty acid composition. Five of the nine organisms were isolated from soil around root nodules, whereas the other four were found distributed among the other three soil environments. On the basis of the microaerophilic isolations, 4.8% of the total procaryotic isolates from soil around root nodules were capable of oxidizing H/sub 2/, and 1.2% could produce H/sub 2/. Two of the Hup/sup +/ isolates were identified as Rhizobium meliloti by root nodulation tests, but the fact that none of the isolates reduced C/sub 2/H/sub 2/ under the assay conditions suggested that the H/sub 2/ metabolism traits were associated with various hydrogenase systems rather than with nitrogenase activity.

  16. Evaluation of the resolving power of three different DNA fingerprinting methods to discriminate among isolates of a natural Rhizobium meliloti population.

    PubMed

    Niemann, S; Pühler, A; Tichy, H V; Simon, R; Selbitschka, W

    1997-04-01

    In a comparative study, the PCR-based RAPD and ERIC fingerprint methods were evaluated for their resolving power to discriminate among 21 isolates of a natural Rhizobium meliloti population. PCR fingerprint patterns were analysed by using an automated laser fluorescent (ALF) DNA sequencer, thus allowing the automated on-line storage of data. Results obtained were compared to a classification system using insertion sequence (IS) fingerprinting. Both PCR fingerprint methods were comparable in their ability to resolve differences amongst Rh. meliloti isolates. Grouping of strains on the basis of their RAPD as well as their ERIC fingerprints correlated with grouping of strains according to their IS fingerprints. Moreover, strains displaying identical PCR patterns could be further differentiated according to their IS fingerprints, thus allowing a detailed insight into phylogenetic relationship among strains. The automated evaluation of strain-specific fingerprint patterns has the potential to become a valuable tool for studies of bacterial population genetics. Moreover, the rapid identification of single strains, e.g. pathogens in epidemiological studies seems feasible.

  17. High-quality permanent draft genome sequence of Ensifer meliloti strain 4H41, an effective salt- and drought-tolerant microsymbiont of Phaseolus vulgaris

    DOE PAGES

    Mhamdi, Ridha; Ardley, Julie; Tian, Rui; ...

    2015-07-02

    We report that Ensifer meliloti 4H41 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of common bean (Phaseolus vulgaris). Strain 4H41 was isolated in 2002 from root nodules of P. vulgaris grown in South Tunisia from the oasis of Rjim-Maatoug. Strain 4H41 is salt- and drought-tolerant and highly effective at fixing nitrogen with P. vulgaris. Here we describe the features of E. meliloti 4H41, together with genome sequence information and its annotation. The 6,795,637 bp high-quality permanent draft genome is arranged into 47 scaffolds of 47 contigs containing 6,350more » protein-coding genes and 72 RNA-only encoding genes, and is one of the rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project proposal.« less

  18. High-quality permanent draft genome sequence of Ensifer meliloti strain 4H41, an effective salt- and drought-tolerant microsymbiont of Phaseolus vulgaris

    SciTech Connect

    Mhamdi, Ridha; Ardley, Julie; Tian, Rui; Seshadri, Rekha; Reddy, T. B. K.; Pati, Amrita; Woyke, Tanja; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Reeve, Wayne

    2015-07-02

    We report that Ensifer meliloti 4H41 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of common bean (Phaseolus vulgaris). Strain 4H41 was isolated in 2002 from root nodules of P. vulgaris grown in South Tunisia from the oasis of Rjim-Maatoug. Strain 4H41 is salt- and drought-tolerant and highly effective at fixing nitrogen with P. vulgaris. Here we describe the features of E. meliloti 4H41, together with genome sequence information and its annotation. The 6,795,637 bp high-quality permanent draft genome is arranged into 47 scaffolds of 47 contigs containing 6,350 protein-coding genes and 72 RNA-only encoding genes, and is one of the rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project proposal.

  19. Identification of a gene linked to Rhizobium meliloti ntrA whose product is homologous to a family to ATP-binding proteins.

    PubMed Central

    Albright, L M; Ronson, C W; Nixon, B T; Ausubel, F M

    1989-01-01

    The ntrA gene of Rhizobium meliloti has recently been identified and shown to be required for a diverse set of metabolic functions (C. W. Ronson, B. T. Nixon, L. M. Albright, and F. M. Ausubel, J. Bacteriol. 169:2424-2431, 1987). As a result of sequencing the ntrA gene and its flanking regions from R. meliloti, we identified an open reading frame directly upstream of ntrA, ORF1, whose predicted product is homologous to a superfamily of ATP-binding proteins involved in transport, cell division, nodulation, and DNA repair. The homology of ORF1 to this superfamily and its proximity to ntrA led us to investigate its role in symbiosis by mutagenesis and expression studies. We were unable to isolate an insertion mutation in ORF1, suggesting that ORF1 may code for an essential function. We identified the start of transcription for the ntrA gene in vegetative cells and bacteroids and showed that ORF1 and ntrA are transcriptionally unlinked. ORF1 appears to be in an operon with one or more upstream genes. Images PMID:2703463

  20. Two separate modules of the conserved regulatory RNA AbcR1 address multiple target mRNAs in and outside of the translation initiation region

    PubMed Central

    Overlöper, Aaron; Kraus, Alexander; Gurski, Rosemarie; Wright, Patrick R; Georg, Jens; Hess, Wolfgang R; Narberhaus, Franz

    2014-01-01

    The small RNA AbcR1 regulates the expression of ABC transporters in the plant pathogen Agrobacterium tumefaciens, the plant symbiont Sinorhizobium meliloti, and the human pathogen Brucella abortus. A combination of proteomic and bioinformatic approaches suggested dozens of AbcR1 targets in A. tumefaciens. Several of these newly discovered targets are involved in the uptake of amino acids, their derivatives, and sugars. Among the latter is the periplasmic sugar-binding protein ChvE, a component of the virulence signal transduction system. We examined 16 targets and their interaction with AbcR1 in close detail. In addition to the previously described mRNA interaction site of AbcR1 (M1), the CopraRNA program predicted a second functional module (M2) as target-binding site. Both M1 and M2 contain single-stranded anti-SD motifs. Using mutated AbcR1 variants, we systematically tested by band shift experiments, which sRNA region is responsible for mRNA binding and gene regulation. On the target site, we find that AbcR1 interacts with some mRNAs in the translation initiation region and with others far into their coding sequence. Our data show that AbcR1 is a versatile master regulator of nutrient uptake systems in A. tumefaciens and related bacteria. PMID:24921646

  1. A Stress-Induced Small RNA Modulates Alpha-Rhizobial Cell Cycle Progression

    PubMed Central

    Robledo, Marta; Frage, Benjamin; Wright, Patrick R.; Becker, Anke

    2015-01-01

    Mechanisms adjusting replication initiation and cell cycle progression in response to environmental conditions are crucial for microbial survival. Functional characterization of the trans-encoded small non-coding RNA (trans-sRNA) EcpR1 in the plant-symbiotic alpha-proteobacterium Sinorhizobium meliloti revealed a role of this class of riboregulators in modulation of cell cycle regulation. EcpR1 is broadly conserved in at least five families of the Rhizobiales and is predicted to form a stable structure with two defined stem-loop domains. In S. meliloti, this trans-sRNA is encoded downstream of the divK-pleD operon. ecpR1 belongs to the stringent response regulon, and its expression was induced by various stress factors and in stationary phase. Induced EcpR1 overproduction led to cell elongation and increased DNA content, while deletion of ecpR1 resulted in reduced competitiveness. Computationally predicted EcpR1 targets were enriched with cell cycle-related mRNAs. Post-transcriptional repression of the cell cycle key regulatory genes gcrA and dnaA mediated by mRNA base-pairing with the strongly conserved loop 1 of EcpR1 was experimentally confirmed by two-plasmid differential gene expression assays and compensatory changes in sRNA and mRNA. Evidence is presented for EcpR1 promoting RNase E-dependent degradation of the dnaA mRNA. We propose that EcpR1 contributes to modulation of cell cycle regulation under detrimental conditions. PMID:25923724

  2. Cyclic-β-glucans of Rhizobium (Sinorhizobium) sp. strain NGR234 are required for hypo-osmotic adaptation, motility, and efficient symbiosis with host plants.

    PubMed

    Gay-Fraret, Jérémie; Ardissone, Silvia; Kambara, Kumiko; Broughton, William J; Deakin, William J; Le Quéré, Antoine

    2012-08-01

    Cyclic-β-glucans (CβG) consist of cyclic homo-polymers of glucose that are present in the periplasmic space of many Gram-negative bacteria. A number of studies have demonstrated their importance for bacterial infection of plant and animal cells. In this study, a mutant of Rhizobium (Sinorhizobium) sp. strain NGR234 (NGR234) was generated in the cyclic glucan synthase (ndvB)-encoding gene. The great majority of CβG produced by wild-type NGR234 are negatively charged and substituted. The ndvB mutation abolished CβG biosynthesis. We found that, in NGR234, a functional ndvB gene is essential for hypo-osmotic adaptation and swimming, attachment to the roots, and efficient infection of Vigna unguiculata and Leucaena leucocephala.

  3. The Sinorhizobium (Ensifer) fredii HH103 Nodulation Outer Protein NopI Is a Determinant for Efficient Nodulation of Soybean and Cowpea Plants.

    PubMed

    Jiménez-Guerrero, Irene; Pérez-Montaño, Francisco; Medina, Carlos; Ollero, Francisco Javier; López-Baena, Francisco Javier

    2017-03-01

    The type III secretion system (T3SS) is a specialized secretion apparatus that is commonly used by many plant and animal pathogenic bacteria to deliver proteins, termed effectors, to the interior of the host cells. These effectors suppress host defenses and interfere with signal transduction pathways to promote infection. Some rhizobial strains possess a functional T3SS, which is involved in the suppression of host defense responses, host range determination, and symbiotic efficiency. The analysis of the genome of the broad-host-range rhizobial strain Sinorhizobium fredii HH103 identified eight genes that code for putative T3SS effectors. Three of these effectors, NopL, NopP, and NopI, are Rhizobium specific. In this work, we demonstrate that NopI, whose amino acid sequence shows a certain similarity with NopP, is secreted through the S. fredii HH103 T3SS in response to flavonoids. We also determined that NopL can be considered an effector since it is directly secreted to the interior of the host cell as demonstrated by adenylate cyclase assays. Finally, the symbiotic phenotype of single, double, and triple nopI, nopL, and nopP mutants in soybean and cowpea was assayed, showing that NopI plays an important role in determining the number of nodules formed in both legumes and that the absence of both NopL and NopP is highly detrimental for symbiosis.IMPORTANCE The paper is focused on three Rhizobium-specific T3SS effectors of Sinorhizobium fredii HH103, NopL, NopP, and NopI. We demonstrate that S. fredii HH103 is able to secrete through the T3SS in response to flavonoids the nodulation outer protein NopI. Additionally, we determined that NopL can be considered an effector since it is secreted to the interior of the host cell as demonstrated by adenylate cyclase assays. Finally, nodulation assays of soybean and cowpea indicated that NopI is important for the determination of the number of nodules formed and that the absence of both NopL and NopP negatively affected

  4. The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala.

    PubMed

    Tittabutr, Panlada; Awaya, Jonathan D; Li, Qing X; Borthakur, Dulal

    2008-06-01

    The objective of this study was to determine the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase of symbionts in nodulation and growth of Leucaena leucocephala. The acdS genes encoding ACC deaminase were cloned from Rhizobium sp. strain TAL1145 and Sinorhizobium sp. BL3 in multicopy plasmids, and transferred to TAL1145. The BL3-acdS gene greatly enhanced ACC deaminase activity in TAL1145 compared to the native acdS gene. The transconjugants of TAL1145 containing the native or BL3 acdS gene could grow in minimal media containing 1.5mM ACC, whereas BL3 could tolerate up to 3mM ACC. The TAL1145 acdS gene was inducible by mimosine and not by ACC, while the BL3 acdS gene was highly inducible by ACC and not by mimosine. The transconjugants of TAL1145 containing the native- and BL3-acdS genes formed nodules with greater number and sizes, and produced higher root mass on L. leucocephala than by TAL1145. This study shows that the introduction of multiple copies of the acdS gene increased ACC deaminase activities of TAL1145 and enhanced its symbiotic efficiency on L. leucocephala.

  5. High-resolution transcriptomic analyses of Sinorhizobium sp. NGR234 bacteroids in determinate nodules of Vigna unguiculata and indeterminate nodules of Leucaena leucocephala.

    PubMed

    Li, Yan; Tian, Chang Fu; Chen, Wen Feng; Wang, Lei; Sui, Xin Hua; Chen, Wen Xin

    2013-01-01

    The rhizobium-legume symbiosis is a model system for studying mutualistic interactions between bacteria and eukaryotes. Sinorhizobium sp. NGR234 is distinguished by its ability to form either indeterminate nodules or determinate nodules with diverse legumes. Here, we presented a high-resolution RNA-seq transcriptomic analysis of NGR234 bacteroids in indeterminate nodules of Leucaena leucocephala and determinate nodules of Vigna unguiculata. In contrast to exponentially growing free-living bacteria, non-growing bacteroids from both legumes recruited several common cellular functions such as cbb3 oxidase, thiamine biosynthesis, nitrate reduction pathway (NO-producing), succinate metabolism, PHB (poly-3-hydroxybutyrate) biosynthesis and phosphate/phosphonate transporters. However, different transcription profiles between bacteroids from two legumes were also uncovered for genes involved in the biosynthesis of exopolysaccharides, lipopolysaccharides, T3SS (type three secretion system) and effector proteins, cytochrome bd ubiquinol oxidase, PQQ (pyrroloquinoline quinone), cytochrome c550, pseudoazurin, biotin, phasins and glycolate oxidase, and in the metabolism of glutamate and phenylalanine. Noteworthy were the distinct expression patterns of genes encoding phasins, which are thought to be involved in regulating the surface/volume ratio of PHB granules. These patterns are in good agreement with the observed granule size difference between bacteroids from L. leucocephala and V. unguiculata.

  6. High-Resolution Transcriptomic Analyses of Sinorhizobium sp. NGR234 Bacteroids in Determinate Nodules of Vigna unguiculata and Indeterminate Nodules of Leucaena leucocephala

    PubMed Central

    Li, Yan; Tian, Chang Fu; Chen, Wen Feng; Wang, Lei; Sui, Xin Hua; Chen, Wen Xin

    2013-01-01

    The rhizobium-legume symbiosis is a model system for studying mutualistic interactions between bacteria and eukaryotes. Sinorhizobium sp. NGR234 is distinguished by its ability to form either indeterminate nodules or determinate nodules with diverse legumes. Here, we presented a high-resolution RNA-seq transcriptomic analysis of NGR234 bacteroids in indeterminate nodules of Leucaena leucocephala and determinate nodules of Vigna unguiculata. In contrast to exponentially growing free-living bacteria, non-growing bacteroids from both legumes recruited several common cellular functions such as cbb3 oxidase, thiamine biosynthesis, nitrate reduction pathway (NO-producing), succinate metabolism, PHB (poly-3-hydroxybutyrate) biosynthesis and phosphate/phosphonate transporters. However, different transcription profiles between bacteroids from two legumes were also uncovered for genes involved in the biosynthesis of exopolysaccharides, lipopolysaccharides, T3SS (type three secretion system) and effector proteins, cytochrome bd ubiquinol oxidase, PQQ (pyrroloquinoline quinone), cytochrome c550, pseudoazurin, biotin, phasins and glycolate oxidase, and in the metabolism of glutamate and phenylalanine. Noteworthy were the distinct expression patterns of genes encoding phasins, which are thought to be involved in regulating the surface/volume ratio of PHB granules. These patterns are in good agreement with the observed granule size difference between bacteroids from L. leucocephala and V. unguiculata. PMID:23936444

  7. Salt-tolerance genes involved in cation efflux and osmoregulation of Sinorhizobium fredii RT19 detected by isolation and characterization of Tn5 mutants.

    PubMed

    Jiang, Ju Quan; Wei, Wei; Du, Bing Hai; Li, Xiao Hong; Wang, Lei; Yang, Su Sheng

    2004-10-01

    Salt-tolerance genes of Sinorhizobium fredii RT19 were identified by the construction and screening of a transposon Tn5-1063 library containing over 30,000 clones. Twenty-one salt-sensitive mutants were obtained and five different genes were identified by sequencing. Eight mutants were found with disruptions in the phaA2 gene, which encodes a cation efflux system protein, while mutations in genes encoding other cation effux system proteins were found in seven (phaD2), two (phaF2) and two (phaG2) mutants. A mutation in the metH gene, encoding 5' methyltetrahydrofolate homocysteine methyltransferase, was found in two of the salt sensitive strains. Growth experiments showed that phaA2, phaD2, phaF2 and phaG2 mutants were hypersensitive to Na+/Li+ and slightly sensitive to K+ and not sensitive to sucrose and that metH mutants were highly sensitive to any of Na+, Li+, K+ and sucrose. Na+ intracellular content measurements established that phaA2, phaD2, phaF2 and phaG2 are mainly involved in the Na+ efflux in S. fredii RT19. Recovery of growth of the metH mutants incubated with different concentrations of NaCl could be obtained by additions of methionine, choline and betaine, which showed that the metH gene is probably involved in osmoregulation in S. fredii RT19.

  8. MucR Is Required for Transcriptional Activation of Conserved Ion Transporters to Support Nitrogen Fixation of Sinorhizobium fredii in Soybean Nodules.

    PubMed

    Jiao, Jian; Wu, Li Juan; Zhang, Biliang; Hu, Yue; Li, Yan; Zhang, Xing Xing; Guo, Hui Juan; Liu, Li Xue; Chen, Wen Xin; Zhang, Ziding; Tian, Chang Fu

    2016-05-01

    To achieve effective symbiosis with legume, rhizobia should fine-tune their background regulation network in addition to activating key genes involved in nodulation (nod) and nitrogen fixation (nif). Here, we report that an ancestral zinc finger regulator, MucR1, other than its paralog, MucR2, carrying a frameshift mutation, is essential for supporting nitrogen fixation of Sinorhizobium fredii CCBAU45436 within soybean nodules. In contrast to the chromosomal mucR1, mucR2 is located on symbiosis plasmid, indicating its horizontal transfer potential. A MucR2 homolog lacking the frameshift mutation, such as the one from S. fredii NGR234, can complement phenotypic defects of the mucR1 mutant of CCBAU45436. RNA-seq analysis revealed that the MucR1 regulon of CCBAU45436 within nodules exhibits significant difference compared with that of free-living cells. MucR1 is required for active expression of transporters for phosphate, zinc, and elements essential for nitrogenase activity (iron, molybdenum, and sulfur) in nodules but is dispensable for transcription of key genes (nif/fix) involved in nitrogen fixation. Further reverse genetics suggests that S. fredii uses high-affinity transporters to meet the demand for zinc and phosphate within nodules. These findings, together with the horizontal transfer potential of the mucR homolog, imply an intriguing evolutionary role of this ancestral regulator in supporting nitrogen fixation.

  9. A transcriptomic analysis of the effect of genistein on Sinorhizobium fredii HH103 reveals novel rhizobial genes putatively involved in symbiosis

    PubMed Central

    Pérez-Montaño, F.; Jiménez-Guerrero, I.; Acosta-Jurado, S.; Navarro-Gómez, P.; Ollero, F. J.; Ruiz-Sainz, J. E.; López-Baena, F. J.; Vinardell, J. M.

    2016-01-01

    Sinorhizobium fredii HH103 is a rhizobial soybean symbiont that exhibits an extremely broad host-range. Flavonoids exuded by legume roots induce the expression of rhizobial symbiotic genes and activate the bacterial protein NodD, which binds to regulatory DNA sequences called nod boxes (NB). NB drive the expression of genes involved in the production of molecular signals (Nod factors) as well as the transcription of ttsI, whose encoded product binds to tts boxes (TB), inducing the secretion of proteins (effectors) through the type 3 secretion system (T3SS). In this work, a S. fredii HH103 global gene expression analysis in the presence of the flavonoid genistein was carried out, revealing a complex regulatory network. Three groups of genes differentially expressed were identified: i) genes controlled by NB, ii) genes regulated by TB, and iii) genes not preceded by a NB or a TB. Interestingly, we have found differentially expressed genes not previously studied in rhizobia, being some of them not related to Nod factors or the T3SS. Future characterization of these putative symbiotic-related genes could shed light on the understanding of the complex molecular dialogue established between rhizobia and legumes. PMID:27539649

  10. sRNA-Xcc1, an integron-encoded transposon- and plasmid-transferred trans-acting sRNA, is under the positive control of the key virulence regulators HrpG and HrpX of Xanthomonas campestris pathovar campestris.

    PubMed

    Chen, Xiao-Lin; Tang, Dong-Jie; Jiang, Rui-Ping; He, Yong-Qiang; Jiang, Bo-Le; Lu, Guang-Tao; Tang, Ji-Liang

    2011-01-01

    sRNA-Xcc1 is a trans-acting sRNA recently identified from the plant pathogenic bacterium Xanthomonas campestris pathovar campestris (Xcc). Here, the phylogenetic distribution, predicted secondary structure and regulation of expression of sRNA-Xcc1 were analyzed. The analysis showed (1) a total 81 sRNA-Xcc1 homologs that are found in some bacterial strains that are taxonomically unrelated, belonging to the α-, β-, γ- and δ-proteobacteria (2) that some sRNA-Xcc1 homologs are located in a plasmid-borne transposon or near a transposase coding gene, (3) that sRNA-Xcc1 is encoded by a integron gene cassette in Xcc and sRNA-Xcc1 homologs occur in integron gene cassettes of some uncultured bacteria and (4) that sRNA-Xcc1 homologs have a highly conserved sequence motif and a stable consensus secondary structure. These findings strongly support the idea that sRNA-Xcc1 represents a novel family of sRNAs which may be originally captured by integrons from natural environments and then spread among different bacterial species via horizontal gene transfer, possibly by means of transposons and plasmids. The expression analysis results demonstrated that the transcription of sRNA-Xcc1 is under the positive control of the key virulence regulators HrpG and HrpX, indicating that sRNA-Xcc1 may be involved in the virulence regulation of Xcc.

  11. Possible Role of 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Activity of Sinorhizobium sp. BL3 on Symbiosis with Mung Bean and Determinate Nodule Senescence

    PubMed Central

    Tittabutr, Panlada; Sripakdi, Sudarat; Boonkerd, Nantakorn; Tanthanuch, Waraporn; Minamisawa, Kiwamu; Teaumroong, Neung

    2015-01-01

    Sinorhizobium sp. BL3 forms symbiotic interactions with mung bean (Vigna radiata) and contains lrpL-acdS genes, which encode the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme that cleaves ACC, a precursor of plant ethylene synthesis. Since ethylene interferes with nodule formation in some legumes and plays a role in senescence in plant cells, BL3-enhancing ACC deaminase activity (BL3+) and defective mutant (BL3−) strains were constructed in order to investigate the effects of this enzyme on symbiosis and nodule senescence. Nodulation competitiveness was weaker in BL3− than in the wild-type, but was stronger in BL3+. The inoculation of BL3− into mung bean resulted in less plant growth, a lower nodule dry weight, and smaller nodule number than those in the wild-type, whereas the inoculation of BL3+ had no marked effects. However, similar nitrogenase activity was observed with all treatments; it was strongly detected 3 weeks after the inoculation and gradually declined with time, indicating senescence. The rate of plant nodulation by BL3+ increased in a time-dependent manner. Nodules occupied by BL3− formed smaller symbiosomes, and bacteroid degradation was more prominent than that in the wild-type 7 weeks after the inoculation. Changes in biochemical molecules during nodulation were tracked by Fourier Transform Infrared (FT-IR) microspectroscopy, and the results obtained confirmed that aging processes differed in nodules occupied by BL3 and BL3−. This is the first study to show the possible role of ACC deaminase activity in senescence in determinate nodules. Our results suggest that an increase in ACC deaminase activity in this strain does not extend the lifespan of nodules, whereas the lack of this activity may accelerate nodule senescence. PMID:26657304

  12. Genetic Analysis Reveals the Essential Role of Nitrogen Phosphotransferase System Components in Sinorhizobium fredii CCBAU 45436 Symbioses with Soybean and Pigeonpea Plants

    PubMed Central

    Li, Yue Zhen; Wang, Dan; Feng, Xue Ying; Jiao, Jian; Chen, Wen Xin

    2015-01-01

    The nitrogen phosphotransferase system (PTSNtr) consists of EINtr, NPr, and EIIANtr. The active phosphate moiety derived from phosphoenolpyruvate is transferred through EINtr and NPr to EIIANtr. Sinorhizobium fredii can establish a nitrogen-fixing symbiosis with the legume crops soybean (as determinate nodules) and pigeonpea (as indeterminate nodules). In this study, S. fredii strains with mutations in ptsP and ptsO (encoding EINtr and NPr, respectively) formed ineffective nodules on soybeans, while a strain with a ptsN mutation (encoding EIIANtr) was not defective in symbiosis with soybeans. Notable reductions in the numbers of bacteroids within each symbiosome and of poly-β-hydroxybutyrate granules in bacteroids were observed in nodules infected by the ptsP or ptsO mutant strains but not in those infected with the ptsN mutant strain. However, these defects of the ptsP and ptsO mutant strains were recovered in ptsP ptsN and ptsO ptsN double-mutant strains, implying a negative role of unphosphorylated EIIANtr in symbiosis. Moreover, the symbiotic defect of the ptsP mutant was also recovered by expressing EINtr with or without the GAF domain, indicating that the putative glutamine-sensing domain GAF is dispensable in symbiotic interactions. The critical role of PTSNtr in symbiosis was also observed when related PTSNtr mutant strains of S. fredii were inoculated on pigeonpea plants. Furthermore, nodule occupancy and carbon utilization tests suggested that multiple outputs could be derived from components of PTSNtr in addition to the negative role of unphosphorylated EIIANtr. PMID:26682851

  13. Structural determination of a 5-acetamido-3,5,7, 9-tetradeoxy-7-(3-hydroxybutyramido)-L-glycero-L-manno-nonulos onic acid-containing homopolysaccharide isolated from Sinorhizobium fredii HH103.

    PubMed Central

    Gil-Serrano, A M; Rodríguez-Carvajal, M A; Tejero-Mateo, P; Espartero, J L; Menendez, M; Corzo, J; Ruiz-Sainz, J E; BuendíA-Clavería, A M

    1999-01-01

    The structure of a polysaccharide from Sinorhizobium fredii HH103 has been determined. This polysaccharide was isolated by following the protocol for lipopolysaccharide extraction. On the basis of monosaccharide analysis, methylation analysis, fast atom bombardment MS, matrix-assisted laser desorption ionization MS, electron-impact high-resolution MS, one-dimensional (1)H-NMR and (13)C-NMR and two-dimensional NMR experiments, the structure was shown to consist of a homopolymer of a 3:1 mixture of 5-acetamido-3,5,7, 9-tetradeoxy-7-[(R)- and (S)-3-hydroxybutyramido]-l-glycero-l-manno-nonulosonic acid. The sugar residues are attached via a glycosidic linkage to the OH group of the 3-hydroxybutyramido substituent and thus the monomers are linked via both glycosidic and amidic linkages. In contrast with the Sinorhizobium K-antigens previously reported, which are composed of a disaccharide repeating unit, the K-antigen polysacharide of S. fredii HH103 is a homopolysaccharide. PMID:10477263

  14. Alfalfa nodules elicited by a flavodoxin-overexpressing Ensifer meliloti strain display nitrogen-fixing activity with enhanced tolerance to salinity stress.

    PubMed

    Redondo, Francisco J; Coba de la Peña, Teodoro; Lucas, M Mercedes; Pueyo, José J

    2012-12-01

    Nitrogen fixation by legumes is very sensitive to salinity stress, which can severely reduce the productivity of legume crops and their soil-enriching capacity. Salinity is known to cause oxidative stress in the nodule by generating reactive oxygen species (ROS). Flavodoxins are involved in the response to oxidative stress in bacteria and cyanobacteria. Prevention of ROS production by flavodoxin overexpression in bacteroids might lead to a protective effect on nodule functioning under salinity stress. Tolerance to salinity stress was evaluated in alfalfa nodules elicited by an Ensifer meliloti strain that overexpressed a cyanobacterial flavodoxin compared with nodules produced by the wild-type bacteria. Nitrogen fixation, antioxidant and carbon metabolism enzyme activities were determined. The decline in nitrogenase activity associated to salinity stress was significantly less in flavodoxin-expressing than in wild-type nodules. We detected small but significant changes in nodule antioxidant metabolism involving the ascorbate-glutathione cycle enzymes and metabolites, as well as differences in activity of the carbon metabolism enzyme sucrose synthase, and an atypical starch accumulation pattern in flavodoxin-containing nodules. Salt-induced structural and ultrastructural alterations were examined in detail in alfalfa wild-type nodules by light and electron microscopy and compared to flavodoxin-containing nodules. Flavodoxin reduced salt-induced structural damage, which primarily affected young infected tissues and not fully differentiated bacteroids. The results indicate that overexpression of flavodoxin in bacteroids has a protective effect on the function and structure of alfalfa nodules subjected to salinity stress conditions. Putative protection mechanisms are discussed.

  15. Final report for DOE grant FG02-06ER15805

    SciTech Connect

    Gage, Daniel

    2012-05-31

    DOE funding was used to investigate the role of the phosphotransferase system (PTS) in the symbiotic, nodulating bacterium Sinorhizobium meliloti. This system is well studied in several bacterial species. However, it's organization and function in S. meliloti is substantially different than in the those other, well-studied bacteria. The S. meliloti PTS, through our DOE-funded work, has become a model for how this important signal transduction system works in the a-proteobacteria. We have found that the PTS is relatively simple, used for only signal transduction and not transport, and is involved in regulation of carbon metabolism in response to carbon availability and nitrogen availability.

  16. The Absence of the N-acyl-homoserine-lactone Autoinducer Synthase Genes traI and ngrI Increases the Copy Number of the Symbiotic Plasmid in Sinorhizobium fredii NGR234

    PubMed Central

    Grote, Jessica; Krysciak, Dagmar; Petersen, Katrin; Güllert, Simon; Schmeisser, Christel; Förstner, Konrad U.; Krishnan, Hari B.; Schwalbe, Harald; Kubatova, Nina; Streit, Wolfgang R.

    2016-01-01

    Plant-released flavonoids induce the transcription of symbiotic genes in rhizobia and one of the first bacterial responses is the synthesis of so called Nod factors. They are responsible for the initial root hair curling during onset of root nodule development. This signal exchange is believed to be essential for initiating the plant symbiosis with rhizobia affiliated with the Alphaproteobacteria. Here, we provide evidence that in the broad host range strain Sinorhizobium fredii NGR234 the complete lack of quorum sensing molecules results in an elevated copy number of its symbiotic plasmid (pNGR234a). This in turn triggers the expression of symbiotic genes and the production of Nod factors in the absence of plant signals. Therefore, increasing the copy number of specific plasmids could be a widespread mechanism of specialized bacterial populations to bridge gaps in signaling cascades. PMID:27917168

  17. Application of Multilocus Sequence Typing To Study the Genetic Structure of Megaplasmids in Medicago-Nodulating Rhizobia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multilocus sequence typing (MLST) analysis was used to examine the relatedness and distribution of genotypic variants of the two large extrachromosomal replicons in Medicago-nodulating rhizobia (Sinorhizobium meliloti and S. medicae). One goal was to develop a strategy for the characterization of...

  18. Persistence and diversity of rhizobial bacteria nodulating alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most alfalfa seed is treated with an inoculant consisting of several strains of the nitrogen fixing bacterium Sinorhizobium meliloti to enhance nodulation of seedlings. One strategy for increasing alfalfa forage yields, particularly in less fertile sites, is selection and use of highly competitive a...

  19. The Sinorhizobium fredii HH103 MucR1 Global Regulator Is Connected With the nod Regulon and Is Required for Efficient Symbiosis With Lotus burttii and Glycine max cv. Williams.

    PubMed

    Acosta-Jurado, Sebastián; Alias-Villegas, Cynthia; Navarro-Gómez, Pilar; Zehner, Susanne; Murdoch, Piedad Del Socorro; Rodríguez-Carvajal, Miguel A; Soto, María J; Ollero, Francisco-Javier; Ruiz-Sainz, José E; Göttfert, Michael; Vinardell, José-María

    2016-09-01

    Sinorhizobium fredii HH103 is a rhizobial strain showing a broad host range of nodulation. In addition to the induction of bacterial nodulation genes, transition from a free-living to a symbiotic state requires complex genetic expression changes with the participation of global regulators. We have analyzed the role of the zinc-finger transcriptional regulator MucR1 from S. fredii HH103 under both free-living conditions and symbiosis with two HH103 host plants, Glycine max and Lotus burttii. Inactivation of HH103 mucR1 led to a severe decrease in exopolysaccharide (EPS) biosynthesis but enhanced production of external cyclic glucans (CG). This mutant also showed increased cell aggregation capacity as well as a drastic reduction in nitrogen-fixation capacity with G. max and L. burttii. However, in these two legumes, the number of nodules induced by the mucR1 mutant was significantly increased and decreased, respectively, with respect to the wild-type strain, indicating that MucR1 can differently affect nodulation depending on the host plant. RNA-Seq analysis carried out in the absence and the presence of flavonoids showed that MucR1 controls the expression of hundreds of genes (including some related to EPS production and CG transport), some of them being related to the nod regulon.

  20. NolX of Sinorhizobium fredii USDA257, a Type III-Secreted Protein Involved in Host Range Determination, Is Localized in the Infection Threads of Cowpea (Vigna unguiculata [L.] Walp) and Soybean (Glycine max [L.] Merr.) Nodules

    PubMed Central

    Krishnan, Hari B.

    2002-01-01

    Sinorhizobium fredii USDA257 forms nitrogen-fixing nodules on soybean (Glycine max [L.] Merr.) in a cultivar-specific manner. This strain forms nodules on primitive soybean cultivars but fails to nodulate agronomically improved North American cultivars. Soybean cultivar specificity is regulated by the nolXWBTUV locus, which encodes part of a type III secretion system (TTSS). NolX, a soybean cultivar specificity protein, is secreted by TTSS and shows homology to HrpF of the plant pathogen Xanthomonas campestris pv. vesicatoria. It is not known whether NolX functions at the bacterium-plant interface or acts inside the host cell. Antibodies raised against S. fredii USDA257 NolX were used in immunocytochemical studies to investigate the subcellular localization of this protein. Immunostaining of paraffin-embedded sections of developing soybean and cowpea (Vigna unguiculata [L.] Walp) nodules revealed localization of NolX in the infection threads. Protein A-gold immunocytochemical localization studies utilizing affinity-purified NolX antibodies revealed specific deposition of gold particles in the fibrillar material inside infection threads. Similar immunogold localization studies failed to detect NolX in thin sections of mature soybean and cowpea nodules. The results from this study indicate that NolX is expressed in planta only during the early stages of nodule development. PMID:11790754

  1. N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens.

    PubMed

    Hernández-Reyes, Casandra; Schenk, Sebastian T; Neumann, Christina; Kogel, Karl-Heinz; Schikora, Adam

    2014-11-01

    The implementation of beneficial microorganisms for plant protection has a long history. Many rhizobia bacteria are able to influence the immune system of host plants by inducing resistance towards pathogenic microorganisms. In this report, we present a translational approach in which we demonstrate the resistance-inducing effect of Ensifer meliloti (Sinorhizobium meliloti) on crop plants that have a significant impact on the worldwide economy and on human nutrition. Ensifer meliloti is usually associated with root nodulation in legumes and nitrogen fixation. Here, we suggest that the ability of S. meliloti to induce resistance depends on the production of the quorum-sensing molecule, oxo-C14-HSL. The capacity to enhanced resistance provides a possibility to the use these beneficial bacteria in agriculture. Using the Arabidopsis-Salmonella model, we also demonstrate that the application of N-acyl-homoserine lactones-producing bacteria could be a successful strategy to prevent plant-originated infections with human pathogens.

  2. N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens

    PubMed Central

    Hernández-Reyes, Casandra; Schenk, Sebastian T; Neumann, Christina; Kogel, Karl-Heinz; Schikora, Adam

    2014-01-01

    The implementation of beneficial microorganisms for plant protection has a long history. Many rhizobia bacteria are able to influence the immune system of host plants by inducing resistance towards pathogenic microorganisms. In this report, we present a translational approach in which we demonstrate the resistance-inducing effect of Ensifer meliloti (Sinorhizobium meliloti) on crop plants that have a significant impact on the worldwide economy and on human nutrition. Ensifer meliloti is usually associated with root nodulation in legumes and nitrogen fixation. Here, we suggest that the ability of S. meliloti to induce resistance depends on the production of the quorum-sensing molecule, oxo-C14-HSL. The capacity to enhanced resistance provides a possibility to the use these beneficial bacteria in agriculture. Using the Arabidopsis-Salmonella model, we also demonstrate that the application of N-acyl-homoserine lactones-producing bacteria could be a successful strategy to prevent plant-originated infections with human pathogens. PMID:25234390

  3. The model symbiotic association between Medicago truncatula cv. Jemalong and Rhizobium meliloti strain 2011 leads to N-stressed plants when symbiotic N2 fixation is the main N source for plant growth.

    PubMed

    Moreau, Delphine; Voisin, Anne-Sophie; Salon, Christophe; Munier-Jolain, Nathalie

    2008-01-01

    A better knowledge of the nitrogen nutrition of Medicago truncatula at the whole plant level and its modulation by environmental factors is a crucial step to reach a complete understanding of legume nitrogen nutrition. This study was based on the symbiotic system that is the most commonly used by the research community (M. truncatula cv. Jemalong A17 x Rhizobium meliloti strain 2011). Plant nitrogen nutrition was analysed in relation to carbon nutrition, under a range of nitrate concentrations in the nutrient solution and different light conditions. This study shows that this 'model symbiotic association' does not allow the plant to meet its nitrogen requirements, when dinitrogen fixation is the main nitrogen source for plant growth. A strong interaction between nitrogen and carbon nutrition was shown: when plant nitrogen requirements were not sustained, plant leaf area was much affected whereas photosynthesis per unit leaf area remained relatively stable. Both total nitrogen uptake and leaf area increased with increasing nitrate concentration in the nutrient solution; the magnitude of these responses varied according to the light conditions. Interestingly, the plant nitrogen nutrition level remained nearly unaffected by the light conditions. The observed nitrogen-limitation in this 'model symbiotic association' is an important finding for the research community. Based on practical recommendations regarding both the experimental conditions and the phenotypic traits to consider, a methodological framework was proposed to (i) help genomicists to assess plant nitrogen nutrition better, and (ii) assist in the detection of new genetic variants affected for nitrogen uptake in large-scale phenotyping studies.

  4. Microgravity Effects on the Early Events of Biological Nitrogen Fixation in Medicago Truncatula: Results from the SyNRGE Experiment

    NASA Technical Reports Server (NTRS)

    Stutte, Gary W.; Roberts, Michael

    2012-01-01

    SyNRGE (Symbiotic Nodulation in a Reduced Gravity Environment) was a sortie mission on STS-135 in the Biological Research in Canisters (BRIC) hardware to study the effect of microgravity on a plant-microbe symbiosis resulting in biological nitrogen fixation. Medicago truncatula, a model species for th legume family, was inoculated with its bacterial symbiont, Sinorhizobium meliloti, to observe early biomolecular events associated with infection and nodulation in Petri Dish Fixation Units (PDFU's).

  5. Genetic characterization of fast-growing rhizobia able to nodulate Prosopis alba in North Spain.

    PubMed

    Iglesias, Olga; Rivas, Raúl; García-Fraile, Paula; Abril, Adriana; Mateos, Pedro F; Martinez-Molina, Eustoquio; Velázquez, Encarna

    2007-12-01

    Prosopis is a Mimosaceae legume tree indigenous to South America and not naturalized in Europe. In this work 18 rhizobial strains nodulating Prosopis alba roots were isolated from a soil in North Spain that belong to eight different randomly amplified polymorphic DNA groups phylogenetically related to Sinorhizobium medicae, Sinorhizobium meliloti and Rhizobium giardinii according to their intergenic spacer and 16S rRNA gene sequences. The nodC genes of isolates close to S. medicae and S. meliloti were identical to those of S. medicae USDA 1,037(T) and S. meliloti LMG 6,133(T) and accordingly all these strains were able to nodulate both alfalfa and Prosopis. These nodC genes were phylogenetically divergent from those of the isolates close to R. giardinii that were identical to that of R. giardinii H152(T) and therefore all these strains formed nodules in common beans and Prosopis. The nodC genes of the strains isolated in Spain were phylogenetically divergent from that carried by Mesorhizobium chacoense Pr-5(T) and Sinorhizobium arboris LMG 1,4919(T) nodulating Prosopis in America and Africa, respectively. Therefore, Prosopis is a promiscuous host which can establish symbiosis with strains carrying very divergent nodC genes and this promiscuity may be an important advantage for this legume tree to be used in reforestation.

  6. Role of cysteine residues and disulfide bonds in the activity of a legume root nodule-specific, cysteine-rich peptide.

    PubMed

    Haag, Andreas F; Kerscher, Bernhard; Dall'Angelo, Sergio; Sani, Monica; Longhi, Renato; Baloban, Mikhail; Wilson, Heather M; Mergaert, Peter; Zanda, Matteo; Ferguson, Gail P

    2012-03-30

    The root nodules of certain legumes including Medicago truncatula produce >300 different nodule-specific cysteine-rich (NCR) peptides. Medicago NCR antimicrobial peptides (AMPs) mediate the differentiation of the bacterium, Sinorhizobium meliloti into a nitrogen-fixing bacteroid within the legume root nodules. In vitro, NCR AMPs such as NCR247 induced bacteroid features and exhibited antimicrobial activity against S. meliloti. The bacterial BacA protein is critical to prevent S. meliloti from being hypersensitive toward NCR AMPs. NCR AMPs are cationic and have conserved cysteine residues, which form disulfide (S-S) bridges. However, the natural configuration of NCR AMP S-S bridges and the role of these in the activity of the peptide are unknown. In this study, we found that either cysteine replacements or S-S bond modifications influenced the activity of NCR247 against S. meliloti. Specifically, either substitution of cysteines for serines, changing the S-S bridges from cysteines 1-2, 3-4 to 1-3, 2-4 or oxidation of NCR247 lowered its activity against S. meliloti. We also determined that BacA specifically protected S. meliloti against oxidized NCR247. Due to the large number of different NCRs synthesized by legume root nodules and the importance of bacterial BacA proteins for prolonged host infections, these findings have important implications for analyzing the function of these novel peptides and the protective role of BacA in the bacterial response toward these peptides.

  7. Microorganisms from Permafrost Viable and Detectable by 16SRNA Analysis: A Model for Mars

    NASA Technical Reports Server (NTRS)

    Tsapin, A. I.; McDonald, G. D.; Andrews, M.; Bhartia, R.; Douglas, S.; Gilichinsky, D.

    1999-01-01

    Preliminary studies of Arctic and Antarctic permafrost have shown that this environment harbors microorganisms which can be isolated in pure culture, and that these organisms can survive for a long period of time (up to 20 Ma) in permafrost. It is believed that the permanent subzero temperatures in permafrost and ice environments are the main parameters ensuring the longevity of microbes. In this project we studied permafrost cores from different areas of the Siberian Arctic and Antarctic, with ages from several thousand years up to several millions years (Ma). In general, Antarctic permafrost has a higher sand content, while Siberian permafrost has a texture more characteristic of clay or normal soil. Additional information is contained in the original extended abstract.

  8. Finding sRNA generative locales from high-throughput sequencing data with NiBLS

    PubMed Central

    2010-01-01

    Background Next-generation sequencing technologies allow researchers to obtain millions of sequence reads in a single experiment. One important use of the technology is the sequencing of small non-coding regulatory RNAs and the identification of the genomic locales from which they originate. Currently, there is a paucity of methods for finding small RNA generative locales. Results We describe and implement an algorithm that can determine small RNA generative locales from high-throughput sequencing data. The algorithm creates a network, or graph, of the small RNAs by creating links between them depending on their proximity on the target genome. For each of the sub-networks in the resulting graph the clustering coefficient, a measure of the interconnectedness of the subnetwork, is used to identify the generative locales. We test the algorithm over a wide range of parameters using RFAM sequences as positive controls and demonstrate that the algorithm has good sensitivity and specificity in a range of Arabidopsis and mouse small RNA sequence sets and that the locales it generates are robust to differences in the choice of parameters. Conclusions NiBLS is a fast, reliable and sensitive method for determining small RNA locales in high-throughput sequence data that is generally applicable to all classes of small RNA. PMID:20167070

  9. The trehalose utilization gene thuA ortholog in Mesorhizobium loti does not influence competitiveness for nodulation on Lotus spp.

    PubMed

    Ampomah, Osei Yaw; Jensen, John Beck

    2014-03-01

    Competitiveness for nodulation is a desirable trait in rhizobia strains used as inoculant. In Sinorhizobium meliloti 1021 mutation in either of the trehalose utilization genes thuA or thuB influences its competitiveness for root colonization and nodule occupancy depending on the interacting host. We have therefore investigated whether mutation in the thuA ortholog in Mesorhizobium loti MAFF303099 also leads to a similar competitive phenotype on its hosts. The results show that M. loti thuA mutant Ml7023 was symbiotically effective and was as competitive as the wild type in colonization and nodule occupancy on Lotus corniculatus and Lotus japonicus. The thuA gene in M. loti was not induced during root colonization or in the infection threads unlike in S. meliloti, despite its induction by trehalose and high osmolarity in in vitro assays.

  10. Characterization of a copper-resistant symbiotic bacterium isolated from Medicago lupulina growing in mine tailings.

    PubMed

    Fan, Lian-Mei; Ma, Zhan-Qiang; Liang, Jian-Qiang; Li, Hui-Fen; Wang, En-Tao; Wei, Ge-Hong

    2011-01-01

    A root nodule bacterium, Sinorhizobium meliloti CCNWSX0020, resistant to 1.4 mM Cu2+ was isolated from Medicago lupulina growing in mine tailings. In medium supplied with copper, this bacterium showed cell deformation and aggregation due to precipitation of copper on the cell surface. Genes similar to the copper-resistant genes, pcoR and pcoA from Escherichia coli, were amplified by PCR from a 1.4-Mb megaplasmid. Inoculation with S. meliloti CCNWSX0020 increased the biomass of M. lupulina grown in medium added 0 and 100 mg Cu2+ kg(-1) by 45.8% and 78.2%, respectively, and increased the copper concentration inside the plant tissues grown in medium supplied with 100 μM Cu2+ by 39.3%, demonstrating that it is a prospective symbiotic system for bioremediation purposes.

  11. The effect of acidity on the distribution and symbiotic efficiency of rhizobia in Lithuanian soils

    NASA Astrophysics Data System (ADS)

    Lapinskas, E. B.

    2007-04-01

    The distribution and symbiotic efficiency of nodule bacteria Rhizobium leguminosarum_bv. trifolii F., Sinorhizobium meliloti D., Rhizobium galegae L., and Rhizobium leguminosarum bv. viciae F. in Lithuanian soils as dependent on the soil acidity were studied in the long-term field, pot, and laboratory experiments. The critical and optimal pH values controlling the distribution of rhizobia and the symbiotic nitrogen fixation were determined for every bacterial species. The relationship was found between the soil pH and the nitrogen-fixing capacity of rhizobia. A positive effect of liming of acid soils in combination with inoculation of legumes on the efficiency of symbiotic nitrogen fixation was demonstrated.

  12. Polymer-induced phase separation in suspensions of bacteria

    NASA Astrophysics Data System (ADS)

    Schwarz-Linek, J.; Dorken, G.; Winkler, A.; Wilson, L. G.; Pham, N. T.; French, C. E.; Schilling, T.; Poon, W. C. K.

    2010-03-01

    We study phase separation in suspensions of two unrelated species of rod-like bacteria, Escherichia coli and Sinorhizobium meliloti, induced by the addition of two different anionic polyelectrolytes, sodium polystyrene sulfonate or succinoglycan, the former being synthetic and the latter of natural origin. Comparison with the known behaviour of synthetic colloid-polymer mixtures and with simulations show that "depletion" (or, equivalently, "macromolecular crowding") is the dominant mechanism: exclusion of the non-adsorbing polymer from the region between two neighbouring bacteria creates an unbalanced osmotic force pushing them together. The implications of our results for understanding phenomena such as biofilm formation are discussed.

  13. RNA Sequencing Analysis of the Broad-Host-Range Strain Sinorhizobium fredii NGR234 Identifies a Large Set of Genes Linked to Quorum Sensing-Dependent Regulation in the Background of a traI and ngrI Deletion Mutant

    PubMed Central

    Krysciak, Dagmar; Grote, Jessica; Rodriguez Orbegoso, Mariita; Utpatel, Christian; Förstner, Konrad U.; Li, Lei; Schmeisser, Christel; Krishnan, Hari B.

    2014-01-01

    The alphaproteobacterium Sinorhizobium fredii NGR234 has an exceptionally wide host range, as it forms nitrogen-fixing nodules with more legumes than any other known microsymbiont. Within its 6.9-Mbp genome, it encodes two N-acyl-homoserine-lactone synthase genes (i.e., traI and ngrI) involved in the biosynthesis of two distinct autoinducer I-type molecules. Here, we report on the construction of an NGR234-ΔtraI and an NGR234-ΔngrI mutant and their genome-wide transcriptome analysis. A high-resolution RNA sequencing (RNA-seq) analysis of early-stationary-phase cultures in the NGR234-ΔtraI background suggested that up to 316 genes were differentially expressed in the NGR234-ΔtraI mutant versus the parent strain. Similarly, in the background of NGR234-ΔngrI 466 differentially regulated genes were identified. Accordingly, a common set of 186 genes was regulated by the TraI/R and NgrI/R regulon. Coregulated genes included 42 flagellar biosynthesis genes and 22 genes linked to exopolysaccharide (EPS) biosynthesis. Among the genes and open reading frames (ORFs) that were differentially regulated in NGR234-ΔtraI were those linked to replication of the pNGR234a symbiotic plasmid and cytochrome c oxidases. Biotin and pyrroloquinoline quinone biosynthesis genes were differentially expressed in the NGR234-ΔngrI mutant as well as the entire cluster of 21 genes linked to assembly of the NGR234 type III secretion system (T3SS-II). Further, we also discovered that genes responsible for rhizopine catabolism in NGR234 were strongly repressed in the presence of high levels of N-acyl-homoserine-lactones. Together with nodulation assays, the RNA-seq-based findings suggested that quorum sensing (QS)-dependent gene regulation appears to be of higher relevance during nonsymbiotic growth rather than for life within root nodules. PMID:25002423

  14. Multifaceted Investigation of Metabolites During Nitrogen Fixation in Medicago via High Resolution MALDI-MS Imaging and ESI-MS

    NASA Astrophysics Data System (ADS)

    Gemperline, Erin; Jayaraman, Dhileepkumar; Maeda, Junko; Ané, Jean-Michel; Li, Lingjun

    2015-01-01

    Legumes have developed the unique ability to establish a symbiotic relationship with soil bacteria known as rhizobia. This interaction results in the formation of root nodules in which rhizobia thrive and reduce atmospheric dinitrogen into plant-usable ammonium through biological nitrogen fixation (BNF). Owing to the availability of genetic information for both of the symbiotic partners, the Medicago truncatula- Sinorhizobium meliloti association is an excellent model for examining the BNF process. Although metabolites are important in this symbiotic association, few studies have investigated the array of metabolites that influence this process. Of these studies, most target only a few specific metabolites, the roles of which are either well known or are part of a well-characterized metabolic pathway. Here, we used a multifaceted mass spectrometric (MS) approach to detect and identify the key metabolites that are present during BNF using the Medicago truncatula- Sinorhizobium meliloti association as the model system. High mass accuracy and high resolution matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) Orbitrap instruments were used in this study and provide complementary results for more in-depth characterization of the nitrogen-fixation process. We used well-characterized plant and bacterial mutants to highlight differences between the metabolites that are present in functional versus nonfunctional nodules. Our study highlights the benefits of using a combination of mass spectrometric techniques to detect differences in metabolite composition and the distributions of these metabolites in plant biology.

  15. Multifaceted Investigation of Metabolites During Nitrogen Fixation in Medicago via High Resolution MALDI-MS Imaging and ESI-MS

    PubMed Central

    Gemperline, Erin; Jayaraman, Dhileepkumar; Maeda, Junko; Ané, Jean-Michel; Li, Lingjun

    2014-01-01

    Legumes have developed the unique ability to establish a symbiotic relationship with soil bacteria known as rhizobia. This interaction results in the formation of root nodules in which rhizobia thrive and reduce atmospheric dinitrogen into plant-usable ammonium through biological nitrogen fixation (BNF). Due to the availability of genetic information for both of the symbiotic partners, the Medicago truncatula–Sinorhizobium meliloti association is an excellent model for examining the BNF process. Although metabolites are important in this symbiotic association, few studies have investigated the array of metabolites that influence this process. Of these studies, most target only a few specific metabolites, the roles of which are either well known or are part of a well-characterized metabolic pathway. Here, we used a multifaceted mass spectrometric (MS) approach to detect and identify the key metabolites that are present during BNF using the Medicago truncatula–Sinorhizobium meliloti association as the model system. High mass accuracy and high resolution matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) Orbitrap instruments were used in this study and provide complementary results for more in-depth characterization of the nitrogen-fixation process. We used well-characterized plant and bacterial mutants to highlight differences between the metabolites that are present in functional vs. non-functional nodules. Our study highlights the benefits of using a combination of mass spectrometric techniques to detect differences in metabolite composition and the distributions of these metabolites in plant biology. PMID:25323862

  16. Molecular Signals Controlling the Inhibition of Nodulation by Nitrate in Medicago truncatula

    PubMed Central

    van Noorden, Giel E.; Verbeek, Rob; Dinh, Quy Dung; Jin, Jian; Green, Alexandra; Ng, Jason Liang Pin; Mathesius, Ulrike

    2016-01-01

    The presence of nitrogen inhibits legume nodule formation, but the mechanism of this inhibition is poorly understood. We found that 2.5 mM nitrate and above significantly inhibited nodule initiation but not root hair curling in Medicago trunatula. We analyzed protein abundance in M. truncatula roots after treatment with either 0 or 2.5 mM nitrate in the presence or absence of its symbiont Sinorhizobium meliloti after 1, 2 and 5 days following inoculation. Two-dimensional gel electrophoresis combined with mass spectrometry was used to identify 106 differentially accumulated proteins responding to nitrate addition, inoculation or time point. While flavonoid-related proteins were less abundant in the presence of nitrate, addition of Nod gene-inducing flavonoids to the Sinorhizobium culture did not rescue nodulation. Accumulation of auxin in response to rhizobia, which is also controlled by flavonoids, still occurred in the presence of nitrate, but did not localize to a nodule initiation site. Several of the changes included defense- and redox-related proteins, and visualization of reactive oxygen species indicated that their induction in root hairs following Sinorhizobium inoculation was inhibited by nitrate. In summary, the presence of nitrate appears to inhibit nodulation via multiple pathways, including changes to flavonoid metabolism, defense responses and redox changes. PMID:27384556

  17. Genetic diversity of fast-growing rhizobia that nodulate soybean ( Glycine max L. Merr).

    PubMed

    Saldaña, Gustavo; Martinez-Alcántara, Virginia; Vinardell, José M; Bellogín, Ramón; Ruíz-Sainz, José E; Balatti, Pedro Alberto

    2003-07-01

    The fast-growing Rhizobium sp. strain NGR234, isolated from Papua New Guinea, and 13 strains of Sinorhizobium fredii, isolated from China and Vietnam, were fingerprinted by means of RAPD, REP, ERIC and ARDRA. ERIC, REP and RAPD markers revealed a considerable genetic diversity among fast-growing rhizobia. Chinese isolates showed higher levels of diversity than those strains isolated from Vietnam. ARDRA analysis revealed three different genotypes among fast-growing rhizobia that nodulate soybean, even though all belonged to a subcluster that included Sinorhizobium saheli and Sinorhizobium meliloti. Among S. fredii rhizobia, two strains, SMH13 and HH303, might be representatives of other species of nitrogen-fixing organisms. Although restriction analysis of the nifD- nifK intergenic DNA fragment confirmed the unique nature of Rhizobium sp. strain NGR234, several similarities between Rhizobium sp. strain NGR234 and S. fredii USDA257, the ARDRA analysis and the full sequence of the 16S rDNA confirmed that NGR234 is a S. fredii strain. In addition, ARDRA analysis and the full sequence of the 16S rDNA suggested that two strains of rhizobia might be representatives of other species of rhizobia.

  18. Enteric YaiW Is a Surface-Exposed Outer Membrane Lipoprotein That Affects Sensitivity to an Antimicrobial Peptide

    PubMed Central

    Arnold, Markus F. F.; Caro-Hernandez, Paola; Tan, Karen; Runti, Giulia; Wehmeier, Silvia; Scocchi, Marco; Doerrler, William T.; Ferguson, Gail P.

    2014-01-01

    yaiW is a previously uncharacterized gene found in enteric bacteria that is of particular interest because it is located adjacent to the sbmA gene, whose bacA ortholog is required for Sinorhizobium meliloti symbiosis and Brucella abortus pathogenesis. We show that yaiW is cotranscribed with sbmA in Escherichia coli and Salmonella enterica serovar Typhi and Typhimurium strains. We present evidence that the YaiW is a palmitate-modified surface exposed outer membrane lipoprotein. Since BacA function affects the very-long-chain fatty acid (VLCFA) modification of S. meliloti and B. abortus lipid A, we tested whether SbmA function might affect either the fatty acid modification of the YaiW lipoprotein or the fatty acid modification of enteric lipid A but found that it did not. Interestingly, we did observe that E. coli SbmA suppresses deficiencies in the VLCFA modification of the lipopolysaccharide of an S. meliloti bacA mutant despite the absence of VLCFA in E. coli. Finally, we found that both YaiW and SbmA positively affect the uptake of proline-rich Bac7 peptides, suggesting a possible connection between their cellular functions. PMID:24214946

  19. The Effects of Clinorotation on the Host Plant, Medicago truncatula, and Its Microbial Symbionts

    NASA Astrophysics Data System (ADS)

    Dauzart, Ariel; Vandenbrink, Joshua; Kiss, John

    2016-02-01

    Understanding the outcome of the plant-microbe symbiosis in altered gravity is vital to developing life support systems for long-distance space travel and colonization of other planets. Thus, the aim of this research was to understand mutualistic relationships between plants and endophytic microbes under the influence of altered gravity. This project utilized the model tripartite relationship among Medicago truncatula ¬- Sinorhizobium meliloti - Rhizophagus irregularis. Plants were inoculated with rhizobial bacteria (S. meliloti), arbuscular mycorrhizal fungi (R. irregularis), or both microbes, and placed on a rotating clinostat. Vertical and horizontal static controls were also performed. Clinorotation significantly reduced M. truncatula dry mass and fresh mass compared to the static controls. The addition of rhizobia treatments under clinorotation also altered total root length and root-to-shoot fresh mass ratio. Nodule size decreased under rhizobia + clinorotation treatment, and nodule density was significantly decreased compared to the vertical treatment. However, inoculation with arbuscular mycorrhizal fungi was shown to increase biomass accumulation and nodule size. Thus, clinorotation significantly affected M. truncatula and its symbiotic relationships with S. meliloti and R. irregularis. In the long term, the results observed in this clinostat study on the changes of plant-microbe mutualism need to be investigated in spaceflight experiments. Thus, careful consideration of the symbiotic microbes of plants should be included in the design of bioregenerative life support systems needed for space travel.

  20. Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress.

    PubMed

    Kong, Zhaoyu; Mohamad, Osama Abdalla; Deng, Zhenshan; Liu, Xiaodong; Glick, Bernard R; Wei, Gehong

    2015-08-01

    The effects of rhizobial symbiosis on the growth, metal uptake, and antioxidant responses of Medicago lupulina in the presence of 200 mg kg(-1) Cu(2+) throughout different stages of symbiosis development were studied. The symbiosis with Sinorhizobium meliloti CCNWSX0020 induced an increase in plant growth and nitrogen content irrespective of the presence of Cu(2+). The total amount of Cu uptake of inoculated plants significantly increased by 34.0 and 120.4% in shoots and roots, respectively, compared with non-inoculated plants. However, although the rhizobial symbiosis promoted Cu accumulation both in shoots and roots, the increase in roots was much higher than in shoots, thus decreasing the translocation factor and helping Cu phytostabilization. The rate of lipid peroxidation was significantly decreased in both shoots and roots of inoculated vs. non-inoculated plants when measured either 8, 13, or 18 days post-inoculation. In comparison with non-inoculated plants, the activities of superoxide dismutase and ascorbate peroxidase of shoots of inoculated plants exposed to excess Cu were significantly elevated at different stages of symbiosis development; similar increases occurred in the activities of superoxide dismutase, catalase, and glutathione reductase of inoculated roots. The symbiosis with S. meliloti CCNWSX0020 also upregulated the corresponding genes involved in antioxidant responses in the plants treated with excess Cu. The results indicated that the rhizobial symbiosis with S. meliloti CCNWSX0020 not only enhanced plant growth and metal uptake but also improved the responses of plant antioxidant defense to excess Cu stress.

  1. Strigolactones in the Rhizobium-legume symbiosis: Stimulatory effect on bacterial surface motility and down-regulation of their levels in nodulated plants.

    PubMed

    Peláez-Vico, María A; Bernabéu-Roda, Lydia; Kohlen, Wouter; Soto, María J; López-Ráez, Juan A

    2016-04-01

    Strigolactones (SLs) are multifunctional molecules acting as modulators of plant responses under nutrient deficient conditions. One of the roles of SLs is to promote beneficial association with arbuscular mycorrhizal (AM) fungi belowground under such stress conditions, mainly phosphorus shortage. Recently, a role of SLs in the Rhizobium-legume symbiosis has been also described. While SLs' function in AM symbiosis is well established, their role in the Rhizobium-legume interaction is still emerging. Recently, SLs have been suggested to stimulate surface motility of rhizobia, opening the possibility that they could also act as molecular cues. The possible effect of SLs in the motility in the alfalfa symbiont Sinorhizobium meliloti was investigated, showing that the synthetic SL analogue GR24 stimulates swarming motility in S. meliloti in a dose-dependent manner. On the other hand, it is known that SL production is regulated by nutrient deficient conditions and by AM symbiosis. Using the model alfalfa-S. meliloti, the impact of phosphorus and nitrogen deficiency, as well as of nodulation on SL production was also assessed. The results showed that phosphorus starvation promoted SL biosynthesis, which was abolished by nitrogen deficiency. In addition, a negative effect of nodulation on SL levels was detected, suggesting a conserved mechanism of SL regulation upon symbiosis establishment.

  2. Poly-3-hydroxybutyrate (PHB) supports survival and reproduction in starving rhizobia.

    PubMed

    Ratcliff, William C; Kadam, Supriya V; Denison, Robert Ford

    2008-09-01

    The carbon that rhizobia in root nodules receive from their host powers both N(2) fixation, which mainly benefits the host, and rhizobium reproduction. Rhizobia also store energy in the lipid poly-3-hydroxybutyrate (PHB), which may enhance rhizobium survival when they are carbon limited, either in nodules or in the soil between hosts. There can be a conflict of interest between rhizobia and legumes over the rate of PHB accumulation, due to a metabolic tradeoff between N(2) fixation and PHB accumulation. To quantify the benefits of PHB to carbon-limited rhizobia, populations of genetically uniform rhizobia with high vs. low PHB (confirmed by flow cytometry) were generated by fractionating Sinorhizobium meliloti via density gradient centrifugation, and also by harvesting cells at early vs. late stationary phase. These rhizobia were starved for 165 days. PHB use during starvation was highly predictive of both initial reproduction and long-term population maintenance. Cultured S. meliloti accumulated enough PHB to triple their initial population size when starved, and to persist for c. 150 days before the population fell below its initial value. During the first 21 days of nodule growth, undifferentiated S. meliloti within alfalfa nodules accumulated enough PHB to support significant increases in reproduction and survival during starvation.

  3. The Rhizobium etli bioMNY operon is involved in biotin transport.

    PubMed

    Guillén-Navarro, Karina; Araíza, Gisela; García-de los Santos, Alejandro; Mora, Yolanda; Dunn, Michael F

    2005-09-15

    Because Rhizobium etli CE3 is normally dependent on an external source of biotin and lacks orthodox biotin biosynthesis genes, we undertook an analysis of biotin uptake in this organism. By complementation of a Sinorhizobium meliloti bioM mutant we isolated an R. etli chromosomal region encoding homologs of the S. meliloti bioMNB genes, whose products have been implicated in intracellular biotin retention in that organism. Disruption of the R. etli bioM resulted in a mutant which took up biotin at a lower rate and accumulated significantly less biotin than the wild type. As in S. meliloti, the R. etli bioMN gene-products resemble the ATPase and permease components, respectively, of an ABC-type transporter. The bioB gene product is in fact similar to members of the BioY family, which has been postulated to function in biotin transport, and we refer to this gene as bioY. An R. etli bioY mutant exhibited lower biotin uptake than the wild-type, providing the first experimental evidence for a role of BioY in biotin transport. We show that the bioMNY operon is transcriptionally repressed by biotin. An analysis of the competitiveness of the wild-type strain versus the bioM mutant showed that the mutant had a diminished capacity to form nodules on bean plants.

  4. Deep 16sRNA sequencing of anterior foregut microbiota from the blue-green sharpshooter (Graphocephala atropunctata)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graphocephala atropunctata (Signoret) (Hemiptera: Cicadellidae) or the blue-green sharpshooter (BGSS) has been long recognized as the principal native vector of Xylella fastidiosa in coastal, wine-grape growing areas of California. X. fastidiosa is the causative agent of Pierce’s disease of grapevin...

  5. Unexpected properties of sRNA promoters allow feedback control via regulation of a two-component system

    PubMed Central

    Brosse, Anaïs; Korobeinikova, Anna; Gottesman, Susan; Guillier, Maude

    2016-01-01

    Two-component systems (TCS) and small regulatory RNAs (sRNAs) are both widespread regulators of gene expression in bacteria. TCS are in most cases transcriptional regulators. A large class of sRNAs act as post-transcriptional regulators of gene expression that modulate the translation and/or stability of target-mRNAs. Many connections have been recently unraveled between these two types of regulators, resulting in mixed regulatory circuits with poorly characterized properties. This study focuses on the negative feedback circuit that exists between the EnvZ-OmpR TCS and the OmrA/B sRNAs. We have shown that OmpR directly activates transcription from the omrA and omrB promoters, allowing production of OmrA/B sRNAs that target multiple mRNAs, including the ompR-envZ mRNA. This control of ompR-envZ by the Omr sRNAs does not affect the amount of phosphorylated OmpR, i.e. the presumably active form of the regulator. Accordingly, expression of robust OmpR targets, such as the ompC or ompF porin genes, is not affected by OmrA/B. However, we find that several OmpR targets, including OmrA/B themselves, are sensitive to changing total OmpR levels. As a result, OmrA/B limit their own synthesis. These findings unravel an additional layer of control in the expression of some OmpR targets and suggest the existence of differential regulation within the OmpR regulon. PMID:27439713

  6. Cloacal Microbiome Structure in a Long-Distance Migratory Bird Assessed Using Deep 16sRNA Pyrosequencing

    PubMed Central

    Kreisinger, Jakub; Čížková, Dagmar; Kropáčková, Lucie; Albrecht, Tomáš

    2015-01-01

    Effects of vertebrate-associated microbiota on physiology and health are of significant interest in current biological research. Most previous studies have focused on host-microbiota interactions in captive-bred mammalian models. These interactions and their outcomes are still relatively understudied, however, in wild populations and non-mammalian taxa. Using deep pyrosequencing, we described the cloacal microbiome (CM) composition in free living barn swallows Hirundo rustica, a long-distance migratory passerine bird. Barn swallow CM was dominated by bacteria of the Actinobacteria, Proteobacteria and Firmicutes phyla. Bacteroidetes, which represent an important proportion of the digestive tract microbiome in many vertebrate species, was relatively rare in barn swallow CM (< 5%). CM composition did not differ between males and females. A significant correlation of CM within breeding pair members is consistent with the hypothesis that cloacal contact during within-pair copulation may promote transfer of bacterial assemblages. This effect on CM composition had a relatively low effect size, however, possibly due to the species’ high level of sexual promiscuity. PMID:26360776

  7. Genome-Wide Transcriptional Start Site Mapping and sRNA Identification in the Pathogen Leptospira interrogans

    PubMed Central

    Zhukova, Anna; Fernandes, Luis Guilherme; Hugon, Perrine; Pappas, Christopher J.; Sismeiro, Odile; Coppée, Jean-Yves; Becavin, Christophe; Malabat, Christophe; Eshghi, Azad; Zhang, Jun-Jie; Yang, Frank X.; Picardeau, Mathieu

    2017-01-01

    Leptospira are emerging zoonotic pathogens transmitted from animals to humans typically through contaminated environmental sources of water and soil. Regulatory pathways of pathogenic Leptospira spp. underlying the adaptive response to different hosts and environmental conditions remains elusive. In this study, we provide the first global Transcriptional Start Site (TSS) map of a Leptospira species. RNA was obtained from the pathogen Leptospira interrogans grown at 30°C (optimal in vitro temperature) and 37°C (host temperature) and selectively enriched for 5′ ends of native transcripts. A total of 2865 and 2866 primary TSS (pTSS) were predicted in the genome of L. interrogans at 30 and 37°C, respectively. The majority of the pTSSs were located between 0 and 10 nucleotides from the translational start site, suggesting that leaderless transcripts are a common feature of the leptospiral translational landscape. Comparative differential RNA-sequencing (dRNA-seq) analysis revealed conservation of most pTSS at