Lu, Ting; Wade, Kirstie; Sanchez, Jason Tait
2017-01-01
ABSTRACT We have previously shown that late-developing avian nucleus magnocellularis (NM) neurons (embryonic [E] days 19–21) fire action potentials (APs) that resembles a band-pass filter in response to sinusoidal current injections of varying frequencies. NM neurons located in the mid- to high-frequency regions of the nucleus fire preferentially at 75 Hz, but only fire a single onset AP to frequency inputs greater than 200 Hz. Surprisingly, NM neurons do not fire APs to sinusoidal inputs less than 20 Hz regardless of the strength of the current injection. In the present study we evaluated intrinsic mechanisms that prevent AP generation to low frequency inputs. We constructed a computational model to simulate the frequency-firing patterns of NM neurons based on experimental data at both room and near physiologic temperatures. The results from our model confirm that the interaction among low- and high-voltage activated potassium channels (KLVA and KHVA, respectively) and voltage dependent sodium channels (NaV) give rise to the frequency-firing patterns observed in vitro. In particular, we evaluated the regulatory role of KLVA during low frequency sinusoidal stimulation. The model shows that, in response to low frequency stimuli, activation of large KLVA current counterbalances the slow-depolarizing current injection, likely permitting NaV closed-state inactivation and preventing the generation of APs. When the KLVA current density was reduced, the model neuron fired multiple APs per sinusoidal cycle, indicating that KLVA channels regulate low frequency AP firing of NM neurons. This intrinsic property of NM neurons may assist in optimizing response to different rates of synaptic inputs. PMID:28481659
Determination of nonlinear resistance voltage-current relationships by measuring harmonics
NASA Technical Reports Server (NTRS)
Stafford, J. M.
1971-01-01
Test configuration measures harmonic signal amplitudes generated in nonlinear resistance. Vacuum-type voltmeter measures low frequency sinusoidal input signal amplitude and wave-analyzer measures amplitude of harmonic signals generated in junction. Input signal harmonics amplitude must not exceed that of harmonics generated in nonlinear resistance.
Shay, Christopher F.; Ferrante, Michele; Chapman, G. William; Hasselmo, Michael E.
2015-01-01
Rebound spiking properties of medial entorhinal cortex (mEC) stellate cells induced by inhibition may underlie their functional properties in awake behaving rats, including the temporal phase separation of distinct grid cells and differences in grid cell firing properties. We investigated rebound spiking properties using whole cell patch recording in entorhinal slices, holding cells near spiking threshold and delivering sinusoidal inputs, superimposed with realistic inhibitory synaptic inputs to test the capacity of cells to selectively respond to specific phases of inhibitory input. Stellate cells showed a specific phase range of hyperpolarizing inputs that elicited spiking, but non-stellate cells did not show phase specificity. In both cell types, the phase range of spiking output occurred between the peak and subsequent descending zero crossing of the sinusoid. The phases of inhibitory inputs that induced spikes shifted earlier as the baseline sinusoid frequency increased, while spiking output shifted to later phases. Increases in magnitude of the inhibitory inputs shifted the spiking output to earlier phases. Pharmacological blockade of h-current abolished the phase selectivity of hyperpolarizing inputs eliciting spikes. A network computational model using cells possessing similar rebound properties as found in vitro produces spatially periodic firing properties resembling grid cell firing when a simulated animal moves along a linear track. These results suggest that the ability of mEC stellate cells to fire rebound spikes in response to a specific range of phases of inhibition could support complex attractor dynamics that provide completion and separation to maintain spiking activity of specific grid cell populations. PMID:26385258
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslami, E., E-mail: eeslami@iust.ac.ir; Barjasteh, A.; Morshedian, N.
2015-06-15
In this work, we numerically compare the effect of a sinusoidal, triangular, and rectangular pulsed voltage profile on the calculated particle production, electric current, and gas voltage in a dielectric barrier discharge. The total argon gas pressure of 400 Pa, the distance between dielectrics of 5 mm, the dielectric thickness of 0.7 mm, and the temperature of T = 300 K were considered as input parameters. The different driving voltage pulse shapes (triangular, rectangular, and sinusoidal) are considered as applied voltage with a frequency of 7 kHz and an amplitude of 700 V peak to peak. It is shown thatmore » applying a rectangular voltage, as compared with a sinusoidal or triangle voltage, increases the current peak, while the peak width is decreased. Higher current density is related to high production of charged particles, which leads to the generation of some highly active species, such as Ar* (4s level), and Ar** (4p level) in the gap.« less
Cheng, Yuhua; Chen, Kai; Bai, Libing; Yang, Jing
2014-02-01
Precise control of the grid-connected current is a challenge in photovoltaic inverter research. Traditional Proportional-Integral (PI) control technology cannot eliminate steady-state error when tracking the sinusoidal signal from the grid, which results in a very high total harmonic distortion in the grid-connected current. A novel PI controller has been developed in this paper, in which the sinusoidal wave is discretized into an N-step input signal that is decided by the control frequency to eliminate the steady state error of the system. The effect of periodical error caused by the dead zone of the power switch and conduction voltage drop can be avoided; the current tracking accuracy and current harmonic content can also be improved. Based on the proposed PI controller, a 700 W photovoltaic grid-connected inverter is developed and validated. The improvement has been demonstrated through experimental results.
An Electromagnetically-Controlled Precision Orbital Tracking Vehicle (POTV)
1992-12-01
assume that C > B > A. Then 0 1(t) is purely sinusoidal. tk2 (t) is also sinusoidal because the forcing function z(t) is sinusoidal. 03 (t) is more...an unpredictable -manner. The problem arises from the rank deficiency of the G input matrix as shown below. Remember we have shown already that its...rank can never exceed five because rows two, four, and six are linearly dependent. The rank deficiency arises from the "translational part" of the input
Voltage mode electronically tunable full-wave rectifier
NASA Astrophysics Data System (ADS)
Petrović, Predrag B.; Vesković, Milan; Đukić, Slobodan
2017-01-01
The paper presents a new realization of bipolar full-wave rectifier of input sinusoidal signals, employing one MO-CCCII (multiple output current controlled current conveyor), a zero-crossing detector (ZCD), and one resistor connected to fixed potential. The circuit provides the operating frequency up to 10 MHz with increased linearity and precision in processing of input voltage signal, with a very low harmonic distortion. The errors related to the signal processing and errors bound were investigated and provided in the paper. The PSpice simulations are depicted and agree well with the theoretical anticipation. The maximum power consumption of the converter is approximately 2.83 mW, at ±1.2 V supply voltages.
Sinusoidal input describing function for hysteresis followed by elementary backlash
NASA Technical Reports Server (NTRS)
Ringland, R. F.
1976-01-01
The author proposes a new sinusoidal input describing function which accounts for the serial combination of hysteresis followed by elementary backlash in a single nonlinear element. The output of the hysteresis element drives the elementary backlash element. Various analytical forms of the describing function are given, depending on the a/A ratio, where a is the half width of the hysteresis band or backlash gap, and A is the amplitude of the assumed input sinusoid, and on the value of the parameter representing the fraction of a attributed to the backlash characteristic. The negative inverse describing function is plotted on a gain-phase plot, and it is seen that a relatively small amount of backlash leads to domination of the backlash character in the describing function. The extent of the region of the gain-phase plane covered by the describing function is such as to guarantee some form of limit cycle behavior in most closed-loop systems.
Waveshaping electronic circuit
NASA Technical Reports Server (NTRS)
Harper, T. P.
1971-01-01
Circuit provides output signal with sinusoidal function in response to bipolar transition of input signal. Instantaneous transition shapes into linear rate of change and linear rate of change shapes into sinusoidal rate of change. Circuit contains only active components; therefore, compatibility with integrated circuit techniques is assured.
Active Flow Control with Thermoacoustic Actuators
2014-01-31
AC power has been shown to produce large-amplitude acoustic waves [6]. The input AC current sinusoidally heats this device due to joule heating and...conventional metals, the heat capacity value for carbon-based material (carbon nanotubes/graphene) in consideration here is at least 2 orders of...magnitude smaller. Since the output acoustic power delivered to the surrounding flow field is related inversely to the material heat capacity C (i.e., Poutput
NASA Technical Reports Server (NTRS)
Saha, Dipanjan; Lewandowski, Edward J.
2013-01-01
The steady-state, nearly sinusoidal behavior of the components in a free-piston Stirling engine allows for visualization of the forces in the system using phasor diagrams. Based on Newton's second law, F = ma, any phasor diagrams modeling a given component in a system should close if all of the acting forces have been considered. Since the Advanced Stirling Radioisotope Generator (ASRG), currently being developed for future NASA deep space missions, is made up of such nearly sinusoidally oscillating components, its phasor diagrams would also be expected to close. A graphical user interface (GUI) has been written in MATLAB (MathWorks), which takes user input data, passes it to Sage (Gedeon Associates), a one-dimensional thermodynamic modeling program used to model the Stirling convertor, runs Sage, and then automatically plots the phasor diagrams. Using this software tool, the effect of varying different Sage inputs on the phasor diagrams was determined. The parameters varied were piston amplitude, hot-end temperature, cold-end temperature, operating frequency, and displacer spring constant. These phasor diagrams offer useful insight into convertor operation and performance.
Signal bi-amplification in networks of unidirectionally coupled MEMS
NASA Astrophysics Data System (ADS)
Tchakui, Murielle Vanessa; Woafo, Paul; Colet, Pere
2016-01-01
The purpose of this paper is to analyze the propagation and the amplification of an input signal in networks of unidirectionally coupled micro-electro-mechanical systems (MEMS). Two types of external excitations are considered: sinusoidal and stochastic signals. We show that sinusoidal signals are amplified up to a saturation level which depends on the transmission rate and despite MEMS being nonlinear the sinusoidal shape is well preserved if the number of MEMS is not too large. However, increasing the number of MEMS, there is an instability that leads to chaotic behavior and which is triggered by the amplification of the harmonics generated by the nonlinearities. We also show that for stochastic input signals, the MEMS array acts as a band-pass filter and after just a few elements the signal has a narrow power spectra.
Restoring the encoding properties of a stochastic neuron model by an exogenous noise
Paffi, Alessandra; Camera, Francesca; Apollonio, Francesca; d'Inzeo, Guglielmo; Liberti, Micaela
2015-01-01
Here we evaluate the possibility of improving the encoding properties of an impaired neuronal system by superimposing an exogenous noise to an external electric stimulation signal. The approach is based on the use of mathematical neuron models consisting of stochastic HH-like circuit, where the impairment of the endogenous presynaptic inputs is described as a subthreshold injected current and the exogenous stimulation signal is a sinusoidal voltage perturbation across the membrane. Our results indicate that a correlated Gaussian noise, added to the sinusoidal signal can significantly increase the encoding properties of the impaired system, through the Stochastic Resonance (SR) phenomenon. These results suggest that an exogenous noise, suitably tailored, could improve the efficacy of those stimulation techniques used in neuronal systems, where the presynaptic sensory neurons are impaired and have to be artificially bypassed. PMID:25999845
SNDR enhancement in noisy sinusoidal signals by non-linear processing elements
NASA Astrophysics Data System (ADS)
Martorell, Ferran; McDonnell, Mark D.; Abbott, Derek; Rubio, Antonio
2007-06-01
We investigate the possibility of building linear amplifiers capable of enhancing the Signal-to-Noise and Distortion Ratio (SNDR) of sinusoidal input signals using simple non-linear elements. Other works have proven that it is possible to enhance the Signal-to-Noise Ratio (SNR) by using limiters. In this work we study a soft limiter non-linear element with and without hysteresis. We show that the SNDR of sinusoidal signals can be enhanced by 0.94 dB using a wideband soft limiter and up to 9.68 dB using a wideband soft limiter with hysteresis. These results indicate that linear amplifiers could be constructed using non-linear circuits with hysteresis. This paper presents mathematical descriptions for the non-linear elements using statistical parameters. Using these models, the input-output SNDR enhancement is obtained by optimizing the non-linear transfer function parameters to maximize the output SNDR.
NASA Technical Reports Server (NTRS)
Saha, Dipanjan; Lewandowski, Edward J.
2013-01-01
The steady state, nearly sinusoidal behavior of the components in a Free Piston Stirling Engine allows for visualization of the forces in the system using phasor diagrams. Based on Newton's second law, F=ma, any phasor diagrams modeling a given component in a system should close if all of the acting forces have been considered. Since the Advanced Stirling Radioisotope Generator (ASRG), currently being developed for future NASA deep space missions, is made up of such nearly sinusoidally oscillating components, its phasor diagrams would also be expected to close. A graphical user interface (GUI) has been written in MATLAB by taking user input data, passing it to Sage, a 1-D thermodynamic modeling program used to model the Stirling convertor, running Sage and then automatically plotting the phasor diagrams. Using this software tool, the effect of varying different Sage inputs on the phasor diagrams was determined. The parameters varied were piston amplitude, hot end temperature, cold end temperature, operating frequency, and displacer spring constant. By using these phasor diagrams, better insight can be gained as to why the convertor operates the way that it does.
First-spike latency in Hodgkin's three classes of neurons.
Wang, Hengtong; Chen, Yueling; Chen, Yong
2013-07-07
We study the first-spike latency (FSL) in Hodgkin's three classes of neurons with the Morris-Lecar neuron model. It is found that all the three classes of neurons can encode an external stimulus into FSLs. With DC inputs, the FSLs of all of the neurons decrease with input intensity. With input current decreased to the threshold, class 1 neurons show an arbitrary long FSL whereas class 2 and 3 neurons exhibit the short-limit FSLs. When the input current is sinusoidal, the amplitude, frequency and initial phase can be encoded by all the three classes of neurons. The FSLs of all of the neurons decrease with the input amplitude and frequency. When the input frequency is too high, all of the neurons respond with infinite FSLs. When the initial phase increases, the FSL decreases and then jumps to a maximal value and finally decreases linearly. With changes in the input parameters, the FSLs of the class 1 and 2 neurons exhibit similar properties. However, the FSL of the class 3 neurons became slightly longer and only produces responses for a narrow range of initial phase if input frequencies are low. Moreover, our results also show that the FSL and firing rate responses are mutually independent processes and that neurons can encode an external stimulus into different FSLs and firing rates simultaneously. This finding is consistent with the current theory of dual or multiple complementary coding mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Roles of ON Cone Bipolar Cell Subtypes in Temporal Coding in the Mouse Retina
Fyk-Kolodziej, Bozena; Cohn, Jesse
2014-01-01
In the visual system, diverse image processing starts with bipolar cells, which are the second-order neurons of the retina. Thirteen subtypes of bipolar cells have been identified, which are thought to encode different features of image signaling and to initiate distinct signal-processing streams. Although morphologically identified, the functional roles of each bipolar cell subtype in visual signal encoding are not fully understood. Here, we investigated how ON cone bipolar cells of the mouse retina encode diverse temporal image signaling. We recorded bipolar cell voltage changes in response to two different input functions: sinusoidal light and step light stimuli. Temporal tuning in ON cone bipolar cells was diverse and occurred in a subtype-dependent manner. Subtypes 5s and 8 exhibited low-pass filtering property in response to a sinusoidal light stimulus, and responded with sustained fashion to step-light stimulation. Conversely, subtypes 5f, 6, 7, and XBC exhibited bandpass filtering property in response to sinusoidal light stimuli, and responded transiently to step-light stimuli. In particular, subtypes 7 and XBC were high-temporal tuning cells. We recorded responses in different ways to further examine the underlying mechanisms of temporal tuning. Current injection evoked low-pass filtering, whereas light responses in voltage-clamp mode produced bandpass filtering in all ON bipolar cells. These findings suggest that cone photoreceptor inputs shape bandpass filtering in bipolar cells, whereas intrinsic properties of bipolar cells shape low-pass filtering. Together, our results demonstrate that ON bipolar cells encode diverse temporal image signaling in a subtype-dependent manner to initiate temporal visual information-processing pathways. PMID:24966376
Drag Reduction Control for Flow over a Hump with Surface-Mounted Thermoacoustic Actuator
2015-01-06
integrating qwall over the actuator stripe and taking the average over one oscillation period. This gives Q̇ = 2σq̂/π. Now we can define the drag...itself to produce acoustic waves, the input AC current sinusoidally heats this membrane due to Joule heating and creates surface pressure...such that its heat ca- pacity per unit area (HCPUA) is at least two orders of magnitude smaller than that of the metal . Since the output acoustic power
NASA Astrophysics Data System (ADS)
Chen, Jui-Sheng; Li, Loretta Y.; Lai, Keng-Hsin; Liang, Ching-Ping
2017-11-01
A novel solution method is presented which leads to an analytical model for the advective-dispersive transport in a semi-infinite domain involving a wide spectrum of boundary inputs, initial distributions, and zero-order productions. The novel solution method applies the Laplace transform in combination with the generalized integral transform technique (GITT) to obtain the generalized analytical solution. Based on this generalized analytical expression, we derive a comprehensive set of special-case solutions for some time-dependent boundary distributions and zero-order productions, described by the Dirac delta, constant, Heaviside, exponentially-decaying, or periodically sinusoidal functions as well as some position-dependent initial conditions and zero-order productions specified by the Dirac delta, constant, Heaviside, or exponentially-decaying functions. The developed solutions are tested against an analytical solution from the literature. The excellent agreement between the analytical solutions confirms that the new model can serve as an effective tool for investigating transport behaviors under different scenarios. Several examples of applications, are given to explore transport behaviors which are rarely noted in the literature. The results show that the concentration waves resulting from the periodically sinusoidal input are sensitive to dispersion coefficient. The implication of this new finding is that a tracer test with a periodic input may provide additional information when for identifying the dispersion coefficients. Moreover, the solution strategy presented in this study can be extended to derive analytical models for handling more complicated problems of solute transport in multi-dimensional media subjected to sequential decay chain reactions, for which analytical solutions are not currently available.
NASA Astrophysics Data System (ADS)
Leyva, R.; Artillan, P.; Cabal, C.; Estibals, B.; Alonso, C.
2011-04-01
The article studies the dynamic performance of a family of maximum power point tracking circuits used for photovoltaic generation. It revisits the sinusoidal extremum seeking control (ESC) technique which can be considered as a particular subgroup of the Perturb and Observe algorithms. The sinusoidal ESC technique consists of adding a small sinusoidal disturbance to the input and processing the perturbed output to drive the operating point at its maximum. The output processing involves a synchronous multiplication and a filtering stage. The filter instance determines the dynamic performance of the MPPT based on sinusoidal ESC principle. The approach uses the well-known root-locus method to give insight about damping degree and settlement time of maximum-seeking waveforms. This article shows the transient waveforms in three different filter instances to illustrate the approach. Finally, an experimental prototype corroborates the dynamic analysis.
Sensorless optimal sinusoidal brushless direct current for hard disk drives
NASA Astrophysics Data System (ADS)
Soh, C. S.; Bi, C.
2009-04-01
Initiated by the availability of digital signal processors and emergence of new applications, market demands for permanent magnet synchronous motors have been surging. As its back-emf is sinusoidal, the drive current should also be sinusoidal for reducing the torque ripple. However, in applications like hard disk drives, brushless direct current (BLDC) drive is adopted instead of sinusoidal drive for simplification. The adoption, however, comes at the expense of increased harmonics, losses, torque pulsations, and acoustics. In this paper, we propose a sensorless optimal sinusoidal BLDC drive. First and foremost, the derivation for an optimal sinusoidal drive is presented, and a power angle control scheme is proposed to achieve an optimal sinusoidal BLDC. The scheme maintains linear relationship between the motor speed and drive voltage. In an attempt to execute the sensorless drive, an innovative power angle measurement scheme is devised, which takes advantage of the freewheeling diodes and measures the power angle through the detection of diode voltage drops. The objectives as laid out will be presented and discussed in this paper, supported by derivations, simulations, and experimental results. The proposed scheme is straightforward, brings about the benefits of sensorless sinusoidal drive, negates the need for current sensors by utilizing the freewheeling diodes, and does not incur additional cost.
Theta frequency background tunes transmission but not summation of spiking responses.
Parameshwaran, Dhanya; Bhalla, Upinder S
2013-01-01
Hippocampal neurons are known to fire as a function of frequency and phase of spontaneous network rhythms, associated with the animal's behaviour. This dependence is believed to give rise to precise rate and temporal codes. However, it is not well understood how these periodic membrane potential fluctuations affect the integration of synaptic inputs. Here we used sinusoidal current injection to the soma of CA1 pyramidal neurons in the rat brain slice to simulate background oscillations in the physiologically relevant theta and gamma frequency range. We used a detailed compartmental model to show that somatic current injection gave comparable results to more physiological synaptically driven theta rhythms incorporating excitatory input in the dendrites, and inhibitory input near the soma. We systematically varied the phase of synaptic inputs with respect to this background, and recorded changes in response and summation properties of CA1 neurons using whole-cell patch recordings. The response of the cell was dependent on both the phase of synaptic inputs and frequency of the background input. The probability of the cell spiking for a given synaptic input was up to 40% greater during the depolarized phases between 30-135 degrees of theta frequency current injection. Summation gain on the other hand, was not affected either by the background frequency or the phasic afferent inputs. This flat summation gain, coupled with the enhanced spiking probability during depolarized phases of the theta cycle, resulted in enhanced transmission of summed inputs during the same phase window of 30-135 degrees. Overall, our study suggests that although oscillations provide windows of opportunity to selectively boost transmission and EPSP size, summation of synaptic inputs remains unaffected during membrane oscillations.
Krishnan, Sunder Ram; Seelamantula, Chandra Sekhar; Bouwens, Arno; Leutenegger, Marcel; Lasser, Theo
2012-10-01
We address the problem of high-resolution reconstruction in frequency-domain optical-coherence tomography (FDOCT). The traditional method employed uses the inverse discrete Fourier transform, which is limited in resolution due to the Heisenberg uncertainty principle. We propose a reconstruction technique based on zero-crossing (ZC) interval analysis. The motivation for our approach lies in the observation that, for a multilayered specimen, the backscattered signal may be expressed as a sum of sinusoids, and each sinusoid manifests as a peak in the FDOCT reconstruction. The successive ZC intervals of a sinusoid exhibit high consistency, with the intervals being inversely related to the frequency of the sinusoid. The statistics of the ZC intervals are used for detecting the frequencies present in the input signal. The noise robustness of the proposed technique is improved by using a cosine-modulated filter bank for separating the input into different frequency bands, and the ZC analysis is carried out on each band separately. The design of the filter bank requires the design of a prototype, which we accomplish using a Kaiser window approach. We show that the proposed method gives good results on synthesized and experimental data. The resolution is enhanced, and noise robustness is higher compared with the standard Fourier reconstruction.
Analysis of nystagmus response to a pseudorandom velocity input
NASA Technical Reports Server (NTRS)
Lessard, C. S.
1986-01-01
Space motion sickness was not reported during the first Apollo missions; however, since Apollo 8 through the current Shuttle and Skylab missions, approximately 50% of the crewmembers have experienced instances of space motion sickness. Space motion sickness, renamed space adaptation syndrome, occurs primarily during the initial period of a mission until habilation takes place. One of NASA's efforts to resolve the space adaptation syndrome is to model the individual's vestibular response for basis knowledge and as a possible predictor of an individual's susceptibility to the disorder. This report describes a method to analyse the vestibular system when subjected to a pseudorandom angular velocity input. A sum of sinusoids (pseudorandom) input lends itself to analysis by linear frequency methods. Resultant horizontal ocular movements were digitized, filtered and transformed into the frequency domain. Programs were developed and evaluated to obtain the (1) auto spectra of input stimulus and resultant ocular resonse, (2) cross spectra, (3) the estimated vestibular-ocular system transfer function gain and phase, and (4) coherence function between stimulus and response functions.
Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics
NASA Technical Reports Server (NTRS)
Rohrs, C. E.; Valavani, L.; Athans, M.; Stein, G.
1985-01-01
This paper examines the robustness properties of existing adaptive control algorithms to unmodeled plant high-frequency dynamics and unmeasurable output disturbances. It is demonstrated that there exist two infinite-gain operators in the nonlinear dynamic system which determines the time-evolution of output and parameter errors. The pragmatic implications of the existence of such infinite-gain operators is that: (1) sinusoidal reference inputs at specific frequencies and/or (2) sinusoidal output disturbances at any frequency (including dc), can cause the loop gain to increase without bound, thereby exciting the unmodeled high-frequency dynamics, and yielding an unstable control system. Hence, it is concluded that existing adaptive control algorithms as they are presented in the literature referenced in this paper, cannot be used with confidence in practical designs where the plant contains unmodeled dynamics because instability is likely to result. Further understanding is required to ascertain how the currently implemented adaptive systems differ from the theoretical systems studied here and how further theoretical development can improve the robustness of adaptive controllers.
Design of Linear Control System for Wind Turbine Blade Fatigue Testing
NASA Astrophysics Data System (ADS)
Toft, Anders; Roe-Poulsen, Bjarke; Christiansen, Rasmus; Knudsen, Torben
2016-09-01
This paper proposes a linear method for wind turbine blade fatigue testing at Siemens Wind Power. The setup consists of a blade, an actuator (motor and load mass) that acts on the blade with a sinusoidal moment, and a distribution of strain gauges to measure the blade flexure. Based on the frequency of the sinusoidal input, the blade will start oscillating with a given gain, hence the objective of the fatigue test is to make the blade oscillate with a controlled amplitude. The system currently in use is based on frequency control, which involves some non-linearities that make the system difficult to control. To make a linear controller, a different approach has been chosen, namely making a controller which is not regulating on the input frequency, but on the input amplitude. A non-linear mechanical model for the blade and the motor has been constructed. This model has been simplified based on the desired output, namely the amplitude of the blade. Furthermore, the model has been linearised to make it suitable for linear analysis and control design methods. The controller is designed based on a simplified and linearised model, and its gain parameter determined using pole placement. The model variants have been simulated in the MATLAB toolbox Simulink, which shows that the controller design based on the simple model performs adequately with the non-linear model. Moreover, the developed controller solves the robustness issue found in the existent solution and also reduces the needed energy for actuation as it always operates at the blade eigenfrequency.
A Short-Segment Fourier Transform Methodology
2009-03-01
defined sampling of the continuous-valued discrete-time Fourier transform, superresolution in the frequency domain and allowance of Dirac delta functions associated with pure sinusoidal input data components.
Magnetic bead detection using nano-transformers.
Kim, Hyung Kwon; Hwang, Jong Seung; Hwang, Sung Woo; Ahn, Doyeol
2010-11-19
A novel scheme to detect magnetic beads using a nano-scale transformer with a femtoweber resolution is reported. We have performed a Faraday's induction experiment with the nano-transformer at room temperature. The transformer shows the linear output voltage responses to the sinusoidal input current. When magnetic beads are placed on the transformer, the output responses are increased by an amount corresponding to the added magnetic flux from the beads when compared with the case of no beads on the transformer. In this way, we could determine whether magnetic beads are on top of the transformer in a single particle level.
Description of a 20 kilohertz power distribution system
NASA Technical Reports Server (NTRS)
Hansen, I. G.
1986-01-01
A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution links multiphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.
Description of a 20 Kilohertz power distribution system
NASA Technical Reports Server (NTRS)
Hansen, I. G.
1986-01-01
A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution link; mulitphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented.
Sound Rhythms Are Encoded by Postinhibitory Rebound Spiking in the Superior Paraolivary Nucleus
Felix, Richard A.; Fridberger, Anders; Leijon, Sara; Berrebi, Albert S.; Magnusson, Anna K.
2013-01-01
The superior paraolivary nucleus (SPON) is a prominent structure in the auditory brainstem. In contrast to the principal superior olivary nuclei with identified roles in processing binaural sound localization cues, the role of the SPON in hearing is not well understood. A combined in vitro and in vivo approach was used to investigate the cellular properties of SPON neurons in the mouse. Patch-clamp recordings in brain slices revealed that brief and well timed postinhibitory rebound spiking, generated by the interaction of two subthreshold-activated ion currents, is a hallmark of SPON neurons. The Ih current determines the timing of the rebound, whereas the T-type Ca2+ current boosts the rebound to spike threshold. This precisely timed rebound spiking provides a physiological explanation for the sensitivity of SPON neurons to sinusoidally amplitude-modulated (SAM) tones in vivo, where peaks in the sound envelope drive inhibitory inputs and SPON neurons fire action potentials during the waveform troughs. Consistent with this notion, SPON neurons display intrinsic tuning to frequency-modulated sinusoidal currents (1–15Hz) in vitro and discharge with strong synchrony to SAMs with modulation frequencies between 1 and 20 Hz in vivo. The results of this study suggest that the SPON is particularly well suited to encode rhythmic sound patterns. Such temporal periodicity information is likely important for detection of communication cues, such as the acoustic envelopes of animal vocalizations and speech signals. PMID:21880918
Sound rhythms are encoded by postinhibitory rebound spiking in the superior paraolivary nucleus.
Felix, Richard A; Fridberger, Anders; Leijon, Sara; Berrebi, Albert S; Magnusson, Anna K
2011-08-31
The superior paraolivary nucleus (SPON) is a prominent structure in the auditory brainstem. In contrast to the principal superior olivary nuclei with identified roles in processing binaural sound localization cues, the role of the SPON in hearing is not well understood. A combined in vitro and in vivo approach was used to investigate the cellular properties of SPON neurons in the mouse. Patch-clamp recordings in brain slices revealed that brief and well timed postinhibitory rebound spiking, generated by the interaction of two subthreshold-activated ion currents, is a hallmark of SPON neurons. The I(h) current determines the timing of the rebound, whereas the T-type Ca(2+) current boosts the rebound to spike threshold. This precisely timed rebound spiking provides a physiological explanation for the sensitivity of SPON neurons to sinusoidally amplitude-modulated (SAM) tones in vivo, where peaks in the sound envelope drive inhibitory inputs and SPON neurons fire action potentials during the waveform troughs. Consistent with this notion, SPON neurons display intrinsic tuning to frequency-modulated sinusoidal currents (1-15Hz) in vitro and discharge with strong synchrony to SAMs with modulation frequencies between 1 and 20 Hz in vivo. The results of this study suggest that the SPON is particularly well suited to encode rhythmic sound patterns. Such temporal periodicity information is likely important for detection of communication cues, such as the acoustic envelopes of animal vocalizations and speech signals.
In Search of a Visual-cortical Describing Function: a Summary of Work in Progress
NASA Technical Reports Server (NTRS)
Junker, A. M.; Peio, K. J.
1984-01-01
The thrust of the present work is to explore the utility of using a sum of sinusoids (seven or more) to obtain an evoked response and, furthermore, to see if the response is sensitive to changes in cognitive processing. Within the field of automatic control system technology, a mathematical input/output relationship for a sinusoidally stimulated nonlinear system is defined as describing function. Applying this technology, sum of sines inputs to yield describing functions for the visual-cortical response have been designed. What follows is a description of the method used to obtain visual-cortical describing functions. A number of measurement system redesigns were necessary to achieve the desired frequency resolution. Results that guided and came out of the redesigns are presented. Preliminary results of stimulus parameter effects (average intensity and depth of modulation) are also shown.
Determination of chlorine concentration using single temperature modulated semiconductor gas sensor
NASA Astrophysics Data System (ADS)
Woźniak, Ł.; Kalinowski, P.; Jasiński, G.; Jasiński, P.
2016-11-01
A periodic temperature modulation using sinusoidal heater voltage was applied to a commercial SnO2 semiconductor gas sensor. Resulting resistance response of the sensor was analyzed using a feature extraction method based on Fast Fourier Transformation (FFT). The amplitudes of the higher harmonics of the FFT from the dynamic nonlinear responses of measured gas were further utilized as an input for Artificial Neuron Network (ANN). Determination of the concentration of chlorine was performed. Moreover, this work evaluates the sensor performance upon sinusoidal temperature modulation.
An inductorless active mixer using stacked nMOS/pMOS configuration and LO shaping technique
NASA Astrophysics Data System (ADS)
Guo, Benqing; Chen, Jun; Wang, Xuebing; Chen, Hongpeng
2018-04-01
In this paper, a CMOS active down-conversion mixer is presented for wideband applications. Specifically, a LO generation chain is suggested to convert AC LO signal to shaped trapezoid burst, which reduces the sinusoidal LO power level requirement by the mixer. The current-reuse technique by stacked nMOS/pMOS architecture is used to save the power consumption of the circuit. Moreover, this complementary configuration is also employed to compensate second-order nonlinearity of the circuit. Implemented in a 0.18-μm CMOS process, post-simulations show that, driven by only ‑10 dBm sinusoidal LO signal, the proposed inductorless mixer provides a maximal conversion gain of 15.7 dB and a noise figure (NF) of 9.1-12 dB across RF input frequency range 0.5-1.6 GHz. The IIP3 and IP1dB of 3.5 dBm and ‑4.8 dBm are obtained, respectively. The mixer core only consumes 3.6 mW from a 1.8-V supply.
Pressley, Joanna; Troyer, Todd W
2011-05-01
The leaky integrate-and-fire (LIF) is the simplest neuron model that captures the essential properties of neuronal signaling. Yet common intuitions are inadequate to explain basic properties of LIF responses to sinusoidal modulations of the input. Here we examine responses to low and moderate frequency modulations of both the mean and variance of the input current and quantify how these responses depend on baseline parameters. Across parameters, responses to modulations in the mean current are low pass, approaching zero in the limit of high frequencies. For very low baseline firing rates, the response cutoff frequency matches that expected from membrane integration. However, the cutoff shows a rapid, supralinear increase with firing rate, with a steeper increase in the case of lower noise. For modulations of the input variance, the gain at high frequency remains finite. Here, we show that the low-frequency responses depend strongly on baseline parameters and derive an analytic condition specifying the parameters at which responses switch from being dominated by low versus high frequencies. Additionally, we show that the resonant responses for variance modulations have properties not expected for common oscillatory resonances: they peak at frequencies higher than the baseline firing rate and persist when oscillatory spiking is disrupted by high noise. Finally, the responses to mean and variance modulations are shown to have a complementary dependence on baseline parameters at higher frequencies, resulting in responses to modulations of Poisson input rates that are independent of baseline input statistics.
Acoustic signal recovery by thermal demodulation
NASA Astrophysics Data System (ADS)
Boullosa, R. R.; Santillán, Arturo O.
2006-10-01
One operating mode of recently developed thermoacoustic transducers is as an audio speaker that uses an input superimposed on a direct current; as a result, the audio signal occurs at the same frequency as the input signal. To extend the potential applications of these kinds of sources, the authors propose an alternative driving mode in which a simple thermoacoustic device, consisting of a metal film over a substrate and a heat sink, is excited with a high frequency sinusoid that is amplitude modulated by a lower frequency signal. They show that the modulating signal is recovered in the radiated waves due to a mechanism that is inherent to this type of thermoacoustic process. If the frequency of the carrier is higher than 30kHz and any modulating signal (the one of interest) is in the audio frequency range, only this signal will be heard. Thus, the thermoacoustic device operates as an audio-band, self-demodulating speaker.
Lumped Nonlinear System Analysis with Volterra Series.
1980-04-01
f h2 (t-=,t-r )x(r)x(t2)dl d 2 (4- 1 )O0 0 Consider the input signal comprising two unit sinusoidal signals at fre- quencies wa and wb. The input x... 1 - 2 . Nonlinear System Analysis Methods. .............. 2 1 -3. Objectives of the Investigation ....... ............... 6 1 -4. Organization of...the Report ..... ... ................. 9 CHAPTER 2 - VOLTERRA FUNCTIONAL SERIES ...... ............... 12 2 - 1 . Introduction
NASA Technical Reports Server (NTRS)
Sullivan, Michael J.
2005-01-01
This thesis develops a state estimation algorithm for the Centrifuge Rotor (CR) system where only relative measurements are available with limited knowledge of both rotor imbalance disturbances and International Space Station (ISS) thruster disturbances. A Kalman filter is applied to a plant model augmented with sinusoidal disturbance states used to model both the effect of the rotor imbalance and the 155 thrusters on the CR relative motion measurement. The sinusoidal disturbance states compensate for the lack of the availability of plant inputs for use in the Kalman filter. Testing confirms that complete disturbance modeling is necessary to ensure reliable estimation. Further testing goes on to show that increased estimator operational bandwidth can be achieved through the expansion of the disturbance model within the filter dynamics. In addition, Monte Carlo analysis shows the varying levels of robustness against defined plant/filter uncertainty variations.
NASA Technical Reports Server (NTRS)
Sokolova, Z. A.
1980-01-01
The biochemical changes under the influence of modulated sinusoidal current in the central nervous system were investigated. The methodology used is discussed, the results are reported in a table, and conclusions are presented.
NASA Technical Reports Server (NTRS)
Tessarzik, J. M.; Chiang, T.; Badgley, R. H.
1973-01-01
The vibration response of a gas-bearing rotor-support system was analyzed experimentally documented for sinusoidal and random vibration environments. The NASA Brayton Rotating Unit (BRU), 36,000 rpm; 10 KWe turbogenerator; was subjected in the laboratory to sinusoidal and random vibrations to evaluate the capability of the BRU to (1) survive the vibration levels expected to be encountered during periods of nonoperation and (2) operate satisfactorily (that is, without detrimental bearing surface contacts) at the vibration levels expected during normal BRU operation. Response power spectral density was calculated for specified input random excitation, with particular emphasis upon the dynamic motions of the thrust bearing runner and stator. A three-mass model with nonlinear representation of the engine isolator mounts was used to calculate axial rotor-bearing shock response.
Energy storage cell impedance measuring apparatus, methods and related systems
Morrison, John L.; Morrison, William H.; Christophersen, Jon P.
2017-12-26
Energy storage cell impedance testing devices, circuits, and related methods are disclosed. An energy storage cell impedance measuring device includes a sum of sinusoids (SOS) current excitation circuit including differential current sources configured to isolate a ground terminal of the differential current sources from a positive terminal and a negative terminal of an energy storage cell. A method includes applying an SOS signal comprising a sum of sinusoidal current signals to the energy storage cell with the SOS current excitation circuit, each of the sinusoidal current signals oscillating at a different one of a plurality of different frequencies. The method also includes measuring an electrical signal at a positive terminal and a negative terminal of the energy storage cell, and computing an impedance of the energy storage cell at each of the plurality of different frequencies using the measured electrical signal.
Neuromuscular mechanisms and neural strategies in the control of time-varying muscle contractions.
Erimaki, Sophia; Agapaki, Orsalia M; Christakos, Constantinos N
2013-09-01
The organization of the neural input to motoneurons that underlies time-varying muscle force is assumed to depend on muscle transfer characteristics and neural strategies or control modes utilizing sensory signals. We jointly addressed these interlinked, but previously studied individually and partially, issues for sinusoidal (range 0.5-5.0 Hz) force-tracking contractions of a human finger muscle. Using spectral and correlation analyses of target signal, force signal, and motor unit (MU) discharges, we studied 1) patterns of such discharges, allowing inferences on the motoneuronal input; 2) transformation of MU population activity (EMG) into quasi-sinusoidal force; and 3) relation of force oscillation to target, carrying information on the input's organization. A broad view of force control mechanisms and strategies emerged. Specifically, synchronized MU and EMG modulations, reflecting a frequency-modulated motoneuronal input, accompanied the force variations. Gain and delay drops between EMG modulation and force oscillation, critical for the appropriate organization of this input, occurred with increasing target frequency. According to our analyses, gain compensation was achieved primarily through rhythmical activation/deactivation of higher-threshold MUs and secondarily through the adaptation of the input's strength expected during tracking tasks. However, the input's timing was not adapted to delay behaviors and seemed to depend on the control modes employed. Thus, for low-frequency targets, the force oscillation was highly coherent with, but led, a target, this timing error being compatible with predictive feedforward control partly based on the target's derivatives. In contrast, the force oscillation was weakly coherent, but in phase, with high-frequency targets, suggesting control mainly based on a target's rhythm.
NASA Astrophysics Data System (ADS)
Kim, Moojong; Kim, Jinyoung; Lee, Moon G.
Recently, in micro/nano fabrication equipments, linear motors are widely used as an actuator to position workpiece, machining tool and measurement head. To control them faster and more precise, the motor should have high actuating force and small force ripple. High actuating force enable us to more workpiece with high acceleration. Eventually, it may provide higher throughput. Force ripple gives detrimental effect on the precision and tracking performance of the equipments. In order to accomplish more precise motion, it is important to make lower the force ripple. Force ripple is categorized into cogging and mutual ripple. First is dependent on the shape of magnets and/or core. The second is not dependent on them but dependent on current commutation. In this work, coreless mover i.e. coil winding is applied to the linear motor to avoid the cogging ripple. Therefore, the mutual ripple is only considered to be minimized. Ideal Halbach magnet array has continuously varying magnetization. The THMA (Halbach magnet array with T shape magnets) is proposed to approximate the ideal one. The THMA can not produce ideal sinusoidal flux, therefore, the linear motor with THMA and sinusoidal commutation of current generates the mutual force ripple. In this paper, in order to compensate mutual force ripple by feedforward(FF) controller, we calculate the optimized commutation of input current. The ripple is lower than 1.17% of actuating force if the commutation current agree with the magnetic flux from THMA. The performance of feedforward(FF) controller is verified by experiment.
Fernandez, Fernando R.; Malerba, Paola; Bressloff, Paul C.; White, John A.
2013-01-01
In active networks, excitatory and inhibitory synaptic inputs generate membrane voltage fluctuations that drive spike activity in a probabilistic manner. Despite this, some cells in vivo show a strong propensity to precisely lock to the local field potential and maintain a specific spike-phase relationship relative to other cells. In recordings from rat medial entorhinal cortical stellate cells, we measured spike phase-locking in response to sinusoidal “test” inputs in the presence of different forms of background membrane voltage fluctuations, generated via dynamic clamp. We find that stellate cells show strong and robust spike phase-locking to theta (4–12 Hz) inputs. This response occurs under a wide variety of background membrane voltage fluctuation conditions that include a substantial increase in overall membrane conductance. Furthermore, the IH current present in stellate cells is critical to the enhanced spike phase-locking response at theta. Finally, we show that correlations between inhibitory and excitatory conductance fluctuations, which can arise through feed-back and feed-forward inhibition, can substantially enhance the spike phase-locking response. The enhancement in locking is a result of a selective reduction in the size of low frequency membrane voltage fluctuations due to cancelation of inhibitory and excitatory current fluctuations with correlations. Hence, our results demonstrate that stellate cells have a strong preference for spike phase-locking to theta band inputs and that the absolute magnitude of locking to theta can be modulated by the properties of background membrane voltage fluctuations. PMID:23554484
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cryns, Jackson W.; Hatchell, Brian K.; Santiago-Rojas, Emiliano
Formal journal article Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration Abstract: Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random and sine on random (SOR) input vibration scenarios. Additionally, the implications of source vibration characteristics on harvester design are discussed. Studies in vibration harvesting have yielded numerous alternatives for harvesting electrical energy from vibrations but piezoceramics arose as the most compact, energy dense means of energy transduction. The rise in popularity of harvesting energy from ambient vibrations has mademore » piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. In this manuscript, variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. We characterize the source vibration by its acceleration response for repeatability and transcription to general application. The results agree with numerical and theoretical predictions for in previous literature that load optimal resistance varies with transducer natural frequency and source type, and the findings demonstrate that significant gains are seen with lower tuned transducer natural frequencies for similar source amplitudes. Going beyond idealized steady state sinusoidal and simplified random vibration input, SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibrational sources significantly alter power generation and power processing requirements by increasing harvested power, shifting optimal conditioning impedance, inducing significant voltage supply fluctuations and ultimately rendering idealized sinusoidal and random analyses insufficient.« less
NASA Astrophysics Data System (ADS)
Lehn, Andrea M.; Thornycroft, Patrick J. M.; Lauder, George V.; Leftwich, Megan C.
2017-02-01
In this paper we consider the effects of adding high-frequency, low-amplitude perturbations to a smooth sinusoidal base input signal for a heaving panel in a closed loop flow tank. Specifically, 0.1 cm amplitude sinusoidal perturbation waves with frequency fp ranging from 0.5 to 13.0 Hz are added to 1 cm heave sinusoids with base frequencies, fb, ranging from 0.5 to 3.0 Hz. Two thin foils with different flexural stiffness are heaved with the combined input signals in addition to both the high-heave and low-heave signals independently. In all cases, the foils are heaved in a recirculating water channel with an incoming velocity of Vx=10 cm/s and a Reynolds number based on the chord length of Re=17 300 . Results demonstrate that perturbations increase the net axial force, in the streamwise direction, in most cases tested (with the exception of some poor performing flexible foil cases). Most significantly, for a base frequency of 1 Hz, perturbations at 9 Hz result in a 780.7% increase in net streamwise force production. Generally, the higher the perturbation frequency, fp the more axial force generated. However, for the stiffer foil, a clear peak in net force exists at fp=9 Hz , regardless of the base frequency. For the stiffer foil, swimming efficiency at a 1 Hz flapping frequency is increased dramatically with the addition of a perturbation, with reduced efficiency increases at higher flapping frequencies. Likewise, for the flexible foil, swimming efficiency gains are greatest at the lower flapping frequencies. Perturbations alter the wake structure by increasing the vorticity magnitude and increasing the vortex shedding frequency; i.e., more, stronger vortices are produced in each flapping cycle.
NASA Astrophysics Data System (ADS)
Kamiyama, Kyohei; Endo, Tetsuro; Imai, Isao; Komuro, Motomasa
2016-06-01
Double covering (DC) bifurcation of a 2-torus quasi-periodic flow in a phase-locked loop circuit was experimentally investigated using an electronic circuit and via SPICE simulation; in the circuit, the input radio-frequency signal was frequency modulated by the sum of two asynchronous sinusoidal baseband signals. We observed both DC and period-doubling bifurcations of a discrete map on two Poincaré sections, which were realized by changing the sample timing from one baseband sinusoidal signal to the other. The results confirm the DC bifurcation of the original flow.
Energy extraction from atmospheric turbulence to improve flight vehicle performance
NASA Astrophysics Data System (ADS)
Patel, Chinmay Karsandas
Small 'bird-sized' Unmanned Aerial Vehicles (UAVs) have now become practical due to technological advances in embedded electronics, miniature sensors and actuators, and propulsion systems. Birds are known to take advantage of wind currents to conserve energy and fly long distances without flapping their wings. This dissertation explores the possibility of improving the performance of small UAVs by extracting the energy available in atmospheric turbulence. An aircraft can gain energy from vertical gusts by increasing its lift in regions of updraft and reducing its lift in downdrafts - a concept that has been known for decades. Starting with a simple model of a glider flying through a sinusoidal gust, a parametric optimization approach is used to compute the minimum gust amplitude and optimal control input required for the glider to sustain flight without losing energy. For small UAVs using optimal control inputs, sinusoidal gusts with amplitude of 10--15% of the cruise speed are sufficient to keep the aircraft aloft. The method is then modified and extended to include random gusts that are representative of natural turbulence. A procedure to design optimal control laws for energy extraction from realistic gust profiles is developed using a Genetic Algorithm (GA). A feedback control law is designed to perform well over a variety of random gusts, and not be tailored for one particular gust. A small UAV flying in vertical turbulence is shown to obtain average energy savings of 35--40% with the use of a simple control law. The design procedure is also extended to determine optimal control laws for sinusoidal as well as turbulent lateral gusts. The theoretical work is complemented by experimental validation using a small autonomous UAV. The development of a lightweight autopilot and UAV platform is presented. Flight test results show that active control of the lift of an autonomous glider resulted in approximately 46% average energy savings compared to glides with fixed control surfaces. Statistical analysis of test samples shows that 19% of the active control test runs resulted in no energy loss, thus demonstrating the potential of the 'gust soaring' concept to dramatically improve the performance of small UAVs.
NASA Technical Reports Server (NTRS)
Sokolova, Z. A.
1980-01-01
The influence of sinusoidal modulated currents was studied and physical loads on the nucleic acid content and the nucleotide composition of the total RNA in muscles of rats of various ages under conditions of hypodynamia were measured. Methodology utilized is described and conclusions are presented.
Giugliano, Michele; La Camera, Giancarlo; Fusi, Stefano; Senn, Walter
2008-11-01
The response of a population of neurons to time-varying synaptic inputs can show a rich phenomenology, hardly predictable from the dynamical properties of the membrane's inherent time constants. For example, a network of neurons in a state of spontaneous activity can respond significantly more rapidly than each single neuron taken individually. Under the assumption that the statistics of the synaptic input is the same for a population of similarly behaving neurons (mean field approximation), it is possible to greatly simplify the study of neural circuits, both in the case in which the statistics of the input are stationary (reviewed in La Camera et al. in Biol Cybern, 2008) and in the case in which they are time varying and unevenly distributed over the dendritic tree. Here, we review theoretical and experimental results on the single-neuron properties that are relevant for the dynamical collective behavior of a population of neurons. We focus on the response of integrate-and-fire neurons and real cortical neurons to long-lasting, noisy, in vivo-like stationary inputs and show how the theory can predict the observed rhythmic activity of cultures of neurons. We then show how cortical neurons adapt on multiple time scales in response to input with stationary statistics in vitro. Next, we review how it is possible to study the general response properties of a neural circuit to time-varying inputs by estimating the response of single neurons to noisy sinusoidal currents. Finally, we address the dendrite-soma interactions in cortical neurons leading to gain modulation and spike bursts, and show how these effects can be captured by a two-compartment integrate-and-fire neuron. Most of the experimental results reviewed in this article have been successfully reproduced by simple integrate-and-fire model neurons.
Input/output properties of the lateral vestibular nucleus
NASA Technical Reports Server (NTRS)
Boyle, R.; Bush, G.; Ehsanian, R.
2004-01-01
This article is a review of work in three species, squirrel monkey, cat, and rat studying the inputs and outputs from the lateral vestibular nucleus (LVN). Different electrophysiological shock paradigms were used to determine the synaptic inputs derived from thick to thin diameter vestibular nerve afferents. Angular and linear mechanical stimulations were used to activate and study the combined and individual contribution of inner ear organs and neck afferents. The spatio-temporal properties of LVN neurons in the decerebrated rat were studied in response to dynamic acceleration inputs using sinusoidal linear translation in the horizontal head plane. Outputs were evaluated using antidromic identification techniques and identified LVN neurons were intracellularly injected with biocytin and their morphology studied.
NASA Technical Reports Server (NTRS)
Swaim, R. L.
1978-01-01
The ride quality experienced by passengers is a function of airframe rigid-body, elastic dynamic responses, autopilot, and stability augmentation system control inputs. A frequency response method has been developed to select sinusoidal elevator input time histories yielding vertical load factor distributions, within a given limit, as a function of fuselage station. The numerical technique is illustrated by applying two-degree-of-freedom short-period and first symmetric mode equations of motion to a B-1 aircraft at Mach 0.85 during sea level flight conditions.
Frequency to Voltage Converter Analog Front-End Prototype
NASA Technical Reports Server (NTRS)
Mata, Carlos; Raines, Matthew
2012-01-01
The frequency to voltage converter analog front end evaluation prototype (F2V AFE) is an evaluation board designed for comparison of different methods of accurately extracting the frequency of a sinusoidal input signal. A configurable input stage is routed to one or several of five separate, configurable filtering circuits, and then to a configurable output stage. Amplifier selection and gain, filter corner frequencies, and comparator hysteresis and voltage reference are all easily configurable through the use of jumpers and potentiometers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Young-Cheol; Kim, Yu-Sin; Lee, Hyo-Chang
2015-08-15
The electrical probe diagnostics are very hard to be applied to atmospheric plasmas due to severe perturbation by the electrical probes. To overcome this, the probe for measuring electron temperature and ion current density is indirectly contacted with an atmospheric jet source. The plasma parameters are obtained by using floating harmonic analysis. The probe is mounted on the quartz tube that surrounds plasma. When a sinusoidal voltage is applied to a probe contacting on a quartz tube, the electrons near the sheath at dielectric tube are collected and the probe current has harmonic components due to probe sheath nonlinearity. Frommore » the relation of the harmonic currents and amplitude of the sheath voltage, the electron temperature near the wall can be obtained with collisional sheath model. The electron temperatures and ion current densities measured at the discharge region are in the ranges of 2.7–3.4 eV and 1.7–5.2 mA/cm{sup 2} at various flow rates and input powers.« less
A 10-kW series resonant converter design, transistor characterization, and base-drive optimization
NASA Technical Reports Server (NTRS)
Robson, R. R.; Hancock, D. J.
1982-01-01
The development, components, and performance of a transistor-based 10 kW series resonant converter for use in resonant circuits in space applications is described. The transistors serve to switch on the converter current, which has a half-sinusoid waveform when the transistor is in saturation. The goal of the program was to handle an input-output voltage range of 230-270 Vdc, an output voltage range of 200-500 Vdc, and a current limit range of 0-20 A. Testing procedures for the D60T and D7ST transistors are outlined and base drive waveforms are presented. The total device dissipation was minimized and found to be independent of the regenerative feedback ratio at lower current levels. Dissipation was set at within 10% and rise times were found to be acceptable. The finished unit displayed a 91% efficiency at full power levels of 500 V and 20 A and 93.7% at 500 V and 10 A.
NASA Astrophysics Data System (ADS)
Hwang, James Ho-Jin; Duran, Adam
2016-08-01
Most of the times pyrotechnic shock design and test requirements for space systems are provided in Shock Response Spectrum (SRS) without the input time history. Since the SRS does not describe the input or the environment, a decomposition method is used to obtain the source time history. The main objective of this paper is to develop a decomposition method producing input time histories that can satisfy the SRS requirement based on the pyrotechnic shock test data measured from a mechanical impact test apparatus. At the heart of this decomposition method is the statistical representation of the pyrotechnic shock test data measured from the MIT Lincoln Laboratory (LL) designed Universal Pyrotechnic Shock Simulator (UPSS). Each pyrotechnic shock test data measured at the interface of a test unit has been analyzed to produce the temporal peak acceleration, Root Mean Square (RMS) acceleration, and the phase lag at each band center frequency. Maximum SRS of each filtered time history has been calculated to produce a relationship between the input and the response. Two new definitions are proposed as a result. The Peak Ratio (PR) is defined as the ratio between the maximum SRS and the temporal peak acceleration at each band center frequency. The ratio between the maximum SRS and the RMS acceleration is defined as the Energy Ratio (ER) at each band center frequency. Phase lag is estimated based on the time delay between the temporal peak acceleration at each band center frequency and the peak acceleration at the lowest band center frequency. This stochastic process has been applied to more than one hundred pyrotechnic shock test data to produce probabilistic definitions of the PR, ER, and the phase lag. The SRS is decomposed at each band center frequency using damped sinusoids with the PR and the decays obtained by matching the ER of the damped sinusoids to the ER of the test data. The final step in this stochastic SRS decomposition process is the Monte Carlo (MC) simulation. The MC simulation identifies combinations of the PR and decays that can meet the SRS requirement at each band center frequency. Decomposed input time histories are produced by summing the converged damped sinusoids with the MC simulation of the phase lag distribution.
Sensor-less pseudo-sinusoidal drive for a permanent-magnet brushless ac motor
NASA Astrophysics Data System (ADS)
Liu, Li-Hsiang; Chern, Tzuen-Lih; Pan, Ping-Lung; Huang, Tsung-Mou; Tsay, Der-Min; Kuang, Jao-Hwa
2012-04-01
The precise rotor-position information is required for a permanent-magnet brushless ac motor (BLACM) drive. In the conventional sinusoidal drive method, either an encoder or a resolver is usually employed. For position sensor-less vector control schemes, the rotor flux estimation and torque components are obtained by complicated coordinate transformations. These computational intensive methods are susceptible to current distortions and parameter variations. To simplify the method complexity, this work presents a sensor-less pseudo-sinusoidal drive scheme with speed control for a three-phase BLACM. Based on the sinusoidal drive scheme, a floating period of each phase current is inserted for back electromotive force detection. The zero-crossing point is determined directly by the proposed scheme, and the rotor magnetic position and rotor speed can be estimated simultaneously. Several experiments for various active angle periods are undertaken. Furthermore, a current feedback control is included to minimize and compensate the torque fluctuation. The experimental results show that the proposed method has a competitive performance compared with the conventional drive manners for BLACM. The proposed scheme is straightforward, bringing the benefits of sensor-less drive and negating the need for coordinate transformations in the operating process.
Sinusoidal current and stress evolutions in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Yang, Xiao-Guang; Bauer, Christoph; Wang, Chao-Yang
2016-09-01
Mechanical breakdown of graphite materials due to diffusion-induced stress (DIS) is a key aging mechanism of lithium-ion batteries. In this work, electrochemical-thermal coupled model along with a DIS model is developed to study the DIS distribution across the anode thickness. Special attention is paid to the evolution behavior of surface tangential stress (STS) in the discharge process for graphite at different locations of the anode. For the first time, we report that the evolution of STS, as well as local current, at all locations of the anode, evolve like sinusoidal waves in the discharge process with several crests and troughs. The staging behavior of graphite active material, in particular the sharp change of open-circuit potential (OCP) of graphite in the region between two plateaus, is found to be the root cause for the sinusoidal patterns of current and stress evolution. Furthermore, the effects of various parameters, such as starting state of charge, discharge C-rate and electrode thickness on the current and stress evolutions are investigated.
Optical analog-to-digital converter
Vawter, G Allen [Corrales, NM; Raring, James [Goleta, CA; Skogen, Erik J [Albuquerque, NM
2009-07-21
An optical analog-to-digital converter (ADC) is disclosed which converts an input optical analog signal to an output optical digital signal at a sampling rate defined by a sampling optical signal. Each bit of the digital representation is separately determined using an optical waveguide interferometer and an optical thresholding element. The interferometer uses the optical analog signal and the sampling optical signal to generate a sinusoidally-varying output signal using cross-phase-modulation (XPM) or a photocurrent generated from the optical analog signal. The sinusoidally-varying output signal is then digitized by the thresholding element, which includes a saturable absorber or at least one semiconductor optical amplifier, to form the optical digital signal which can be output either in parallel or serially.
Kim, Ji-Sik; Kim, Gi-Woo
2017-01-01
This paper provides a preliminary study on the hysteresis compensation of a piezoresistive silicon-based polymer composite, poly(dimethylsiloxane) dispersed with carbon nanotubes (CNTs), to demonstrate its feasibility as a conductive composite (i.e., a force-sensitive resistor) for force sensors. In this study, the potential use of the nanotube/polydimethylsiloxane (CNT/PDMS) as a force sensor is evaluated for the first time. The experimental results show that the electrical resistance of the CNT/PDMS composite changes in response to sinusoidal loading and static compressive load. The compensated output based on the Duhem hysteresis model shows a linear relationship. This simple hysteresis model can compensate for the nonlinear frequency-dependent hysteresis phenomenon when a dynamic sinusoidal force input is applied. PMID:28125046
Inverter for interfacing advanced energy sources to a utility grid
Steigerwald, Robert L.
1984-01-01
A transistor is operated in the PWM mode such that a hlaf sine wave of current is delivered first to one-half of a distribution transformer and then the other as determined by steering thyristors operated at the fundamental sinusoidal frequency. Power to the transistor is supplied by a dc source such as a solar array and the power is converted such that a sinusoidal current is injected into a utility at near unity power factor.
Karpukhin, I V; Bogomol'nyĭ, V A
1997-01-01
105 patients with chronic nonspecific prostatitis were examined and treated with papaverin electrophoresis using sinusoidal modulated currents (SMC) and local vacuum magnetotherapy (LVMT). Papaverin SMC electrophoresis and LVMT stimulated cavernous circulation. The highest stimulation was achieved at successive use of LVMT and the electrophoresis. LVMT followed by the electrophoresis maintained good cavernous circulation for 5-6 hours after the procedure in the course of which several spontaneous erections were observed.
Investigation of a continuous heating/cooling technique for cardiac output measurement.
Ehlers, K C; Mylrea, K C; Calkins, J M
1987-01-01
Cardiac output is frequently measured to assess patient hemodynamic status in the operating room and intensive care unit. Current research for measuring cardiac output includes continuous sinusoidal heating and synchronous detection of thermal signals. This technique is limited by maximum heating element temperatures and background thermal noise. A continuous heating and cooling technique was investigated in vitro to determine if greater thermal signal magnitudes could be obtained. A fast responding thermistor was employed to measure consecutive ejected temperature plateaus in the thermal signal. A flow bath and mechanical ventricle were used to simulate the cardiovascular system. A thermoelectric module was used to apply heating and cooling energy to the flow stream. Trials encompassing a range of input power, input frequency, and flow rate were conducted. By alternating heating and cooling, thermal signal magnitude can be increased when compared to continuous heating alone. However, the increase was not sufficient to allow for recording in all patients over the expected normal range of cardiac output. Consecutive ejected temperature plateaus were also measured on the thermal signal and ejection fraction calculations were made.
Novel Modulation Method for Multidirectional Matrix Converter
Misron, Norhisam; Aris, Ishak Bin; Yamada, Hiroaki
2014-01-01
This study presents a new modulation method for multidirectional matrix converter (MDMC), based on the direct duty ratio pulse width modulation (DDPWM). In this study, a new structure of MDMC has been proposed to control the power flow direction through the stand-alone battery based system and hybrid vehicle. The modulation method acts based on the average voltage over one switching period concept. Therefore, in order to determine the duty ratio for each switch, the instantaneous input voltages are captured and compared with triangular waveform continuously. By selecting the proper switching pattern and changing the slope of the carriers, the sinusoidal input current can be synthesized with high power factor and desired output voltage. The proposed system increases the discharging time of the battery by injecting the power to the system from the generator and battery at the same time. Thus, it makes the battery life longer and saves more energy. This paper also derived necessary equation for proposed modulation method as well as detail of analysis and modulation algorithm. The theoretical and modulation concepts presented have been verified in MATLAB simulation. PMID:25298969
Digital-Difference Processing For Collision Avoidance.
NASA Technical Reports Server (NTRS)
Shores, Paul; Lichtenberg, Chris; Kobayashi, Herbert S.; Cunningham, Allen R.
1988-01-01
Digital system for automotive crash avoidance measures and displays difference in frequency between two sinusoidal input signals of slightly different frequencies. Designed for use with Doppler radars. Characterized as digital mixer coupled to frequency counter measuring difference frequency in mixer output. Technique determines target path mathematically. Used for tracking cars, missiles, bullets, baseballs, and other fast-moving objects.
Storage filters upland suspended sediment signals delivered from watersheds
Pizzuto, James E.; Keeler, Jeremy; Skalak, Katherine; Karwan, Diana
2017-01-01
Climate change, tectonics, and humans create long- and short-term temporal variations in the supply of suspended sediment to rivers. These signals, generated in upland erosional areas, are filtered by alluvial storage before reaching the basin outlet. We quantified this filter using a random walk model driven by sediment budget data, a power-law distributed probability density function (PDF) to determine how long sediment remains stored, and a constant downstream drift velocity during transport of 157 km/yr. For 25 km of transport, few particles are stored, and the median travel time is 0.2 yr. For 1000 km of transport, nearly all particles are stored, and the median travel time is 2.5 m.y. Both travel-time distributions are power laws. The 1000 km travel-time distribution was then used to filter sinusoidal input signals with periods of 10 yr and 104 yr. The 10 yr signal is delayed by 12.5 times its input period, damped by a factor of 380, and is output as a power law. The 104 yr signal is delayed by 0.15 times its input period, damped by a factor of 3, and the output signal retains its sinusoidal input form (but with a power-law “tail”). Delivery time scales for these two signals are controlled by storage; in-channel transport time is insignificant, and low-frequency signals are transmitted with greater fidelity than high-frequency signals. These signal modifications are essential to consider when evaluating watershed restoration schemes designed to control sediment loading, and where source-area geomorphic processes are inferred from the geologic record.
Electrical stimulation of gut motility guided by an in silico model
NASA Astrophysics Data System (ADS)
Barth, Bradley B.; Henriquez, Craig S.; Grill, Warren M.; Shen, Xiling
2017-12-01
Objective. Neuromodulation of the central and peripheral nervous systems is becoming increasingly important for treating a diverse set of diseases—ranging from Parkinson’s Disease and epilepsy to chronic pain. However, neuromodulation of the gastrointestinal (GI) tract has achieved relatively limited success in treating functional GI disorders, which affect a significant population, because the effects of stimulation on the enteric nervous system (ENS) and gut motility are not well understood. Here we develop an integrated neuromechanical model of the ENS and assess neurostimulation strategies for enhancing gut motility, validated by in vivo experiments. Approach. The computational model included a network of enteric neurons, smooth muscle fibers, and interstitial cells of Cajal, which regulated propulsion of a virtual pellet in a model of gut motility. Main results. Simulated extracellular stimulation of ENS-mediated motility revealed that sinusoidal current at 0.5 Hz was more effective at increasing intrinsic peristalsis and reducing colon transit time than conventional higher frequency rectangular current pulses, as commonly used for neuromodulation therapy. Further analysis of the model revealed that the 0.5 Hz sinusoidal currents were more effective at modulating the pacemaker frequency of interstitial cells of Cajal. To test the predictions of the model, we conducted in vivo electrical stimulation of the distal colon while measuring bead propulsion in awake rats. Experimental results confirmed that 0.5 Hz sinusoidal currents were more effective than higher frequency pulses at enhancing gut motility. Significance. This work demonstrates an in silico GI neuromuscular model to enable GI neuromodulation parameter optimization and suggests that low frequency sinusoidal currents may improve the efficacy of GI pacing.
Cortical pyramidal cells as non-linear oscillators: experiment and spike-generation theory.
Brumberg, Joshua C; Gutkin, Boris S
2007-09-26
Cortical neurons are capable of generating trains of action potentials in response to current injections. These discharges can take different forms, e.g., repetitive firing that adapts during the period of current injection or bursting behaviors. We have used a combined experimental and computational approach to characterize the dynamics leading to action potential responses in single neurons. Specifically we investigated the origin of complex firing patterns in response to sinusoidal current injections. Using a reduced model, the theta-neuron, alongside recordings from cortical pyramidal cells we show that both real and simulated neurons show phase-locking to sine wave stimuli up to a critical frequency, above which period skipping and 1-to-x phase-locking occurs. The locking behavior follows a complex "devil's staircase" phenomena, where locked modes are interleaved with irregular firing. We further show that the critical frequency depends on the time scale of spike generation and on the level of spike frequency adaptation. These results suggest that phase-locking of neuronal responses to complex input patterns can be explained by basic properties of the spike-generating machinery.
Knikou, Maria; Chaudhuri, Debjani; Kay, Elizabeth; Schmit, Brian D.
2006-01-01
The aim of this study was to establish the contribution of hip-mediated sensory feedback to spinal interneuronal circuits during dynamic conditions in people with incomplete spinal cord injury (SCI). Specifically, we investigated the effects of synergistic and antagonistic group I afferents on the soleus H-reflex during imposed sinusoidal hip movements. The soleus H-reflex was conditioned by stimulating the common peroneal nerve (CPN) at short (2, 3, and 4 ms) and long (80, 100, and 120 ms) conditioning test (C-T) intervals to assess the reciprocal and pre-synaptic inhibition of the soleus H-reflex, respectively. The soleus H-reflex was also conditioned by medial gastrocnemius (MG) nerve stimulation at C-T intervals ranging from 4 to 7 ms to assess changes in autogenic Ib inhibition during hip movement. Sinusoidal hip movements were imposed to the right hip joint at 0.2 Hz by the Biodex system while subjects were supine. The effects of sinusoidal hip movement on five leg muscles along with hip, knee, and ankle joint torques were also established during sensorimotor conditioning of the reflex. Phase-dependent modulation of antagonistic and synergistic muscle afferents was present during hip movement, with the reciprocal, pre-synaptic, and Ib inhibition to be significantly reduced during hip extension and reinforced during hip flexion. Reflexive muscle and joint torque responses – induced by the hip movement – were entrained to specific phases of hip movement. This study provides evidence that hip-mediated input acts as a controlling signal of pre- and post-alpha motoneuronal control of the soleus H-reflex. The expression of these spinal interneuronal circuits during imposed sinusoidal hip movements is discussed with respect to motor recovery in humans after SCI. PMID:16782072
NASA Astrophysics Data System (ADS)
Gao, Hezhe; Li, Yongjian; Wang, Shanming; Zhu, Jianguo; Yang, Qingxin; Zhang, Changgeng; Li, Jingsong
2018-05-01
Practical core losses in electrical machines differ significantly from those experimental results using the standardized measurement method, i.e. Epstein Frame method. In order to obtain a better approximation of the losses in an electrical machine, a simulation method considering sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) waveforms is proposed. The influence of the pulse width modulation (PWM) parameters on the harmonic components in SPWM and SVPWM is discussed by fast Fourier transform (FFT). Three-level SPWM and SVPWM are analyzed and compared both by simulation and experiment. The core losses of several ring samples magnetized by SPWM, SVPWM and sinusoidal alternating current (AC) are obtained. In addition, the temperature rise of the samples under SPWM, sinusoidal excitation are analyzed and compared.
A 2.5 kW cascaded Schwarz converter for 20 kHz power distribution
NASA Technical Reports Server (NTRS)
Shetler, Russell E.; Stuart, Thomas A.
1989-01-01
Because it avoids the high currents in a parallel loaded capacitor, the cascaded Schwarz converter should offer better component utilization than converters with sinusoidal output voltages. The circuit is relatively easy to protect, and it provides a predictable trapezoidal voltage waveform that should be satisfactory for 20-kHz distribution systems. Analysis of the system is enhanced by plotting curves of normalized variables vs. gamma(1), where gamma(1) is proportional to the variable frequency of the first stage. Light-load operation is greatly improved by the addition of a power recycling rectifier bridge that is back biased at medium to heavy loads. Operation has been verified on a 2.5-kW circuit that uses input and output voltages in the same range as those anticipated for certain future spacecraft power systems.
Force-deflection behavior of piezoelectric actuators
NASA Astrophysics Data System (ADS)
Singh, Ashok K.; Nagpal, Pawan
2001-11-01
In the present endeavour, force - deflection behavior of various piezoelectric actuator configurations has been analyzed for performance comparison. The response of stack actuator has been simulated using MATLAB Simulink, in a stack actuator-pendulum configuration. During simulation, stack actuator has been used in charge control feedback mode, because of the advantage of low hysteresis, and high linearity. The model incorporates three compensation blocks, viz 1) a PID position controller, 2) a PI piezoelectric current controller, and 3) a dynamic force feedback. A typical stack actuator, having 130 layers, 1.20x10-4 m thickness, 3.46x10-5m2 cross sectional area, of PZT-5H type, has been utilized for simulation. The response of the system has been tested by applying a sinusoidal input of frequency 500 Hz, and waveform amplitude of 1x10-3V.
R Dump Converter without DC Link Capacitor for an 8/6 SRM: Experimental Investigation
Kavitha, Pasumalaithevan; Umamaheswari, Bhaskaran
2015-01-01
The objective of this paper is to investigate the performance of 8/6 switched reluctance motor (SRM) when excited with sinusoidal voltage. The conventional R dump converter provides DC excitation with the help of capacitor. In this paper the converter used is the modified R dump converter without DC link capacitor providing AC or sinusoidal excitation. Torque ripple and speed ripple are investigated based on hysteresis current control. Constant and sinusoidal current references are considered for comparison in both DC and AC excitation. Extensive theoretical and experimental investigations are made to bring out the merits and demerits of AC versus DC excitation. It is shown that the constructionally simple SRM can be favorably controlled with simple R dump converter with direct AC excitation without need for DC link capacitor. A 4-phase 8/6 0.5 kW SRM is used for experimentation. PMID:25642452
R dump converter without DC link capacitor for an 8/6 SRM: experimental investigation.
Kavitha, Pasumalaithevan; Umamaheswari, Bhaskaran
2015-01-01
The objective of this paper is to investigate the performance of 8/6 switched reluctance motor (SRM) when excited with sinusoidal voltage. The conventional R dump converter provides DC excitation with the help of capacitor. In this paper the converter used is the modified R dump converter without DC link capacitor providing AC or sinusoidal excitation. Torque ripple and speed ripple are investigated based on hysteresis current control. Constant and sinusoidal current references are considered for comparison in both DC and AC excitation. Extensive theoretical and experimental investigations are made to bring out the merits and demerits of AC versus DC excitation. It is shown that the constructionally simple SRM can be favorably controlled with simple R dump converter with direct AC excitation without need for DC link capacitor. A 4-phase 8/6 0.5 kW SRM is used for experimentation.
Sokol, Serguei; Portais, Jean-Charles
2015-01-01
The dynamics of label propagation in a stationary metabolic network during an isotope labeling experiment can provide highly valuable information on the network topology, metabolic fluxes, and on the size of metabolite pools. However, major issues, both in the experimental set-up and in the accompanying numerical methods currently limit the application of this approach. Here, we propose a method to apply novel types of label inputs, sinusoidal or more generally periodic label inputs, to address both the practical and numerical challenges of dynamic labeling experiments. By considering a simple metabolic system, i.e. a linear, non-reversible pathway of arbitrary length, we develop mathematical descriptions of label propagation for both classical and novel label inputs. Theoretical developments and computer simulations show that the application of rectangular periodic pulses has both numerical and practical advantages over other approaches. We applied the strategy to estimate fluxes in a simulated experiment performed on a complex metabolic network (the central carbon metabolism of Escherichia coli), to further demonstrate its value in conditions which are close to those in real experiments. This study provides a theoretical basis for the rational interpretation of label propagation curves in real experiments, and will help identify the strengths, pitfalls and limitations of such experiments. The cases described here can also be used as test cases for more general numerical methods aimed at identifying network topology, analyzing metabolic fluxes or measuring concentrations of metabolites. PMID:26641860
Characterization of random scattering media and related information retrieval
NASA Astrophysics Data System (ADS)
Wang, Zhenyu
There has been substantial interest in optical imaging in and through random media in applications as diverse as environmental sensing and tumor detection. The rich scatter environment also leads to multiple paths or channels, which may provide higher capacity for communication. Coherent light passing through random media produces an intensity speckle pattern when imaged, as a result of multiple scatter and the imaging optics. When polarized coherent light is used, the speckle pattern is sensitive to the polarization state, depending on the amount of scatter, and such measurements provide information about the random medium. This may form the basis for enhanced imaging of random media and provide information on the scatterers themselves. Second and third order correlations over laser scan frequency are shown to lead to the ensemble averaged temporal impulse response, with sensitivity to the polarization state in the more weakly scattering regime. A new intensity interferometer is introduced that provides information about two signals incident on a scattering medium. The two coherent beams, which are not necessarily overlapping, interfere in a scattering medium. A sinusoidal modulation in the second order intensity correlation with laser scan frequency is shown to be related to the relative delay of the two incident beams. An intensity spatial correlation over input position reveals that decorrelation occurs over a length comparable to the incident beam size. Such decorrelation is also related to the amount of scatter. Remarkably, with two beams incident at different angles, the intensity correlation over the scan position has a sinusoidal modulation that is related to the incidence angle difference between the two input beams. This spatial correlation over input position thus provides information about input wavevectors.
NASA Technical Reports Server (NTRS)
Taylor, Burt L , III; Oppenheimer, Frank L
1951-01-01
Experimental frequency-response characteristics of engine speed for a typical turbine-propeller engine are presented. These data were obtained by subjecting the engine to sinusoidal variations of fuel flow and propeller-blade-angle inputs. Correlation is made between these experimental data and analytical frequency-response characteristics obtained from a linear differential equation derived from steady-state torque-speed relations.
Design of a 9-loop quasi-exponential waveform generator
NASA Astrophysics Data System (ADS)
Banerjee, Partha; Shukla, Rohit; Shyam, Anurag
2015-12-01
We know in an under-damped L-C-R series circuit, current follows a damped sinusoidal waveform. But if a number of sinusoidal waveforms of decreasing time period, generated in an L-C-R circuit, be combined in first quarter cycle of time period, then a quasi-exponential nature of output current waveform can be achieved. In an L-C-R series circuit, quasi-exponential current waveform shows a rising current derivative and thereby finds many applications in pulsed power. Here, we have described design and experiment details of a 9-loop quasi-exponential waveform generator. In that, design details of magnetic switches have also been described. In the experiment, output current of 26 kA has been achieved. It has been shown that how well the experimentally obtained output current profile matches with the numerically computed output.
Design of a 9-loop quasi-exponential waveform generator.
Banerjee, Partha; Shukla, Rohit; Shyam, Anurag
2015-12-01
We know in an under-damped L-C-R series circuit, current follows a damped sinusoidal waveform. But if a number of sinusoidal waveforms of decreasing time period, generated in an L-C-R circuit, be combined in first quarter cycle of time period, then a quasi-exponential nature of output current waveform can be achieved. In an L-C-R series circuit, quasi-exponential current waveform shows a rising current derivative and thereby finds many applications in pulsed power. Here, we have described design and experiment details of a 9-loop quasi-exponential waveform generator. In that, design details of magnetic switches have also been described. In the experiment, output current of 26 kA has been achieved. It has been shown that how well the experimentally obtained output current profile matches with the numerically computed output.
Control strategy based on SPWM switching patterns for grid connected photovoltaic inverter
NASA Astrophysics Data System (ADS)
Hassaine, L.; Mraoui, A.
2017-02-01
Generally, for lower installation of photovoltaic systems connected to the grid, pulse width modulation (PWM) is a widely used technique for controlling the voltage source inverters injects currents into the grid. The current injected must be sinusoidal with reduced harmonic distortion. In this paper, a digital implementation of a control strategy based on PWM switching patterns for an inverter for photovoltaic system connected to the grid is presented. This strategy synchronize a sinusoidal inverter output current with a grid voltage The digital implementation of the proposed PWM switching pattern when is compared with the conventional one exhibit the advantage: Simplicity, reduction of the memory requirements and power calculation for the control
Inertial frictional ratchets and their load bearing efficiencies
NASA Astrophysics Data System (ADS)
Kharkongor, D.; Reenbohn, W. L.; Mahato, Mangal C.
2018-03-01
We investigate the performance of an inertial frictional ratchet in a sinusoidal potential driven by a sinusoidal external field. The dependence of the performance on the parameters of the sinusoidally varying friction, such as the mean friction coefficient and its phase difference with the potential, is studied in detail. Interestingly, under certain circumstances, the thermodynamic efficiency of the ratchet against an applied load shows a non-monotonic behaviour as a function of the mean friction coefficient. Also, in the large friction ranges, the efficiency is shown to increase with increasing applied load even though the corresponding ratchet current decreases as the applied load increases. These counterintuitive numerical results are explained in the text.
NASA Technical Reports Server (NTRS)
Richmond, J. H.
1974-01-01
A computer program is presented for a thin-wire antenna over a perfect ground plane. The analysis is performed in the frequency domain, and the exterior medium is free space. The antenna may have finite conductivity and lumped loads. The output data includes the current distribution, impedance, radiation efficiency, and gain. The program uses sinusoidal bases and Galerkin's method.
MEMS high-speed angular-position sensing system with rf wireless transmission
NASA Astrophysics Data System (ADS)
Sun, Winston; Li, Wen J.
2001-08-01
A novel surface-micromachined non-contact high-speed angular-position sensor with total surface area under 4mm2 was developed using the Multi-User MEMS Processes (MUMPs) and integrated with a commercial RF transmitter at 433MHz carrier frequency for wireless signal detection. Currently, a 2.3 MHz internal clock of our data acquisition system and a sensor design with a 13mg seismic mass is sufficient to provide visual observation of a clear sinusoidal response wirelessly generated by the piezoresistive angular-position sensing system within speed range of 180 rpm to around 1000 rpm. Experimental results showed that the oscillation frequency and amplitude are related to the input angular frequency of the rotation disk and the tilt angle of the rotation axis, respectively. These important results could provide groundwork for MEMS researchers to estimate how gravity influences structural properties of MEMS devices under different circumstances.
Microcurrent therapeutic technique for treatment of radiation toxicity
Lennox, Arlene; Funder, Sandra
2000-01-01
The present technique provides a method of remediating the toxicities associated with radiation therapy. A conductive gel is applied to the affected bodily area. A sinusoidally pulsed biphasic DC current is then applied to the affected bodily area using at least one electrode. The electrode is manipulated using active tactile manipulation by for a predetermined time and the frequency of the sinusoidally pulsed biphasic DC current is decreased during the course of the treatment. The method also includes applying a spiked pulsed biphasic DC current to the affected bodily area using at least one electrode. This electrode is also manipulated using active tactile manipulation by for a predetermined time and the frequency of the spiked pulsed biphasic DC current is also decreased during the course of the treatment.
Simultaneous Estimation of Electromechanical Modes and Forced Oscillations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follum, Jim; Pierre, John W.; Martin, Russell
Over the past several years, great strides have been made in the effort to monitor the small-signal stability of power systems. These efforts focus on estimating electromechanical modes, which are a property of the system that dictate how generators in different parts of the system exchange energy. Though the algorithms designed for this task are powerful and important for reliable operation of the power system, they are susceptible to severe bias when forced oscillations are present in the system. Forced oscillations are fundamentally different from electromechanical oscillations in that they are the result of a rogue input to the system,more » rather than a property of the system itself. To address the presence of forced oscillations, the frequently used AutoRegressive Moving Average (ARMA) model is adapted to include sinusoidal inputs, resulting in the AutoRegressive Moving Average plus Sinusoid (ARMA+S) model. From this model, a new Two-Stage Least Squares algorithm is derived to incorporate the forced oscillations, thereby enabling the simultaneous estimation of the electromechanical modes and the amplitude and phase of the forced oscillations. The method is validated using simulated power system data as well as data obtained from the western North American power system (wNAPS) and Eastern Interconnection (EI).« less
Dynamic responses of railroad car models to vertical and lateral rail inputs
NASA Technical Reports Server (NTRS)
Sewall, J. L.; Parrish, R. V.; Durling, B. J.
1971-01-01
Simplified dynamic models were applied in a study of vibration in a high-speed railroad car. The mathematical models used were a four-degree-of-freedom model for vertical responses to vertical rail inputs and a ten-degree-of-freedom model for lateral response to lateral or rolling (cross-level) inputs from the rails. Elastic properties of the passenger car body were represented by bending and torsion of a uniform beam. Rail-to-car (truck) suspensions were modeled as spring-mass-dashpot oscillators. Lateral spring nonlinearities approximating certain complicated truck mechanisms were introduced. The models were excited by displacement and, in some cases, velocity inputs from the rails by both deterministic (including sinusoidal) and random input functions. Results were obtained both in the frequency and time domains. Solutions in the time domain for the lateral model were obtained for a wide variety of transient and random inputs generated on-line by an analog computer. Variations in one of the damping properties of the lateral car suspension gave large fluctuations in response over a range of car speeds for a given input. This damping coefficient was significant in reducing lateral car responses that were higher for nonlinear springs for three different inputs.
Zardi, Enrico Maria; Di Matteo, Francesco Maria; Pacella, Claudio Maurizio; Sanyal, Arun J
2016-01-01
Portal hypertension is a severe syndrome that may derive from pre-sinusoidal, sinusoidal and post-sinusoidal causes. As a consequence, several complications (i.e., ascites, oesophageal varices) may develop. In sinusoidal portal hypertension, hepatic venous pressure gradient (HVPG) is a reliable method for defining the grade of portal pressure, establishing the effectiveness of the treatment and predicting the occurrence of complications; however, some questions exist regarding its ability to discriminate bleeding from nonbleeding varices in cirrhotic patients. Other imaging techniques (transient elastography, endoscopy, endosonography and duplex Doppler sonography) for assessing causes and complications of portal hypertensive syndrome are available and may be valuable for the management of these patients. In this review, we evaluate invasive and non-invasive techniques currently employed to obtain a clinical prediction of deadly complications, such as variceal bleeding in patients affected by sinusoidal portal hypertension, in order to create a diagnostic algorithm to manage them. Again, HVPG appears to be the reference standard to evaluate portal hypertension and monitor the response to treatment, but its ability to predict several complications and support management decisions might be further improved through the diagnostic combination with other imaging techniques. PMID:24328372
Zardi, Enrico Maria; Di Matteo, Francesco Maria; Pacella, Claudio Maurizio; Sanyal, Arun J
2014-02-01
Portal hypertension is a severe syndrome that may derive from pre-sinusoidal, sinusoidal, and post-sinusoidal causes. As a consequence, several complications (i.e. ascites, oesophageal varices) may develop. In sinusoidal portal hypertension, hepatic venous pressure gradient (HVPG) is a reliable method for defining the grade of portal pressure, establishing the effectiveness of the treatment, and predicting the occurrence of complications; however, some questions exist regarding its ability to discriminate bleeding from non-bleeding varices in cirrhotic patients. Other imaging techniques (transient elastography, endoscopy, endosonography, and duplex Doppler sonography) for assessing causes and complications of portal hypertensive syndrome are available and may be valuable for the management of these patients. In this review, we evaluate invasive and non-invasive techniques currently employed to obtain a clinical prediction of deadly complications, such as variceal bleeding in patients affected by sinusoidal portal hypertension, in order to create a diagnostic algorithm to manage them. Again, HVPG appears to be the reference standard to evaluate portal hypertension and monitor the response to treatment, but its ability to predict several complications and support management decisions might be further improved through the diagnostic combination with other imaging techniques.
Yasui, S; Young, L R
1984-01-01
Smooth pursuit and saccadic components of foveal visual tracking as well as more involuntary ocular movements of optokinetic (o.k.n.) and vestibular nystagmus slow phase components were investigated in man, with particular attention given to their possible input-adaptive or predictive behaviour. Each component in question was isolated from the eye movement records through a computer-aided procedure. The frequency response method was used with sinusoidal (predictable) and pseudo-random (unpredictable) stimuli. When the target motion was pseudo-random, the frequency response of pursuit eye movements revealed a large phase lead (up to about 90 degrees) at low stimulus frequencies. It is possible to interpret this result as a predictive effect, even though the stimulation was pseudo-random and thus 'unpredictable'. The pseudo-random-input frequency response intrinsic to the saccadic system was estimated in an indirect way from the pursuit and composite (pursuit + saccade) frequency response data. The result was fitted well by a servo-mechanism model, which has a simple anticipatory mechanism to compensate for the inherent neuromuscular saccadic delay by utilizing the retinal slip velocity signal. The o.k.n. slow phase also exhibited a predictive effect with sinusoidal inputs; however, pseudo-random stimuli did not produce such phase lead as found in the pursuit case. The vestibular nystagmus slow phase showed no noticeable sign of prediction in the frequency range examined (0 approximately 0.7 Hz), in contrast to the results of the visually driven eye movements (i.e. saccade, pursuit and o.k.n. slow phase) at comparable stimulus frequencies. PMID:6707954
Neural timing signal for precise tactile timing judgments
Watanabe, Junji; Nishida, Shin'ya
2016-01-01
The brain can precisely encode the temporal relationship between tactile inputs. While behavioural studies have demonstrated precise interfinger temporal judgments, the underlying neural mechanism remains unknown. Computationally, two kinds of neural responses can act as the information source. One is the phase-locked response to the phase of relatively slow inputs, and the other is the response to the amplitude change of relatively fast inputs. To isolate the contributions of these components, we measured performance of a synchrony judgment task for sine wave and amplitude-modulation (AM) wave stimuli. The sine wave stimulus was a low-frequency sinusoid, with the phase shifted in the asynchronous stimulus. The AM wave stimulus was a low-frequency sinusoidal AM of a 250-Hz carrier, with only the envelope shifted in the asynchronous stimulus. In the experiment, three stimulus pairs, two synchronous ones and one asynchronous one, were sequentially presented to neighboring fingers, and participants were asked to report which one was the asynchronous pair. We found that the asynchrony of AM waves could be detected as precisely as single impulse pair, with the threshold asynchrony being ∼20 ms. On the other hand, the asynchrony of sine waves could not be detected at all in the range from 5 to 30 Hz. Our results suggest that the timing signal for tactile judgments is provided not by the stimulus phase information but by the envelope of the response of the high-frequency-sensitive Pacini channel (PC), although they do not exclude a possible contribution of the envelope of non-PCs. PMID:26843600
NASA Technical Reports Server (NTRS)
Lipo, Thomas A.; Sood, Pradeep K.
1987-01-01
Static power conversion systems have traditionally utilized dc current or voltage source links for converting power from one ac or dc form to another since it readily achieves the temporary energy storage required to decouple the input from the output. Such links, however, result in bulky dc capacitors and/or inductors and lead to relatively high losses in the converters due to stresses on the semiconductor switches. The feasibility of utilizing a high frequency sinusoidal voltage link to accomplish the energy storage and decoupling function is examined. In particular, a type of resonant six pulse bridge interface converter is proposed which utilizes zero voltage switching principles to minimize switching losses and uses an easy to implement technique for pulse density modulation to control the amplitude, frequency, and the waveshape of the synthesized low frequency voltage or current. Adaptation of the proposed topology for power conversion to single-phase ac and dc voltage or current outputs is shown to be straight forward. The feasibility of the proposed power circuit and control technique for both active and passive loads are verified by means of simulation and experiment.
Mohty, M; Malard, F; Abecassis, M; Aerts, E; Alaskar, A S; Aljurf, M; Arat, M; Bader, P; Baron, F; Bazarbachi, A; Blaise, D; Ciceri, F; Corbacioglu, S; Dalle, J-H; Duarte, R F; Fukuda, T; Huynh, A; Masszi, T; Michallet, M; Nagler, A; NiChonghaile, M; Pagluica, T; Peters, C; Petersen, F B; Richardson, P G; Ruutu, T; Savani, B N; Wallhult, E; Yakoub-Agha, I; Carreras, E
2015-01-01
Sinusoidal obstruction syndrome or veno-occlusive disease (SOS/VOD) is a potentially life-threatening complication of hematopoietic SCT (HSCT). This review aims to highlight, on behalf of the European Society for Blood and Marrow Transplantation, the current knowledge on SOS/VOD pathophysiology, risk factors, diagnosis and treatments. Our perspectives on SOS/VOD are (i) to accurately identify its risk factors; (ii) to define new criteria for its diagnosis; (iii) to search for SOS/VOD biomarkers and (iv) to propose prospective studies evaluating SOS/VOD prevention and treatment in adults and children. PMID:25798682
Superconducting Magnetic Energy Storage (SMES) Program
NASA Astrophysics Data System (ADS)
Rogers, J. D.
1985-05-01
The 30 MJ, 10 MW superconducting magnetic energy storage (SMES) system was devised to interact in the Western US Power System as an alternate means to damp unstable oscillations at 0.35 Hz on the Pacific HVAC Interites. The operating limits of the 30 MJ SMES unit were established, and different means of controlling real and reactive power were tested. The unit can follow a sinusoidal power demand signal with an amplitude of up to 8.6 MW with the converter working in a 12 pulse mode. When the converter operates in the constant VAR mode, a time varying real power demand signal of up to 5 MW can be met. It was shown that the Pacific ac Interite has current and reactive power variations of the same frequency as the modulating frequency of the SMES device. The reliability of the SMES subsystems with a narrow band noise input was assessed. Parameters of the ac power system were determined. Converter short circuit tests, load tests under various control conditions, dc breaker tests for coil current interruption, and converter failure mode tests were conducted. The experimental operation of the SMES system is concluded.
World Record Magnetic Field 100T
McDonald, Ross; Mielke, Chuck; Rickel, Dwight
2018-01-16
Scientists at the Los Alamos National Laboratory campus of the National High Magnetic Field Laboratory have successfully produced the world's first 100 Tesla non-destructive magnetic field. The achievement was decades in the making, involving a diverse team of scientists and engineers. The 100 Tesla mark was reached at approximately 3:30 p.m. on March 22, 2012. A note about the sound you'll hear when the magnet is energized: The sound that the 100 T multi-shot magnet makes is due to the electrical current modulation from the 3 phase power converters (known as 12 pulse converters) and the harmonics associated with the chopping of the sinusoidal input power. The magnet vibrates at the electrical current frequencies multiplied by 12 (i.e. ~ 55 Hz x 12 = 660 Hz) hence making an audible sound. The generator is not run at full speed (1650 RPM instead of 1800 RPM) so the frequency is slightly lower than US Line frequency (i.e. 55 Hz instead of 60 Hz). A spectrograph of the sound from the magnet pulse shows the multiple harmonics as reddish horizontal bands as a function of time.
Ultra-precise tracking control of piezoelectric actuators via a fuzzy hysteresis model.
Li, Pengzhi; Yan, Feng; Ge, Chuan; Zhang, Mingchao
2012-08-01
In this paper, a novel Takagi-Sugeno (T-S) fuzzy system based model is proposed for hysteresis in piezoelectric actuators. The antecedent and consequent structures of the fuzzy hysteresis model (FHM) can be, respectively, identified on-line through uniform partition approach and recursive least squares (RLS) algorithm. With respect to controller design, the inverse of FHM is used to develop a feedforward controller to cancel out the hysteresis effect. Then a hybrid controller is designed for high-performance tracking. It combines the feedforward controller with a proportional integral differential (PID) controller favourable for stabilization and disturbance compensation. To achieve nanometer-scale tracking precision, the enhanced adaptive hybrid controller is further developed. It uses real-time input and output data to update FHM, thus changing the feedforward controller to suit the on-site hysteresis character of the piezoelectric actuator. Finally, as to 3 cases of 50 Hz sinusoidal, multiple frequency sinusoidal and 50 Hz triangular trajectories tracking, experimental results demonstrate the efficiency of the proposed controllers. Especially, being only 0.35% of the maximum desired displacement, the maximum error of 50 Hz sinusoidal tracking is greatly reduced to 5.8 nm, which clearly shows the ultra-precise nanometer-scale tracking performance of the developed adaptive hybrid controller.
A pre-heating method based on sinusoidal alternating current for lithium-ion battery
NASA Astrophysics Data System (ADS)
Fan, Wentao; Sun, Fengchun; Guo, Shanshan
2018-04-01
In this paper, a method of low temperature pre-heating of sinusoidal alternating current (SAC) is proposed. Generally, the lower the frequency of the AC current, the higher the heat generation rate. Yet at low frequency, there is a risk of lithium-ion deposition during the half cycle of charging. This study develops a temperature-adaptive, deposition-free AC pre-heating method. a equivalent electric circuit(EEC) model is established to predict the heat generation rate and temperature status, whose parameters are calibrated from the EIS impedance measurements. The effects of current frequency and amplitude on the heating effect are investigated respectively. A multistep temperature-adaptive amplitude strategy is proposed and the cell can be heated from -20°C to 5°C within 509s at 100Hz frequency with this method.
NASA Astrophysics Data System (ADS)
Bhatti, Abdul Qadir
2017-12-01
To demonstrate the characteristics of the nonlinear response of steel frames, an elastic dynamic response analysis of the semi-rigid frame is performed under the harmonic wave. The semi-rigid contact is represented by the alternating spring which is given stiffness by a three-parameter energy model which approaches the hysterical curve by hardening model. The properties of spectra and hysteric curves are presented. This study shows that (1) the greater the acceleration input capacitance the smaller the instant connection capability and the smaller is the response. (2) However, by allowing an extreme increase in capacitance input acceleration, response spectra can be increased as the contact stiffness results near zero.
Resonant circuit which provides dual-frequency excitation for rapid cycling of an electromagnet
Praeg, W.F.
1982-03-09
Disclosed is a novel ring-magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the sinusoidal guide field of the ring magnet during particle acceleration. The control circuit generates sinusoidal excitation currents of different frequencies in the half waves. During radio-frequency acceleration of the synchrotron, the control circuit operates with a lower frequency sine wave and, thereafter, the electromagnets are reset with a higher-frequency half sine wave.
Measuring Accurately Single-Phase Sinusoidal and Non-Sinusoidal Power.
1983-01-01
current component. Since the induction watthour meter is designed for measuring ac variations only, the creation of a dc component in an ac circuit due...available and the basic principle of measurement used in each. 3.1 Power Measuring Meters Instruments designed to measure the amount of average power...1.0 percent of full scale and + 0.5% of reading. 3.2 Encrgy Measuring Meters Instruments designed to measure the amount of power consumed in a circuit
Dual Brushless Resolver Rate Sensor
NASA Technical Reports Server (NTRS)
Howard, David E. (Inventor)
1996-01-01
This invention relates to dual analog angular rate sensors which are implemented without the use of mechanical brushes. A resolver rate sensor which includes two brushless resolvers which are mechanically coupled to the same output shaft is provided with inputs which are provided to each resolver by providing the first resolver with a DC input and the second resolver with an AC sinusoidal input. A trigonometric identity in which the sum of the squares of the sin and cosine components equal one is used to advantage in providing a sensor of increased accuracy. The first resolver may have a fixed or variable DC input to permit dynamic adjustment of resolver sensitivity thus permitting a wide range of coverage. Novelty and advantages of the invention reside in the excitation of a resolver with a DC signal and in the utilization of two resolvers and the trigonometric identity of cos(exp 2)(theta) + sin(exp 2)(theta) = 1 to provide an accurate rate sensor which is sensitive to direction and accurate through zero rate.
Multilevel-Dc-Bus Inverter For Providing Sinusoidal And Pwm Electrical Machine Voltages
Su, Gui-Jia [Knoxville, TN
2005-11-29
A circuit for controlling an ac machine comprises a full bridge network of commutation switches which are connected to supply current for a corresponding voltage phase to the stator windings, a plurality of diodes, each in parallel connection to a respective one of the commutation switches, a plurality of dc source connections providing a multi-level dc bus for the full bridge network of commutation switches to produce sinusoidal voltages or PWM signals, and a controller connected for control of said dc source connections and said full bridge network of commutation switches to output substantially sinusoidal voltages to the stator windings. With the invention, the number of semiconductor switches is reduced to m+3 for a multi-level dc bus having m levels. A method of machine control is also disclosed.
Observation of Sinusoidal Voltage Behaviour in Silver Doped YBCO
NASA Astrophysics Data System (ADS)
Altinkok, Atilgan; Olutas, Murat; Kilic, Kivilcim; Kilic, Atilla
The influence of bi-directional square wave (BSW) current was investigated on the evolution of the V - t curves at different periods (P) , temperatures and external magnetic fields. It was observed that slow transport relaxation measurements result in regular sinusoidal voltage oscillations which were discussed mainly in terms of the dynamic competition between pinning and depinning.The symmetry in the voltage oscillations was attributed to the elastic coupling between the flux lines and the pinning centers along grain boundaries and partly inside the grains. This case was also correlated to the equality between flux entry and exit along the YBCO/Ag sample during regular oscillations. It was shown that the voltage oscillations can be described well by an empirical expression V (t) sin(wt + φ) . We found that the phase angle φgenerally takes different values for the repetitive oscillations. Fast Fourier Transform analysis of the V - t oscillations showed that the oscillation period is comparable to that (PI) of the BSW current. This finding suggests a physical mechanism associated with charge density waves (CDWs), and, indeed, the weakly pinned flux line system in YBCO/Ag resembles the general behavior of CDWs. At certain values of PI, amplitude of BSW current, H and T, the YBCO/Ag sample behaves like a double-integrator, since it converts the BSW current to sinusoidal voltage oscillations in time.
Sensorless Sinusoidal Drives for Fan and Pump Motors by V/f Control
NASA Astrophysics Data System (ADS)
Kiuchi, Mitsuyuki; Ohnishi, Tokuo
This paper proposes sensorless sinusoidal driving methods of permanent magnet synchronous motors for fans and pumps by V/f control. The proposed methods are simple methods that control the motor peak current constant by voltage or frequency control, and are characterized by DC link current detection using a single shunt resistor at carrier wave signal bottom timing. As a result of the dumping factor from square torque load characteristics of fan and pump motors, it is possible to control stable starting and stable steady state by V/f control. In general, pressure losses as a result of the fluid pass of fan and pump systems are nearly constant; therefore, the flow rate and motor torque are determined by revolutions. Accordingly, high efficiency driving is possible by setting corresponding currents to q-axis currents (torque currents) at target revolutions. Because of the simple current detection and motor control methods, the proposed methods are optimum for fan and pump motor driving systems of home appliances.
Method of Calculating the Correction Factors for Cable Dimensioning in Smart Grids
NASA Astrophysics Data System (ADS)
Simutkin, M.; Tuzikova, V.; Tlusty, J.; Tulsky, V.; Muller, Z.
2017-04-01
One of the main causes of overloading electrical equipment by currents of higher harmonics is the great increasing of a number of non-linear electricity power consumers. Non-sinusoidal voltages and currents affect the operation of electrical equipment, reducing its lifetime, increases the voltage and power losses in the network, reducing its capacity. There are standards that respects emissions amount of higher harmonics current that cannot provide interference limit for a safe level in power grid. The article presents a method for determining a correction factor to the long-term allowable current of the cable, which allows for this influence. Using mathematical models in the software Elcut, it was described thermal processes in the cable in case the flow of non-sinusoidal current. Developed in the article theoretical principles, methods, mathematical models allow us to calculate the correction factor to account for the effect of higher harmonics in the current spectrum for network equipment in any type of non-linear load.
Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics.
Beattie, Kylie A; Hill, Adam P; Bardenet, Rémi; Cui, Yi; Vandenberg, Jamie I; Gavaghan, David J; de Boer, Teun P; Mirams, Gary R
2018-03-24
Ion current kinetics are commonly represented by current-voltage relationships, time constant-voltage relationships and subsequently mathematical models fitted to these. These experiments take substantial time, which means they are rarely performed in the same cell. Rather than traditional square-wave voltage clamps, we fitted a model to the current evoked by a novel sum-of-sinusoids voltage clamp that was only 8 s long. Short protocols that can be performed multiple times within a single cell will offer many new opportunities to measure how ion current kinetics are affected by changing conditions. The new model predicts the current under traditional square-wave protocols well, with better predictions of underlying currents than literature models. The current under a novel physiologically relevant series of action potential clamps is predicted extremely well. The short sinusoidal protocols allow a model to be fully fitted to individual cells, allowing us to examine cell-cell variability in current kinetics for the first time. Understanding the roles of ion currents is crucial to predict the action of pharmaceuticals and mutations in different scenarios, and thereby to guide clinical interventions in the heart, brain and other electrophysiological systems. Our ability to predict how ion currents contribute to cellular electrophysiology is in turn critically dependent on our characterisation of ion channel kinetics - the voltage-dependent rates of transition between open, closed and inactivated channel states. We present a new method for rapidly exploring and characterising ion channel kinetics, applying it to the hERG potassium channel as an example, with the aim of generating a quantitatively predictive representation of the ion current. We fitted a mathematical model to currents evoked by a novel 8 second sinusoidal voltage clamp in CHO cells overexpressing hERG1a. The model was then used to predict over 5 minutes of recordings in the same cell in response to further protocols: a series of traditional square step voltage clamps, and also a novel voltage clamp comprising a collection of physiologically relevant action potentials. We demonstrate that we can make predictive cell-specific models that outperform the use of averaged data from a number of different cells, and thereby examine which changes in gating are responsible for cell-cell variability in current kinetics. Our technique allows rapid collection of consistent and high quality data, from single cells, and produces more predictive mathematical ion channel models than traditional approaches. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Frankel, Mitchell A; Dowden, Brett R; Mathews, V John; Normann, Richard A; Clark, Gregory A; Meek, Sanford G
2011-06-01
Although asynchronous intrafascicular multi-electrode stimulation (IFMS) can evoke fatigue-resistant muscle force, a priori determination of the necessary stimulation parameters for precise force production is not possible. This paper presents a proportionally-modulated, multiple-input single-output (MISO) controller that was designed and experimentally validated for real-time, closed-loop force-feedback control of asynchronous IFMS. Experiments were conducted on anesthetized felines with a Utah Slanted Electrode Array implanted in the sciatic nerve, either acutely or chronically ( n = 1 for each). Isometric forces were evoked in plantar-flexor muscles, and target forces consisted of up to 7 min of step, sinusoidal, and more complex time-varying trajectories. The controller was successful in evoking steps in force with time-to-peak of less than 0.45 s, steady-state ripple of less than 7% of the mean steady-state force, and near-zero steady-state error even in the presence of muscle fatigue, but with transient overshoot of near 20%. The controller was also successful in evoking target sinusoidal and complex time-varying force trajectories with amplitude error of less than 0.5 N and time delay of approximately 300 ms. This MISO control strategy can potentially be used to develop closed-loop asynchronous IFMS controllers for a wide variety of multi-electrode stimulation applications to restore lost motor function.
Dual Brushless Resolver Rate Sensor
NASA Technical Reports Server (NTRS)
Howard, David E. (Inventor)
1997-01-01
A resolver rate sensor is disclosed in which dual brushless resolvers are mechanically coupled to the same output shaft. Diverse inputs are provided to each resolver by providing the first resolver with a DC input and the second resolver with an AC sinusoidal input. A trigonometric identity in which the sum of the squares of the sin and cosine components equal one is used to advantage in providing a sensor of increased accuracy. The first resolver may have a fixed or variable DC input to permit dynamic adjustment of resolver sensitivity thus permitting a wide range of coverage. In one embodiment of the invention the outputs of the first resolver are directly inputted into two separate multipliers and the outputs of the second resolver are inputted into the two separate multipliers, after being demodulated in a pair of demodulator circuits. The multiplied signals are then added in an adder circuit to provide a directional sensitive output. In another embodiment the outputs from the first resolver is modulated in separate modulator circuits and the output from the modulator circuits are used to excite the second resolver. The outputs from the second resolver are demodulated in separate demodulator circuit and added in an adder circuit to provide a direction sensitive rate output.
Force sensor characterization under sinusoidal excitations.
Medina, Nieves; de Vicente, Jesús
2014-10-06
The aim in the current work is the development of a method to characterize force sensors under sinusoidal excitations using a primary standard as the source of traceability. During this work the influence factors have been studied and a method to minimise their contributions, as well as the corrections to be performed under dynamic conditions have been established. These results will allow the realization of an adequate characterization of force sensors under sinusoidal excitations, which will be essential for its further proper use under dynamic conditions. The traceability of the sensor characterization is based in the direct definition of force as mass multiplied by acceleration. To do so, the sensor is loaded with different calibrated loads and is maintained under different sinusoidal accelerations by means of a vibration shaker system that is able to generate accelerations up to 100 m/s2 with frequencies from 5 Hz up to 2400 Hz. The acceleration is measured by means of a laser vibrometer with traceability to the units of time and length. A multiple channel data acquisition system is also required to simultaneously acquire the electrical output signals of the involved instrument in real time.
Dynamics of mechanical feedback-type hydraulic servomotors under inertia loads
NASA Technical Reports Server (NTRS)
Gold, Harold; Otto, Edward W; Ransom, Victor L
1953-01-01
An analysis of the dynamics of mechanical feedback-type hydraulic servomotors under inertia loads is developed and experimental verification is presented. The analysis, which is developed in terms of two physical parameters, yields direct expressions for the following dynamic responses: (1) the transient response to a step input and the maximum cylinder pressure during the transient and (2) the variation of amplitude attenuation and phase shift with the frequency of a sinusoidally varying input. The validity of the analysis is demonstrated by means of recorded transient and frequency responses obtained on two servomotors. The calculated responses are in close agreement with the measured responses. The relations presented are readily applicable to the design as well as to the analysis of hydraulic servomotors.
NASA Astrophysics Data System (ADS)
Takahashi, Toshimichi
2018-05-01
The tyre model which formerly developed by the author et al. and describes the tyre transient responses of side force and aligning moment under the time-varying vertical force was implemented to the vehicle dynamics simulation software and the influence of tyre side force transient property on the vehicle behaviour was investigated. The vehicle responses with/without tyre transient property on sinusoidally undulated road surfaces were simulated and compared. It was found that the average lateral acceleration of the vehicle at the sinusoidal steering wheel angle input decreases on the undulated road of long wavelength (3 m) for both cases, but when the wavelength becomes shorter (1 m), the average lateral acceleration increases only in the case that the transient property is considered. The cause of those changes is explained by using the tyre-related variables. Also the steady-state turning behaviour of the vehicle on undulated roads are shown and discussed.
Random harmonic analysis program, L221 (TEV156). Volume 1: Engineering and usage
NASA Technical Reports Server (NTRS)
Miller, R. D.; Graham, M. L.
1979-01-01
A digital computer program capable of calculating steady state solutions for linear second order differential equations due to sinusoidal forcing functions is described. The field of application of the program, the analysis of airplane response and loads due to continuous random air turbulence, is discussed. Optional capabilities including frequency dependent input matrices, feedback damping, gradual gust penetration, multiple excitation forcing functions, and a static elastic solution are described. Program usage and a description of the analysis used are presented.
NASA Technical Reports Server (NTRS)
Melik-Aslanova, L. L.; Frenkel, I. D.
1980-01-01
The state of hypokinesia in rats was reproduced by keeping them for 30 days in special box cages that restricted their mobility in all directions. Results show the resistance to acute hypoxic hypoxia is increased. This is linked to the considerable rise in the reduced level of corticosterone in different organs and the succinate dehydrogenase activity in the liver and brain. The letter indicated the primary oxidation of succinate, which has great importance in the adaptation of the oxidative metabolism to acute oxygen insufficiency. The use of sinusoidal modulated currents in the period of hypokinesia promotes normalization of the indices for resistance of the rats to acute hypoxia.
A grid-connected single-phase photovoltaic micro inverter
NASA Astrophysics Data System (ADS)
Wen, X. Y.; Lin, P. J.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.
2017-11-01
In this paper, the topology of a single-phase grid-connected photovoltaic (PV) micro-inverter is proposed. The PV micro-inverter consists of DC-DC stage with high voltage gain boost and DC-AC conversion stage. In the first stage, we apply the active clamp circuit and two voltage multipliers to achieve soft switching technology and high voltage gain. In addition, the flower pollination algorithm (FPA) is employed for the maximum power point tracking (MPPT) in the PV module in this stage. The second stage cascades a H-bridge inverter and LCL filter. To feed high quality sinusoidal power into the grid, the software phase lock, outer voltage loop and inner current loop control method are adopted as the control strategy. The performance of the proposed topology is tested by Matlab/Simulink. A PV module with maximum power 300W and maximum power point voltage 40V is applied as the input source. The simulation results indicate that the proposed topology and the control strategy are feasible.
Wavelet transformation to determine impedance spectra of lithium-ion rechargeable battery
NASA Astrophysics Data System (ADS)
Hoshi, Yoshinao; Yakabe, Natsuki; Isobe, Koichiro; Saito, Toshiki; Shitanda, Isao; Itagaki, Masayuki
2016-05-01
A new analytical method is proposed to determine the electrochemical impedance of lithium-ion rechargeable batteries (LIRB) from time domain data by wavelet transformation (WT). The WT is a waveform analysis method that can transform data in the time domain to the frequency domain while retaining time information. In this transformation, the frequency domain data are obtained by the convolution integral of a mother wavelet and original time domain data. A complex Morlet mother wavelet (CMMW) is used to obtain the complex number data in the frequency domain. The CMMW is expressed by combining a Gaussian function and sinusoidal term. The theory to select a set of suitable conditions for variables and constants related to the CMMW, i.e., band, scale, and time parameters, is established by determining impedance spectra from wavelet coefficients using input voltage to the equivalent circuit and the output current. The impedance spectrum of LIRB determined by WT agrees well with that measured using a frequency response analyzer.
World Record Magnetic Field 100T
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, Ross; Mielke, Chuck; Rickel, Dwight
2012-03-22
Scientists at the Los Alamos National Laboratory campus of the National High Magnetic Field Laboratory have successfully produced the world's first 100 Tesla non-destructive magnetic field. The achievement was decades in the making, involving a diverse team of scientists and engineers. The 100 Tesla mark was reached at approximately 3:30 p.m. on March 22, 2012. A note about the sound you'll hear when the magnet is energized: The sound that the 100 T multi-shot magnet makes is due to the electrical current modulation from the 3 phase power converters (known as 12 pulse converters) and the harmonics associated with themore » chopping of the sinusoidal input power. The magnet vibrates at the electrical current frequencies multiplied by 12 (i.e. ~ 55 Hz x 12 = 660 Hz) hence making an audible sound. The generator is not run at full speed (1650 RPM instead of 1800 RPM) so the frequency is slightly lower than US Line frequency (i.e. 55 Hz instead of 60 Hz). A spectrograph of the sound from the magnet pulse shows the multiple harmonics as reddish horizontal bands as a function of time.« less
Current-phase relations in low carrier density graphene Josephson junctions
NASA Astrophysics Data System (ADS)
Kratz, Philip; Amet, Francois; Watson, Christopher; Moler, Kathryn; Ke, Chung; Borzenets, Ivan; Watanabe, Kenji; Taniguchi, Takashi; Deacon, Russell; Yamamoto, Michihisa; Bomze, Yuriy; Tarucha, Seigo; Finkelstein, Gleb
Ideal Dirac semimetals have the unique property of being gate tunable to arbitrarily low electron and hole carrier concentrations near the Dirac point, without suffering from conduction channel pinch-off or Fermi level pinning to band edges and deep-level charge traps, which are common in typical semiconductors. SNS junctions, where N is a Dirac semimetal, can provide a versatile platform for studying few-mode superconducting weak links, with potential device applications for superconducting logic and qubits. We will use an inductive readout technique, scanning superconducting quantum interference device (SQUID) magnetometry, to measure the current-phase relations of high-mobility graphene SNS junctions as a function of temperature and carrier density, complementing magnetic Fraunhofer diffraction analysis from transport measurements which previously have assumed sinusoidal current-phase relations for junction Andreev modes. Deviations from sinusoidal behavior convey information about resonant scattering processes, dissipation, and ballistic modes in few-mode superconducting weak links.
Non-linear control of the output stage of a solar microinverter
NASA Astrophysics Data System (ADS)
Lopez-Santos, Oswaldo; Garcia, Germain; Martinez-Salamero, Luis; Avila-Martinez, Juan C.; Seguier, Lionel
2017-01-01
This paper presents a proposal to control the output stage of a two-stage solar microinverter to inject real power into the grid. The input stage of the microinverter is used to extract the maximum available power of a photovoltaic module enforcing a power source behavior in the DC-link to feed the output stage. The work here reported is devoted to control a grid-connected power source inverter with a high power quality level at the grid side ensuring the power balance of the microinverter regulating the voltage of the DC-link. The proposed control is composed of a sinusoidal current reference generator and a cascade type controller composed by a current tracking loop and a voltage regulation loop. The current reference is obtained using a synchronized generator based on phase locked loop (PLL) which gives the shape, the frequency and phase of the current signal. The amplitude of the reference is obtained from a simple controller regulating the DC-link voltage. The tracking of the current reference is accomplished by means of a first-order sliding mode control law. The solution takes advantage of the rapidity and inherent robustness of the sliding mode current controller allowing a robust behavior in the regulation of the DC-link using a simple linear controller. The analytical expression to determine the power quality indicators of the micro-inverter's output is theoretically solved giving expressions relating the converter parameters. The theoretical approach is validated using simulation and experimental results.
Observations of the directional distribution of the wind energy input function over swell waves
NASA Astrophysics Data System (ADS)
Shabani, Behnam; Babanin, Alex V.; Baldock, Tom E.
2016-02-01
Field measurements of wind stress over shallow water swell traveling in different directions relative to the wind are presented. The directional distribution of the measured stresses is used to confirm the previously proposed but unverified directional distribution of the wind energy input function. The observed wind energy input function is found to follow a much narrower distribution (β∝cos3.6θ) than the Plant (1982) cosine distribution. The observation of negative stress angles at large wind-wave angles, however, indicates that the onset of negative wind shearing occurs at about θ≈ 50°, and supports the use of the Snyder et al. (1981) directional distribution. Taking into account the reverse momentum transfer from swell to the wind, Snyder's proposed parameterization is found to perform exceptionally well in explaining the observed narrow directional distribution of the wind energy input function, and predicting the wind drag coefficients. The empirical coefficient (ɛ) in Snyder's parameterization is hypothesised to be a function of the wave shape parameter, with ɛ value increasing as the wave shape changes between sinusoidal, sawtooth, and sharp-crested shoaling waves.
Force Sensor Characterization Under Sinusoidal Excitations
Medina, Nieves; de Vicente, Jesús
2014-01-01
The aim in the current work is the development of a method to characterize force sensors under sinusoidal excitations using a primary standard as the source of traceability. During this work the influence factors have been studied and a method to minimise their contributions, as well as the corrections to be performed under dynamic conditions have been established. These results will allow the realization of an adequate characterization of force sensors under sinusoidal excitations, which will be essential for its further proper use under dynamic conditions. The traceability of the sensor characterization is based in the direct definition of force as mass multiplied by acceleration. To do so, the sensor is loaded with different calibrated loads and is maintained under different sinusoidal accelerations by means of a vibration shaker system that is able to generate accelerations up to 100 m/s2 with frequencies from 5 Hz up to 2400 Hz. The acceleration is measured by means of a laser vibrometer with traceability to the units of time and length. A multiple channel data acquisition system is also required to simultaneously acquire the electrical output signals of the involved instrument in real time. PMID:25290287
Reliability testing of ultra-low noise InGaAs quad photoreceivers
NASA Astrophysics Data System (ADS)
Joshi, Abhay M.; Datta, Shubhashish; Prasad, Narasimha; Sivertz, Michael
2018-02-01
We have developed ultra-low noise quadrant InGaAs photoreceivers for multiple applications ranging from Laser Interferometric Gravitional Wave Detection, to 3D Wind Profiling. Devices with diameters of 0.5 mm, 1mm, and 2 mm were processed, with the nominal capacitance of a single quadrant of a 1 mm quad photodiode being 2.5 pF. The 1 mm diameter InGaAs quad photoreceivers, using a low-noise, bipolar-input OpAmp circuitry exhibit an equivalent input noise per quadrant of <1.7 pA/√Hz in 2 to 20 MHz frequency range. The InGaAs Quad Photoreceivers have undergone the following reliability tests: 30 MeV Proton Radiation up to a Total Ionizing Dose (TID) of 50 krad, Mechanical Shock, and Sinusoidal Vibration.
NASA Astrophysics Data System (ADS)
Zheng, Ping; Liu, Jiaqi; Bai, Jingang; Song, Zhiyi; Liu, Yong
2017-05-01
The magnetic-field-modulated brushless double-rotor machine (MFM-BDRM), composed of a stator, a modulating ring rotor, and a PM rotor, is a kind of power-split device for hybrid electric vehicles (HEVs). In this paper, a new MFM-BDRM with sinusoidal-permeance modulating ring named Sinusoidal-Permeance-Modulating-Ring Brushless Double-Rotor Machine (SPMR-BDRM) is proposed to solve the problem of poor mechanical strength and large iron loss. The structure and the operating principle of the MFM-BDRM are introduced. The design principle of the sinusoidal-permeance modulating ring is analyzed and derived. The main idea of that is to minimize the harmonic permeance of air gap, thereby the harmonic magnetic fields can be restrained. There are comparisons between a MFM-BDRM with sinusoidal-permeance modulating ring and a same size MFM-BDRM with traditional modulating ring, including magnetic field distributions and electromagnetic performances. Most importantly, the iron losses are compared under six different conditions. The result indicates that the harmonic magnetic fields in the air gap are restrained; the electromagnetic torque and power factor are almost the same with same armature current; the torque ripples of the modulating ring rotor and the PM rotor are reduced; the stator loss is reduced by 13% at least and the PM loss is reduced by 20% at least compared with the same size traditional MFM-BDRM under the same operating conditions.
NASA Astrophysics Data System (ADS)
Wang, Chun-yu; He, Lin; Li, Yan; Shuai, Chang-geng
2018-01-01
In engineering applications, ship machinery vibration may be induced by multiple rotational machines sharing a common vibration isolation platform and operating at the same time, and multiple sinusoidal components may be excited. These components may be located at frequencies with large differences or at very close frequencies. A multi-reference filtered-x Newton narrowband (MRFx-Newton) algorithm is proposed to control these multiple sinusoidal components in an MIMO (multiple input and multiple output) system, especially for those located at very close frequencies. The proposed MRFx-Newton algorithm can decouple and suppress multiple sinusoidal components located in the same narrow frequency band even though such components cannot be separated from each other by a narrowband-pass filter. Like the Fx-Newton algorithm, good real-time performance is also achieved by the faster convergence speed brought by the 2nd-order inverse secondary-path filter in the time domain. Experiments are also conducted to verify the feasibility and test the performance of the proposed algorithm installed in an active-passive vibration isolation system in suppressing the vibration excited by an artificial source and air compressor/s. The results show that the proposed algorithm not only has comparable convergence rate as the Fx-Newton algorithm but also has better real-time performance and robustness than the Fx-Newton algorithm in active control of the vibration induced by multiple sound sources/rotational machines working on a shared platform.
Noise in any frequency range can enhance information transmission in a sensory neuron
NASA Astrophysics Data System (ADS)
Levin, Jacob E.
1997-05-01
The effect of noise on the neural encoding of broadband signals was investigated in the cricket cercal system, a mechanosensory system sensitive to small near-field air particle disturbances. Known air current stimuli were presented to the cricket through audio speakers in a controlled environment in a variety of background noise conditions. Spike trains from the second layer of neuronal processing, the primary sensory interneurons, were recorded with intracellular Electrodes and the performance of these neurons characterized with the tools of information theory. SNR, mutual information rates, and other measures of encoding accuracy were calculated for single frequency, narrowband, and broadband signals over the entire amplitude sensitivity range of the cells, in the presence of uncorrelated noise background also spanning the cells' frequency and amplitude sensitivity range. Significant enhancements of transmitted information through the addition of external noise were observed regardless of the frequency range of either the signal or noise waveforms, provided both were within the operating range of the cell. Considerable improvements in signal encoding were observed for almost an entire order of magnitude of near-threshold signal amplitudes. This included sinusoidal signals embedded in broadband white noise, broadband signals in broadband noise, and even broadband signals presented with narrowband noise in a completely non-overlapping frequency range. The noise related increases in mutual information rate for broadband signals were as high as 150%, and up to 600% increases in SNR were observed for sinusoidal signals. Additionally, it was shown that the amount of information about the signal carried, on average, by each spike was INCREASED for small signals when presented with noise—implying that added input noise can, in certain situations, actually improve the accuracy of the encoding process itself.
Electrodynamics in One Dimension: Radiation and Reflection
ERIC Educational Resources Information Center
Asti, G.; Coisson, R.
2011-01-01
Problems involving polarized plane waves and currents on sheets perpendicular to the wavevector involve only one component of the fields, so it is possible to discuss electrodynamics in one dimension. Taking for simplicity linearly polarized sinusoidal waves, we can derive the field emitted by currents (analogous to dipole radiation in three…
Time domain modal identification/estimation of the mini-mast testbed
NASA Technical Reports Server (NTRS)
Roemer, Michael J.; Mook, D. Joseph
1991-01-01
The Mini-Mast is a 20 meter long 3-dimensional, deployable/retractable truss structure designed to imitate future trusses in space. Presented here are results from a robust (with respect to measurement noise sensitivity), time domain, modal identification technique for identifying the modal properties of the Mini-Mast structure even in the face of noisy environments. Three testing/analysis procedures are considered: sinusoidal excitation near resonant frequencies of the Mini-Mast, frequency response function averaging of several modal tests, and random input excitation with a free response period.
Rapid Fluctuations of Water Maser Emission in VY Canis Majoris
NASA Astrophysics Data System (ADS)
Zheng, Xing Wu; Scalise, Eugenio, Jr.; Han, Fu
1998-11-01
We report the observational results of short timescale monitoring of the 22 GHz water maser emission in VY CMa. A quasi-sinusoidal fluctuation has been detected with the relative flux intensity change of 20%-25% and a period of 10.3 day for two dominant features. This detected variability appears to be superimposed on the normal maser lines. We cannot easily explain the rapid fluctuation with the variation of the radiative input or the strong interstellar scintillation along the line of sight. The variation may be caused by the periodic shock.
Harmonic Phase Responses of Radio Frequency Electronics: Wireline Test
2015-12-01
sinusoids to port 1; the output from port 1 (forward-traveling wave) is measured as A1. The N-VNA measures the reflection back into port 1 (reverse...2 different input power levels: –10 and 0 dBm. In all of the reported data, frequency is given in Hz, f = ω/2π. Figures 3–15 contain measured data...for 6 targets and the no-target (open-circuit) case. In Figs. 4–15, the upper plot is data measured when the target is directly connected to port 1
Sinusoidal modulation analysis for optical system MTF measurements.
Boone, J M; Yu, T; Seibert, J A
1996-12-01
The modulation transfer function (MTF) is a commonly used metric for defining the spatial resolution characteristics of imaging systems. While the MTF is defined in terms of how an imaging system demodulates the amplitude of a sinusoidal input, this approach has not been in general use to measure MTFs in the medical imaging community because producing sinusoidal x-ray patterns is technically difficult. However, for optical systems such as charge coupled devices (CCD), which are rapidly becoming a part of many medical digital imaging systems, the direct measurement of modulation at discrete spatial frequencies using a sinusoidal test pattern is practical. A commercially available optical test pattern containing spatial frequencies ranging from 0.375 cycles/mm to 80 cycles/mm was sued to determine the MRF of a CCD-based optical system. These results were compared with the angulated slit method of Fujita [H. Fujita, D. Tsia, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, "A simple method for determining the modulation transfer function in digital radiography," IEEE Trans. Medical Imaging 11, 34-39 (1992)]. The use of a semiautomated profiled iterated reconstruction technique (PIRT) is introduced, where the shift factor between successive pixel rows (due to angulation) is optimized iteratively by least-squares error analysis rather than by hand measurement of the slit angle. PIRT was used to find the slit angle for the Fujita technique and to find the sine-pattern angle for the sine-pattern technique. Computer simulation of PIRT for the case of the slit image (a line spread function) demonstrated that it produced a more accurate angle determination than "hand" measurement, and there is a significant difference between the errors in the two techniques (Wilcoxon Signed Rank Test, p < 0.001). The sine-pattern method and the Fujita slit method produced comparable MTF curves for the CCD camera evaluated.
Cosmology and the Sinusoidal Potential
NASA Astrophysics Data System (ADS)
Bartlett, David F.
2006-06-01
The nature of dark matter (and dark energy) remains a mystery. An alternative is being explored by several scientists: changing Newton's (and Einstein's) field equations. The sinusoidal potential is the latest attempt[1]. Here the gravitational law is alternately attractive and repulsive:φ = -GM cos(kor)/r, where λo=2π/ko = 1/20 of the distance from the sun to the center of the Milky Way. The proposal accommodates several structural features of the Milky Way including, paradoxically, its spiral shape and flat rotation curve. The sinusoidal potential's unique feature is strong galactic tidal forces (dg/dr). These may explain why the new planetoid Sedna is securely between the Kuiper Belt and the Oort cloud and why distant comets are more influenced by galactic tides that are in the r, rather than the z-direction.At this meeting I discuss the consequences of the sinusoidal potential for cosmology. Here the alternation of attraction and repulsion gives (i) an open universe, and (ii) gravitational lensing which is usually weak, but occasionally very strong. An open universe is one that, asymptotically, has a size R which varies directly as time t. The open universe conflicts both with the old Einstein-deSitter model (R α t2/3} and the new accelerating one. The evidence for an accelerating universe decisively rejects the Einstein-deSitter model. The rejection of an open (or empty) universe is less secure. This rejection is influenced by the different ways the groups studying the brightness of supernovae use the HST. Surprising additional inputs include neutrino masses, the equivalence principle, LSB galaxies, and "over-luminous" Sn1a. I thank Mostafa Jon Dadras and Patrick Motl for early help and John Cumalat for continual support. [1] D.F. Bartlett, "Analogies between electricity and gravity", Metrologia 41, S115-S124 (2004).
Jiang, Shan; Lou, Jinlong; Yang, Zhiyong; Dai, Jiansheng; Yu, Yan
2015-09-01
Biopsy and brachytherapy for small core breast cancer are always difficult medical problems in the field of cancer treatment. This research mainly develops a magnetic resonance imaging-guided high-precision robotic system for breast puncture treatment. First, a 5-degree-of-freedom tendon-based surgical robotic system is introduced in detail. What follows are the kinematic analysis and dynamical modeling of the robotic system, where a mathematic dynamic model is established using the Lagrange method and a lumped parameter tendon model is used to identify the nonlinear gain of the tendon-sheath transmission system. Based on the dynamical models, an adaptive proportional-integral-derivative controller with friction compensation is proposed for accurate position control. Through simulations using different sinusoidal input signals, we observe that the sinusoidal tracking error at 1/2π Hz is 0.41 mm. Finally, the experiments on tendon-sheath transmission and needle insertion performance are conducted, which show that the insertion precision is 0.68 mm in laboratory environment. © IMechE 2015.
Surface Modification of ICF Target Capsules by Pulsed Laser Ablation
Carlson, Lane C.; Johnson, Michael A.; Bunn, Thomas L.
2016-06-30
Topographical modifications of spherical surfaces are imprinted on National Ignition Facility (NIF) target capsules by extending the capabilities of a recently developed full surface (4π) laser ablation and mapping apparatus. The laser ablation method combines the precision, energy density and long reach of a focused laser beam to pre-impose sinusoidal modulations on the outside surface of High Density Carbon (HDC) capsules and the inside surface of Glow Discharge Polymer (GDP) capsules. Sinusoidal modulations described in this paper have sub-micron to 10’s of microns vertical scale and wavelengths as small as 30 μm and as large as 200 μm. The modulatedmore » patterns are created by rastering a focused laser fired at discrete capsule surface locations for a specified number of pulses. The computer program developed to create these raster patterns uses inputs such as laser beam intensity profile, the material removal function, the starting surface figure and the desired surface figure. The patterns are optimized to minimize surface roughness. Lastly, in this paper, simulated surfaces are compared with actual ablated surfaces measured using confocal microscopy.« less
Frequency modulation television analysis: Threshold impulse analysis. [with computer program
NASA Technical Reports Server (NTRS)
Hodge, W. H.
1973-01-01
A computer program is developed to calculate the FM threshold impulse rates as a function of the carrier-to-noise ratio for a specified FM system. The system parameters and a vector of 1024 integers, representing the probability density of the modulating voltage, are required as input parameters. The computer program is utilized to calculate threshold impulse rates for twenty-four sets of measured probability data supplied by NASA and for sinusoidal and Gaussian modulating waveforms. As a result of the analysis several conclusions are drawn: (1) The use of preemphasis in an FM television system improves the threshold by reducing the impulse rate. (2) Sinusoidal modulation produces a total impulse rate which is a practical upper bound for the impulse rates of TV signals providing the same peak deviations. (3) As the moment of the FM spectrum about the center frequency of the predetection filter increases, the impulse rate tends to increase. (4) A spectrum having an expected frequency above (below) the center frequency of the predetection filter produces a higher negative (positive) than positive (negative) impulse rate.
NASA Astrophysics Data System (ADS)
Bokhtache, A. Aissa; Zegaoui, A.; Djahbar, A.; Allouache, H.; Hemici, K.; Kessaissia, F. Z.; Bouchrit, M. S.; Aillerie, M.
2017-02-01
The low-pressure electrical discharges established in the mercury rare gas mixtures are the basis of many applications both in the field of lighting and for industrial applications. In order to select an efficient high frequency power supply (ECG -based PWM inverter), we present and discuss results obtained in the simulation of three kinds of power supplies delivering a 0.65 A - 50KHz sinusoidal current dedicated to power low pressure UV Mercury - Argon lamp used for effect germicide on water treatment thus allowing maximum UVC radiation at 253.7 nm. Three ballasts half-bridge configurations were compared with criteria based on resulting germicide efficiency, electrical yield and reliability, for example the quality of the sinusoidal current with reduced THD, and finally, we also considered in this analysis the final economic aspect.
Combined Multidimensional Microscopy as a Histopathology Imaging Tool.
Shami, Gerald J; Cheng, Delfine; Braet, Filip
2017-02-01
Herein, we present a highly versatile bioimaging workflow for the multidimensional imaging of biological structures across vastly different length scales. Such an approach allows for the optimised preparation of samples in one go for consecutive X-ray micro-computed tomography, bright-field light microscopy and backscattered scanning electron microscopy, thus, facilitating the disclosure of combined structural information ranging from the gross tissue or cellular level, down to the nanometre scale. In this current study, we characterize various aspects of the hepatic vasculature, ranging from such large vessels as branches of the hepatic portal vein and hepatic artery, down to the smallest sinusoidal capillaries. By employing high-resolution backscattered scanning electron microscopy, we were able to further characterize the subcellular features of a range of hepatic sinusoidal cells including, liver sinusoidal endothelial cells, pit cells and Kupffer cells. Above all, we demonstrate the capabilities of a specimen manipulation workflow that can be applied and adapted to a plethora of functional and structural investigations and experimental models. Such an approach harnesses the fundamental advantages inherent to the various imaging modalities presented herein, and when combined, offers information not currently available by any single imaging platform. J. Cell. Physiol. 232: 249-256, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Electrical properties of AlGaN/GaN HEMTs in stretchable geometries
NASA Astrophysics Data System (ADS)
Tompkins, R. P.; Mahaboob, I.; Shahedipour-Sandvik, F.; Lazarus, N.
2017-10-01
Many biological materials are naturally soft and stretchable, far more so than crystalline semiconductors. Creating systems that can be placed directly on a surface such as human skin has required new approaches in electronic device design and materials, a field known as stretchable electronics. One common method for fabricating a highly brittle semiconductor device able to survive tens of percent strain is to incorporate stress relief structures ('waves'). Although the mechanical advantages of this approach are well known, the effects on the electrical behavior of a device such as a transistor compared to a more traditional geometry have not been studied. Here, AlGaN/GaN high electron mobility transistors (HEMTs) grown on rigid sapphire substrates were fabricated in a common wavy geometry, a sinusoid, with dimensions similar to those used in stretchable electronics. The study analyzes control parameters available to the designer including gate location along the sinusoid, angle the source-drain contacts make with the gate, as well as variation of the gate length at the peak of the sinusoid. Common electrical parameters such as saturation current density, threshold voltage, and transconductance were compared between the sinusoidal and conventional straight geometries and results found to fall to within experimental uncertainty, suggesting shifting to a stretchable geometry is possible without appreciably degrading semiconductor device performance.
Effect of Vestibular Impairment on Cerebral Blood Flow Response to Dynamic Roll Tilt
NASA Technical Reports Server (NTRS)
Serrador, J. M.; Black, F. O.; Schlgel, Todd T.; Lipsitz, L. A.; Wood, S. J.
2008-01-01
Change to upright posture results in reductions in cerebral perfusion pressure due to hydrostatic pressure changes related to gravity. Since vestibular organs, specifically the otoliths, provide information on position relative to gravity, vestibular inputs may assist in adaptation to the upright posture. The goal of this study was to examine the effect of direct vestibular stimulation on cerebral blood flow (CBF). To examine the role of otolith inputs we screened 165 subjects for vestibular function and classified subjects as either normal or impaired based on ocular torsion. Ocular torsion, an indication of otolith function, was assessed during sinusoidal roll tilt of 20 degrees at 0.01 Hz (100 sec per cycle). Subjects with torsion one SD below the mean were classified as impaired while subjects one SD above the mean were considered normal. During one session subjects were placed in a chair that was sinusoidally rotated 25 degrees in the roll plane at five frequencies: 0.25 & 0.125 Hz for 80 sec, 0.0625 Hz for 160 sec and 0.03125 Hz and 0.015625 Hz for 320 sec. During testing, CBF (transcranial Doppler), blood pressure (Finapres), and end tidal CO2 (Puritan Bennet) were measured continuously. Ocular torsion was assessed from infrared images of the eyes. All rotations were done in the dark with subjects fixated on a red LED directly at the center of rotation. In the normal group, dynamic tilt resulted in significant changes in both blood pressure and cerebral blood flow velocity that was related to the frequency of stimulus. In contrast the impaired group did not show similar patterns. As expected normal subjects demonstrated significant ocular torsion that was related to stimulus frequency while impaired subjects had minimal changes. These data suggest that vestibular inputs have direct effects on cerebral blood flow regulation during dynamic tilt. Supported by NASA.
Characteristics of Electromagnetic Pulse Propagation in Metal
NASA Technical Reports Server (NTRS)
Namkung, M.; Wincheski, B.; Nath, S.; Fulton, J. P.
2004-01-01
It is well known that the solution of the diffusion equation for an electromagnetic field with a time harmonic term, e(sup iwt), is in the form of a traveling wave whose amplitude attenuates over distance into a conducting medium. As the attenuation is an increasing function of frequency, the high frequency components attenuate more rapidly than those of low ones upon entering a well conducting object. At the same time, the phase velocity of an individual component is also an increasing function of frequency causing a broadening of the pulse traveling inside a conductor. In the results of our previous study of numerical simulations, the problem of using a gaussian input pulse was immediately clear. First, having the dominant frequency components distributed around zero, the movement of the peak was not well defined. Second, with the amplitude of fourier components varying slowly over a wide range, the dispersion-induced blurring of the peak position was seen to be severe. For the present study, we have used a gaussian modulated single frequency sinusoidal wave, i. e., the carrier, as an input pulse in an effort to improve the issues related to the unclear movement of peak and dispersion as described above. This was based on the following two anticipated advantages: First, the packet moves in a conductor at the group velocity calculated at the carrier frequency, which means it is well controllable. Second, the amplitude of frequency components other than that of the carrier can be almost negligible, such that the effect of dispersion can be significantly reduced. A series of experiments of transmitting electromagnetic pulses through aluminum plates of various thickness was performed to test the validity of the above points. The results of numerical simulation based on wave propagation are discussed with respect to the experimental results. Finally, a simple simulation was performed based on diffusion of a continuous sine wave input and the results are compared with those of a single frequency sinusoidal wave observed over time at difference locations inside a conductor.
Li, A A; Karpukhin, I V; Korchazhkina, N B; Gusarov, I I; Kotenko, K V; Slepushkina, T G; Dubovskiĭ, A V
2009-01-01
The authors report results of the treatment of 60 patients with ureterolithiasis using a combination of pulsed vacuum depression (local vibrotherapy), low-frequency pulsed (alternating sinusoidal) current, radon water and radon baths. Clinical efficiency of combined therapy is estimated at 93.3%.
CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge
2017-01-01
The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE) effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD) study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c), the wavelength (0.25c) is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil. PMID:28850622
CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge.
Aftab, S M A; Ahmad, K A
2017-01-01
The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE) effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD) study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c), the wavelength (0.25c) is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil.
A novel regenerative shock absorber with a speed doubling mechanism and its Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Zhang, Ran; Wang, Xu; Liu, Zhenwei
2018-03-01
A novel regenerative shock absorber has been designed and fabricated. The novelty of the presented work is the application of the double speed regenerative shock absorber that utilizes the rack and pinion mechanism to increase the magnet speed with respect to the coils for higher power output. The simulation models with parameters identified from finite element analysis and the experiments are developed. The proposed regenerative shock absorber is compared with the regenerative shock absorber without the rack and pinion mechanism, when they are integrated into the same quarter vehicle suspension system. The sinusoidal wave road profile displacement excitation and the random road profile displacement excitation with peak amplitude of 0.035 m are applied as the inputs in the frequency range of 0-25 Hz. It is found that with the sinusoidal and random road profile displacement input, the proposed innovative design can increase the output power by 4 times comparing to the baseline design. The proposed double speed regenerative shock absorber also presents to be more sensitive to the road profile irregularity than the single speed regenerative shock absorber as suggested by Monte Carlo simulation. Lastly the coil mass and amplification factor are studied for sensitivity analysis and performance optimization, which provides a general design method of the regenerative shock absorbers. It shows that for the system power output, the proposed design becomes more sensitive to either the coil mass or amplification factor depending on the amount of the coil mass. With the specifically selected combination of the coil mass and amplification factor, the optimized energy harvesting performance can be achieved.
Method and apparatus for controlling current in inductive loads such as large diameter coils
Riveros, Carlos A.
1981-01-01
A method and apparatus for controlling electric current in loads that are essentially inductive, such that sparking and "ringing" current problems are reduced or eliminated. The circuit apparatus employs a pair of solid state switches (each of which switch may be an array of connected or parallel solid state switching devices such as transistors) and means for controlling those switches such that a power supply supplying two d.c. voltages (e.g. positive 150 volts d.c. and negative 150 volts d.c.) at low resistance may be connected across an essentially inductive load (e.g. a 6 gauge wire loop one hundred meters in diameter) alternatively and such that the first solid state switch is turned off and the second is turned on such that both are not on at the same time but the first turned on and the other on in less time than the inductive time constant (L/R) so that the load is essentially always presented with a low resistance path across its input. In this manner a steady AC current may be delivered to the load at a frequency desired. Shut-off problems are avoided by gradually shortening the period of switching to less than the time constant so that the maximum energy contained in the inductive load is reduced to approximately zero and dissipated in the inherent resistance. The invention circuit may be employed by adjusting the timing of switching to deliver a desired waveform (such as sinusoidal) to the load.
Centaur engine gimbal friction characteristics under simulated thrust load
NASA Technical Reports Server (NTRS)
Askew, J. W.
1986-01-01
An investigation was performed to determine the friction characteristics of the engine gimbal system of the Centaur upper stage rocket. Because the Centaur requires low-gain autopilots in order to meet all stability requirements for some configurations, control performance (response to transients and limit-cycle amplitudes) depends highly on these friction characteristics. Forces required to rotate the Centaur engine gimbal system were measured under a simulated thrust load of 66,723 N (15,000 lb) and in an altitude/thermal environment. A series of tests was performed at three test conditions; ambient temperature and pressure, ambient temperature and vacuum, and cryogenic temperature and vacuum. Gimbal rotation was controlled, and tests were performed in which rotation amplitude and frequency were varied by using triangular and sinusoidal waveforms. Test data revealed an elastic characteristic of the gimbal, independent of the input signal, which was evident prior to true gimbal sliding. The torque required to initiate gimbal sliding was found to decrease when both pressure and temperature decreased. Results from the low amplitude and low frequency data are currently being used in mathematically modeling the gimbal friction characteristics for Centaur autopilot performance studies.
NASA Astrophysics Data System (ADS)
Graf, J.; Gautam, A.; Boyer, J. L.
1984-10-01
Hepatocyte couplets were isolated by collagenase perfusion from rat liver. Between adjacent cells, the bile canaliculus forma a closed space into which secretion occurs. As in intact liver, Mg2+-ATPase is localized at the canalicular lumen, the organic anion fluorescein is excreted, and secretion is modified by osmotic gradients. By passing a microelectrode through one cell into the canalicular vacuole, a transepithelial potential profile was obtained. In 27 cell couplets the steady-state intracellular (-26.3 ± 5.3 mV) and intracanalicular (-5.9 ± 3.3 mV) potentials were recorded at 37 degrees C with reference to the external medium. Input resistances were determined within the cell (86 ± 23 MΩ ) and in the bile canalicular lumen (32 ± 17 MΩ ) by passing current pulses through the microelectrode. These data define electrical driving forces for ion transport across the sinusoidal, canalicular, and paracellular barriers and indicate ion permeation across a leaky paracellular junctional pathway. These findings indicate that the isolated hepatocyte couplet is an effective model for electrophysiologic studies of bile secretory function.
Centaur engine gimbal friction characteristics under simulated thrust load
NASA Astrophysics Data System (ADS)
Askew, J. W.
1986-09-01
An investigation was performed to determine the friction characteristics of the engine gimbal system of the Centaur upper stage rocket. Because the Centaur requires low-gain autopilots in order to meet all stability requirements for some configurations, control performance (response to transients and limit-cycle amplitudes) depends highly on these friction characteristics. Forces required to rotate the Centaur engine gimbal system were measured under a simulated thrust load of 66,723 N (15,000 lb) and in an altitude/thermal environment. A series of tests was performed at three test conditions; ambient temperature and pressure, ambient temperature and vacuum, and cryogenic temperature and vacuum. Gimbal rotation was controlled, and tests were performed in which rotation amplitude and frequency were varied by using triangular and sinusoidal waveforms. Test data revealed an elastic characteristic of the gimbal, independent of the input signal, which was evident prior to true gimbal sliding. The torque required to initiate gimbal sliding was found to decrease when both pressure and temperature decreased. Results from the low amplitude and low frequency data are currently being used in mathematically modeling the gimbal friction characteristics for Centaur autopilot performance studies.
Binocular Coordination of the Human Vestibulo-Ocular Reflex during Off-axis Pitch Rotation
NASA Technical Reports Server (NTRS)
Wood, S. J.; Reschke, M. F.; Kaufman, G. D.; Black, F. O.; Paloski, W. H.
2006-01-01
Head movements in the sagittal pitch plane typically involve off-axis rotation requiring both vertical and horizontal vergence ocular reflexes to compensate for angular and translational motion relative to visual targets of interest. The purpose of this study was to compare passive pitch VOR responses during rotation about an Earth-vertical axis (canal only cues) with off-axis rotation (canal and otolith cues). Methods. Eleven human subjects were oscillated sinusoidally at 0.13, 0.3 and 0.56 Hz while lying left-side down with the interaural axis either aligned with the axis of rotation or offset by 50 cm. In a second set of measurements, twelve subjects were also tested during sinusoidally varying centrifugation over the same frequency range. The modulation of vertical and horizontal vergence ocular responses was measured with a binocular videography system. Results. Off-axis pitch rotation enhanced the vertical VOR at lower frequencies and enhanced the vergence VOR at higher frequencies. During sinusoidally varying centrifugation, the opposite trend was observed for vergence, with both vertical and vergence vestibulo-ocular reflexes being suppressed at the highest frequency. Discussion. These differential effects of off-axis rotation over the 0.13 to 0.56 Hz range are consistent with the hypothesis that otolith-ocular reflexes are segregated in part on the basis of stimulus frequency. At the lower frequencies, tilt otolith-ocular responses compensate for declining canal input. At higher frequencies, translational otolith-ocular reflexes compensate for declining visual contributions to the kinematic demands required for fixating near targets.
Stimulation of hair cells with ultraviolet light
NASA Astrophysics Data System (ADS)
Azimzadeh, Julien B.; Fabella, Brian A.; Hudspeth, A. J.
2018-05-01
Hair bundles are specialized organelles that transduce mechanical inputs into electrical outputs. To activate hair cells, physiologists have resorted to mechanical methods of hair-bundle stimulation. Here we describe a new method of hair-bundle stimulation, irradiation with ultraviolet light. A hair bundle illuminated by ultraviolet light rapidly moves towards its tall edge, a motion typically associated with excitatory stimulation. The motion disappears upon tip-link rupture and is associated with the opening of mechanotransduction channels. Hair bundles can be induced to move sinusoidally with oscillatory modulation of the stimulation power. We discuss the implications of ultraviolet stimulation as a novel hair-bundle stimulus.
Ultra-wideband short-pulse radar with range accuracy for short range detection
Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P
2014-10-07
An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.
NASA Technical Reports Server (NTRS)
Carden, H. D.
1979-01-01
Mechanical excitation was used, and measurements of acceleration response, natural frequencies, and nodal patterns were performed. Results indicate that the wall sections and the complete wall did not act as a unit in responding to sinusoidal vibration inputs. Calculated frequencies of the components that account for this independent behavior of the studs and face sheets agreed resonably well with experimental frequencies. Experimental vibrations of the plate glass window agreed with the calculated behavior, and responses of the window exposed to airplane flyover noise were readily correlated with the test results.
Static inverter with synchronous output waveform synthesized by time-optimal-response feedback
NASA Technical Reports Server (NTRS)
Kernick, A.; Stechschulte, D. L.; Shireman, D. W.
1976-01-01
Time-optimal-response 'bang-bang' or 'bang-hang' technique, using four feedback control loops, synthesizes static-inverter sinusoidal output waveform by self-oscillatory but yet synchronous pulse-frequency-modulation (SPFM). A single modular power stage per phase of ac output entails the minimum of circuit complexity while providing by feedback synthesis individual phase voltage regulation, phase position control and inherent compensation simultaneously for line and load disturbances. Clipped sinewave performance is described under off-limit load or input voltage conditions. Also, approaches to high power levels, 3-phase arraying and parallel modular connection are given.
Identification of pilot dynamics from in-flight tracking data
NASA Technical Reports Server (NTRS)
Hess, R. A.; Mnich, M. A.
1985-01-01
Data from a representative flight task involving an F-14 'pursuer' aircraft tracking a T-38 'target' aircraft in a 3G wind-up turn and in level flight are processed using a least squares identification technique in an attempt to identify pilot/vehicle dynamics. Comparative identification results are provided by a Fourier coefficient method which requires a carefully designed and implemented input consisting of a sum of sinusoids. The least-squares results compare favorably with those obtained by the Fourier technique. An example of crossover frequency regression is discussed in the light of the conditions of one of the flight configurations.
Hannon, Fay
2016-08-02
A method for maximizing the brightness of the bunches in a particle injector by converting a highly space-charged beam to a relativistic and emittance-dominated beam. The method includes 1) determining the bunch charge and the initial kinetic energy of the highly space-charge dominated input beam; 2) applying the bunch charge and initial kinetic energy properties of the highly space-charge dominated input beam to determine the number of accelerator cavities required to accelerate the bunches to relativistic speed; 3) providing the required number of accelerator cavities; and 4) setting the gradient of the radio frequency (RF) cavities; and 5) operating the phase of the accelerator cavities between -90 and zero degrees of the sinusoid of phase to simultaneously accelerate and bunch the charged particles to maximize brightness, and until the beam is relativistic and emittance-dominated.
The behavior of quantization spectra as a function of signal-to-noise ratio
NASA Technical Reports Server (NTRS)
Flanagan, M. J.
1991-01-01
An expression for the spectrum of quantization error in a discrete-time system whose input is a sinusoid plus white Gaussian noise is derived. This quantization spectrum consists of two components: a white-noise floor and spurious harmonics. The dithering effect of the input Gaussian noise in both components of the spectrum is considered. Quantitative results in a discrete Fourier transform (DFT) example show the behavior of spurious harmonics as a function of the signal-to-noise ratio (SNR). These results have strong implications for digital reception and signal analysis systems. At low SNRs, spurious harmonics decay exponentially on a log-log scale, and the resulting spectrum is white. As the SNR increases, the spurious harmonics figure prominently in the output spectrum. A useful expression is given that roughly bounds the magnitude of a spurious harmonic as a function of the SNR.
NASA Astrophysics Data System (ADS)
Gómez Colín, R.; García Juárez, A.; Zaldívar Huerta, I. E.; Marquina, A. Vera; García Delgado, L. A.; Leal Cruz, A. L.; Gómez Fuentes, R.
2016-03-01
In this paper we propose a photonic architecture as an alternative tool to distribute point to multipoint analog and digital information over a hybrid wireless visible optical communication system. The experimental set-up is composed of a red laser pointer, an acousto-optic modulator, a sinusoidal grating and a photo-detector array. By using a simple and variable interferometric system, diffraction gratings with different spatial frequencies are generated and recorded on a photoemulsion which is composed of vanilla with dichromate gelatin. Analog video and digital information are first transmitted and recovered over a wireless communication system using a microwave carrier at 4.52 GHz which is generated by distributed feedback lasers operating in the low laser threshold current region. Separately, the recovered video information and digital data are combined with a radio frequency signal of 80 MHz, obtaining a subcarrier of information that is imposed on the optical carrier of the pointer laser using an acousto-optic modulator which is operated with an angle of incident light that satisfies the Bragg condition. The modulated optical carrier is sent to a sinusoidal grating, the diffraction pattern is photo-detected using an array of PIN photo-detectors. The use of sinusoidal gratings with acousto-optic modulators allows that number of channels to be increased when both components are placed in cascade.
Additivity of nonsimultaneous masking for short Gaussian-shaped sinusoids.
Laback, Bernhard; Balazs, Peter; Necciari, Thibaud; Savel, Sophie; Ystad, Solvi; Meunier, Sabine; Kronland-Martinet, Richard
2011-02-01
The additivity of nonsimultaneous masking was studied using Gaussian-shaped tone pulses (referred to as Gaussians) as masker and target stimuli. Combinations of up to four temporally separated Gaussian maskers with an equivalent rectangular bandwidth of 600 Hz and an equivalent rectangular duration of 1.7 ms were tested. Each masker was level-adjusted to produce approximately 8 dB of masking. Excess masking (exceeding linear additivity) was generally stronger than reported in the literature for longer maskers and comparable target levels. A model incorporating a compressive input/output function, followed by a linear summation stage, underestimated excess masking when using an input/output function derived from literature data for longer maskers and comparable target levels. The data could be predicted with a more compressive input/output function. Stronger compression may be explained by assuming that the Gaussian stimuli were too short to evoke the medial olivocochlear reflex (MOCR), whereas for longer maskers tested previously the MOCR caused reduced compression. Overall, the interpretation of the data suggests strong basilar membrane compression for very short stimuli.
NASA Astrophysics Data System (ADS)
Yang, Dingge; Wang, Lijun; Jia, Shenli; Huo, Xintao; Zhang, Ling; Liu, Ke; Shi, Zongqian
2009-03-01
Based on a two-dimensional magnetohydrodynamic model, the dynamic process in a high-current vacuum arc (as in a high-power circuit breaker) was simulated and analysed. A half-wave of sinusoidal current was represented as a series of discrete steps, rather than as a continuous wave. The simulation was done at each step, i.e. at each of the discrete current values. In the simulation, the phase delay by which the axial magnetic field lags the current was taken into account. The curves which represent the variation of arc parameters (such as electron temperature) look sinusoidal, but the parameter values at a discrete moment in the second 1/4 cycle are smaller than those at the corresponding moment in the first 1/4 cycle (although the currents are equal at these two moments). This is perhaps mainly due to the magnetic field delay. In order to verify the correctness of the simulation, the simulation results were compared in part with the experimental results. It was seen from the experimental results that the arc column was darker but more uniform in the second 1/4 cycle than in the first 1/4 cycle, in agreement with the simulation results.
Electromagnetic Compatibility of Devices on Hybrid Electromagnetic Components
NASA Astrophysics Data System (ADS)
Konesev, S. G.; Khazieva, R. T.; Kirillov, R. V.; Gainutdinov, I. Z.; Kondratyev, E. Y.
2018-01-01
There is a general tendency to reduce the weight and dimensions, the consumption of conductive and electrical insulating materials, increase the reliability and energy efficiency of electrical devices. In recent years, designers have been actively developing devices based on hybrid electromagnetic components (HEMC) such as inductive-capacitive converters (ICC), voltages pulse generators (VPG), secondary power supplies (SPS), capacitive storage devices (CSD), induction heating systems (IHS). Sources of power supplies of similar electrical devices contain, as a rule, links of increased frequency and function in key (pulse) modes, which leads to an increase in electromagnetic interference (EMI). Nonlinear and periodic (impulse) loads, non-sinusoidal (pulsation) of the electromotive force and nonlinearity of the internal parameters of the source and input circuits of consumers distort the shape of the input voltage lead to an increase in thermal losses from the higher harmonic currents, aging of the insulation, increase in the weight of the power supply filter units, resonance at higher harmonics. The most important task is to analyze the operation of electrotechnical devices based on HEMC from the point of view of creating EMIs and assessing their electromagnetic compatibility (EMC) with power supply systems (PSS). The article presents the results of research on the operation of an IHS, the operation principle of a secondary power supply source of which is based on the operation of a half-bridge autonomous inverter, the switching circuit of which is made in the form of a HEMC, called the «multifunctional integrated electromagnetic component»" (MIEC).
Asymmetric Fuzzy Control of a Positive and Negative Pneumatic Pressure Servo System
NASA Astrophysics Data System (ADS)
Yang, Gang; Du, Jing-Min; Fu, Xiao-Yun; Li, Bao-Ren
2017-11-01
The pneumatic pressure control systems have been used in some fields. However, the researches on pneumatic pressure control mainly focus on constant pressure regulation. Poor dynamic characteristics and strong nonlinearity of such systems limit its application in the field of pressure tracking control. In order to meet the demand of generating dynamic pressure signal in the application of the hardware-in-the-loop simulation of aerospace engineering, a positive and negative pneumatic pressure servo system is provided to implement dynamic adjustment of sealed chamber pressure. A mathematical model is established with simulation and experiment being implemented afterwards to discuss the characteristics of the system, which shows serious asymmetry in the process of charging and discharging. Based on the analysis of the system dynamics, a fuzzy proportional integral derivative (PID) controller with asymmetric fuzzy compensator is proposed. Different from conventional adjusting mechanisms employing the error and change in error of the controlled variable as input parameters, the current chamber pressure and charging or discharging state are chosen as inputs of the compensator, which improves adaptability. To verify the effectiveness and performance of the proposed controller, the comparison experiments tracking sinusoidal and square wave commands are conducted. Experimental results show that the proposed controller can obtain better dynamic performance and relatively consistent control performance across the scope of work (2-140 kPa). The research proposes a fuzzy control method to overcome asymmetry and enhance adaptability for the positive and negative pneumatic pressure servo system.
Eddy currents in a conducting sphere
NASA Technical Reports Server (NTRS)
Bergman, John; Hestenes, David
1986-01-01
This report analyzes the eddy current induced in a solid conducting sphere by a sinusoidal current in a circular loop. Analytical expressions for the eddy currents are derived as a power series in the vectorial displacement of the center of the sphere from the axis of the loop. These are used for first order calculations of the power dissipated in the sphere and the force and torque exerted on the sphere by the electromagnetic field of the loop.
Gigineĭshvili, G R; Dombrovskaia, I I; Belousov, A Iu; Kirova, E I; Orekhova, E M; Radzievskiĭ, S A; Liubimskaia, L I
1995-01-01
The effects of physiotherapeutic factors such as electric sleep, sinusoidal modulated currents. UV radiation, interference currents, decimeter waves, laser radiation were studied in 600 sportsmen active in cyclic and acyclic sports. Recommended are both single and course procedures because the above factors are found to diminish immunodeficiency and to increase muscular performance in sportsmen.
A method to estimate the deformation and the absorbed current of an IPMC actuator
NASA Astrophysics Data System (ADS)
Bonomo, Claudia; Fortuna, Luigi; Giannone, Pietro; Graziani, Salvatore; Strazzeri, Salvatore
2006-03-01
Based on a previous paper presented at EAPAD Conference on 2005 and supported by the European Community by the research project ISAMCO (Ionic polymer metal composite as Sensors and Actuators for Motion COntrol, 2004-2006) inside the sixth Framework Program, the proposed paper goes on describing the results about the characterization of IPMC materials as motion actuators, obtained by using an improved infrared-based system designed, realized and characterised to this aim. The system was required to detect both the IPMC absorbed current and its consequent deflection, under the effect of the applied voltage. The deflection is detected by the IR system, that uses a differential configuration in order to reduce non-linearity, peculiar to IR devices. The measurement system is used to identify and then validate a model, proposed to describe the IPMC actuator behaviour in a wide range of operating conditions. The model was obtained by adopting a grey box approach. By acquiring the signals involved: the applied voltage, the absorbed current and the IPMC displacement, for different inputs such as pulses, sinusoidal waves (with varying frequency and amplitude) and noise, and by post-processing these signals, all the parameters relative to the IPMC actuator were identified and several tests were performed in order to compare the behaviour of the actuator as predicted by the model with the experimental one. The obtained results show a very good accordance between the simulated and the real actuator response, hence represent a good validation of the proposed model.
A Theoretical Investigation of the Input Characteristics of a Rectangular Cavity-Backed Slot Antenna
NASA Technical Reports Server (NTRS)
Cockrell, C. R.
1975-01-01
Equations which represent the magnetic and electric stored energies are derived for an infinite section of rectangular waveguide and a rectangular cavity. These representations which are referred to as being physically observable are obtained by considering the difference in the volume integrals appearing in the complex Poynting theorem. It is shown that the physically observable stored energies are determined by the field components that vanish in a reference plane outside the aperture. These physically observable representations are used to compute the input admittance of a rectangular cavity-backed slot antenna in which a single propagating wave is assumed to exist in the cavity. The slot is excited by a voltage source connected across its center; a sinusoidal distribution is assumed in the slot. Input-admittance calculations are compared with measured data. In addition, input-admittance curves as a function of electrical slot length are presented for several size cavities. For the rectangular cavity backed slot antenna, the quality factor and relative bandwidth were computed independently by using these energy relationships. It is shown that the asymptotic relationship which is usually assumed to exist between the quality bandwidth and the reciprocal of relative bandwidth is equally valid for the rectangular cavity backed slot antenna.
Zhang, Feng; Zhang, Zili; Chen, Li; Kong, Desong; Zhang, Xiaoping; Lu, Chunfeng; Lu, Yin; Zheng, Shizhong
2014-01-01
Hepatic fibrosis is concomitant with sinusoidal pathological angiogenesis, which has been highlighted as novel therapeutic targets for the treatment of chronic liver disease. Our prior studies have demonstrated that curcumin has potent antifibrotic activity, but the mechanisms remain to be elucidated. The current work demonstrated that curcumin ameliorated fibrotic injury and sinusoidal angiogenesis in rat liver with fibrosis caused by carbon tetrachloride. Curcumin reduced the expression of a number of angiogenic markers in fibrotic liver. Experiments in vitro showed that the viability and vascularization of rat liver sinusoidal endothelial cells and rat aortic ring angiogenesis were not impaired by curcumin. These results indicated that hepatic stellate cells (HSCs) that are characterized as liver-specific pericytes could be potential target cells for curcumin. Further investigations showed that curcumin inhibited VEGF expression in HSCs associated with disrupting platelet-derived growth factor-β receptor (PDGF-βR)/ERK and mTOR pathways. HSC motility and vascularization were also suppressed by curcumin associated with blocking PDGF-βR/focal adhesion kinase/RhoA cascade. Gain- or loss-of-function analyses revealed that activation of peroxisome proliferator-activated receptor-γ (PPAR-γ) was required for curcumin to inhibit angiogenic properties of HSCs. We concluded that curcumin attenuated sinusoidal angiogenesis in liver fibrosis possibly by targeting HSCs via a PPAR-γ activation-dependent mechanism. PPAR-γ could be a target molecule for reducing pathological angiogenesis during liver fibrosis. PMID:24779927
NASA Technical Reports Server (NTRS)
Merchant, D. H.; Gates, R. M.; Straayer, J. W.
1975-01-01
The effect of localized structural damping on the excitability of higher-order large space telescope spacecraft modes is investigated. A preprocessor computer program is developed to incorporate Voigt structural joint damping models in a finite-element dynamic model. A postprocessor computer program is developed to select critical modes for low-frequency attitude control problems and for higher-frequency fine-stabilization problems. The selection is accomplished by ranking the flexible modes based on coefficients for rate gyro, position gyro, and optical sensor, and on image-plane motions due to sinusoidal or random PSD force and torque inputs.
Modal testing with Asher's method using a Fourier analyzer and curve fitting
NASA Technical Reports Server (NTRS)
Gold, R. R.; Hallauer, W. L., Jr.
1979-01-01
An unusual application of the method proposed by Asher (1958) for structural dynamic and modal testing is discussed. Asher's method has the capability, using the admittance matrix and multiple-shaker sinusoidal excitation, of separating structural modes having indefinitely close natural frequencies. The present application uses Asher's method in conjunction with a modern Fourier analyzer system but eliminates the necessity of exciting the test structure simultaneously with several shakers. Evaluation of this approach with numerically simulated data demonstrated its effectiveness; the parameters of two modes having almost identical natural frequencies were accurately identified. Laboratory evaluation of this approach was inconclusive because of poor experimental input data.
A Rotational Gyroscope with a Water-Film Bearing Based on Magnetic Self-Restoring Effect.
Chen, Dianzhong; Liu, Xiaowei; Zhang, Haifeng; Li, Hai; Weng, Rui; Li, Ling; Rong, Wanting; Zhang, Zhongzhao
2018-01-31
Stable rotor levitation is a challenge for rotational gyroscopes (magnetically suspended gyroscopes (MSG) and electrostatically suspended gyroscopes (ESG)) with a ring- or disk-shaped rotor, which restricts further improvement of gyroscope performance. In addition, complicated pick-up circuits and feedback control electronics propose high requirement on fabrication technology. In the proposed gyroscope, a ball-disk shaped rotor is supported by a water-film bearing, formed by centrifugal force to deionized water at the cavity of the lower supporting pillar. Water-film bearing provides stable mechanical support, without the need for complicated electronics and control system for rotor suspension. To decrease sliding friction between the rotor ball and the water-film bearing, a supherhydrophobic surface (SHS) with nano-structures is fabricated on the rotor ball, resulting in a rated spinning speed increase of 12.4% (under the same driving current). Rotor is actuated by the driving scheme of brushless direct current motor (BLDCM). Interaction between the magnetized rotor and the magnetic-conducted stator produces a sinusoidal rotor restoring torque, amplitude of which is proportional to the rotor deflection angle inherently. Utilization of this magnetic restoring effect avoids adding of a high amplitude voltage for electrostatic feedback, which may cause air breakdown. Two differential capacitance pairs are utilized to measure input angular speeds at perpendicular directions of the rotor plane. The bias stability of the fabricated gyroscope is as low as 0.5°/h.
Scoazec, J. Y.; Marche, C.; Girard, P. M.; Houtmann, J.; Durand-Schneider, A. M.; Saimot, A. G.; Benhamou, J. P.; Feldmann, G.
1988-01-01
The description of hepatic sinusoidal lesions in a significant number of acquired immunodeficiency syndrome (AIDS) patients prompted the authors to undertake an ultrastructural study of the sinusoidal barrier abnormalities during human immunodeficiency virus (HIV) infection, in order to compare these lesions with those described in other conditions and to discuss their possible origin. In a series of 29 patients with serologic evidence of HIV infection and liver abnormalities, 8 (28%) had sinusoidal lesions. Peliosis hepatis was present in 2 cases, and sinusoidal dilatation in 6. These patients were classified as follows: 3 AIDS, 4 AIDS-related complex, 1 unclassifiable. Ultrastructural lesions of the sinusoidal barrier were observed in all the cases. They closely mimicked the changes previously reported in peliotic and peliotic-like changes of various origins. A striking particularity was, however, the presence of numerous and hyperplastic sinusoidal macrophages. This work suggests that an injury of the endothelial cells, directly or indirectly related to the presence of HIV, may be incriminated in the pathogenesis of sinusoidal lesions during HIV infection. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:3354642
NASA Astrophysics Data System (ADS)
Hyun, Jae-Sang; Li, Beiwen; Zhang, Song
2017-07-01
This paper presents our research findings on high-speed high-accuracy three-dimensional shape measurement using digital light processing (DLP) technologies. In particular, we compare two different sinusoidal fringe generation techniques using the DLP projection devices: direct projection of computer-generated 8-bit sinusoidal patterns (a.k.a., the sinusoidal method), and the creation of sinusoidal patterns by defocusing binary patterns (a.k.a., the binary defocusing method). This paper mainly examines their performance on high-accuracy measurement applications under precisely controlled settings. Two different projection systems were tested in this study: a commercially available inexpensive projector and the DLP development kit. Experimental results demonstrated that the binary defocusing method always outperforms the sinusoidal method if a sufficient number of phase-shifted fringe patterns can be used.
High-speed 3D imaging using digital binary defocusing method vs sinusoidal method
NASA Astrophysics Data System (ADS)
Zhang, Song; Hyun, Jae-Sang; Li, Beiwen
2017-02-01
This paper presents our research findings on high-speed 3D imaging using digital light processing (DLP) technologies. In particular, we compare two different sinusoidal fringe generation techniques using the DLP projection devices: direct projection of 8-bit computer generated sinusoidal patterns (a.k.a, the sinusoidal method), and the creation of sinusoidal patterns by defocusing binary patterns (a.k.a., the binary defocusing method). This paper mainly examines their performance on high-accuracy measurement applications under precisely controlled settings. Two different projection systems were tested in this study: the commercially available inexpensive projector, and the DLP development kit. Experimental results demonstrated that the binary defocusing method always outperforms the sinusoidal method if a sufficient number of phase-shifted fringe patterns can be used.
New Analysis and Design of a RF Rectifier for RFID and Implantable Devices
Liu, Dong-Sheng; Li, Feng-Bo; Zou, Xue-Cheng; Liu, Yao; Hui, Xue-Mei; Tao, Xiong-Fei
2011-01-01
New design and optimization of charge pump rectifiers using diode-connected MOS transistors is presented in this paper. An analysis of the output voltage and Power Conversion Efficiency (PCE) is given to guide and evaluate the new design. A novel diode-connected MOS transistor for UHF rectifiers is presented and optimized, and a high efficiency N-stage charge pump rectifier based on this new diode-connected MOS transistor is designed and fabricated in a SMIC 0.18-μm 2P3M CMOS embedded EEPROM process. The new diode achieves 315 mV turn-on voltage and 415 nA reverse saturation leakage current. Compared with the traditional rectifier, the one based on the proposed diode-connected MOS has higher PCE, higher output voltage and smaller ripple coefficient. When the RF input is a 900-MHz sinusoid signal with the power ranging from −15 dBm to −4 dBm, PCEs of the charge pump rectifier with only 3-stage are more than 30%, and the maximum output voltage is 5.5 V, and its ripple coefficients are less than 1%. Therefore, the rectifier is especially suitableto passive UHF RFID tag IC and implantable devices. PMID:22163968
New analysis and design of a RF rectifier for RFID and implantable devices.
Liu, Dong-Sheng; Li, Feng-Bo; Zou, Xue-Cheng; Liu, Yao; Hui, Xue-Mei; Tao, Xiong-Fei
2011-01-01
New design and optimization of charge pump rectifiers using diode-connected MOS transistors is presented in this paper. An analysis of the output voltage and Power Conversion Efficiency (PCE) is given to guide and evaluate the new design. A novel diode-connected MOS transistor for UHF rectifiers is presented and optimized, and a high efficiency N-stage charge pump rectifier based on this new diode-connected MOS transistor is designed and fabricated in a SMIC 0.18-μm 2P3M CMOS embedded EEPROM process. The new diode achieves 315 mV turn-on voltage and 415 nA reverse saturation leakage current. Compared with the traditional rectifier, the one based on the proposed diode-connected MOS has higher PCE, higher output voltage and smaller ripple coefficient. When the RF input is a 900-MHz sinusoid signal with the power ranging from -15 dBm to -4 dBm, PCEs of the charge pump rectifier with only 3-stage are more than 30%, and the maximum output voltage is 5.5 V, and its ripple coefficients are less than 1%. Therefore, the rectifier is especially suitable to passive UHF RFID tag IC and implantable devices.
Spectral Mixing in Nervous Systems: Experimental Evidenceand Biologically Plausible Circuits
NASA Astrophysics Data System (ADS)
Kleinfeld, D.; Mehta, S. B.
The ability to compute the difference frequency for two periodic signals depends on a nonlinear operation that mixes those signals. Behavioral and psychophysical evidence suggest that such mixing is likely to occur in the vertebrate nervous system as a means to compare rhythmic sensory signals, such as occurs in human audition, and as a means to lock an intrinsic rhythm to a sensory input. Electrophysiological data from electroreceptors in the immobilized electric fish and somatosensory cortex in the anesthetized rat yield direct evidence for such mixing, providing a neurological substrate for the modulation and demodulation of rhythmic neuronal signals. We consider an analytical model of spectral mixing that makes use of the threshold characteristics of neuronal firing and which has features consistent with the experimental observations. This model serves as a guide for constructing circuits that isolate given mixture components. In particular, such circuits can generate nearly pure difference tones from sinusoidal inputs without the use of band-pass filters, in analogy to an image-reject mixer in communications engineering. We speculate that such computations may play a role in coding of sensory input and feedback stabilization of motor output in nervous systems.
2017-06-01
dc converter-based test system was built to intentionally introduce inductor current harmonics by varying the filter capacitance and parasitic...the inclusion of distorted waveforms obtained by varying filter capacitance. At higher frequencies, the Metglas cores were found to exhibit greater...was built to intentionally introduce inductor current harmonics by varying the filter capacitance and parasitic inductance of the test system. Both
NASA Astrophysics Data System (ADS)
Carbone, Anna; Gilli, Marco; Mazzetti, Piero; Ponta, Linda
2010-12-01
An array of resistively and capacitively shunted Josephson junctions with nonsinusoidal current-phase relation is considered for modeling the transition in high-Tc superconductors. The emergence of higher harmonics, besides the simple sinusoid Ic sin ϕ, is expected for dominant d-wave symmetry of the Cooper pairs, random distribution of potential drops, dirty grains, or nonstationary conditions. We show that additional cosine and sine terms act, respectively, by modulating the global resistance and by changing the Josephson coupling of the mixed superconductive-normal states. First, the approach is applied to simulate the transition in disordered granular superconductors with the weak-links characterized by nonsinusoidal current-phase relation. In granular superconductors, the emergence of higher-order harmonics affects the slope of the transition. Then, arrays of intrinsic Josephson junctions, naturally formed by the CuO2 planes in cuprates, are considered. The critical temperature suppression, observed at values of hole doping close to p =1/8, is investigated. Such suppression, related to the sign change and modulation of the Josephson coupling across the array, is quantified in terms of the intensities of the first and second sinusoids of the current-phase relation. Applications are envisaged for the design and control of quantum devices based on stacks of intrinsic Josephson junctions.
Little-Parks oscillations in superconducting ring with Josephson junctions
NASA Astrophysics Data System (ADS)
Sharon, Omri J.; Sharoni, Amos; Berger, Jorge; Shaulov, Avner; Yeshurun, Yosi
2018-03-01
Nb nano-rings connected serially by Nb wires exhibit, at low bias currents, the typical parabolic Little-Parks magnetoresistance oscillations. As the bias current increases, these oscillations become sinusoidal. This result is ascribed to the generation of Josephson junctions caused by the combined effect of current-induced phase slips and the non-uniformity of the order parameter along each ring due to the Nb wires attached to it. This interpretation is validated by further increasing the bias current, which results in magnetoresistance oscillations typical of a SQUID.
Gust alleviation for a STOL transport by using elevator, spoilers, and flaps
NASA Technical Reports Server (NTRS)
Lallman, F. J.
1974-01-01
Control laws were developed to investigate methods of alleviating the response of a STOL transport to gusty air. The transport considered in the study had triple-slotted, externally blown jet flaps and a large T-tail. The control devices used were the elevator, spoilers, and flaps. A hybrid computing system was used to simulate linearized longitudinal dynamics of the aircraft and to implement a conjugate gradient optimal search algorithm. The aircraft was simulated in the low-speed approach condition only. Feedback control matrices were found which minimized the average of a quadratic functional involving passenger compartment accelerations, pitch angle and rate, flight path angle and speed variations. The optimization was performed for artificially designed gust inputs in the form of predetermined rectangular waveforms. Results were obtained for elevator, spoilers, and flaps acting singly and in combination. Additional results were obtained for unit sinusoidal gust inputs by using the gain matrices computed for the artificial test gusts. Various sensor configurations were also investigated.
Neural learning circuits utilizing nano-crystalline silicon transistors and memristors.
Cantley, Kurtis D; Subramaniam, Anand; Stiegler, Harvey J; Chapman, Richard A; Vogel, Eric M
2012-04-01
Properties of neural circuits are demonstrated via SPICE simulations and their applications are discussed. The neuron and synapse subcircuits include ambipolar nano-crystalline silicon transistor and memristor device models based on measured data. Neuron circuit characteristics and the Hebbian synaptic learning rule are shown to be similar to biology. Changes in the average firing rate learning rule depending on various circuit parameters are also presented. The subcircuits are then connected into larger neural networks that demonstrate fundamental properties including associative learning and pulse coincidence detection. Learned extraction of a fundamental frequency component from noisy inputs is demonstrated. It is then shown that if the fundamental sinusoid of one neuron input is out of phase with the rest, its synaptic connection changes differently than the others. Such behavior indicates that the system can learn to detect which signals are important in the general population, and that there is a spike-timing-dependent component of the learning mechanism. Finally, future circuit design and considerations are discussed, including requirements for the memristive device.
General purpose algorithms for characterization of slow and fast phase nystagmus
NASA Technical Reports Server (NTRS)
Lessard, Charles S.
1987-01-01
In the overall aim for a better understanding of the vestibular and optokinetic systems and their roles in space motion sickness, the eye movement responses to various dynamic stimuli are measured. The vestibulo-ocular reflex (VOR) and the optokinetic response, as the eye movement responses are known, consist of slow phase and fast phase nystagmus. The specific objective is to develop software programs necessary to characterize the vestibulo-ocular and optokinetic responses by distinguishing between the two phases of nystagmus. The overall program is to handle large volumes of highly variable data with minimum operator interaction. The programs include digital filters, differentiation, identification of fast phases, and reconstruction of the slow phase with a least squares fit such that sinusoidal or psuedorandom data may be processed with accurate results. The resultant waveform, slow phase velocity eye movements, serves as input data to the spectral analysis programs previously developed for NASA to analyze nystagmus responses to pseudorandom angular velocity inputs.
Integrated Structural Analysis and Test Program
NASA Technical Reports Server (NTRS)
Kaufman, Daniel
2005-01-01
An integrated structural-analysis and structure-testing computer program is being developed in order to: Automate repetitive processes in testing and analysis; Accelerate pre-test analysis; Accelerate reporting of tests; Facilitate planning of tests; Improve execution of tests; Create a vibration, acoustics, and shock test database; and Integrate analysis and test data. The software package includes modules pertaining to sinusoidal and random vibration, shock and time replication, acoustics, base-driven modal survey, and mass properties and static/dynamic balance. The program is commanded by use of ActiveX controls. There is minimal need to generate command lines. Analysis or test files are selected by opening a Windows Explorer display. After selecting the desired input file, the program goes to a so-called analysis data process or test data process, depending on the type of input data. The status of the process is given by a Windows status bar, and when processing is complete, the data are reported in graphical, tubular, and matrix form.
Age-related Changes in the Hepatic Microcirculation in Mice
Ito, Yoshiya; Sørensen, Karen K.; Bethea, Nancy W.; Svistounov, Dmitri; McCuskey, Margaret K.; Smedsrød, Bård H.; McCuskey, Robert S.
2007-01-01
Aging of the liver is associated with impaired metabolism of drugs, adverse drug interactions, and susceptibility to toxins. Since reduced hepatic blood flow is suspected to contribute this impairment, we examined age-related alterations in hepatic microcirculation.. Livers of C57Bl/6 mice were examined at 0.8 (pre-pubertal), 3 (young adult), 14 (middle-aged) and 27 (senescent) months of age using in vivo and electron microscopic methods. The results demonstrated a 14% reduction in the numbers of perfused sinusoids between 0.8 and 27 month mice associated with 35% reduction in sinusoidal blood flow. This was accompanied by an inflammatory response evidenced by a 5-fold increase in leukocyte adhesion in 27 month mice, up-regulated expression of ICAM-1, and increases in intrahepatic macrophages. Sinusoidal diameter decreased 6-10%. Liver sinusoidal endothelial cell (LSEC) dysfunction was seen as early as 14 months when there was a 3-fold increase in the numbers of swollen LSEC. The endocytotic capacity of LSEC also was found to be reduced in older animals. The sinusoidal endothelium in 27 month old mice exhibited pseudocapillarization. In conclusion, the results suggest that leukocyte accumulation in the sinusoids and narrowing of sinusoidal lumens due to pseudocapillarization and dysfunction of LSEC reduce sinusoidal blood flow in aged livers. PMID:17582718
Suzuki, T; Okamura, K; Kimura, Y; Watanabe, T; Yaegashi, N; Murotsuki, J; Uehara, S; Yajima, A
2000-05-01
The appearance of the sinusoidal heart rate pattern found on fetal cardiotocograms has not been fully explained, either physiologically or clinically. In this study we performed power spectral analysis on the sinusoidal heart rate pattern obtained by administration of arginine vasopressin and atropine sulfate to investigate its frequency components in fetal lambs with long-term instrument implantation. Eleven tests were performed in 4 fetal lambs at 120 to 130 days' gestation. An artificial sinusoidal heart rate pattern was obtained by administration of atropine sulfate and arginine vasopressin in 9 tests. An autoregression model was used to compare the spectral patterns before and during the sinusoidal heart rate pattern. Marked decreases in low-frequency (0.025-0.125 cycles/beat) and high-frequency (0.2-0.5 cycles/beat) areas were observed in the presence of the sinusoidal heart rate pattern. However, there were no significant changes in the very-low-frequency area (0.01-0.025 cycles/beat), which corresponds to the frequency of the sinusoidal heart rate pattern. The sinusoidal heart rate pattern may represent a very low-frequency component inherent in fetal heart rate variability that appears when low- and high-frequency components are reduced as a result of strongly suppressed autonomic nervous activity.
NASA Technical Reports Server (NTRS)
Butler, T. D.; Weatherill, W. H.; Sebastian, J. D.; Ehlers, F. E.
1977-01-01
The design and usage of a pilot program using a finite difference method for calculating the pressure distributions over harmonically oscillating wings in transonic flow are discussed. The procedure used is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The steady velocity potential which must be obtained from some other program, is required for input. The unsteady differential equation is linear, complex in form with spatially varying coefficients. Because sinusoidal motion is assumed, time is not a variable. The numerical solution is obtained through a finite difference formulation and a line relaxation solution method.
NASA Astrophysics Data System (ADS)
Datta, Shubhashish; Rajagopalan, Sruti; Lemke, Shaun; Joshi, Abhay
2014-06-01
We report a balanced PIN-TIA photoreceiver integrated with a 3 dB fiber coupler for distributed fiber optic sensors. This detector demonstrates -3 dB bandwidth >15 GHz and coupled conversion gain >65 V/W per photodiode through either input port of the 3 dB coupler, and can be operated at local oscillator power of +17 dBm. The combined common mode rejection of the balanced photoreceiver and the integrated 3 dB coupler is >20 dB. We also present measurement results with various optical stimuli, namely impulses, sinusoids, and pseudo-random sequences, which are relevant for time domain reflectometry, frequency domain reflectometry, and code correlation sensors, respectively.
The Dynamics of Networks of Identical Theta Neurons.
Laing, Carlo R
2018-02-05
We consider finite and infinite all-to-all coupled networks of identical theta neurons. Two types of synaptic interactions are investigated: instantaneous and delayed (via first-order synaptic processing). Extensive use is made of the Watanabe/Strogatz (WS) ansatz for reducing the dimension of networks of identical sinusoidally-coupled oscillators. As well as the degeneracy associated with the constants of motion of the WS ansatz, we also find continuous families of solutions for instantaneously coupled neurons, resulting from the reversibility of the reduced model and the form of the synaptic input. We also investigate a number of similar related models. We conclude that the dynamics of networks of all-to-all coupled identical neurons can be surprisingly complicated.
NASA Technical Reports Server (NTRS)
Weatherill, W. H.; Ehlers, F. E.
1979-01-01
The design and usage of a pilot program for calculating the pressure distributions over harmonically oscillating airfoils in transonic flow are described. The procedure used is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equations for small disturbances. The steady velocity potential which must be obtained from some other program, was required for input. The unsteady equation, as solved, is linear with spatially varying coefficients. Since sinusoidal motion was assumed, time was not a variable. The numerical solution was obtained through a finite difference formulation and either a line relaxation or an out of core direct solution method.
Cahill, Paul; Hazra, Budhaditya; Karoumi, Raid; Mathewson, Alan; Pakrashi, Vikram
2018-04-01
The data presented in this article is in relation to the research article "Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage" Cahill et al. (2018) [1]. The article provides data on the full-scale bridge testing using piezoelectric vibration energy harvesters on Pershagen Bridge, Sweden. The bridge is actively excited via a swept sinusoidal input. During the testing, the bridge remains operational and train passages continue. The test recordings include the voltage responses obtained from the vibration energy harvesters during these tests and train passages. The original dataset is made available to encourage the use of energy harvesting for Structural Health Monitoring.
Digital processing with single electrons for arbitrary waveform generation of current
NASA Astrophysics Data System (ADS)
Okazaki, Yuma; Nakamura, Shuji; Onomitsu, Koji; Kaneko, Nobu-Hisa
2018-03-01
We demonstrate arbitrary waveform generation of current using a GaAs-based single-electron pump. In our experiment, a digital processing algorithm known as delta-sigma modulation is incorporated into single-electron pumping to generate a density-modulated single-electron stream, by which we demonstrate the generation of arbitrary waveforms of current including sinusoidal, square, and triangular waves with a peak-to-peak amplitude of approximately 10 pA and an output bandwidth ranging from dc to close to 1 MHz. The developed current generator can be used as the precise and calculable current reference required for measurements of current noise in low-temperature experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisiger, R.A.; Mendel, C.M.; Cavalieri, R.R.
1986-03-01
Two general models have been proposed for predicting the effects of metabolism, protein binding, and plasma flow on the removal of drugs by the liver. These models differ in the degree of plasma mixing assumed to exist within each hepatic sinusoid. The venous equilibrium model treats the sinusoid as a single well-stirred compartment, whereas the sinusoidal model effectively breaks up the sinusoid into a large number of sequentially perfused compartments which do not exchange their contents except through plasma flow. As a consequence, the sinusoidal model, but not the venous equilibrium model, predicts that the concentration of highly extracted drugsmore » will decline as the plasma flows through the hepatic lobule. To determine which of these alternative models best describes the hepatic uptake process, we looked for evidence that concentration gradients are formed during the uptake of (/sup 125/I)thyroxine by the perfused rat liver. Autoradiography of tissue slices after perfusion of the portal vein at physiologic flow rates with protein-free buffer containing (/sup 125/I)thyroxine demonstrated a rapid exponential fall in grain density with distance from the portal venule, declining by half for each 8% of the mean length of the sinusoid. Reversing the direction of perfusate flow reversed the direction of the autoradiographic gradients, indicating that they primarily reflect differences in the concentration of thyroxine within the hepatic sinusoids rather than differences in the uptake capacity of portal and central hepatocytes. Analysis of the data using models in which each sinusoid was represented by different numbers of sequentially perfused compartments (1-20) indicated that at least eight compartments were necessary to account for the magnitude of the gradients seen.« less
Stepper motor control that adjusts to motor loading
NASA Technical Reports Server (NTRS)
Howard, David E. (Inventor); Nola, Frank J. (Inventor)
2000-01-01
A system and method are provided for controlling a stepper motor having a rotor and a multi-phase stator. Sinusoidal command signals define a commanded position of the motor's rotor. An actual position of the rotor is sensed as a function of an electrical angle between the actual position and the commanded position. The actual position is defined by sinusoidal position signals. An adjustment signal is generated using the sinusoidal command signals and sinusoidal position signals. The adjustment signal is defined as a function of the cosine of the electrical angle. The adjustment signal is multiplied by each sinusoidal command signal to generate a corresponding set of excitation signals, each of which is applied to a corresponding phase of the multi-phase stator.
Caloric restriction reduces age-related pseudocapillarization of the hepatic sinusoid
Jamieson, Hamish A; Hilmer, Sarah N; Cogger, Victoria C; Warren, Alessandra; Cheluvappa, Rajkumar; Abernethy, Darrell R; Everitt, Arthur V; Fraser, Robin; de Cabo, Rafael; Le Couteur, David G
2007-01-01
Age-related changes in the hepatic sinusoid, called pseudocapillarization, may contribute to the pathogenesis of dyslipidaemia. Caloric restriction (CR) is a powerful model for the study of aging because it extends lifespan. We assessed the effects of CR on the hepatic sinusoid to determine whether pseudocapillarization is preventable and hence a target for the prevention of age-related dyslipidemia. Livers from young (6 months) and old (24 months) CR and ad libitum fed (AL) F344 rats were examined using electron microscopy and immunohistochemistry. In old age, there was increased thickness of the liver sinusoidal endothelium and reduced endothelial fenestration porosity. In old CR rats, endothelial thickness was less and fenestration porosity was greater than in old AL rats. Immunohistochemistry showed that CR prevented age-related decrease in caveolin-1 expression and increase in peri-sinusoidal collagen IV staining, but did not alter the age-related increase of von Willebrand’s factor. CR reduces age-related pseudocapillarization of the hepatic sinusoid and correlates with changes in caveolin-1 expression. PMID:17204388
Upstream-advancing waves generated by a current over a sinusoidal bed
NASA Astrophysics Data System (ADS)
Kyotoh, Harumichi; Fukushima, Masaki
1997-07-01
Upstream-advancing waves are observed in open channel flows over a fixed sinusoidal bed with large amplitude, when the Froude number is less than the resonant value, at which stream velocity is equal to the celerity of the wave with wavelength equal to that of the bottom surface. Their wavelength is about 3-6 times as long as the bottom wavelength and the celerity is close to that obtained from potential flow theory. Therefore, the wavelength of upstream-advancing waves is determined by linear stability analyses assuming that they are induced by the Benjamin-Feir-type instability of steady flow. Here, two formulas for the wavelength with different scaling are introduced and compared with experiment. In addition, the mechanisms of upstream-advancing waves are investigated qualitatively using the forced Schrödinger equation.
Sensing device and method for measuring emission time delay during irradiation of targeted samples
NASA Technical Reports Server (NTRS)
Danielson, J. D. Sheldon (Inventor)
2000-01-01
An apparatus for measuring emission time delay during irradiation of targeted samples by utilizing digital signal processing to determine the emission phase shift caused by the sample is disclosed. The apparatus includes a source of electromagnetic radiation adapted to irradiate a target sample. A mechanism generates first and second digital input signals of known frequencies with a known phase relationship, and a device then converts the first and second digital input signals to analog sinusoidal signals. An element is provided to direct the first input signal to the electromagnetic radiation source to modulate the source by the frequency thereof to irradiate the target sample and generate a target sample emission. A device detects the target sample emission and produces a corresponding first output signal having a phase shift relative to the phase of the first input signal, the phase shift being caused by the irradiation time delay in the sample. A member produces a known phase shift in the second input signal to create a second output signal. A mechanism is then provided for converting each of the first and second analog output signals to digital signals. A mixer receives the first and second digital output signals and compares the signal phase relationship therebetween to produce a signal indicative of the change in phase relationship between the first and second output signals caused by the target sample emission. Finally, a feedback arrangement alters the phase of the second input signal based on the mixer signal to ultimately place the first and second output signals in quadrature. Mechanisms for enhancing this phase comparison and adjustment technique are also disclosed.
Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs.
Ledoux, Erwan; Brunel, Nicolas
2011-01-01
We investigate the dynamics of recurrent networks of excitatory (E) and inhibitory (I) neurons in the presence of time-dependent inputs. The dynamics is characterized by the network dynamical transfer function, i.e., how the population firing rate is modulated by sinusoidal inputs at arbitrary frequencies. Two types of networks are studied and compared: (i) a Wilson-Cowan type firing rate model; and (ii) a fully connected network of leaky integrate-and-fire (LIF) neurons, in a strong noise regime. We first characterize the region of stability of the "asynchronous state" (a state in which population activity is constant in time when external inputs are constant) in the space of parameters characterizing the connectivity of the network. We then systematically characterize the qualitative behaviors of the dynamical transfer function, as a function of the connectivity. We find that the transfer function can be either low-pass, or with a single or double resonance, depending on the connection strengths and synaptic time constants. Resonances appear when the system is close to Hopf bifurcations, that can be induced by two separate mechanisms: the I-I connectivity and the E-I connectivity. Double resonances can appear when excitatory delays are larger than inhibitory delays, due to the fact that two distinct instabilities exist with a finite gap between the corresponding frequencies. In networks of LIF neurons, changes in external inputs and external noise are shown to be able to change qualitatively the network transfer function. Firing rate models are shown to exhibit the same diversity of transfer functions as the LIF network, provided delays are present. They can also exhibit input-dependent changes of the transfer function, provided a suitable static non-linearity is incorporated.
NASA Technical Reports Server (NTRS)
Danielson, J. D. Sheldon (Inventor)
2006-01-01
An apparatus for measuring emission time delay during irradiation of targeted samples by utilizing digital signal processing to determine the emission phase shift caused by the sample is disclosed. The apparatus includes a source of electromagnetic radiation adapted to irradiate a target sample. A mechanism generates first and second digital input signals of known frequencies with a known phase relationship, and a device then converts the first and second digital input signals to analog sinusoidal signals. An element is provided to direct the first input signal to the electromagnetic radiation source to modulate the source by the frequency thereof to irradiate the target sample and generate a target sample emission. A device detects the target sample emission and produces a corresponding first output signal having a phase shift relative to the phase of the first input signal, the phase shift being caused by the irradiation time delay in the sample. A member produces a known phase shift in the second input signal to create a second output signal. A mechanism is then provided for converting each of the first and second analog output signals to digital signals. A mixer receives the first and second digital output signals and compares the signal phase relationship therebetween to produce a signal indicative of the change in phase relationship between the first and second output signals caused by the target sample emission. Finally, a feedback arrangement alters the phase of the second input signal based on the mixer signal to ultimately place the first and second output signals in quadrature. Mechanisms for enhancing this phase comparison and adjustment technique are also disclosed.
NASA Astrophysics Data System (ADS)
Cuansing, Eduardo C.; Liang, Gengchiau
2011-10-01
Time-dependent nonequilibrium Green's functions are used to study electron transport properties in a device consisting of two linear chain leads and a time-dependent interlead coupling that is switched on non-adiabatically. We derive a numerically exact expression for the particle current and examine its characteristics as it evolves in time from the transient regime to the long-time steady-state regime. We find that just after switch-on, the current initially overshoots the expected long-time steady-state value, oscillates and decays as a power law, and eventually settles to a steady-state value consistent with the value calculated using the Landauer formula. The power-law parameters depend on the values of the applied bias voltage, the strength of the couplings, and the speed of the switch-on. In particular, the oscillating transient current decays away longer for lower bias voltages. Furthermore, the power-law decay nature of the current suggests an equivalent series resistor-inductor-capacitor circuit wherein all of the components have time-dependent properties. Such dynamical resistive, inductive, and capacitive influences are generic in nano-circuits where dynamical switches are incorporated. We also examine the characteristics of the dynamical current in a nano-oscillator modeled by introducing a sinusoidally modulated interlead coupling between the two leads. We find that the current does not strictly follow the sinusoidal form of the coupling. In particular, the maximum current does not occur during times when the leads are exactly aligned. Instead, the times when the maximum current occurs depend on the values of the bias potential, nearest-neighbor coupling, and the interlead coupling.
NASA Astrophysics Data System (ADS)
Ellis, N.; Tobin, T. S.
2017-12-01
Common to the Western Interior Seaway, Baculites is a genus of ammonite with a straight-shelled morphology that serve as index fossils for the Late Cretaceous. Powdered shell samples were generated along growth sequences from several large Baculites fragments (20 - 40 cm) that preserve original aragonite. Stable isotope ratios (δ13C, δ18O) were determined for samples using standard techniques. Sine curves were fit to δ18O and δ13C signals, where the seasonal temperature differential is expressed as the amplitude of the δ18O signal. The periods of the signals represent one annual cycle, from which preliminary Baculites growth rate estimates have been established. Additionally, carbon and oxygen isotope data obtained by Fatheree et al. [1998] were re-analyzed and fit to a sine curve. All of the Baculites that produced usable data and the Fatheree et al. [1998] Baculites produced similar periods (30 - 35 cm), suggesting that Baculites likely utilized an r-type life strategy where they reach maturity rapidly, produce large amounts of offspring, and die within a few years. Understanding their life behaviors is critical to the use of Baculites as a paleoclimate proxy since potential migration, both geographic and in the water column, may influence carbon and oxygen isotope signals. The sinusoidal nature of the isotope signals observed in several Baculites suggests that seasonal inputs are most prevalent. Changes in ammonite activity and/or behavior driven by seasonal progression, seasonally mediated environmental changes, or combinations of these are hypothesized inputs that may result in the observed sinusoidal signals. Amplitudes of δ18O signals suggest seawater temperature variance that is consistent with the paleolatitudes associated with the Baculites specimens sampled. Ammonites from higher paleolatitudes yielded larger amplitude signals indicating greater seasonality at these locations. Further experimentation with Baculites aptychi is ongoing and may yield additional paleoclimate data.
A Rotational Gyroscope with a Water-Film Bearing Based on Magnetic Self-Restoring Effect
Chen, Dianzhong; Liu, Xiaowei; Li, Hai; Li, Ling; Rong, Wanting; Zhang, Zhongzhao
2018-01-01
Stable rotor levitation is a challenge for rotational gyroscopes (magnetically suspended gyroscopes (MSG) and electrostatically suspended gyroscopes (ESG)) with a ring- or disk-shaped rotor, which restricts further improvement of gyroscope performance. In addition, complicated pick-up circuits and feedback control electronics propose high requirement on fabrication technology. In the proposed gyroscope, a ball-disk shaped rotor is supported by a water-film bearing, formed by centrifugal force to deionized water at the cavity of the lower supporting pillar. Water-film bearing provides stable mechanical support, without the need for complicated electronics and control system for rotor suspension. To decrease sliding friction between the rotor ball and the water-film bearing, a supherhydrophobic surface (SHS) with nano-structures is fabricated on the rotor ball, resulting in a rated spinning speed increase of 12.4% (under the same driving current). Rotor is actuated by the driving scheme of brushless direct current motor (BLDCM). Interaction between the magnetized rotor and the magnetic-conducted stator produces a sinusoidal rotor restoring torque, amplitude of which is proportional to the rotor deflection angle inherently. Utilization of this magnetic restoring effect avoids adding of a high amplitude voltage for electrostatic feedback, which may cause air breakdown. Two differential capacitance pairs are utilized to measure input angular speeds at perpendicular directions of the rotor plane. The bias stability of the fabricated gyroscope is as low as 0.5°/h. PMID:29385105
Floating Oscillator-Embedded Triboelectric Generator for Versatile Mechanical Energy Harvesting
Seol, Myeong-Lok; Han, Jin-Woo; Jeon, Seung-Bae; Meyyappan, M.; Choi, Yang-Kyu
2015-01-01
A versatile vibration energy harvesting platform based on a triboelectricity is proposed and analyzed. External mechanical vibration repeats an oscillating motion of a polymer-coated metal oscillator floating inside a surrounding tube. Continuous sidewall friction at the contact interface of the oscillator induces current between the inner oscillator electrode and the outer tube electrode to convert mechanical vibrations into electrical energy. The floating oscillator-embedded triboelectric generator (FO-TEG) is applicable for both impulse excitation and sinusoidal vibration which universally exist in usual environment. For the impulse excitation, the generated current sustains and slowly decays by the residual oscillation of the floating oscillator. For the sinusoidal vibration, the output energy can be maximized by resonance oscillation. The operating frequency range can be simply optimized with high degree of freedom to satisfy various application requirements. In addition, the excellent immunity against ambient humidity is experimentally demonstrated, which stems from the inherently packaged structure of FO-TEG. The prototype device provides a peak-to-peak open-circuit voltage of 157 V and instantaneous short-circuit current of 4.6 μA, within sub-10 Hz of operating frequency. To visually demonstrate the energy harvesting behavior of FO-TEG, lighting of an array of LEDs is demonstrated using artificial vibration and human running. PMID:26553524
Floating Oscillator-Embedded Triboelectric Generator for Versatile Mechanical Energy Harvesting.
Seol, Myeong-Lok; Han, Jin-Woo; Jeon, Seung-Bae; Meyyappan, M; Choi, Yang-Kyu
2015-11-10
A versatile vibration energy harvesting platform based on a triboelectricity is proposed and analyzed. External mechanical vibration repeats an oscillating motion of a polymer-coated metal oscillator floating inside a surrounding tube. Continuous sidewall friction at the contact interface of the oscillator induces current between the inner oscillator electrode and the outer tube electrode to convert mechanical vibrations into electrical energy. The floating oscillator-embedded triboelectric generator (FO-TEG) is applicable for both impulse excitation and sinusoidal vibration which universally exist in usual environment. For the impulse excitation, the generated current sustains and slowly decays by the residual oscillation of the floating oscillator. For the sinusoidal vibration, the output energy can be maximized by resonance oscillation. The operating frequency range can be simply optimized with high degree of freedom to satisfy various application requirements. In addition, the excellent immunity against ambient humidity is experimentally demonstrated, which stems from the inherently packaged structure of FO-TEG. The prototype device provides a peak-to-peak open-circuit voltage of 157 V and instantaneous short-circuit current of 4.6 μA, within sub-10 Hz of operating frequency. To visually demonstrate the energy harvesting behavior of FO-TEG, lighting of an array of LEDs is demonstrated using artificial vibration and human running.
DISPLAY OF PIXEL LOSS AND REPLICATION IN REPROJECTING RASTER DATA FROM THE SINUSOIDAL PROJECTION
Recent studies show the sinusoidal projection to be a superior planar projection for representing global raster datasets. This study uses the sinusoidal projection as a basis for evaluating pixel loss and replication in eight other planar map projections. The percent of pixels ...
16 CFR 432.3 - Standard test conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... event the latter figure would control), RMS, using a sinusoidal wave containing less than 2 percent... sinusoidal wave at a frequency of 1,000 Hz; provided, however, that for amplifiers utilized as a component in a self-powered subwoofer system, the sinusoidal wave used as a preconditioning signal may be any...
16 CFR 432.3 - Standard test conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... event the latter figure would control), RMS, using a sinusoidal wave containing less than 2 percent... sinusoidal wave at a frequency of 1,000 Hz; provided, however, that for amplifiers utilized as a component in a self-powered subwoofer system, the sinusoidal wave used as a preconditioning signal may be any...
16 CFR 432.3 - Standard test conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... event the latter figure would control), RMS, using a sinusoidal wave containing less than 2 percent... sinusoidal wave at a frequency of 1,000 Hz; provided, however, that for amplifiers utilized as a component in a self-powered subwoofer system, the sinusoidal wave used as a preconditioning signal may be any...
16 CFR 432.3 - Standard test conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... event the latter figure would control), RMS, using a sinusoidal wave containing less than 2 percent... sinusoidal wave at a frequency of 1,000 Hz; provided, however, that for amplifiers utilized as a component in a self-powered subwoofer system, the sinusoidal wave used as a preconditioning signal may be any...
16 CFR 432.3 - Standard test conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... event the latter figure would control), RMS, using a sinusoidal wave containing less than 2 percent... sinusoidal wave at a frequency of 1,000 Hz; provided, however, that for amplifiers utilized as a component in a self-powered subwoofer system, the sinusoidal wave used as a preconditioning signal may be any...
NASA Astrophysics Data System (ADS)
Deshmukh, Ram; Moses, A. J.; Anayi, F.
The core losses and the lower-order voltage harmonics of four different chorded motors fed from sinusoidal supply and inverter voltage supply were invigilated at no-load condition. All the four motors were tested with 4, 8 and 16 kHz switching frequencies and 30, 40, 50 and 60 Hz modulation frequencies The motor with 120° coil pitch has the least core losses and the lower-order voltage harmonics under sinusoidal and pulse width modulation (PWM) voltage supplies at all switching and modulation frequencies. The drop in the core losses for this motor was 46% and 53% under sinusoidal and PWM voltage supplies, respectively. The motor with 120° coil pitch is recommended to be used under sinusoidal and PWM voltage supplies.
Ranavolo, A; Conte, C; Iavicoli, S; Serrao, M; Silvetti, A; Sandrini, G; Pierelli, F; Draicchio, F
2011-03-01
The visual system in walking serves to perceive feedback or feed-forward signals. Therefore, visually impaired persons (VIP) have biased motor control mechanisms. The use of leading indicators (LIs) and long canes helps to improve their walking efficiency. The aims of this study were to compare the walking efficiency of VIP on trapezoidal- and sinusoidal-section LIs using an optoelectronic motion analysis system. VIP displayed a significantly longer stance phase, a shorter swing phase and shorter step and stride lengths when they walked on the sinusoidal LI than when they walked on the trapezoidal LI. Compared with the trapezoidal LI, VIP walking on the sinusoidal LI displayed significantly lower joint ranges of motion. The centre of mass lateral displacement was wider for VIP walking on the sinusoidal LI than on the trapezoidal LI. Some significant differences were also found in sighted persons walking on both LIs. In conclusion, the trapezoidal shape enabled visually impaired subjects to walk more efficiently, whereas the sinusoidal shape caused dynamic balance problems. STATEMENT OF RELEVANCE: These findings suggest that VIP can walk more efficiently, with a lower risk of falls, on trapezoidal-section than on sinusoidal-section LIs. These results should be considered when choosing the most appropriate ground tactile surface indicators for widespread use.
Atashzar, Seyed Farokh; Shahbazi, Mahya; Ward, Christopher; Samotus, Olivia; Delrobaei, Mehdi; Rahimi, Fariborz; Lee, Jack; Jackman, Mallory; Jog, Mandar S; Patel, Rajni V
2016-01-01
Abnormality of sensorimotor integration in the basal ganglia and cortex has been reported in the literature for patients with task-specific focal hand dystonia (FHD). In this study, we investigate the effect of manipulation of kinesthetic input in people living with writer's cramp disorder (a major form of FHD). For this purpose, severity of dystonia is studied for 11 participants while the symptoms of seven participants have been tracked during five sessions of assessment and Botulinum toxin injection (BoNT-A) therapy (one of the current suggested therapies for dystonia). BoNT-A therapy is delivered in the first and the third session. The goal is to analyze the effect of haptic manipulation as a potential assistive technique during BoNT-A therapy. The trial includes writing, hovering, and spiral/sinusoidal drawing subtasks. In each session, the subtasks are repeated twice when (a) a participant uses a normal pen, and (b) when the participant uses a robotics-assisted system (supporting the pen) which provides a compliant virtual writing surface and manipulates the kinesthetic sensory input. The results show (p-value using one-sample t-tests) that reducing the writing surface rigidity significantly decreases the severity of dystonia and results in better control of grip pressure (an indicator of dystonic cramping). It is also shown that (p-value based on paired-samples t-test) using the proposed haptic manipulation strategy, it is possible to augment the effectiveness of BoNT-A therapy. The outcome of this study is then used in the design of an actuated pen as a writing-assistance tool that can provide compliant haptic interaction during writing for FHD patients.
Hoseinzadeh, Edris; Rezaee, Abbas; Farzadkia, Mahdi
2018-04-01
In this study, a microbial electrochemical system (MES) was designed to evaluate the effects of a low frequency-low voltage alternating electrical current on denitrification efficacy in the presence of ibuprofen as a low biodegradable organic carbon source. Cylindrical carbon cloth and stainless steel mesh electrodes containing a consortium of heterotrophic and autotrophic bacteria were mounted in the wall of the designed laboratory-scale bioreactor. The effects of inlet nitrate concentration (50-800mgL -1 ), retention time (2.5-24h), waveform magnitude (0.1-9.6V p-p ), adjustable direct current voltage added to offset voltage (0.1-4.9V), alternating current frequency (10-60Hz), and waveforms (sinusoidal, square, and ramp) were studied in this work. The results showed that the proposed system removes 800mgL -1 nitrate up to 95% during 6.5h. Optimum conditions were obtained in the 8V p-p using a frequency of 10Hz of a sinusoidal waveform. The morphology studies confirmed bacterial morphology change when applying the alternating current. Dehydrogenase activity of biofilms formed on surface of stainless steel electrodes increased to 15.24μgTFmg biomass cm -2 d. The maximum bacterial activity was obtained at a voltage of 8V p-p . The experimental results revealed that the MES using a low frequency-low voltage alternating electrical current is a promising technique for nitrate removal from pharmaceutical wastewaters in the presence of low biodegradability of carbon sources such as ibuprofen. Copyright © 2017 Elsevier B.V. All rights reserved.
Method for conducting nonlinear electrochemical impedance spectroscopy
Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.
2015-06-02
A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.
Real-Time Fourier Synthesis of Ensembles with Timbral Interpolation
NASA Astrophysics Data System (ADS)
Haken, Lippold
1990-01-01
In Fourier synthesis, natural musical sounds are produced by summing time-varying sinusoids. Sounds are analyzed to find the amplitude and frequency characteristics for their sinusoids; interpolation between the characteristics of several sounds is used to produce intermediate timbres. An ensemble can be synthesized by summing all the sinusoids for several sounds, but in practice it is difficult to perform such computations in real time. To solve this problem on inexpensive hardware, it is useful to take advantage of the masking effects of the auditory system. By avoiding the computations for perceptually unimportant sinusoids, and by employing other computation reduction techniques, a large ensemble may be synthesized in real time on the Platypus signal processor. Unlike existing computation reduction techniques, the techniques described in this thesis do not sacrifice independent fine control over the amplitude and frequency characteristics of each sinusoid.
Spline-based high-accuracy piecewise-polynomial phase-to-sinusoid amplitude converters.
Petrinović, Davor; Brezović, Marko
2011-04-01
We propose a method for direct digital frequency synthesis (DDS) using a cubic spline piecewise-polynomial model for a phase-to-sinusoid amplitude converter (PSAC). This method offers maximum smoothness of the output signal. Closed-form expressions for the cubic polynomial coefficients are derived in the spectral domain and the performance analysis of the model is given in the time and frequency domains. We derive the closed-form performance bounds of such DDS using conventional metrics: rms and maximum absolute errors (MAE) and maximum spurious free dynamic range (SFDR) measured in the discrete time domain. The main advantages of the proposed PSAC are its simplicity, analytical tractability, and inherent numerical stability for high table resolutions. Detailed guidelines for a fixed-point implementation are given, based on the algebraic analysis of all quantization effects. The results are verified on 81 PSAC configurations with the output resolutions from 5 to 41 bits by using a bit-exact simulation. The VHDL implementation of a high-accuracy DDS based on the proposed PSAC with 28-bit input phase word and 32-bit output value achieves SFDR of its digital output signal between 180 and 207 dB, with a signal-to-noise ratio of 192 dB. Its implementation requires only one 18 kB block RAM and three 18-bit embedded multipliers in a typical field-programmable gate array (FPGA) device. © 2011 IEEE
Effect of synthetic jet modulation schemes on the reduction of a laminar separation bubble
NASA Astrophysics Data System (ADS)
Seo, J. H.; Cadieux, F.; Mittal, R.; Deem, E.; Cattafesta, L.
2018-03-01
The response of a laminar separation bubble to synthetic jet forcing with various modulation schemes is investigated via direct numerical simulations. A simple sinusoidal waveform is considered as a reference case, and various amplitude modulation schemes, including the square-wave "burst" modulation, are employed in the simulations. The results indicate that burst modulation is less effective at reducing the length of the flow separation than the sinusoidal forcing primarily because burst modulation is associated with a broad spectrum of input frequencies that are higher than the target frequency for the flow control. It is found that such high-frequency forcing delays vortex roll-up and promotes vortex pairing and merging, which have an adverse effect on reducing the separation bubble length. A commonly used amplitude modulation scheme is also found to have reduced effectiveness due to its spectral content. A new amplitude modulation scheme which is tailored to impart more energy at the target frequency is proposed and shown to be more effective than the other modulation schemes. Experimental measurements confirm that modulation schemes can be preserved through the actuator and used to enhance the energy content at the target modulation frequency. The present study therefore suggests that the effectiveness of synthetic jet-based flow control could be improved by carefully designing the spectral content of the modulation scheme.
Primate translational vestibuloocular reflexes. IV. Changes after unilateral labyrinthectomy
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Newlands, S. D.; Dickman, J. D.
2000-01-01
The effects of unilateral labyrinthectomy on the properties of the translational vestibuloocular reflexes (trVORs) were investigated in rhesus monkeys trained to fixate near targets. Translational motion stimuli consisted of either steady-state lateral and fore-aft sinusoidal oscillations or short-lasting transient displacements. During small-amplitude, steady-state sinusoidal lateral oscillations, a small decrease in the horizontal trVOR sensitivity and its dependence on viewing distance was observed during the first week after labyrinthectomy. These deficits gradually recovered over time. In addition, the vertical response component increased, causing a tilt of the eye velocity vector toward the lesioned side. During large, transient lateral displacements, the deficits were larger and longer lasting. Responses after labyrinthectomy were asymmetric, with eye velocity during movements toward the side of the lesion being more compromised. The most profound effect of the lesions was observed during fore-aft motion. Whereas responses were kinematically appropriate for fixation away from the side of the lesion (e.g., to the left after right labyrinthectomy), horizontal responses were anticompensatory during fixation at targets located ipsilateral to the side of the lesion (e.g., for targets to the right after right labyrinthectomy). This deficit showed little recovery during the 3-mo post-labyrinthectomy testing period. These results suggest that inputs from both labyrinths are important for the proper function of the trVORs, although the details of how bilateral signals are processed and integrated remain unknown.
Gao, Zheng; Gui, Ping
2012-07-01
In this paper, we present a digital predistortion technique to improve the linearity and power efficiency of a high-voltage class-AB power amplifier (PA) for ultrasound transmitters. The system is composed of a digital-to-analog converter (DAC), an analog-to-digital converter (ADC), and a field-programmable gate array (FPGA) in which the digital predistortion (DPD) algorithm is implemented. The DPD algorithm updates the error, which is the difference between the ideal signal and the attenuated distorted output signal, in the look-up table (LUT) memory during each cycle of a sinusoidal signal using the least-mean-square (LMS) algorithm. On the next signal cycle, the error data are used to equalize the signal with negative harmonic components to cancel the amplifier's nonlinear response. The algorithm also includes a linear interpolation method applied to the windowed sinusoidal signals for the B-mode and Doppler modes. The measurement test bench uses an arbitrary function generator as the DAC to generate the input signal, an oscilloscope as the ADC to capture the output waveform, and software to implement the DPD algorithm. The measurement results show that the proposed system is able to reduce the second-order harmonic distortion (HD2) by 20 dB and the third-order harmonic distortion (HD3) by 14.5 dB, while at the same time improving the power efficiency by 18%.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.
2017-01-01
This paper describes the development of input properties for a continuum damage mechanics based material model, Mat 58, within LS-DYNA(Registered Trademark) to simulate the response of a graphite-Kevlar(Registered Trademark) hybrid plain weave fabric. A limited set of material characterization tests were performed on the hybrid graphite-Kevlar(Registered Trademark) fabric. Simple finite element models were executed in LS-DYNA(Registered Trademark) to simulate the material characterization tests and to verify the Mat 58 material model. Once verified, the Mat 58 model was used in finite element models of two composite energy absorbers: a conical-shaped design, designated the "conusoid," fabricated of four layers of hybrid graphite-Kevlar(Registered Trademark) fabric; and, a sinusoidal-shaped foam sandwich design, designated the "sinusoid," fabricated of the same hybrid fabric face sheets with a foam core. Dynamic crush tests were performed on components of the two energy absorbers, which were designed to limit average vertical accelerations to 25- to 40-g, to minimize peak crush loads, and to generate relatively long crush stroke values under dynamic loading conditions. Finite element models of the two energy absorbers utilized the Mat 58 model that had been verified through material characterization testing. Excellent predictions of the dynamic crushing response were obtained.
Pulsatile pipe flow transition: Flow waveform effects
NASA Astrophysics Data System (ADS)
Brindise, Melissa C.; Vlachos, Pavlos P.
2018-01-01
Although transition is known to exist in various hemodynamic environments, the mechanisms that govern this flow regime and their subsequent effects on biological parameters are not well understood. Previous studies have investigated transition in pulsatile pipe flow using non-physiological sinusoidal waveforms at various Womersley numbers but have produced conflicting results, and multiple input waveform shapes have yet to be explored. In this work, we investigate the effect of the input pulsatile waveform shape on the mechanisms that drive the onset and development of transition using particle image velocimetry, three pulsatile waveforms, and six mean Reynolds numbers. The turbulent kinetic energy budget including dissipation rate, production, and pressure diffusion was computed. The results show that the waveform with a longer deceleration phase duration induced the earliest onset of transition, while the waveform with a longer acceleration period delayed the onset of transition. In accord with the findings of prior studies, for all test cases, turbulence was observed to be produced at the wall and either dissipated or redistributed into the core flow by pressure waves, depending on the mean Reynolds number. Turbulent production increased with increasing temporal velocity gradients until an asymptotic limit was reached. The turbulence dissipation rate was shown to be independent of mean Reynolds number, but a relationship between the temporal gradients of the input velocity waveform and the rate of turbulence dissipation was found. In general, these results demonstrated that the shape of the input pulsatile waveform directly affected the onset and development of transition.
Physiology of primary saccular afferents of goldfish: implications for Mauthner cell response.
Fay, R R
1995-01-01
Mauthner cells receive neurally coded information from the otolith organs in fishes, and it is most likely that initiation and directional characteristics of the C-start response depend on this input. In the goldfish, saccular afferents are sensitive to sound pressure (< -30 dB re: 1 dyne cm-2) in the most sensitive frequency range (200 to 800 Hz). This input arises from volume fluctuations of the swimbladder in response to the sound pressure waveform and is thus nondirectional. Primary afferents of the saccule, lagena, and utricle of the goldfish also respond with great sensitivity to acoustic particle motion (< 1 nanometer between 100 and 200 Hz). This input arises from the acceleration of the fish in a sound field and is inherently directional. Saccular afferents can be divided into two groups based on their tuning: one group is tuned at about 250 Hz, and the other tuned between 400 Hz and 1 kHz. All otolithic primary afferents phaselock to sinusoids throughout the frequency range of hearing (up to about 2 kHz). Based on physiological and behavioral studies on Mauthner cells, it appears that highly correlated binaural input to the M-cell, from the sacculi responding to sound pressure, may be required for a decision to respond but that the direction of the response is extracted from small deviations from a perfect interaural correlation arising from the directional response of otolith organs to acoustic particle motion.
Sinusoidal Analysis-Synthesis of Audio Using Perceptual Criteria
NASA Astrophysics Data System (ADS)
Painter, Ted; Spanias, Andreas
2003-12-01
This paper presents a new method for the selection of sinusoidal components for use in compact representations of narrowband audio. The method consists of ranking and selecting the most perceptually relevant sinusoids. The idea behind the method is to maximize the matching between the auditory excitation pattern associated with the original signal and the corresponding auditory excitation pattern associated with the modeled signal that is being represented by a small set of sinusoidal parameters. The proposed component-selection methodology is shown to outperform the maximum signal-to-mask ratio selection strategy in terms of subjective quality.
Pattern formation and geometry of the manifold
NASA Astrophysics Data System (ADS)
Haji, Amir Hossein; Mahzoon, Mojtaba; Javadpour, Sirus
2011-03-01
The objective of the present work is to investigate how pattern formation in the Cahn-Hilliard system can be influenced by geometry of the manifold. This is in contrast to control methods in which the physical field is modified and the pattern formation of the original system changes in response to control inputs. The idea begins with the cylindrical manifold symmetry leading to circumferential rolls while the torus manifold can be used to produce and control helical rolls. The next step is to search for a weaker restriction on the geometry of the manifold in order to reduce its dimension. In particular a short amplitude sinusoidal modulation on a flat surface is studied. At the final step a sequential pattern formation is presented.
Chaotic sources of noise in machine acoustics
NASA Astrophysics Data System (ADS)
Moon, F. C., Prof.; Broschart, Dipl.-Ing. T.
1994-05-01
In this paper a model is posited for deterministic, random-like noise in machines with sliding rigid parts impacting linear continuous machine structures. Such problems occur in gear transmission systems. A mathematical model is proposed to explain the random-like structure-borne and air-borne noise from such systems when the input is a periodic deterministic excitation of the quasi-rigid impacting parts. An experimental study is presented which supports the model. A thin circular plate is impacted by a chaotically vibrating mass excited by a sinusoidal moving base. The results suggest that the plate vibrations might be predicted by replacing the chaotic vibrating mass with a probabilistic forcing function. Prechaotic vibrations of the impacting mass show classical period doubling phenomena.
Jump resonant frequency islands in nonlinear feedback control systems
NASA Technical Reports Server (NTRS)
Koenigsberg, W. D.; Dunn, J. C.
1975-01-01
A new type of jump resonance is predicted and observed in certain nonlinear feedback control systems. The new jump resonance characteristic is described as a 'frequency island' due to the fact that a portion of the input-output transfer characteristic is disjoint from the main body. The presence of such frequency islands was predicted by using a sinusoidal describing function characterization of the dynamics of an inertial gyro employing nonlinear ternary rebalance logic. While the general conditions under which such islands are possible has not been examined, a numerical approach is presented which can aid in establishing their presence. The existence of the frequency islands predicted for the ternary rebalanced gyro was confirmed by simulating the nonlinear system and measuring the transfer function.
General Relativistic MHD Simulations of Jet Formation
NASA Technical Reports Server (NTRS)
Mizuno, Y.; Nishikawa, K.-I.; Hardee, P.; Koide, S.; Fishman, G. J.
2005-01-01
We have performed 3-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations of jet formation from an accretion disk with/without initial perturbation around a rotating black hole. We input a sinusoidal perturbation (m = 5 mode) in the rotation velocity of the accretion disk. The simulation results show the formation of a relativistic jet from the accretion disk. Although the initial perturbation becomes weakened by the coupling among different modes, it survives and triggers lower modes. As a result, complex non-axisymmetric density structure develops in the disk and the jet. Newtonian MHD simulations of jet formation with a non-axisymmetric mode show the growth of the m = 2 mode but GRMHD simulations cannot see the clear growth of the m = 2 mode.
Electrophysiology of pumpkin seeds: Memristors in vivo.
Volkov, Alexander G; Nyasani, Eunice K; Tuckett, Clayton; Greeman, Esther A; Markin, Vladislav S
2016-01-01
Leon Chua, the discoverer of a memristor, theoretically predicted that voltage gated ion channels can be memristors. We recently found memristors in different plants such as the Venus flytrap, Mimosa pudica, Aloe vera, apple fruits, and in potato tubers. There are no publications in literature about the existence of memristors in seeds. The goal of this work was to discover if pumpkin seeds might have memristors. We selected Cucurbita pepo L., cv. Cinderella, Cucurbita maxima L. cv Warty Goblin, and Cucurbita maxima L., cv. Jarrahdale seeds for this analysis. In these seeds, we found the presence of resistors with memory. The analysis was based on cyclic voltammetry where a memristor should manifest itself as a nonlinear two-terminal electrical element, which exhibits a pinched hysteresis loop on a current-voltage plane for any bipolar cyclic voltage input signal. Dry dormant pumpkin seeds have very high electrical resistance without memristive properties. The electrostimulation by bipolar sinusoidal or triangular periodic waves induces electrical responses in imbibed pumpkin seeds with fingerprints of memristors. Tetraethylammonium chloride, an inhibitor of voltage gated K(+) channels, transforms a memristor to a resistor in pumpkin seeds. NPPB (5-Nitro-2-(3-phenylpropylamino)benzoic acid) inhibits the memristive properties of imbibed pumpkin seeds. The discovery of memristors in pumpkin seeds creates a new direction in the understanding of electrophysiological phenomena in seeds.
Wavelet analysis of near-resonant series RLC circuit with time-dependent forcing frequency
NASA Astrophysics Data System (ADS)
Caccamo, M. T.; Cannuli, A.; Magazù, S.
2018-07-01
In this work, the results of an analysis of the response of a near-resonant series resistance‑inductance‑capacitance (RLC) electric circuit with time-dependent forcing frequency by means of a wavelet cross-correlation approach are reported. In particular, it is shown how the wavelet approach enables frequency and time analysis of the circuit response to be carried out simultaneously—this procedure not being possible by Fourier transform, since the frequency is not stationary in time. A series RLC circuit simulation is performed by using the Simulation Program with Integrated Circuits Emphasis (SPICE), in which an oscillatory sinusoidal voltage drive signal of constant amplitude is swept through the resonant condition by progressively increasing the frequency over a 20-second time window, linearly, from 0.32 Hz to 6.69 Hz. It is shown that the wavelet cross-correlation procedure quantifies the common power between the input signal (represented by the electromotive force) and the output signal, which in the present case is a current, highlighting not only which frequencies are present but also when they occur, i.e. providing a simultaneous time-frequency analysis. The work is directed toward graduate Physics, Engineering and Mathematics students, with the main intention of introducing wavelet analysis into their data analysis toolkit.
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Hess, B. J.
1996-01-01
1. The dynamic properties of otolith-ocular reflexes elicited by sinusoidal linear acceleration along the three cardinal head axes were studied during off-vertical axis rotations in rhesus monkeys. As the head rotates in space at constant velocity about an off-vertical axis, otolith-ocular reflexes are elicited in response to the sinusoidally varying linear acceleration (gravity) components along the interaural, nasooccipital, or vertical head axis. Because the frequency of these sinusoidal stimuli is proportional to the velocity of rotation, rotation at low and moderately fast speeds allows the study of the mid-and low-frequency dynamics of these otolith-ocular reflexes. 2. Animals were rotated in complete darkness in the yaw, pitch, and roll planes at velocities ranging between 7.4 and 184 degrees/s. Accordingly, otolith-ocular reflexes (manifested as sinusoidal modulations in eye position and/or slow-phase eye velocity) were quantitatively studied for stimulus frequencies ranging between 0.02 and 0.51 Hz. During yaw and roll rotation, torsional, vertical, and horizontal slow-phase eye velocity was sinusoidally modulated as a function of head position. The amplitudes of these responses were symmetric for rotations in opposite directions. In contrast, mainly vertical slow-phase eye velocity was modulated during pitch rotation. This modulation was asymmetric for rotations in opposite direction. 3. Each of these response components in a given rotation plane could be associated with an otolith-ocular response vector whose sensitivity, temporal phase, and spatial orientation were estimated on the basis of the amplitude and phase of sinusoidal modulations during both directions of rotation. Based on this analysis, which was performed either for slow-phase eye velocity alone or for total eye excursion (including both slow and fast eye movements), two distinct response patterns were observed: 1) response vectors with pronounced dynamics and spatial/temporal properties that could be characterized as the low-frequency range of "translational" otolith-ocular reflexes; and 2) response vectors associated with an eye position modulation in phase with head position ("tilt" otolith-ocular reflexes). 4. The responses associated with two otolith-ocular vectors with pronounced dynamics consisted of horizontal eye movements evoked as a function of gravity along the interaural axis and vertical eye movements elicited as a function of gravity along the vertical head axis. Both responses were characterized by a slow-phase eye velocity sensitivity that increased three- to five-fold and large phase changes of approximately 100-180 degrees between 0.02 and 0.51 Hz. These dynamic properties could suggest nontraditional temporal processing in utriculoocular and sacculoocular pathways, possibly involving spatiotemporal otolith-ocular interactions. 5. The two otolith-ocular vectors associated with eye position responses in phase with head position (tilt otolith-ocular reflexes) consisted of torsional eye movements in response to gravity along the interaural axis, and vertical eye movements in response to gravity along the nasooccipital head axis. These otolith-ocular responses did not result from an otolithic effect on slow eye movements alone. Particularly at high frequencies (i.e., high speed rotations), saccades were responsible for most of the modulation of torsional and vertical eye position, which was relatively large (on average +/- 8-10 degrees/g) and remained independent of frequency. Such reflex dynamics can be simulated by a direct coupling of primary otolith afferent inputs to the oculomotor plant. (ABSTRACT TRUNCATED).
CSMP (Continuous System Modeling Program) modeling of brushless DC motors
NASA Astrophysics Data System (ADS)
Thomas, S. M.
1984-09-01
Recent improvements in rare earth magnets have made it possible to construct strong, lightweight, high horsepower DC motors. This has occasioned a reassessment of electromechanical actuators as alternatives to comparable pneumatic and hydraulic systems for use in flight control actuators for tactical missiles. This thesis develops a low-order mathematical model for the simulation and analysis of brushless DC motor performance. This model is implemented in CSMP language. It is used to predict such motor performance curves as speed, current and power versus torque. Electronic commutation based on Hall effect sensor positional feedback is simulated. Steady state motor behavior is studied under both constant and variable air gap flux conditions. The variable flux takes two different forms. In the first case, the flux is varied as a simple sinusoid. In the second case, the flux is varied as the sum of a sinusoid and one of its harmonics.
Development of a BPM Lock-In Diagnostic System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard Dickson
2003-05-12
A system has been developed for the acquisition and analysis of high rate, time coherent BPM data across the Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF). This system will allow the acquisition of Beam Position Monitor (BPM) position and intensity information at a rate in excess 7 KHz for approximately 200 BPMs in a time synchronous manner. By inducing minute sinusoidal transverse beam motion in the CEBAF injector, with known phase relative to the synchronized BPM acquisition, it is possible to derive several types of useful information. Analysis of the BPM intensity data, which is proportional to beam current,more » by beating the signal with an in-phase sinusoidal representation of the transverse kick can localize beam scraping to a particular BPM. Similarly, real-time optics information may be deduced with an analysis of BPM position data. This paper will detail the frequency lock-in technique applied and present status.« less
Magnetic nanoparticle temperature estimation.
Weaver, John B; Rauwerdink, Adam M; Hansen, Eric W
2009-05-01
The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 degree K between 20 and 50 degrees C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.
High frequency pressure oscillator for microcryocoolers.
Vanapalli, S; ter Brake, H J M; Jansen, H V; Zhao, Y; Holland, H J; Burger, J F; Elwenspoek, M C
2008-04-01
Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80 K, delivering a cooling power of 10 mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5 MPa and compression volume of about 22.6 mm(3) when operating the actuator with a peak-to-peak sinusoidal voltage of 100 V at a frequency of 1 kHz. The electrical power input was 2.73 W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.
High frequency pressure oscillator for microcryocoolers
NASA Astrophysics Data System (ADS)
Vanapalli, S.; ter Brake, H. J. M.; Jansen, H. V.; Zhao, Y.; Holland, H. J.; Burger, J. F.; Elwenspoek, M. C.
2008-04-01
Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80K, delivering a cooling power of 10mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5MPa and compression volume of about 22.6mm3 when operating the actuator with a peak-to-peak sinusoidal voltage of 100V at a frequency of 1kHz. The electrical power input was 2.73W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.
A study of helicopter gust response alleviation by automatic control
NASA Technical Reports Server (NTRS)
Saito, S.
1983-01-01
Two control schemes designed to alleviate gust-induced vibration are analytically investigated for a helicopter with four articulated blades. One is an individual blade pitch control scheme. The other is an adaptive blade pitch control algorithm based on linear optimal control theory. In both controllers, control inputs to alleviate gust response are superimposed on the conventional control inputs required to maintain the trim condition. A sinusoidal vertical gust model and a step gust model are used. The individual blade pitch control, in this research, is composed of sensors and a pitch control actuator for each blade. Each sensor can detect flapwise (or lead-lag or torsionwise) deflection of the respective blade. The acturator controls the blade pitch angle for gust alleviation. Theoretical calculations to predict the performance of this feedback system have been conducted by means of the harmonic method. The adaptive blade pitch control system is composed of a set of measurements (oscillatory hub forces and moments), an identification system using a Kalman filter, and a control system based on the minimization of the quadratic performance function.
Dynamic calibration of a wheelchair dynamometer.
DiGiovine, C P; Cooper, R A; Boninger, M L
2001-01-01
The inertia and resistance of a wheelchair dynamometer must be determined in order to compare the results of one study to another, independent of the type of device used. The purpose of this study was to describe and implement a dynamic calibration test for characterizing the electro-mechanical properties of a dynamometer. The inertia, the viscous friction, the kinetic friction, the motor back-electromotive force constant, and the motor constant were calculated using three different methods. The methodology based on a dynamic calibration test along with a nonlinear regression analysis produced the best results. The coefficient of determination comparing the dynamometer model output to the measured angular velocity and torque was 0.999 for a ramp input and 0.989 for a sinusoidal input. The inertia and resistance were determined for the rollers and the wheelchair wheels. The calculation of the electro-mechanical parameters allows for the complete description of the propulsive torque produced by an individual, given only the angular velocity and acceleration. The measurement of the electro-mechanical properties of the dynamometer as well as the wheelchair/human system provides the information necessary to simulate real-world conditions.
[Optimization of the pseudorandom input signals used for the forced oscillation technique].
Liu, Xiaoli; Zhang, Nan; Liang, Hong; Zhang, Zhengbo; Li, Deyu; Wang, Weidong
2017-10-01
The forced oscillation technique (FOT) is an active pulmonary function measurement technique that was applied to identify the mechanical properties of the respiratory system using external excitation signals. FOT commonly includes single frequency sine, pseudorandom and periodic impulse excitation signals. Aiming at preventing the time-domain amplitude overshoot that might exist in the acquisition of combined multi sinusoidal pseudorandom signals, this paper studied the phase optimization of pseudorandom signals. We tried two methods including the random phase combination and time-frequency domain swapping algorithm to solve this problem, and used the crest factor to estimate the effect of optimization. Furthermore, in order to make the pseudorandom signals met the requirement of the respiratory system identification in 4-40 Hz, we compensated the input signals' amplitudes at the low frequency band (4-18 Hz) according to the frequency-response curve of the oscillation unit. Resuts showed that time-frequency domain swapping algorithm could effectively optimize the phase combination of pseudorandom signals. Moreover, when the amplitudes at low frequencies were compensated, the expected stimulus signals which met the performance requirements were obtained eventually.
NASA Astrophysics Data System (ADS)
Jolitz, Benjamin
Ben Jolitz 2/6/10 Proposal for extension of ORSA to include phasing in to prove successive encounters of an asteroid between Earth and Mars Phasing is the act of changing the phase angle between two sinusoidal functions. In the case of orbits, which are ellipses drawn by sinusoidal functions, phasing is the act of matching one orbit to another. Finding the phasing parameters of a captured asteroid, a non-Keplarian object, in a resonant bi-elliptic orbit and simulation thereof is rather difficult without specialized and esoteric applications. However, open source in the last ten years has made incredible advance-ments, and some projects originally designed for orbital reconstruction have been released to the public on an AS IS basis; one such project is ORSA -Orbital Reconstruction, Simulation, Analysis. ORSA, however, does not have methods for evaluating the relative changes to a phase angle of a bi-elliptic orbit in a recursive manner for successive encounters. For years, space shuttles and other celestial transport vessels have been faced with the difficulty of docking with the International Space Station, a task which involves matching the craft to the unique elliptical orbit of the ISS such that the shuttle will meet the ISS with the appropriate orbital parameters. However, calculation of such requires consideration of only the Earth and it's effect on rather small, man-made objects. In electrical engineering, the concept of a phase lock loop is used to match the frequency and phase of a controlled oscillator with a given set of input signals. In our test case, we wish compute the successive bi-elliptic half orbits of a captured asteroid that traverses between Earth and Mars using gravitational interactions with the intent of computing the relative phase angle between the desired half orbit and current orbit such that a timed encounter with Earth or Mars is possible. The goal of this proposal is to extend ORSA to maintain relative phase angle between bi-elliptic orbits for successive encounters.
Transient behavior of an actively mode-locked semiconductor laser diode
NASA Technical Reports Server (NTRS)
Auyeung, J. C.; Bergman, L. A.; Johnston, A. R.
1982-01-01
Experimental investigation was carried out to study the transient regimes during the buildup and decay of the active mode-locked state in a laser diode. The mode locking was achieved through a sinusoidal modulation of the diode current with the laser in an external cavity. The pulse shape evolution and the time constants for the buildup and decay were determined.
Temperature and current coefficients of lasing wavelength in tunable diode laser spectroscopy.
Fukuda, M; Mishima, T; Nakayama, N; Masuda, T
2010-08-01
The factors determining temperature and current coefficients of lasing wavelength are investigated and discussed under monitoring CO(2)-gas absorption spectra. The diffusion rate of Joule heating at the active layer to the surrounding region is observed by monitoring the change in the junction voltage, which is a function of temperature and the wavelength (frequency) deviation under sinusoidal current modulation. Based on the experimental results, the time interval of monitoring the wavelength after changing the ambient temperature or injected current (scanning rate) has to be constant at least to eliminate the monitoring error induced by the deviation of lasing wavelength, though the temperature and current coefficients of lasing wavelength differ with the rate.
NASA Technical Reports Server (NTRS)
Black, Jr., William C. (Inventor); Hermann, Theodore M. (Inventor)
1998-01-01
A current determiner having an output at which representations of input currents are provided having an input conductor for the input current and a current sensor supported on a substrate electrically isolated from one another but with the sensor positioned in the magnetic fields arising about the input conductor due to any input currents. The sensor extends along the substrate in a direction primarily perpendicular to the extent of the input conductor and is formed of at least a pair of thin-film ferromagnetic layers separated by a non-magnetic conductive layer. The sensor can be electrically connected to a electronic circuitry formed in the substrate including a nonlinearity adaptation circuit to provide representations of the input currents of increased accuracy despite nonlinearities in the current sensor, and can include further current sensors in bridge circuits.
Full cycle rapid scan EPR deconvolution algorithm.
Tseytlin, Mark
2017-08-01
Rapid scan electron paramagnetic resonance (RS EPR) is a continuous-wave (CW) method that combines narrowband excitation and broadband detection. Sinusoidal magnetic field scans that span the entire EPR spectrum cause electron spin excitations twice during the scan period. Periodic transient RS signals are digitized and time-averaged. Deconvolution of absorption spectrum from the measured full-cycle signal is an ill-posed problem that does not have a stable solution because the magnetic field passes the same EPR line twice per sinusoidal scan during up- and down-field passages. As a result, RS signals consist of two contributions that need to be separated and postprocessed individually. Deconvolution of either of the contributions is a well-posed problem that has a stable solution. The current version of the RS EPR algorithm solves the separation problem by cutting the full-scan signal into two half-period pieces. This imposes a constraint on the experiment; the EPR signal must completely decay by the end of each half-scan in order to not be truncated. The constraint limits the maximum scan frequency and, therefore, the RS signal-to-noise gain. Faster scans permit the use of higher excitation powers without saturating the spin system, translating into a higher EPR sensitivity. A stable, full-scan algorithm is described in this paper that does not require truncation of the periodic response. This algorithm utilizes the additive property of linear systems: the response to a sum of two inputs is equal the sum of responses to each of the inputs separately. Based on this property, the mathematical model for CW RS EPR can be replaced by that of a sum of two independent full-cycle pulsed field-modulated experiments. In each of these experiments, the excitation power equals to zero during either up- or down-field scan. The full-cycle algorithm permits approaching the upper theoretical scan frequency limit; the transient spin system response must decay within the scan period. Separation of the interfering up- and down-field scan responses remains a challenge for reaching the full potential of this new method. For this reason, only a factor of two increase in the scan rate was achieved, in comparison with the standard half-scan RS EPR algorithm. It is important for practical use that faster scans not necessarily increase the signal bandwidth because acceleration of the Larmor frequency driven by the changing magnetic field changes its sign after passing the inflection points on the scan. The half-scan and full-scan algorithms are compared using a LiNC-BuO spin probe of known line-shape, demonstrating that the new method produces stable solutions when RS signals do not completely decay by the end of each half-scan. Copyright © 2017 Elsevier Inc. All rights reserved.
Full cycle rapid scan EPR deconvolution algorithm
NASA Astrophysics Data System (ADS)
Tseytlin, Mark
2017-08-01
Rapid scan electron paramagnetic resonance (RS EPR) is a continuous-wave (CW) method that combines narrowband excitation and broadband detection. Sinusoidal magnetic field scans that span the entire EPR spectrum cause electron spin excitations twice during the scan period. Periodic transient RS signals are digitized and time-averaged. Deconvolution of absorption spectrum from the measured full-cycle signal is an ill-posed problem that does not have a stable solution because the magnetic field passes the same EPR line twice per sinusoidal scan during up- and down-field passages. As a result, RS signals consist of two contributions that need to be separated and postprocessed individually. Deconvolution of either of the contributions is a well-posed problem that has a stable solution. The current version of the RS EPR algorithm solves the separation problem by cutting the full-scan signal into two half-period pieces. This imposes a constraint on the experiment; the EPR signal must completely decay by the end of each half-scan in order to not be truncated. The constraint limits the maximum scan frequency and, therefore, the RS signal-to-noise gain. Faster scans permit the use of higher excitation powers without saturating the spin system, translating into a higher EPR sensitivity. A stable, full-scan algorithm is described in this paper that does not require truncation of the periodic response. This algorithm utilizes the additive property of linear systems: the response to a sum of two inputs is equal the sum of responses to each of the inputs separately. Based on this property, the mathematical model for CW RS EPR can be replaced by that of a sum of two independent full-cycle pulsed field-modulated experiments. In each of these experiments, the excitation power equals to zero during either up- or down-field scan. The full-cycle algorithm permits approaching the upper theoretical scan frequency limit; the transient spin system response must decay within the scan period. Separation of the interfering up- and down-field scan responses remains a challenge for reaching the full potential of this new method. For this reason, only a factor of two increase in the scan rate was achieved, in comparison with the standard half-scan RS EPR algorithm. It is important for practical use that faster scans not necessarily increase the signal bandwidth because acceleration of the Larmor frequency driven by the changing magnetic field changes its sign after passing the inflection points on the scan. The half-scan and full-scan algorithms are compared using a LiNC-BuO spin probe of known line-shape, demonstrating that the new method produces stable solutions when RS signals do not completely decay by the end of each half-scan.
Freeman, Daniel K.; Jeng, Jed S.; Kelly, Shawn K.; Hartveit, Espen; Fried, Shelley I.
2011-01-01
Extracellular electric stimulation with sinusoidal waveforms has been shown to allow preferential activation of individual types of retinal neurons by varying stimulus frequency. It is important to understand the mechanisms underlying this frequency dependence as a step towards improving methods of preferential activation. In order to elucidate these mechanisms, we implemented a morphologically realistic model of a retinal bipolar cell and measured the response to extracellular stimulation with sinusoidal waveforms. We compared the frequency response of a passive membrane model to the kinetics of voltage-gated calcium channels that mediate synaptic release. The passive electrical properties of the membrane exhibited lowpass filtering with a relatively high cutoff frequency (nominal value = 717 Hz). This cutoff frequency was dependent on intra-axonal resistance, with shorter and wider axons yielding higher cutoff frequencies. However, we found that the cutoff frequency of bipolar cell synaptic release was primarily limited by the relatively slow opening kinetics of Land T-type calcium channels. The cutoff frequency of calcium currents depended nonlinearly on stimulus amplitude, but remained lower than the cutoff frequency of the passive membrane model for a large range of membrane potential fluctuations. These results suggest that while it may be possible to modulate the membrane potential of bipolar cells over a wide range of stimulus frequencies, synaptic release will only be initiated at the lower end of this range. PMID:21628768
NASA Astrophysics Data System (ADS)
Valiallah Mousavi, S.; Barzegar Gerdroodbary, M.; Sheikholeslami, Mohsen; Ganji, D. D.
2016-09-01
In this study, two dimensional numerical simulations are performed to investigate the influence of the magnetic field on the nanofluid flow inside a sinusoidal channel. This work reveals the influence of variable magnetic field in the heat transfer of heat exchanger while the mixture is in a single phase. In this heat exchanger, the inner tube is sinusoidal and the outer tube is considered smooth. The magnetic field is applied orthogonal to the axis of the sinusoidal tube. In our study, the ferrofluid (water with 4 vol% nanoparticles (Fe3O4)) flows in a channel with sinusoidal bottom. The finite volume method with the SIMPLEC algorithm is used for handling the pressure-velocity coupling. The numerical results present validated data with experimentally measured data and show good agreement with measurement. The influence of different parameters, like the intensity of magnetic field and Reynolds number, on the heat transfer is investigated. According to the obtained results, the sinusoidal formation of the internal tube significantly increases the Nusselt number inside the channel. Our findings show that the magnetic field increases the probability of eddy formation inside the cavities and consequently enhances the heat transfer (more than 200%) in the vicinity of the magnetic field at low Reynolds number ( Re=50). In addition, the variation of the skin friction shows that the magnetic field increases the skin friction (more than 600%) inside the sinusoidal channel.
Pessia, Mauro; Servettini, Ilenio; Panichi, Roberto; Guasti, Leonardo; Grassi, Silvarosa; Arcangeli, Annarosa; Wanke, Enzo; Pettorossi, Vito Enrico
2008-01-01
The discharge properties of the medial vestibular nucleus neurones (MVNn) critically depend on the activity of several ion channel types. In this study we show, immunohistochemically, that the voltage-gated K+ channels ERG1A, ERG1B, ERG2 and ERG3 are highly expressed within the vestibular nuclei of P10 and P60 mice. The role played by these channels in the spike-generating mechanisms of the MVNn and in temporal information processing was investigated electrophysiologically from mouse brain slices, in vitro, by analysing the spontaneous discharge and the response to square-, ramp- and sinusoid-like intracellular DC current injections in extracellular and whole-cell patch-clamp studies. We show that more than half of the recorded MVNn were responsive to ERG channel block (WAY-123,398, E4031), displaying an increase in spontaneous activity and discharge irregularity. The response to step and ramp current injection was also modified by ERG block showing a reduction of first spike latency, enhancement of discharge rate and reduction of the slow spike-frequency adaptation process. ERG channels influence the interspike slope without affecting the spike shape. Moreover, in response to sinusoid-like current, ERG channel block caused frequency-dependent gain enhancement and phase-lead shift. Taken together, the data demonstrate that ERG channels control the excitability of MVNn, their discharge regularity and probably their resonance properties. PMID:18718985
Pessia, Mauro; Servettini, Ilenio; Panichi, Roberto; Guasti, Leonardo; Grassi, Silvarosa; Arcangeli, Annarosa; Wanke, Enzo; Pettorossi, Vito Enrico
2008-10-15
The discharge properties of the medial vestibular nucleus neurones (MVNn) critically depend on the activity of several ion channel types. In this study we show, immunohistochemically, that the voltage-gated K(+) channels ERG1A, ERG1B, ERG2 and ERG3 are highly expressed within the vestibular nuclei of P10 and P60 mice. The role played by these channels in the spike-generating mechanisms of the MVNn and in temporal information processing was investigated electrophysiologically from mouse brain slices, in vitro, by analysing the spontaneous discharge and the response to square-, ramp- and sinusoid-like intracellular DC current injections in extracellular and whole-cell patch-clamp studies. We show that more than half of the recorded MVNn were responsive to ERG channel block (WAY-123,398, E4031), displaying an increase in spontaneous activity and discharge irregularity. The response to step and ramp current injection was also modified by ERG block showing a reduction of first spike latency, enhancement of discharge rate and reduction of the slow spike-frequency adaptation process. ERG channels influence the interspike slope without affecting the spike shape. Moreover, in response to sinusoid-like current, ERG channel block caused frequency-dependent gain enhancement and phase-lead shift. Taken together, the data demonstrate that ERG channels control the excitability of MVNn, their discharge regularity and probably their resonance properties.
NASA Astrophysics Data System (ADS)
Longoria, Raul Gilberto
An experimental apparatus has been developed which can be used to generate a general time-dependent planar flow across a cylinder. A mass of water enclosed with no free surface within a square cross-section tank and two spring pre-loaded pistons is oscillated using a hydraulic actuator. A circular cylinder is suspended horizontally in the tank by two X-Y force transducers used to simultaneously measure the total in-line and transverse forces. Fluid motion is measured using a differential pressure transducer for instantaneous acceleration and an LVDT for displacement. This investigation provides measurement of forces on cylinders subjected to planar fluid flow velocity with a time (and frequency) dependence which more accurately represent the random conditions encountered in a natural ocean environment. The use of the same apparatus for both sinusoidal and random experiments provides a quantified assessment of the applicability of sinusoidal planar oscillatory flow data in offshore structure design methods. The drag and inertia coefficients for a Morison equation representation of the inline force are presented for both sinusoidal and random flow. Comparison of the sinusoidal results is favorable with those of previous investigations. The results from random experiments illustrates the difference in the force mechanism by contrasting the force transfer coefficients for the inline and transverse forces. It is found that application of sinusoidal results to random hydrodynamic inline force prediction using the Morison equation wrongly weighs the drag and inertia components, and the transverse force is overpredicted. The use of random planar oscillatory flow in the laboratory, contrasted with sinusoidal planar oscillatory flow, quantifies the accepted belief that the force transfer coefficients from sinusoidal flow experiments are conservative for prediction of forces on cylindrical structures subjected to random sea waves and the ensuing forces. Further analysis of data is conducted in the frequency domain to illustrate models used for predicting the power spectral density of the inline force including a nonlinear describing function method. It is postulated that the large-scale vortex activity prominent in sinusoidal oscillatory flow is subdued in random flow conditions.
NASA Astrophysics Data System (ADS)
Berthon, Beatrice; Dansette, Pierre-Marc; Tanter, Mickaël; Pernot, Mathieu; Provost, Jean
2017-07-01
Direct imaging of the electrical activation of the heart is crucial to better understand and diagnose diseases linked to arrhythmias. This work presents an ultrafast acoustoelectric imaging (UAI) system for direct and non-invasive ultrafast mapping of propagating current densities using the acoustoelectric effect. Acoustoelectric imaging is based on the acoustoelectric effect, the modulation of the medium’s electrical impedance by a propagating ultrasonic wave. UAI triggers this effect with plane wave emissions to image current densities. An ultrasound research platform was fitted with electrodes connected to high common-mode rejection ratio amplifiers and sampled by up to 128 independent channels. The sequences developed allow for both real-time display of acoustoelectric maps and long ultrafast acquisition with fast off-line processing. The system was evaluated by injecting controlled currents into a saline pool via copper wire electrodes. Sensitivity to low current and low acoustic pressure were measured independently. Contrast and spatial resolution were measured for varying numbers of plane waves and compared to line per line acoustoelectric imaging with focused beams at equivalent peak pressure. Temporal resolution was assessed by measuring time-varying current densities associated with sinusoidal currents. Complex intensity distributions were also imaged in 3D. Electrical current densities were detected for injected currents as low as 0.56 mA. UAI outperformed conventional focused acoustoelectric imaging in terms of contrast and spatial resolution when using 3 and 13 plane waves or more, respectively. Neighboring sinusoidal currents with opposed phases were accurately imaged and separated. Time-varying currents were mapped and their frequency accurately measured for imaging frame rates up to 500 Hz. Finally, a 3D image of a complex intensity distribution was obtained. The results demonstrated the high sensitivity of the UAI system proposed. The plane wave based approach provides a highly flexible trade-off between frame rate, resolution and contrast. In conclusion, the UAI system shows promise for non-invasive, direct and accurate real-time imaging of electrical activation in vivo.
Jian, Jianbo; Zhang, Wenxue; Yang, Hao; Zhao, Xinyan; Xuan, Ruijiao; Li, Dongyue; Hu, Chunhong
2017-01-01
Capillarization of sinusoids and change of trabecular thickness are the main histologic features in hepatocellular carcinoma (HCC). Of particular interest are the three-dimensional (3D) visualization and quantitative evaluation of such alterations in the HCC progression. X-ray phase-contrast computed tomography (PCCT) is an emerging imaging method that provides excellent image contrast for soft tissues. This study aimed to explore the potential of in-line PCCT in microstructure imaging of capillarized sinusoids and trabecular structure in human HCC tissues and to quantitatively evaluate the alterations of those fine structures during the development of HCC. This project was designed as an ex vivo experimental study. The study was approved by the institutional review board, and informed consent was obtained from the patients. Eight human resected HCC tissue samples were imaged using in-line PCCT. After histologic processing, PCCT images and histopathologic data were matched. Fine structures in HCC tissues were revealed. Quantitative analyses of capillarized sinusoids (ie, percentage of sinusoidal area [PSA], sinusoidal volume) and trabecular structure (ie, trabecular thickness, surface-area-to-volume ratio [SA/V]) in low-grade (well or moderately differentiated) and high-grade (poorly differentiated) HCC groups were performed. Using PCCT, the alterations of capillarized sinusoids and trabecular structure were clearly observed in 3D geometry, which was confirmed by the corresponding histologic sections. The 3D qualitative analyses of sinusoids in the high-grade HCC group were significantly different (P < 0.05) in PSA (7.8 ± 2.5%) and sinusoidal volume (2.9 ± 0.6 × 10 7 µm 3 ) from those in the low-grade HCC group (PSA, 12.9 ± 2.2%; sinusoidal volume, 2.4 ± 0.3 × 10 7 µm 3 ). Moreover, the 3D quantitative evaluation of the trabecular structure in the high-grade HCC group showed a significant change (P < 0.05) in the trabecular thickness (87.8 ± 15.6 µm) and SA/V (2.2 ± 1.3 × 10 3 µm - 1 ) compared to the low-grade HCC group (trabecular thickness, 75.9 ± 7.1 µm; SA/V, 7.5 ± 1.3 × 10 3 µm - 1 ). This study provides insights into the 3D alterations of microstructures such as capillarized sinusoids and the trabecular structure at a micrometer level, which might allow for an improved understanding of the development of HCC. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Bottomside sinusoidal irregularities in the equatorial F region
NASA Technical Reports Server (NTRS)
Valladares, C. E.; Hanson, W. B.; Mcclure, J. P.; Cragin, B. L.
1983-01-01
By using the Ogo 6 satellite, McClure and Hanson (1973) have discovered sinusoidal irregularities in the equatorial F region ion number density. In the present investigation, a description is provided of the properties of a distinct category of sinusoidal irregularities found in equatorial data from the AE-C and AE-E satellites. The observed scale sizes vary from about 300 m to 3 km in the direction perpendicular to B, overlapping with and extending the range observed by using Ogo 6. Attention is given to low and high resolution data, a comparison with Huancayo ionograms, the confinement of 'bottomside sinusoidal' (BSS) irregularities essentially to the bottomside of the F layer, spectral characteristics, and BSS, scintillation, and ionosonde observations.
NASA Technical Reports Server (NTRS)
Ventrice, M. B.; Purdy, K. R.
1974-01-01
The response of a constant-temperature hot-wire anemometer to sinusoidal and distorted sinusoidal acoustic oscillations is examined. The output of the anemometer is dependent upon the Reynolds number of the flow over the wire. The response is a measure of the interaction between the anemometer output and the acoustic pressure in the neighborhood of the wire. It is an open-loop prediction of the characteristics of actual closed-loop operation of a system. If the open-loop response is large enough, unstable closed-loop operation is predicted. The study was motivated by a need to investigate the stability limits of liquid-propellant rockets when perturbed by pressure oscillations. The sinusoidal and distorted sinusoidal acoustic oscillations used for this study are the same as those characteristic of unstable rocket combustion. Qualitatively, the results are similar--the response of the system to pure sinusoidal acoustic vibration of the fluid surrounding the wire is small, even when the magnitude of the acoustic pressure is quite large; but the response can be increased by as much as an order of magnitude with respect to the sinusoidal case by the addition of distortion. The amplitude and phase of the distortion component, relative to the fundamental component, are the dominant factors in the increase in the response.
Gockel, Hedwig E.; Carlyon, Robert P.
2017-01-01
It was assessed whether Zwicker tones (ZTs) (an auditory afterimage produced by a band-stop noise) have a musical pitch. First (stage I), musically trained subjects adjusted the frequency, level, and decay time of an exponentially decaying diotic sinusoid to sound similar to the ZT they perceived following the presentation of diotic broadband noise, for various band-stop positions. Next (stage II), subjects adjusted a sinusoid in frequency and level so that its pitch was a specified musical interval below that of either a preceding ZT or a preceding sinusoid, and so that it was equally loud. For each subject the reference sinusoid corresponded to their adjusted sinusoid from stage I. Subjects selected appropriate frequency ratios for ZTs, although the standard deviations of the adjustments were larger for the ZTs than for the equally salient sinusoids by a factor of 1.0–2.2. Experiments with monaural stimuli led to similar results, although the pitch of the ZTs could differ for monaural and diotic presentation of the ZT-exciting noise. The results suggest that a weak musical pitch may exist in the absence of phase locking in the auditory nerve to the frequency corresponding to the pitch (or harmonics thereof) at the time of the percept. PMID:27794303
An Adaptive Filter for the Removal of Drifting Sinusoidal Noise Without a Reference.
Kelly, John W; Siewiorek, Daniel P; Smailagic, Asim; Wang, Wei
2016-01-01
This paper presents a method for filtering sinusoidal noise with a variable bandwidth filter that is capable of tracking a sinusoid's drifting frequency. The method, which is based on the adaptive noise canceling (ANC) technique, will be referred to here as the adaptive sinusoid canceler (ASC). The ASC eliminates sinusoidal contamination by tracking its frequency and achieving a narrower bandwidth than typical notch filters. The detected frequency is used to digitally generate an internal reference instead of relying on an external one as ANC filters typically do. The filter's bandwidth adjusts to achieve faster and more accurate convergence. In this paper, the focus of the discussion and the data is physiological signals, specifically electrocorticographic (ECoG) neural data contaminated with power line noise, but the presented technique could be applicable to other recordings as well. On simulated data, the ASC was able to reliably track the noise's frequency, properly adjust its bandwidth, and outperform comparative methods including standard notch filters and an adaptive line enhancer. These results were reinforced by visual results obtained from real ECoG data. The ASC showed that it could be an effective method for increasing signal to noise ratio in the presence of drifting sinusoidal noise, which is of significant interest for biomedical applications.
Frequency stabilization for multilocation optical FDM networks
NASA Astrophysics Data System (ADS)
Jiang, Quan; Kavehrad, Mohsen
1993-04-01
In a multi-location optical FDM network, the frequency of each user's transmitter can be offset-locked, through a Fabry-Perot, to an absolute frequency standard which is distributed to the users. To lock the local Fabry-Perot to the frequency standard, the standard has to be frequency-dithered by a sinusoidal signal and the sinusoidal reference has to be transmitted to the user location since the lock-in amplifier in the stabilization system requires the reference for synchronous detection. We proposed two solutions to avoid transmitting the reference. One uses an extraction circuit to obtain the sinusoidal signal from the incoming signal. A nonlinear circuit following the photodiode produces a strong second-order harmonic of the sinusoidal signal and a phase-locked loop is locked to it. The sinusoidal reference is obtained by a divide- by-2 circuit. The phase ambiguity (0 degree(s) or 180 degree(s)) is resolved by using a selection- circuit and an initial scan. The other method uses a pseudo-random sequence instead of a sinusoidal signal to dither the frequency standard and a surface-acoustic-wave (SAW) matched-filter instead of a lock-in amplifier to obtain the frequency error. The matched-filter serves as a correlator and does not require the dither reference.
Sarin, Hemant
2010-08-11
Much of our current understanding of microvascular permeability is based on the findings of classic experimental studies of blood capillary permeability to various-sized lipid-insoluble endogenous and non-endogenous macromolecules. According to the classic small pore theory of microvascular permeability, which was formulated on the basis of the findings of studies on the transcapillary flow rates of various-sized systemically or regionally perfused endogenous macromolecules, transcapillary exchange across the capillary wall takes place through a single population of small pores that are approximately 6 nm in diameter; whereas, according to the dual pore theory of microvascular permeability, which was formulated on the basis of the findings of studies on the accumulation of various-sized systemically or regionally perfused non-endogenous macromolecules in the locoregional tissue lymphatic drainages, transcapillary exchange across the capillary wall also takes place through a separate population of large pores, or capillary leaks, that are between 24 and 60 nm in diameter. The classification of blood capillary types on the basis of differences in the physiologic upper limits of pore size to transvascular flow highlights the differences in the transcapillary exchange routes for the transvascular transport of endogenous and non-endogenous macromolecules across the capillary walls of different blood capillary types. The findings and published data of studies on capillary wall ultrastructure and capillary microvascular permeability to lipid-insoluble endogenous and non-endogenous molecules from the 1950s to date were reviewed. In this study, the blood capillary types in different tissues and organs were classified on the basis of the physiologic upper limits of pore size to the transvascular flow of lipid-insoluble molecules. Blood capillaries were classified as non-sinusoidal or sinusoidal on the basis of capillary wall basement membrane layer continuity or lack thereof. Non-sinusoidal blood capillaries were further sub-classified as non-fenestrated or fenestrated based on the absence or presence of endothelial cells with fenestrations. The sinusoidal blood capillaries of the liver, myeloid (red) bone marrow, and spleen were sub-classified as reticuloendothelial or non-reticuloendothelial based on the phago-endocytic capacity of the endothelial cells. The physiologic upper limit of pore size for transvascular flow across capillary walls of non-sinusoidal non-fenestrated blood capillaries is less than 1 nm for those with interendothelial cell clefts lined with zona occludens junctions (i.e. brain and spinal cord), and approximately 5 nm for those with clefts lined with macula occludens junctions (i.e. skeletal muscle). The physiologic upper limit of pore size for transvascular flow across the capillary walls of non-sinusoidal fenestrated blood capillaries with diaphragmed fenestrae ranges between 6 and 12 nm (i.e. exocrine and endocrine glands); whereas, the physiologic upper limit of pore size for transvascular flow across the capillary walls of non-sinusoidal fenestrated capillaries with open 'non-diaphragmed' fenestrae is approximately 15 nm (kidney glomerulus). In the case of the sinusoidal reticuloendothelial blood capillaries of myeloid bone marrow, the transvascular transport of non-endogenous macromolecules larger than 5 nm into the bone marrow interstitial space takes place via reticuloendothelial cell-mediated phago-endocytosis and transvascular release, which is the case for systemic bone marrow imaging agents as large as 60 nm in diameter. The physiologic upper limit of pore size in the capillary walls of most non-sinusoidal blood capillaries to the transcapillary passage of lipid-insoluble endogenous and non-endogenous macromolecules ranges between 5 and 12 nm. Therefore, macromolecules larger than the physiologic upper limits of pore size in the non-sinusoidal blood capillary types generally do not accumulate within the respective tissue interstitial spaces and their lymphatic drainages. In the case of reticuloendothelial sinusoidal blood capillaries of myeloid bone marrow, however, non-endogenous macromolecules as large as 60 nm in diameter can distribute into the bone marrow interstitial space via the phago-endocytic route, and then subsequently accumulate in the locoregional lymphatic drainages of tissues following absorption into the lymphatic drainage of periosteal fibrous tissues, which is the lymphatic drainage of myeloid bone marrow. When the ultrastructural basis for transcapillary exchange across the capillary walls of different capillary types is viewed in this light, it becomes evident that the physiologic evidence for the existence of aqueous large pores ranging between 24 and 60 nm in diameter in the capillary walls of blood capillaries, is circumstantial, at best.
LYVE1 and PROX1 in the reconstruction of hepatic sinusoids after partial hepatectomy in mice.
Meng, F
2017-01-01
Revascularisation is crucial to liver regeneration after liver injury, but the process remains unclear. This study investigated changes in the levels and distribution of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1) and prospero homeobox protein 1 (PROX1) in liver tissue sections after partial hepatectomy in mice. Mice were subjected to partial hepatectomy. Control animals were sham-operated. From days 1 through 8, the remaining liver tissues were collected from 8 animals each day. Histology showed that after partial hepatectomy, the remaining liver tissue samples underwent initial degeneration and then hepatocyte proliferation and regeneration. Using immunohistochemical analysis, relative to the control a significantly higher number of vascular endothelial growth factor A (VEGFA)-positive hepatocytes was observed on days 4 and 5 after partial hepatectomy. LYVE1 was mainly present in the liver sinusoidal endothelial cells and the number of LYVE1-positive cells gradually increased with time. PROX1 was detected in some of the hepatocytes, but liver sinusoidal endothelial cells, artery, and vein were negative for PROX1 staining in the early stage after liver injury. The presence of PROX1 could be observed in some central veins as well as liver sinusoidal endothelial cells. Seven days after partial hepatectomy, colocalisation of PROX1 and LYVE1 was observed in liver sinusoidal endothelial cells and veins. This study revealed the dynamic process of revascularisation and hepatic sinusoid reconstruction during liver regeneration in response to liver injury in mice. PROX1 and LYVE1 may participate in this process and serve as biomarkers for identification of newly formed liver sinusoidal endothelial cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, J
2016-06-15
Purpose: Cavernous hemangioma of the liver (CHL) is the most common benign solid tumor of the liver. In this study, we quantitative assessment the different degrees of CHL from microscopic viewpoint by using in-line phase-contrast imaging CT (ILPCI-CT). Methods: The experiments were performed at x-ray imaging and biomedical application beamline (BL13W1) of Shanghai Synchrotron Radiation Facility (SSRF) in China. Three typical specimens at different stages, i.e., mild, moderate and severe human CHL were imaged using ILPCI-CT at 16keV without contrast agents. The 3D visualization of different degrees of CHL samples were presented using ILPCI-CT. Additionally, quantitative evaluation of the CHLmore » features, such as the range of hepatic sinusoid equivalent diameters in different degrees of CHL samples, the ratio of the hepatic sinusoid to the CHL tissue, were measured. Results: The planar image clearly displayed the dilated hepatic sinusoids in microns. There was no normal hepatic vascular found in the all CHL samples. Different stages of CHL samples were presented with vivid shapes and stereoscopic effects by using 3D visualization. The equivalent diameters of hepatic sinusoids in three degrees CHL were different. The equivalent diameters of the hepatic sinusoids in mild CHL, range from 60 to 120 µm. The equivalent diameters of the hepatic sinusoids in moderate CHL, range from 65 to 190 µm. The equivalent diameters of the hepatic sinusoids in severe CHL, range from 95 to 215 µm. The ratio of the hepatic sinusoid to the mild, moderate and severe CHL tissue were 3%, 16% and 21%, respectively. Conclusion: The results show that the high degree of sensitivity of the ILPCI-CT technique and demonstrate the feasibility of accurate visualization of different stage human CHL. ILPCI-CT may offers a potential use in non-invasive study and analysis of CHL.« less
Efficient swimming of a plunging elastic plate in a viscous fluid
NASA Astrophysics Data System (ADS)
Yeh, Peter; Alexeev, Alexander
2014-03-01
We use three dimensional computer simulations to examine the combined hydrodynamics and structural response of a plunging elastic plate submerged in a viscous fluid with Reynolds number of 250. The plate is actuated at the root with a prescribed vertical sinusoidal displacement and a zero slope (clamped) boundary condition. We explore the steady state swimming velocity and the associated input power as a function of driving frequency, added mass, and aspect ratio. We find a universal bending pattern independent of geometry and added mass that maximizes the distance traveled per unit applied work. This bending pattern is associated with minimizing center of mass oscillations normal to the direction of travel. Subsequently, the flow around the sides of the swimmer, which does not aid in propulsion, is minimized, thereby reducing viscous losses.
Real Time Phase Noise Meter Based on a Digital Signal Processor
NASA Technical Reports Server (NTRS)
Angrisani, Leopoldo; D'Arco, Mauro; Greenhall, Charles A.; Schiano Lo Morille, Rosario
2006-01-01
A digital signal-processing meter for phase noise measurement on sinusoidal signals is dealt with. It enlists a special hardware architecture, made up of a core digital signal processor connected to a data acquisition board, and takes advantage of a quadrature demodulation-based measurement scheme, already proposed by the authors. Thanks to an efficient measurement process and an optimized implementation of its fundamental stages, the proposed meter succeeds in exploiting all hardware resources in such an effective way as to gain high performance and real-time operation. For input frequencies up to some hundreds of kilohertz, the meter is capable both of updating phase noise power spectrum while seamlessly capturing the analyzed signal into its memory, and granting as good frequency resolution as few units of hertz.
Liberti, M; Paffi, A; Maggio, F; De Angelis, A; Apollonio, F; d'Inzeo, G
2009-01-01
A number of experimental investigations have evidenced the extraordinary sensitivity of neuronal cells to weak input stimulations, including electromagnetic (EM) fields. Moreover, it has been shown that biological noise, due to random channels gating, acts as a tuning factor in neuronal processing, according to the stochastic resonant (SR) paradigm. In this work the attention is focused on noise arising from the stochastic gating of ionic channels in a model of Ranvier node of acoustic fibers. The small number of channels gives rise to a high noise level, which is able to cause a spike train generation even in the absence of stimulations. A SR behavior has been observed in the model for the detection of sinusoidal signals at frequencies typical of the speech.
Non-parametric PCM to ADM conversion. [Pulse Code to Adaptive Delta Modulation
NASA Technical Reports Server (NTRS)
Locicero, J. L.; Schilling, D. L.
1977-01-01
An all-digital technique to convert pulse code modulated (PCM) signals into adaptive delta modulation (ADM) format is presented. The converter developed is shown to be independent of the statistical parameters of the encoded signal and can be constructed with only standard digital hardware. The structure of the converter is simple enough to be fabricated on a large scale integrated circuit where the advantages of reliability and cost can be optimized. A concise evaluation of this PCM to ADM translation technique is presented and several converters are simulated on a digital computer. A family of performance curves is given which displays the signal-to-noise ratio for sinusoidal test signals subjected to the conversion process, as a function of input signal power for several ratios of ADM rate to Nyquist rate.
A study of the dynamic tire properties over a range of tire constructions
NASA Technical Reports Server (NTRS)
Nybakken, G. H.; Dodge, R. N.; Clark, S. K.
1973-01-01
The dynamic properties of four model aircraft tires of various construction were evaluated experimentally and compared with available theory. The experimental investigation consisted of measuring the cornering force and the self-aligning torque developed by the tires undergoing sinusoidal steering inputs while operating on a small scale, road-wheel tire testing apparatus. The force and moment data from the different tires are compared with both finite- and point-contact patch string theory predictions. In general, agreement between finite contact patch theory and experimental observation is good. A modified string theory is also presented in which coefficients for cornering force and self-aligning torque are determined separately. This theory improves the correspondence between the experimental and analytical data, particularly on tires with relatively high self-aligning torques.
Advanced study of video signal processing in low signal to noise environments
NASA Technical Reports Server (NTRS)
Carden, F.; Henry, R.
1972-01-01
A nonlinear analysis of a multifilter phase-lockloop (MPLL) by using the method of harmonic balance is presented. The particular MPLL considered has a low-pass filter and a band-pass filter in parallel. An analytic expression for the relationship between the input signal phase deviation and the phase error is determined for sinusoidal FM in the absence of noise. The expression is used to determine bounds on the proper operating region for the MPLL and to investigate the jump phenomenon previously observed. From these results the proper modulation index, modulating frequency, etc. used for the design of a MPLL are determined. Data for the loop unlock boundary obtained from the theoretical expression are compared to data obtained from analog computer simulations of the MPLL.
Prognostic health monitoring in switch-mode power supplies with voltage regulation
NASA Technical Reports Server (NTRS)
Hofmeister, James P (Inventor); Judkins, Justin B (Inventor)
2009-01-01
The system includes a current injection device in electrical communication with the switch mode power supply. The current injection device is positioned to alter the initial, non-zero load current when activated. A prognostic control is in communication with the current injection device, controlling activation of the current injection device. A frequency detector is positioned to receive an output signal from the switch mode power supply and is able to count cycles in a sinusoidal wave within the output signal. An output device is in communication with the frequency detector. The output device outputs a result of the counted cycles, which are indicative of damage to an a remaining useful life of the switch mode power supply.
NASA Astrophysics Data System (ADS)
Yao, Atsushi; Sugimoto, Takaya; Odawara, Shunya; Fujisaki, Keisuke
2018-05-01
We report core loss properties of permanent magnet synchronous motors (PMSM) with amorphous magnetic materials (AMM) core under inverter and sinusoidal excitations. To discuss the core loss properties of AMM core, a comparison with non-oriented (NO) core is also performed. In addition, based on both experiments and numerical simulations, we estimate higher (time and space) harmonic components of the core losses under inverter and sinusoidal excitations. The core losses of PMSM are reduced by about 59% using AMM stator core instead of NO core under sinusoidal excitation. We show that the average decrease obtained by using AMM instead of NO in the stator core is about 94% in time harmonic components.
System and method to determine electric motor efficiency nonintrusively
Lu, Bin [Kenosha, WI; Habetler, Thomas G [Snellville, GA; Harley, Ronald G [Lawrenceville, GA
2011-08-30
A system and method for nonintrusively determining electric motor efficiency includes a processor programed to, while the motor is in operation, determine a plurality of stator input currents, electrical input data, a rotor speed, a value of stator resistance, and an efficiency of the motor based on the determined rotor speed, the value of stator resistance, the plurality of stator input currents, and the electrical input data. The determination of the rotor speed is based on one of the input power and the plurality of stator input currents. The determination of the value of the stator resistance is based on at least one of a horsepower rating and a combination of the plurality of stator input currents and the electrical input data. The electrical input data includes at least one of an input power and a plurality of stator input voltages.
Inverter ratio failure detector
NASA Technical Reports Server (NTRS)
Wagner, A. P.; Ebersole, T. J.; Andrews, R. E. (Inventor)
1974-01-01
A failure detector which detects the failure of a dc to ac inverter is disclosed. The inverter under failureless conditions is characterized by a known linear relationship of its input and output voltages and by a known linear relationship of its input and output currents. The detector includes circuitry which is responsive to the detector's input and output voltages and which provides a failure-indicating signal only when the monitored output voltage is less by a selected factor, than the expected output voltage for the monitored input voltage, based on the known voltages' relationship. Similarly, the detector includes circuitry which is responsive to the input and output currents and provides a failure-indicating signal only when the input current exceeds by a selected factor the expected input current for the monitored output current based on the known currents' relationship.
Three-dimensional eddy current solution of a polyphase machine test model (abstract)
NASA Astrophysics Data System (ADS)
Pahner, Uwe; Belmans, Ronnie; Ostovic, Vlado
1994-05-01
This abstract describes a three-dimensional (3D) finite element solution of a test model that has been reported in the literature. The model is a basis for calculating the current redistribution effects in the end windings of turbogenerators. The aim of the study is to see whether the analytical results of the test model can be found using a general purpose finite element package, thus indicating that the finite element model is accurate enough to treat real end winding problems. The real end winding problems cannot be solved analytically, as the geometry is far too complicated. The model consists of a polyphase coil set, containing 44 individual coils. This set generates a two pole mmf distribution on a cylindrical surface. The rotating field causes eddy currents to flow in the inner massive and conducting rotor. In the analytical solution a perfect sinusoidal mmf distribution is put forward. The finite element model contains 85824 tetrahedra and 16451 nodes. A complex single scalar potential representation is used in the nonconducting parts. The computation time required was 3 h and 42 min. The flux plots show that the field distribution is acceptable. Furthermore, the induced currents are calculated and compared with the values found from the analytical solution. The distribution of the eddy currents is very close to the distribution of the analytical solution. The most important results are the losses, both local and global. The value of the overall losses is less than 2% away from those of the analytical solution. Also the local distribution of the losses is at any given point less than 7% away from the analytical solution. The deviations of the results are acceptable and are partially due to the fact that the sinusoidal mmf distribution was not modeled perfectly in the finite element method.
A generic set of HF antennas for use with spherical model expansions
NASA Astrophysics Data System (ADS)
Katal, Nedim
1990-03-01
An antenna engineering handbook and database program has been constructed by engineers at the Lawrence Livermore National Laboratory (LLNL) using the Numerical Electromagnetics Code (NEC) antenna modeling program to prepare data performance on tactical field communication antennas used by the Army. It is desirable to have this information installed on a personnel computer (PC), using relational database techniques to select antennas based on performance criteria. This thesis obtains and analyses current distributions and radiation pattern data by using NEC for the following set of four (4) high frequency (HF) tactical generic antennas to be used in future spherical mode expansion work: a quarter wavelength basic whip, a one-wavelength horizontal quad Loop, a 564-foot longwire, and a sloping vee beam dipole. The results of this study show that the basic whip antenna provides good groundwave communication, but it has poor near vertical incident skywave (NVIS) performance. The current distribution has the characteristics of standing waves. The horizontal quad loop antenna is good for night vision imaging systems (NVIS) and medium range skywave communications. The current distribution is sinusoidal and continuous around the loop. The long wire antenna allows short, medium and long range communications and a standing wave current distribution occurs along the antenna axis due to non-termination. The sloping vee beam antenna favors long range communication and the current distribution is mainly that of travelling sinusoidal waves. Because of their well-known efficiency, the basic whip and quad loop can be used as reference standards for the spherical mode expansion work. The longwire and sloping vee beam antenna are unwieldy, but they are effective as base station antennas.
Adaptive Fuzzy Hysteresis Band Current Controller for Four-Wire Shunt Active Filter
NASA Astrophysics Data System (ADS)
Hamoudi, F.; Chaghi, A.; Amimeur, H.; Merabet, E.
2008-06-01
This paper presents an adaptive fuzzy hysteresis band current controller for four-wire shunt active power filters to eliminate harmonics and to compensate reactive power in distribution systems in order to keep currents at the point of common coupling sinusoidal and in phase with the corresponding voltage and the cancel neutral current. The conventional hysteresis band known for its robustness and its advantage in current controlled applications is adapted with a fuzzy logic controller to change the bandwidth according to the operating point in order to keep the frequency modulation at tolerable limits. The algorithm used to identify the reference currents is based on the synchronous reference frame theory (dqγ). Finally, simulation results using Matlab/Simulink are given to validate the proposed control.
NASA Astrophysics Data System (ADS)
Ghazavi, Atefeh; Cogan, Stuart F.
2018-06-01
Objective. With recent interest in kilohertz frequency electrical stimulation for nerve conduction block, understanding the electrochemistry and role of electrode material is important for assessing the safety of these stimulus protocols. Here we describe an approach to determining electrode polarization in response to continuous kilohertz frequency sinusoidal current waveforms. We have also investigated platinum, iridium oxide, and titanium nitride as coatings for high frequency electrodes. The current density distribution at 50 kHz at the electrode–electrolyte interface was also modeled to demonstrate the importance of the primary current distribution in supporting charge injection at high frequencies. Approach. We determined electrode polarization in response to sinusoidal currents with frequencies in the 1–50 kHz range and current amplitudes from 100 to 500 µA and 1–5 mA, depending on the electrode area. The current density distribution at the interface was modeled using the finite element method (FEM). Main results. At low frequencies, 1–5 kHz, polarization on the platinum electrode was significant, exceeding the water oxidation potential for high amplitude (5 mA) waveforms. At frequencies of 20 kHz or higher, the polarization was less than 300 mV from the electrode open circuit potential. The choice of electrode material did not play a significant role in electrode polarization at frequencies higher than 10 kHz. The current density distribution modeled at 50 kHz is non-uniform and this non-uniformity persists throughout charge delivery. Significance. At high frequencies (>10 kHz) electrode double-layer charging is the principal mechanism of charge-injection and selection of the electrode material has little effect on polarization, with platinum, iridium oxide, and titanium nitride exhibiting similar behavior. High frequency stimulation is dominated by a highly nonuniform primary current distribution.
NASA Technical Reports Server (NTRS)
Bush, G. A.; Perachio, A. A.; Angelaki, D. E.
1993-01-01
1. Extracellular recordings were made in and around the medial vestibular nuclei in decerebrated rats. Neurons were functionally identified according to their semicircular canal input on the basis of their responses to angular head rotations around the yaw, pitch, and roll head axes. Those cells responding to angular acceleration were classified as either horizontal semicircular canal-related (HC) or vertical semicircular canal-related (VC) neurons. The HC neurons were further characterized as either type I or type II, depending on the direction of rotation producing excitation. Cells that lacked a response to angular head acceleration, but exhibited sensitivity to a change in head position, were classified as purely otolith organ-related (OTO) neurons. All vestibular neurons were then tested for their response to sinusoidal linear translation in the horizontal head plane. 2. Convergence of macular and canal inputs onto central vestibular nuclei neurons occurred in 73% of the type I HC, 79% of the type II HC, and 86% of the VC neurons. Out of the 223 neurons identified as receiving macular input, 94 neurons were further studied, and their spatiotemporal response properties to sinusoidal stimulation with pure linear acceleration were quantified. Data were obtained from 33 type I HC, 22 type II HC, 22 VC, and 17 OTO neurons. 3. For each neuron the angle of the translational stimulus vector was varied by 15, 30, or 45 degrees increments in the horizontal head plane. In all tested neurons, a direction of maximum sensitivity was identified. An interesting difference among neurons was their response to translation along the direction perpendicular to that that produced the maximum response ("null" direction). For the majority of neurons tested, it was possible to evoke a nonzero response during stimulation along the null direction always had response phases that varied as a function of stimulus direction. 4. These spatiotemporal response properties were quantified in two independent ways. First, the data were evaluated on the basis of the traditional one-dimensional principle governed by the "cosine gain rule" and constant response phase at different stimulus orientations. Second, the response gain and phase values that were empirically determined for each orientation of the applied linear stimulus vector were fitted on the basis of a newly developed formalism that treats neuronal responses as exhibiting two-dimensional spatial sensitivity. Thus two response vectors were determined for each neuron on the basis of its response gain and phase at different stimulus directions in the horizontal head plane.(ABSTRACT TRUNCATED AT 400 WORDS).
Motion control of the rabbit ankle joint with a flat interface nerve electrode.
Park, Hyun-Joo; Durand, Dominique M
2015-12-01
A flat interface nerve electrode (FINE) has been shown to improve fascicular and subfascicular selectivity. A recently developed novel control algorithm for FINE was applied to motion control of the rabbit ankle. A 14-contact FINE was placed on the rabbit sciatic nerve (n = 8), and ankle joint motion was controlled for sinusoidal trajectories and filtered random trajectories. To this end, a real-time controller was implemented with a multiple-channel current stimulus isolator. The performance test results showed good tracking performance of rabbit ankle joint motion for filtered random trajectories and sinusoidal trajectories (0.5 Hz and 1.0 Hz) with <10% average root-mean-square (RMS) tracking error, whereas the average range of ankle joint motion was between -20.0 ± 9.3° and 18.1 ± 8.8°. The proposed control algorithm enables the use of a multiple-contact nerve electrode for motion trajectory tracking control of musculoskeletal systems. © 2015 Wiley Periodicals, Inc.
Phase compensation with fiber optic surface profile acquisition and reconstruction system
NASA Astrophysics Data System (ADS)
Bo, En; Duan, Fajie; Feng, Fan; Lv, Changrong; Xiao, Fu; Huang, Tingting
2015-02-01
A fiber-optic sinusoidal phase modulating (SPM) interferometer was proposed for the acquisition and reconstruction of three-dimensional (3-D) surface profile. Sinusoidal phase modulation was induced by controlling the injection current of light source. The surface profile was constructed on the basis of fringe projection. Fringe patterns are vulnerable to external disturbances such as mechanical vibration and temperature fluctuation, which cause phase drift in the interference signal and decrease measuring accuracy. A closed-loop feedback phase compensation system was built. In the subsystem, the initial phase of the interference signal, which was caused by the initial optical path difference between interference arms, could be demodulated using phase generated carrier (PGC) method and counted out using coordinated rotation digital computer (CORDIC) , then a compensation voltage was generated for the PZT driver. The bias value of external disturbances superimposed on fringe patterns could be reduced to about 50 mrad, and the phase stability for interference fringes was less than 6 mrad. The feasibility for real-time profile measurement has been verified.
Origins of Portal Hypertension in Nonalcoholic Fatty Liver Disease.
Baffy, Gyorgy
2018-03-01
Nonalcoholic fatty liver disease (NAFLD) advanced to cirrhosis is often complicated by clinically significant portal hypertension, which is primarily caused by increased intrahepatic vascular resistance. Liver fibrosis has been identified as a critical determinant of this process. However, there is evidence that portal venous pressure may begin to rise in the earliest stages of NAFLD when fibrosis is far less advanced or absent. The biological and clinical significance of these early changes in sinusoidal homeostasis remains unclear. Experimental and human observations indicate that sinusoidal space restriction due to hepatocellular lipid accumulation and ballooning may impair sinusoidal flow and generate shear stress, increasingly disrupting sinusoidal microcirculation. Sinusoidal endothelial cells, hepatic stellate cells, and Kupffer cells are key partners of hepatocytes affected by NAFLD in promoting endothelial dysfunction through enhanced contractility, capillarization, adhesion and entrapment of blood cells, extracellular matrix deposition, and neovascularization. These biomechanical and rheological changes are aggravated by a dysfunctional gut-liver axis and splanchnic vasoregulation, culminating in fibrosis and clinically significant portal hypertension. We may speculate that increased portal venous pressure is an essential element of the pathogenesis across the entire spectrum of NAFLD. Improved methods of noninvasive portal venous pressure monitoring will hopefully give new insights into the pathobiology of NAFLD and help efforts to identify patients at increased risk for adverse outcomes. In addition, novel drug candidates targeting reversible components of aberrant sinusoidal circulation may prevent progression in NAFLD.
Effect of renal nerve stimulation on responsiveness of the rat renal vasculature.
DiBona, Gerald F; Sawin, Linda L
2002-11-01
When the renal nerves are stimulated with sinusoidal stimuli over the frequency range 0.04-0.8 Hz, low (< or =0.4 Hz)- but not high (> or =0.4 Hz)-frequency oscillations appear in renal blood flow (RBF) and are proposed to increase responsiveness of the renal vasculature to stimuli. This hypothesis was tested in anesthetized rats in which RBF responses to intrarenal injection of norepinephrine and angiotensin and to reductions in renal arterial pressure (RAP) were determined during conventional rectangular pulse and sinusoidal renal nerve stimulation. Conventional rectangular pulse renal nerve stimulation decreased RBF at 2 Hz but not at 0.2 or 1.0 Hz. Sinusoidal renal nerve stimulation elicited low-frequency oscillations (< or =0.4 Hz) in RBF only when the basal carrier signal frequency produced renal vasoconstriction, i.e., at 5 Hz but not at 1 Hz. Regardless of whether renal vasoconstriction occurred, neither conventional rectangular pulse nor sinusoidal renal nerve stimulation altered renal vasoconstrictor responses to norepinephrine and angiotensin. The RBF response to reduction in RAP was altered by both conventional rectangular pulse and sinusoidal renal nerve stimulation only when renal vasoconstriction occurred: the decrease in RBF during reduced RAP was greater. Sinusoidal renal nerve stimulation with a renal vasoconstrictor carrier frequency results in a decrease in RBF with superimposed low-frequency oscillations. However, these low-frequency RBF oscillations do not alter renal vascular responsiveness to vasoconstrictor stimuli.
Chapple, W D
1997-09-01
Reflex activation of the ventral superficial muscles (VSM) in the abdomen of the hermit crab, Pagurus pollicarus, was studied using sinusoidal and stochastic longitudinal vibration of the muscle while recording the length and force of the muscle and the spike times of three exciter motoneurons. In the absence of vibration, the interspike interval histograms of the two larger motoneurons were bimodal; cutting sensory nerves containing most of the mechanoreceptor input removed the short interval peak in the histogram, indicating that the receptors are important in maintaining tonic firing. Vibration of the muscle evoked a reflex increase in motoneuron frequency that habituated after an initial peak but remained above control levels for the duration of stimulation. Motoneuron frequency increased with root mean square (rms) stimulus amplitude. Average stiffness during stimulation was about two times the stiffness of passive muscle. The reflex did not alter muscle dynamics. Estimated transfer functions were calculated from the fast Fourier transform of length and force signals. Coherence was >0.9 for the frequency range of 3-35 Hz. Stiffness magnitude gradually increased over this range in both reflex activated and passive muscle; phase was between 10 and 20 degrees. Reflex stiffness decreased with increasing stimulus amplitudes, but at larger amplitudes, this decrease was much less pronounced; in this range stiffness was regulated by the reflex. The sinusoidal frequency at which reflex bursts were elicited was approximately 6 Hz, consistent with previous measurements using ramp stretch. During reflex excitation, there was an increase in amplitude of the short interval peak in the interspike interval histogram; this was reduced when the majority of afferent pathways was removed. A phase histogram of motoneuron firing during sinusoidal vibration had a peak at approximately 110 ms, also suggesting that an important component of the reflex is via direct projections from the mechanoreceptors. These results are consistent with the hypothesis that a robust feedforward regulation of abdominal stiffness during continuous disturbances is achieved by mechanoreceptors signalling the absolute value of changing forces; habituation of the reflex, its high-threshold for low frequency disturbances and the activation kinetics of the muscle further modify reflex dynamics.
Zhao, Xue-hong; Fan, Xiao-li; Song, Xin-ai; Shi, Lei
2011-09-01
To investigate the effects of 100 Hz sinusoidal vibration on H reflex and M wave in rat soleus muscle following immobilization. The immobilization of rat soleus muscle was induced as a disuse muscle model, and 100 Hz sinusoidal vibration was generated by a vibrator and applied to the immobilized soleus muscle, then the changes of H reflex and M wave in muscle were observed after 14 d. Compared to control, after 14 d of immobilization M(max) in soleus muscle decreased (P<0.01), stimulus threshold and S(max) increased (P<0.01); Hmax and H(max)/M(max) decreased (P<0.05, S(max) increased (P<0.05). Compared to immobilized soleus muscle, after 14 d of immobilization with 100 Hz sinusoidal vibration, the M(max) increased(P<0.01), stimulus threshold and S(Mmax) decreased (P<0.05), H(max) (P<0.01) increased and H(max)/M(max) increased (P<0.05). 100 Hz sinusoidal vibration plays a significant antagonist role against the changes in H reflex and M wave in rat soleus muscle following immobilization.
Deep-etched sinusoidal polarizing beam splitter grating.
Feng, Jijun; Zhou, Changhe; Cao, Hongchao; Lv, Peng
2010-04-01
A sinusoidal-shaped fused-silica grating as a highly efficient polarizing beam splitter (PBS) is investigated based on the simplified modal method. The grating structure depends mainly on the ratio of groove depth to grating period and the ratio of incident wavelength to grating period. These ratios can be used as a guideline for the grating design at different wavelengths. A sinusoidal-groove PBS grating is designed at a wavelength of 1310 nm under Littrow mounting, and the transmitted TM and TE polarized waves are mainly diffracted into the zeroth order and the -1st order, respectively. The grating profile is optimized by using rigorous coupled-wave analysis. The designed PBS grating is highly efficient (>95.98%) over the O-band wavelength range (1260-1360 nm) for both TE and TM polarizations. The sinusoidal grating can exhibit higher diffraction efficiency, larger extinction ratio, and less reflection loss than the rectangular-groove PBS grating. By applying wet etching technology on the rectangular grating, which was manufactured by holographic recording and inductively coupled plasma etching technology, the sinusoidal grating can be approximately fabricated. Experimental results are in agreement with theoretical values.
Yang, Jun; Fan, Shangchun; Li, Cheng; Guo, Zhanshe; Li, Bo; Shi, Bo
2016-12-01
A new method with laser interferometry is used to enhance the traceability for sinusoidal pressure calibration in water. The laser vibrometer measures the dynamic pressure based on the acousto-optic effect. The relation of the refractive index of water and the optical path length with the pressure's change is built based on the Lorentz-Lorenz equation, and the conversion coefficients are tested by static calibration in situ. A device with a piezoelectric transducer and resonant pressure pipe with water is set up to generate sinusoidal pressure up to 20 kHz. With the conversion coefficients, the reference sinusoidal pressure is measured by the laser interferometer for pressure sensors' dynamic calibration. The experiment results show that under 10 kHz, the measurement results between the laser vibrometer and a piezoelectric sensor are in basic agreement and indicate that this new method and its measurement system are feasible in sinusoidal pressure calibration. Some disturbing components including small amplitude, temperature change, pressure maldistribution, and glass windows' vibration are also analyzed, especially for the dynamic calibrations above 10 kHz.
Lim, Ji-Hey; McCullen, Seth D; Piedrahita, Jorge A; Loboa, Elizabeth G; Olby, Natasha J
2013-10-01
Application of sinusoidal electric fields (EFs) has been observed to affect cellular processes, including alignment, proliferation, and differentiation. In the present study, we applied low-frequency alternating current (AC) EFs to porcine neural progenitor cells (pNPCs) and investigated the effects on cell patterning, proliferation, and differentiation. pNPCs were grown directly on interdigitated electrodes (IDEs) localizing the EFs to a region accessible visually for fluorescence-based assays. Cultures of pNPCs were exposed to EFs (1 V/cm) of 1 Hz, 10 Hz, and 50 Hz for 3, 7, and 14 days and compared to control cultures. Immunocytochemistry was performed to evaluate the expression of neural markers. pNPCs grew uniformly with no evidence of alignment to the EFs and no change in cell numbers when compared with controls. Nestin expression was shown in all groups at 3 and 7 days, but not at 14 days. NG2 expression was low in all groups. Co-expression of glial fibrillary acidic protein (GFAP) and TUJ1 was significantly higher in the cultures exposed to 10- and 50-Hz EFs than the controls. In summary, sinusoidal AC EFs via IDEs did not alter the alignment and proliferation of pNPCs, but higher frequency stimulation appeared to delay differentiation into mature astrocytes.
Langdon, Angela J; Breakspear, Michael; Coombes, Stephen
2012-12-01
The minimal integrate-and-fire-or-burst neuron model succinctly describes both tonic firing and postinhibitory rebound bursting of thalamocortical cells in the sensory relay. Networks of integrate-and-fire-or-burst (IFB) neurons with slow inhibitory synaptic interactions have been shown to support stable rhythmic states, including globally synchronous and cluster oscillations, in which network-mediated inhibition cyclically generates bursting in coherent subgroups of neurons. In this paper, we introduce a reduced IFB neuronal population model to study synchronization of inhibition-mediated oscillatory bursting states to periodic excitatory input. Using numeric methods, we demonstrate the existence and stability of 1:1 phase-locked bursting oscillations in the sinusoidally forced IFB neuronal population model. Phase locking is shown to arise when periodic excitation is sufficient to pace the onset of bursting in an IFB cluster without counteracting the inhibitory interactions necessary for burst generation. Phase-locked bursting states are thus found to destabilize when periodic excitation increases in strength or frequency. Further study of the IFB neuronal population model with pulse-like periodic excitatory input illustrates that this synchronization mechanism generalizes to a broad range of n:m phase-locked bursting states across both globally synchronous and clustered oscillatory regimes.
NASA Technical Reports Server (NTRS)
Tessarzik, J. M.; Chiang, T.; Badgley, R. H.
1973-01-01
The random vibration response of a gas bearing rotor support system has been experimentally and analytically investigated in the amplitude and frequency domains. The NASA Brayton Rotating Unit (BRU), a 36,000 rpm, 10 KWe turbogenerator had previously been subjected in the laboratory to external random vibrations, and the response data recorded on magnetic tape. This data has now been experimentally analyzed for amplitude distribution and magnetic tape. This data has now been experimentally analyzed for amplitude distribution and frequency content. The results of the power spectral density analysis indicate strong vibration responses for the major rotor-bearing system components at frequencies which correspond closely to their resonant frequencies obtained under periodic vibration testing. The results of amplitude analysis indicate an increasing shift towards non-Gaussian distributions as the input level of external vibrations is raised. Analysis of axial random vibration response of the BRU was performed by using a linear three-mass model. Power spectral densities, the root-mean-square value of the thrust bearing surface contact were calculated for specified input random excitation.
Fundamental Principles of Tremor Propagation in the Upper Limb.
Davidson, Andrew D; Charles, Steven K
2017-04-01
Although tremor is the most common movement disorder, there exist few effective tremor-suppressing devices, in part because the characteristics of tremor throughout the upper limb are unknown. To clarify, optimally suppressing tremor requires a knowledge of the mechanical origin, propagation, and distribution of tremor throughout the upper limb. Here we present the first systematic investigation of how tremor propagates between the shoulder, elbow, forearm, and wrist. We simulated tremor propagation using a linear, time-invariant, lumped-parameter model relating joint torques and the resulting joint displacements. The model focused on the seven main degrees of freedom from the shoulder to the wrist and included coupled joint inertia, damping, and stiffness. We deliberately implemented a simple model to focus first on the most basic effects. Simulating tremorogenic joint torque as a sinusoidal input, we used the model to establish fundamental principles describing how input parameters (torque location and frequency) and joint impedance (inertia, damping, and stiffness) affect tremor propagation. We expect that the methods and principles presented here will serve as the groundwork for future refining studies to understand the origin, propagation, and distribution of tremor throughout the upper limb in order to enable the future development of optimal tremor-suppressing devices.
Fundamental Principles of Tremor Propagation in the Upper Limb
Davidson, Andrew D.; Charles, Steven K.
2017-01-01
Although tremor is the most common movement disorder, there exist few effective tremor-suppressing devices, in part because the characteristics of tremor throughout the upper limb are unknown. To clarify, optimally suppressing tremor requires a knowledge of the mechanical origin, propagation, and distribution of tremor throughout the upper limb. Here we present the first systematic investigation of how tremor propagates between the shoulder, elbow, forearm, and wrist. We simulated tremor propagation using a linear, time-invariant, lumped-parameter model relating joint torques and the resulting joint displacements. The model focused on the seven main degrees of freedom from the shoulder to the wrist and included coupled joint inertia, damping, and stiffness. We deliberately implemented a simple model to focus first on the most basic effects. Simulating tremorogenic joint torque as a sinusoidal input, we used the model to establish fundamental principles describing how input parameters (torque location and frequency) and joint impedance (inertia, damping, and stiffness) affect tremor propagation. We expect that the methods and principles presented here will serve as the groundwork for future refining studies to understand the origin, propagation, and distribution of tremor throughout the upper limb in order to enable the future development of optimal tremor-suppressing devices. PMID:27957608
Orientation tuning of binocular summation: a comparison of colour to achromatic contrast
Gheiratmand, Mina; Cherniawsky, Avital S.; Mullen, Kathy T.
2016-01-01
A key function of the primary visual cortex is to combine the input from the two eyes into a unified binocular percept. At low, near threshold, contrasts a process of summation occurs if the visual inputs from the two eyes are similar. Here we measure the orientation tuning of binocular summation for chromatic and equivalent achromatic contrast. We derive estimates of orientation tuning by measuring binocular summation as a function of the orientation difference between two sinusoidal gratings presented dichoptically to different eyes. We then use a model to estimate the orientation bandwidth of the neural detectors underlying the binocular combination. We find that orientation bandwidths are similar for chromatic and achromatic stimuli at both low (0.375 c/deg) and mid (1.5 c/deg) spatial frequencies, with an overall average of 29 ± 3 degs (HWHH, s.e.m). This effect occurs despite the overall greater binocular summation found for the low spatial frequency chromatic stimuli. These results suggest that similar, oriented processes underlie both chromatic and achromatic binocular contrast combination. The non-oriented detection process found in colour vision at low spatial frequencies under monocular viewing is not evident at the binocular combination stage. PMID:27168119
Pulsatile Flow and Gas Transport of Blood over an Array of Cylinders
NASA Astrophysics Data System (ADS)
Chan, Kit Yan
2005-11-01
In the artificial lung, blood passes through an array of micro-fibers and the gas transfer is strongly dependent on the flow field. The blood flow is unsteady and pulsatile. We have numerically simulated pulsatile flow and gas transfer of blood (modeled as a Casson fluid) over arrays of cylindrical micro-fibers. Oxygen and carbon dioxide are assumed to be in local equilibrium with hemoglobin in blood; and the carbon dioxide facilitated oxygen transport is incorporated into the model by allowing the coupling of carbon dioxide partial pressure and oxygen saturation. The pulsatile flow inputs considered are the sinusoidal and the cardiac waveforms. The squared and staggered arrays of arrangement of the cylinders are considered in this study. Gas transport can be enhanced by: increasing the oscillation frequency; increasing the Reynolds number; increasing the oscillation amplitude; decreasing the void fraction; the use of the cardiac pulsatile input. The overall gas transport is greatly enhanced by the presence of hemoglobin in blood even though the non-Newtonian effect of blood tends to decrease the size and strength of vortices. The pressure drop is also presented as it is an important design parameter confronting the heart.
Comparison of System Identification Techniques for the Hydraulic Manipulator Test Bed (HMTB)
NASA Technical Reports Server (NTRS)
Morris, A. Terry
1996-01-01
In this thesis linear, dynamic, multivariable state-space models for three joints of the ground-based Hydraulic Manipulator Test Bed (HMTB) are identified. HMTB, housed at the NASA Langley Research Center, is a ground-based version of the Dexterous Orbital Servicing System (DOSS), a representative space station manipulator. The dynamic models of the HMTB manipulator will first be estimated by applying nonparametric identification methods to determine each joint's response characteristics using various input excitations. These excitations include sum of sinusoids, pseudorandom binary sequences (PRBS), bipolar ramping pulses, and chirp input signals. Next, two different parametric system identification techniques will be applied to identify the best dynamical description of the joints. The manipulator is localized about a representative space station orbital replacement unit (ORU) task allowing the use of linear system identification methods. Comparisons, observations, and results of both parametric system identification techniques are discussed. The thesis concludes by proposing a model reference control system to aid in astronaut ground tests. This approach would allow the identified models to mimic on-orbit dynamic characteristics of the actual flight manipulator thus providing astronauts with realistic on-orbit responses to perform space station tasks in a ground-based environment.
A Single-Phase Embedded Z-Source DC-AC Inverter
Kim, Se-Jin; Lim, Young-Cheol
2014-01-01
In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively. PMID:25133241
A single-phase embedded Z-source DC-AC inverter.
Kim, Se-Jin; Lim, Young-Cheol
2014-01-01
In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively.
Electrophysiology of pumpkin seeds: Memristors in vivo
Volkov, Alexander G.; Nyasani, Eunice K.; Tuckett, Clayton; Greeman, Esther A.; Markin, Vladislav S.
2016-01-01
ABSTRACT Leon Chua, the discoverer of a memristor, theoretically predicted that voltage gated ion channels can be memristors. We recently found memristors in different plants such as the Venus flytrap, Mimosa pudica, Aloe vera, apple fruits, and in potato tubers. There are no publications in literature about the existence of memristors in seeds. The goal of this work was to discover if pumpkin seeds might have memristors. We selected Cucurbita pepo L., cv. Cinderella, Cucurbita maxima L. cv Warty Goblin, and Cucurbita maxima L., cv. Jarrahdale seeds for this analysis. In these seeds, we found the presence of resistors with memory. The analysis was based on cyclic voltammetry where a memristor should manifest itself as a nonlinear two-terminal electrical element, which exhibits a pinched hysteresis loop on a current-voltage plane for any bipolar cyclic voltage input signal. Dry dormant pumpkin seeds have very high electrical resistance without memristive properties. The electrostimulation by bipolar sinusoidal or triangular periodic waves induces electrical responses in imbibed pumpkin seeds with fingerprints of memristors. Tetraethylammonium chloride, an inhibitor of voltage gated K+ channels, transforms a memristor to a resistor in pumpkin seeds. NPPB (5-Nitro-2-(3-phenylpropylamino)benzoic acid) inhibits the memristive properties of imbibed pumpkin seeds. The discovery of memristors in pumpkin seeds creates a new direction in the understanding of electrophysiological phenomena in seeds. PMID:26926652
Design of power electronics for TVC EMA systems
NASA Technical Reports Server (NTRS)
Nelms, R. Mark
1993-01-01
The Composite Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently developing a class of electromechanical actuators (EMA's) for use in space transportation applications such as thrust vector control (TVC) and propellant control valves (PCV). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 volts. MSFC has selected the brushless dc motor for implementation in EMA's. This report presents the results of an investigation into the applicability of two new technologies, MOS-controlled thyristors (MCT's) and pulse density modulation (PDM), to the control of brushless dc motors in EMA systems. MCT's are new power semiconductor devices, which combine the high voltage and current capabilities of conventional thyristors and the low gate drive requirements of metal oxide semiconductor field effect transistors (MOSFET's). The commanded signals in a PDM system are synthesized using a series of sinusoidal pulses instead of a series of square pulses as in a pulse width modulation (PWM) system. A resonant dc link inverter is employed to generate the sinusoidal pulses in the PDM system. This inverter permits zero-voltage switching of all semiconductors which reduces switching losses and switching stresses. The objectives of this project are to develop and validate an analytical model of the MCT device when used in high power motor control applications and to design, fabricate, and test a prototype electronic circuit employing both MCT and PDM technology for controlling a brushless dc motor.
van den Bos, R A J M; Sobota, A; Manders, F; Kroesen, G M W
2013-04-01
To investigate the cold and hot re-ignition properties of High Intensity Discharge (HID) lamps in more detail an automated setup was designed in such a way that HID lamps of various sizes and under different background pressures can be tested. The HID lamps are ignited with a ramped sinusoidal voltage signal with frequencies between 60 and 220 kHz and with amplitude up to 7.5 kV. Some initial results of voltage and current measurements on a commercially available HID lamp during hot and cold re-ignition are presented.
Formation of current singularity in a topologically constrained plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yao; Huang, Yi-Min; Qin, Hong
2016-02-01
Recently a variational integrator for ideal magnetohydrodynamics in Lagrangian labeling has been developed. Its built-in frozen-in equation makes it optimal for studying current sheet formation. We use this scheme to study the Hahm-Kulsrud-Taylor problem, which considers the response of a 2D plasma magnetized by a sheared field under sinusoidal boundary forcing. We obtain an equilibrium solution that preserves the magnetic topology of the initial field exactly, with a fluid mapping that is non-differentiable. Unlike previous studies that examine the current density output, we identify a singular current sheet from the fluid mapping. These results are benchmarked with a constrained Grad-Shafranovmore » solver. The same signature of current singularity can be found in other cases with more complex magnetic topologies.« less
The Integrity bare-metal stent made by continuous sinusoid technology.
Turco, Mark A
2011-05-01
The Integrity Coronary Stent System (Medtronic Vascular, CA, USA) is a low-profile, open-cell, cobalt-chromium-alloy advanced bare-metal iteration of the well-known Driver/Micro-Driver Coronary Stent System (Medtronic Vascular). The Integrity stent is made with a process called continuous sinusoid technology. This process allows stent construction via wrapping a single thin strand of wire around a mandrel in a sinusoid configuration, with laser fusion of adjacent crowns. The wire-forming process and fusion pattern provide the stent with a continuous preferential bending plane, intended to allow easier access to, and smoother tracking within, distal and tortuous vessels while radial strength is maintained. Continuous sinusoid technology represents innovation in the design of stent platforms and will provide a future stent platform for newer technology, including drug-eluting stent platforms, drug-filled stents and core wire stents.
NASA Technical Reports Server (NTRS)
Anderson, D. E., Jr.; Meier, R. R.; Hodges, R. R., Jr.; Tinsley, B. A.
1987-01-01
The H Balmer alpha nightglow is investigated by using Monte Carlo models of asymmetric geocoronal atomic hydrogen distributions as input to a radiative transfer model of solar Lyman-beta radiation in the thermosphere and atmosphere. It is shown that it is essential to include multiple scattering of Lyman-beta radiation in the interpretation of Balmer alpha airglow data. Observations of diurnal variation in the Balmer alpha airglow showing slightly greater intensities in the morning relative to evening are consistent with theory. No evidence is found for anything other than a single sinusoidal diurnal variation of exobase density. Dramatic changes in effective temperature derived from the observed Balmer alpha line profiles are expected on the basis of changing illumination conditions in the thermosphere and exosphere as different regions of the sky are scanned.
Energy harvesting from human walking to power biomedical devices using oscillating generation.
Montoya, Jose A; Mariscal, Dulce M; Romero, Edwar
2016-08-01
This work summarizes the energy generation limits from walking employing a pendulum-based generation system. Self-winding wristwatches have exploited successfully this energy input technique for decades. Pendulum-based planar devices use the rotation to produce energy for inertial generators. Then the oscillations of body motion during locomotion present an opportunity to extract kinetic energy from planar generators. The sinusoidal motion of the center of gravity of the body, on the sagittal and frontal planes, and the limbs swinging are compliant with oscillating devices. Portable biomedical devices can extract energy from everyday walking to extend battery life or decrease battery size. Computer simulations suggest energy availability of 0.05-1.2 mJ on the chest, 0.5-2.5 mJ on the hip and 0.5-41 mJ on the elbow from walking.
Electric sail space flight dynamics and controls
NASA Astrophysics Data System (ADS)
Montalvo, Carlos; Wiegmann, Bruce
2018-07-01
This paper seeks to investigate the space flight dynamics of a rotating barbell Electric Sail (E-Sail). This E-Sail contains two 6U CubeSats connected to 8 km tethers joined at a central hub. The central hub is designed to be an insulator so that each tether can have differing voltages. An electron gun positively charges each tether which interacts with the solar wind to produce acceleration. If the voltage on each tether is different, the trajectory of the system can be altered. Flapping modes and tension spikes are found during many of these maneuvers and care must be taken to mitigate the magnitude of these oscillations. Using sinusoidal voltage inputs, it is possible to control the trajectory of this two-body E-Sail and propel the system to Near-Earth-Objects or even deep space.
Computer program for thin-wire structures in a homogeneous conducting medium
NASA Technical Reports Server (NTRS)
Richmond, J. H.
1974-01-01
A computer program is presented for thin-wire antennas and scatters in a homogeneous conducting medium. The anaylsis is performed in the real or complex frequency domain. The program handles insulated and bare wires with finite conductivity and lumped loads. The output data includes the current distribution, impedance, radiation efficiency, gain, absorption cross section, scattering cross section, echo area and the polarization scattering matrix. The program uses sinusoidal bases and Galerkin's method.
Efficiency enhancement of a self-propelled pitching profile using non-sinusoidal trajectories
NASA Astrophysics Data System (ADS)
Mekadem, M.; Chihani, E.; Oualli, H.; Hanchi, S.; Bouabdallah, A.; Gad-El-Hak, M.
2017-11-01
A symmetrical profile is subjected to non-sinusoidal pitching motion. The airfoil has a chord length c = 0.006 m and a semi-circular leading edge with a diameter of D = 0.001 m. The extrados and intrados are two straight lines that intersect at a tapered trailing edge, and the pitching pivot point is positioned at the leading edge. The pitching frequency is in the range of 1 <= f <= 190 Hz, while the tangential amplitude of the flapping trailing edge varies from 18% to 114% of the foil cord. To improve the airfoil propulsive performance, two-dimensional numerical simulations are implemented on FLUENT. The Reynolds number based upon the maximum profile thickness D varies in the range of 35 <= Re <= 210 , which matches insect's Reynolds numbers. The foil movement is executed using the dynamic mesh technique and a user defined function (UDF). The adopted mesh has 70,445 nodes with 5,1960 quadrilateral cells. The results are in good agreement with prior experiments, and, compared to sinusoidal oscillations, show that non-sinusoidal flapping trajectories lead to advancing velocity increase of 550%. Additionally, if improved propulsive efficiency is sought, non-sinusoidal flapping lead to better thrust.
Annual variation in the atmospheric radon concentration in Japan.
Kobayashi, Yuka; Yasuoka, Yumi; Omori, Yasutaka; Nagahama, Hiroyuki; Sanada, Tetsuya; Muto, Jun; Suzuki, Toshiyuki; Homma, Yoshimi; Ihara, Hayato; Kubota, Kazuhito; Mukai, Takahiro
2015-08-01
Anomalous atmospheric variations in radon related to earthquakes have been observed in hourly exhaust-monitoring data from radioisotope institutes in Japan. The extraction of seismic anomalous radon variations would be greatly aided by understanding the normal pattern of variation in radon concentrations. Using atmospheric daily minimum radon concentration data from five sampling sites, we show that a sinusoidal regression curve can be fitted to the data. In addition, we identify areas where the atmospheric radon variation is significantly affected by the variation in atmospheric turbulence and the onshore-offshore pattern of Asian monsoons. Furthermore, by comparing the sinusoidal regression curve for the normal annual (seasonal) variations at the five sites to the sinusoidal regression curve for a previously published dataset of radon values at the five Japanese prefectures, we can estimate the normal annual variation pattern. By fitting sinusoidal regression curves to the previously published dataset containing sites in all Japanese prefectures, we find that 72% of the Japanese prefectures satisfy the requirements of the sinusoidal regression curve pattern. Using the normal annual variation pattern of atmospheric daily minimum radon concentration data, these prefectures are suitable areas for obtaining anomalous radon variations related to earthquakes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Estimating Aquifer Properties Using Sinusoidal Pumping Tests
NASA Astrophysics Data System (ADS)
Rasmussen, T. C.; Haborak, K. G.; Young, M. H.
2001-12-01
We develop the theoretical and applied framework for using sinusoidal pumping tests to estimate aquifer properties for confined, leaky, and partially penetrating conditions. The framework 1) derives analytical solutions for three boundary conditions suitable for many practical applications, 2) validates the analytical solutions against a finite element model, 3) establishes a protocol for conducting sinusoidal pumping tests, and 4) estimates aquifer hydraulic parameters based on the analytical solutions. The analytical solutions to sinusoidal stimuli in radial coordinates are derived for boundary value problems that are analogous to the Theis (1935) confined aquifer solution, the Hantush and Jacob (1955) leaky aquifer solution, and the Hantush (1964) partially penetrated confined aquifer solution. The analytical solutions compare favorably to a finite-element solution of a simulated flow domain, except in the region immediately adjacent to the pumping well where the implicit assumption of zero borehole radius is violated. The procedure is demonstrated in one unconfined and two confined aquifer units near the General Separations Area at the Savannah River Site, a federal nuclear facility located in South Carolina. Aquifer hydraulic parameters estimated using this framework provide independent confirmation of parameters obtained from conventional aquifer tests. The sinusoidal approach also resulted in the elimination of investigation-derived wastes.
Comparison between the water activation effects by pulsed and sinusoidal helium plasma jets
NASA Astrophysics Data System (ADS)
Xu, Han; Liu, Dingxin; Xia, Wenjie; Chen, Chen; Wang, Weitao; Liu, Zhijie; Wang, Xiaohua; Kong, Michael G.
2018-01-01
Comparisons between pulsed and sinusoidal plasma jets have been extensively reported for the discharge characteristics and gaseous reactive species, but rarely for the aqueous reactive species in water solutions treated by the two types of plasma jets. This motivates us to compare the concentrations of aqueous reactive species induced by a pulsed and a sinusoidal plasma jet, since it is widely reported that these aqueous reactive species play a crucial role in various plasma biomedical applications. Experimental results show that the aqueous H2O2, OH/O2-, and O2-/ONOO- induced by the pulsed plasma jet have higher concentrations, and the proportional difference increases with the discharge power. However, the emission intensities of OH(A) and O(3p5P) are higher for the sinusoidal plasma jet, which may be attributed to its higher gas temperature since more water vapor could participate in the plasma. In addition, the efficiency of bacterial inactivation induced by the pulsed plasma jet is higher than that for the sinusoidal plasma jet, in accordance with the concentration relation of aqueous reactive species for the two types of plasma jets.
Characterization of relief printing
NASA Astrophysics Data System (ADS)
Liu, Xing; Chen, Lin; Ortiz-Segovia, Maria-Valezzka; Ferwerda, James; Allebach, Jan
2014-03-01
Relief printing technology developed by Océ allows the superposition of several layers of colorant on different types of media which creates a variation of the surface height defined by the input to the printer. Evaluating the reproduction accuracy of distinct surface characteristics is of great importance to the application of the relief printing system. Therefore, it is necessary to develop quality metrics to evaluate the relief process. In this paper, we focus on the third dimension of relief printing, i.e. height information. To achieve this goal, we define metrics and develop models that aim to evaluate relief prints in two aspects: overall fidelity and surface finish. To characterize the overall fidelity, three metrics are calculated: Modulation Transfer Function (MTF), difference and root-mean-squared error (RMSE) between the input height map and scanned height map, and print surface angle accuracy. For the surface finish property, we measure the surface roughness, generate surface normal maps and develop a light reflection model that serves as a simulation of the differences between ideal prints and real prints that may be perceived by human observers. Three sets of test targets are designed and printed by the Océ relief printer prototypes for the calculation of the above metrics: (i) twisted target, (ii) sinusoidal wave target, and (iii) ramp target. The results provide quantitative evaluations of the printing quality in the third dimension, and demonstrate that the height of relief prints is reproduced accurately with respect to the input design. The factors that affect the printing quality include: printing direction, frequency and amplitude of the input signal, shape of relief prints. Besides the above factors, there are two additional aspects that influence the viewing experience of relief prints: lighting condition and viewing angle.
Can one ``Hear'' the aggregation state of a granular system?
NASA Astrophysics Data System (ADS)
Kruelle, Christof A.; Sánchez, Almudena García
2013-06-01
If an ensemble of macroscopic particles is mechanically agitated the constant energy input is dissipated into the system by multiple inelastic collisions. As a result, the granular material can exhibit, depending on the magnitude of agitation, several physical states - like a gaseous phase for high energy input or a condensed state for low agitation. Here we introduce a new method for quantifying the acoustical response of the granular system. Our experimental system consists of a monodisperse packing of glass beads with a free upper surface, which is confined inside a cylindrical container. An electro-mechanical shaker exerts a sinusoidal vertical vibration at normalized accelerations well above the fluidization threshold for a monolayer of particles. By increasing the number of beads the granular gas suddenly collapses if a critical threshold is exceeded. The transition can be detected easily with a microphone connected to the soundcard of a PC. From the recorded audio track a FFT is calculated in real-time. Depending on either the number of particles at a fixed acceleration or the amount of energy input for a given number of particles, the resulting rattling noise exhibits a power spectrum with either the dominating (shaker) frequency plus higher harmonics for a granular crystal or a high-frequency broad-band noise for a granular gas, respectively. Our new method demonstrates that it is possible to quantify analytically the subjective audio impressions of a careful listener and thus to distinguish easily between different aggregation states of an excited granular system.
Wang, Le; Devore, Sasha; Delgutte, Bertrand
2013-01-01
Human listeners are sensitive to interaural time differences (ITDs) in the envelopes of sounds, which can serve as a cue for sound localization. Many high-frequency neurons in the mammalian inferior colliculus (IC) are sensitive to envelope-ITDs of sinusoidally amplitude-modulated (SAM) sounds. Typically, envelope-ITD-sensitive IC neurons exhibit either peak-type sensitivity, discharging maximally at the same delay across frequencies, or trough-type sensitivity, discharging minimally at the same delay across frequencies, consistent with responses observed at the primary site of binaural interaction in the medial and lateral superior olives (MSO and LSO), respectively. However, some high-frequency IC neurons exhibit dual types of envelope-ITD sensitivity in their responses to SAM tones, that is, they exhibit peak-type sensitivity at some modulation frequencies and trough-type sensitivity at other frequencies. Here we show that high-frequency IC neurons in the unanesthetized rabbit can also exhibit dual types of envelope-ITD sensitivity in their responses to SAM noise. Such complex responses to SAM stimuli could be achieved by convergent inputs from MSO and LSO onto single IC neurons. We test this hypothesis by implementing a physiologically explicit, computational model of the binaural pathway. Specifically, we examined envelope-ITD sensitivity of a simple model IC neuron that receives convergent inputs from MSO and LSO model neurons. We show that dual envelope-ITD sensitivity emerges in the IC when convergent MSO and LSO inputs are differentially tuned for modulation frequency. PMID:24155013
A Novel Form of Compensation in the Tg2576 Amyloid Mouse Model of Alzheimer’s Disease
Somogyi, Attila; Katonai, Zoltán; Alpár, Alán; Wolf, Ervin
2016-01-01
One century after its first description, pathology of Alzheimer’s disease (AD) is still poorly understood. Amyloid-related dendritic atrophy and membrane alterations of susceptible brain neurons in AD, and in animal models of AD are widely recognized. However, little effort has been made to study the potential effects of combined morphological and membrane alterations on signal transfer and synaptic integration in neurons that build up affected neural networks in AD. In this study spatial reconstructions and electrophysiological measurements of layer II/III pyramidal neurons of the somatosensory cortex from wild-type (WT) and transgenic (TG) human amyloid precursor protein (hAPP) overexpressing Tg2576 mice were used to build faithful segmental cable models of these neurons. Local synaptic activities were simulated in various points of the dendritic arbors and properties of subthreshold dendritic impulse propagation and predictors of synaptic input pattern recognition ability were quantified and compared in modeled WT and TG neurons. Despite the widespread dendritic degeneration and membrane alterations in mutant mouse neurons, surprisingly little, or no change was detected in steady-state and 50 Hz sinusoidal voltage transfers, current transfers, and local and propagation delays of PSPs traveling along dendrites of TG neurons. Synaptic input pattern recognition ability was also predicted to be unaltered in TG neurons in two different soma-dendritic membrane models investigated. Our simulations predict the way how subthreshold dendritic signaling and pattern recognition are preserved in TG neurons: amyloid-related membrane alterations compensate for the pathological effects that dendritic atrophy has on subthreshold dendritic signal transfer and integration in layer II/III somatosensory neurons of this hAPP mouse model for AD. Since neither propagation of single PSPs nor integration of multiple PSPs (pattern recognition) changes in TG neurons, we conclude that AD-related neuronal hyperexcitability cannot be accounted for by altered subthreshold dendritic signaling in these neurons but hyperexcitability is related to changes in active membrane properties and network connectivity. PMID:27378850
A Novel Form of Compensation in the Tg2576 Amyloid Mouse Model of Alzheimer's Disease.
Somogyi, Attila; Katonai, Zoltán; Alpár, Alán; Wolf, Ervin
2016-01-01
One century after its first description, pathology of Alzheimer's disease (AD) is still poorly understood. Amyloid-related dendritic atrophy and membrane alterations of susceptible brain neurons in AD, and in animal models of AD are widely recognized. However, little effort has been made to study the potential effects of combined morphological and membrane alterations on signal transfer and synaptic integration in neurons that build up affected neural networks in AD. In this study spatial reconstructions and electrophysiological measurements of layer II/III pyramidal neurons of the somatosensory cortex from wild-type (WT) and transgenic (TG) human amyloid precursor protein (hAPP) overexpressing Tg2576 mice were used to build faithful segmental cable models of these neurons. Local synaptic activities were simulated in various points of the dendritic arbors and properties of subthreshold dendritic impulse propagation and predictors of synaptic input pattern recognition ability were quantified and compared in modeled WT and TG neurons. Despite the widespread dendritic degeneration and membrane alterations in mutant mouse neurons, surprisingly little, or no change was detected in steady-state and 50 Hz sinusoidal voltage transfers, current transfers, and local and propagation delays of PSPs traveling along dendrites of TG neurons. Synaptic input pattern recognition ability was also predicted to be unaltered in TG neurons in two different soma-dendritic membrane models investigated. Our simulations predict the way how subthreshold dendritic signaling and pattern recognition are preserved in TG neurons: amyloid-related membrane alterations compensate for the pathological effects that dendritic atrophy has on subthreshold dendritic signal transfer and integration in layer II/III somatosensory neurons of this hAPP mouse model for AD. Since neither propagation of single PSPs nor integration of multiple PSPs (pattern recognition) changes in TG neurons, we conclude that AD-related neuronal hyperexcitability cannot be accounted for by altered subthreshold dendritic signaling in these neurons but hyperexcitability is related to changes in active membrane properties and network connectivity.
Sinusoidal obstruction syndrome.
Valla, Dominique-Charles; Cazals-Hatem, Dominique
2016-09-01
Sinusoidal obstruction syndrome (SOS) is characterized by damage to small hepatic vessels affecting particularly sinusoidal endothelium. Damaged sinusoids can be associated with a partial or complete occlusion of small hepatic veins, hence the previous denomination of hepatic veno-occlusive disease (VOD). Exposure to certain exogenous toxins appears to be specific to this condition and is frequently included in its definition. Typical histopathological features of SOS in a liver biopsy specimen are presented in the text. The purpose of this article is to provide an overview on the different entities corresponding to this general definition. Such entities include: (i) liver disease related to pyrrolizidine alcaloids; (ii) liver injury related to conditioning for hematopoietic stem cell transplantation; (iii) vascular liver disease occurring in patients treated with chemotherapy for liver metastasis of colorectal cancer; and (iv) other liver diseases related to toxic agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Permiakov, V.; Pulnikov, A.; Dupré, L.; De Wulf, M.; Melkebeek, J.
2003-05-01
In this article, the magnetic properties of nonoriented electrical steel under sinusoidal and distorted excitations are investigated for the whole range of unidirectional mechanical stresses. The distorted flux obtained from the tooth tip of 3 kW induction machine at no-load test was put into the measurement system. The total losses increase for compressive stress both under sinusoidal and distorted excitations. For tensile elastic stresses, the total losses first decrease and then increase in a very similar way for both excitations. In contrast, the difference between total losses under sinusoidal and distorted magnetic fluxes becomes smaller with increase of the plastic strain. This work is a serious step toward complete characterization of the magnetic properties of electrical steel in the teeth area of induction machines. A deeper insight of that problem can improve the design of induction machines and other electromagnetic devices.
NASA Technical Reports Server (NTRS)
Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor)
2017-01-01
A current source logic gate with depletion mode field effect transistor ("FET") transistors and resistors may include a current source, a current steering switch input stage, and a resistor divider level shifting output stage. The current source may include a transistor and a current source resistor. The current steering switch input stage may include a transistor to steer current to set an output stage bias point depending on an input logic signal state. The resistor divider level shifting output stage may include a first resistor and a second resistor to set the output stage point and produce valid output logic signal states. The transistor of the current steering switch input stage may function as a switch to provide at least two operating points.
NASA Astrophysics Data System (ADS)
Saltiel, Seth; Bonner, Brian P.; Mittal, Tushar; Delbridge, Brent; Ajo-Franklin, Jonathan B.
2017-07-01
Frictional properties affect the propagation of high-amplitude seismic waves across rock fractures and faults. Laboratory evidence suggests that these properties can be measured in active seismic surveys, potentially offering a route to characterizing friction in situ. We present experimental results from a subresonance torsional modulus and attenuation apparatus that utilizes micron-scale sinusoidal oscillations to probe the nonlinear stress-strain relation at a range of strain amplitudes and rates. Nonlinear effects are further quantified using harmonic distortion; however, time series data best illuminate underlying physical processes. The low-frequency stress-strain hysteretic loops show stiffening at the sinusoid's static ends, but stiffening is reduced above a threshold frequency. This shape is determined by harmonic generation in the strain; the stress signal has no harmonics, confirming that the fractured sample is the source of the nonlinearity. These qualitative observations suggest the presence of rate-dependent friction and are consistent between fractures in three different rock types. We propose that static friction at the low strain rate part of the cycle, when given sufficient "healing" time at low oscillation frequencies, causes this stiffening cusp shape in the hysteresis loop. While rate-and-state friction is commonly used to represent dynamic friction, it cannot capture static friction or negative slip velocities. So we implement another dynamic friction model, based on the work of Dahl, which describes this process and produces similar results. Since the two models have a similar form, parameterizations of field data could constraint fault model inputs, such as specific location velocity strengthening or weakening properties.
Dynamic Characteristics of Ventilatory and Gas Exchange during Sinusoidal Walking in Humans.
Fukuoka, Yoshiyuki; Iihoshi, Masaaki; Nazunin, Juhelee Tuba; Abe, Daijiro; Fukuba, Yoshiyuki
2017-01-01
Our present study investigated whether the ventilatory and gas exchange responses show different dynamics in response to sinusoidal change in cycle work rate or walking speed even if the metabolic demand was equivalent in both types of exercise. Locomotive parameters (stride length and step frequency), breath-by-breath ventilation (V̇E) and gas exchange (CO2 output (V̇CO2) and O2 uptake (V̇O2)) responses were measured in 10 healthy young participants. The speed of the treadmill was sinusoidally changed between 3 km·h-1 and 6 km·h-1 with various periods (from 10 to 1 min). The amplitude of locomotive parameters against sinusoidal variation showed a constant gain with a small phase shift, being independent of the oscillation periods. In marked contrast, when the periods of the speed oscillations were shortened, the amplitude of V̇E decreased sharply whereas the phase shift of V̇E increased. In comparing walking and cycling at the equivalent metabolic demand, the amplitude of V̇E during sinusoidal walking (SW) was significantly greater than that during sinusoidal cycling (SC), and the phase shift became smaller. The steeper slope of linear regression for the V̇E amplitude ratio to V̇CO2 amplitude ratio was observed during SW than SC. These findings suggested that the greater amplitude and smaller phase shift of ventilatory dynamics were not equivalent between SW and SC even if the metabolic demand was equivalent between both exercises. Such phenomenon would be derived from central command in proportion to locomotor muscle recruitment (feedforward) and muscle afferent feedback.
Mellors, L J; Gibbs, C L; Barclay, C J
2001-05-01
The results of previous studies suggest that the maximum mechanical efficiency of rat papillary muscles is lower during a contraction protocol involving sinusoidal length changes than during one involving afterloaded isotonic contractions. The aim of this study was to compare directly the efficiency of isolated rat papillary muscle preparations in isotonic and sinusoidal contraction protocols. Experiments were performed in vitro (27 degrees C) using left ventricular papillary muscles from adult rats. Each preparation performed three contraction protocols: (i) low-frequency afterloaded isotonic contractions (10 twitches at 0.2 Hz), (ii) sinusoidal length change contractions with phasic stimulation (40 twitches at 2 Hz) and (iii) high-frequency afterloaded isotonic contractions (40 twitches at 2 Hz). The first two protocols resembled those used in previous studies and the third combined the characteristics of the first two. The parameters for each protocol were adjusted to those that gave maximum efficiency. For the afterloaded isotonic protocols, the afterload was set to 0.3 of the maximum developed force. The sinusoidal length change protocol incorporated a cycle amplitude of +/-5% resting length and a stimulus phase of -10 degrees. Measurements of force output, muscle length change and muscle temperature change were used to calculate the work and heat produced during and after each protocol. Net mechanical efficiency was defined as the proportion of the energy (enthalpy) liberated by the muscle that appeared as work. The efficiency in the low-frequency, isotonic contraction protocol was 21.1+/-1.4% (mean +/- s.e.m., N=6) and that in the sinusoidal protocol was 13.2+/-0.7%, consistent with previous results. This difference was not due to the higher frequency or greater number of twitches because efficiency in the high-frequency, isotonic protocol was 21.5+/-1.0%. Although these results apparently confirm that efficiency is protocol-dependent, additional experiments designed to measure work output unambiguously indicated that the method used to calculate work output in isotonic contractions overestimated actual work output. When net work output, which excludes work done by parallel elastic elements, rather than total work output was used to determine efficiency in afterloaded isotonic contractions, efficiency was similar to that for sinusoidal contractions. The maximum net mechanical efficiency of rat papillary muscles performing afterloaded isotonic or sinusoidal length change contractions was between 10 and 15%.
Versatile current-mode universal biquadratic filter using DO-CCIIs
NASA Astrophysics Data System (ADS)
Chen, Hua-Pin
2013-07-01
In this article, a new three-input and three-output versatile current-mode universal biquadratic filter is proposed. The circuit employs three dual-output current conveyors (DO-CCIIs) as active elements together with three grounded resistors and two grounded capacitors. The proposed configuration exhibits low-input impedance and high-output impedance which is important for easy cascading in the current-mode operations. It can be used as either a single-input and three-output or three-input and two-output circuit. In the operation of single-input and three-output circuit, the lowpass, bandpass and bandreject can be realised simultaneously, while the highpass filtering response can be easily obtained by connecting appropriated output current directly without using addition stages. In the operation of three-input and two-output circuit, all five generic filtering functions can be easily realised by selecting different three input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no component matching conditions or inverting-type input current signals are imposed. All the passive and active sensitivities are low. HSPICE simulation results based on using TSMC 0.18 µm 1P6M CMOS process technology and supply voltages ±0.9 V to verify the theoretical analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jinyuan
A digitization scheme of sub-microampere current using a commercial comparator with adjustable hysteresis and FPGA-based Wave Union TDC has been tested. The comparator plus a few passive components forms a current controlled oscillator and the input current is sent into the hysteresis control pin. The input current is converted into the transition times of the oscillations, which are digitized with a Wave Union TDC in FPGA and the variation of the transition times reflects the variation of the input current. Preliminary tests show that input charges < 25 fC can be measured at > 50 M samples/s without a preamplifier.
Distributed energy store railgun - The limiting case
NASA Astrophysics Data System (ADS)
Marshall, Richard A.
1991-01-01
When the limiting case of a distributed energy store railgun is analyzed, (i.e., the case where the space between adjacent energy stores become indefinitely small) three important results are obtained. First, the shape of the current pulse delivered by each store is sinusoidal with an exponential tail. Second, the rail-to-rail voltage behind the rearmost active store approaches zero. Third, it is not possible to choose parameters in such a way that capacitor crowbars can be eliminated.
Equipment testing with damped sinewaves between 1 and 50 MHz
NASA Astrophysics Data System (ADS)
Hardwick, C. John; Baldwin, R. E.
1992-11-01
Present lightning equipment test standards such as RTCA DO160C call for damped sinusoidal tests at 1 and 10 MHz. There has been some discussion in the lightning community about extending these tests to 50 frequencies in the region 1-50 MHz. This paper presents characteristics of such tests on cable bundles and notes the relationship between bundle current and injected voltage; important parameters are the cable loss and Q of the driving waveform.
Logarithmic circuit with wide dynamic range
NASA Technical Reports Server (NTRS)
Wiley, P. H.; Manus, E. A. (Inventor)
1978-01-01
A circuit deriving an output voltage that is proportional to the logarithm of a dc input voltage susceptible to wide variations in amplitude includes a constant current source which forward biases a diode so that the diode operates in the exponential portion of its voltage versus current characteristic, above its saturation current. The constant current source includes first and second, cascaded feedback, dc operational amplifiers connected in negative feedback circuit. An input terminal of the first amplifier is responsive to the input voltage. A circuit shunting the first amplifier output terminal includes a resistor in series with the diode. The voltage across the resistor is sensed at the input of the second dc operational feedback amplifier. The current flowing through the resistor is proportional to the input voltage over the wide range of variations in amplitude of the input voltage.
A Smoothing Technique for the Multifractal Analysis of a Medium Voltage Feeders Electric Current
NASA Astrophysics Data System (ADS)
de Santis, Enrico; Sadeghian, Alireza; Rizzi, Antonello
2017-12-01
The current paper presents a data-driven detrending technique allowing to smooth complex sinusoidal trends from a real-world electric load time series before applying the Detrended Multifractal Fluctuation Analysis (MFDFA). The algorithm we call Smoothed Sort and Cut Fourier Detrending (SSC-FD) is based on a suitable smoothing of high power periodicities operating directly in the Fourier spectrum through a polynomial fitting technique of the DFT. The main aim consists of disambiguating the characteristic slow varying periodicities, that can impair the MFDFA analysis, from the residual signal in order to study its correlation properties. The algorithm performances are evaluated on a simple benchmark test consisting of a persistent series where the Hurst exponent is known, with superimposed ten sinusoidal harmonics. Moreover, the behavior of the algorithm parameters is assessed computing the MFDFA on the well-known sunspot data, whose correlation characteristics are reported in literature. In both cases, the SSC-FD method eliminates the apparent crossover induced by the synthetic and natural periodicities. Results are compared with some existing detrending methods within the MFDFA paradigm. Finally, a study of the multifractal characteristics of the electric load time series detrendended by the SSC-FD algorithm is provided, showing a strong persistent behavior and an appreciable amplitude of the multifractal spectrum that allows to conclude that the series at hand has multifractal characteristics.
NASA Technical Reports Server (NTRS)
Bolton, P. S.; Goto, T.; Schor, R. H.; Wilson, V. J.; Yamagata, Y.; Yates, B. J.
1992-01-01
1. To investigate the neural substrate of vestibulospinal reflexes in decerebrate cats, we studied the responses of pontomedullary reticulospinal neurons to natural stimulation of the labyrinth in vertical planes. Our principal aim was to determine whether reticulospinal neurons that terminate in, or are likely to give off collaterals to, the upper cervical segments had properties similar to those of the vestibulocollic reflex (VCR). 2. Antidromic stimulation was used to determine whether the neurons projected to the neck, lower cervical, thoracic, or lumbar levels. Dynamics of the responses of spontaneously firing neurons were studied with sinusoidal stimuli delivered at 0.05-1 Hz and aligned to the plane of body rotation, that produced maximal modulation of the neuron (response vector orientation). Each neuron was assigned a vestibular input classification of otolith, vertical canal, otolith + canal, or spatial-temporal convergence (STC). 3. We found, in agreement with previous studies, that the largest fraction of pontomedullary reticulospinal neurons projected to the lumbar cord, and that only a small number ended in the neck segments. Neurons projecting to all levels of the spinal cord had similar responses to labyrinth stimulation. 4. Reticulospinal neurons that received only vertical canal inputs were rare (1 of 67 units). Most reticulospinal neurons (48%) received predominant otolith inputs, 18% received otolith + canal input, and only 9% had STC behavior. These data are in sharp contrast to the results of our previous studies of vestibulospinal neurons. A considerable portion of vestibulospinal neurons receives vertical canal input (38%), fewer receive predominantly otolith input (22%), whereas the proportion that have otolith + canal input or STC behavior is similar to our present reticulospinal data. 5. The response vector orientations of our reticulospinal neurons, particularly those with canal inputs (canal, otolith + canal, STC) were predominantly in the roll quadrants. There was no evidence of convergence of inputs from like canals across the midline (e.g., right anterior + left anterior). 6. Two characteristics of the VCR, STC behavior and bilateral input from symmetric vertical canals (in some muscles), cannot be accounted for by the reticulospinal neurons that we studied. Because these characteristics are also not seen in vestibulocollic neurons, they are likely to be the result of the appropriate convergence of vestibular signals in the spinal cord. 7. Pontomedullary reticulospinal neurons seem particularly well suited to play a role in gravity-dependent postural reflexes of neck and limbs.
Retrospective study of the effect of remifentanil use during labor on fetal heart rate patterns.
Boterenbrood, Danne; Wassen, Martine M; Visser, Gerard H A; Nijhuis, Jan G
2018-01-01
To investigate possible associations between remifentanil and the appearance of sinusoidal heart rate patterns in fetuses, and neonatal outcomes. The present retrospective cohort study included data from patients at over 37 weeks of singleton or multiple pregnancies attending Zuyderland Medical Center, Sittard, the Netherlands, in labor between June 1, and August 31, 2015. Patient data were stratified by whether remifentanil was administered during delivery (remifentanil group) or not (control group), and fetal heart rate tracings were reviewed to identify sinusoidal heart rate patterns. The neonatal outcomes compared were 5-minute Apgar scores and umbilical artery pH. There were 119 patients included in the study; 60 in the remifentanil group and 59 in the control group. Tracings from 20 (33%) patients in the remifentanil group exhibited a sinusoidal heart rate pattern after remifentanil administration, compared with 5 (8%) patients in the control group (P=0.001). The median time before the onset of sinusoidal patterns after remifentanil administration was 12 minutes. No adverse neonatal outcomes were recorded in either group. Remifentanil use during labor was associated with the occurrence of sinusoidal heart rate patterns in the fetus; this was not associated with adverse neonatal outcomes. © 2017 International Federation of Gynecology and Obstetrics.
Huizer-Pajkos, Aniko; Cogger, Victoria C.; McLachlan, Andrew J.; Le Couteur, David G.; Jones, Brett; de Cabo, Rafael; Hilmer, Sarah N.
2011-01-01
We investigated the effect of age-related pseudocapillarization of the liver sinusoidal endothelium on the hepatic disposition of acetaminophen. The multiple indicator dilution technique assessed the hepatic disposition of tracer 14C-acetaminophen and reference markers in isolated perfused livers of young (n = 11) and old (n = 12) rats. Electron microscopy confirmed defenestration of the sinusoidal endothelium in old rats compared with young rats. Acetaminophen recovery following a single pass through the liver was significantly increased in old rats (0.64 ± 0.04, old; 0.59 ± 0.05, young; p < .05). In old age, there was significant reduction of the intercompartmental rate constant k1 (0.34 ± 0.10s-1, old; 0.61 ± 0.38s-1, young; p < .05) and the permeability-surface area product for the transfer of acetaminophen across the sinusoidal endothelium (0.034 ± 0.006 mL/s/g, old; 0.048 ± 0.014 mL/s/g, young; p < .005). There was no difference in k3, the measure of sequestration of acetaminophen that reflects enzyme activity. Age-related pseudocapillarization of the liver sinusoid resulted in increased acetaminophen recovery and decreased transfer of acetaminophen into the liver. PMID:21300741
NAKANUMA, SHINICHI; MIYASHITA, TOMOHARU; HAYASHI, HIRONORI; TAJIMA, HIDEHIRO; TAKAMURA, HIROYUKI; TSUKADA, TOMOYA; OKAMOTO, KOICHI; SAKAI, SEISHO; MAKINO, ISAMU; KINOSHITA, JUN; NAKAMURA, KEISHI; OYAMA, KATSUNOBU; INOKUCHI, MASAFUMI; NAKAGAWARA, HISATOSHI; NINOMIYA, ITASU; KITAGAWA, HIROHISA; FUSHIDA, SACHIO; FUJIMURA, TAKASHI; OHTA, TETSUO
2015-01-01
Sinusoidal obstruction syndrome (SOS), previously known as veno-occlusive disease, is relatively rare subsequent to liver transplantation (LT). SOS refractory to medical therapy, however, can result in centrilobular fibrosis, portal hypertension and liver failure. Although sinusoidal endothelial cell damage around central venules (zone 3) occurs early in the development of SOS, the detailed mechanism of SOS development and its association with thrombocytopenia are not yet completely understood. The present report describes a patient who experienced SOS with unexplained thrombocytopenia following living donor LT. The progression of SOS resulted in graft dysfunction and the patient succumbed. The presence of platelets in the liver allograft was assayed immunohistochemically using antibody to the platelet marker cluster of differentiation 42b (platelet glycoprotein Ib). Platelet aggregates were found attached to hepatocytes along the sinusoid and within the cytoplasm of hepatocytes, particularly in zone 3. By contrast, no staining was observed in zone 1. These findings suggested that extravasated platelet aggregation in the space of Disse and the phagocytosis of platelets by hepatocytes were initiated by sinusoidal endothelial cell damage due to the toxicity of the immunosuppressant tacrolimus or a corticosteroid pulse, and that platelet activation and degranulation may be at least partially involved in the mechanism responsible for SOS. PMID:25780397
Hepatic sinusoidal cells in health and disease: update from the 14th International Symposium.
Smedsrød, Bård; Le Couteur, David; Ikejima, Kenichi; Jaeschke, Hartmut; Kawada, Norifumi; Naito, Makoto; Knolle, Percy; Nagy, Laura; Senoo, Haruki; Vidal-Vanaclocha, Fernando; Yamaguchi, Noriko
2009-04-01
This review aims to give an update of the field of the hepatic sinusoid, supported by references to presentations given at the 14th International Symposium on Cells of the Hepatic Sinusoid (ISCHS2008), which was held in Tromsø, Norway, August 31-September 4, 2008. The subtitle of the symposium, 'Integrating basic and clinical hepatology', signified the inclusion of both basal and applied clinical results of importance in the field of liver sinusoidal physiology and pathophysiology. Of nearly 50 oral presentations, nine were invited tutorial lectures. The authors of the review have avoided writing a 'flat summary' of the presentations given at ISCHS2008, and instead focused on important novel information. The tutorial presentations have served as a particularly important basis in the preparation of this update. In this review, we have also included references to recent literature that may not have been covered by the ISCHS2008 programme. The sections of this review reflect the scientific programme of the symposium (http://www.ub.uit.no/munin/bitstream/10037/1654/1/book.pdf): 1. Liver sinusoidal endothelial cells. 2. Kupffer cells. 3. Hepatic stellate cells. 4. Immunology. 5. Tumor/metastasis. Symposium abstracts are referred to by a number preceded by the letter A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodega, G.; Forcada, I.; Suarez, I.
This paper reports the effects of exposure to static, sinusoidal (50 Hz), and combined static/sinusoidal magnetic fields on cultured astroglial cells. Confluent primary cultures of astroglial cells were exposed to a 1-mT sinusoidal, static, or combined magnetic field for 1 h. In another experiment, cells were exposed to the combined magnetic field for 1, 2, and 4 h. The hsp25, hsp60, hsp70, actin, and glial fibrillary acidic protein contents of the astroglial cells were determined by immunoblotting 24 h after exposure. No significant differences were seen between control and exposed cells with respect to their contents of these proteins, neithermore » were any changes in cell morphology observed. In a third experiment to determine the effect of a chronic (11-day) exposure to a combined 1-mT static/sinusoidal magnetic field on the proliferation of cultured astroglial cells, no significant differences were seen between control, sham-exposed, or exposed cells. These results suggest that exposure to 1-mT sinusoidal, static, or combined magnetic fields has no significant effects on the stress, cytoskeletal protein levels in, or proliferation of cultured astroglial cells.« less
Two-electrode non-differential biopotential amplifier.
Dobrev, D
2002-09-01
A circuit is proposed for a non-differential two-electrode biopotential amplifier, with a current source and a transimpedance amplifier as a potential equaliser for its inputs, fully emulating a differential amplifier. The principle of operation is that the current in the input of the transimpedance amplifier is sensed and made to flow with the same value in the other input. The circuit has a simple structure and uses a small number of components. The current source maintains balanced common-mode interference currents, thus ensuring high signal input impedance. In addition, these currents can be tolerated up to more than 10 microA per input, at a supply voltage of +/- 5 V. A two-electrode differential amplifier with 2 x 10 Mohm input resistances to the reference point allows less than 0.5 microA per input. The circuit can be useful in cases of biosignal acquisition by portable instruments, using low supply voltages, from subjects in areas of high electromagnetic fields. Examples include biosignal recordings in electric power stations and electrically powered locomotives, where traditionally designed input amplifier stages can be saturated.
Chen, Hua-Pin
2014-01-01
This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design.
2014-01-01
This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design. PMID:24982963
A portable intra-oral scanner based on sinusoidal pattern of fast phase-shifting
NASA Astrophysics Data System (ADS)
Jan, Chia-Ming; Lin, Ying-Chieh
2016-03-01
This paper presented our current research about the intra-oral scanner made by MIRDC. Utilizing the sinusoidal pattern for fast phase-shifting technique to deal with 3D digitalization of human dental surface profile, the development of pseudo-phase shifting digital projection can easily achieve one type of full-field scanning instead of the common technique of the laser line scanning. Based on traditional Moiré method, we adopt projecting fringes and retrieve phase reconstruction to forward phase unwrapping. The phase difference between the plane and object can be exactly calculated from the desired fringe images, and the surface profile of object was probably reconstructed by using the phase differences information directly. According to our algorithm of space mapping between projections and capturing orientation exchange of our intra-oral scanning configuration, the system we made certainly can be proved to achieve the required accuracy of +/-10μm to deal with intra-oral scanning on the basis of utilizing active triangulation method. The final purpose aimed to the scanning of object surface profile with its size about 10x10x10mm3.
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Perachio, A. A.
1993-01-01
1. The effects of constant anodal currents (100 microA) delivered bilaterally to both labyrinths on the horizontal vestibuloocular response (VOR) were studied in squirrel monkeys during steps of angular velocity in the dark. We report that bilateral anodal currents decreased eye velocity approximately 30-50% during the period of galvanic stimulation without a change in the time constant of VOR. The decrease in eye velocity, present during steps of angular velocity, was not observed during sinusoidal head rotation at 0.2, 0.5, and 1 Hz. The results suggest that responses from irregular vestibular afferents influence VOR amplitude during constant velocity rotation.
Linear beam raster magnet driver based on H-bridge technique
Sinkine, Nikolai I.; Yan, Chen; Apeldoorn, Cornelis; Dail, Jeffrey Glenn; Wojcik, Randolph Frank; Gunning, William
2006-06-06
An improved raster magnet driver for a linear particle beam is based on an H-bridge technique. Four branches of power HEXFETs form a two-by-two switch. Switching the HEXFETs in a predetermined order and at the right frequency produces a triangular current waveform. An H-bridge controller controls switching sequence and timing. The magnetic field of the coil follows the shape of the waveform and thus steers the beam using a triangular rather than a sinusoidal waveform. The system produces a raster pattern having a highly uniform raster density distribution, eliminates target heating from non-uniform raster density distributions, and produces higher levels of beam current.
Electrical energy consumption control apparatuses and electrical energy consumption control methods
Hammerstrom, Donald J.
2012-09-04
Electrical energy consumption control apparatuses and electrical energy consumption control methods are described. According to one aspect, an electrical energy consumption control apparatus includes processing circuitry configured to receive a signal which is indicative of current of electrical energy which is consumed by a plurality of loads at a site, to compare the signal which is indicative of current of electrical energy which is consumed by the plurality of loads at the site with a desired substantially sinusoidal waveform of current of electrical energy which is received at the site from an electrical power system, and to use the comparison to control an amount of the electrical energy which is consumed by at least one of the loads of the site.
NEUTRON SOURCE USING MAGNETIC COMPRESSION OF PLASMA
Quinn, W.E.; Elmore, W.C.; Little, E.M.; Boyer, K.; Tuck, J.L.
1961-10-31
A fusion reactor is described that utilizes compression and heating of an ionized thermonuclear fuel by an externally applied magnetic field, thus avoiding reliance on the pinch effect and its associated instability problems. The device consists of a gas-confining ceramic container surrounded by a single circumferential coil having a shape such as to produce a magnetic mirror geometry. A sinusoidally-oscillating, exponentially-damped current is passed circumferentially around the container, through the coil, inducing a circumferential current in the gas. Maximum compression and plasma temperature are obtained at the peak of the current oscillations, coinciding with maximum magnetic field intensity. Enhanced temperatures are obtained in the second and succeeding half cycles because the thermal energy accumulates from one half cycle to the next. (AEC)
High temperature current mirror amplifier
Patterson, III, Raymond B.
1984-05-22
A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.
Modelling and Analysis of a New Piezoelectric Dynamic Balance Regulator
Du, Zhe; Mei, Xue-Song; Xu, Mu-Xun
2012-01-01
In this paper, a new piezoelectric dynamic balance regulator, which can be used in motorised spindle systems, is presented. The dynamic balancing adjustment mechanism is driven by an in-plane bending vibration from an annular piezoelectric stator excited by a high-frequency sinusoidal input voltage. This device has different construction, characteristics and operating principles than a conventional balance regulator. In this work, a dynamic model of the regulator is first developed using a detailed analytical method. Thereafter, MATLAB is employed to numerically simulate the relations between the dominant parameters and the characteristics of the regulator based on thedynamic model. Finally, experimental measurements are used to certify the validity of the dynamic model. Consequently, the mathematical model presented and analysed in this paper can be used as a tool for optimising the design of a piezoelectric dynamic balance regulator during steady state operation. PMID:23202182
Enhancing quantum effects via periodic modulations in optomechanical systems
NASA Astrophysics Data System (ADS)
Farace, Alessandro; Giovannetti, Vittorio
2012-07-01
Parametrically modulated optomechanical systems have been recently proposed as a simple and efficient setting for the quantum control of a micromechanical oscillator: relevant possibilities include the generation of squeezing in the oscillator position (or momentum) and the enhancement of entanglement between mechanical and radiation modes. In this paper we further investigate this modulation regime, considering an optomechanical system with one or more parameters being modulated over time. We first apply a sinusoidal modulation of the mechanical frequency and characterize the optimal regime in which the visibility of purely quantum effects is maximal. We then introduce a second modulation on the input laser intensity and analyze the interplay between the two. We find that an interference pattern shows up, so that different choices of the relative phase between the two modulations can either enhance or cancel the desired quantum effects, opening new possibilities for optimal quantum control strategies.
Action potentials drive body wall muscle contractions in Caenorhabditis elegans
Gao, Shangbang; Zhen, Mei
2011-01-01
The sinusoidal locomotion exhibited by Caenorhabditis elegans predicts a tight regulation of contractions and relaxations of its body wall muscles. Vertebrate skeletal muscle contractions are driven by voltage-gated sodium channel–dependent action potentials. How coordinated motor outputs are regulated in C. elegans, which does not have voltage-gated sodium channels, remains unknown. Here, we show that C. elegans body wall muscles fire all-or-none, calcium-dependent action potentials that are driven by the L-type voltage-gated calcium and Kv1 voltage-dependent potassium channels. We further demonstrate that the excitatory and inhibitory motoneuron activities regulate the frequency of action potentials to coordinate muscle contraction and relaxation, respectively. This study provides direct evidence for the dual-modulatory model of the C. elegans motor circuit; moreover, it reveals a mode of motor control in which muscle cells integrate graded inputs of the nervous system and respond with all-or-none electrical signals. PMID:21248227
Effect of noise on modulation amplitude and phase in frequency-domain diffusive imaging
Kupinski, Matthew A.
2012-01-01
Abstract. We theoretically investigate the effect of noise on frequency-domain heterodyne and/or homodyne measurements of intensity-modulated beams propagating through diffusive media, such as a photon density wave. We assumed that the attenuated amplitude and delayed phase are estimated by taking the Fourier transform of the noisy, modulated output data. We show that the estimated amplitude and phase are biased when the number of output photons is small. We also show that the use of image intensifiers for photon amplification in heterodyne or homodyne measurements increases the amount of biases. Especially, it turns out that the biased estimation is independent of AC-dependent noise in sinusoidal heterodyne or homodyne outputs. Finally, the developed theory indicates that the previously known variance model of modulation amplitude and phase is not valid in low light situations. Monte-Carlo simulations with varied numbers of input photons verify our theoretical trends of the bias. PMID:22352660
Ride quality criteria. [transportation system interior and passenger response to environment
NASA Technical Reports Server (NTRS)
Stephens, D. G.
1977-01-01
Ride quality refers to the interior or passenger environment of a transportation system as well as the passenger response to the environment. Ride quality factors are illustrated with the aid of a diagram presenting inputs to vehicle, the vehicle transfer function, the ride environment, the passenger response function, and the passenger ride response. The reported investigation considers the ride environment as measured on a variety of air and surface vehicles, the passenger response to the environment as determined from laboratory and field surveys, and criteria/standards for vibration, noise, and combined stimuli. Attention is given to the vertical vibration characteristics in cruise for aircraft and automobile, the aircraft vibration levels for various operating regimes, comparative noise levels during cruise, the discomfort level for a 9 Hz sinusoidal vibration, equal discomfort contours for vertical vibration, subjective response to noise in a speech situation, and noise and vibration levels for constant discomfort contours.
Perturbation solutions for the influence of forward flight on helicopter rotor flapping stability
NASA Technical Reports Server (NTRS)
Johnson, W.
1974-01-01
The stability of the flapping motion of a helicopter rotor blade in forward flight is investigated, using a perturbation technique which gives analytic expressions for the eigenvalues, including the influence of the periodic aerodynamic forces in forward flight. The perturbation solutions are based on small advance ratio (the ratio of the helicopter forward speed to the rotor tip speed). The rotor configurations considered are a single, independent blade; a teetering rotor; a gimballed rotor with three, four, and five or more blades; and a rotor with N independent blades. The constant coefficient approximation with the equations and degrees of freedom in the nonrotating frame represents the flap dynamic reasonably well for the lower frequency modes, although it cannot, of course, be completely correct. The transfer function of the rotor flap response to sinusoidal pitch input is examined, as an alternative to the eigenvalues as a representation of the dynamic characteristics of the flap motion.
High-frequency ac power distribution in Space Station
NASA Technical Reports Server (NTRS)
Tsai, Fu-Sheng; Lee, Fred C. Y.
1990-01-01
A utility-type 20-kHz ac power distribution system for the Space Station, employing resonant power-conversion techniques, is presented. The system converts raw dc voltage from photovoltaic cells or three-phase LF ac voltage from a solar dynamic generator into a regulated 20-kHz ac voltage for distribution among various loads. The results of EASY5 computer simulations of the local and global performance show that the system has fast response and good transient behavior. The ac bus voltage is effectively regulated using the phase-control scheme, which is demonstrated with both line and load variations. The feasibility of paralleling the driver-module outputs is illustrated with the driver modules synchronized and sharing a common feedback loop. An HF sinusoidal ac voltage is generated in the three-phase ac input case, when the driver modules are phased 120 deg away from one another and their outputs are connected in series.
NASA Technical Reports Server (NTRS)
Ottander, John A.; Hall, Robert A.; Powers, J. F.
2018-01-01
A method is presented that allows for the prediction of the magnitude of limit cycles due to adverse control-slosh interaction in liquid propelled space vehicles using non-linear slosh damping. Such a method is an alternative to the industry practice of assuming linear damping and relying on: mechanical slosh baffles to achieve desired stability margins; accepting minimal slosh stability margins; or time domain non-linear analysis to accept time periods of poor stability. Sinusoidal input describing functional analysis is used to develop a relationship between the non-linear slosh damping and an equivalent linear damping at a given slosh amplitude. In addition, a more accurate analytical prediction of the danger zone for slosh mass locations in a vehicle under proportional and derivative attitude control is presented. This method is used in the control-slosh stability analysis of the NASA Space Launch System.
NASA Astrophysics Data System (ADS)
Wickenheiser, Adam; Garcia, Ephrahim
2010-04-01
In much of the vibration-based energy harvesting literature, devices are modeled, designed, and tested for dissipating energy across a resistive load at a single base excitation frequency. This paper presents several practical scenarios germane to tracking, sensing, and wireless communication on humans and land vehicles. Measured vibrational data from these platforms are used to provide a time-varying, broadband input to the energy harvesting system. Optimal power considerations are given for several circuit topologies, including a passive rectifier circuit and active, switching methods. Under various size and mass constraints, the optimal design is presented for two scenarios: walking and idling a car. The frequency response functions are given alongside time histories of the power harvested using the experimental base accelerations recorded. The issues involved in designing an energy harvester for practical (i.e. timevarying, non-sinusoidal) applications are discussed.
Sakurai, Kentaro; Miyashita, Tomoharu; Okazaki, Mitsuyoshi; Yamaguchi, Takahisa; Ohbatake, Yoshinao; Nakanuma, Shinichi; Okamoto, Koichi; Sakai, Seisho; Kinoshita, Jun; Makino, Isamu; Nakamura, Keishi; Hayashi, Hironori; Oyama, Katsunobu; Tajima, Hidehiro; Takamura, Hiroyuki; Ninomiya, Itasu; Fushida, Sachio; Harada, Kenichi; Harmon, John W; Ohta, Tetsuo
2017-01-01
Severe sepsis is associated with high morbidity and mortality rates. Inflammation and coagulation play pivotal roles in the pathogenesis of sepsis leading to multiple organ failure, especially in the liver. The aim of the present study was to assess the mechanism from sepsis to liver damage in a mouse model. We created a sepsis model by injecting lipopolysaccharide (LPS) intraperitoneally in mice. At 0, 6, 12, and 24 h following intraperitoneal injection of LPS, mice were euthanised and analyzed. Primary antibodies against myeloperoxidase (MPO), hepatic sinusoidal endothelial cells (SE-1), and P-selectin (CD62p) were used. Expression and localization in neutrophil, sinusoidal endothelial, and platelet cells were assessed by immunohistochemistry. Immunohistochemical analyses revealed a positive staining for MPO, most abundantly in neutrophil granulocytes, within the hepatic sinusoids immediately after injection. Neutrophil extracellular trap (NET)-like structures stained for MPO, indicating the presence of neutrophils undergoing NETosis, were confirmed at 6 h after LPS administration. SE-1 staining for liver sinusoidal endothelial cells was significantly reduced at 12 h post-LPS administration through sinusoidal endothelial injury or detachment. Furthermore, the presence of extravasated platelets was confirmed in the space of Disse at 24 h after LPS administration. Blood sample analyses showed that white blood cell counts and platelet counts decreased gradually, while MPO amounts increased until 12 h after LPS administration. We conclude that NET formation and intravasated platelet aggregation are the first steps from sepsis to liver damage, and that extravasated platelet aggregation promoted by NET-facilitated detachment of sinusoidal endothelial cells is the origin of sepsis-induced liver dysfunction. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Dual side control for inductive power transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron
An apparatus for dual side control includes a measurement module that measures a voltage and a current of an IPT system. The voltage includes an output voltage and/or an input voltage and the current includes an output current and/or an input current. The output voltage and the output current are measured at an output of the IPT system and the input voltage and the input current measured at an input of the IPT system. The apparatus includes a max efficiency module that determines a maximum efficiency for the IPT system. The max efficiency module uses parameters of the IPT systemmore » to iterate to a maximum efficiency. The apparatus includes an adjustment module that adjusts one or more parameters in the IPT system consistent with the maximum efficiency calculated by the max efficiency module.« less
Kim, Hak Rim; Liu, Katrina; Roberts, Thomas J; Hai, Chi-Ming
2011-06-01
Actin cytoskeletal remodeling is an important mechanism of airway smooth muscle (ASM) contraction. We tested the hypothesis that mechanical strain modulates the cholinergic receptor-mediated cytoskeletal recruitment of actin-binding and integrin-binding proteins in intact airway smooth muscle, thereby regulating the mechanical energetics of airway smooth muscle. We found that the carbachol-stimulated cytoskeletal recruitment of actin-related protein-3 (Arp3), metavinculin, and talin were up-regulated at short muscle lengths and down-regulated at long muscle lengths, suggesting that the actin cytoskeleton--integrin complex becomes enriched in cross-linked and branched actin filaments in shortened ASM. The mechanical energy output/input ratio during sinusoidal length oscillation was dependent on muscle length, oscillatory amplitude, and cholinergic activation. The enhancing effect of cholinergic stimulation on mechanical energy output/input ratio at short and long muscle lengths may be explained by the length-dependent modulation of cytoskeletal recruitment and crossbridge cycling, respectively. We postulate that ASM functions as a hybrid biomaterial, capable of switching between operating as a cytoskeleton-based mechanical energy store at short muscle lengths to operating as an actomyosin-powered mechanical energy generator at long muscle lengths. This postulate predicts that targeting the signaling molecules involved in cytoskeletal recruitment may provide a novel approach to dilating collapsed airways in obstructive airway disease.
NASA Astrophysics Data System (ADS)
Naderi, E.; Khorasani, K.
2018-02-01
In this work, a data-driven fault detection, isolation, and estimation (FDI&E) methodology is proposed and developed specifically for monitoring the aircraft gas turbine engine actuator and sensors. The proposed FDI&E filters are directly constructed by using only the available system I/O data at each operating point of the engine. The healthy gas turbine engine is stimulated by a sinusoidal input containing a limited number of frequencies. First, the associated system Markov parameters are estimated by using the FFT of the input and output signals to obtain the frequency response of the gas turbine engine. These data are then used for direct design and realization of the fault detection, isolation and estimation filters. Our proposed scheme therefore does not require any a priori knowledge of the system linear model or its number of poles and zeros at each operating point. We have investigated the effects of the size of the frequency response data on the performance of our proposed schemes. We have shown through comprehensive case studies simulations that desirable fault detection, isolation and estimation performance metrics defined in terms of the confusion matrix criterion can be achieved by having access to only the frequency response of the system at only a limited number of frequencies.
Fullerene reinforced ionic polymer transducer
NASA Astrophysics Data System (ADS)
Jung, J. H.; Cheng, T. H.; Oh, I. K.
2009-07-01
Novel fullerene reinforced nano-composite transducers based on nafion were developed inorder to improve the ionic polymer metal composite transducer. The fullerene reinforced nano-composite membranes were fabricated by recasting method with 0.1 and 0.5 weight percentage of a Fullerenes. Stress-Strain tests showed tremendous increase in stiffness and modulus of the nano-composite membranes even at these minute concentrations of Fullerenes. Ionic exchange capacity analysis and proton conductivity test were performed to calculate the electrical property of the composite films. Water uptake was measured to understand the liquid adsorbing characteristics of the membranes. Also, tip displacement of the nano-composite membrane transducer was investigated under AC excitations with various magnitudes and frequencies. Furthermore, the generated energy was measured from external sinusoidal physical input vibration with several displacements and frequencies by using a mechanical shaker. As a result, the fullerene reinforced nanocomposite membrane based on nafion shows higher stiffness and Young's modulus than that of pure nafion membrane. Also, the nano-composite membrane had better water uptake and proton conductivity than the pure membrane. Fullerene reinforced nano-composite membrane transducer actuates to a much larger deformations than pure nafion membrane transducer. The developed membrane transducer dissipates more energy from the physical input vibration than that of unfilled(or virgin) Nafion membrane transducer.
USDA-ARS?s Scientific Manuscript database
Structured illumination using sinusoidal patterns has been utilized for optical imaging of biological tissues in biomedical research and, of horticultural products. Implementation of structured-illumination imaging relies on retrieval of amplitude images, which is conventionally achieved by a phase-...
Partially coherent surface plasmon modes
NASA Astrophysics Data System (ADS)
Niconoff, G. M.; Vara, P. M.; Munoz-Lopez, J.; Juárez-Morales, J. C.; Carbajal-Dominguez, A.
2011-04-01
Elementary long-range plasmon modes are described assuming an exponential dependence of the refractive index in the neighbourhood of the interface dielectric-metal thin film. The study is performed using coupling mode theory. The interference between two long-range plasmon modes generated that way allows the synthesis of surface sinusoidal plasmon modes, which can be considered as completely coherent generalized plasmon modes. These sinusoidal plasmon modes are used for the synthesis of new partially coherent surface plasmon modes, which are obtained by means of an incoherent superposition of sinusoidal plasmon modes where the period of each one is considered as a random variable. The kinds of surface modes generated have an easily tuneable profile controlled by means of the probability density function associated to the period. We show that partially coherent plasmon modes have the remarkable property to control the length of propagation which is a notable feature respect to the completely coherent surface plasmon mode. The numerical simulation for sinusoidal, Bessel, Gaussian and Dark Hollow plasmon modes are presented.
Behre, Gerhard; Theurich, Sebastian; Christopeit, Maximilian; Weber, Thomas
2009-03-10
We report a case of sinusoidal obstruction syndrome, a typical and life-threatening complication after allogeneic stem-cell transplantation, successfully treated with defibrotide despite massive multiple organ failure. A 64-year-old Caucasian woman underwent allogeneic peripheral blood stem-cell transplantation from her human leukocyte antigen-identical sister against aggressive lymphoplasmocytoid immunocytoma. Seven days later, the patient developed severe sinusoidal obstruction syndrome according to the modified Seattle criteria. We initiated treatment with defibrotide. Despite early treatment, multiple organ failure with kidney failure requiring dialysis and ventilator-dependent lung failure aggravated the clinical course. Furthermore, central nervous dysfunction occurred as well as transfusion refractory thrombocytopenia. As highlighted in our report, defibrotide is the most promising drug in the treatment of the formerly, almost lethal, severe sinusoidal obstruction syndrome to date. This is demonstrated very clearly in our patient. She improved completely, even after renal, cerebral and respiratory failure.
2009-01-01
Introduction We report a case of sinusoidal obstruction syndrome, a typical and life-threatening complication after allogeneic stem-cell transplantation, successfully treated with defibrotide despite massive multiple organ failure. Case presentation A 64-year-old Caucasian woman underwent allogeneic peripheral blood stem-cell transplantation from her human leukocyte antigen-identical sister against aggressive lymphoplasmocytoid immunocytoma. Seven days later, the patient developed severe sinusoidal obstruction syndrome according to the modified Seattle criteria. We initiated treatment with defibrotide. Despite early treatment, multiple organ failure with kidney failure requiring dialysis and ventilator-dependent lung failure aggravated the clinical course. Furthermore, central nervous dysfunction occurred as well as transfusion refractory thrombocytopenia. Conclusion As highlighted in our report, defibrotide is the most promising drug in the treatment of the formerly, almost lethal, severe sinusoidal obstruction syndrome to date. This is demonstrated very clearly in our patient. She improved completely, even after renal, cerebral and respiratory failure. PMID:19830097
High temperature current mirror amplifier
Patterson, R.B. III.
1984-05-22
Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.
Development of a trans-admittance mammography (TAM) using 60×60 electrode array
NASA Astrophysics Data System (ADS)
Zhao, Mingkang; Liu, Qin; In Oh, Tong; Woo, Eung Je; Seo, Jin Keun
2010-04-01
We have developed a trans-admittance mammography (TAM) system as a supplementary or alternative method of the X-ray mammography to diagnose the breast cancer. Mechanical structure of the system is similar to the X-ray mammography with the breast placed between two plates. The pair of plates is movable to accommodate breasts with different sizes and rotatable to provide multiple images with different projection angles. Without using ionizing radiation, it acquires a projection image of tissue admittivity values. One plate is a flat solid electrode where we apply a constant sinusoidal voltage with a variable frequency. The other is equipped with 60×60 array of current-sensing electrodes, of which potentials are kept at the signal reference level. The electrode array is connected to six switching modules and each module routes current signals from 600 electrodes to two ammeter modules. Each ammeter module includes six channels of ammeters and each one of them comprises an independent current-to-voltage converter, voltage amplifier, ADC and digital phase-sensitive demodulator. Each ammeter sequentially measures exit currents from 50 electrodes chosen by the corresponding switching module. An FPGA controls six ammeters to collect real- and imaginary-parts of trans-admittance data from 300 electrodes. A separate FPGA arbitrates data and command exchanges between a DSP-based main controller and ammeter modules. It also generates a sinusoidal voltage signal to be applied to the breast. All the 3600 complex current data from 12 ammeter modules are transferred to the main controller, which is interfaced to a PC through an isolated USB. The system is provided with a program to display real- and imaginary-parts of measured trans-admittance maps. The measured maps at multiple frequencies are incorporated into a frequency-difference anomaly detection algorithm. In this paper, we describe the design and construction of the system.
NASA Astrophysics Data System (ADS)
Huang, Houxue; Wu, Huiying; Zhang, Chi
2018-05-01
Sinusoidal wavy microchannels have been known as a more heat transfer efficient heat sink for the cooling of electronics than normal straight microchannels. However, the existing experimental study on wavy silicon microchannels with different phase differences are few. As a result of this, in this paper an experimental study has been conducted to investigate the single phase flow friction and heat transfer of de-ionized water in eight different sinusoidal wavy silicon microchannels (SWSMCs) and one straight silicon microchannel (SMC). The SWSMCs feature different phase differences (α = 0 to π) and different relative wavy amplitudes (β = A/l = 0.05 to 0.4), but the same average hydraulic diameters (D h = 160 µm). It is found that both flow friction constant fRe and the Nusselt number depend on the phase difference and relative wavy amplitude. For sinusoidal wavy microchannels with a relative wavy amplitude (β = 0.05), the Nusselt number increased noticeably with the phase difference for Re > 250, but the effect was insignificant for Re < 250 however, both pressure drop and apparent flow friction constant fRe increased with the increase in phase difference. For sinusoidal wavy microchannels with 0 phase difference, the increase in relative wavy amplitude obtained by reducing the wavy wave length induced higher pressure drop and apparent friction constant fRe, while the Nusselt number increased with relative wavy amplitude for Re > 300. The results indicate that the thermal resistances of sinusoidal wavy silicon microchannels were generally lower than that of straight silicon microchannels, and the thermal resistance decreased with the increase in relative wavy amplitude. The enhancement of thermal performance is attributed to the flow re-circulation occurring in the corrugation troughs and the secondary flows or Dean vortices introduced by curved channels. It is concluded that silicon sinusoidal wavy microchannels provide higher heat transfer rate albeit with a higher flow friction, making it a better choice for the cooling of high heat flux electronics.
Status of 20 kHz space station power distribution technology
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1988-01-01
Power Distribution on the NASA Space Station will be accomplished by a 20 kHz sinusoidal, 440 VRMS, single phase system. In order to minimize both system complexity and the total power coversion steps required, high frequency power will be distributed end-to-end in the system. To support the final design of flight power system hardware, advanced development and demonstrations have been made on key system technologies and components. The current status of this program is discussed.
Reconfigurable Drive Current System
NASA Technical Reports Server (NTRS)
Alhorn, Dean C. (Inventor); Dutton, Kenneth R. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)
2017-01-01
A reconfigurable drive current system includes drive stages, each of which includes a high-side transistor and a low-side transistor in a totem pole configuration. A current monitor is coupled to an output of each drive stage. Input channels are provided to receive input signals. A processor is coupled to the input channels and to each current monitor for generating at least one drive signal using at least one of the input signals and current measured by at least one of the current monitors. A pulse width modulation generator is coupled to the processor and each drive stage for varying the drive signals as a function of time prior to being supplied to at least one of the drive stages.
NASA Astrophysics Data System (ADS)
Abdelaziz, Ayman A.; Ishijima, Tatsuo; Seto, Takafumi; Osawa, Naoki; Wedaa, Hassan; Otani, Yoshio
2016-06-01
The aim of this study is to investigate the effect of the intermediate frequency (1-10 kHz) of the sinusoidal driving voltage on the characteristics of a developed surface dielectric barrier discharge (SDBD)-based reactor having spikes on its discharge electrode. Moreover, its influence on the production of ozone and nitrogen oxide byproducts is evaluated. The results show that SDBD is operated in the filamentary mode at all the frequencies. Nevertheless, the pulses of the discharge current at high frequencies are much denser and have higher amplitudes than those at low frequencies. The analysis of the power consumed in the reactor shows that a small portion of the input power is dissipated in the dielectric material of SDBD source, whereas the major part of the power is consumed in the plasma discharge. The results of the ozone production show that higher frequencies have a slightly adverse effect on the ozone production at relatively high energy density values, where the ozone concentration is slightly decreased when the frequency is increased at the same energy density. The temperature of the discharge channels and gas is not a crucial factor for the decomposition of ozone in this reactor, while the results of the measurements of nitrogen oxides characteristics indicate that the formation of NO and NO2 has a significant adverse effect on the production efficiency of ozone due to their oxidation to another nitrogen oxides and their catalytic effect.
A comparison of the effects of continuous wave, sinusoidal-amplitude modulated, and pulsed square-wave-modulated 591-MHz microwave exposures on brain energy metabolism was made in male Sprague Dawley rats (175-225g). Brain NADH fluorescence, adensine triphosphate (ATP) concentrat...
Ren, Pengyu; Li, Bowen; Dong, Shiyao; Chen, Lin; Zhang, Yuelin
2018-01-01
Although many mathematical methods were used to analyze the neural activity under sinusoidal stimulation within linear response range in vestibular system, the reliabilities of these methods are still not reported, especially in nonlinear response range. Here we chose nonlinear least-squares algorithm (NLSA) with sinusoidal model to analyze the neural response of semicircular canal neurons (SCNs) during sinusoidal rotational stimulation (SRS) over a nonlinear response range. Our aim was to acquire a reliable mathematical method for data analysis under SRS in vestibular system. Our data indicated that the reliability of this method in an entire SCNs population was quite satisfactory. However, the reliability was strongly negatively depended on the neural discharge regularity. In addition, stimulation parameters were the vital impact factors influencing the reliability. The frequency had a significant negative effect but the amplitude had a conspicuous positive effect on the reliability. Thus, NLSA with sinusoidal model resulted a reliable mathematical tool for data analysis of neural response activity under SRS in vestibular system and more suitable for those under the stimulation with low frequency but high amplitude, suggesting that this method can be used in nonlinear response range. This method broke out of the restriction of neural activity analysis under nonlinear response range and provided a solid foundation for future study in nonlinear response range in vestibular system.
Kamimoto, Y; Tanabe, D; Tashiro, S; Hiraoka, T; Miyauchi, Y
1994-06-01
Liver sinusoidal cells play an important role in host defense by clearing particulate matter and macromolecules from the circulation. In this study, receptor-mediated endocytosis in sinusoidal cells was examined in two-thirds hepatectomized rats using 125I-labeled formaldehyde-treated bovine serum albumin (fBSA) as an endocytable macromolecule. The liver-weight to body-weight ratio in hepatectomized rats returned to the control value 10 days after hepatectomy. The endocytotic index for fBSA in sinusoidal cells decreased significantly to 0.0210 +/- 0.0017 (controls, 0.0598 +/- 0.0019) on the first day, then returned to the control level at 5 days (0.0554 +/- 0.0030). The changes in hepatic uptake for fBSA showed a similar time course of the endocytotic index. A transient increase in the uptake of fBSA per unit weight of liver of 22-39% above control occurred 2 to 3 days after hepatectomy. In contrast to fBSA, the endocytotic index in hepatocytes evaluated with 125I-labeled asialofetuin reached the minimum level on the second day, and then recovered to the control level 10 days after hepatectomy. These results suggest that endocytosis of fBSA by sinusoidal cells decreases after hepatectomy and rapidly recovers to normal before the completion of liver regeneration, whereas endocytosis of asialofetuin by hepatocytes decreases following hepatic resection and returns to normal when regeneration is substantially complete.
Li, Bowen; Dong, Shiyao; Chen, Lin; Zhang, Yuelin
2018-01-01
Although many mathematical methods were used to analyze the neural activity under sinusoidal stimulation within linear response range in vestibular system, the reliabilities of these methods are still not reported, especially in nonlinear response range. Here we chose nonlinear least-squares algorithm (NLSA) with sinusoidal model to analyze the neural response of semicircular canal neurons (SCNs) during sinusoidal rotational stimulation (SRS) over a nonlinear response range. Our aim was to acquire a reliable mathematical method for data analysis under SRS in vestibular system. Our data indicated that the reliability of this method in an entire SCNs population was quite satisfactory. However, the reliability was strongly negatively depended on the neural discharge regularity. In addition, stimulation parameters were the vital impact factors influencing the reliability. The frequency had a significant negative effect but the amplitude had a conspicuous positive effect on the reliability. Thus, NLSA with sinusoidal model resulted a reliable mathematical tool for data analysis of neural response activity under SRS in vestibular system and more suitable for those under the stimulation with low frequency but high amplitude, suggesting that this method can be used in nonlinear response range. This method broke out of the restriction of neural activity analysis under nonlinear response range and provided a solid foundation for future study in nonlinear response range in vestibular system. PMID:29304173
Multi-speed multi-phase resolver converter
NASA Technical Reports Server (NTRS)
Alhorn, Dean (Inventor); Howard, David (Inventor)
1994-01-01
A multiphase converter circuit generates a plurality of sinusoidal outputs of displaced phase and given speed value from the output of an angular resolver system attachable to a motor excited by these multi-phase outputs, the resolver system having a lower speed value than that of the motor. The angular resolver system provides in parallel format sequential digital numbers indicative of the amount of rotation of the shaft of an angular position sensor associated with the angular resolver system. These numbers are used to excite simultaneously identical addresses of a plurality of addressable memory systems, each memory system having stored therein at sequential addresses sequential values of a sinusoidal wavetrain of a given number of sinusoids. The stored wavetrain values represent sinusoids displaced from each other in phase according to the number of output phases desired. A digital-to-analog converter associated with each memory system converts each accessed word to a corresponding analog value to generate attendant to rotation of the angular resolver a sinusoidal wave of proper phase at each of the plurality of outputs. By properly orienting the angular resolver system with respect to the rotor of the motor, essentially ripple-free torque is supplied to the rotor. The angular resolver system may employ an analog resolver feeding an integrated circuit resolver-to-digital converter to produce the requisite digital values serving as addresses. Alternative versions employing incremental or absolute encoders are also described.
Multi-speed multi-phase resolver converter
NASA Technical Reports Server (NTRS)
Alhorn, Dean C. (Inventor); Howard, David E. (Inventor)
1995-01-01
A multiphase converter circuit generates a plurality of sinusoidal outputs of displaced phase and given speed value from the output of an angular resolver system attachable to a motor excited by these multi-phase outputs, the resolver system having a lower speed value than that of the motor. The angular resolver system provides in parallel format sequential digital numbers indicative of the amount of rotation of the shaft of an angular position sensor associated with the angular resolver system. These numbers are used to excite simultaneously identical addresses of a plurality of addressable memory systems, each memory system having stored therein at sequential addresses sequential values of a sinusoidal wavetrain of a given number of sinusoids. The stored wavetrain values represent sinusoids displaced from each other in phase according to the number of output phases desired. A digital-to-analog converter associated with each memory system converts each accessed word to a corresponding analog value to generate attendant to rotation of the angular resolver a sinusoidal wave of proper phase at each of the plurality of outputs. By properly orienting the angular resolver system with respect to the rotor of the motor, essentially ripple-free torque is supplied to the rotor. The angular resolver system may employ an analog resolver feeding an integrated circuit resolver-to-digital converter to produce the requisite digital values serving as addresses. Alternative versions employing incremental or absolute encoders are also described.
Effect of positive pulse charge waveforms on the energy efficiency of lead-acid traction cells
NASA Technical Reports Server (NTRS)
Smithrick, J. J.
1981-01-01
The effects of four different charge methods on the energy conversion efficiency of 300 ampere hour lead acid traction cells were investigated. Three of the methods were positive pulse charge waveforms; the fourth, a constant current method, was used as a baseline of comparison. The positive pulse charge waveforms were: 120 Hz full wave rectified sinusoidal; 120 Hz silicon controlled rectified; and 1 kHz square wave. The constant current charger was set at the time average pulse current of each pulse waveform, which was 150 amps. The energy efficiency does not include charger losses. The lead acid traction cells were charged to 70 percent of rated ampere hour capacity in each case. The results of charging the cells using the three different pulse charge waveforms indicate there was no significant difference in energy conversion efficiency when compared to constant current charging at the time average pulse current value.
Accuracy of MHD simulations: Effects of simulation initialization in GUMICS-4
NASA Astrophysics Data System (ADS)
Lakka, Antti; Pulkkinen, Tuija; Dimmock, Andrew; Osmane, Adnane; Palmroth, Minna; Honkonen, Ilja
2016-04-01
We conducted a study aimed at revealing how different global magnetohydrodynamic (MHD) simulation initialization methods affect the dynamics in different parts of the Earth's magnetosphere-ionosphere system. While such magnetosphere-ionosphere coupling codes have been used for more than two decades, their testing still requires significant work to identify the optimal numerical representation of the physical processes. We used the Grand Unified Magnetosphere-Ionosphere Coupling Simulation (GUMICS-4), the only European global MHD simulation being developed by the Finnish Meteorological Institute. GUMICS-4 was put to a test that included two stages: 1) a 10 day Omni data interval was simulated and the results were validated by comparing both the bow shock and the magnetopause spatial positions predicted by the simulation to actual measurements and 2) the validated 10 day simulation run was used as a reference in a comparison of five 3 + 12 hour (3 hour synthetic initialisation + 12 hour actual simulation) simulation runs. The 12 hour input was not only identical in each simulation case but it also represented a subset of the 10 day input thus enabling quantifying the effects of different synthetic initialisations on the magnetosphere-ionosphere system. The used synthetic initialisation data sets were created using stepwise, linear and sinusoidal functions. Switching the used input from the synthetic to real Omni data was immediate. The results show that the magnetosphere forms in each case within an hour after the switch to real data. However, local dissimilarities are found in the magnetospheric dynamics after formation depending on the used initialisation method. This is evident especially in the inner parts of the lobe.
Quantitative PET of liver functions
Keiding, Susanne; Sørensen, Michael; Frisch, Kim; Gormsen, Lars C; Munk, Ole Lajord
2018-01-01
Improved understanding of liver physiology and pathophysiology is urgently needed to assist the choice of new and upcoming therapeutic modalities for patients with liver diseases. In this review, we focus on functional PET of the liver: 1) Dynamic PET with 2-deoxy-2-[18F]fluoro-D-galactose (18F-FDGal) provides quantitative images of the hepatic metabolic clearance K met (mL blood/min/mL liver tissue) of regional and whole-liver hepatic metabolic function. Standard-uptake-value (SUV) from a static liver 18F-FDGal PET/CT scan can replace K met and is currently used clinically. 2) Dynamic liver PET/CT in humans with 11C-palmitate and with the conjugated bile acid tracer [N-methyl-11C]cholylsarcosine (11C-CSar) can distinguish between individual intrahepatic transport steps in hepatic lipid metabolism and in hepatic transport of bile acid from blood to bile, respectively, showing diagnostic potential for individual patients. 3) Standard compartment analysis of dynamic PET data can lead to physiological inconsistencies, such as a unidirectional hepatic clearance of tracer from blood (K 1; mL blood/min/mL liver tissue) greater than the hepatic blood perfusion. We developed a new microvascular compartment model with more physiology, by including tracer uptake into the hepatocytes from the blood flowing through the sinusoids, backflux from hepatocytes into the sinusoidal blood, and re-uptake along the sinusoidal path. Dynamic PET data include information on liver physiology which cannot be extracted using a standard compartment model. In conclusion, SUV of non-invasive static PET with 18F-FDGal provides a clinically useful measurement of regional and whole-liver hepatic metabolic function. Secondly, assessment of individual intrahepatic transport steps is a notable feature of dynamic liver PET. PMID:29755841
Quantitative PET of liver functions.
Keiding, Susanne; Sørensen, Michael; Frisch, Kim; Gormsen, Lars C; Munk, Ole Lajord
2018-01-01
Improved understanding of liver physiology and pathophysiology is urgently needed to assist the choice of new and upcoming therapeutic modalities for patients with liver diseases. In this review, we focus on functional PET of the liver: 1) Dynamic PET with 2-deoxy-2-[ 18 F]fluoro- D -galactose ( 18 F-FDGal) provides quantitative images of the hepatic metabolic clearance K met (mL blood/min/mL liver tissue) of regional and whole-liver hepatic metabolic function. Standard-uptake-value ( SUV ) from a static liver 18 F-FDGal PET/CT scan can replace K met and is currently used clinically. 2) Dynamic liver PET/CT in humans with 11 C-palmitate and with the conjugated bile acid tracer [ N -methyl- 11 C]cholylsarcosine ( 11 C-CSar) can distinguish between individual intrahepatic transport steps in hepatic lipid metabolism and in hepatic transport of bile acid from blood to bile, respectively, showing diagnostic potential for individual patients. 3) Standard compartment analysis of dynamic PET data can lead to physiological inconsistencies, such as a unidirectional hepatic clearance of tracer from blood ( K 1 ; mL blood/min/mL liver tissue) greater than the hepatic blood perfusion. We developed a new microvascular compartment model with more physiology, by including tracer uptake into the hepatocytes from the blood flowing through the sinusoids, backflux from hepatocytes into the sinusoidal blood, and re-uptake along the sinusoidal path. Dynamic PET data include information on liver physiology which cannot be extracted using a standard compartment model. In conclusion , SUV of non-invasive static PET with 18 F-FDGal provides a clinically useful measurement of regional and whole-liver hepatic metabolic function. Secondly, assessment of individual intrahepatic transport steps is a notable feature of dynamic liver PET.
Excess current experiment on YBCO tape conductor with metal stabilized layer
NASA Astrophysics Data System (ADS)
Tasaki, Kenji; Yazawa, Takashi; Ono, Michitaka; Kuriyama, Toru
2006-06-01
Excess current experiments were performed using YBCO tape conductors with a metal stabilized layer on the superconducting layer. The purpose of this research is to obtain the stable criteria of energy dissipation when YBCO tape is forced to flow excess current higher than its critical current. This situation should be considered in power applications. In the experiments short-length samples were immersed in liquid nitrogen and several cycles of 50Hz sinusoidal current were supplied to the samples by an induction voltage regulator. The critical current of the samples was about 110 A. With pulse length as long as 60 ms, YBCO tapes were able to be energized up to twelve times as the critical current without electrical or mechanical deformation. Prior to the excess current experiments, temperature dependency of resistance of the sample was measured so that the temperature rise was estimated by the generated resistance. It is found that YBCO tapes with a copper stabilized layer can be transiently heated to over 400K without degradation.
Fagerson, M H; Barmack, N H
1995-06-01
1. Because the nucleus reticularis gigantocellularis (NRGc) receives a substantial descending projection from the caudal vestibular nuclei, we used extracellular single-unit recording combined with natural vestibular stimulation to examine the possible peripheral origins of the vestibularly modulated activity of caudal NRGc neurons located within 500 microns of the midline. Chloralose-urethan anesthetized rabbits were stimulated with an exponential "step" and/or static head-tilt stimulus, as well as sinusoidal rotation about the longitudinal or interaural axes providing various combinations of roll or pitch, respectively. Recording sites were reconstructed from electrolytic lesions confirmed histologically. 2. More than 85% of the 151 neurons, in the medial aspect of the caudal NRGc, responded to vertical vestibular stimulation. Ninety-six percent of these responded to rotation onto the contralateral side (beta responses). Only a few also responded to horizontal stimulation. Seventy-eight percent of the neurons that responded to vestibular stimulation responded during static roll-tilt. One-half of these neurons also responded transiently to the change in head position during exponential "step" stimulation, suggesting input mediated by otolith and semicircular canal receptors or tonic-phasic otolith neurons. 3. Seventy-five percent of the responsive neurons had a "null plane." The planes of stimulation resulting in maximal responses, for cells that responded to static stimulation, were distributed throughout 150 degrees in both roll and pitch quadrants. Five of these cells responded only transiently during exponential "step" stimulation and responded maximally when stimulated in the plane of one of the vertical semicircular canals. 4. The phase of the response of the 25% of medial NRGc neurons that lacked "null planes" gradually shifted approximately 180 degrees during sinusoidal vestibular stimulation as the plane of stimulation was shifted about the vertical axis. These neurons likely received convergent input with differing spatial and temporal properties. 5. The activity of neurons in the medial aspect of the caudal NRGc of rabbits was modulated by both otolithic macular and vertical semicircular canal receptor stimulation. This vestibular information may be important for controlling the intensity of the muscle activity in muscles such as neck muscles where the load on the muscle is affected by the position of the head with respect to gravity. Some of these neurons may also shift muscle function from an agonist to an antagonist as the direction of head tilt changes.
USDA-ARS?s Scientific Manuscript database
Structured-illumination reflectance imaging (SIRI) provides a new means for enhanced detection of defects in horticultural products. Implementing the technique relies on retrieving amplitude images by illuminating the object with sinusoidal patterns of single spatial frequencies, which, however, are...
Using Antenna Arrays to Motivate the Study of Sinusoids
ERIC Educational Resources Information Center
Becker, J. P.
2010-01-01
Educational activities involving antenna arrays to motivate the study of sinusoids are described. Specifically, using fundamental concepts related to phase and simple geometric arguments, students are asked to predict the location of interference nulls in the radiation pattern of two-element phased array antennas. The location of the radiation…
Input current shaped ac-to-dc converters
NASA Technical Reports Server (NTRS)
1985-01-01
Input current shaping techniques for ac-to-dc converters were investigated. Input frequencies much higher than normal, up to 20 kHz were emphasized. Several methods of shaping the input current waveform in ac-to-dc converters were reviewed. The simplest method is the LC filter following the rectifier. The next simplest method is the resistor emulation approach in which the inductor size is determined by the converter switching frequency and not by the line input frequency. Other methods require complicated switch drive algorithms to construct the input current waveshape. For a high-frequency line input, on the order of 20 kHz, the simple LC cannot be discarded so peremptorily, since the inductor size can be compared with that for the resistor emulation method. In fact, since a dc regulator will normally be required after the filter anyway, the total component count is almost the same as for the resistor emulation method, in which the filter is effectively incorporated into the regulator.
Patanè, Fabrizio; Cappa, Paolo
2011-04-01
In this paper a novel electrically actuated parallel robot with three degrees-of-freedom (3 DOF) for dynamic postural studies is presented. The design has been described, the solution to the inverse kinematics has been found, and a numerical solution for the direct kinematics has been proposed. The workspace of the implemented robot is characterized by an angular range of motion of about ±10° for roll and pitch when yaw is in the range ±15°. The robot was constructed and the orientation accuracy was tested by means of an optoelectronic system and by imposing a sinusoidal input, with a frequency of 1 Hz and amplitude of 10°, along the three axes, in sequence. The collected data indicated a phase delay of 1° and an amplitude error of 0.5%-1.5%; similar values were observed for cross-axis sensitivity errors. We also conducted a clinical application on a group of normal subjects, who were standing in equilibrium on the robot base with eyes open (EO) and eyes closed (EC), which was rotated with a tri-axial sinusoidal trajectory with a frequency of 0.5 Hz and amplitude 5° for roll and pitch and 10° for the yaw. The postural configuration of the subjects was recorded with an optoelectronic system. However, due to the mainly technical nature of this paper, only initial validation outcomes are reported here. The clinical application showed that only the tilt and displacement on the sagittal pane of head, trunk, and pelvis in the trials conducted with eyes closed were affected by drift and that the reduction of the yaw rotation and of the mediolateral translation was not a controlled parameter, as happened, instead, for the other anatomical directions.
Jacob, Richard E.; Kuprat, Andrew P.; Einstein, Daniel R.; Corley, Richard A.
2016-01-01
Context Computational fluid dynamics (CFD) simulations of airflows coupled with physiologically-based pharmacokinetic (PBPK) modeling of respiratory tissue doses of airborne materials have traditionally used either steady-state inhalation or a sinusoidal approximation of the breathing cycle for airflow simulations despite their differences from normal breathing patterns. Objective Evaluate the impact of realistic breathing patterns, including sniffing, on predicted nasal tissue concentrations of a reactive vapor that targets the nose in rats as a case study. Materials and methods Whole-body plethysmography measurements from a free-breathing rat were used to produce profiles of normal breathing, sniffing, and combinations of both as flow inputs to CFD/PBPK simulations of acetaldehyde exposure. Results For the normal measured ventilation profile, modest reductions in time- and tissue depth-dependent areas under the curve (AUC) acetaldehyde concentrations were predicted in the wet squamous, respiratory, and transitional epithelium along the main airflow path, while corresponding increases were predicted in the olfactory epithelium, especially the most distal regions of the ethmoid turbinates, versus the idealized profile. The higher amplitude/frequency sniffing profile produced greater AUC increases over the idealized profile in the olfactory epithelium, especially in the posterior region. Conclusions The differences in tissue AUCs at known lesion-forming regions for acetaldehyde between normal and idealized profiles were minimal, suggesting that sinusoidal profiles may be used for this chemical and exposure concentration. However, depending upon the chemical, exposure system and concentration, and the time spent sniffing, the use of realistic breathing profiles—including sniffing—could become an important modulator for local tissue dose predictions. PMID:26986954
Schwenke, T.; Wimmer, M. A.
2013-01-01
Wear of polyethylene (UHMWPE) is dependent on cross-shear. The aim of the present study was: 1) to develop a theoretical description of cross-shear, 2) to experimentally determine the relationship between cross-shear motion and UHMWPE wear using a wheel-on-flat apparatus, and 3) to calculate the work it takes to remove a unit volume of wear for the use in advanced computational models of wear. The theoretical description of cross-shear has been based on the previously reported finding that cross-shear is maximal when movement occurs perpendicular to fibril orientation. Here, cross-shear is described with a double-sinusoidal function that uses the angle between fibril orientation and velocity vector as input, and maximum cross-shear occurs at 90° and 270°. In the experimental part of the study, friction and wear of polyethylene were plotted against increasing sliding velocity vector angles, i.e. increasing cross-shear. It was found that wear intensified with increasing cross-shear, and wear depth could be predicted well using the double-sinusoidal function for cross-shear (r2=0.983). The friction data were then used to calculate the work to remove a unit particle by integrating the frictional force over the directional sliding distance. Using the wear volumes, determined for both longitudinal and perpendicular motion directions, the work to remove a unit volume of material was qy= 8.473 × 108 J/mm3 and qx= 1.321 × 108 J/mm3, respectively. Hence, 6.4 times more work was necessary to remove a unit wear volume in the direction of principal motion (i.e. along the molecular fibril orientation) than 90° perpendicular to it. In the future, these findings will be implemented in computational models to assess wear. PMID:23794761
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colby, Sean M.; Kabilan, Senthil; Jacob, Richard E.
Abstract Context: Computational fluid dynamics (CFD) simulations of airflows coupled with physiologically based pharmacokinetic (PBPK) modeling of respiratory tissue doses of airborne materials have traditionally used either steady-state inhalation or a sinusoidal approximation of the breathing cycle for airflow simulations despite their differences from normal breathing patterns. Objective: Evaluate the impact of realistic breathing patterns, including sniffing, on predicted nasal tissue concentrations of a reactive vapor that targets the nose in rats as a case study. Materials and methods: Whole-body plethysmography measurements from a free-breathing rat were used to produce profiles of normal breathing, sniffing and combinations of both asmore » flow inputs to CFD/PBPK simulations of acetaldehyde exposure. Results: For the normal measured ventilation profile, modest reductions in time- and tissue depth-dependent areas under the curve (AUC) acetaldehyde concentrations were predicted in the wet squamous, respiratory and transitional epithelium along the main airflow path, while corresponding increases were predicted in the olfactory epithelium, especially the most distal regions of the ethmoid turbinates, versus the idealized profile. The higher amplitude/frequency sniffing profile produced greater AUC increases over the idealized profile in the olfactory epithelium, especially in the posterior region. Conclusions: The differences in tissue AUCs at known lesion-forming regions for acetaldehyde between normal and idealized profiles were minimal, suggesting that sinusoidal profiles may be used for this chemical and exposure concentration. However, depending upon the chemical, exposure system and concentration and the time spent sniffing, the use of realistic breathing profiles, including sniffing, could become an important modulator for local tissue dose predictions.« less
A rodent model for artificial gravity: VOR adaptation and Fos expression.
Kaufman, Galen; Weng, Tianxiang; Ruttley, Tara
2005-01-01
Vestibulo-ocular reflex (VOR) adaptation and brainstem Fos expression as a result of short radius cross-coupling stimuli were investigated to find neural correlates of the inherent Coriolis force asymmetry from an artificial gravity (AG) environment. Head-fixed gerbils (Meriones unguiculatus, N=79) were exposed, in the dark, to 60--90 minutes of cross-coupled rotations, combinations of pitch (or roll) and yaw rotation, while binocular horizontal, vertical, and torsional eye position were determined using infrared video-oculography. Centripetal acceleration in combination with angular cross-coupling was also studied. Simultaneous sinusoidal rotations in two planes (yaw with roll or pitch) provided a net symmetrical stimulus for the right and left labyrinths. In contrast, a constant velocity yaw rotation during sinusoidal roll or pitch provided the asymmetric stimulus model for AG. We found orthogonally oriented half-cycle VOR gain changes. The results depended on the direction of horizontal rotation during asymmetrical cross-coupling, and other aspects of the stimulus, including the phase relationship between the two rotational inputs, the symmetry of the stimulus, and training. Fos expression also revealed laterality differences in the prepositus and inferior olivary C subnucleus. In contrast the inferior olivary beta and ventrolateral outgrowth were labeled bilaterally. Additional cross-coupling dependent labeling was found in the flocculus, hippocampus, and several cortical regions, including the perirhinal and temporal association cortices. Analyses showed significant differences across the brain regions for several factors (symmetry, rotation velocity and direction, the presence of centripetal acceleration or a visual surround, and training). Finally, animals compensating from a unilateral surgical labyrinthectomy who received multiple cross-coupling training sessions had improved half-cycle VOR gain in the ipsilateral eye with head rotation toward the intact side. We hypothesize that cross-coupling vestibular training can benefit aspects of motor recovery or performance.
A double-stage start-up structure to limit the inrush current used in current mode charge pump
NASA Astrophysics Data System (ADS)
Cong, Liu; Xinquan, Lai; Hanxiao, Du; Yuan, Chi
2016-06-01
A double-stage start-up structure to limit the inrush current used in current-mode charge pump with wide input range, fixed output and multimode operation is presented in this paper. As a widely utilized power source implement, a Li-battery is always used as the power supply for chips. Due to the internal resistance, a potential drop will be generated at the input terminal of the chip with an input current. A false shut down with a low supply voltage will happen if the input current is too large, leading to the degradation of the Li-battery's service life. To solve this problem, the inrush current is limited by introducing a new start-up state. All of the circuits have been implemented with the NUVOTON 0.6 μm CMOS process. The measurement results show that the inrush current can be limited below 1 A within all input supply ranges, and the power efficiency is higher than the conventional structure. Project supported by the National Natural Science Foundation of China (No. 61106026).
Non-invasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations.
Vosskuhl, Johannes; Strüber, Daniel; Herrmann, Christoph S
2018-01-01
Cognitive neuroscience set out to understand the neural mechanisms underlying cognition. One central question is how oscillatory brain activity relates to cognitive processes. Up to now, most of the evidence supporting this relationship was correlative in nature. This situation changed dramatically with the recent development of non-invasive brain stimulation (NIBS) techniques, which open up new vistas for neuroscience by allowing researchers for the first time to validate their correlational theories by manipulating brain functioning directly. In this review, we focus on transcranial alternating current stimulation (tACS), an electrical brain stimulation method that applies sinusoidal currents to the intact scalp of human individuals to directly interfere with ongoing brain oscillations. We outline how tACS can impact human brain oscillations by employing different levels of observation from non-invasive tACS application in healthy volunteers and intracranial recordings in patients to animal studies demonstrating the effectiveness of alternating electric fields on neurons in vitro and in vivo . These findings likely translate to humans as comparable effects can be observed in human and animal studies. Neural entrainment and plasticity are suggested to mediate the behavioral effects of tACS. Furthermore, we focus on mechanistic theories about the relationship between certain cognitive functions and specific parameters of brain oscillaitons such as its amplitude, frequency, phase and phase coherence. For each of these parameters we present the current state of testing its functional relevance by means of tACS. Recent developments in the field of tACS are outlined which include the stimulation with physiologically inspired non-sinusoidal waveforms, stimulation protocols which allow for the observation of online-effects, and closed loop applications of tACS.
Frequency pulling in a low-voltage medium-power gyrotron
NASA Astrophysics Data System (ADS)
Luo, Li; Du, Chao-Hai; Huang, Ming-Guang; Liu, Pu-Kun
2018-04-01
Many recent biomedical applications use medium-power frequency-tunable terahertz (THz) sources, such as sensitivity-enhanced nuclear magnetic resonance, THz imaging, and biomedical treatment. As a promising candidate, a low-voltage gyrotron can generate watt-level, continuous THz-wave radiation. In particular, the frequency-pulling effect in a gyrotron, namely, the effect of the electron beam parameters on the oscillation frequency, can be used to tune the operating frequency. Most previous investigations used complicated and time-consuming gyrotron nonlinear theory to study the influence of many beam parameters on the interaction performance. While gyrotron linear theory investigation demonstrates the advantages of rapidly and clearly revealing the physical influence of individual key beam parameters on the overall system performance, this paper demonstrates systematically the use of gyrotron linear theory to study the frequency-pulling effect in a low-voltage gyrotron with either a Gaussian or a sinusoidal axial-field profile. Furthermore, simulations of a gyrotron operating in the first axial mode are carried out in the framework of nonlinear theory as a contrast. Close agreement is achieved between the two theories. Besides, some interesting results are obtained. In a low-current sinusoidal-profile cavity, the ranges of frequency variation for different axial modes are isolated from each other, and the frequency tuning bandwidth for each axial mode increases by increasing either the beam voltage or pitch factor. Lowering the voltage, the total tuning ranges are squeezed and become concentrated. However, the isolated frequency regions of each axial mode cannot be linked up unless the beam current is increased, meaning that higher current operation is the key to achieving a wider and continuous tuning frequency range. The results presented in this paper can provide a reference for designing a broadband low-voltage gyrotron.
Focal nodular hyperplasia with major sinusoidal dilatation: a misleading entity
Laumonier, Hervé; Frulio, Nora; Laurent, Christophe; Balabaud, Charles; Zucman-Rossi, Jessica; Bioulac-Sage, Paulette
2010-01-01
Focal nodular hyperplasia (FNH) is a benign liver lesion thought to be a non-specific response to locally increased blood flow. Although the diagnosis of FNH and hepatocellular adenoma (HCA) has made great progress over the last few years using modern imaging techniques, there are still in daily practice some difficulties concerning some atypical nodules. Here, the authors report the case of a 47-year-old woman with a single liver lesion thought to be, by imaging, an inflammatory HCA with major sinusoidal congestion. This nodule was revealed to be, at the microscopical level and after specific immunostaining and molecular analysis, an FNH with sinusoidal dilatation (so-called telangiectatic focal nodular hyperplasia). PMID:22798311
NASA Astrophysics Data System (ADS)
Fu, Guangwei; Li, Kuixing; Fu, Xinghu; Bi, Weihong
2013-07-01
During the fusion splicing Hollow Core Photonic Crystal Fiber (HC-PCF), the air-holes collapse easily due to the improper fusion duration time and optical power. To analyze the temperature characteristics of fusion splicing HC-PCF, a heating method by sinusoidal modulation CO2 laser has been proposed. In the sinusoidal modulation, the variation relationships among laser power, temperature difference and angular frequency are analyzed. The results show that the theoretical simulation is basically in accordance with the experimental data. Therefore, a low-loss fusion splicing can be achieved by modulating the CO2 laser frequency to avoid the air-holes collapse of HC-PCF. Further, the errors are also given.
Traveling wave solutions of the nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Akbari-Moghanjoughi, M.
2017-10-01
In this paper, we investigate the traveling soliton and the periodic wave solutions of the nonlinear Schrödinger equation (NLSE) with generalized nonlinear functionality. We also explore the underlying close connection between the well-known KdV equation and the NLSE. It is remarked that both one-dimensional KdV and NLSE models share the same pseudoenergy spectrum. We also derive the traveling wave solutions for two cases of weakly nonlinear mathematical models, namely, the Helmholtz and the Duffing oscillators' potentials. It is found that these models only allow gray-type NLSE solitary propagations. It is also found that the pseudofrequency ratio for the Helmholtz potential between the nonlinear periodic carrier and the modulated sinusoidal waves is always in the range 0.5 ≤ Ω/ω ≤ 0.537285 regardless of the potential parameter values. The values of Ω/ω = {0.5, 0.537285} correspond to the cnoidal waves modulus of m = {0, 1} for soliton and sinusoidal limits and m = 0.5, respectively. Moreover, the current NLSE model is extended to fully NLSE (FNLSE) situation for Sagdeev oscillator pseudopotential which can be derived using a closed set of hydrodynamic fluid equations with a fully integrable Hamiltonian system. The generalized quasi-three-dimensional traveling wave solution is also derived. The current simple hydrodynamic plasma model may also be generalized to two dimensions and other complex situations including different charged species and cases with magnetic or gravitational field effects.
McCullen, Seth D; McQuilling, John P; Grossfeld, Robert M; Lubischer, Jane L; Clarke, Laura I; Loboa, Elizabeth G
2010-12-01
Electric stimulation is known to initiate signaling pathways and provides a technique to enhance osteogenic differentiation of stem and/or progenitor cells. There are a variety of in vitro stimulation devices to apply electric fields to such cells. Herein, we describe and highlight the use of interdigitated electrodes to characterize signaling pathways and the effect of electric fields on the proliferation and osteogenic differentiation of human adipose-derived stem cells (hASCs). The advantage of the interdigitated electrode configuration is that cells can be easily imaged during short-term (acute) stimulation, and this identical configuration can be utilized for long-term (chronic) studies. Acute exposure of hASCs to alternating current (AC) sinusoidal electric fields of 1 Hz induced a dose-dependent increase in cytoplasmic calcium in response to electric field magnitude, as observed by fluorescence microscopy. hASCs that were chronically exposed to AC electric field treatment of 1 V/cm (4 h/day for 14 days, cultured in the osteogenic differentiation medium containing dexamethasone, ascorbic acid, and β-glycerol phosphate) displayed a significant increase in mineral deposition relative to unstimulated controls. This is the first study to evaluate the effects of sinusoidal AC electric fields on hASCs and to demonstrate that acute and chronic electric field exposure can significantly increase intracellular calcium signaling and the deposition of accreted calcium under osteogenic stimulation, respectively.
Transient Response in a Dendritic Neuron Model for Current Injected at One Branch
Rinzel, John; Rall, Wilfrid
1974-01-01
Mathematical expressions are obtained for the response function corresponding to an instantaneous pulse of current injected to a single dendritic branch in a branched dendritic neuron model. The theoretical model assumes passive membrane properties and the equivalent cylinder constraint on branch diameters. The response function when used in a convolution formula enables one to compute the voltage transient at any specified point in the dendritic tree for an arbitrary current injection at a given input location. A particular numerical example, for a brief current injection at a branch terminal, illustrates the attenuation and delay characteristics of the depolarization peak as it spreads throughout the neuron model. In contrast to the severe attenuation of voltage transients from branch input sites to the soma, the fraction of total input charge actually delivered to the soma and other trees is calculated to be about one-half. This fraction is independent of the input time course. Other numerical examples, which compare a branch terminal input site with a soma input site, demonstrate that, for a given transient current injection, the peak depolarization is not proportional to the input resistance at the injection site and, for a given synaptic conductance transient, the effective synaptic driving potential can be significantly reduced, resulting in less synaptic current flow and charge, for a branch input site. Also, for the synaptic case, the two inputs are compared on the basis of the excitatory post-synaptic potential (EPSP) seen at the soma and the total charge delivered to the soma. PMID:4424185
USDA-ARS?s Scientific Manuscript database
This study presented a first exploration of using composite sinusoidal patterns that integrated two and three spatial frequencies of interest, in structured-illumination reflectance imaging (SIRI) for enhanced detection of defects in food (e.g., bruises in apples). Three methods based on Fourier tra...
Lim, Lam Ghai; Pao, William K. S.; Hamid, Nor Hisham; Tang, Tong Boon
2016-01-01
A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a ‘sine-like’ function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function), with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design. PMID:27384567
NASA Astrophysics Data System (ADS)
Zhang, Xuping; Shi, Yuanlei; Shan, Yuanyuan; Sun, Zhenhong; Qiao, Weiyan; Zhang, Yixin
2016-09-01
Optical time domain reflectometry (OTDR) is one of the most successful diagnostic tools for nondestructive attenuation measurement of a fiber link. To achieve better sensitivity, spatial resolution, and avoid dead-zone in conversional OTDR, a single-photon detector has been introduced to form the photon-counting OTDR (ν-OTDR). We have proposed a ν-OTDR system using a gigahertz sinusoidally gated InGaAs/InP single-photon avalanche detector (SPAD). Benefiting from the superior performance of a sinusoidal gated SPAD on dark count probability, gating frequency, and gate duration, our ν-OTDR system has achieved a dynamic range (DR) of 33.4 dB with 1 μs probe pulse width after an equivalent measurement time of 51 s. This obtainable DR corresponds to a sensing length over 150 km. Our system has also obtained a spatial resolution of 5 cm at the end of a 5-km standard single-mode fiber. By employing a sinusoidal gating technique, we have improved the ν-OTDR spatial resolution and significantly reduced the measurement time.
The sinusoidal probe: a new approach to improve electrode longevity
Sohal, Harbaljit S.; Jackson, Andrew; Jackson, Richard; Clowry, Gavin J.; Vassilevski, Konstantin; O’Neill, Anthony; Baker, Stuart N.
2014-01-01
Micromotion between the brain and implanted electrodes is a major contributor to the failure of invasive brain–machine interfaces. Movements of the electrode tip cause recording instabilities while spike amplitudes decline over the weeks/months post-implantation due to glial cell activation caused by sustained mechanical trauma. We have designed a sinusoidal probe in order to reduce movement of the recording tip relative to the surrounding neural tissue. The probe was microfabricated from flexible materials and incorporated a sinusoidal shaft to minimize tethering forces and a 3D spheroid tip to anchor the recording site within the brain. Compared to standard microwire electrodes, the signal-to-noise ratio and local field potential power of sinusoidal probe recordings from rabbits was more stable across recording periods up to 678 days. Histological quantification of microglia and astrocytes showed reduced neuronal tissue damage especially for the tip region between 6 and 24 months post-implantation. We suggest that the micromotion-reducing measures incorporated into our design, at least partially, decreased the magnitude of gliosis, resulting in enhanced longevity of recording. PMID:24808859
Shetty, Shishir; Weston, Christopher J.; Adams, David H.; Lalor, Patricia F.
2014-01-01
Leucocyte infiltration into human liver tissue is a common process in all adult inflammatory liver diseases. Chronic infiltration can drive the development of fibrosis and progression to cirrhosis. Understanding the molecular mechanisms that mediate leucocyte recruitment to the liver could identify important therapeutic targets for liver disease. The key interaction during leucocyte recruitment is that of inflammatory cells with endothelium under conditions of shear stress. Recruitment to the liver occurs within the low shear channels of the hepatic sinusoids which are lined by hepatic sinusoidal endothelial cells (HSEC). The conditions within the hepatic sinusoids can be recapitulated by perfusing leucocytes through channels lined by human HSEC monolayers at specific flow rates. In these conditions leucocytes undergo a brief tethering step followed by activation and firm adhesion, followed by a crawling step and subsequent transmigration across the endothelial layer. Using phase contrast microscopy, each step of this 'adhesion cascade' can be visualized and recorded followed by offline analysis. Endothelial cells or leucocytes can be pretreated with inhibitors to determine the role of specific molecules during this process. PMID:24686418
Inoue, S; Osmond, D G
2001-11-01
Venous sinusoids in bone marrow are the site of a large-scale traffic of cells between the extravascular hemopoietic compartment and the blood stream. The wall of the sinusoids consists solely of a basement membrane interposed between a layer of endothelial cells and an incomplete covering of adventitial cells. To examine its possible structural specialization, the basement membrane of bone marrow sinusoids has now been examined by high resolution electron microscopy of perfusion-fixed mouse bone marrow. The basement membrane layer was discontinuous, consisting of irregular masses of amorphous material within a uniform 60-nm-wide space between apposing endothelial cells and adventitial cell processes. At maximal magnifications, the material was resolved as a random arrangement of components lacking the "cord network" formation seen in basement membranes elsewhere. Individual components exhibited distinctive ultrastructural features whose molecular identity has previously been established. By these morphological criteria, the basement membrane contained unusually abundant chondroitin sulfate proteoglycan (CSPG) revealed by 3-nm-wide "double tracks," and moderate amounts of both laminin as dense irregular coils and type IV collagen as 1-1.5-nm-wide filaments, together with less conspicuous amounts of amyloid P forming pentagonal frames. In contrast, 4.5-5-nm-wide "double tracks" characteristic of heparan sulfate proteoglycan (HSPG) were absent. The findings demonstrate that, in comparison with "typical" basement membranes in other tissues, the bone marrow sinusoidal basement membrane is uniquely specialized in several respects. Its discontinuous nature, lack of network organization, and absence of HSPG, a molecule that normally helps to maintain membrane integrity, may facilitate disassembly and reassembly of basement membrane material in concert with movements of adventitial cell processes as maturing hemopoietic cells pass through the sinusoidal wall: the exceptionally large quantity of CSPG may represent a reservoir of CD44 receptor for use in hemopoiesis. Copyright 2001 Wiley-Liss, Inc.
Nagasawa, Yoshinori; Demura, Shinichi; Takahashi, Kenji
2013-01-01
It is important to develop an accurate method of measuring controlled force exertion. This study examined the age differences between the controlled force exertion measured by a sinusoidal waveform and a bar chart display. The participants comprised 175 right-handed male adults aged 20-86 years. The participants were divided into three age groups: young (n=53), middle-aged (n=71), and elderly (n=51). They matched the submaximal grip strength exerted by their dominant hand to changing demand values displayed as either a sinusoidal waveform or a bar chart appearing on a personal computer screen. The participants performed the controlled force exertion test three times with a 1-min inter-trial interval using their dominant hand. The dependent variable was the total sum of the percentage values of the differences between the demand value and grip exertion value for more than 25s. The coefficient of variance had almost the same range in all age groups in both displays (CVSW=28.0-36.9, CVBC=29.1-32.6), but the elderly group showed a somewhat higher value with the sinusoidal waveform. Significant correlations were found between the scores with sinusoidal waveform and bar chart displays in the young, middle-aged, and elderly groups (r=0.47-0.68), but the correlations did not differ significantly between the age groups. Scores over 1500% in sinusoidal and bar chart display were found in one and two participants, respectively, in the middle-aged group and in 12% and 16% of the participants, respectively, in the elderly group. Furthermore, among all participants, only 8% of participants in the elderly group scored over 1500% in both displays. Scores over 1500% in both displays are considered to be considerably worse in controlled force exertion than lower scores. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Propulsion by sinusoidal locomotion: A motion inspired by Caenorhabditis elegans
NASA Astrophysics Data System (ADS)
Ulrich, Xialing
Sinusoidal locomotion is commonly seen in snakes, fish, nematodes, or even the wings of some birds and insects. This doctoral thesis presents the study of sinusoidal locomotion of the nematode C. elegans in experiments and the application of the state-space airloads theory to the theoretical forces of sinusoidal motion. An original MATLAB program has been developed to analyze the video records of C. elegans' movement in different fluids, including Newtonian and non-Newtonian fluids. The experimental and numerical studies of swimming C. elegans has revealed three conclusions. First, though the amplitude and wavelength are varying with time, the motion of swimming C. elegans can still be viewed as sinusoidal locomotion with slips. The average normalized wavelength is a conserved character of the locomotion for both Newtonian and non-Newtonian fluids. Second, fluid viscosity affects the frequency but not the moving speed of C. elegans, while fluid elasticity affects the moving speed but not the frequency. Third, by the resistive force theory, for more elastic fluids the ratio of resistive coefficients becomes smaller. Inspired by the motion of C. elegans and other animals performing sinusoidal motion, we investigated the sinusoidal motion of a thin flexible wing in theory. Given the equation of the motion, we have derived the closed forms of propulsive force, lift and other generalized forces applying on the wing. We also calculated the power required to perform the motion, the power lost due to the shed vortices and the propulsive efficiency. These forces and powers are given as functions of reduced frequency k, dimensionless wavelength z, dimensionless amplitude A/b, and time. Our results show that a positive, time-averaged propulsive force is produced for all k>k0=pi/ z. At k=k0, which implies the moment when the moving speed of the wing is the same as the wave speed of its undulation, the motion reaches a steady state with all forces being zero. If there were no shed vorticity effects, the propulsive force would be zero at z = 0.569 and z = 1.3 for all k, and for a fixed k the wing would gain the optimal propulsive force when z = 0.82. With the effects of shed vorticity, the propulsive efficiency decreases from 1.0 to 0.5 as k goes to infinity, and the propulsive efficiency increases almost in a linear relationship with k0.
A dual-channel flux-switching permanent magnet motor for hybrid electric vehicles
NASA Astrophysics Data System (ADS)
Hua, Wei; Wu, Zhongze; Cheng, Ming; Wang, Baoan; Zhang, Jianzhong; Zhou, Shigui
2012-04-01
The flux-switching permanent magnet (FSPM) motor is a relatively novel brushless machine having both magnets and concentrated windings in the stator, which exhibits inherently sinusoidal PM flux-linkage, back-EMF waveforms, and high torque capability. However, in the application of hybrid electric vehicles, it is essential to prevent magnets and armature windings moving in radial direction due to the possible vibration during operation, and to ensure fault-tolerant capability. Hence, in this paper based on an original FSPM motor, a dual-channel FSPM (DC-FSPM) motor with modified structure to fix both armature windings and magnets and improved reliability is proposed for a practical 10 kW integral starter/generator (ISG) in hybrid electric vehicles. The influences of different solutions and the end-effect on the static characteristics, are evaluated based on the 2D and 3D finite element analysis, respectively. Finally, both the predicted and experimental results, compared with a prototype DC-FSPM motor and an interior PM motor used in Honda Civic, confirm that the more sinusoidal back-EMF waveform and lower torque ripple can be achieved in the DC-FSPM motor, whereas the torque is smaller under the same coil current.
Richardson, Paul G; Triplett, Brandon M; Ho, Vincent T; Chao, Nelson; Dignan, Fiona L; Maglio, Michelle; Mohty, Mohamad
2018-02-01
Hepatic veno-occlusive disease/sinusoidal obstruction syndrome (VOD/SOS) is an unpredictable condition associated with endothelial-cell damage due to conditioning for hematopoietic stem-cell transplantation (HSCT) or chemotherapy without HSCT. Mortality in patients with VOD/SOS and multi-organ dysfunction (MOD) may be >80%. Areas covered: Defibrotide is the only approved drug for the treatment of severe hepatic VOD/SOS after HSCT in the European Union and hepatic VOD/SOS with renal or pulmonary dysfunction in the United States. Its efficacy in patients with VOD/SOS with MOD post-HSCT was demonstrated in a clinical-trial program that included a historically controlled treatment study, a phase 2 trial, and a large T-IND expanded-access program that also included patients without MOD and who received chemotherapy without HSCT. Expert commentary: Defibrotide appears to protect endothelial cells and restore the thrombolytic-fibrinolytic balance. It addresses a significant clinical need and has demonstrated favorable Day +100 survival and overall adverse-event rates that seem similar to control groups receiving supportive care alone. Currently, defibrotide is under investigation for the prevention of VOD/SOS in high-risk pediatric and adult patients.
Endothelial dysfunction in the regulation of portal hypertension
Iwakiri, Yasuko
2013-01-01
Portal hypertension is caused by an increased intrahepatic resistance, a major consequence of cirrhosis. Endothelial dysfunction in liver sinusoidal endothelial cells (LSECs) decreases the production of vasodilators, such as nitric oxide (NO) and favors vasoconstriction. This contributes to an increased vascular resistance in the intrahepatic/sinusoidal microcirculation. Portal hypertension, once developed, causes endothelial cell (EC) dysfunction in the extrahepatic, i.e. splanchnic and systemic, circulation. Unlike LSEC dysfunction, EC dysfunction in the splanchnic and systemic circulation overproduces vasodilator molecules, leading to arterial vasodilatation. In addition, portal hypertension leads to the formation of portosystemic collateral vessels. Both arterial vasodilatation and portosystemic collateral vessel formation exacerbate portal hypertension by increasing the blood flow through the portal vein. Pathologic consequences, such as esophageal varices and ascites, result. While the sequence of pathological vascular events in cirrhosis and portal hypertension have been elucidated, the underlying cellular and molecular mechanisms causing EC dysfunctions are not yet fully understood. This review article summarizes the current cellular and molecular studies on EC dysfunctions found during the development of cirrhosis and portal hypertension with a focus on intra- and extrahepatic circulation. The article ends by discussing future directions of study for EC dysfunctions. PMID:21745318
Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air
NASA Astrophysics Data System (ADS)
Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro
2014-12-01
Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.
Plasma bullet current measurements in a free-stream helium capillary jet
NASA Astrophysics Data System (ADS)
Oh, Jun-Seok; Walsh, James L.; Bradley, James W.
2012-06-01
A commercial current monitor has been used to measure the current associated with plasma bullets created in both the positive and negative half cycles of the sinusoidal driving voltage sustaining a plasma jet. The maximum values of the positive bullet current are typically ˜750 µA and persist for 10 µs, while the peaks in the negative current of several hundred μA are broad, persisting for about 40 µs. From the time delay of the current peaks with increasing distance from the jet nozzle, an average bullet propagation speed has been measured; the positive and negative bullets travel at 17.5 km s-1 and 3.9 km s-1 respectively. The net space charge associated with the bullet(s) has also been calculated; the positive and negative bullets contain a similar net charge of the order of 10-9 C measured at all monitor positions, with estimated charged particle densities nb of ˜1010-1011 cm-3 in the bullet.
Wide bandwidth transimpedance amplifier for extremely high sensitivity continuous measurements.
Ferrari, Giorgio; Sampietro, Marco
2007-09-01
This article presents a wide bandwidth transimpedance amplifier based on the series of an integrator and a differentiator stage, having an additional feedback loop to discharge the standing current from the device under test (DUT) to ensure an unlimited measuring time opportunity when compared to switched discharge configurations while maintaining a large signal amplification over the full bandwidth. The amplifier shows a flat response from 0.6 Hz to 1.4 MHz, the capability to operate with leakage currents from the DUT as high as tens of nanoamperes, and rail-to-rail dynamic range for sinusoidal current signals independent of the DUT leakage current. Also available is a monitor output of the stationary current to track experimental slow drifts. The circuit is ideal for noise spectral and impedance measurements of nanodevices and biomolecules when in the presence of a physiological medium and in all cases where high sensitivity current measurements are requested such as in scanning probe microscopy systems.
Three-Space Interaction in Doubly Sinusoidal Periodic Media
NASA Astrophysics Data System (ADS)
Tian-Lin, Dong; Ping, Chen
2006-06-01
Three-space-harmonic (3SH) interaction in doubly sinusoidal periodic (DSP) medium is investigated. Associated physical effects such as additional gap, defect state, and indirect gaps, are theoretically and numerically revealed. This simple DSP model can facilitate the understanding and utilizing of a series of effects in rather complicated periodic structures with additional defect or modulation.
The Relativistic Transformation for an Electromagnetic Plane Wave with General Time Dependence
ERIC Educational Resources Information Center
Smith, Glenn S.
2012-01-01
In special relativity, the transformation between inertial frames for an electromagnetic plane wave is usually derived for the time-harmonic case (the field is a sinusoid of infinite duration), even though all practical waves are of finite duration and may not even contain a dominant sinusoid. This paper presents an alternative derivation in which…
Gauthé, Mathieu; Bozec, Laurence; Bedossa, Pierre
2014-11-01
Sinusoidal obstruction syndrome (SOS) is a potentially fatal liver injury that mainly occurs after myeloablative chemotherapy. We report two cases of SOS investigated by 18F-fluorodeoxyglucose positron emission tomography/computed tomography and treated with defibrotide. © 2014 by the American Association for the Study of Liver Diseases.
Riding the Ferris Wheel: A Sinusoidal Model
ERIC Educational Resources Information Center
Mittag, Kathleen Cage; Taylor, Sharon E.
2011-01-01
When thinking of models for sinusoidal waves, examples such as tides of the ocean, daily temperatures for one year in your town, light and sound waves, and certain types of motion are used. Many textbooks [1, p. 222] also present a "Ferris wheel description problem" for students to work. This activity takes the Ferris wheel problem out of the…
Multiple polarization states of vector soliton in fiber laser
NASA Astrophysics Data System (ADS)
Chen, Weicheng; Xu, Wencheng; Cao, Hui; Han, Dingan
2007-11-01
Vector soliton is obtained in erbium-doped fiber laser via nonlinear polarization rotation techniques. In experiment, we observe the every 4- and 7-pulse sinusoidal peak modulation. Temporal pulse sinusoidal peak modulation owes to evolution behavior of vector solitons in multiple polarization states. The polarizer in the laser modulates the mode-locked pulses with different polarization states into periodical pulse train intensities modulation. Moreover, the increasing pumping power lead to the appearance of the harmonic pulses and change the equivalent beat length to accelerate the polarization rotation. When the laser cavity length is the n-th multiple ratios to the beat length to maintain the mode-locking, the mode-locked vector soliton is in n-th multiple polarization states, exhibiting every n-pulse sinusoidal peak modulation.
Sinusoidal portal hypertension in hepatic amyloidosis.
Bion, E; Brenard, R; Pariente, E A; Lebrec, D; Degott, C; Maitre, F; Benhamou, J P
1991-01-01
Hepatic venous catheterisation and transvenous liver biopsy were performed in five patients with hepatic amyloidosis. In three patients, hepatic venous pressures were normal and histological examination of the liver biopsy specimen showed discrete and sparse perisinusoidal amyloid deposits. In the other two, however, the gradient between wedged and free hepatic venous pressures was increased (12 and 16 mmHg; normal 1-4 mmHg) and amyloid deposits were abundant and diffuse in the Disse's space. This study shows that portal hypertension in patients with hepatic amyloidosis is of the sinusoidal type and is related to the reduction of vascular space of hepatic sinusoids by massive perisinusoidal amyloid deposits. Furthermore, portal hypertension is associated with a poor prognosis in patients with hepatic amyloidosis. Images Figure 1 Figure 2 PMID:1864548
An OKQPSK modem incorporating numerically controlled carrier synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oetken, R.E.
1988-04-04
The feasibility of incorporating numerically controlled oscillators (NCO) in communication related applications is evaluated. NCO generation of sinusoids may prove useful in systems requiring precise frequency control, tuning linearity, and orthogonality versus frequency. An OKQPSK modem operating at a data rate of 200 kb/s was fabricated. The modem operates in a back to back hardwired channel and thus does not incorporate carrier or symbol timing recovery. Spectra of the NCO generated sinusoids are presented along with waveforms from the modulation and demodulation process. Generation of sinusoids in the digital domain is a viable alternative to analog oscillators. Implementation of anmore » NCO should be considered when frequency allocation, tuning bandwidth, or frequency hopped transmission requires precise frequency synthesis. 24 figs.« less
Schottky Noise and Beam Transfer Functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaskiewicz, M.
2016-12-01
Beam transfer functions (BTF)s encapsulate the stability properties of charged particle beams. In general one excites the beam with a sinusoidal signal and measures the amplitude and phase of the beam response. Most systems are very nearly linear and one can use various Fourier techniques to reduce the number of measurements and/or simulations needed to fully characterize the response. Schottky noise is associated with the finite number of particles in the beam. This signal is always present. Since the Schottky current drives wakefields, the measured Schottky signal is influenced by parasitic impedances.
Effect of positive pulse charge waveforms on cycle life of nickel-zinc cells
NASA Technical Reports Server (NTRS)
Smithrick, J. J.
1979-01-01
Five amp-hour nickel-zinc cells were life cycled to evaluate four different charge methods. Three of the four waveforms investigated were 120 Hz full wave rectified sinusoidal (FWRS), 120 Hz silicon controlled rectified (SCR), and 1 kHz square wave (SW). The fourth, a constant current method, was used as a baseline of comparison. Three sealed Ni-Zn cells connected in series were cycled. Each series string was charged at an average c/20 rate, and discharged at a c/2.5 rate to a 75% rated depth.
Optimal Control of Induction Machines to Minimize Transient Energy Losses
NASA Astrophysics Data System (ADS)
Plathottam, Siby Jose
Induction machines are electromechanical energy conversion devices comprised of a stator and a rotor. Torque is generated due to the interaction between the rotating magnetic field from the stator, and the current induced in the rotor conductors. Their speed and torque output can be precisely controlled by manipulating the magnitude, frequency, and phase of the three input sinusoidal voltage waveforms. Their ruggedness, low cost, and high efficiency have made them ubiquitous component of nearly every industrial application. Thus, even a small improvement in their energy efficient tend to give a large amount of electrical energy savings over the lifetime of the machine. Hence, increasing energy efficiency (reducing energy losses) in induction machines is a constrained optimization problem that has attracted attention from researchers. The energy conversion efficiency of induction machines depends on both the speed-torque operating point, as well as the input voltage waveform. It also depends on whether the machine is in the transient or steady state. Maximizing energy efficiency during steady state is a Static Optimization problem, that has been extensively studied, with commercial solutions available. On the other hand, improving energy efficiency during transients is a Dynamic Optimization problem that is sparsely studied. This dissertation exclusively focuses on improving energy efficiency during transients. This dissertation treats the transient energy loss minimization problem as an optimal control problem which consists of a dynamic model of the machine, and a cost functional. The rotor field oriented current fed model of the induction machine is selected as the dynamic model. The rotor speed and rotor d-axis flux are the state variables in the dynamic model. The stator currents referred to as d-and q-axis currents are the control inputs. A cost functional is proposed that assigns a cost to both the energy losses in the induction machine, as well as the deviations from desired speed-torque-magnetic flux setpoints. Using Pontryagin's minimum principle, a set of necessary conditions that must be satisfied by the optimal control trajectories are derived. The conditions are in the form a two-point boundary value problem, that can be solved numerically. The conjugate gradient method that was modified using the Hestenes-Stiefel formula was used to obtain the numerical solution of both the control and state trajectories. Using the distinctive shape of the numerical trajectories as inspiration, analytical expressions were derived for the state, and control trajectories. It was shown that the trajectory could be fully described by finding the solution of a one-dimensional optimization problem. The sensitivity of both the optimal trajectory and the optimal energy efficiency to different induction machine parameters were analyzed. A non-iterative solution that can use feedback for generating optimal control trajectories in real time was explored. It was found that an artificial neural network could be trained using the numerical solutions and made to emulate the optimal control trajectories with a high degree of accuracy. Hence a neural network along with a supervisory logic was implemented and used in a real-time simulation to control the Finite Element Method model of the induction machine. The results were compared with three other control regimes and the optimal control system was found to have the highest energy efficiency for the same drive cycle.
Direct Current Amplifier. Report No. 92; AMPLIFICADOR DE CORRIENTE CONTINUA. Informe No. 92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marazzi, C.
1963-01-01
A direct-current amplifier with low zero current and solid-state chopper for input is described. This amplifier can be used in control circuits and for general applications such as temperature measurement in thermocouples, amplifier for a photo-sensitive element, or zero amplifier in control systems. The input impedance is relatively low, serving principally as current amplifier. It is possible to obtain a symmetry characteristic for positive and negative values of the output voltage with respect to the input. (tr-auth)
Frequency analysis of DC tolerant current transformers
NASA Astrophysics Data System (ADS)
Mlejnek, P.; Kaspar, P.
2013-09-01
This article deals with wide frequency range behaviour of DC tolerant current transformers that are usually used in modern static energy meters. In this application current transformers must comply with European and International Standards in their accuracy and DC tolerance. Therefore, the linear DC tolerant current transformers and double core current transformers are used in this field. More details about the problems of these particular types of transformers can be found in our previous works. Although these transformers are designed mainly for power distribution network frequency (50/60 Hz), it can be interesting to understand their behaviour in wider frequency range. Based on this knowledge the new generations of energy meters with measuring quality of electric energy will be produced. This solution brings better measurement of consumption of nonlinear loads or measurement of non-sinusoidal voltage and current sources such as solar cells or fuel cells. The determination of actual power consumption in such energy meters is done using particular harmonics component of current and voltage. We measured the phase and ratio errors that are the most important parameters of current transformers, to characterize several samples of current transformers of both types.
Measurement of minority-carrier drift mobility in solar cells using a modulated electron beam
NASA Technical Reports Server (NTRS)
Othmer, S.; Hopkins, M. A.
1980-01-01
A determination of diffusivity on solar cells is here reported which utilizes a one dimensional treatment of diffusion under sinusoidal excitation. An intensity-modulated beam of a scanning electron microscope was used as a source of excitation. The beam was injected into the rear of the cell, and the modulated component of the induced terminal current was recovered phase sensitively. A Faraday cup to measure the modulated component of beam current was mounted next to the sample, and connected to the same electronics. A step up transformer and preamplifier were mounted on the sample holder. Beam currents on the order of 400-pA were used in order to minimize effects of high injection. The beam voltage was 34-kV, and the cell bias was kept at 0-V.
NASA Astrophysics Data System (ADS)
Bokhtache, Aicha Aissa; Zegaoui, Abdallah; Aillerie, Michel; Djahbar, Abdelkader; Hemici, Kheira
2018-05-01
Electronic ballasts dedicated to discharge lamps allow improving the quality of radiation by operating at high frequency. In the present work, the use of a single-phase direct converter with a matrix structure for supplying a low-pressure mercury-argon UVC lamp for water sterilization is proposed. The structure of the converter is based on two switching cells allowing the realization of a fully controllable bidirectional switches. The advantages of such a matrix topology include the delivered of a sinusoidal waveform current with a controllable power factor close to unity, variable in amplitude and frequency. In order to obtain the desired amplitude and frequency, a PWM control was associated in the current realization. Finally, a linear adjustment of the lamp arc current was warranted by using of a PI regulator.
Analytical approaches to optimizing system "Semiconductor converter-electric drive complex"
NASA Astrophysics Data System (ADS)
Kormilicin, N. V.; Zhuravlev, A. M.; Khayatov, E. S.
2018-03-01
In the electric drives of the machine-building industry, the problem of optimizing the drive in terms of mass-size indicators is acute. The article offers analytical methods that ensure the minimization of the mass of a multiphase semiconductor converter. In multiphase electric drives, the form of the phase current at which the best possible use of the "semiconductor converter-electric drive complex" for active materials is different from the sinusoidal form. It is shown that under certain restrictions on the phase current form, it is possible to obtain an analytical solution. In particular, if one assumes the shape of the phase current to be rectangular, the optimal shape of the control actions will depend on the width of the interpolar gap. In the general case, the proposed algorithm can be used to solve the problem under consideration by numerical methods.
Chan, Kit Yan; Fujioka, Hideki; Bartlett, Robert H; Hirschl, Ronald B; Grotberg, James B
2006-02-01
The pulsatile flow and gas transport of a Newtonian passive fluid across an array of cylindrical microfibers are numerically investigated. It is related to an implantable, artificial lung where the blood flow is driven by the right heart. The fibers are modeled as either squared or staggered arrays. The pulsatile flow inputs considered in this study are a steady flow with a sinusoidal perturbation and a cardiac flow. The aims of this study are twofold: identifying favorable array geometry/spacing and system conditions that enhance gas transport; and providing pressure drop data that indicate the degree of flow resistance or the demand on the right heart in driving the flow through the fiber bundle. The results show that pulsatile flow improves the gas transfer to the fluid compared to steady flow. The degree of enhancement is found to be significant when the oscillation frequency is large, when the void fraction of the fiber bundle is decreased, and when the Reynolds number is increased; the use of a cardiac flow input can also improve gas transfer. In terms of array geometry, the staggered array gives both a better gas transfer per fiber (for relatively large void fraction) and a smaller pressure drop (for all cases). For most cases shown, an increase in gas transfer is accompanied by a higher pressure drop required to power the flow through the device.
Modeling the reversible, diffusive sink effect in response to transient contaminant sources.
Zhao, D; Little, J C; Hodgson, A T
2002-09-01
A physically based diffusion model is used to evaluate the sink effect of diffusion-controlled indoor materials and to predict the transient contaminant concentration in indoor air in response to several time-varying contaminant sources. For simplicity, it is assumed the predominant indoor material is a homogeneous slab, initially free of contaminant, and the air within the room is well mixed. The model enables transient volatile organic compound (VOC) concentrations to be predicted based on the material/air partition coefficient (K) and the material-phase diffusion coefficient (D) of the sink. Model predictions are made for three scenarios, each mimicking a realistic situation in a building. Styrene, phenol, and naphthalene are used as representative VOCs. A styrene butadiene rubber (SBR) backed carpet, vinyl flooring (VF), and a polyurethane foam (PUF) carpet cushion are considered as typical indoor sinks. In scenarios involving a sinusoidal VOC input and a double exponential decaying input, the model predicts the sink has a modest impact for SBR/styrene, but the effect increases for VF/phenol and PUF/naphthalene. In contrast, for an episodic chemical spill, SBR is predicted to reduce the peak styrene concentration considerably. A parametric study reveals for systems involving a large equilibrium constant (K), the kinetic constant (D) will govern the shape of the resulting gasphase concentration profile. On the other hand, for systems with a relaxed mass transfer resistance, K will dominate the profile.
Willmore, Ben D.B.; Bulstrode, Harry; Tolhurst, David J.
2012-01-01
Neuronal populations in the primary visual cortex (V1) of mammals exhibit contrast normalization. Neurons that respond strongly to simple visual stimuli – such as sinusoidal gratings – respond less well to the same stimuli when they are presented as part of a more complex stimulus which also excites other, neighboring neurons. This phenomenon is generally attributed to generalized patterns of inhibitory connections between nearby V1 neurons. The Bienenstock, Cooper and Munro (BCM) rule is a neural network learning rule that, when trained on natural images, produces model neurons which, individually, have many tuning properties in common with real V1 neurons. However, when viewed as a population, a BCM network is very different from V1 – each member of the BCM population tends to respond to the same dominant features of visual input, producing an incomplete, highly redundant code for visual information. Here, we demonstrate that, by adding contrast normalization into the BCM rule, we arrive at a neurally-plausible Hebbian learning rule that can learn an efficient sparse, overcomplete representation that is a better model for stimulus selectivity in V1. This suggests that one role of contrast normalization in V1 is to guide the neonatal development of receptive fields, so that neurons respond to different features of visual input. PMID:22230381
Stress singularities in a model of a wood disk under sinusoidal pressure
Jay A. Johnson; John C. Hermanson; Steven M. Cramer; Charles Amundson
2005-01-01
A thin, solid, circular wood disk, cut from the transverse plane of a tree stem, can be modeled as a cylindrically orthotropic elastic material. It is known that a stress singularity can occur at the center of a cylindrically orthotropic disk subjected to uniform pressure. If a solid cylindrically orthotropic disk is subjected to sinusoidal pressure distributions, then...
Ultra-Wideband Chaos Life-Detection Radar with Sinusoidal Wave Modulation
NASA Astrophysics Data System (ADS)
Xu, Hang; Li, Ying; Zhang, Jianguo; Han, Hong; Zhang, Bing; Wang, Longsheng; Wang, Yuncai; Wang, Anbang
2017-12-01
We propose and experimentally demonstrate an ultra-wideband (UWB) chaos life-detection radar. The proposed radar transmits a wideband chaotic-pulse-position modulation (CPPM) signal modulated by a single-tone sinusoidal wave. A narrow-band split ring sensor is used to collect the reflected sinusoidal wave, and a lock-in amplifier is utilized to identify frequencies of respiration and heartbeat by detecting the phase change of the sinusoidal echo signal. Meanwhile, human location is realized by correlating the CPPM echo signal with its delayed duplicate and combining the synthetic aperture technology. Experimental results demonstrate that the human target can be located accurately and his vital signs can be detected in a large dynamic range through a 20-cm-thick wall using our radar system. The down-range resolution is 15cm, benefiting from the 1-GHz bandwidth of the CPPM signal. The dynamic range for human location is 50dB, and the dynamic ranges for heartbeat and respiration detection respectively are 20dB and 60dB in our radar system. In addition, the bandwidth of the CPPM signal can be adjusted from 620MHz to 1.56GHz to adapt to different requirements.
Radiation of Sawtooth Waves from the End of an Open Pipe
NASA Astrophysics Data System (ADS)
Bakaitis, Rachael; Bodon, Josh; Gee, Kent; Thomas, Derek
2012-10-01
It is known, that because of nonlinear propagation distortion, a sinusoidal wave is transformed into a sawtooth-like wave as it travels through a pipe. It has been observed that the sawtooth wave, when measured immediately after it exits a pipe, has a form similar to a delta function. Currently this behavior is not understood, but has potential application to radiation of sound from brass instruments and rocket motors. Building on previous work in the 1970s by Blackstock and Wright, the purpose of the current research is to better understand the radiation of sawtooth waves from the open end of a circular pipe. Nonlinear propagation theory, the experimental apparatus and considerations, and some preliminary results are described.
Pyroelectric response in crystalline hafnium zirconium oxide (Hf 1- x Zr x O 2 ) thin films
Smith, S. W.; Kitahara, A. R.; Rodriguez, M. A.; ...
2017-02-13
Pyroelectric coefficients were measured for 20 nm thick crystalline hafnium zirconium oxide (Hf 1-xZr xO 2) thin films across a composition range of 0 ≤ x ≤ 1. Pyroelectric currents were collected near room temperature under zero applied bias and a sinusoidal oscillating temperature profile to separate the influence of non-pyroelectric currents. The pyroelectric coefficient was observed to correlate with zirconium content, increased orthorhombic/tetragonal phase content, and maximum polarization response. The largest measured absolute value was 48 μCm -2K -1 for a composition with x = 0.64, while no pyroelectric response was measured for compositions which displayed no remanent polarizationmore » (x = 0, 0.91, 1).« less
Electropneumatic transducer automatically limits motor current
NASA Technical Reports Server (NTRS)
Lovitt, T. F.
1966-01-01
Pneumatic controller regulates the load on a centrifugal freon compressor in a water cooling system, thus limiting the current input to an electric motor driving it. An electromechanical transducer monitoring the motor input current sends out air signals which indicate changes in the current to the pneumatic controller.
A flyer-impact technique for measuring viscosity of metal under shock compression
NASA Astrophysics Data System (ADS)
Li, Yilei; Liu, Fusheng; Ma, Xiaojuan; Li, Yinglei; Yu, Ming; Zhang, Jichun; Jing, Fuqian
2009-01-01
A flyer-impact technique, different from the explosive method of [Sakharov et al., Sov. Phys. Dokl. 9, 1091 (1965)], is developed to investigate the viscosity of shocked metals. The shock wave with a front of sinusoidal perturbation is induced by the sinusoidal profile of the impact surface of the sample by use of two-stage light-gas gun. The oscillatory damping process of the perturbation amplitude is monitored by electric pins. Two damping curves (perturbation amplitude relative to its initial value versus propagated distance relative to the wavelength of sinusoidal perturbation) of aluminum are determined at 78 and 101 GPa. The effective shear viscosity coefficients are deduced to be about 1300 and 800 Pa s based on the Miller and Ahrens analytic solution for viscous fluid.
Birch, Gabriel Carisle; Griffin, John Clark
2015-07-23
Numerous methods are available to measure the spatial frequency response (SFR) of an optical system. A recent change to the ISO 12233 photography resolution standard includes a sinusoidal Siemens star test target. We take the sinusoidal Siemens star proposed by the ISO 12233 standard, measure system SFR, and perform an analysis of errors induced by incorrectly identifying the center of a test target. We show a closed-form solution for the radial profile intensity measurement given an incorrectly determined center and describe how this error reduces the measured SFR of the system. As a result, using the closed-form solution, we proposemore » a two-step process by which test target centers are corrected and the measured SFR is restored to the nominal, correctly centered values.« less
Current-induced SQUID behavior of superconducting Nb nano-rings
NASA Astrophysics Data System (ADS)
Sharon, Omri J.; Shaulov, Avner; Berger, Jorge; Sharoni, Amos; Yeshurun, Yosef
2016-06-01
The critical temperature in a superconducting ring changes periodically with the magnetic flux threading it, giving rise to the well-known Little-Parks magnetoresistance oscillations. Periodic changes of the critical current in a superconducting quantum interference device (SQUID), consisting of two Josephson junctions in a ring, lead to a different type of magnetoresistance oscillations utilized in detecting extremely small changes in magnetic fields. Here we demonstrate current-induced switching between Little-Parks and SQUID magnetoresistance oscillations in a superconducting nano-ring without Josephson junctions. Our measurements in Nb nano-rings show that as the bias current increases, the parabolic Little-Parks magnetoresistance oscillations become sinusoidal and eventually transform into oscillations typical of a SQUID. We associate this phenomenon with the flux-induced non-uniformity of the order parameter along a superconducting nano-ring, arising from the superconducting leads (‘arms’) attached to it. Current enhanced phase slip rates at the points with minimal order parameter create effective Josephson junctions in the ring, switching it into a SQUID.
NASA Astrophysics Data System (ADS)
Harvey, James E.
2012-10-01
Professor Bill Wolfe was an exceptional mentor for his graduate students, and he made a major contribution to the field of optical engineering by teaching the (largely ignored) principles of radiometry for over forty years. This paper describes an extension of Bill's work on surface scatter behavior and the application of the BRDF to practical optical engineering problems. Most currently-available image analysis codes require the BRDF data as input in order to calculate the image degradation from residual optical fabrication errors. This BRDF data is difficult to measure and rarely available for short EUV wavelengths of interest. Due to a smooth-surface approximation, the classical Rayleigh-Rice surface scatter theory cannot be used to calculate BRDFs from surface metrology data for even slightly rough surfaces. The classical Beckmann-Kirchhoff theory has a paraxial limitation and only provides a closed-form solution for Gaussian surfaces. Recognizing that surface scatter is a diffraction process, and by utilizing sound radiometric principles, we first developed a linear systems theory of non-paraxial scalar diffraction in which diffracted radiance is shift-invariant in direction cosine space. Since random rough surfaces are merely a superposition of sinusoidal phase gratings, it was a straightforward extension of this non-paraxial scalar diffraction theory to develop a unified surface scatter theory that is valid for moderately rough surfaces at arbitrary incident and scattered angles. Finally, the above two steps are combined to yield a linear systems approach to modeling image quality for systems suffering from a variety of image degradation mechanisms. A comparison of image quality predictions with experimental results taken from on-orbit Solar X-ray Imager (SXI) data is presented.
An amorphous alloy core medium frequency magnetic-link for medium voltage photovoltaic inverters
NASA Astrophysics Data System (ADS)
Rabiul Islam, Md.; Guo, Youguang; Wei Lin, Zhi; Zhu, Jianguo
2014-05-01
The advanced magnetic materials with high saturation flux density and low specific core loss have led to the development of an efficient, compact, and lightweight multiple-input multiple-output medium frequency magnetic-link. It offers a new route to eliminate some critical limitations of recently proposed medium voltage photovoltaic inverters. In this paper, a medium frequency magnetic-link is developed with Metglas amorphous alloy 2605S3A. The common magnetic-link generates isolated and balanced multiple DC supplies for all of the H-bridge inverter cells of the medium voltage inverter. The design and implementation of the prototype, test platform, and the experimental test results are analyzed and discussed. The medium frequency non-sinusoidal excitation electromagnetic characteristics of alloy 2605S3A are also compared with that of alloy 2605SA1. It is expected that the proposed new technology will have great potential for future renewable power generation systems and smart grid applications.
Keeping track of worm trackers.
Husson, Steven J; Costa, Wagner Steuer; Schmitt, Cornelia; Gottschalk, Alexander
2013-02-22
C. elegans is used extensively as a model system in the neurosciences due to its well defined nervous system. However, the seeming simplicity of this nervous system in anatomical structure and neuronal connectivity, at least compared to higher animals, underlies a rich diversity of behaviors. The usefulness of the worm in genome-wide mutagenesis or RNAi screens, where thousands of strains are assessed for phenotype, emphasizes the need for computational methods for automated parameterization of generated behaviors. In addition, behaviors can be modulated upon external cues like temperature, O(subscript)2(/subscript) and CO(subscript)2(/subscript) concentrations, mechanosensory and chemosensory inputs. Different machine vision tools have been developed to aid researchers in their efforts to inventory and characterize defined behavioral "outputs". Here we aim at providing an overview of different worm-tracking packages or video analysis tools designed to quantify different aspects of locomotion such as the occurrence of directional changes (turns, omega bends), curvature of the sinusoidal shape (amplitude, body bend angles) and velocity (speed, backward or forward movement).
Impact of synovial fluid flow on temperature regulation in knee cartilage.
Moghadam, Mohamadreza Nassajian; Abdel-Sayed, Philippe; Camine, Valérie Malfroy; Pioletti, Dominique P
2015-01-21
Several studies have reported an increase of temperature in cartilage submitted to cyclic sinusoidal loading. The temperature increase is in part due to the viscous behavior of this tissue, which partially dissipates the input mechanical energy into heat. While the synovial fluid flow within the intra-articular gap and inside the porous cartilage is supposed to play an important role in the regulation of the cartilage temperature, no specific study has evaluated this aspect. In the present numerical study, a poroelastic model of the knee cartilage is developed to evaluate first the temperature increase in the cartilage due to dissipation and second the impact of the synovial fluid flow in the cartilage heat transfer phenomenon. Our results showed that, the local temperature is effectively increased in knee cartilage due to its viscous behavior. The synovial fluid flow cannot significantly preventing this phenomenon. We explain this result by the low permeability of cartilage and the moderate fluid exchange at the surface of cartilage under deformation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Establishment of a biomimetic device based on tri-layer polymer actuators--propulsion fins.
Alici, Gursel; Spinks, Geoffrey; Huynh, Nam N; Sarmadi, Laleh; Minato, Rick
2007-06-01
We propose to use bending type tri-layer polymer actuators as propulsion fins for a biomimetic device consisting of a rigid body, like a box fish having a carapace, and paired fins running through the rigid body, like a fish having pectoral fins. The fins or polymer bending actuators can be considered as individually controlled flexible membranes. Each fin is activated with sinusoidal inputs such that there is a phase lag between the movements of successive fins to create enough thrust force for propulsion. Eight fins with 0.125 aspect ratio have been used along both sides of the rigid body to move the device in the direction perpendicular to the longitudinal axis of the body. The designed device with the paired fins was successfully tested, moving in an organic solution consisting of solvent, propylene carbonate (PC), and electrolyte. The design procedure outlined in this study is offered as a guide to making functional devices based on polymer actuators and sensors.
NASA Technical Reports Server (NTRS)
Livas, Jeffrey (Inventor); Thorpe, James I. (Inventor); Numata, Kenji (Inventor)
2011-01-01
A method and system for stabilizing a laser to a frequency reference with an adjustable offset. The method locks a sideband signal generated by passing an incoming laser beam through the phase modulator to a frequency reference, and adjusts a carrier frequency relative to the locked sideband signal by changing a phase modulation frequency input to the phase modulator. The sideband signal can be a single sideband (SSB), dual sideband (DSB), or an electronic sideband (ESB) signal. Two separate electro-optic modulators can produce the DSB signal. The two electro-optic modulators can be a broadband modulator and a resonant modulator. With a DSB signal, the method can introduce two sinusoidal phase modulations at the phase modulator. With ESB signals, the method can further drive the optical phase modulator with an electrical signal with nominal frequency OMEGA(sub 1) that is phase modulated at a frequency OMEGA(sub 2)
Proprioceptive influence on the optokinetic nystagmus.
Botti, F; Anastasopoulos, D; Kostadima, V; Bambagioni, D; Pettorossi, V E
2001-01-01
The influence of neck and leg proprioceptive inputs on optokinetic-induced quick phases was studied in humans. Ten subjects received unidirectional horizontal optokinetic stimulation (10-20%/s) during sinusoidal neck, leg and combined neck + leg proprioceptive stimulation. The optokinetic reflex was measured by electro-oculography. Neck stimulation induced a shift in the nystagmus beating field in the opposite direction to body movement (gain 0.3 0.4, phase 140-180 degrees). The beating field shift resulted totally from the amplitude and frequency modulation of optokinetic quick phases, as slow phases were not affected. Leg proprioceptive stimulation induced a similar effect, but the phase of the response lagged by approximately 90 degrees compared with that of neck response. With combined neck + leg stimulation, the amplitude of the effect was a sum of the separate effects, but the phase coincided with that of the leg response. This suggests that neck and leg proprioceptive signals do not add linearly and that the leg signal determines the time of the response.
Keshner, E A; Kenyon, R V
2000-01-01
We examined the effect of a 3-dimensional stereoscopic scene on segmental stabilization. Eight subjects participated in static sway and locomotion experiments with a visual scene that moved sinusoidally or at constant velocity about the pitch or roll axes. Segmental displacements, Fast Fourier Transforms, and Root Mean Square values were calculated. In both pitch and roll, subjects exhibited greater magnitudes of motion in head and trunk than ankle. Smaller amplitudes and frequent phase reversals suggested control of the ankle by segmental proprioceptive inputs and ground reaction forces rather than by the visual-vestibular signals. Postural controllers may set limits of motion at each body segment rather than be governed solely by a perception of the visual vertical. Two locomotor strategies were also exhibited, implying that some subjects could override the effect of the roll axis optic flow field. Our results demonstrate task dependent differences that argue against using static postural responses to moving visual fields when assessing more dynamic tasks.
High-frequency matrix converter with square wave input
Carr, Joseph Alexander; Balda, Juan Carlos
2015-03-31
A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.
Shaking Table Experiment of Trampoline Effect
NASA Astrophysics Data System (ADS)
Aoi, S.; Kunugi, T.; Fujiwara, H.
2010-12-01
It has been widely thought that soil response to ground shaking do not experience asymmetry in ground motion. An extreme vertical acceleration near four times gravity was recorded during the 2008 Iwate-Miyagi earthquake at IWTH25 station. This record is distinctly asymmetric in shape; the waveform envelope amplitude is about 1.6 times larger in the upward direction compared to the downward direction. To explain this phenomenon, Aoi et al. (2008) proposed a simple model of a mass bouncing on a trampoline. In this study we perform a shaking table experiment of a soil prototype to try to reproduce the asymmetric ground motion and to investigate the physics of this asymmetric behavior. A soil chamber made of an acrylic resin cylinder with 200 mm in diameter and 500 mm in height was tightly anchored to the shaking table and vertically shaken. We used four different sample materials; Toyoura standard sands, grass beads (particle size of 0.1 and 0.4 mm) and sawdust. Sample was uniformly stacked to a depth of 450 mm and, to measure the vertical motions, accelerometers was installed inside the material (at depths of 50, 220, and 390 mm) and on the frame of the chamber. Pictures were taken from a side by a high speed camera (1000 frames/sec) to capture the motions of particles. The chamber was shaken by sinusoidal wave (5, 10, and 20 Hz) with maximum amplitudes from 0.1 to 4.0 g. When the accelerations roughly exceeded gravity, for all samples, granular behaviors of sample materials became dominant and the asymmetric motions were successfully reproduced. Pictures taken by the high speed camera showed that the motions of the particles are clearly different from the motion of the chamber which is identical to the sinusoidal motion of the shaking table (input motion). Particles are rapidly flung up and freely pulled down by gravity, and the downward motion of the particles is slower than the upward motion. It was also observed that the timing difference of the falling motions indicate a dependence with depth. Our results show that the shape of time histories of recorded motions by the accelerometers within the sample, becomes increasingly different than the input sinusoidal wave for sensors at shallower depths. When sands or grass beads are used as fill material, the observed waveforms under large accelerations are the summation of a warped sine-like function and one or few sharp pulses, which might be caused by the shocks generated by the 'landing' of the free-falling material. For sawdust, the observed waveforms have much more smooth shapes which are also asymmetric; larger and narrower for upward direction and smaller and broader for downward direction. The reason why the waveforms of the sawdust experiments are different from the sand or grass bead cases is mainly due to the different elastic deformation characteristics of each material. The impacts of the 'landing' are reduced by the resilience of the sawdust and the shape pulses become blunt. Our experiments show that within all tested materials the sawdust is the one that somehow reproduces waveforms with the largest similarities to the observed asymmetric waveform at IWTH25. This shows that both the granularity and the elasticity may play an important role when the vertical ground motions become asymmetric.
Helical structures in a Rosette elephant trunk
NASA Astrophysics Data System (ADS)
Carlqvist, Per; Kristen, Helmuth; Gahm, Gosta F.
1998-04-01
We discuss small-scale, helical, interstellar filaments on the basis of optical observations of an elephant trunk in the Rosette nebula. The trunk studied is composed of a number of sinusoidal or serpentine-like dark filaments, preferentially in the outer part of the trunk, where their wavelength is 7-9 times the trunk radius. The diameters are down to the limit of resolution of 1.0 arcsec, corresponding to 1600 au, and ranging up to about 6400 au. At some positions filament crossings give rise to enhanced extinction. We suggest that the sinusoidal filaments are helices lined up by magnetic fields. We derive average extinctions of 0.5-1.0 mag in the filaments, implying molecular densities of n_H2 ~ 10(4) cm(-3) . From existing data on the Rosette HiI region, we conclude that the surrounding kinetic and dynamic pressure and the background radiation field suffice to balance even the denser filaments and to exert drag forces on the trunk as a whole, consistent with evidence of stretching of the trunk. The helical magnetic structures imply the presence of electric currents along the trunk axis. These currents should form a nearly force-free geometry and are consistent with a model consisting of 4-7 helical cables on the surface of a cylinder and which produce the observed wavelength of the helices. We suggest that the Rosette elephant trunks form an interconnected system of rope-like structures which are relics from filamentary skeletons of magnetic fields in the primordial cloud. Based on observations collected at the Nordic Optical Telescope, La Palma, Spain
Navy High-Strength Steel Corrosion-Fatigue Modeling Program
2006-10-01
interest. In the global analysis, the axial loading and residual stress (via the temperature profile discussed in the previous section) were applied to...developed based on observa- tions from analyses of axial load components with sinusoidally varying surface geometries. These observations indicated that...profile parameters (height and wavelength in each surface direction) and the applied axial loading . Stress Varies Sinusoidally 180° Out of Phase
Casaburi, R; Stringer, W W; Singer, E
1995-01-01
1. The mechanisms underlying the exercise hyperpnoea have been difficult to define. Recently it has been suggested that exercise ventilation (VE) changes in proportion to changes in arterial potassium concentration ([K+]a). Similar VE and [K+]a time courses following work rate changes have been cited as supporting evidence. This study compared [K+]a and VE dynamics during moderate exercise in man. 2. We observed VE and gas exchange responses in five healthy men to sinusoidal work rate variation between 25 and approximately 105 W. Tests of approximately 30 min duration were performed at sinusoidal periods of 9, 6 and 3 min and in the steady state. In each test, during two or three sine periods, arterial blood was sampled (24 per test) and analysed for [K+] and blood gases. Response amplitude and phase (relative to work rate) were determined for each variable. 3. [K+]a fluctuated in response to sinusoidal work rate forcing with mean-to-peak amplitude averaging 0.15 mmol 1(-1). However, among tests, VE amplitude and phase were not highly correlated with [K+]a (r = 0.36 and 0.67, respectively). Further, average [K+]a amplitude in the 9 and 6 min sinusoidal studies tended to exceed the steady-state amplitude, while average VE amplitude fell progressively with increasing forcing frequency. The dissimilar dynamics of [K+]a and VE seem inconsistent with a major role for [K+]a as a proportional controller of ventilation during non-steady state moderate exercise in man. 4. Among tests, VE and CO2 output (VCO2) amplitude and phase were closely correlated (r = 0.87 and 0.94, respectively). Further, arterial CO2 pressure (Pa,CO2) and arterial pH(pHa) did not fluctuate significantly in ten of twenty and thirteen of twenty studies, respectively. In tests where sinusoidal fluctuation was detected, amplitude averaged 1.1 mmHg and 0.008 units, respectively. Thus VE demonstrated a close dynamic coupling to CO2 output, with consequent tight regulation of Pa,CO2 and pHa. PMID:7666376
Analysis of transient state in HTS tapes under ripple DC load current
NASA Astrophysics Data System (ADS)
Stepien, M.; Grzesik, B.
2014-05-01
The paper concerns the analysis of transient state (quench transition) in HTS tapes loaded with the current having DC component together with a ripple component. Two shapes of the ripple were taken into account: sinusoidal and triangular. Very often HTS tape connected to a power electronic current supply (i.e. superconducting coil for SMES) that delivers DC current with ripples and it needs to be examined under such conditions. Additionally, measurements of electrical (and thermal) parameters under such ripple excitation is useful to tape characterization in broad range of load currents. The results presented in the paper were obtained using test bench which contains programmable DC supply and National Instruments data acquisition system. Voltage drops and load currents were measured vs. time. Analysis of measured parameters as a function of the current was used to tape description with quench dynamics taken into account. Results of measurements were also used to comparison with the results of numerical modelling based on FEM. Presented provisional results show possibility to use results of measurements in transient state to prepare inverse models of superconductors and their detailed numerical modelling.
Voltage controlled current source
Casne, Gregory M.
1992-01-01
A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.
NASA Astrophysics Data System (ADS)
Khosravi Parsa, Mohsen; Hormozi, Faramarz
2014-06-01
In the present work, a passive model of a micromixer with sinusoidal side walls, a convergent-divergent cross section and a T-shape entrance was experimentally fabricated and modeled. The main aim of this modeling was to conduct a study on the Dean and separation vortices created inside the sinusoidal microchannels with a convergent-divergent cross section. To fabricate the microchannels, CO2 laser micromachining was utilized and the fluid mixing pattern is observed using a digital microscope imaging system. Also, computational fluid dynamics was applied with the finite element method to solve Navier-Stokes equations and the diffusion-convection mode in inlet Reynolds numbers of 0.2-75. Numerically obtained results were in reasonable agreement with experimental data. According to the previous studies, phase shift and wavelength of side walls are important parameters in designing sinusoidal microchannels. An increase of phase shift between side walls of microchannels leads the cross section being convergent-divergent. Results also show that at an inlet Reynolds number of <20 the molecular diffusion is the dominant mixing factor and the mixing index extent is nearly identical in all designs. For higher inlet Reynolds numbers (>20), secondary flow is the main factor of mixing. Noticeably, mixing index drastically depends on phase shift (ϕ) and wavelength of side walls (λ) such that the best mixing can be observed in ϕ = 3π/4 and at a wavelength to amplitude ratio of 3.3. Likewise, the maximum pressure drop is reported at ϕ = π. Therefore, the sinusoidal microchannel with phase shifts between π/2 and 3π/4 is the best microchannel for biological and chemical analysis, for which a mixing index value higher than 90% and a pressure drop less than 12 kPa is reported.
Feng, Hong-Qiang; Weymouth, Nate D.; Rockey, Don C.
2009-01-01
Endothelin-1 (ET-1), a potent vasoactive peptide, plays an important role in the pathogenesis of liver disease and portal hypertension. Two major endothelin receptors (ET-A and ET-B) mediate biological effects, largely on the basis of their known downstream signaling pathways. We hypothesized that the different receptors are likely to mediate divergent effects in portal hypertensive mice. Liver fibrosis and cirrhosis and portal hypertension were induced in 8-wk-old male BALB/c mice by gavage with carbon tetrachloride (CCl4). Portal pressure was recorded acutely during intravenous infusion of endothelin receptor antagonists in normal or portal hypertensive mice. In vivo microscopy was used to monitor sinusoidal dynamics. Additionally, the effect of chronic exposure to endothelin antagonists was assessed in mice during induction of fibrosis and cirrhosis with CCl4 for 8 wk. Intravenous infusion of ET-A receptor antagonists into normal and cirrhotic mice reduced portal pressure whereas ET-B receptor antagonism increased portal pressure. A mixed endothelin receptor antagonist also significantly reduced portal pressure. Additionally, the ET-A receptor antagonist caused sinusoidal dilation, whereas the ET-B receptor antagonist caused sinusoidal constriction. Chronic administration of each the endothelin receptor antagonists during the induction of fibrosis and portal hypertension led to reduced fibrosis, a significant reduction in portal pressure, and altered sinusoidal dynamics relative to controls. Acute effects of endothelin receptor antagonists are likely directly on the hepatic and sinusoidal vasculature, whereas chronic endothelin receptor antagonism appears to be more complicated, likely affecting fibrogenesis and the hepatic microcirculation. The data imply a relationship between hepatic fibrogenesis or fibrosis and vasomotor responses. PMID:19299580
Herrnberger, Leonie; Hennig, Robert; Kremer, Werner; Hellerbrand, Claus; Goepferich, Achim; Kalbitzer, Hans Robert; Tamm, Ernst R.
2014-01-01
Liver sinusoidal endothelial cells (LSEC) are characterized by the presence of fenestrations that are not bridged by a diaphragm. The molecular mechanisms that control the formation of the fenestrations are largely unclear. Here we report that mice, which are deficient in plasmalemma vesicle-associated protein (PLVAP), develop a distinct phenotype that is caused by the lack of sinusoidal fenestrations. Fenestrations with a diaphragm were not observed in mouse LSEC at three weeks of age, but were present during embryonic life starting from embryonic day 12.5. PLVAP was expressed in LSEC of wild-type mice, but not in that of Plvap-deficient littermates. Plvap-/- LSEC showed a pronounced and highly significant reduction in the number of fenestrations, a finding, which was seen both by transmission and scanning electron microscopy. The lack of fenestrations was associated with an impaired passage of macromolecules such as FITC-dextran and quantum dot nanoparticles from the sinusoidal lumen into Disse's space. Plvap-deficient mice suffered from a pronounced hyperlipoproteinemia as evidenced by milky plasma and the presence of lipid granules that occluded kidney and liver capillaries. By NMR spectroscopy of plasma, the nature of hyperlipoproteinemia was identified as massive accumulation of chylomicron remnants. Plasma levels of low density lipoproteins (LDL) were also significantly increased as were those of cholesterol and triglycerides. In contrast, plasma levels of high density lipoproteins (HDL), albumin and total protein were reduced. At around three weeks of life, Plvap-deficient livers developed extensive multivesicular steatosis, steatohepatitis, and fibrosis. PLVAP is critically required for the formation of fenestrations in LSEC. Lack of fenestrations caused by PLVAP deficiency substantially impairs the passage of chylomicron remnants between liver sinusoids and hepatocytes, and finally leads to liver damage. PMID:25541982
Fiber Optic Sensor Embedment Study for Multi-Parameter Strain Sensing
Drissi-Habti, Monssef; Raman, Venkadesh; Khadour, Aghiad; Timorian, Safiullah
2017-01-01
The fiber optic sensors (FOSs) are commonly used for large-scale structure monitoring systems for their small size, noise free and low electrical risk characteristics. Embedded fiber optic sensors (FOSs) lead to micro-damage in composite structures. This damage generation threshold is based on the coating material of the FOSs and their diameter. In addition, embedded FOSs are aligned parallel to reinforcement fibers to avoid micro-damage creation. This linear positioning of distributed FOS fails to provide all strain parameters. We suggest novel sinusoidal sensor positioning to overcome this issue. This method tends to provide multi-parameter strains in a large surface area. The effectiveness of sinusoidal FOS positioning over linear FOS positioning is studied under both numerical and experimental methods. This study proves the advantages of the sinusoidal positioning method for FOS in composite material’s bonding. PMID:28333117
Design modification of airfoil by integrating sinusoidal leading edge and dimpled surface
NASA Astrophysics Data System (ADS)
Masud, M. H.; Naim-Ul-Hasan, Arefin, Amit Md. Estiaque; Joardder, Mohammad U. H.
2017-06-01
Airfoil is widely used for aircraft wings and blades of helicopters, turbines, propellers, fans and compressors. Many researches have been conducted on focusing the leading edge, surface and trailing edge of airfoil in order to maximize airfoil lift and to reduce drag. Literature shows that using protuberances along the leading edge of NACA 2412, it is possible to attain better performance from the baseline. Besides, the inward dimpled surface of NACA 0018 produces lesser drag at a positive angle of attacks. However, there is no literature that integrates sinusoidal leading edge and dimpled to attain the benefits of the both. In this study, simulation has been done for design improvement of airfoil by integrating sinusoidal leading edge and dimpled surface. Simulations have been run using finite element method environment. Significant improvement has been observed from the simulation results.
Method and apparatus for clockless analog-to-digital conversion and peak detection
DeGeronimo, Gianluigi
2007-03-06
An apparatus and method for analog-to-digital conversion and peak detection includes at least one stage, which includes a first switch, second switch, current source or capacitor, and discriminator. The discriminator changes state in response to a current or charge associated with the input signal exceeding a threshold, thereby indicating whether the current or charge associated with the input signal is greater than the threshold. The input signal includes a peak or a charge, and the converter includes a peak or charge detect mode in which a state of the switch is retained in response to a decrease in the current or charge associated with the input signal. The state of the switch represents at least a portion of a value of the peak or of the charge.
African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption
NASA Astrophysics Data System (ADS)
van der Velde, Marijn; Folberth, Christian; Balkovič, Juraj; Ciais, Philippe; Fritz, Steffen; Janssens, Ivan A.; Obersteiner, Michael; See, Linda; Skalský, Rastislav; Xiong, Wei; Peñuealas, Josep
2014-05-01
The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N:P applications under low, medium, and high input scenarios, for past (1975), current, and future N:P mass ratios of respectively, 1:0.29, 1:0.15, and 1:0.05. At low N inputs (10 kg/ha), current yield deficits amount to 10% but will increase up to 27% under the assumed future N:P ratio, while at medium N inputs (50 kg N/ha), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low-quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N:P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1:0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3-fold to be optimal, and to increase 11.7-fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources.
An Alternating Current Electroosmotic Pump Based on Conical Nanopore Membranes.
Wu, Xiaojian; Ramiah Rajasekaran, Pradeep; Martin, Charles R
2016-04-26
Electroosmotic flow (EOF) is used to pump solutions through microfluidic devices and capillary electrophoresis columns. We describe here an EOF pump based on membrane EOF rectification, an electrokinetic phenomenon we recently described. EOF rectification requires membranes with asymmetrically shaped pores, and conical pores in a polymeric membrane were used here. We show here that solution flow through the membrane can be achieved by applying a symmetrical sinusoidal voltage waveform across the membrane. This is possible because the alternating current (AC) carried by ions through the pore is rectified, and we previously showed that rectified currents yield EOF rectification. We have investigated the effect of both the magnitude and frequency of the voltage waveform on flow rate through the membrane, and we have measured the maximum operating pressure. Finally, we show that operating in AC mode offers potential advantages relative to conventional DC-mode EOF pumps.
Overview of the Helicity Injected Torus (HIT) Program
NASA Astrophysics Data System (ADS)
Redd, A. J.; Jarboe, T. R.; Hamp, W. T.; Nelson, B. A.; O'Neill, R. G.; Sieck, P. E.; Smith, R. J.; Sutphin, G. L.; Wrobel, J. S.
2007-06-01
The Helicity Injected Torus with Steady Inductive Helicity Injection (HIT-SI) consists of a "bowtie"-shaped axisymmetric confinement region, with two half-torus helicity injectors mounted on each side of the axisymmetric flux conserver [Sieck et al, IEEE Trans. Plasma Sci., v.33, p.723 (2005); Jarboe, Fusion Technology, v.36, p.85 (1999)]. Current and flux are driven sinusoidally with time in each injector, with the goal of generating and sustaining an axisymmetric spheromak in the main confinement region. Improvements in machine conditioning have enabled systematic study of HIT-SI discharges with significant toroidal current ITOR, including cases in which this current ITOR switches sign one or more times during the discharge. Statistical studies of all HIT-SI discharges to date demonstrate a minimum injected power to form significant ITOR, and that the maximum ITOR scales approximately linearly with the total injected power.
Transcranial Alternating Current Stimulation (tACS) Mechanisms and Protocols
Tavakoli, Amir V.; Yun, Kyongsik
2017-01-01
Perception, cognition and consciousness can be modulated as a function of oscillating neural activity, while ongoing neuronal dynamics are influenced by synaptic activity and membrane potential. Consequently, transcranial alternating current stimulation (tACS) may be used for neurological intervention. The advantageous features of tACS include the biphasic and sinusoidal tACS currents, the ability to entrain large neuronal populations, and subtle control over somatic effects. Through neuromodulation of phasic, neural activity, tACS is a powerful tool to investigate the neural correlates of cognition. The rapid development in this area requires clarity about best practices. Here we briefly introduce tACS and review the most compelling findings in the literature to provide a starting point for using tACS. We suggest that tACS protocols be based on functional brain mechanisms and appropriate control experiments, including active sham and condition blinding. PMID:28928634
NASA Technical Reports Server (NTRS)
Kessler, L. L.
1976-01-01
Constant-current source creates drive current independent of input-voltage variations, 50% reduction in power loss in base drive circuitry, maintains essentially constant charge rate, and improves rise-time consistency over input voltage range.
Auditory Models for Speech Analysis
1988-01-01
to encode stimulus frequency by firing in period with the clicks, up to a critical value. (Godfrey ct al., 1975). Some binaural processing appears to...masking experiments avoid sinosoiVs since a sinusoidal signal combined with a sinusoidal masker can cause " beats " due to regular fluctuations in the...such as sound localisation (Lyon, 1983). Jeffress (1956) proposed a binaural localisation model where the "mechanism receives impulses from corresponding
2016-09-01
Switching and Narrowband Filtering by Gregory J Mazzaro, Andrew J Sherbondy, Kenneth I Ranney, and Kelly D Sherbondy...Switching and Narrowband Filtering by Gregory J Mazzaro, Andrew J Sherbondy, Kenneth I Ranney, and Kelly D Sherbondy Sensors and Electron Devices...08/2016 4. TITLE AND SUBTITLE Conversion of Radio-Frequency Pulses to Continuous-Wave Sinusoids by Fast Switching and Narrowband Filtering 5a
Instability of isolated planar shock waves
2007-06-07
Note that multi-mode perturbations can be treated by the inclusion of additional terms in Eq. (4), but owing to the linear independence of the... Volterra equation Figure 4 shows five examples of the evolution of the amplitude of a linear sinusoidal perturbation on a shock front obtained by...showing the evolution of the amplitude of a linear sinusoidal perturbation on a shock front obtained by numerically solving the Volterra equation in
Synchronous meteorological satellite system description document, volume 3
NASA Technical Reports Server (NTRS)
Pipkin, F. B.
1971-01-01
The structural design, analysis, and mechanical integration of the synchronous meteorological satellite system are presented. The subjects discussed are: (1) spacecraft configuration, (2) structural design, (3) static load tests, (4) fixed base sinusoidal vibration survey, (5) flight configuration sinusoidal vibration tests, (6) spacecraft acoustic test, and (7) separation and shock test. Descriptions of the auxiliary propulsion subsystem, the apogee boost motor, communications system, and thermal control subsystem are included.
Yokota, S
1985-05-01
The fine topological relationship between sinus-lining endothelial cells (SLE) and vessel-lining endothelial cells (VLE) at the opening portion of sinusoids into central or interlobular veins of rat liver was studied by a comparison of morphological and functional properties of both types of cells. Three minutes after intravenous injection of formalin-denatured albumin conjugated with horseradish peroxidase (HRP-FDA), liver was perfused with fixative. Chopped sections of the liver (50 micron thick) were incubated in diaminobenzidine-H2O2 medium, followed by processing for electron microscopy. The HRP-FDA was localized in endocytotic vesicles and vacuoles of the SLE and Kupffer cells but not of the VLE lining interlobular or central veins or interlobular arteries. In the opening portion of the sinusoids into these veins, the attenuated cytoplasmic extensions of the SLE containing positive vesicles were in direct contact with squamous process of the VLE having no positive vesicles. The contact was mediated by overlapping junctions. No intermediate cell type between the SLE and VLE in this region or other portions was noted. The results indicate that the habitat of the SLE is exactly isolated from that of the VLE in rat liver and at the transitional portion from sinusoids to veins or arteries they are directly connected with each other by overlapping junctions.
Le Prell, Colleen G.; Kawamoto, Kohei; Raphael, Yehoash; Dolan, David F.
2011-01-01
When sinusoidal electric stimulation is applied to the intact cochlea, a frequency-specific acoustic emission can be recorded in the ear canal. Acoustic emissions are produced by basilar membrane motion, and have been used to suggest a corresponding acoustic sensation termed “electromotile hearing.” Electromotile hearing has been specifically attributed to electric stimulation of outer hair cells in the intact organ of Corti. To determine the nature of the auditory perception produced by electric stimulation of a cochlea with intact outer hair cells, we tested guinea pigs in a psychophysical task. First, subjects were trained to report detection of sinusoidal acoustic stimuli and dynamic range was assessed using response latency. Subjects were then implanted with a ball electrode placed into scala tympani. Following the surgical implant procedure, subjects were transferred to a task in which acoustic signals were replaced by sinusoidal electric stimulation, and dynamic range was assessed again. Finally, the ability of acoustic pure-tone stimuli to mask the detection of the electric signals was assessed. Based on the masking effects, we conclude that sinusoidal electric stimulation of the intact cochlea results in perception of a tonal (rather than a broad-band or noisy) sound at a frequency of 8 kHz or above. PMID:17225416
Sinusoidal obstruction syndrome (SOS): A light and electron microscopy study in human liver.
Vreuls, C P H; Driessen, A; Olde Damink, S W M; Koek, G H; Duimel, H; van den Broek, M A J; Dejong, C H C; Braet, F; Wisse, E
2016-05-01
Oxaliplatin is an important chemotherapeutic agent, used in the treatment of hepatic colorectal metastases, and known to induce the sinusoidal obstruction syndrome (SOS). Pathophysiological knowledge concerning SOS is based on a rat model. Therefore, the aim was to perform a comprehensive study of the features of human SOS, using both light microscopy (LM) and electron microscopy (EM). Included were all patients of whom wedge liver biopsies were collected during a partial hepatectomy for colorectal liver metastases, in a 4-year period. The wedge biopsy were perfusion fixated and processed for LM and EM. The SOS lesions were selected by LM and details were studied using EM. Material was available of 30 patients, of whom 28 patients received neo-adjuvant oxaliplatin. Eighteen (64%) of the 28 patients showed SOS lesions, based on microscopy. The lesions consisted of sinusoidal endothelial cell detachment from the space of Disse on EM. In the enlarged space of Disse a variable amount of erythrocytes were located. Sinusoidal endothelial cell detachment was present in human SOS, accompanied by enlargement of the space of Disse and erythrocytes in this area. These findings, originally described in a rat model, were now for the first time confirmed in human livers under clinically relevant settings. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sinusoidal synthesis based adaptive tracking for rotating machinery fault detection
NASA Astrophysics Data System (ADS)
Li, Gang; McDonald, Geoff L.; Zhao, Qing
2017-01-01
This paper presents a novel Sinusoidal Synthesis Based Adaptive Tracking (SSBAT) technique for vibration-based rotating machinery fault detection. The proposed SSBAT algorithm is an adaptive time series technique that makes use of both frequency and time domain information of vibration signals. Such information is incorporated in a time varying dynamic model. Signal tracking is then realized by applying adaptive sinusoidal synthesis to the vibration signal. A modified Least-Squares (LS) method is adopted to estimate the model parameters. In addition to tracking, the proposed vibration synthesis model is mainly used as a linear time-varying predictor. The health condition of the rotating machine is monitored by checking the residual between the predicted and measured signal. The SSBAT method takes advantage of the sinusoidal nature of vibration signals and transfers the nonlinear problem into a linear adaptive problem in the time domain based on a state-space realization. It has low computation burden and does not need a priori knowledge of the machine under the no-fault condition which makes the algorithm ideal for on-line fault detection. The method is validated using both numerical simulation and practical application data. Meanwhile, the fault detection results are compared with the commonly adopted autoregressive (AR) and autoregressive Minimum Entropy Deconvolution (ARMED) method to verify the feasibility and performance of the SSBAT method.
Low power consumption mini rotary actuator with SMA wires
NASA Astrophysics Data System (ADS)
Manfredi, Luigi; Huan, Yu; Cuschieri, Alfred
2017-11-01
Shape memory alloys (SMAs) are smart materials widely used as actuators for their high power to weight ratio despite their well-known low energy efficiency and limited mechanical bandwidth. For robotic applications, SMAs exhibit limitations due to high power consumption and limited stroke, varying from 4% to 7% of the total length. Hysteresis, during the contraction and extension cycle, requires a complex control algorithm. On the positive side, the small size and low weight are eminently suited for the design of mini actuators for robotic platforms. This paper describes the design and construction of a light weight and low power consuming mini rotary actuator with on-board contact-less position and force sensors. The design is specifically intended to reduce (i) energy consumption, (ii) dimensions of the sensory system, and (iii) provide a simple control without any need for SMA characterisation. The torque produced is controlled by on-board force sensors. Experiments were performed to investigate the energy consumption and performance (step and sinusoidal angle profiles with a frequency varying from 0.5 to 10 Hz and maximal amplitude of {15}\\circ ). We describe a transient capacitor effect related to the SMA wires during the sinusoidal profile when the active SMA wire is powered and the antagonist one switched-off, resulting in a transient current time varying from 300 to 400 ms.
NASA Astrophysics Data System (ADS)
Oku, Hideki; Narita, Kiyomi; Shiraishi, Takashi; Ide, Satoshi; Tanaka, Kazuhiro
2012-01-01
A 25-Gbps high-sensitivity optical receiver with a 10-Gbps photodiode (PD) using inductive input coupling has been demonstrated for optical interconnects. We introduced the inductive input coupling technique to achieve the 25-Gbps optical receiver using a 10-Gbps PD. We implemented an input inductor (Lin) between the PD and trans-impedance amplifier (TIA), and optimized inductance to enhance the bandwidth and reduce the input referred noise current through simulation with the RF PD-model. Near the resonance frequency of the tank circuit formed by PD capacitance, Lin, and TIA input capacitance, the PD photo-current through Lin into the TIA is enhanced. This resonance has the effects of enhancing the bandwidth at TIA input and reducing the input equivalent value of the noise current from TIA. We fabricated the 25-Gbps optical receiver with the 10-Gbps PD using an inductive input coupling technique. Due to the application of an inductor, the receiver bandwidth is enhanced from 10 GHz to 14.2 GHz. Thanks to this wide-band and low-noise performance, we were able to improve the sensitivity at an error rate of 1E-12 from non-error-free to -6.5 dBm. These results indicate that our technique is promising for cost-effective optical interconnects.
NASA Technical Reports Server (NTRS)
Hasha, Martin D.
1990-01-01
NASA is developing a Life Sciences Centrifuge Facility for Space Station Freedom. In includes a 2.5-meter artificial gravity Bioresearch Centrifuge (BC), which is perhaps the most critical single element in the life sciences space research program. It rotates continuously at precise selectable rates, and utilizes advanced reliable technologies to reduce vibrations. Three disturbance types are analyzed using a current Space Station Freedom dynamic model in the 0.0 to 5.0 Hz range: sinusoidal, random, and transient. Results show that with proper selection of proven design techniques, BC vibrations are compatible with requirements.
A Low-Power Wide Dynamic-Range Current Readout Circuit for Ion-Sensitive FET Sensors.
Son, Hyunwoo; Cho, Hwasuk; Koo, Jahyun; Ji, Youngwoo; Kim, Byungsub; Park, Hong-June; Sim, Jae-Yoon
2017-06-01
This paper presents an amplifier-less and digital-intensive current-to-digital converter for ion-sensitive FET sensors. Capacitance on the input node is utilized as a residue accumulator, and a clocked comparator is followed for quantization. Without any continuous-time feedback circuit, the converter performs a first-order noise shaping of the quantization error. In order to minimize static power consumption, the proposed circuit employs a single-ended current-steering digital-to-analog converter which flows only the same current as the input. By adopting a switching noise averaging algorithm, our dynamic element matching not only mitigates mismatch of current sources in the current-steering DAC, but also makes the effect of dynamic switching noise become an input-independent constant. The implemented circuit in 0.35 μm CMOS converts the current input with a range of 2.8 μ A to 15 b digital output in about 4 ms, showing a DNL of +0.24/-0.25 LSB and an INL of + 1.98/-1.98 LSB while consuming 16.8 μW.
Thermal-Error Regime in High-Accuracy Gigahertz Single-Electron Pumping
NASA Astrophysics Data System (ADS)
Zhao, R.; Rossi, A.; Giblin, S. P.; Fletcher, J. D.; Hudson, F. E.; Möttönen, M.; Kataoka, M.; Dzurak, A. S.
2017-10-01
Single-electron pumps based on semiconductor quantum dots are promising candidates for the emerging quantum standard of electrical current. They can transfer discrete charges with part-per-million (ppm) precision in nanosecond time scales. Here, we employ a metal-oxide-semiconductor silicon quantum dot to experimentally demonstrate high-accuracy gigahertz single-electron pumping in the regime where the number of electrons trapped in the dot is determined by the thermal distribution in the reservoir leads. In a measurement with traceability to primary voltage and resistance standards, the averaged pump current over the quantized plateau, driven by a 1-GHz sinusoidal wave in the absence of a magnetic field, is equal to the ideal value of e f within a measurement uncertainty as low as 0.27 ppm.
Safety and efficacy of defibrotide for the treatment of severe hepatic veno-occlusive disease.
Richardson, Paul G; Ho, Vincent T; Giralt, Sergio; Arai, Sally; Mineishi, Shin; Cutler, Corey; Antin, Joseph H; Stavitzski, Nicole; Niederwieser, Dietger; Holler, Ernst; Carreras, Enric; Soiffer, Robert
2012-08-01
Hepatic veno-occlusive disease (VOD), also known as sinusoidal obstruction syndrome, is a potentially life-threatening complication of chemotherapeutic conditioning used in preparation for hematopoietic stem-cell transplantation (SCT). VOD may occur in up to 62% of patients undergoing SCT, with onset generally within the first month after SCT. In severe cases, 100-day mortality is in excess of 80%. Current management consists of best supportive care, with no agents to date approved for treatment in the USA or the EU. Defibrotide, a polydisperse oligonucleotide, has been shown in phase II and III trials to improve complete response and survival in patients undergoing SCT with severe VOD. This article reviews our current understanding of VOD, and examines recent clinical findings on defibrotide for the treatment and prophylaxis of VOD.
Compensated control loops for a 30-cm ion thruster
NASA Technical Reports Server (NTRS)
Robson, R. R.
1976-01-01
The vaporizer dynamic control characteristics of a 30-cm diameter mercury ion thruster were determined by operating the thruster in an open loop steady state mode and then introducing a small sinusoidal signal on the main, cathode, or neutralizer vaporizer current and observing the response of the beam current, discharge voltage, and neutralizer keeper voltage, respectively. This was done over a range of frequencies and operating conditions. From these data, Bode plots for gain and phase were made and mathematical models were obtained. The Bode plots and mathematical models were analyzed for stability and appropriate compensation networks determined. The compensated control loops were incorporated into a power processor and operated with a thruster. The time responses of the compensated loops to changes in set points and recovery from arc conditions are presented.
Effects of input device and motion type on a cursor-positioning task.
Yau, Yi-Jan; Hwang, Sheue-Ling; Chao, Chin-Jung
2008-02-01
Many studies have investigated the performance of using nonkey-board input devices under static situations, but few have considered the effects of motion type on manipulating these input devices. In this study comparison of 12 mens' performance using four input devices (three trackballs: currently used, trackman wheel, and erectly held trackballs, as well as a touch screen) under five motion types of static, heave, roll, pitch, and random movements was conducted. The input device and motion type significantly affected movement speed and accuracy, and their interaction significantly affected the movement speed. The touch screen was the fastest but the least accurate input device. The erectly held trackball was the slowest, whereas the error rate of the currently used trackball was the lowest. Impairments of the random motion on movement time and error rate were larger than those of other motion types. Considering objective and subjective evaluations, the trackman wheel and currently used trackball were more efficient in operation than the erectly held trackball and touch screen under the motion environments.
Current profilers and current meters: compass and tilt sensors errors and calibration
NASA Astrophysics Data System (ADS)
Le Menn, M.; Lusven, A.; Bongiovanni, E.; Le Dû, P.; Rouxel, D.; Lucas, S.; Pacaud, L.
2014-08-01
Current profilers and current meters have a magnetic compass and tilt sensors for relating measurements to a terrestrial reference frame. As compasses are sensitive to their magnetic environment, they must be calibrated in the configuration in which they will be used. A calibration platform for magnetic compasses and tilt sensors was built, based on a method developed in 2007, to correct angular errors and guarantee a measurement uncertainty for instruments mounted in mooring cages. As mooring cages can weigh up to 800 kg, it was necessary to find a suitable place to set up this platform, map the magnetic fields in this area and dimension the platform to withstand these loads. It was calibrated using a GPS positioning technique. The platform has a table that can be tilted to calibrate the tilt sensors. The measurement uncertainty of the system was evaluated. Sinusoidal corrections based on the anomalies created by soft and hard magnetic materials were tested, as well as manufacturers’ calibration methods.
NASA Astrophysics Data System (ADS)
Kivelson, Margaret; Southwood, David
Superimposed on the predominantly dipolar field of Saturn's middle magnetosphere (here taken as between 5 and 10 RS) are perturbations of a few nT amplitude that vary with the SKR periodicity. Andrews and coworkers (2008) have determined that averages of the perturbations of the radial and azimuthal field components vary roughly sinusoidally and in quadrature, with the radial component leading. Thus these two components of the magnetic perturbations can be represented as an approximately uniform field rotating in the sense of Saturn's rotation (Espinosa et al., 2003). This perturbation field is referred to by Southwood and Kivelson (2007) as the cam field. Andrews et al. (2008) show that perturbation of the theta component, (theta is colatitude) is also nearly sinusoidal and in-phase with the radial perturbations. It follows that near the equator variations of the field magnitude are also in phase with the radial perturbations. Provan et al. (2009) and Khurana et al. (2009) have attributed the periodicity of the field magnitude to an asymmetric ring current. Saturn's asymmetric ring current is not fixed in local time,as it is at Earth, but rotates quasi-rigidly at the SKR period. A distributed, rotating field-aligned current (FAC) system must develop between regions with an excess of or a dearth of azimuthal current but, because those FACs spread over a large spatial region, the associated current density will be smaller than the current density of the more localized cam current system. Thus, it is the electrons associated with the latter currents that are likely to drive the periodically modulated SKR signals. The ring current of the middle magnetosphere is dominated by inertial currents carried by the thermal plasma (Sergis et al., 2010), but the variation of azimuthal current may arise either from density variations or variations of plasma beta. In either case, the current pattern must drive a circulation of the plasma in the middle magnetosphere. [A circulating plasma pattern in the inner magnetosphere at distances less than 5 RS has been described by Gurnett et al. (2007) but has not yet been related to the analysis of this talk.] Because of the local time asymmetry of the magnetosphere, the flows and some of the magnetic perturbations are expected to increase in magnitude when the outward flow sector rotates into the post dusk magnetosphere, a phenomenon possibly related to the recurrent energization of plasma in the midnight-to-dawn quadrant of Saturn's magnetosphere described by Mitchell et al (2009). In this talk we expand on the description of this abstract and analyze the consequences for plasma circulation of the rotating asymmetry in field and particles in Saturn's middle magnetosphere.
Equations For Rotary Transformers
NASA Technical Reports Server (NTRS)
Salomon, Phil M.; Wiktor, Peter J.; Marchetto, Carl A.
1988-01-01
Equations derived for input impedance, input power, and ratio of secondary current to primary current of rotary transformer. Used for quick analysis of transformer designs. Circuit model commonly used in textbooks on theory of ac circuits.
Hybrid zero-voltage switching (ZVS) control for power inverters
Amirahmadi, Ahmadreza; Hu, Haibing; Batarseh, Issa
2016-11-01
A power inverter combination includes a half-bridge power inverter including first and second semiconductor power switches receiving input power having an intermediate node therebetween providing an inductor current through an inductor. A controller includes input comparison circuitry receiving the inductor current having outputs coupled to first inputs of pulse width modulation (PWM) generation circuitry, and a predictive control block having an output coupled to second inputs of the PWM generation circuitry. The predictive control block is coupled to receive a measure of Vin and an output voltage at a grid connection point. A memory stores a current control algorithm configured for resetting a PWM period for a switching signal applied to control nodes of the first and second power switch whenever the inductor current reaches a predetermined upper limit or a predetermined lower limit.
Use of alternating and pulsed direct current electrified fields for zebra mussel control
Luoma, James A.; Dean, Jan C.; Severson, Todd J.; Wise, Jeremy K.; Barbour, Matthew
2017-01-01
Alternatives to chemicals for controlling dreissenid mussels are desirable for environmental compatibility, but few alternatives exist. Previous studies have evaluated the use of electrified fields for stunning and/or killing planktonic life stages of dreissenid mussels, however, the available literature on the use of electrified fields to control adult dreissenid mussels is limited. We evaluated the effects of sinusoidal alternating current (AC) and 20% duty cycle square-wave pulsed direct current (PDC) exposure on the survival of adult zebra mussels at water temperatures of 10, 15, and 22 °C. Peak voltage gradients of ~ 17 and 30 Vp/cm in the AC and PDC exposures, respectively, were continuously applied for 24, 48, or 72 h. Peak power densities ranged from 77,999 to 107,199 µW/cm3 in the AC exposures and 245,320 to 313,945 µW/cm3 in the PDC exposures. The peak dose ranged from 6,739 to 27,298 Joules/cm3 and 21,306 to 80,941 Joules/cm3 in the AC and PDC exposures, respectively. The applied power ranged from 16.6 to 68.9 kWh in the AC exposures and from 22.2 to 86.4 kWh in the PDC exposures. Mortality ranged from 2.7 to 92.7% in the AC exposed groups and from 24.0 to 98.7% in PDC exposed groups. Mortality increased with corresponding increases in water temperature and exposure duration, and we observed more zebra mussel mortality in the PDC exposures. Exposures conducted with AC required less of a peak dose (Joules/cm3) but more applied power (kWh) to achieve the same level of adult zebra mussel mortality as corresponding PDC exposures. The results demonstrate that 20% duty cycle square-wave PDC requires less energy than sinusoidal AC to inducing the same level of adult zebra mussel mortality.
ERIC Educational Resources Information Center
Nagasawa, Yoshinori; Demura, Shinichi
2011-01-01
This study examined age-group corresponding relationships of the controlled force exertion based on sinusoidal and quasi-random waveforms in 175 right-handed male adults aged 20 to 86 years. The subjects were divided into 3 groups based on age-level: 53 young (mean age 24.6, SD = 3.3 years), 71 middle aged (mean age 44.3, SD = 8.7 years), and 51…
Quantifying ataxia: ideal trajectory analysis--a technical note
NASA Technical Reports Server (NTRS)
McPartland, M. D.; Krebs, D. E.; Wall, C. 3rd
2000-01-01
We describe a quantitative method to assess repeated stair stepping stability. In both the mediolateral (ML) and anterioposterior (AP) directions, the trajectory of the subject's center of mass (COM) was compared to an ideal sinusoid. The two identified sinusoids were unique in each direction but coupled. Two dimensionless numbers-the mediolateral instability index (IML) and AP instability index (IAP)-were calculated using the COM trajectory and ideal sinusoids for each subject with larger index values resulting from less stable performance. The COM trajectories of nine nonimpaired controls and six patients diagnosed with unilateral or bilateral vestibular labyrinth hypofunction were analyzed. The average IML and IAP values of labyrinth disorder patients were respectively 127% and 119% greater than those of controls (p<0.014 and 0.006, respectively), indicating that the ideal trajectory analysis distinguishes persons with labyrinth disorder from those without. The COM trajectories also identify movement inefficiencies attributable to vestibulopathy.
Unified design of sinusoidal-groove fused-silica grating.
Feng, Jijun; Zhou, Changhe; Cao, Hongchao; Lu, Peng
2010-10-20
A general design rule of deep-etched subwavelength sinusoidal-groove fused-silica grating as a highly efficient polarization-independent or polarization-selective device is studied based on the simplified modal method, which shows that the device structure depends little on the incident wavelength, but mainly on the ratio of groove depth to incident wavelength and the ratio of wavelength to grating period. These two ratios could be used as the design guidelines for wavelength-independent structure from deep ultraviolet to far infrared. The optimized grating profile with a different function as a polarizing beam splitter, a polarization-independent two-port beam splitter, or a polarization-independent grating with high efficiency of -1st order is obtained at a wavelength of 1064 nm, and verified by using the rigorous coupled-wave analysis. The performance of the sinusoidal grating is better than a conventional rectangular one, which could be useful for practical applications.
Zhang, Fan; Yun, Han; Wang, Yun; Lu, Zeqin; Chrostowski, Lukas; Jaeger, Nicolas A F
2017-01-15
We design and demonstrate a compact broadband polarization beam splitter (PBS) using a symmetric directional coupler with sinusoidal bends on a silicon-on-insulator platform. The sinusoidal bends in our PBS suppress the power exchange between two parallel symmetric strip waveguides for the transverse-electric (TE) mode, while allowing for the maximum power transfer to the adjacent waveguide for the transverse-magnetic (TM) mode. Our PBS has a nominal coupler length of 8.55 μm, and it has an average extinction ratio (ER) of 12.0 dB for the TE mode, an average ER of 20.1 dB for the TM mode, an average polarization isolation (PI) of 20.6 dB for the through port, and an average PI of 11.5 dB for the cross port, all over a bandwidth of 100 nm.
Paschos, Konstantinos A; Majeed, Ali W; Bird, Nigel C
2014-04-14
Colorectal cancer hepatic metastases represent the final stage of a multi-step biological process. This process starts with a series of mutations in colonic epithelial cells, continues with their detachment from the large intestine, dissemination through the blood and/or lymphatic circulation, attachment to the hepatic sinusoids and interactions with the sinusoidal cells, such as sinusoidal endothelial cells, Kupffer cells, stellate cells and pit cells. The metastatic sequence terminates with colorectal cancer cell invasion, adaptation and colonisation of the hepatic parenchyma. All these events, termed the colorectal cancer invasion-metastasis cascade, include multiple molecular pathways, intercellular interactions and expression of a plethora of chemokines and growth factors, and adhesion molecules, such as the selectins, the integrins or the cadherins, as well as enzymes including matrix metalloproteinases. This review aims to present recent advances that provide insights into these cell-biological events and emphasizes those that may be amenable to therapeutic targeting.
Yakushijin, Kimikazu; Okamura, Atsuo; Ono, Kanako; Kawano, Yuko; Kawano, Hiroki; Funakoshi, Yohei; Kawamori, Yuriko; Nishikawa, Shinichiro; Minagawa, Kentaro; Sada, Akiko; Shimoyama, Manabu; Yamamoto, Katsuya; Katayama, Yoshio; Matsui, Toshimitsu
2009-01-01
Sinusoidal obstruction syndrome (SOS) is one of the life-threatening complications caused by endothelial damage to the hepatic sinusoids after hematopoietic stem cell transplantation. However, a satisfactory treatment for SOS has not yet been established. Defibrotide has anti-thrombotic, anti-ischemic, anti-inflammatory, and thrombolytic properties without systemic anticoagulant effects. We treated eight post-transplant SOS patients with defibrotide. Three patients responded to the therapy and the initial response was observed within a week. In addition to the improvement of liver function, rapid recovery of response to diuretic drugs followed by the improvement of renal function was observed. All of the five patients with respiratory dysfunction died despite administration of defibrotide, suggesting that early treatment might lead to better outcomes. There were no severe adverse effects directly due to defibrotide administration. Defibrotide seems to be a promising treatment for SOS, and the initiation of a clinical study in Japan would be important.
Buckling instability in amorphous carbon films
NASA Astrophysics Data System (ADS)
Zhu, X. D.; Narumi, K.; Naramoto, H.
2007-06-01
In this paper, we report the buckling instability in amorphous carbon films on mirror-polished sapphire (0001) wafers deposited by ion beam assisted deposition at various growth temperatures. For the films deposited at 150 °C, many interesting stress relief patterns are found, which include networks, blisters, sinusoidal patterns with π-shape, and highly ordered sinusoidal waves on a large scale. Starting at irregular buckling in the centre, the latter propagate towards the outer buckling region. The maximum length of these ordered patterns reaches 396 µm with a height of ~500 nm and a wavelength of ~8.2 µm. However, the length decreases dramatically to 70 µm as the deposition temperature is increased to 550 °C. The delamination of the film appears instead of sinusoidal waves with a further increase of the deposition temperature. This experimental observation is correlated with the theoretic work of Crosby (1999 Phys. Rev. E 59 R2542).
Telangiectatic focal nodular hyperplasia of the liver: a case detected at birth.
Kim, Han-Seong; Kim, Young A.; Kim, Chong Jai; Suh, Yeon-Lim; Jang, Ja-June; Chi, Je G.
2003-01-01
A case of telangiectatic focal nodular hyperplasia (FNH) was detected at birth and was surgically removed. Grossly, the lesion was a solitary nodule and showed vague nodularity, appearing as an adenoma-like mass with fine fibrous septa, but having no macroscopic scar. On microscopic scale, the mass typically had neither fibrous central scar nor hyperplastic nodules different from the usual FNHs. The hepatic plates were separated by sinusoidal dilatation, sometimes alternating with areas of marked ectasia. Instead of large fibrous scar, thin fibrous septa were often found, and contained abnormal tortuous large arteries. These high-pressure vessels were connected directly into the adjacent sinusoids and made marked dilation of sinusoids. Bile ductular proliferation was also noted in the thin fibrous septa. To our knowledge, this is considered to be the first reported case of telangiectatic FNH detected at birth. PMID:14555832
Development of dynamic calibration methods for POGO pressure transducers. [for space shuttle
NASA Technical Reports Server (NTRS)
Hilten, J. S.; Lederer, P. S.; Vezzetti, C. F.; Mayo-Wells, J. F.
1976-01-01
Two dynamic pressure sources are described for the calibration of pogo pressure transducers used to measure oscillatory pressures generated in the propulsion system of the space shuttle. Rotation of a mercury-filled tube in a vertical plane at frequencies below 5 Hz generates sinusoidal pressures up to 48 kPa, peak-to-peak; vibrating the same mercury-filled tube sinusoidally in the vertical plane extends the frequency response from 5 Hz to 100 Hz at pressures up to 140 kPa, peak-to-peak. The sinusoidal pressure fluctuations can be generated by both methods in the presence of high pressures (bias) up to 55 MPa. Calibration procedures are given in detail for the use of both sources. The dynamic performance of selected transducers was evaluated using these procedures; the results of these calibrations are presented. Calibrations made with the two sources near 5 Hz agree to within 3% of each other.
Wide-field fluorescence diffuse optical tomography with epi-illumination of sinusoidal pattern
NASA Astrophysics Data System (ADS)
Li, Tongxin; Gao, Feng; Chen, Weiting; Qi, Caixia; Yan, Panpan; Zhao, Huijuan
2017-02-01
We present a wide-field fluorescence tomography with epi-illumination of sinusoidal pattern. In this scheme, a DMD projector is employed as a spatial light modulator to generate independently wide-field sinusoidal illumination patterns at varying spatial frequencies on a sample, and then the emitted photons at the sample surface were captured with a EM-CCD camera. This method results in a significantly reduced number of the optical field measurements as compared to the point-source-scanning ones and thereby achieves a fast data acquisition that is desired for a dynamic imaging application. Fluorescence yield images are reconstructed using the normalized-Born formulated inversion of the diffusion model. Experimental reconstructions are presented on a phantom embedding the fluorescent targets and compared for a combination of the multiply frequencies. The results validate the ability of the method to determine the target relative depth and quantification with an increasing accuracy.
Costalago Meruelo, Alicia; Simpson, David M; Veres, Sandor M; Newland, Philip L
2016-03-01
Mathematical modelling is used routinely to understand the coding properties and dynamics of responses of neurons and neural networks. Here we analyse the effectiveness of Artificial Neural Networks (ANNs) as a modelling tool for motor neuron responses. We used ANNs to model the synaptic responses of an identified motor neuron, the fast extensor motor neuron, of the desert locust in response to displacement of a sensory organ, the femoral chordotonal organ, which monitors movements of the tibia relative to the femur of the leg. The aim of the study was threefold: first to determine the potential value of ANNs as tools to model and investigate neural networks, second to understand the generalisation properties of ANNs across individuals and to different input signals and third, to understand individual differences in responses of an identified neuron. A metaheuristic algorithm was developed to design the ANN architectures. The performance of the models generated by the ANNs was compared with those generated through previous mathematical models of the same neuron. The results suggest that ANNs are significantly better than LNL and Wiener models in predicting specific neural responses to Gaussian White Noise, but not significantly different when tested with sinusoidal inputs. They are also able to predict responses of the same neuron in different individuals irrespective of which animal was used to develop the model, although notable differences between some individuals were evident. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Li, Xinying; Dong, Ze; Yu, Jianjun; Chi, Nan; Shao, Yufeng; Chang, G K
2012-12-15
We experimentally demonstrate a seamlessly integrated fiber-wireless system that delivers a 108 Gb/s signal through 80 km fiber and 1 m wireless transport over free space at 100 GHz adopting polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) modulation and heterodyning coherent detection. The X- and Y-polarization components of the optical PDM-QPSK baseband signal are simultaneously upconverted to 100 GHz wireless carrier by optical polarization-diversity heterodyne beating, and then independently transmitted and received by two pairs of transmitter and receiver antennas, which form a 2×2 multiple-input multiple-output wireless link. At the wireless receiver, two-stage downconversion is performed firstly in the analog domain based on balanced mixer and sinusoidal radio frequency signal, and then in the digital domain based on digital signal processing (DSP). Polarization demultiplexing is realized by the constant modulus algorithm in the DSP part at the receiver. The bit-error ratio for the 108 Gb/s PDM-QPSK signal is less than the pre-forward-error-correction threshold of 3.8×10(-3) after both 1 m wireless delivery at 100 GHz and 80 km single-mode fiber-28 transmission. To our knowledge, this is the first demonstration to realize 100 Gb/s signal delivery through both fiber and wireless links at 100 GHz.
Predictive control of intersegmental tarsal movements in an insect.
Costalago-Meruelo, Alicia; Simpson, David M; Veres, Sandor M; Newland, Philip L
2017-08-01
In many animals intersegmental reflexes are important for postural and movement control but are still poorly undesrtood. Mathematical methods can be used to model the responses to stimulation, and thus go beyond a simple description of responses to specific inputs. Here we analyse an intersegmental reflex of the foot (tarsus) of the locust hind leg, which raises the tarsus when the tibia is flexed and depresses it when the tibia is extended. A novel method is described to measure and quantify the intersegmental responses of the tarsus to a stimulus to the femoro-tibial chordotonal organ. An Artificial Neural Network, the Time Delay Neural Network, was applied to understand the properties and dynamics of the reflex responses. The aim of this study was twofold: first to develop an accurate method to record and analyse the movement of an appendage and second, to apply methods to model the responses using Artificial Neural Networks. The results show that Artificial Neural Networks provide accurate predictions of tarsal movement when trained with an average reflex response to Gaussian White Noise stimulation compared to linear models. Furthermore, the Artificial Neural Network model can predict the individual responses of each animal and responses to others inputs such as a sinusoid. A detailed understanding of such a reflex response could be included in the design of orthoses or functional electrical stimulation treatments to improve walking in patients with neurological disorders as well as the bio/inspired design of robots.
Neocortical Rebound Depolarization Enhances Visual Perception
Funayama, Kenta; Ban, Hiroshi; Chan, Allen W.; Matsuki, Norio; Murphy, Timothy H.; Ikegaya, Yuji
2015-01-01
Animals are constantly exposed to the time-varying visual world. Because visual perception is modulated by immediately prior visual experience, visual cortical neurons may register recent visual history into a specific form of offline activity and link it to later visual input. To examine how preceding visual inputs interact with upcoming information at the single neuron level, we designed a simple stimulation protocol in which a brief, orientated flashing stimulus was subsequently coupled to visual stimuli with identical or different features. Using in vivo whole-cell patch-clamp recording and functional two-photon calcium imaging from the primary visual cortex (V1) of awake mice, we discovered that a flash of sinusoidal grating per se induces an early, transient activation as well as a long-delayed reactivation in V1 neurons. This late response, which started hundreds of milliseconds after the flash and persisted for approximately 2 s, was also observed in human V1 electroencephalogram. When another drifting grating stimulus arrived during the late response, the V1 neurons exhibited a sublinear, but apparently increased response, especially to the same grating orientation. In behavioral tests of mice and humans, the flashing stimulation enhanced the detection power of the identically orientated visual stimulation only when the second stimulation was presented during the time window of the late response. Therefore, V1 late responses likely provide a neural basis for admixing temporally separated stimuli and extracting identical features in time-varying visual environments. PMID:26274866
Gigahertz single-electron pumping in silicon with an accuracy better than 9.2 parts in 10{sup 7}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamahata, Gento, E-mail: yamahata.gento@lab.ntt.co.jp; Karasawa, Takeshi; Fujiwara, Akira
2016-07-04
High-speed and high-accuracy pumping of a single electron is crucial for realizing an accurate current source, which is a promising candidate for a quantum current standard. Here, using a high-accuracy measurement system traceable to primary standards, we evaluate the accuracy of a Si tunable-barrier single-electron pump driven by a single sinusoidal signal. The pump operates at frequencies up to 6.5 GHz, producing a current of more than 1 nA. At 1 GHz, the current plateau with a level of about 160 pA is found to be accurate to better than 0.92 ppm (parts per million), which is a record value for 1-GHz operation. At 2 GHz,more » the current plateau offset from 1ef (∼320 pA) by 20 ppm is observed. The current quantization accuracy is improved by applying a magnetic field of 14 T, and we observe a current level of 1ef with an accuracy of a few ppm. The presented gigahertz single-electron pumping with a high accuracy is an important step towards a metrological current standard.« less
Hsu, Chung-Lun; Jiang, Haowei; Venkatesh, A G; Hall, Drew A
2015-10-01
Over the past two decades, nanopores have been a promising technology for next generation deoxyribonucleic acid (DNA) sequencing. Here, we present a hybrid semi-digital transimpedance amplifier (HSD-TIA) to sense the minute current signatures introduced by single-stranded DNA (ssDNA) translocating through a nanopore, while discharging the baseline current using a semi-digital feedback loop. The amplifier achieves fast settling by adaptively tuning a DC compensation current when a step input is detected. A noise cancellation technique reduces the total input-referred current noise caused by the parasitic input capacitance. Measurement results show the performance of the amplifier with 31.6 M Ω mid-band gain, 950 kHz bandwidth, and 8.5 fA/ √Hz input-referred current noise, a 2× noise reduction due to the noise cancellation technique. The settling response is demonstrated by observing the insertion of a protein nanopore in a lipid bilayer. Using the nanopore, the HSD-TIA was able to measure ssDNA translocation events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S; Lu, B; Samant, S
2014-06-01
Purpose: To investigate the effects of scanning parameters and respiratory patterns on the image quality for 4-dimensional cone-beam computed tomography(4D-CBCT) imaging, and assess the accuracy of computed tumor trajectory for lung imaging using registration of phased 4D-CBCT imaging with treatment planning-CT. Methods: We simulated a periodic and non-sinusoidal respirations with various breathing periods and amplitudes using a respiratory phantom(Quasar, Modus Medical Devices Inc) to acquire respiration-correlated 4D-CBCT images. 4D-CBCT scans(Elekta Oncology Systems Ltd) were performed with different scanning parameters for collimation size(e.g., small and medium field-of-views) and scanning speed(e.g., slow 50°·min{sup −1}, fast 100°·min{sup −1}). Using a standard CBCT-QA phantom(Catphan500,more » The Phantom Laboratory), the image qualities of all phases in 4D-CBCT were evaluated with contrast-to-noise ratio(CNR) for lung tissue and uniformity in each module. Using a respiratory phantom, the target imaging in 4D-CBCT was compared to 3D-CBCT target image. The target trajectory from 10-respiratory phases in 4D-CBCT was extracted using an automatic image registration and subsequently assessed the accuracy by comparing with actual motion of the target. Results: Image analysis indicated that a short respiration with a small amplitude resulted in superior CNR and uniformity. Smaller variation of CNR and uniformity was present amongst different respiratory phases. The small field-of-view with a partial scan using slow scan can improve CNR, but degraded uniformity. Large amplitude of respiration can degrade image quality. RMS of voxel densities in tumor area of 4D-CBCT images between sinusoidal and non-sinusoidal motion exhibited no significant difference. The maximum displacement errors of motion trajectories were less than 1.0 mm and 13.5 mm, for sinusoidal and non-sinusoidal breathings, respectively. The accuracy of motion reconstruction showed good overall agreement with the 4D-CBCT image quality results only using sinusoidal breathings. Conclusion: This information can be used to determine the appropriate acquisition parameters of 4D-CBCT imaging for registration accuracy and target trajectory measurements in a clinical setting.« less
NASA Astrophysics Data System (ADS)
Jose, L.; Bennett, R. A.; Harig, C.
2017-12-01
Currently, cGPS data is well suited to track vertical changes in the Earth's surface. However, there are annual, semi-annual, and interannual signals within cGPS time series that are not well constrained. We hypothesize that these signals are primarily due to water loading. If this is the case, the conventional method of modeling cGPS data as an annual or semiannual sinusoid falls short, as such models cannot accurately capture all variations in surface displacement, especially those due to extreme hydrologic events. We believe that we can better correct the cGPS time series with another method we are developing wherein we use a time series of surface displacement derived from the GRACE geopotential field instead of a sinusoidal model to correct the data. Currently, our analysis is constrained to the Amazon Basin, where the signal due to water loading is large enough to appear in both the GRACE and cGPS measurements. The vertical signal from cGPS stations across the Amazon Basin show an apparent spatial correlation, which further supports our idea that these signals are due to a regional water loading signal. In our preliminary research, we used tsview for Matlab to find that the WRMS of the corrected cGPS time series can be reduced as much as 30% from the model corrected data to the GRACE corrected data. The Amazon, like many places around the world, has experienced extreme drought, in 2005, 2010, and recently in 2015. In addition to making the cGPS vertical signal more robust, the method we are developing has the potential to help us understand the effects of these weather events and track trends in water loading.
Ming Gu; Chakrabartty, Shantanu
2014-06-01
This paper presents the design of a programmable gain, temperature compensated, current-mode CMOS logarithmic amplifier that can be used for biomedical signal processing. Unlike conventional logarithmic amplifiers that use a transimpedance technique to generate a voltage signal as a logarithmic function of the input current, the proposed approach directly produces a current output as a logarithmic function of the input current. Also, unlike a conventional transimpedance amplifier the gain of the proposed logarithmic amplifier can be programmed using floating-gate trimming circuits. The synthesis of the proposed circuit is based on the Hart's extended translinear principle which involves embedding a floating-voltage source and a linear resistive element within a translinear loop. Temperature compensation is then achieved using a translinear-based resistive cancelation technique. Measured results from prototypes fabricated in a 0.5 μm CMOS process show that the amplifier has an input dynamic range of 120 dB and a temperature sensitivity of 230 ppm/°C (27 °C- 57°C), while consuming less than 100 nW of power.
BEDORE, LISA M.; PEÑA, ELIZABETH D.; GRIFFIN, ZENZI M.; HIXON, J. GREGORY
2018-01-01
This study evaluates the effects of Age of Exposure to English (AoEE) and Current Input/Output on language performance in a cross-sectional sample of Spanish–English bilingual children. First- (N= 586) and third-graders (N= 298) who spanned a wide range of bilingual language experience participated. Parents and teachers provided information about English and Spanish language use. Short tests of semantic and morphosyntactic development in Spanish and English were used to quantify children’s knowledge of each language. There were significant interactions between AoEE and Current Input/Output for children at third grade in English and in both grades for Spanish. In English, the relationship between AoEE and language scores were linear for first- and third-graders. In Spanish a nonlinear relationship was observed. We discuss how much of the variance was accounted for by AoEE and Current Input/Output. PMID:26916066
Active Control of Blade Tonals in Underwater Vehicles
2006-12-01
Because the stator is a streamlined shape the wake deficit responsible for blade tonal noise is due mainly to surface drag, which can be thought of as a... wake deficit , the vortex rollup at this stage is not very repeatable. Therefore, this type of wake may not be the best suited for controlling blade ...sinusoidal and non-sinusoidal move profiles. This model was also able to capture the baseline wake deficit measured. 2-dimensional blade interaction was
Novel Cyclorotor Control System for Operation at Curtate and Prolate Advance Ratios
2012-03-06
control mechanisms used until now pitch the blade by attaching control rods from the blade to a rotating eccentric ring. By varying the position of...this eccentric ring the blades are pitched approximately in a sinusoidal manner with variable amplitude and phase; however, this sinusoidal pitching...Florida, June 25-28, 2007. 19Gerhardt, H., "Paddle Wheel Rotorcraft," U.S. Patent 5,265,827, November 30, 1993. 20Bohorquez, F., Rankins, F., Baeder, J
1987-01-01
the results of that problem to be applied to deblurring . Four procedures for finding the maximum entropy solution have been developed and have becn...distortion operator h, converges quadratically to an impulse and, as a result, the restoration x, converges quadratically to x. Therefore, when the standard...is concerned with the modeling of a * signal as the sum of sinusoids in white noise where the sinusoidal frequencies are varying as a function of time
Burst-mode manipulation of magnonic vortex crystals
NASA Astrophysics Data System (ADS)
Hänze, Max; Adolff, Christian F.; Weigand, Markus; Meier, Guido
2015-03-01
The manipulation of polarization states in 4 ×4 vortex crystals using sinusoidal magnetic field bursts is investigated by means of a broadband ferromagnetic-resonance setup. Magnetic field excitation with the proper amplitude and frequency allows tuning different polarization states, which are observed in the measured absorption spectra. The variation of the sinusoidal burst width consecutively identifies the time scale of the underlying process. A memorylike polarization state writing process is demonstrated on the submicrosecond time scale.
NASA Astrophysics Data System (ADS)
Zhang, B.; Yu, S.
2018-03-01
In this paper, a beam structure of composite materials with elastic foundation supports is established as the sensor model, which propagates moving sinusoidal wave loads. The inverse Finite Element Method (iFEM) is applied for reconstructing moving wave loads which are compared with true wave loads. The conclusion shows that iFEM is accurate and robust in the determination of wave propagation. This helps to seek a suitable new wave sensor method.
Liver histopathology of fatal phosphine poisoning.
Saleki, Sepideh; Ardalan, Farid Azmoudeh; Javidan-Nejad, Abdullah
2007-03-02
Two commonly used pesticides in agriculture are phosphides of aluminium and zinc. Both of these metal phosphides act through elaboration of toxic phosphine gas. The poisoning in Iran is mostly oral and suicidal. Phosphine is rapidly absorbed throughout the gastrointestinal tract after ingestion and it is partly carried to the liver by the portal vein. In this study the liver histopathology of fatal poisoning is scrutinized. A descriptive, retrospective study was performed on 38 fatal phosphine poisonings. The slides of liver specimens of the cases were retrieved and studied separately by two pathologists. The poisoning was suicidal in 33 (86.5%) of cases. Portal inflammation was negligible in 37 cases and only in one of the cases, a moderate degree of chronic inflammation accompanied by granuloma formation was observed. Major histopathologic findings were as follows: mild sinusoidal congestion; 12 cases (31.6%), severe sinusoidal congestion; 25 cases (45.8%), central vein congestion; 23 cases (60.5%), centrilobular necrosis; 3 cases (7.9%), hepatocytes nuclear fragmentation; 6 cases (15.8%), sinusoidal clusters of polymorphonuclear leukocytes; 12 cases (31.6%), and mild macrovesicular steatosis; 5 cases (13.2%). Fine isomorphic cytoplasmic vacuoles were observed in 36 cases (94.7%). These vacuoles were distributed uniformly in all hepatic zones in the majority (75%) of cases. This study reveals that the main histopathologic findings of fatal phosphine poisoning in the liver are fine cytoplasmic vacuolization of hepatocytes and sinusoidal congestion.
Pannen, B H; Köhler, N; Hole, B; Bauer, M; Clemens, M G; Geiger, K K
1998-01-01
Maintenance of hepatic microcirculatory flow after ischemia of the liver is essential to prevent hepatic dysfunction. Thus, we determined the differential role of carbon monoxide (CO) and nitric oxide (NO) in the intrinsic control of sinusoidal perfusion, mitochondrial redox state, and bile production in the isolated perfused rat liver after hemorrhagic shock. Administration of tin protoporphyrin-IX (50 microM), a specific inhibitor of the CO generating enzyme heme oxygenase, caused a decrease in sinusoidal flow that was more pronounced after shock compared with sham shock, as determined by in situ epifluorescence microscopy. This was associated with a shift in hepatocellular redox potential to a more reduced state (increased fluorescence intensity of reduced pyridine nucleotides in hepatocytes, decreased acetoacetate/beta-hydroxybutyrate ratio in the perfusate) and a profound reduction in bile flow. In sharp contrast, the preferential inhibitor of the inducible isoform of NO synthase S-methylisothiourea sulfate (100 microM) did not affect sinusoidal flow, hepatic redox state, or function. This indicates that 1.) endogenously generated CO preserves sinusoidal perfusion after hemorrhagic shock, 2.) protection of the hepatic microcirculation by CO may serve to limit shock-induced liver dysfunction, and 3.) in contrast to CO, inducible NO synthase-derived NO is of only minor importance for the intrinsic control of hepatic perfusion and function under these conditions. PMID:9739056