NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE
This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.
Hanford Site Solid Waste Acceptance Criteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-11-17
This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.
Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carilli, Jhon T.; Krenzien, Susan K.
2013-07-01
The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)
Nevada Test Site Waste Acceptance Criteria (NTSWAC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
NNSA /NSO Waste Management Project
This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.
NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA, JUNE 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE
This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.
Nevada Test Site Waste Acceptance Criteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office
This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.
An industry perspective on commercial radioactive waste disposal conditions and trends.
Romano, Stephen A
2006-11-01
The United States is presently served by Class-A, -B and -C low-level radioactive waste and naturally-occurring and accelerator-produced radioactive material disposal sites in Washington and South Carolina; a Class-A and mixed waste disposal site in Utah that also accepts naturally-occurring radioactive material; and hazardous and solid waste facilities and uranium mill tailings sites that accept certain radioactive materials on a site-specific basis. The Washington site only accepts low-level radioactive waste from 11 western states due to interstate Compact restrictions on waste importation. The South Carolina site will be subject to geographic service area restrictions beginning 1 July 2008, after which only three states will have continued access. The Utah site dominates the commercial Class-A and mixed waste disposal market due to generally lower state fees than apply in South Carolina. To expand existing commercial services, an existing hazardous waste site in western Texas is seeking a Class-A, -B and -C and mixed waste disposal license. With that exception, no new Compact facilities are proposed. This fluid, uncertain situation has inspired national level rulemaking initiatives and policy studies, as well as alternative disposal practices for certain low-activity materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Programs
2010-10-04
The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) ismore » the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is used throughout this document to describe RACM. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the DOE/NV-325, Nevada National Security Site Waste Acceptance Criteria (NNSSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, or contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, or small quantities of LLHB demolition and construction waste and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NNSSWAC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorries, Alison M
2010-11-09
Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledgemore » (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-12-01
In February 1983, the US Department of Energy (DOE) identified the Lavender Canyon site in Utah, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Lavender Canyon site and the eight other potentially acceptable sites h
Solid Waste Assurance Program Implementation Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irons, L.G.
1995-06-19
On June 6, 1995, a waiver to Hanford Site Solid Waste Acceptance Criteria, was approved by the US Department of Energy Richland Operations Office (RL) to replace the low-level, mixed, and transuranic (TRU) generator assessment programs with the Solid Waste Assurance Program (SWAP). This is associated with a waiver that was approved on March 16, 1995 to replace the Storage/Disposal Approval Record (SDAR) requirements with the Waste Specification System (WSS). This implementation plan and the SWAP applies to Solid Waste Disposal (SWD) functions, facilities, and personnel who perform waste acceptance, verification, receipt, and management functions of dangerous, radioactive, and mixedmore » waste from on- and off-site generators who ship to or within the Hanford Site for treatment, storage, and/or disposal (TSD) at SWD TSD facilities.« less
36 CFR 13.1008 - Solid waste disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...
36 CFR 13.1604 - Solid waste disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...
36 CFR 13.1118 - Solid waste disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...
36 CFR 13.1604 - Solid waste disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...
36 CFR 13.1912 - Solid waste disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located...
36 CFR 13.1008 - Solid waste disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...
36 CFR 13.1118 - Solid waste disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...
Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Yasser T.
The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Centermore » has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Programs
The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Wastemore » Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd{sup 3}) (157,437 cubic feet [ft{sup 3}]). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd{sup 3} (756,999 ft{sup 3}) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd{sup 3} (0.9 million ft{sup 3}). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls [PCBs]) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the U.S. Department of Energy, Nevada Operations Office (DOE/NV) 325, Nevada Test Site Waste Acceptance Criteria (NTSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NTS Class III Permit and the NTSWAC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, M.S.
The Barnwell Waste Management Facility (BWMF) is scheduled to restrict access to waste generators outside of the Atlantic Compact (SC, CT, NJ) on July 1, 2008. South Carolina, authorized under the Low-Level Waste Policy Act of 1980 and Amendments Act of 1985, and in agreement with the other Atlantic Compact states, will only accept Class A, B, and C low-level radioactive waste (LLRW) generated within compact. For many years, the BWMF has been the only LLRW disposal facility to accept Class B and C waste from LLRW generators throughout the country, except those that have access to the Northwest Compactmore » Site. Many Class B/C waste generators consider this to be a national crisis situation requiring interim or possible permanent storage, changes in operation, significant cost impacts, and/or elimination of services, especially in the health care and non-power generation industries. With proper in-house waste management practices and utilization of commercial processor services, a national crisis can be avoided, although some generators with specific waste forms or radionuclides will remain without options. In summary: It is unknown what the future will bring for commercial LLRW disposal. Could the anticipated post Barnwell Class B/C crisis be avoided by any of the following? - Barnwell Site remains open for the nation's commercial Class B/C waste; - Richland Site opens back up to the nation for commercial Class B/C waste; - Texas Site opens up to the nation for commercial Class B/C waste; - Federal Government intervenes by keeping a commercial Class B/C site open for the nation's commercial Class B/C waste; - Federal Government makes a DOE site available for commercial Class B/C waste; - Federal Government revisits the LLRW Policy Act of 1980 and Amendments Act of 1985. Without a future LLRW site capable of accepting Class B/C currently on the horizon, commercial LLRW generators are faced with waste volume elimination, reduction, or storage. With proper in-house waste management practices, utilization of commercial processor services and regulatory relief, a national crisis can be avoided. Waste volumes for storage can be reduced to as little as 10% of the current Class B/C volume. Although a national LLRW crisis can be avoided, some generators with specific waste forms or radionuclides will have a significant financial and/or operational impact due to a lack of commercial LLRW management options. (authors)« less
Site Selection for the Disposal of LLW in Taiwan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, W.S.; Chi, L.M.; Tien, N.C.
2006-07-01
This paper presents the implementation status of the low-level radioactive waste (LLW) disposal program in Taiwan, including the disposal facility regulations, status of waste management, final disposal program, licensing procedures, waste acceptance criteria, site selection criteria and processes and preliminary disposal concepts. The first phase of site selection for low-level radioactive waste final disposal in Taiwan was implemented between 1992 and 2002. The site selection process adopted a Geographic Information System (GIS), Hierarchical Analysis System, Expert Evaluation System, and site reconnaissance. An incentive program for voluntary sites was also initiated. After a series of evaluations and discussion of 30 potentialmore » candidate sites, including 8 recommended sites, 5 qualified voluntary townships, and several remote uninhabited small islets, Hsiao-chiou islet was selected as the first priority candidate site in February 1998. The geological investigation work in Hsiao-chiou was conducted from March 1999 through October 2000. An Environmental Impact Statement Report (EIS) and the Investment Feasibility Study Report (IFS) were submitted to the Environmental Protection Agency (EPA) in November 2000 and to the Ministry of Economic Affairs (MOEA) in June 2001, respectively. Unfortunately, the site investigation was discontinued in 2002 due to political and public acceptance consideration. After years of planning, the second phase of the site selection process was launched in August 2004 and will be conducted through 2008. It is planned that a repository will be constructed in early 2009 and start to operate in 2014. The site selection process for the second phase is based on the earlier work and four potential candidate sites were selected for evaluation until 2005. A near surface disposal concept is proposed for a site located in the Taiwan strait, and cavern disposal concepts are proposed for three other sites located on the main island. This paper presents the implementation status of the LLW disposal program in Taiwan, including the disposal facility regulations, status of waste management, final disposal program, licensing procedures, waste acceptance criteria, site selection criteria and processes, and preliminary disposal concepts 'NIMBY' (Not in my backyard) is a critical problem for implementation of the final disposal project. Resistance from local communities has been continuously received during site characterization. To overcome this, an incentive program to encourage community acceptance has been approved by the Government. Programs for community promotion are being proposed and negotiations are also underway. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matlack, K. S.; Abramowitz, H.; Miller, I. S.
About 50 million gallons of high-level mixed waste is currently stored in underground tanks at the United States Department of Energy’s (DOE’s) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE’s Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity waste fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed in an engineered facility onmore » the Hanford site while the IHLW product is designed for acceptance into a national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal.« less
Environmental health risks of toxic waste site exposures--an epidemiological perspective.
von Schirnding, Y E; Ehrlich, R I
1992-06-06
A general account is given of the problems of assessing the impact of human exposure to toxic waste sites, including the identification of truly exposed populations and of exposure pathways. Epidemiological studies of populations at risk are briefly reviewed and methodological problems summarised. These include the use of relatively weak study designs, inadequate exposure assessment and recall biases associated with symptom reporting among anxious residents living in the vicinity of waste sites. In South Africa, health risks associated with exposure to toxic waste sites need to be viewed in the context of current community health concerns, competing causes of disease and ill-health, and the relative lack of knowledge about environmental contamination and associated health effects. A nonspecific deterioration of health and well-being is more likely to result from waste site exposures than is overt clinical disease. Socially acceptable policies and controls may have to be based on criteria other than demonstrable ill-health. Detailed inventories and registries of the nature of disposed materials need to be maintained, sites of poorly controlled disposal in the past identified and selective environmental monitoring conducted. Epidemiological studies may be justified in situations where exposures well in excess of acceptable norms are demonstrated. An integrated national waste management policy for the country is urgently needed.
USEPA SITE PROGRAM APPROACH TO TECHNOLOGY TRANSFER AND REGULATORY ACCEPTANCE
The SITE Program was created to meet the increased demand for innovative technologies for hazardous waste treatment. To accomplish this mission, the program seeks to advance the development, implementation and commercialization of innovative technologies for hazardous waste chara...
10 CFR 960.3-1-4-1 - Site identification as potentially acceptable.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Site identification as potentially acceptable. 960.3-1-4-1 Section 960.3-1-4-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-4-1 Site identification...
40 CFR 761.216 - Unmanifested waste report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Unmanifested waste report. 761.216... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.216 Unmanifested waste report. (a) If a facility accepts for storage or disposal any PCB waste from an off-site source without an accompanying manifest, or...
40 CFR 761.216 - Unmanifested waste report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Unmanifested waste report. 761.216... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.216 Unmanifested waste report. (a) If a facility accepts for storage or disposal any PCB waste from an off-site source without an accompanying manifest, or...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, Gregory
This special analysis (SA) evaluates whether the Materials and Energy Corporation (M&EC) Sealed Source waste stream (PERM000000036, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the M&EC Sealed Source waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The M&EC Sealed Source waste stream is recommended for acceptance without conditions.
10 CFR 960.3-2-2-1 - Evaluation of all potentially acceptable sites.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Evaluation of all potentially acceptable sites. 960.3-2-2-1 Section 960.3-2-2-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-1 Evaluation...
Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-02-01
This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal.more » These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs.« less
The role of acceptable knowledge in transuranic waste disposal operations - 11117
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chancellor, Christopher John; Nelson, Roger
2010-11-08
The Acceptable Knowledge (AK) process plays a key role in the delineation of waste streams destined for the Waste Isolation Pilot Plant (WIPP). General Electric's Vallecitos Nuclear Center (GEVNC) provides for an ideal case study of the application of AK in a multiple steward environment. In this review we will elucidate the pivotal role Acceptable Knowledge played in segregating Department of Energy (DOE) responsibilities from a commercial facility. The Acceptable Knowledge process is a necessary component of waste characterization that determines whether or not a waste stream may be considered for disposal at the WIPP site. This process may bemore » thought of as an effort to gain a thorough understanding of the waste origin, chemical content, and physical form gleaned by the collection of documentation that concerns generator/storage site history, mission, and operations; in addition to waste stream specific information which includes the waste generation process, the waste matrix, the quantity of waste concerned, and the radiological and chemical make up of the waste. The collection and dissemination of relevant documentation is the fundamental requirement for the AK process to work. Acceptable Knowledge is the predominant process of characterization and, therefore, a crucial part of WIPP's transuranic waste characterization program. This characterization process, when conducted to the standards set forth in WIPP's operating permit, requires confirmation/verification by physical techniques such as Non-Destructive Examination (NDE), Visual Examination (VE), and Non-Destructive Assay (NDA). These physical characterization techniques may vary in their appropriateness for a given waste stream; however, nothing will allow the substitution or exclusion of AK. Beyond the normal scope of operations, AK may be considered, when appropriate, a surrogate for the physical characterization techniques in a procedure that appeals to concepts such As Low As Reasonably Achievable (ALARA) and budgetary savings. This substitution is referred to as an Acceptable Knowledge Sufficiency Determination. With a Sufficiency Determination Request, AK may supplant the need for one or all of the physical analysis methods. This powerful procedure may be used on a scale as small as a single container to that of a vast waste stream. Only under the most stringent requirements will an AK Sufficiency Determination be approved by the regulators and, to date, only six such Sufficiency Determinations have been approved. Although Acceptable Knowledge is legislated into the operational procedures of the WIPP facility there is more to it than compliance. AK is not merely one of a long list of requirements in the characterization and verification of transuranic (TRU) waste destined for the WIPP. Acceptable Knowledge goes beyond the regulatory threshold by offering a way to reduce risk, cost, time, and uncertainty on its own laurels. Therefore, AK alone can be argued superior to any other waste characterization technique.« less
40 CFR 63.1096 - What requirements must I comply with if I transfer waste off-site?
Code of Federal Regulations, 2010 CFR
2010-07-01
... or transport of each waste stream. The notice shall state that the waste stream contains organic HAP... written certification that the transferee will manage and treat any waste stream received from a source... providing this written certification to the Administrator, the certifying entity accepts responsibility for...
MOBILITY AND DEGRADATION OF RESIDUES AT HAZARDOUS WASTE LAND TREATMENT SITES AT CLOSURE
Soil treatment systems that are designed and managed based on a knowledge of soil-waste interactions may represent a significant technology for simultaneous treatment and ultimate disposal of selected hazardous wastes in an environmentally acceptable manner. hese soil treatment s...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, Gregory
This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the conditionmore » that the total uranium-233 ( 233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, J. P.; Pastor, R. S.
2002-02-28
The West Valley Demonstration Project (WVDP) has successfully pretreated and vitrified nearly all of the 600,000 gallons of liquid high-level radioactive waste that was generated at the site of the only commercial nuclear fuel reprocessing plant to have operated in the United States. Low-level waste (LLW) generated during the course of the cleanup effort now requires disposal. Currently the WVDP only ships Class A LLW for off-site disposal. It has been shipping Class A wastes to Envirocare of Utah, Inc. since 1997. However, the WVDP may also have a future need to ship Class B and Class C waste, whichmore » Envirocare is not currently authorized to accept. The Nevada Test Site (NTS), a U.S. Department of Energy (DOE) facility, can accept all three waste classifications. The WVDP set a goal to receive certification to begin shipping Class A wastes to NTS by 2001. Formal certification/approval was granted by the DOE Nevada Operations Office on July 12, 2001. This paper discusses how the WVDP contractor, West Valley Nuclear Services Company (WVNSCO), completed the activities required to achieve NTS certification in 2001 to ship waste to its facility. The information and lessons learned provided are significant because the WVDP is the only new generator receiving certification based on an NTS audit in January 2001 that resulted in no findings and only two observations--a rating that is unparalleled in the DOE Complex.« less
36 CFR 13.1118 - Solid waste disposal.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 13.1118 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park...
36 CFR 13.1118 - Solid waste disposal.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 13.1118 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park...
Environmental assessment: Richton Dome Site, Mississippi
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
1986-05-01
In February 1983, the US Department of Energy (DOE) identified the Richton Dome site in Mississippi as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Richton Dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOEmore » prepared the final EAs. The site is in the Gulf interior region, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains two other potentially acceptable sites--the Cypress Creek Dome site in Mississippi and the Vacherie Dome site in Louisiana. Although the Cypress Creek Dome and the Vacherie Dome sites are suitable for site characterization, the DOE has concluded that the Richton Dome site is the preferred site in the Gulf interior region. On the basis of the evaluations reported in this EA, the DOE has found that the Richton Dome site is not disqualified under the guidelines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Management
2013-01-31
The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLBmore » disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of compliance with all performance objectives. Tier II results indicate that the long-term performance of the OR CEUSP 233U waste stream is protective of human health and the environment. The Area 5 RWMS is located in one of the least populated and most arid regions of the U.S. Site characterization data indicate that infiltration of precipitation below the plant root zone at 2.5 meters (8.2 feet) ceased 10,000 to 15,000 y ago. The site is not expected to have a groundwater pathway as long as the current arid climate persists. The national security mission of the NNSS and the location of the Area 5 RWMS within the Frenchman Flat Corrective Action Unit require that access controls and land use restrictions be maintained indefinitely. PA modeling results for 10,000 to 60,000 y also indicate that the OR CEUSP 233U waste stream is acceptable for near-surface disposal. The mean resident air pathway annual total effective dose (TED), the resident all-pathways annual TED, and the acute drilling TED are less than their performance objectives for 10,000 y after closure. The mean radon-222 (222Rn) flux density exceeds the performance objective at 4,200 y, but this is due to waste already disposed at the Area 5 RWMS and is only slightly affected by disposal of the CEUSP 233U. The peak resident all-pathways annual TED from CEUSP key radionuclides occurs at 48,000 y and is less than the 0.25 millisievert performance objective. Disposal of the OR CEUSP 233U waste stream in a typical SLB trench slightly increases PA results. Increasing the depth was found to eliminate any impacts of the OR CEUSP 233U waste stream. Containers could not be shown to have any significant impact on performance due to the long half-life of the waste stream and a lack of data for pitting corrosion rates of stainless steel in soil. The results of the SA indicate that all performance objectives can be met with disposal of the OR CEUSP 233U waste stream in the SLB units at the Area 5 RWMS. The long-term performance of the OR CEUSP 233U waste stream disposed in the near surface is protective of human health and the environment. The waste stream is recommended for disposal without conditions.« less
36 CFR 13.1008 - Solid waste disposal.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 13.1008 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Gates of the Arctic National Park and Preserve § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service...
The siting game: A NIMBY primer. [Sites for waste management facilities: Not in my backyard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbs, L.M.; Lipsett, B.
If it's a David-and-Goliath type struggle, then it's difficult to distinguish David from Goliath. For in the battle to site waste-management facilities, local opposition groups are virtually winning every time. A major reason for their victories is the coaching they get from people like the authors, who lead the Citizen's Clearinghouse for Hazardous Waste in Falls Church, Virginia. The clearinghouse provides opposition groups across the country with proven strategies for defeating proposals for landfills, incinerators, and hazardous-waste sites. For each move made by the advocates, the authors suggest a counter move in the high-stakes game of public persuasion. The underlyingmore » theme of siting strategies has been to bribe, confuse, or otherwise dupe the public into accepting disposal facilities.« less
Secondary Waste Cast Stone Waste Form Qualification Testing Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westsik, Joseph H.; Serne, R. Jeffrey
2012-09-26
The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptablemore » for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Harvey-Knott Drum Site is located in New Castle County, Delaware, approximately one-half mile east of the Maryland-Delaware border. The Harvey and Knotts Trucking, Inc., operated an open dump and burning ground on the site between 1963 and 1969. The facility accepted sanitary, municipal, and industrial wastes believed to be sludges, paint pigments, and solvents. Wastes were emptied onto the ground, into excavated trenches, or left in drums (some of which were buried). Some of these wastes were either burned as a means of reducing waste volume, or allowed to seep into the soil. Contamination of soil, surface water, andmore » ground water has occurred as a result of disposal of these industrial wastes. The selected remedial action for this site is included.« less
Mission analysis report for single-shell tank leakage mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruse, J.M.
1994-09-01
This document provides an analysis of the leakage mitigation mission applicable to past and potential future leakage from the Hanford Site`s 149 single-shell high-level waste tanks. This mission is a part of the overall missions of the Westinghouse Hanford Company Tank Waste Remediation System division to remediate the tank waste in a safe and acceptable manner. Systems engineers principles are being applied to this effort. Mission analysis supports early decision making by clearly defining program objectives. This documents identifies the initial conditions and acceptable final conditions, defines the programmatic and physical interfaces and constraints, estimates the resources to carry outmore » the mission, and establishes measures of success. The results of the mission analysis provide a consistent basis for subsequent systems engineering work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-12-01
In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluationsmore » are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received. On the basis of the evaluations reported in this draft EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. The site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site - the Lavender Canyon site. Although the Lavender Canyon site appears to be suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. Furthermore, the DOE finds that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is proposing to nominate the Davis Canyon site as one of five sites suitable for characterization. Having compared the Davis Canyon site with the other four sites proposed for nomination, the DOE has determined that the Davis Canyon site is not one of the three preferred sites for recommendation to the President as candidates for characterization.« less
USEPA SITE PROGRAM APPROACH TO TECHNOLOGY TRANSFER AND REGULATORY ACCEPTANCE
The USEPA's SITE program was created to meet the demand for innovative technologies for hazardous waste treatment. The primary mission of the SITe Program is to expedite the cleanup of sites on the NPL. These sites often have multiple contaminants in soil and groundwater, and few...
Analysis of local acceptance of a radioactive waste disposal facility.
Chung, Ji Bum; Kim, Hong-Kew; Rho, Sam Kew
2008-08-01
Like many other countries in the world, Korea has struggled to site a facility for radioactive waste for almost 30 years because of the strong opposition from local residents. Finally, in 2005, Gyeongju was established as the first Korean site for a radioactive waste facility. The objectives of this research are to verify Gyeongju citizens' average level of risk perception of a radioactive waste disposal facility as compared to other risks, and to explore the best model for predicting respondents' acceptance level using variables related to cost-benefit, risk perception, and political process. For this purpose, a survey is conducted among Gyeongju residents, the results of which are as follows. First, the local residents' risk perception of an accident in a radioactive waste disposal facility is ranked seventh among a total of 13 risks, which implies that nuclear-related risk is not perceived very highly by Gyeongju residents; however, its characteristics are still somewhat negative. Second, the comparative regression analyses show that the cost-benefit and political process models are more suitable for explaining the respondents' level of acceptance than the risk perception model. This may be the result of the current economic depression in Gyeongju, residents' familiarity with the nuclear industry, or cultural characteristics of risk tolerance.
SUMMARY OF SOLIDIFICATION/STABILIZATION SITE DEMONSTRATIONS AT UNCONTROLLED HAZARDOUS WASTE SITES
Four large-scale solidification/stabilization demonstrations have occurred under EPA's SITE program. In general, physical testing results have been acceptable. Reduction in metal leachability, as determined by the TCLP test, has been observed. Reduction in organic leachability ha...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1985-12-31
In 1982, the Congress enacted the Nuclear Waste Policy Act (Public Law 97-425), which established a comprehensive national program directed toward siting, constructing, and operating geologic repositories for the permanent disposal of high-level radioactive waste. In February 1983, the United States Department of Energy (DOE) identified the nine referenced repository locations as potentially acceptable sites for a mined geologic repository. These sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. The DOE findings and determinations are based on the evaluations contained in the draft Environmental Assessments (EA). A finalmore » EA will be prepared after considering the comments received on the draft EA. The purpose of this document is to provide the public with specific site information on each potential repository location.« less
10 CFR 960.3-2-1 - Site screening for potentially acceptable sites.
Code of Federal Regulations, 2010 CFR
2010-01-01
... POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-1 Site screening for... first repository, the process shall begin with site-screening activities that consider large land masses... repositories, the Secretary shall first identify the State within which the site is located in a decision-basis...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitworth, J.; Pearson, M.; Feldman, A.
2006-07-01
The Offsite Source Recovery (OSR) Project at Los Alamos National Laboratory is now shipping transuranic (TRU) waste containers to the Waste Isolation Pilot Plant (WIPP) in New Mexico for disposal. Sealed source waste disposal has become possible in part because OSR personnel were able to obtain Environmental Protection Agency (EPA) and DOE-CBFO approval for an alternative radiological characterization procedure relying on acceptable knowledge (AK) and modeling, rather than on non-destructive assay (NDA) of each container. This is the first successful qualification of an 'alternate methodology' under the radiological characterization requirements of the WIPP Waste Acceptance Criteria (WAC) by any TRUmore » waste generator site. This paper describes the approach OSR uses to radiologically characterize its sealed source waste and the process by which it obtained certification of this approach. (authors)« less
Enhanced LAW Glass Correlation - Phase 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, Isabelle S.; Matlack, Keith S.; Pegg, Ian L.
About 50 million gallons of high-level mixed waste is currently stored in underground tanks at the United States Department of Energy’s (DOE’s) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE’s Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity waste fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed in an engineered facility onmore » the Hanford site while the IHLW product is designed for acceptance into a national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal. Acceptable glass formulations for vitrification of Hanford low activity waste (LAW) must meet a variety of product quality, processability, and waste loading requirements. To this end, The Vitreous State Laboratory (VSL) at The Catholic University of America (CUA) developed and tested a number of glass formulations during Part A, Part B1 and Part B2 of the WTP development program. The testing resulted in the selection of target glass compositions for the processing of eight of the Phase I LAW tanks. The selected glass compositions were tested at the crucible scale to confirm their compliance with ILAW performance requirements. Duramelter 100 (DM100) and LAW Pilot Melter tests were then conducted to demonstrate the viability of these glass compositions for LAW vitrification at high processing rates.« less
Environmental assessment: Davis Canyon site, Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
1986-05-01
In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOEmore » prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considering for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization.« less
Implementation of SAP Waste Management System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frost, M.L.; LaBorde, C.M.; Nichols, C.D.
2008-07-01
The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), andmore » peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)« less
Bark, Marjorie; Bland, Michael; Grimes, Sue
2009-09-01
The use of waste materials for ecological benefit, agricultural improvement or as part of construction works are often exempt from waste management control in order to maximize the reuse of material that would otherwise be disposed of to landfill. It is important, however, to determine whether there is potential for such waste to cause environmental harm in the context of the basis for granting exemptions under the relevant framework objective to ensure that waste is recovered or disposed of without risk to water, air, soil, plants or animals. The potential for environmental harm was investigated by leaching studies on two wastes commonly found at exempt sites: bituminous road planings and waste soils. For bituminous road planings, the organic components of the waste were identified by their solubility in organic solvents but these components would have low environmental impact in terms of bioavailability. Leaching studies of the heavy metals copper, lead and zinc, into the environment, under specific conditions and particularly those modelling acid rain and landfill leachate conditions showed that, except for copper, the amounts leached fell within Waste Acceptance Criteria compliance limits for defining waste as inert waste. The fact that the amount of copper leached was greater than the Waste Acceptance Criteria level suggests that either additional testing of wastes regarded as exempt should be carried out to ensure that they are in analytical compliance or that legislation should allow for the potential benefits of reuse to supersede deviations from analytical compliance.
Integrated software system for low level waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worku, G.
1995-12-31
In the continually changing and uncertain world of low level waste management, many generators in the US are faced with the prospect of having to store their waste on site for the indefinite future. This consequently increases the set of tasks performed by the generators in the areas of packaging, characterizing, classifying, screening (if a set of acceptance criteria applies), and managing the inventory for the duration of onsite storage. When disposal sites become available, it is expected that the work will require re-evaluating the waste packages, including possible re-processing, re-packaging, or re-classifying in preparation for shipment for disposal undermore » the regulatory requirements of the time. In this day and age, when there is wide use of computers and computer literacy is at high levels, an important waste management tool would be an integrated software system that aids waste management personnel in conducting these tasks quickly and accurately. It has become evident that such an integrated radwaste management software system offers great benefits to radwaste generators both in the US and other countries. This paper discusses one such approach to integrated radwaste management utilizing some globally accepted radiological assessment software applications.« less
Thirteenth annual U.S. DOE low-level radioactive waste management conference: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1991-12-31
The 40 papers in this document comprise the proceedings of the Department of Energy`s Thirteenth Annual Low-Level Radioactive Waste Management Conference that was held in Atlanta, Georgia, on November 19--21, 1991. General subjects addressed during the conference included: disposal facility design; greater-than-class C low-level waste; public acceptance considerations; waste certification; site characterization; performance assessment; licensing and documentation; emerging low-level waste technologies; waste minimization; mixed waste; tracking and transportation; storage; and regulatory changes. Papers have been processed separately for inclusion on the data base.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, K.M.; Bilyard, G.R.; Davidson, S.A.
1993-06-01
The US Department of Energy (DOE) is now engaged in a program of environmental restoration nationwide across its 45 sites. It is also bringing its facilities into compliance with environmental regulations, decontaminating and decommissioning unwanted facilities, and constructing new waste management facilities. One of the most difficult questions that DOE must face in successfully remediating its inactive waste sites, decontaminating and decommissioning its inactive facilities, and operating its waste management facilities is: ``What criteria and standards should be met?`` Acceptable standards or procedures for determining standards will assist DOE in its conduct of ongoing waste management and pending cleanup activitiesmore » by helping to ensure that those activities are conducted in compliance with applicable laws and regulations and are accepted by the regulatory community and the public. This document reports on the second of three baseline activities that are being conducted as prerequisites to either the development of quantitative standards that could be used by DOE, or consistent procedures for developing such standards. The first and third baseline activities are also briefly discussed in conjunction with the second of the three activities.« less
10 CFR 960.3-2-1 - Site screening for potentially acceptable sites.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Section 960.3-2-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-1 Site screening for... technical guidelines can exist in the same land unit, the DOE shall seek to evaluate the composite...
10 CFR 960.3-2-1 - Site screening for potentially acceptable sites.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Section 960.3-2-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-1 Site screening for... technical guidelines can exist in the same land unit, the DOE shall seek to evaluate the composite...
10 CFR 960.3-2-1 - Site screening for potentially acceptable sites.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Section 960.3-2-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-1 Site screening for... technical guidelines can exist in the same land unit, the DOE shall seek to evaluate the composite...
Environmental assessment: Davis Canyon site, Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
1986-05-01
In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOEmore » prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has fond that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 181 figs., 175 tabs.« less
Environmental assessment: Davis Canyon site, Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
1986-05-01
In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, themore » DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of the five sites suitable for characterization.« less
Watanabe, Hiroshi; Yamaguchi, Ichiro; Kida, Tetsuo; Hiraki, Hitoshi; Fujibuchi, Toshioh; Maehara, Yoshiaki; Tsukamoto, Atsuko; Koizumi, Mitsue; Kimura, Yumi; Horitsugi, Genki
2013-03-01
Decay-in-storage for radioactive waste including that of nuclear medicine has not been implemented in Japan. Therefore, all medical radioactive waste is collected and stored at the Japan Radioisotope Association Takizawa laboratory, even if the radioactivity has already decayed out. To clarify the current situation between Takizawa village and Takizawa laboratory, we investigated the radiation management status and risk communication activities at the laboratory via a questionnaire and site visiting survey in June 2010. Takizawa laboratory continues to maintain an interactive relationship with local residents. As a result, Takizawa village permitted the acceptance of new medical radioactive waste containing Sr-89 and Y-90. However, the village did not accept any non-medical radioactive waste such as waste from research laboratories. To implement decay-in-storage in Japan, it is important to obtain agreement with all stakeholders. We must continue to exert sincere efforts to acquire the trust of all stakeholders.
DOSE ASSESSMENTS FROM THE DISPOSAL OF LOW ...
Modeling the long-term performance of the RCRA-C disposal cell and potential doses to off-site receptors is used to derive maximum radionuclide specific concentrations in the wastes that would enable these wastes to be disposed of safely using the RCRA-C disposal cell technology. Modeling potential exposures to derive these waste acceptance concentrations involves modeling exposures to workers during storage, treatment and disposal of the wastes, as well as exposures to individuals after disposal operations have ceased. Post facility closure exposures can result from the slow expected degradation of the disposal cell over long time periods (one thousand years after disposal) and in advertent human intrusion. Provide a means of determining waste acceptance radionuclide concentrations for disposal of debris from radiological dispersal device incidents as well as low-activity wastes generated in commercial, medical and research activities, potentially serve as the technical basis for guidance on disposal of these materials.
Blengini, Gian Andrea; Fantoni, Moris; Busto, Mirko; Genon, Giuseppe; Zanetti, Maria Chiara
2012-09-01
The paper summarises the main results obtained from two extensive applications of Life Cycle Assessment (LCA) to the integrated municipal solid waste management systems of Torino and Cuneo Districts in northern Italy. Scenarios with substantial differences in terms of amount of waste, percentage of separate collection and options for the disposal of residual waste are used to discuss the credibility and acceptability of the LCA results, which are adversely affected by the large influence of methodological assumptions and the local socio-economic constraints. The use of site-specific data on full scale waste treatment facilities and the adoption of a participatory approach for the definition of the most sensible LCA assumptions are used to assist local public administrators and stakeholders showing them that LCA can be operational to waste management at local scale. Copyright © 2012 Elsevier Ltd. All rights reserved.
Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Screening Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westsik, Joseph H.; Piepel, Gregory F.; Lindberg, Michael J.
2013-09-30
More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in themore » HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second LAW immobilization facility will be needed for the expected volume of LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF. The PA is needed to satisfy both Washington State IDF Permit and DOE Order requirements. Cast Stone has been selected for solidification of radioactive wastes including WTP aqueous secondary wastes treated at the Effluent Treatment Facility (ETF) at Hanford. A similar waste form called Saltstone is used at the Savannah River Site (SRS) to solidify its LAW tank wastes.« less
Evaluation of Subsurface Engineered Barriers at Waste Sites
1998-08-01
28 3-4 MATRIX FOR EVALUATING BARRIER CQA/CQC AGAINST ACCEPTABLE INDSUTRY PRACTICES...STANDARDS................................................................. 66 4-2 MATRIX FOR EVALUATING CAP AGAINST ACCEPTABLE INDSUTRY PRACTICES...stated previously, the most widely used technique for containment is the soil-bentonite slurry wall. It is typically the most economical , utilizes low
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Programs
2010-06-17
The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage atmore » the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.« less
Pathways for Disposal of Commercially-Generated Tritiated Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halverson, Nancy V.
From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two ofmore » these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste transportation, processing and disposal vary based a number of factors. In many cases, wastes with very low radioactivity are priced primarily based on weight or volume. For higher activities, costs are based on both volume and activity, with the activity-based charges usually being much larger than volume-based charges. Other factors affecting cost include location, waste classification and form, other hazards in the waste, etc. Costs may be based on general guidelines used by an individual disposal or processing site, but final costs are established by specific contract with each generator. For this report, seven hypothetical waste streams intended to represent commercially-generated tritiated waste were defined in order to calculate comparative costs. Ballpark costs for disposition of these hypothetical waste streams were calculated. These costs ranged from thousands to millions of dollars. Due to the complexity of the cost-determining factors mentioned above, the costs calculated in this report should be understood to represent very rough cost estimates for the various hypothetical wastes. Actual costs could be higher or could be lower due to quantity discounts or other factors.« less
77 FR 6790 - Environmental Management Site-Specific Advisory Board, Portsmouth
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-09
.... Federal Coordinator's Comments. Liaisons' Comments. Presentations: [cir] The Ohio Valley Regional Development Center (OVRDC) Overview, John Hemmings, Executive Director of OVRDC. [cir] Waste Acceptance...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, G.; Yucel, V.; Desotell, L.
2006-07-01
The long-term safety of U.S. Department of Energy (DOE) low-level radioactive disposal facilities is assessed by conducting a performance assessment -- a systematic analysis that compares estimated risks to the public and the environment with performance objectives contained in DOE Manual 435.1-1, Radioactive Waste Management Manual. Before site operations, facilities design features such as final inventory, waste form characteristics, and closure cover design may be uncertain. Site operators need a modeling tool that can be used throughout the operational life of the disposal site to guide decisions regarding the acceptance of problematic waste streams, new disposal cell design, environmental monitoringmore » program design, and final site closure. In response to these needs the National Nuclear Security Administration Nevada Site Office (NNSA/NSO) has developed a decision support system for the Area 5 Radioactive Waste Management Site in Frenchman Flat on the Nevada Test Site. The core of the system is a probabilistic inventory and performance assessment model implemented in the GoldSim{sup R} simulation platform. The modeling platform supports multiple graphic capabilities that allow clear documentation of the model data sources, conceptual model, mathematical implementation, and results. The combined models have the capability to estimate disposal site inventory, contaminant concentrations in environmental media, and radiological doses to members of the public engaged in various activities at multiple locations. The model allows rapid assessment and documentation of the consequences of waste management decisions using the most current site characterization information, radionuclide inventory, and conceptual model. The model is routinely used to provide annual updates of site performance, evaluate the consequences of disposal of new waste streams, develop waste concentration limits, optimize the design of new disposal cells, and assess the adequacy of environmental monitoring programs. (authors)« less
GY SAMPLING THEORY IN ENVIRONMENTAL STUDIES 2: SUBSAMPLING ERROR MEASUREMENTS
Sampling can be a significant source of error in the measurement process. The characterization and cleanup of hazardous waste sites require data that meet site-specific levels of acceptable quality if scientifically supportable decisions are to be made. In support of this effort,...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiner, Ruth F.; Blink, James A.; Rechard, Robert Paul
This report examines the current policy, legal, and regulatory framework pertaining to used nuclear fuel and high level waste management in the United States. The goal is to identify potential changes that if made could add flexibility and possibly improve the chances of successfully implementing technical aspects of a nuclear waste policy. Experience suggests that the regulatory framework should be established prior to initiating future repository development. Concerning specifics of the regulatory framework, reasonable expectation as the standard of proof was successfully implemented and could be retained in the future; yet, the current classification system for radioactive waste, including hazardousmore » constituents, warrants reexamination. Whether or not consideration of multiple sites are considered simultaneously in the future, inclusion of mechanisms such as deliberate use of performance assessment to manage site characterization would be wise. Because of experience gained here and abroad, diversity of geologic media is not particularly necessary as a criterion in site selection guidelines for multiple sites. Stepwise development of the repository program that includes flexibility also warrants serious consideration. Furthermore, integration of the waste management system from storage, transportation, and disposition, should be examined and would be facilitated by integration of the legal and regulatory framework. Finally, in order to enhance acceptability of future repository development, the national policy should be cognizant of those policy and technical attributes that enhance initial acceptance, and those policy and technical attributes that maintain and broaden credibility.« less
Environmental assessment: Reference repository location, Hanford site, Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
1986-05-01
In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford Site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported inmore » draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites suitable for characterization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1986-05-01
In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guideline for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessmentsmore » (EA), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as of five sites suitable for characterization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1986-05-01
In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs),more » which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-01-01
This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-controlmore » and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.« less
Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Management
The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure processmore » for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherry, Mark; Lojek, Dave; Murphy, Con
2003-02-23
Remediation of eight waste pits at the Department of Energy (DOE) Fernald site, located northwest of Cincinnati, Ohio, involves excavating approximately one million tonnes in-situ of low-level waste which were placed in pits during Fernald's production era. This unique project, one of the largest in the history of CERCLA/Superfund, includes uranium and thorium contaminated waste, soils and sludges. These wet soils and sludges are thermally dried in a processing facility to meet Department of Transportation (DOT) transportation and disposal facility waste acceptance criteria, loaded into railcars and shipped to the Envirocare waste disposal facility at Clive, Utah. This project ismore » now approximately 60% complete with more than 415,000 tonnes (460,000 tons) of waste material safely shipped in 74 unit trains to Envirocare. Work is scheduled to be completed in early 2005. Success to date demonstrates that a major DOE site remediation project can be safely and successfully executed in partnership with private industry, utilizing proven commercial best practices, existing site labor resources and support of local stakeholders. In 1997 under the DOE's privatization initiative, Fluor Fernald, Inc. (Fluor Fernald) solicited the services of the remediation industry to design, engineer, procure, construct, own and operate a facility that would undertake the remediation of the waste pits. The resulting procurement was awarded to IT Corporation, currently Shaw Environmental and Infrastructure, Inc. (Shaw). The contractor was required to finance the procurement and construction of its facilities and infrastructure. The contract was performance-based and payment would be made on the successful loadout of the waste from the facility on a per-ton basis meeting the Envirocare waste acceptance criteria. This paper details the performance to date, the challenges encountered, and the seamless partnering between DOE, the Environmental Protection Agency (EPA), Fluor Fernald, Shaw, labor un ions, and the local community in creating and executing a successful project.« less
Economic analysis of gradual "social exhaustion" of waste management capacity.
Koide, Hideo; Nakayama, Hirofumi
2013-12-01
This article proposes to analyze the quantitative effects of a gradual physical and "social" exhaustion of a landfill site on an equilibrium waste management service. A gradual social exhaustion of a landfill is defined here as an upward shift of a "subjective factor" associated with the amount of waste, based on the plausible hypothesis that an individual will not accept excessive presence of landfilled waste. Physical exhaustion occurs when the absolute capacity of a landfill site decreases. The paper shows some numerical examples using specific functions and parameters, and proposes appropriate directions for three policy objectives: to decrease the equilibrium waste disposal, to increase the economic surplus of the individual and/or the waste management firm, and to lower the equilibrium collection fee. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
2013-09-01
Improvement Program to rehabilitate senior’s homes to acceptable standards including; roofing, handicap accessibility, and septic systems. The...buildings, highways, hospitals, waste management sites, shelters, reservoirs/water tanks , historical sites, emergency operations centers, casinos
Moy, Pearl; Krishnan, Nikhil; Ulloa, Priscilla; Cohen, Steven; Brandt-Rauf, Paul W.
2008-01-01
Landfill disposal and waste-to-energy (WTE) incineration remain the two principal options for managing municipal solid waste (MSW). One critical determinant of the acceptability of these options is the different health risks associated with each. In this analysis relying on published data and exposure modeling, we have performed health risk assessments for landfill disposal versus WTE treatment options for the management of New York City’s MSW. These are based on the realistic scenario of using a waste transfer station (WTS) in Brooklyn and then transporting the untreated MSW by truck to a landfill in Pennsylvania or using a WTE facility in Brooklyn and then transporting the resultant ash by truck to a landfill in Pennsylvania. The overall results indicate that the individual cancer risks for both options would be considered generally acceptable, although the risk from landfilling is approximately 5 times greater than from WTE treatment; the individual non-cancer health risks for both options would be considered generally unacceptable, although once again the risk from landfilling is approximately 5 times greater than from WTE treatment. If one considers only the population in Brooklyn that would be directly affected by the siting of either a WTS or a WTE facility in their immediate neighborhood, individual cancer and non-cancer health risks for both options would be considered generally acceptable, but risks for the former remain considerably higher than for the latter. These results should be considered preliminary due to several limitations of this study such as: consideration of risks only from inhalation exposures; assumption that only volume and not composition of the waste stream is altered by WTE treatment; reliance on data from the literature rather than actual measurements of the sites considered, assuming comparability of the sites. However, the results of studies such as this, in conjunction with ecological, socioeconomic and equity considerations, should prove useful to environmental managers, regulators, policy makers, community representatives and other stakeholders in making sound and acceptable decisions regarding the optimal handling of MSW. PMID:17379391
Environmental projects. Volume 14: Removal of contaminated soil and debris
NASA Technical Reports Server (NTRS)
Kushner, Len
1992-01-01
Numerous diverse activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of six parabolic dish antennas. Some of these activities can result in possible spills or leakages of hazardous materials and wastes stored both above ground in steel drums and below ground in underground storage tanks (UST's). These possible leaks or spills, along with the past practice of burial of solid debris and waste in trenches and pits, could cause local subsurface contamination of the soil. In 1987, the Jet Propulsion Laboratory (JPL), retained Engineering-Science, Inc. (E-S), Pasadena, California, to identify the specific local areas within the GDSCC with subsurface soil contamination. The E-S study determined that some of the soils at the Apollo Site and the Mars Site were contaminated with hydrocarbons, while soil at a nonhazardous waste dumpsite at the Mojave Base site was contaminated with copper. This volume is a JPL-expanded version of the PE209 E-S report, and it also reports that all subsurface contaminated soils at the GDSCC were excavated, removed, and disposed of in an environmentally acceptable way, and the excavations were backfilled and covered in accordance with accepted Federal, State, and local environmental rules and regulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, Gregory J.
This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) EnergyX Macroencapsulated waste stream (B LAMACRONCAP, Revision 1) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL EnergyX Macroencapsulated waste stream is macroencapsulated mixed waste generated during research laboratory operations and maintenance (LLNL 2015). The LLNL EnergyX Macroencapsulated waste stream required a special analysis due to tritium (3H), cobalt-60 (60Co), cesium-137 (137Cs), and radium-226 (226Ra) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclearmore » Security Administration Nevada Field Office [NNSA/NFO] 2015).The results indicate that all performance objectives can be met with disposal of the waste stream in a SLB trench. Addition of the LLNL EnergyX Macroencapsulated inventory slightly increases multiple performance assessment results, with the largest relative increase occurring for the all-pathways annual total effective dose (TED). The maximum mean and 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The LLNL EnergyX Macroencapsulated waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.« less
Othman, Jamal; Khee, Pek Chuen
2014-05-01
A choice experiment analysis was conducted to estimate the preference for specific waste disposal technologies in Malaysia. The study found that there were no significant differences between the choice of a sanitary landfill or an incinerator. What matters is whether any disposal technology would lead to obvious social benefits. A waste disposal plan which is well linked or integrated with the community will ensure its acceptance. Local authorities will be challenged to identify solid waste disposal sites that are technically appropriate and also socially desirable.
Robotics for mixed waste operations, demonstration description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, C.R.
The Department of Energy (DOE) Office of Technology Development (OTD) is developing technology to aid in the cleanup of DOE sites. Included in the OTD program are the Robotics Technology Development Program and the Mixed Waste Integrated Program. These two programs are working together to provide technology for the cleanup of mixed waste, which is waste that has both radioactive and hazardous constituents. There are over 240,000 cubic meters of mixed low level waste accumulated at DOE sites and the cleanup is expected to generate about 900,000 cubic meters of mixed low level waste over the next five years. Thismore » waste must be monitored during storage and then treated and disposed of in a cost effective manner acceptable to regulators and the states involved. The Robotics Technology Development Program is developing robotics technology to make these tasks safer, better, faster and cheaper through the Mixed Waste Operations team. This technology will also apply to treatment of transuranic waste. The demonstration at the Savannah River Site on November 2-4, 1993, showed the progress of this technology by DOE, universities and industry over the previous year. Robotics technology for the handling, characterization and treatment of mixed waste as well robotics technology for monitoring of stored waste was demonstrated. It was shown that robotics technology can make future waste storage and waste treatment facilities better, faster, safer and cheaper.« less
Use of acceptable knowledge to demonstrate TRAMPAC compliance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitworth, J.; Becker, B.; Guerin, D.
2004-01-01
Recently, Los Alamos National Laboratory-Carlsbad Operations (LANL-CO) has supported the Central Characterization Project (CCP) managed by the U.S. Department of Energy (DOE) in the shipment of transuranic (TRU) waste from various small-quantity TRU waste generators to hub sites or other DOE sites in TRUPACT-II shipping containers. This support has involved using acceptable knowledge (AK) to demonstrate compliance with various requirements of Revision 19 of the TRUPACT-II Authorized Methods of Payload Compliance (TRAMPAC). LANL-CO has worked to facilitate TRUPACT-II shipments from the University of Missouri Research Reactor (MURR) and Lovelace Respiratory Research Institute (LRRI) to Argonne National Laboratory-East (ANL-E) and Losmore » Alamos National Laboratory (LANL), respectively. The latter two sites have TRU waste certification programs approved to ship waste to the Waste Isolation Pilot Plant (WIPP) for disposal. In each case, AK was used to satisfy the necessary information to ship the waste to other DOE facilities. For the purposes of intersite shipment, AK provided data to WIPP Waste Information System (WWIS) transportation modules to ensure that required information was obtained prior to TRUPACT-II shipments. The WWIS modules were used for the intersite shipments, not to enter certification data into WWIS, but rather to take advantage of a validated system to ensure that the containers to be shipped were compliant with TRAMPAC requirements, particularly in the evaluation of quantitative criteria. LANL-CO also assisted with a TRAMPAC compliance demonstration for homogeneous waste containers shipped in TRUPACT-II containers from ANL-E to Idaho National Engineering and Environmental Laboratory (INEEL) for the purpose of core sampling. The basis for the TRAMPAC compliance determinations was AK regarding radiological composition, chemical composition, TRU waste container packaging, and absence of prohibited items. Also, even in the case where AK is not used to fully demonstrate TRAMPAC compliance, it may be used to identify problem areas for shippability of different waste streams. An example is the case of Pu-238-contaminated waste from the Savannah River Site that had a low probability of meeting decay heat limits and aspiration times due to several factors including large numbers of confinement layers. This paper will outline 17 TRAMPAC compliance criteria assessed and the types of information used to show compliance with all criteria other than dose rate and container weight, which are normally easily measured at load preparation.« less
10 CFR 960.3-2-2-1 - Evaluation of all potentially acceptable sites.
Code of Federal Regulations, 2013 CFR
2013-01-01
...-1 Section 960.3-2-2-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-1 Evaluation... technical guidelines of subparts C and D, in accordance with the application requirements set forth in...
10 CFR 960.3-2-2-1 - Evaluation of all potentially acceptable sites.
Code of Federal Regulations, 2012 CFR
2012-01-01
...-1 Section 960.3-2-2-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-1 Evaluation... technical guidelines of subparts C and D, in accordance with the application requirements set forth in...
10 CFR 960.3-2-2-1 - Evaluation of all potentially acceptable sites.
Code of Federal Regulations, 2011 CFR
2011-01-01
...-1 Section 960.3-2-2-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-1 Evaluation... technical guidelines of subparts C and D, in accordance with the application requirements set forth in...
10 CFR 960.3-2-2-1 - Evaluation of all potentially acceptable sites.
Code of Federal Regulations, 2014 CFR
2014-01-01
...-1 Section 960.3-2-2-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2-2-1 Evaluation... technical guidelines of subparts C and D, in accordance with the application requirements set forth in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, Louis B.
This special analysis evaluates whether the Sandia National Laboratory (SNL) Classified Macroencapsulated Mixed Waste stream (ASLA000001007, Revision 4) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The SNL Classified Macroencapsulated Mixed Waste stream consists of debris from classified nuclear weapons components (SNL 2015). The SNL Classified Macroencapsulated Mixed Waste stream required a special analysis due to tritium (3H) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015). The SNL Classifiedmore » Macroencapsulated Mixed Waste stream had no significant effect on the maximum mean and 95th percentile results for the resident air pathway and all-pathways annual total effective dose (TED). The SNL Classified Macroencapsulated Mixed Waste stream increases the mean air pathway and all-pathways annual TED from approximately 100 to 200 years after closure. Addition of the SNL Classified Macroencapsulated Mixed Waste stream inventory shifts the maximum TED to approximately 100 years after closure and increases the TED for several alternative exposure scenarios. The maximum mean and the 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The SNL Classified Macroencapsulated Mixed Waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-12-10
The Master Disposal Service Landfill is listed on the National Priorities List. The site is located on the western edge of Brookfield in Waukesha County, Wisconsin. From 1962 to 1982, Master Disposal Service, Inc. operated a 40-acre landfill and filled a 26-acre wetland area by accepting in excess of 1.5 million gallons of industrial wastes. The wastes included solvents, paint products, adhesives, oils, and foundry wastes. State sampling established that ground water near the site is contaminated by chromium, lead, phenols, and PCBs. Based on the available information, the site is considered to be of potential public health concern becausemore » of the risk to human health caused by the possibility of exposure to hazardous substances via contaminated ground water, surface water, soil and air.« less
Landfill alternative offers powerful case.
Baillie, Jonathan
2011-04-01
With many of Europe's landfill sites now close to capacity, and the EU Landfill Directive requiring that, by 2020, the amount of waste sent to landfill should be just 35% of the volume similarly disposed of in 1995, pressure is mounting to find environmentally acceptable waste disposal alternatives. At a recent IHEEM waste seminar, Gary Connelly, a technical consultant at environmental technology consultancy the Cameron Corporation, described a technology which he explained can effectively convert 85% of the European Waste Catalogue of materials into an inert residue, is "cleaner and cheaper" than incineration, and can generate both electricity an waste heat. As HEJ editor Jonathan Baillie reports, a key target market is healthcare facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peace, Gerald; Goering, Timothy James
2004-03-01
The Mixed Waste Landfill occupies 2.6 acres in the north-central portion of Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico. The landfill accepted low-level radioactive and mixed waste from March 1959 to December 1988. This report represents the Corrective Measures Study that has been conducted for the Mixed Waste Landfill. The purpose of the study was to identify, develop, and evaluate corrective measures alternatives and recommend the corrective measure(s) to be taken at the site. Based upon detailed evaluation and risk assessment using guidance provided by the U.S. Environmental Protection Agency and the New Mexico Environment Department, themore » U.S. Department of Energy and Sandia National Laboratories recommend that a vegetative soil cover be deployed as the preferred corrective measure for the Mixed Waste Landfill. The cover would be of sufficient thickness to store precipitation, minimize infiltration and deep percolation, support a healthy vegetative community, and perform with minimal maintenance by emulating the natural analogue ecosystem. There would be no intrusive remedial activities at the site and therefore no potential for exposure to the waste. This alternative poses minimal risk to site workers implementing institutional controls associated with long-term environmental monitoring as well as routine maintenance and surveillance of the site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-08
The Master Disposal Service Landfill (MDSL) accepted industrial wastes from 1962 to 1982. The wastes were placed in a 26-acre wetland area and were confined by surrounding berms. Groundwater, surface water, soil and sediments have been contaminated with volatile organic compounds and metals. The remedial investigation of the landfill identified a plume of contaminated groundwater extending from beneath the site to approximately 675 feet southwest of the site. There is no evidence of human exposure. The site is of no apparent public health hazard at the present time. However, this could change if no remediation of contaminated groundwater occurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, Gregory J.
This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) Low Activity Beta/Gamma Sources waste stream (BCLALADOEOSRP, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL Low Activity Beta/Gamma Sources waste stream consists of sealed sources that are no longer needed. The LLNL Low Activity Beta/Gamma Sources waste stream required a special analysis because cobalt-60 (60Co), strontium-90 (90Sr), cesium-137 (137Cs), and radium-226 (226Ra) exceeded the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclearmore » Security Administration Nevada Field Office [NNSA/NFO] 2015). The results indicate that all performance objectives can be met with disposal of the LLNL Low Activity Beta/Gamma Sources in a SLB trench. The LLNL Low Activity Beta/Gamma Sources waste stream is suitable for disposal by SLB at the Area 5 RWMS. However, the activity concentration of 226Ra listed on the waste profile sheet significantly exceeds the action level. Approval of the waste profile sheet could potentially allow the disposal of high activity 226Ra sources. To ensure that the generator does not include large 226Ra sources in this waste stream without additional evaluation, a control is need on the maximum 226Ra inventory. A limit based on the generator’s estimate of the total 226Ra inventory is recommended. The waste stream is recommended for approval with the control that the total 226Ra inventory disposed shall not exceed 5.5E10 Bq (1.5 Ci).« less
Liu, Yong; Sun, Chenjunyan; Xia, Bo; Cui, Caiyun; Coffey, Vaughan
2018-06-01
As one of the most popular methods for the treatment of municipal solid waste (MSW), waste-to-energy (WTE) incineration offers effective solutions to deal with the MSW surge and globe energy issues. Nevertheless, the construction of WTE facilities faces considerable and strong opposition from local communities due to the perceived potential risks. The present study aims to understand whether, and how, community engagement improves local residents' public acceptance towards waste-to-energy (WTE) incineration facilities using a questionnaire survey conducted with nearby residents of two selected WTE incineration plants located in Zhejiang province, China. The results of data analysis using Structural Equation Modeling (SEM) reveal that firstly, a lower level of public acceptance exists among local residents of over the age of 35, of lower education levels, living within 3 km from the WTE Plant and from WTE incineration Plants which are under construction. Secondly, the public trust of local government and other authorities was positively associated with the public acceptance of the WTE incineration project, both directly and indirectly based on perceived risk. Thirdly, community engagement can effectively enhance public trust in local government and other authorities related to the WTE incineration project. The findings contribute to the literature on MSW treatment policy-making and potentially hazardous facility siting, by exploring the determinants of public acceptance towards WTE incineration projects. Copyright © 2018 Elsevier Ltd. All rights reserved.
HEU Holdup Measurements on 321-M A-Lathe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewberry, R.A.
The Analytical Development Section of SRTC was requested by the Facilities Disposition Division (FDD) of the Savannah River Site to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. The results of the holdup assays are essential for determining compliance with the solid waste Waste Acceptance Criteria, Material Control and Accountability, and to meet criticality safety controls. Three measurement systems were used to determine highly enrichedmore » uranium (HEU) holdup. This report covers holdup measurements on the A-Lathe that was used to machine uranium-aluminum-alloy (U-Al). Our results indicated that the lathe contained more than the limits stated in the Waste Acceptance Criteria (WAC) for the solid waste E-Area Vaults. Thus the lathe was decontaminated three times and assayed four times in order to bring the amounts of uranium to an acceptable content. This report will discuss the methodology, Non-Destructive Assay (NDA) measurements, and results of the U-235 holdup on the lathe.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
LUECK, K.J.
2004-10-18
This report documents an engineering study conducted to evaluate alternatives for treating secondary waste in the secondary treatment train (STT) of the Hanford Site 200 Area Effluent Treatment Facility (ETF). The study evaluates ETF STT treatment alternatives and recommends preferred alternatives for meeting the projected future missions of the ETF. The preferred alternative(s) will process projected future ETF influents to produce a solid waste acceptable for final disposal on the Hanford Site. The main text of this report summarizes the ETF past and projected operations, lists the assumptions about projected operations that provide the basis for the engineering evaluation, andmore » summarizes the evaluation process. The evaluation process includes identification of available modifications to the current ETF process, screens those modifications for technical viability, evaluates the technically viable alternatives, and provides conclusions and recommendations based on that evaluation.« less
Johnson, K.S.
1991-01-01
The Oklahoma Geological Survey has developed several maps and reports for preliminary screening of the state of Oklahoma to identify areas that are generally acceptable or unacceptable for disposal of a wide variety of waste materials. These maps and reports focus on the geologic and hydrogeologic parameters that must be evaluated in the screening process. One map (and report) shows the outcrop distribution of 35 thick shale or clay units that are generally suitable for use as host rocks for surface disposal of wastes. A second map shows the distribution of unconsolidated alluvial and terrace-deposit aquifers, and a third map shows the distribution and hydrologic character of bedrock aquifers and their recharge areas. These latter two maps show the areas in the state where special attention must be exercised in permitting storage or disposal of waste materials that could degrade the quality of groundwater. State regulatory agencies and industry are using these maps and reports in preliminary screening of the state to identify potential disposal sites. These maps in no way replace the need for site-specific investigations to prove (or disprove) the adequacy of a site to safely contain waste materials. ?? 1991 Springer-Verlag New York Inc.
Vegetative covers for waste containment.
Rock, Steven A
2003-01-01
Disposal of municipal and hazardous waste in the United States is primarily accomplished by containment in lined and capped landfills. Evapotranspiration cover systems offer an alternative to conventional landfill cap systems. These covers work on completely different principles than traditional covers do, and that difference may slow understanding and acceptance by site owners, regulators, and stakeholders. This chapter provides an introduction to this alternative technique and explains some of the common concerns regarding its implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, R.
1996-06-01
This document provides performance standards that one, as a generator of hazardous chemical, radioactive, or mixed wastes at the Berkeley Lab, must meet to manage their waste to protect Berkeley Lab staff and the environment, comply with waste regulations and ensure the continued safe operation of the workplace, have the waste transferred to the correct Waste Handling Facility, and enable the Environment, Health and Safety (EH and S) Division to properly pick up, manage, and ultimately send the waste off site for recycling, treatment, or disposal. If one uses and generates any of these wastes, one must establish a Satellitemore » Accumulation Area and follow the guidelines in the appropriate section of this document. Topics include minimization of wastes, characterization of the wastes, containers, segregation, labeling, empty containers, and spill cleanup and reporting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, Alexander
2014-04-24
This document describes the development and approach for the radiological characterization of Cf-252 sealed sources for shipment to the Waste Isolation Pilot Plant. The report combines information on the nuclear material content of each individual source (mass or activity and date of manufacture) with information and data on the radionuclide distributions within the originating nuclear material. This approach allows for complete and accurate characterization of the waste container without the need to take additional measurements. The radionuclide uncertainties, developed from acceptable knowledge (AK) information regarding the source material, are applied to the summed activities in the drum. The AK informationmore » used in the characterization of Cf-252 sealed sources has been qualified by the peer review process, which has been reviewed and accepted by the Environmental Protection Agency.« less
Radioactive waste management treatments: A selection for the Italian scenario
DOE Office of Scientific and Technical Information (OSTI.GOV)
Locatelli, G.; Mancini, M.; Sardini, M.
2012-07-01
The increased attention for radioactive waste management is one of the most peculiar aspects of the nuclear sector considering both reactors and not power sources. The aim of this paper is to present the state-of-art of treatments for radioactive waste management all over the world in order to derive guidelines for the radioactive waste management in the Italian scenario. Starting with an overview on the international situation, it analyses the different sources, amounts, treatments, social and economic impacts looking at countries with different industrial backgrounds, energetic policies, geography and population. It lists all these treatments and selects the most reasonablemore » according to technical, economic and social criteria. In particular, a double scenario is discussed (to be considered in case of few quantities of nuclear waste): the use of regional, centralized, off site processing facilities, which accept waste from many nuclear plants, and the use of mobile systems, which can be transported among multiple nuclear sites for processing campaigns. At the end the treatments suitable for the Italian scenario are presented providing simplified work-flows and guidelines. (authors)« less
Compensation for risks: host community benefits in siting locally unwanted facilities
NASA Astrophysics Data System (ADS)
Himmelberger, Jeffery J.; Ratick, Samuel J.; White, Allen L.
1991-09-01
This article analyzes the recent negotiations connected with siting 24 solid-waste landfills in Wisconsin. We examine the association between the type and amount of compensation paid to host communities by facility developers and the size of facilities, certain facility characteristics, the timing of negotiated agreements, the size of the host community, and the socioeconomic status of the host area. Our findings suggest that the level of compensation after adjusting for landfill capacity is positively associated with the percentage of total facility capacity dedicated to host community use, positively associated with the percentage of people of the host area who are in poverty, and larger for public facilities that accept municipal wastes. Other explanatory variables we examined, whose association with levels of compensation proved statistically insignificant, were facility size, facility status (new vs expansion), facility use (countyonly vs multicounty), timing of negotiation, host community size, and the host area education level, population density, and per capita income. We discuss the policy implications of our principal findings and future research questions in light of the persistent opposition surrounding the siting of solid-waste and other waste-management facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Most, W. A.; Kehrman, R.; Gist, C.
2002-02-26
The U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) has developed draft documentation to present the proposed Waste Isolation Pilot Plant (WIPP) remote-handled (RH-) transuranic (TRU) waste characterization program to its regulators, the U.S. Environmental Protection Agency and the New Mexico Environment Department. Compliance with Title 40, Code of Federal Regulations, Parts 191 and 194; the WIPP Land Withdrawal Act (PL 102-579); and the WIPP Hazardous Waste Facility Permit, as well as the Certificates of Compliance for the 72-B and 10-160B Casks, requires that specific waste parameter limits be imposed on DOE sites disposing of TRU waste at WIPP. Themore » DOE-CBFO must control the sites' compliance with the limits by specifying allowable characterization methods. As with the established WIPP contact handled TRU waste characterization program, the DOE-CBFO has proposed a Remote-Handled TRU Waste Acceptance Criteria (RH-WAC) document consolidating the requirements from various regulatory drivers and proposed allowable characterization methods. These criteria are consistent with the recommendation of a recent National Academy Sciences/National Research Council to develop an RH-TRU waste characterization approach that removes current self imposed requirements that lack a legal or safety basis. As proposed in the draft RH-WAC and other preliminary documents, the DOE-CBFO RH-TRU waste characterization program proposes the use of acceptable knowledge (AK) as the primary method for obtaining required characterization information. The use of AK involves applying knowledge of the waste in light of the materials or processes used to generate the waste. Documentation, records, or processes providing information about various attributes of a waste stream, such as chemical, physical, and radiological properties, may be used as AK and may be applied to individual waste containers either independently or in conjunction with radiography, visual examination, assay, and other sampling and analytical data. RH-TRU waste cannot be shipped to WIPP on the basis of AK alone if documentation demonstrating that all of the prescribed limits in the RH-WAC are met is not available, discrepancies exist among AK source documents describing the same waste stream and the most conservative assumptions regarding those documents indicates that a limit will not be met, or all required data are not available for a given waste stream.« less
Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.
2013-07-01
A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA)more » led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)« less
Zhu, Zhi-Cheng; Chen, She-Jun; Ding, Nan; Wang, Jing; Luo, Xiao-Jun; Mai, Bi-Xian
2014-08-01
Polychlorinated biphenyls (PCBs) were measured in house dust from an e-waste site and urban site in the Pearl River Delta, southern China. The PCB concentrations in house dust at the e-waste site ranged from 12.4 to 87 765 ng x g(-1), with an average of 10 167 ng x g(-1). There was no significant difference in the PCB concentrations between indoor and outdoor dust. The PCB homologue pattern was dominated by tri-, penta-, hexa-, and tetra-CBs, which was not similar to that in Chinese technical PCB product. There was also no significant difference in the PCB compositions between indoor and outdoor dust. PCB sources in house dust at the e-waste site were apportioned by chemical mass balance (CMB) model. The results showed that the PCBs were derived primarily from Aroclor 1262 (36.7% ), Aroclor 1254 (26.7%), Aroclor 1242 (21.4%), and Aroclor 1248 (18.5%). The daily exposure doses were 42, 17, and 2.9 ng x (kg x d)(-1) for toddlers, children/adolescents, and adults in the e-waste area, respectively. Risk assessment indicated that the hazard quotients were higher than 1 for toddlers and children/adolescents indicating adverse effects for them. The lifetime average excess carcinogenic risk for population in the e-waste area was 4.5 x 10(-5), within the acceptable range of U. S. Environmental Protection Agency. The mean concentrations of PCBs in house dust in Guangzhou was 48.7 ng x g(-1). The low PCB level is consistent with the fact that technical PCBs were not widely used in China in the past. The risks of exposure to PCBs via house dust in Guangzhou are very low.
Itai, Takaaki; Otsuka, Masanari; Asante, Kwadwo Ansong; Muto, Mamoru; Opoku-Ankomah, Yaw; Ansa-Asare, Osmund Duodu; Tanabe, Shinsuke
2014-02-01
Illegal import and improper recycling of electronic waste (e-waste) are an environmental issue in developing countries around the world. African countries are no exception to this problem and the Agbogbloshie market in Accra, Ghana is a well-known e-waste recycling site. We have studied the levels of metal(loid)s in the mixtures of residual ash, formed by the burning of e-waste, and the cover soil, obtained using a portable X-ray fluorescence spectrometer (P-XRF) coupled with determination of the 1M HCl-extractable fraction by an inductively coupled plasma mass spectrometer. The accuracy and precision of the P-XRF measurements were evaluated by measuring 18 standard reference materials; this indicated the acceptable but limited quality of this method as a screening tool. The HCl-extractable levels of Al, Co, Cu, Zn, Cd, In, Sb, Ba, and Pb in 10 soil/ash mixtures varied by more than one order of magnitude. The levels of these metal(loid)s were found to be correlated with the color (i.e., soil/ash ratio), suggesting that they are being released from disposed e-waste via open burning. The source of rare elements could be constrained using correlation to the predominant metals. Human hazard quotient values based on ingestion of soil/ash mixtures exceeded unity for Pb, As, Sb, and Cu in a high-exposure scenario. This study showed that along with common metals, rare metal(loid)s are also enriched in the e-waste burning site. We suggest that risk assessment considering exposure to multiple metal(loid)s should be addressed in studies of e-waste recycling sites. © 2013. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biedscheid, J.; Stahl, S.; Devarakonda, M.
2002-02-26
The first remote-handled transuranic (RH-TRU) waste is expected to be permanently disposed of at the Waste Isolation Pilot Plant (WIPP) during Fiscal Year (FY) 2003. The first RH-TRU waste shipments are scheduled from the Battelle Columbus Laboratories (BCL) to WIPP in order to facilitate compliance with BCL Decommissioning Project (BCLDP) milestones. Milestones requiring RH-TRU waste containerization and removal from the site by 2004 in order to meet a 2006 site closure goal, established by Congress in the Defense Facilities Closure Projects account, necessitated the establishment and implementation of a site-specific program to direct the packaging of BCLDP RH-TRU waste priormore » to the finalization of WIPP RH-TRU waste characterization requirements. The program was designed to collect waste data, including audio and videotape records of waste packaging, such that upon completion of waste packaging, comprehensive data records exist from which compliance with final WIPP RH-TRU waste characterization requirements can be demonstrated. With the BCLDP data records generated to date and the development by the U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) of preliminary documents proposing the WIPP RH-TRU waste characterization program, it is possible to evaluate the adequacy of the BCLDP program with respect to meeting proposed characterization objectives. The BCLDP characterization program uses primarily acceptable knowledge (AK) and visual examination (VE) during waste packaging to characterize RH-TRU waste. These methods are used to estimate physical waste parameters, including weight percentages of metals, cellulosics, plastics, and rubber in the waste, and to determine the absence of prohibited items, including free liquids. AK combined with computer modeling is used to estimate radiological waste parameters, including total activity on a waste container basis, for the majority of BCLDP RH-TRU waste. AK combined with direct analysis is used to characterize radiological parameters for the small populations of the RH-TRU waste generated by the BCLDP. All characterization based on AK is verified. Per its design for comprehensive waste data collection, the BCLDP characterization program using AK and waste packaging procedures, including VE during packaging, meets the proposed WIPP RH-TRU waste characterization objectives. The conservative program design implemented generates certification data that will be adequate to meet any additional program requirements that may be imposed by the CBFO.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, A.; Johnson, F.
Production of Mo-99 for medical isotope use is being investigated using dissolved low enriched uranium (LEU) fissioned using an accelerator driven process. With the production and separation of Mo-99, a low level waste stream will be generated. Since the production facility is a commercial endeavor, waste disposition paths normally available for federally generated radioactive waste may not be available. Disposal sites for commercially generated low level waste are available, and consideration to the waste acceptance criteria (WAC) of the disposal site should be integral in flowsheet development for the Mo-99 production. Pending implementation of the “Uranium Lease and Take-Back Programmore » for Irradiation for Production of Molybdenum-99 for Medical Use” as directed by the American Medical Isotopes Production Act of 2012, there are limited options for disposing of the waste generated by the production of Mo-99 using an accelerator. The commission of a trade study to assist in the determination of the most favorable balance of production throughput and waste management should be undertaken. The use of a waste broker during initial operations of a facility has several benefits that can offset the cost associated with using a subcontractor. As the facility matures, the development of in-house capabilities can be expanded to incrementally reduce the dependence on a subcontractor.« less
CONCEPTUAL BASIS FOR NATURAL ATTENUATION (NA) AS REMEDIATION APPROACH
As used in enforcement actions at hazardous waste sites by U.S. EPA, monitored natural attenuation is a remedy fully equivalent to any other remedy. The acceptance of MNA is based on three lines of evidence: historical ground water and/or soil chemistry data that demonstrates a ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osmanlioglu, Ahmet Erdal
Available in abstract form only. Full text of publication follows: Naturally occurring radioactive material (NORM) in concentrated forms arises both in industry and in nature where natural radioisotopes accumulate at particular sites. Technically enhanced naturally occurring radioactive materials (TE-NORM) often occurs in an acidic environment where precipitates containing radionuclides plate out onto pipe walls, filters, tank linings, etc. Because of the radionuclides are selectively deposited at these sites, radioactivity concentration is extremely higher than the natural concentration. This paper presents characterization and related considerations of TE-NORM wastes in Turkey. Generally, accumulation conditions tend to favour the build-up of radium. Asmore » radium is highly radio-toxic, handling, treatment, storage and disposal of such material requires careful management. Turkey has the only low level waste processing and storage facility (WPSF) in Istanbul. This facility has interim storage buildings and storage area for storage of packaged radioactive waste which are containing artificial radioisotopes, but there is an increasing demand for the storage to accept bulk concentrated TE-NORM wastes from iron-steel and related industries. Most of these wastes generated from scrap metal piles which are imported from other countries. These wastes generally contain radium. (authors)« less
Burger, Joanna
2007-11-01
World War II and the Cold War have left the Unites States, and other Nations, with massive cleanup and remediation tasks for radioactive and other legacy hazardous wastes. While some sites can be cleaned up to acceptable residential risk levels, others will continue to hold hazardous wastes, which must be contained and monitored to protect human health and the environment. While media (soil, sediment, groundwater) monitoring is the usual norm at many radiological waste sites, for some situations (both biological and societal), biomonitoring may provide the necessary information to assure greater peace of mind for local and regional residents, and to protect ecologically valuable buffer lands or waters. In most cases, indicators are selected using scientific expertise and a literature review, but not all selected indicators will seem relevant to stakeholders. In this paper, I provide a model for the inclusion of stakeholders in the development of bioindicators for assessing radionuclide levels of biota in the marine environment around Amchitka Island, in the Aleutian Chain of Alaska. Amchitka was the site of three underground nuclear tests from 1965 to 1971. The process was stakeholder-initiated, stakeholder-driven, and included stakeholders during each phase. Phases included conceptualization, initial selection of biota and radionuclides, refinement of biota and radionuclide target lists, collection of biota, selection of biota and radionuclides for analysis, and selection of biota, tissues, and radionuclides for bioindicators. The process produced site-specific information on biota availability and on radionuclide levels that led to selection of site-appropriate bioindicators. I suggest that the lengthy, iterative, stakeholder-driven process described in this paper results in selection of bioindicators that are accepted by biologists, public health personnel, public-policy makers, resource agencies, regulatory agencies, subsistence hunters/fishers, and a wide range of other stakeholders. The process is applicable to other sites with ecologically important buffer lands or waters, or where contamination issues are contentious.
Consolidated Storage Facilities: Camel's Nose or Shared Burden? - 13112
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, James M.
2013-07-01
The Blue Ribbon Commission (BRC) made a strong argument why the reformulated nuclear waste program should make prompt efforts to develop one or more consolidated storage facilities (CSFs), and recommended the amendment of NWPA Section 145(b) 2 (linking 'monitored retrievable storage' to repository development) as an essential means to that end. However, other than recommending that the siting of CSFs should be 'consent-based' and that spent nuclear fuel (SNF) at stranded sites should be first-in-line for removal, the Commission made few recommendations regarding how CSF development should proceed. Working with three other key Senators, Jeff Bingaman attempted in the 112.more » Congress to craft legislation (S. 3469) to put the BRC recommendations into legislative language. The key reason why the Nuclear Waste Administration Act of 2012 did not proceed was the inability of the four senators to agree on whether and how to amend NWPA Section 145(b). A brief review of efforts to site consolidated storage since the Nuclear Waste Policy Amendments Act of 1987 suggests a strong and consistent motivation to shift the burden to someone (anyone) else. This paper argues that modification of NWPA Section 145(b) should be accompanied by guidelines for regional development and operation of CSFs. After review of the BRC recommendations regarding CSFs, and the 'camel's nose' prospects if implementation is not accompanied by further guidelines, the paper outlines a proposal for implementation of CSFs on a regional basis, including priorities for removal from reactor sites and subsequently from CSFs to repositories. Rather than allowing repository siting to be prejudiced by the location of a single remote CSF, the regional approach limits transport for off-site acceptance and storage, increases the efficiency of removal operations, provides a useful basis for compensation to states and communities that accept CSFs, and gives states with shared circumstances a shared stake in storage and disposal in an integrated national program. (authors)« less
Permeable reactive barriers (PRBs) for the restoration of contaminated ground water are no longer innovative. PRBs have evolved from innovative to accepted, standard practice, for the containment and treatment of a variety of contaminants in ground water. Like any remedial tech...
2014-04-01
remediate past environmental contamination on Air Force installations. Past procedures for managing and disposing wastes, although accepted at the...time, resulted in contamination of the environment. The ERP has established a process to evaluate past disposal sites, control the migration of... contaminants , identify potential hazards to human health and the environment, and remediate the sites. 3.5.2 Existing Conditions GFAFB is a
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-01-23
This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRAmore » regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems.« less
RCRA Summary Document for the David Witherspoon 1630 Site, Knoxville, Tennessee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfeffer, J.
2008-06-10
The 48-acre David Witherspoon, Inc. (DWI) 1630 Site operated as an unregulated industrial landfill and scrap yard. The Tennessee Division of Superfund (TDSF) closed the landfill in 1974. During the period of operation, the site received solid and liquid wastes from salvage and industrial operations. The site consists of five separate tracts of land including a small portion located across the Norfolk Southern Railroad track. The landfill occupies approximately 5 acres of the site, and roughly 20 acres of the 48 acres contains surface and buried debris associated with the DWI dismantling business operation. Beginning in 1968, the state ofmore » Tennessee licensed DWI to receive scrap metal at the DWI 1630 Site, contaminated with natural uranium and enriched uranium (235U) not exceeding 0.1 percent by weight (TDSF 1990). The U.S. Department of Energy (DOE) has agreed to undertake remedial actions at the DWI 1630 Site as specified under a Consent Order with the Tennessee Department of Environment and Conservation (TDEC) (Consent Order No. 90-3443, April 4, 1991), and as further delineated by a Memorandum of Understanding (MOU) between DOE and the State of Tennessee (MOU Regarding Implementation of Consent Orders, October 6, 1994). The soil and debris removal at the DWI 1630 Site is being performed by Bechtel Jacobs Company LLC (BJC) on behalf of the DOE. Remediation consists of removing contaminated soil and debris from the DWI 1630 site except for the landfill area and repairing the landfill cap. The DWI 1630 remediation waste that is being disposed at the Environmental Management Waste Management Facility (EMWMF) as defined as waste lot (WL) 146.1 and consists primarily of soils and soil like material, incidental debris and secondary waste generated from the excavation of debris and soil from the DWI 1630 site. The WL 146.1 includes soil, soil like material (e.g., shredded or chipped vegetation, ash), discrete debris items (e.g., equipment, drums, large scrap metal, cylinders, and cable) and populations of debris type items (e.g., piles of bricks, small scrap metal, roofing material, scaffolding, and shelving) that are located throughout the DWI 1630 site. The project also generates an additional small volume of secondary waste [e.g., personal protective equipment (PPE), and miscellaneous construction waste] that is bagged and included in bulk soil shipments to the EMWMF. The Waste Acceptance Criteria (WAC) for the EMWMF does not allow for material that does not meet the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions (LDRs). The waste being excavated in certain areas of the DWI 1630 site contained soil that did not meet RCRA LDR criteria; therefore this waste had to be segregated for treatment or alternate disposal offsite. This document identifies the approach taken by the DWI 1630 project to further characterize the areas identified during the Phase II Remedial Investigation (RI) as potentially containing RCRA-characteristic waste. This document also describes the methodology used to determine excavation limits for areas determined to be RCRA waste, post excavation sampling, and the treatment and disposal of this material.« less
Waste and racism: A stacked deck
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bullard, R.D.
It has been difficult for many blacks to say, Not in My Backyard.' Many of them don't even have a backyard, according to the author in describing what he calls environmental racism.' He defines environmental racism as the systematic targeting of black communities for the siting of sewer treatment plants, landfills, incinerators, hazardous-waste disposal sites, lead smelters, and other risky technologies.' Historically, poor and minority communities have received a disproportionate share of such facilities. Few are located in the suburbs, where most middle-class whites live. Today, Latino neighborhoods and Indian reservations also are feeling the impact of discriminatory siting decisions.more » The author feels state governments have done a miserable job of protecting minority communities from the ravages of industrial pollution. After placidly accepting their fate for years, many of the communities are fighting back, challenging siting decisions on equity grounds in state and federal courts and organizing a national movement against environmental injustice.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seitz, Roger; Kumano, Yumiko; Bailey, Lucy
2014-01-09
The principal approaches for management of radioactive waste are commonly termed ‘delay and decay’, ‘concentrate and contain’ and ‘dilute and disperse’. Containing the waste and isolating it from the human environment, by burying it, is considered to increase safety and is generally accepted as the preferred approach for managing radioactive waste. However, this approach results in concentrated sources of radioactive waste contained in one location, which can pose hazards should the facility be disrupted by human action in the future. The International Commission on Radiological Protection (ICRP), International Atomic Energy Agency (IAEA), and Organization for Economic Cooperation and Development/Nuclear Energymore » Agency (OECD/NEA) agree that some form of inadvertent human intrusion (HI) needs to be considered to address the potential consequences in the case of loss of institutional control and loss of memory of the disposal facility. Requirements are reflected in national regulations governing radioactive waste disposal. However, in practice, these requirements are often different from country to country, which is then reflected in the actual implementation of HI as part of a safety case. The IAEA project on HI in the context of Disposal of RadioActive waste (HIDRA) has been started to identify potential areas for improved consistency in consideration of HI. The expected outcome is to provide recommendations on how to address human actions in the safety case in the future, and how the safety case may be used to demonstrate robustness and optimize siting, design and waste acceptance criteria within the context of a safety case.« less
Letter Report: LAW Simulant Development for Cast Stone Screening Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Renee L.; Westsik, Joseph H.; Swanberg, David J.
2013-03-27
More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in themore » HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second facility will be needed for the expected volume of additional LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with waste acceptance criteria for the IDF disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long term performance of the waste form in the IDF disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF. A testing program was developed in fiscal year (FY) 2012 describing in some detail the work needed to develop and qualify Cast Stone as a waste form for the solidification of Hanford LAW (Westsik et al. 2012). Included within Westsik et al. (2012) is a section on the near-term needs to address Tri-Party Agreement Milestone M-062-40ZZ. The objectives of the testing program to be conducted in FY 2013 and FY 2014 are to: • Determine an acceptable formulation for the LAW Cast Stone waste form. • Evaluate sources of dry materials for preparing the LAW Cast Stone. • Demonstrate the robustness of the Cast Stone waste form for a range of LAW compositions. • Demonstrate the robustness of the formulation for variability in the Cast Stone process. • Provide Cast Stone contaminant release data for PA and risk assessment evaluations. The first step in determining an acceptable formulation for the LAW Cast Stone waste form is to conduct screening tests to examine expected ranges in pretreated LAW composition, waste stream concentrations, dry-materials sources, and mix ratios of waste feed to dry blend. A statistically designed test matrix will be used to evaluate the effects of these key parameters on the properties of the Cast Stone as it is initially prepared and after curing. The second phase of testing will focus on selection of a baseline Cast Stone formulation for LAW and demonstrating that Cast Stone can meet expected waste form requirements for disposal in the IDF. It is expected that this testing will use the results of the screening tests to define a smaller suite of tests to refine the composition of the baseline Cast Stone formulation (e.g. waste concentration, water to dry mix ratio, waste loading).« less
Radioactive Waste Management and Environmental Contamination Issues at the Chernobyl Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Napier, Bruce A.; Schmieman, Eric A.; Voitsekhovitch, Oleg V.
2007-11-01
The destruction of the Unit 4 reactor at the Chernobyl Nuclear Power Plant resulted in the generation of radioactive contamination and radioactive waste at the site and in the surrounding area (referred to as the Exclusion Zone). In the course of remediation activities, large volumes of radioactive waste were generated and placed in temporary near surface waste-storage and disposal facilities. Trench and landfill type facilities were created from 1986 to 1987 in the Chernobyl Exclusion Zone at distances 0.5 to 15 km from the NPP site. This large number of facilities was established without proper design documentation, engineered barriers, ormore » hydrogeological investigations and they do not meet contemporary waste-safety requirements. Immediately following the accident, a Shelter was constructed over the destroyed reactor; in addition to uncertainties in stability at the time of its construction, structural elements of the Shelter have degraded as a result of corrosion. The main potential hazard of the Shelter is a possible collapse of its top structures and release of radioactive dust into the environment. A New Safe Confinement (NSC) with a 100-years service life is planned to be built as a cover over the existing Shelter as a longer-term solution. The construction of the NSC will enable the dismantlement of the current Shelter, removal of highly radioactive, fuel-containing materials from Unit 4, and eventual decommissioning of the damaged reactor. More radioactive waste will be generated during NSC construction, possible Shelter dismantling, removal of fuel containing materials, and decommissioning of Unit 4. The future development of the Exclusion Zone depends on the future strategy for converting Unit 4 into an ecologically safe system, i.e., the development of the NSC, the dismantlement of the current Shelter, removal of fuel containing material, and eventual decommissioning of the accident site. To date, a broadly accepted strategy for radioactive waste management at the reactor site and in the Exclusion Zone, and especially for high-level and long-lived waste, has not been developed.« less
McDonald, M.G.
1981-01-01
Muskegon County, Michigan, disposes of waste water by spray irrigating farmland on its waste-disposal site. Buried drains in the highly permeable unconfined aquifer at the site control the level of the water table. Hydraulic conductivity of the aquifer and drain-leakance, the reciprocal of resistance to flow into the drains, was determined at a representative irrigation circle while calibrating a model of the ground-water flow system. Hydraulic conductivity is 0.00055 meter per second in the north zone of the circle and 0.00039 meter per second in the south zone. Drain leakance is low in both zones: 2.9 x 10-6 meters per second in the north and 9.5 x 10-6 meters per second in the south. Low drain leakance is responsible for waterlogging when irrigation rates are maintained at design levels. The capacity of the study circle to accept waste water is 35 percent less than design capacity.
Future trends which will influence waste disposal.
Wolman, A
1978-01-01
The disposal and management of solid wastes are ancient problems. The evolution of practices naturally changed as populations grew and sites for disposal became less acceptable. The central search was for easy disposal at minimum costs. The methods changed from indiscriminate dumping to sanitary landfill, feeding to swine, reduction, incineration, and various forms of re-use and recycling. Virtually all procedures have disabilities and rising costs. Many methods once abandoned are being rediscovered. Promises for so-called innovations outstrip accomplishments. Markets for salvage vary widely or disappear completely. The search for conserving materials and energy at minimum cost must go on forever. PMID:570105
Review of the Scientific Understanding of Radioactive Waste at the U.S. DOE Hanford Site.
Peterson, Reid A; Buck, Edgar C; Chun, Jaehun; Daniel, Richard C; Herting, Daniel L; Ilton, Eugene S; Lumetta, Gregg J; Clark, Sue B
2018-01-16
This Critical Review reviews the origin and chemical and rheological complexity of radioactive waste at the U.S. Department of Energy Hanford Site. The waste, stored in underground tanks, was generated via three distinct processes over decades of plutonium extraction operations. Although close records were kept of original waste disposition, tank-to-tank transfers and conditions that impede equilibrium complicate our understanding of the chemistry, phase composition, and rheology of the waste. Tank waste slurries comprise particles and aggregates from nano to micro scales, with varying densities, morphologies, heterogeneous compositions, and complicated responses to flow regimes and process conditions. Further, remnant or changing radiation fields may affect the stability and rheology of the waste. These conditions pose challenges for transport through conduits or pipes to treatment plants for vitrification. Additionally, recalcitrant boehmite degrades glass quality and the high aluminum content must be reduced prior to vitrification for the manufacture of waste glass of acceptable durability. However, caustic leaching indicates that boehmite dissolves much more slowly than predicted given surface normalized rates. Existing empirical models based on ex situ experiments and observations generally only describe material balances and have not effectively predicted process performance. Recent advances in the areas of in situ microscopy, aberration-corrected transmission electron microscopy, theoretical modeling across scales, and experimental methods for probing the physics and chemistry at mineral-fluid and mineral-mineral interfaces are being implemented to build robustly predictive physics-based models.
Peoria Disposal Co.`s PDC Laboratories: Analyzing and cleaning up -- Literally
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAdams, C.L.
1995-10-01
In the early 1980s, says Royal Coulter, president and CEO of Peoria Disposal Co. (PDC, Peoria, IL), many PDC customers were unfamiliar with the methods required for the proper characterization of then newly regulated hazardous wastes. So in early 1981, to expedite permitting and, ultimately, acceptance of waste by PDC, a lab was set up so the company could step in and provide the needed services. By focusing on the delivery of quality services in the analysis of groundwater, wastewater, and solid waste for PDC, Coulter says, the laboratory soon developed into a successful and independent commercial operation. In Julymore » of 1981, PDC Laboratories was incorporated as an independent environmental analytical laboratory. PDC Labs is a subsidiary of PDC Technical Services, Inc., which provides environmental consulting and site remediation services, and is itself a wholly-owned subsidiary of Coulter Companies, Inc. Peoria Disposal offers solid waste disposal, industrial waste water treatment, waste stabilization, transportation services, and brokerage services.« less
Beiyuan, Jingzi; Tsang, Daniel C W; Yip, Alex C K; Zhang, Weihua; Ok, Yong Sik; Li, Xiang-Dong
2017-02-01
Permeable reactive barriers (PRBs) have proved to be a promising passive treatment to control groundwater contamination and associated human health risks. This study explored the potential use of low-cost adsorbents as PRBs media and assessed their longevity and risk mitigation against leaching of acidic rainfall through an e-waste recycling site, of which Cu, Zn, and Pb were the major contaminants. Batch adsorption experiments suggested a higher adsorption capacity of inorganic industrial by-products [acid mine drainage sludge (AMDS) and coal fly ash (CFA)] and carbonaceous recycled products [food waste compost (FWC) and wood-derived biochar] compared to natural inorganic minerals (limestone and apatite). Continuous leaching tests of sand columns with 10 wt% low-cost adsorbents were then conducted to mimic the field situation of acidic rainfall infiltration through e-waste-contaminated soils (collected from Qingyuan, China) by using synthetic precipitation leaching procedure (SPLP) solution. In general, Zn leached out first, followed by Cu, and finally delayed breakthrough of Pb. In the worst-case scenario (e.g., at initial concentrations equal to 50-fold of average SPLP result), the columns with limestone, apatite, AMDS, or biochar were effective for a relatively short period of about 20-40 pore volumes of leaching, after which Cu breakthrough caused non-cancer risk concern and later-stage Pb leaching considerably increased both non-cancer and lifetime cancer risk associated with portable use of contaminated water. In contrast, the columns with CFA or FWC successfully mitigated overall risks to an acceptable level for a prolonged period of 100-200 pore volumes. Therefore, with proper selection of low-cost adsorbents (or their mixture), waste-based PRBs is a technically feasible and economically viable solution to mitigate human health risk due to contaminated groundwater at e-waste recycling sites.
Unique Regulatory Approach for Licensing the Port Hope Remediation Project in Canada - 13315
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostova, M.; Howard, D.; Elder, P.
2013-07-01
The Port Hope remediation project is a part of a larger initiative of the Canadian Federal Government the Port Hope Area Initiative (PHAI) which is based upon a community proposal. The Government of Canada, through Natural Resources Canada (NRCan) is investing $1.28 billion over 10 years to clean up historic low-level radioactive waste in the Port Hope Area and to provide long-term safe management of the low-level radioactive wastes in the Port Hope Area. These wastes arose from the activities of a former Federal Crown Corporation (Eldorado Nuclear) and its private sector predecessors. In Canada, historic waste are defined asmore » low-level radioactive waste that was managed in a manner no longer considered acceptable, but for which the original producer cannot reasonably be held responsible or no longer exists and for which the Federal Government has accepted responsibility. In Canada, under the current regulatory framework, the environmental remediation is not considered as a distinct phase of the nuclear cycle. The regulatory approach for dealing with existing sites contaminated with radioactive residues is defined on the basis of risk and application of existing regulations. A unique regulatory approach was taken by the Canadian Nuclear Safety Commission (CNSC) to address the various licensing issues and to set out the requirements for licensing of the Port Hope Project within the current regulatory framework. (authors)« less
40 CFR 63.1935 - Am I subject to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards for Hazardous Air Pollutants: Municipal Solid Waste Landfills What This Subpart Covers § 63.1935... that has accepted waste since November 8, 1987 or has additional capacity for waste deposition and... landfill that has accepted waste since November 8, 1987 or has additional capacity for waste deposition...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-25
... access publicly-available documents online in the NRC Library at http://www.nrc.gov/reading-rm/adams.html... produce at a faster rate, but not from more production areas. Uranium One maintains acceptable waste... NRC Library at http://www.nrc.gov/reading-rm/adams.html . From this site, you can access the NRC's...
WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, M. E.; Newell, J. D.; Johnson, F. C.
The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the processmore » demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at the Savannah River Site. It is not expected that the exact equipment used during this testing will be used during the waste feed qualification testing for WTP, but functionally similar equipment will be used such that the techniques demonstrated would be applicable. For example, the mixing apparatus could use any suitable mixer capable of being remoted and achieving similar mixing speeds to those tested.« less
Characterization of the Old Hydrofracture Facility (OHF) waste tanks located at ORNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.
1997-04-01
The Old Hydrofracture Facility (OHF) is located in Melton Valley within Waste Area Grouping (WAG) 5 and includes five underground storage tanks (T1, T2, T3, T4, and T9) ranging from 13,000 to 25,000 gal. capacity. During the period of 1996--97 there was a major effort to re-sample and characterize the contents of these inactive waste tanks. The characterization data summarized in this report was needed to address waste processing options, examine concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPPmore » and Nevada Test Site (NTS), address criticality concerns, and to provide the data needed to meet DOT requirements for transporting the waste. This report discusses the analytical characterization data collected on both the supernatant and sludge samples taken from three different locations in each of the OHF tanks. The isotopic data presented in this report supports the position that fissile isotopes of uranium ({sup 233}U and {sup 235}U) do not satisfy the denature ratios required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). The fissile isotope of plutonium ({sup 239}Pu and {sup 241}Pu) are diluted with thorium far above the WAC requirements. In general, the OHF sludge was found to be hazardous (RCRA) based on total metal content and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. The characteristics of the OHF sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP.« less
NASA Astrophysics Data System (ADS)
Rautman, C. A.; Treadway, A. H.
1991-11-01
Regulatory geologists are concerned with predicting the performance of sites proposed for waste disposal or for remediation of existing pollution problems. Geologic modeling of these sites requires large-scale expansion of knowledge obtained from very limited sampling. This expansion induces considerable uncertainty into the geologic models of rock properties that are required for modeling the predicted performance of the site. One method for assessing this uncertainty is through nonparametric geostatistical simulation. Simulation can produce a series of equiprobable models of a rock property of interest. Each model honors measured values at sampled locations, and each can be constructed to emulate both the univariate histogram and the spatial covariance structure of the measured data. Computing a performance model for a number of geologic simulations allows evaluation of the effects of geologic uncertainty. A site may be judged acceptable if the number of failures to meet a particular performance criterion produced by these computations is sufficiently low. A site that produces too many failures may be either unacceptable or simply inadequately described. The simulation approach to addressing geologic uncertainty is being applied to the potential high-level nuclear waste repository site at Yucca Mountain, Nevada, U.S.A. Preliminary geologic models of unsaturated permeability have been created that reproduce observed statistical properties reasonably well. A spread of unsaturated groundwater travel times has been computed that reflects the variability of those geologic models. Regions within the simulated models exhibiting the greatest variability among multiple runs are candidates for obtaining the greatest reduction in uncertainty through additional site characterization.
Reclamation technology development for western Arkansas coal refuse waste materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J.R.; Veith, D.L.
Coal mining has been an important industry in the Arkansas River Valley Major Land Resource Area (MLRA) of western Arkansas for more than 100 yr., most of it with little regard for environmental concerns. Almost 3,640 ha. of land affected by surface coal mines cover the seven-county area, with less than 1,200 ha. currently in various stages of operation or reclamation. Since only the active mining sites must now be reclaimed by law, the remaining 2,440 ha. of abandoned land remains at the mercy of natural forces. Little topsoil exists on these sites and the coal wastes are generally acidicmore » with a pH in the 4.0-5.5 range. Revegetation attempts under these conditions generally require continued maintenance and retreatment until an acceptable cover is achieved. If and when an acceptable vegetative cover is established, the cost frequently approaches $7,400/ha. ($3,000/acre). In an effort to resolve these issues and provide some direction for stabilizing coal waste lands, the US Department of Agriculture through its Soil Conservation Service Plant Materials Center at Boonville, Arkansas, received a Congressional Pass through administered by the US Bureau of Mines, to support a 5-yr. revegetation study on the coal mine spoils of western Arkansas. This paper reports the results through the spring of 1994 on that portion of the study dealing with the establishment of blackberries as a cash crop on coal mine spoils.« less
Liquid secondary waste: Waste form formulation and qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, A. D.; Dixon, K. L.; Hill, K. A.
The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, including Direct Feed Low Activity Waste (DFLAW) vitrification, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. The powdered salt waste form produced by the ETF will be replaced by a stabilized solidified waste form for disposal in Hanford’s Integrated Disposal Facility (IDF). Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilizationmore » Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the IDF. Waste form testing to support this plan is composed of work in the near term to provide data as input to a performance assessment (PA) for Hanford’s IDF. In 2015, three Hanford Liquid Secondary Waste simulants were developed based on existing and projected waste streams. Using these waste simulants, fourteen mixes of Hanford Liquid Secondary Waste were prepared and tested varying the waste simulant, the water-to-dry materials ratio, and the dry materials blend composition.1 In FY16, testing was performed using a simulant of the EMF process condensate blended with the caustic scrubber—from the Low Activity Waste (LAW) melter—, processed through the ETF. The initial EMF-16 simulant will be based on modeling efforts performed to determine the mass balance of the ETF for the DFLAW.2 The compressive strength of all of the mixes exceeded the target of 3.4 MPa (500 psi) to meet the requirements identified as potential IDF Waste Acceptance Criteria in Table 1 of the Secondary Liquid Waste Immobilization Technology Development Plan.3 The hydraulic properties of the waste forms tested (hydraulic conductivity and water characteristic curves) were comparable to the properties measured on the Savannah River Site (SRS) Saltstone waste form. Future testing should include efforts to first; 1) determine the rate and amount of ammonia released during each unit operation of the treatment process to determine if additional ammonia management is required, then; 2) reduce the ammonia content of the ETF concentrated brine prior to solidification, making the waste more amenable to grouting, or 3) manage the release of ammonia during production and ongoing release during storage of the waste form, or 4) develop a lower pH process/waste form thereby precluding ammonia release.« less
Ambient air monitoring of Beijing MSW logistics facilities in 2006.
Li, Chun-Ping; Li, Guo-Xue; Luo, Yi-Ming; Li, Yan-Fu
2008-11-01
In China, "green" integrated waste management methods are being implemented in response to environmental concerns. We measured the air quality at several municipal solid waste (MSW) sites to provide information for the incorporation of logistics facilities within the current integrated waste management system. We monitored ambient air quality at eight MSW collecting stations, five transfer stations, one composting plant, and five disposal sites in Beijing during April 2006. Composite air samples were collected and analyzed for levels of odor, ammonia (NH3), hydrogen sulfide (H2S), total suspended particles (TSPs), carbon monoxide (CO), sulfur dioxide (SO2), and nitrogen dioxide (NO2). The results of our atmospheric monitoring demonstrated that although CO and SO2 were within acceptable emission levels according to ambient standards, levels of H2S, TSP, and NO2 in the ambient air at most MSW logistics facilities far exceeded ambient limits established for China. The primary pollutants in the ambient air at Beijing MSW logistics facilities were H2S, TSPs, NO2, and odor. To improve current environmental conditions at MSW logistics facilities, the Chinese government encourages the separation of biogenic waste from MSW at the source.
40 CFR 240.200 - Solid wastes accepted.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Solid wastes accepted. 240.200 Section 240.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.200 Solid...
40 CFR 240.200 - Solid wastes accepted.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Solid wastes accepted. 240.200 Section 240.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.200 Solid...
Radioactive waste management in France and international cooperation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marque, Y.
1991-01-01
Long-term industrial management of radioactive waste in France is carried out by the Agence Nationale pour la gestion des Dechets Radioactifs. (ANDRA), which is a public body responsible mainly for siting, design, construction, and operation of the disposal facilities for every kind of radioactive waste produced in the country. Furthermore, ANDRA has to define and control the required quality of waste packages delivered for disposal. As far as disposal is concerned, it is customary in France to classify waste in two main categories. The first category includes all the so-called short-lived low-level waste (LLW) containing mainly radioactive substances have
Risk perception and public acceptance toward a highly protested Waste-to-Energy facility.
Ren, Xiangyu; Che, Yue; Yang, Kai; Tao, Yun
2016-02-01
The application of Waste-to-Energy treatment in Municipal Solid Waste faces strong protest by local communities, especially in cities with high population densities. This study introduces insight into the public awareness, acceptance and risk perception toward Waste-to-Energy through a structured questionnaire survey around a Waste-to-Energy facility in Shanghai, China. The Dichotomous-Choice contingent valuation method was applied to study the willingness to accept of residents as an indicator of risk perception and tolerance. The factors influencing risk perception and the protest response choice were analyzed. The geographical distributions of the acceptance of Waste-to-Energy facility and protest response were explored using geographical information systems. The findings of the research indicated an encouraging vision of promoting Waste-to-Energy, considering its benefits of renewable energy and the conservation of land. A high percentage of protest willingness to accept (50.94%) was highlighted with the effect of income, opinion about Waste-to-Energy, gender and perceived impact. The fuzzy classification among people with different opinions on compensation (valid 0, positive or protest willingness to accept) revealed the existing yet rejected demand of compensation among protesters. Geographical distribution in the public attitude can also be observed. Finally significant statistical relation between knowledge and risk perception indicates the need of risk communication, as well as involving public into whole management process. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Haeryong; Lee, Eunyong; Jeong, YiYeong
Korea Radioactive-waste Management Corporation (KRMC) established in 2009 has started a new project to collect information on long-term stability of deep geological environments on the Korean Peninsula. The information has been built up in the integrated natural barrier database system available on web (www.deepgeodisposal.kr). The database system also includes socially and economically important information, such as land use, mining area, natural conservation area, population density, and industrial complex, because some of this information is used as exclusionary criteria during the site selection process for a deep geological repository for safe and secure containment and isolation of spent nuclear fuel andmore » other long-lived radioactive waste in Korea. Although the official site selection process has not been started yet in Korea, current integrated natural barrier database system and socio-economic database is believed that the database system will be effectively utilized to narrow down the number of sites where future investigation is most promising in the site selection process for a deep geological repository and to enhance public acceptance by providing readily-available relevant scientific information on deep geological environments in Korea. (authors)« less
40 CFR 761.202 - EPA identification numbers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.202 EPA identification numbers. (a) General. Any... identification number from EPA. (4) A disposer of PCB waste shall not accept any PCB waste for disposal without... disposal facility or mobile treatment unit shall not accept waste unless the disposer has received an EPA...
Special Analysis: Disposal Plan for Pit 38 at Technical Area 54, Area G
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, Sean B.; Shuman, Rob
2012-06-26
Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research; environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a mannermore » that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on- and off-site exposure scenarios. The assessments are based on existing site and disposal facility data, and on assumptions about future rates and methods of waste disposal. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, disposal operations have been confined to MDA G and are scheduled to continue in that region until MDA G undergoes final closure at the end of 2013. Given its impending closure, efforts have been made to utilize the remaining disposal capacity within MDA G to the greatest extent possible. One approach for doing this has been to dispose of low-activity waste from cleanup operations at LANL in the headspace of selected disposal pits. Waste acceptance criteria (WAC) for the material placed in the headspace of pits 15, 37, and 38 have been developed (LANL, 2010) and the impacts of placing waste in the headspace of these units has been evaluated (LANL, 2012a). The efforts to maximize disposal efficiency have taken on renewed importance because of the disposal demands placed on MDA G by the large volumes of waste that are being generated at LANL by cleanup efforts. For example, large quantities of waste were recently generated by the retrieval of waste formerly disposed of at TA-21, MDA B. A portion of this material has been disposed of in the headspace of pit 38 in compliance with the WAC developed for that disposal strategy; a large amount of waste has also been sent to off-site facilities for disposal. Nevertheless, large quantities of MDA B waste remain that require disposal. An extension of pit 38 was proposed to provide the disposal capacity that will be needed to dispose of institutional waste and MDA B waste through 2013. A special analysis was prepared to evaluate the impacts of the pit extension (LANL, 2012b). The analysis concluded that the disposal unit could be extended with modest increases in the exposures projected for the Area G performance assessment and composite analysis, as long as limits were placed on the radionuclide concentrations in the waste that is placed in the headspace of the pit. Based, in part, on the results of the special analysis, the extension of pit 38 was approved and excavation of the additional disposal capacity was started in May 2012. The special analysis presented here uses performance modeling to identify a disposal plan for the placement of waste in pit 38. The modeling uses a refined design of the disposal unit and updated radionuclide inventories to identify a disposal configuration that promotes efficient utilization of the pit and ensures continued compliance with DOE Order 435.1 performance objectives. Section 2 describes the methods used to conduct the analysis; the results of the evaluation are provided in Section 3. The disposal plan for pit 38 is provided in Section 4 and the conclusions of the investigation are provided in Section 5. Throughout the report, pit 38 is used to refer to the entire disposal unit, including the existing pit and the extension that is currently under construction. Where a distinction between the two portions of the pit is necessary, the existing unit is referred to as pit 38 proper and the new portion of the pit as the pit 38 extension or, more simply, the extension.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, L. A.; Peterson, J. M.; Frothingham, D. G.
2008-01-01
The US Army Corps of Engineers (USACE) is addressing radiological contamination following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements at the Shallow Land Disposal Area (SLDA) site, which is a radiologically contaminated property that is part of the Formerly utilized Sites Remedial Action Program (FUSRAP). The SLDA is an 18-hectare (44-acre) site in Parks township, Armstrong County, Pennsylvania, about 37 kilometers (23 miles) east-northeast of Pittsburgh. According to historical record, radioactive wastes were disposed of at the SLDA in a series of trenches by the Nuclear Materials and Equipment Company (NUMEC) in the 1960s. The wastes originated frommore » the nearby Apollo nuclear fuel fabrication facility, which began operations under NUMEC in the late 1950s and fabricated enriched uranium into naval reactor fuel elements. It is believed that the waste materials were buried in a series of pits constructed adjacent to one another in accordance with an Atomic Energy Commission (AEC) regulation that has since been rescinded. A CERCLA remedial investigation/feasibility study (RI/FS) process was completed for the SLDA site, and the results of the human health risk assessment indicated that the radiologically contaminated wastes could pose a risk to human health in the future. There are no historical records that provide the exact location of these pits. However, based on geophysical survey results conducted in the 1980s, these pits were defined by geophysical anomalies and were depicted on historical site drawings as trenches. At the SLDA site, a combination of investigative methods and tools was used in the RI/FS and site characterization activities. The SLDA site provides an excellent example of how historical documents and data, historical aerial photo analysis, physical sampling, and nonintrusive geophysical and gamma walkover surveys were used in combination to reduce the uncertainty in the location of the trenches. The data and information from these sources were used to refine the conceptual site model, complete the RI/FS, and support the ongoing remedial design and action, which will achieve site closure acceptable to all stakeholders.« less
NV/YMP radiological control manual, Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gile, A.L.
The Nevada Test Site (NTS) and the adjacent Yucca Mountain Project (YMP) are located in Nye County, Nevada. The NTS has been the primary location for testing nuclear explosives in the continental US since 1951. Current activities include operating low-level radioactive and mixed waste disposal facilities for US defense-generated waste, assembly/disassembly of special experiments, surface cleanup and site characterization of contaminated land areas, and non-nuclear test operations such as controlled spills of hazardous materials at the hazardous Materials (HAZMAT) Spill Center (HSC). Currently, the major potential for occupational radiation exposure is associated with the burial of low-level nuclear waste andmore » the handling of radioactive sources. Planned future remediation of contaminated land areas may also result in radiological exposures. The NV/YMP Radiological Control Manual, Revision 2, represents DOE-accepted guidelines and best practices for implementing Nevada Test Site and Yucca Mountain Project Radiation Protection Programs in accordance with the requirements of Title 10 Code of Federal Regulations Part 835, Occupational Radiation Protection. These programs provide protection for approximately 3,000 employees and visitors annually and include coverage for the on-site activities for both personnel and the environment. The personnel protection effort includes a DOE Laboratory Accreditation Program accredited dosimetry and personnel bioassay programs including in-vivo counting, routine workplace air sampling, personnel monitoring, and programmatic and job-specific As Low as Reasonably Achievable considerations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, L.A.; Peterson, J.M.; Frothingham, D.G.
2008-07-01
The U.S. Army Corps of Engineers (USACE) is addressing radiological contamination following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements at the Shallow Land Disposal Area (SLDA) site, which is a radiologically contaminated property that is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). The SLDA is an 18-hectare (44- acre) site in Parks Township, Armstrong County, Pennsylvania, about 37 kilometers (23 miles) east-northeast of Pittsburgh. According to historical record, radioactive wastes were disposed of at the SLDA in a series of trenches by the Nuclear Materials and Equipment Company (NUMEC) in the 1960's. The wastes originatedmore » from the nearby Apollo nuclear fuel fabrication facility, which began operations under NUMEC in the late 1950's and fabricated enriched uranium into naval reactor fuel elements. It is believed that the waste materials were buried in a series of pits constructed adjacent to one another in accordance with an Atomic Energy Commission (AEC) regulation that has since been rescinded. A CERCLA remedial investigation/feasibility study (RI/FS) process was completed for the SLDA site, and the results of the human health risk assessment indicated that the radiologically contaminated wastes could pose a risk to human health in the future. There are no historical records that provide the exact location of these pits. However, based on geophysical survey results conducted in the 1980's, these pits were defined by geophysical anomalies and were depicted on historical site drawings as trenches. At the SLDA site, a combination of investigative methods and tools was used in the RI/FS and site characterization activities. The SLDA site provides an excellent example of how historical documents and data, historical aerial photo analysis, physical sampling, and non-intrusive geophysical and gamma walkover surveys were used in combination to reduce the uncertainty in the location of the trenches. The data and information from these sources were used to refine the conceptual site model, complete the RI/FS, and support the ongoing remedial design and action, which will achieve site closure acceptable to all stakeholders. (authors)« less
Public acceptance for centralized storage and repositories of low-level waste session (Panel)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutz, H.R.
1995-12-31
Participants from various parts of the world will provide a summary of their particular country`s approach to low-level waste management and the cost of public acceptance for low-level waste management facilities. Participants will discuss the number, geographic location, and type of low-level waste repositories and centralized storage facilities located in their countries. Each will discuss the amount, distribution, and duration of funds to gain public acceptance of these facilities. Participants will provide an estimated $/meter for centralized storage facilities and repositories. The panel will include a brief discussion about the ethical aspects of public acceptance costs, approaches for negotiating acceptance,more » and lessons learned in each country. The audience is invited to participate in the discussion.« less
Working conditions and environmental exposures among electronic waste workers in Ghana.
Akormedi, Matthew; Asampong, Emmanuel; Fobil, Julius N
2013-01-01
To investigate and describe informal e-waste recycling and working conditions at Agbogbloshie, Accra, Ghana. We conducted in-depth interviews which were qualitatively analysed from a grounded theory perspective. Workers obtained e-waste from the various residential areas in Accra, then dismantled and burned them in open air to recover copper, aluminum, steel, and other products for sale to customers on-site or at the nearby Agbogbloshie market. The processers worked under unhealthy conditions often surrounded by refuse and human excreta without any form of protective gear and were thus exposed to frequent burns, cuts, and inhalation of highly contaminated fumes. We observed no form of social security/support system for the workers, who formed informal associations to support one another in times of difficulty. e-waste recycling working conditions were very challenging and presented serious hazards to worker health and wellbeing. Formalizing the e-waste processing activities requires developing a framework of sustainable financial and social security for the e-waste workers, including adoption of low-cost, socially acceptable, easy-to-operate, and cleaner technologies that would safeguard the health of the workers and the general public.
Hospital waste management in El-Beheira Governorate, Egypt.
Abd El-Salam, Magda Magdy
2010-01-01
This study investigated the hospital waste management practices used by eight randomly selected hospitals located in Damanhour City of El-Beheira Governorate and determined the total daily generation rate of their wastes. Physico-chemical characteristics of hospital wastes were determined according to standard methods. A survey was conducted using a questionnaire to collect information about the practices related to waste segregation, collection procedures, the type of temporary storage containers, on-site transport and central storage area, treatment of wastes, off-site transport, and final disposal options. This study indicated that the quantity of medical waste generated by these hospitals was 1.249tons/day. Almost two-thirds was waste similar to domestic waste. The remainder (38.9%) was considered to be hazardous waste. The survey results showed that segregation of all wastes was not conducted according to consistent rules and standards where some quantity of medical waste was disposed of with domestic wastes. The most frequently used treatment method for solid medical waste was incineration which is not accepted at the current time due to the risks associated with it. Only one of the hospitals was equipped with an incinerator which is devoid of any air pollution control system. Autoclaving was also used in only one of the selected hospitals. As for the liquid medical waste, the survey results indicated that nearly all of the surveyed hospitals were discharging it in the municipal sewerage system without any treatment. It was concluded that the inadequacies in the current hospital waste management practices in Damanhour City were mainly related to ineffective segregation at the source, inappropriate collection methods, unsafe storage of waste, insufficient financial and human resources for proper management, and poor control of waste disposal. The other issues that need to be considered are a lack of appropriate protective equipment and lack of training and clear lines of responsibilities between the departments involved in hospital waste management. Effective medical waste management programs are multisectoral and require cooperation between all levels of implementation, from national and local governments to hospital staff and private businesses. 2009 Elsevier Ltd. All rights reserved.
Chang, Tien-Chin; Ni, Shih-Piao; Fan, Kuo-Shuh; Lee, Ching-Hwa
2006-06-01
Before implementing the self-monitoring model programme of the Basel Convention in the Asia, Taiwan has conducted a comprehensive 4-year follow-up project to visit the governmental authorities and waste-disposal facilities in the countries that import waste from Taiwan. A total of nine treatment facilities, six of which are reported in this paper, and the five countries where the plants are located were visited in 2001-2002. France, Belgium and Finland primarily handled polychlorinated biphenyl capacitors, steel mill dust and metal waste. The United States accepted metal sludge, mainly electroplating sludge, from Taiwan. Waste printed circuit boards, waste wires and cables, and a mixture of waste metals and electronics were the major items exported to China. Relatively speaking, most treatment plants for hazardous waste paid close attention to environmental management, such as pollution control and monitoring, site zoning, system management regarding occupational safety and hygiene, data management, permits application, and image promotion. Under the tight restrictions formulated by the central environment agency, waste treatment plants in China managed the environmental issues seriously. For example, one of the treatment plants had ISO 14001 certification. It is believed that with continuous implementation of regulations, more improvement is foreseeable. Meanwhile, Taiwan and China should also continuously enhance their collaboration regarding the transboundary management of hazardous waste.
Detailed Hydraulic Assessment Using a High-Resolution Piezocone Coupled to the GeoVis
2008-04-01
story. For example, the SCAPS laser - induced fluorescence (LIF) technology for petroleum hydrocarbons (commercialized as the Rapid Optical...impacts of oily or viscous waste materials smearing during camera deployment, the SCAPS laser induced fluorescence (LIF) probe uses the same type of...characterization techniques on DOD sites. ESTCP has previously funded efforts to help establish regulatory acceptance of the SCAPS Laser Induced Fluorescence (LIF
Message development for surface markers at the Hanford Radwaste Disposal sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, M.F.
1984-12-31
At the Hanford Reservation in Washington, there are sites which received liquid and solid transuranic wastes from the late 1940`s until 1970. Rockwell Hanford Operations (Rockwell) is investigating the feasibility of several options for the permanent disposal of these wastes. One option is to stabilize the wastes in their present locations and to add barriers to minimize water infiltration and root penetration into the wastes. This report forms part of the project to develop a marking system for transuranic wastes on the Hanford Reservation. The focus of this report is the development of the message system to appear on themore » surface markers. A logical framework is developed to deduce what is required by the message system. Alternatives for each message component are evaluated and justification is provided for the choice of each component. The components are then laid out on the surface marker to provide a legible, comprehensible message system. The surface markers are tall, standing monoliths which ring the perimeter of each disposal area. Based on the logical framework, it is recommended that three domains of representation -- symbols, pictures, and language -- be used in the message system. The warning symbol chosen for the message system is the radiation trefoil. Two other options were considered, including the warning symbol developed by the Human Interference Task Force for a high-level waste repository. The trefoil was preferred because of the widespread usage and international acceptance which is already enjoys.« less
A Remote Absorption Process for Disposal of Evaporate and Reverse Osmosis Concentrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunsell, D.A.
2008-07-01
Many commercial nuclear plants and DOE facilities generate secondary waste streams consisting of evaporator bottoms and reverse osmosis (RO) concentrate. Since liquids are not permitted in disposal facilities, these waste streams must be converted to dry solids, either by evaporation to dried solids or by solidification to liquid-free solids. Evaporation of the liquid wastes reduces their volume, but requires costly energy and capital equipment. In some cases, concentration of the contaminants during drying can cause the waste to exceed Class A waste for nuclear utilities or exceed DOE transuranic limits. This means that disposal costs will be increased, or that,more » when the Barnwell, SC disposal site closes to waste outside of the Atlantic Compact in July 2008, the waste will be precluded from disposal for the foreseeable future). Solidification with cement agents requires less energy and equipment than drying, but results in a volume increase of 50-100%. The doubling or tripling of waste weight, along with the increased volume, sharply increases shipping and disposal costs. Confronted with these unattractive alternatives, Diversified Technologies Services (DTS), in conjunction with selected nuclear utilities and D and D operations at Rocky Flats, undertook an exploratory effort to convert this liquid wastewater to a solid without using cement. This would avoid the bulking effect of cement, and permit the waste to be disposed of the Energy Solutions facility in Utah as well as some DOE facilities. To address the need for an attractive alternative to drying and cement solidification, a test program was developed using a polymer absorbent media to convert the concentrate streams to a liquid-free waste form that meets the waste acceptance criteria of the pertinent burial sites. Two approaches for mixing the polymer with the liquid were tested: mechanical mixing and in-situ incorporation. As part of this test program, a process control program (PCP) was developed that is 100% scalable from a concentrate test sample as small as 50 grams to full-scale processing of 100 cubic foot containers or larger. In summary: The absorption process offers utilities a viable and less costly alternative to on-site drying or solidification of concentrates. The absorption process can be completed by site personnel or by a vendor as a turnkey service. The process is suitable for multiple types of waste, including RO and evaporator concentrates, sludges, and other difficult to process waters and wet solids. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blauvelt, Richard; Small, Ken; Gelles, Christine
2006-07-01
Faced with closure schedules as a driving force, significant progress has been made during the last 2 years on the disposition of DOE mixed waste streams thought previously to be problematic. Generators, the Department of Energy and commercial vendors have combined to develop unique disposition paths for former orphan streams. Recent successes and remaining issues will be discussed. The session will also provide an opportunity for Federal agencies to share lessons learned on low- level and mixed low-level waste challenges and identify opportunities for future collaboration. This panel discussion was organized by PAC member Dick Blauvelt, Navarro Research and Engineeringmore » Inc who served as co-chair along with Dave Eaton from INL. In addition, George Antonucci, Duratek Barnwell and Rich Conley, AFSC were invited members of the audience, prepared to contribute the Barnwell and DOD perspective to the issues as needed. Mr. Small provide information regarding the five year 20K M3 window of opportunity at the Nevada Test Site for DOE contractors to dispose of mixed waste that cannot be received at the Energy Solutions (Envirocare) site in Utah because of activity levels. He provided a summary of the waste acceptance criteria and the process sites must follow to be certified to ship. When the volume limit or time limit is met, the site will undergo a RCRA closure. Ms. Gelles summarized the status of the orphan issues, commercial options and the impact of the EM reorganization on her program. She also announced that there would be a follow-on meeting in 2006 to the very successful St. Louis meeting of last year. It will probably take place in Chicago in July. Details to be announced. Mr. McKenney discussed progress made at the Hanford Reservation regarding disposal of their mixed waste inventory. The news is good for the Hanford site but not good for the rest of the DOE complex since shipment for out of state of both low level and low level mixed waste will continue to be prohibited until the completion of a new NEPA study. This is anticipated to take several years. Bill Franz from Portsmouth and Dave Eaton representing the INL provided the audience with information regarding some of the problematic mixed waste streams at their respective sites. Portsmouth has some unique radiological issues with isotopes such as Tc-99 while the INL is trying to deal with mixed waste in the 10-100 nCi/g range. Kaylin Loveland spoke of the new,Energy Solutions organization and provided information on mixed waste treatment capabilities at the Clive site. Mike Lauer described the licensing activities at the WCS site in Texas where they are trying to eventually have disposal capabilities for Class A, B and C mixed waste from both DOE and the commercial sector. The audience included about 75 WM'06 attendees who asked some excellent questions and provided an active and informative exchange of information on the topic. (authors)« less
TECHNICAL APPROACHES TO CHARACTERIZING AND ...
The document provides brownfields planners with an overview of the technical methods that can be used to achieve successful site assessment and cleanup which are two key components of the brownfields redevelopment process. No two brownfields sites are identical and planners will need to base assessment and cleanup activities on the conditions of the particular sites with which they are dealing. A site assessment strategy should address: the type and extent of contamination, if any, that is present, the types of data needed to adequately assess the site; appropriate sampling and analytical methods to characterize the contamination; acceptable level of uncertainty and cleanup technologies that contain or treat the types of wastes present.This document includes references to state agency roles including the Voluntary Cleanup Program, public involvement and other guidances that may be used. Information
SME Acceptability Determination For DWPF Process Control (U)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, T.
2017-06-12
The statistical system described in this document is called the Product Composition Control System (PCCS). K. G. Brown and R. L. Postles were the originators and developers of this system as well as the authors of the first three versions of this technical basis document for PCCS. PCCS has guided acceptability decisions for the processing at the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) since the start of radioactive operations in 1996. The author of this revision to the document gratefully acknowledges the firm technical foundation that Brown and Postles established to support the ongoing successfulmore » operation at the DWPF. Their integration of the glass propertycomposition models, developed under the direction of C. M. Jantzen, into a coherent and robust control system, has served the DWPF well over the last 20+ years, even as new challenges, such as the introduction into the DWPF flowsheet of auxiliary streams from the Actinide Removal Process (ARP) and other processes, were met. The purpose of this revision is to provide a technical basis for modifications to PCCS required to support the introduction of waste streams from the Salt Waste Processing Facility (SWPF) into the DWPF flowsheet. An expanded glass composition region is anticipated by the introduction of waste streams from SWPF, and property-composition studies of that glass region have been conducted. Jantzen, once again, directed the development of glass property-composition models applicable for this expanded composition region. The author gratefully acknowledges the technical contributions of C.M. Jantzen leading to the development of these glass property-composition models. The integration of these models into the PCCS constraints necessary to administer future acceptability decisions for the processing at DWPF is provided by this sixth revision of this document.« less
Development of an Integrated Waste Plan for Chalk River Laboratories - 13376
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, L.
2013-07-01
To further its Strategic Planning, the Atomic Energy of Canada Limited (AECL) required an effective approach to developing a fully integrated waste plan for its Chalk River Laboratories (CRL) site. Production of the first Integrated Waste Plan (IWP) for Chalk River was a substantial task involving representatives from each of the major internal stakeholders. Since then, a second revision has been produced and a third is underway. The IWP remains an Interim IWP until all gaps have been resolved and all pathways are at an acceptable level of detail. Full completion will involve a number of iterations, typically annually formore » up to six years. The end result of completing this process is a comprehensive document and supporting information that includes: - An Integrated Waste Plan document summarizing the entire waste management picture in one place; - Details of all the wastes required to be managed, including volume and timings by waste stream; - Detailed waste stream pathway maps for the whole life-cycle for each waste stream to be managed from pre-generation planning through to final disposition; and - Critical decision points, i.e. decisions that need to be made and timings by when they need to be made. A waste inventory has been constructed that serves as the master reference inventory of all waste that has been or is committed to be managed at CRL. In the past, only the waste that is in storage has been effectively captured, and future predictions of wastes requiring to be managed were not available in one place. The IWP has also provided a detailed baseline plan at the current level of refinement. Waste flow maps for all identified waste streams, for the full waste life cycle complete to disposition have been constructed. The maps identify areas requiring further development, and show the complexities and inter-relationships between waste streams. Knowledge of these inter-dependencies is necessary in order to perform effective options studies for enabling facilities that may be necessary for multiple related waste streams. The next step is to engage external stakeholders in the optioneering work required to provide enhanced confidence that the path forward identified within future iterations of the IWP will be acceptable to all. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaelen, Gunter van; Verheyen, Annick
2007-07-01
The management of radioactive waste in Belgium is undertaken by the national agency for radioactive waste and enriched fissile materials, ONDRAF/NIRAS, and its industrial partner Belgoprocess. ONDRAF/NIRAS has set up a management system designed to guarantee that the general public and the environment are protected against the potential hazards arising from radioactive waste. Belgoprocess is a private company, founded in 1984 and located in Dessel, Belgium. It is a subsidiary of ONDRAF/NIRAS and its activities focus on the safe processing and storage of radioactive waste. The management system of ONDRAF/NIRAS includes two aspects: a) an integrated system and b) anmore » acceptance system. The integrated system covers all aspects of management ranging from the origin of waste to its transport, processing, interim storage and long-term management. The safety of radioactive waste management not only depends on the quality of the design and construction of the processing, temporary storage or disposal infrastructure, but also on the quality of the waste accepted by ONDRAF/NIRAS. In order to be manage d safely, both in the short and the long term, the waste transferred to ONDRAF/NIRAS must meet certain specific requirements. To that end, ONDRAF/NIRAS has developed an acceptance system. (authors)« less
Ceramic Single Phase High-Level Nuclear Waste Forms: Hollandite, Perovskite, and Pyrochlore
NASA Astrophysics Data System (ADS)
Vetter, M.; Wang, J.
2017-12-01
The lack of viable options for the safe, reliable, and long-term storage of nuclear waste is one of the primary roadblocks of nuclear energy's sustainable future. The method being researched is the incorporation and immobilization of harmful radionuclides (Cs, Sr, Actinides, and Lanthanides) into the structure of glasses and ceramics. Borosilicate glasses are the main waste form that is accepted and used by today's nuclear industry, but they aren't the most efficient in terms of waste loading, and durability is still not fully understood. Synroc-phase ceramics (i.e. hollandite, perovskite, pyrochlore, zirconolite) have many attractive qualities that glass waste forms do not: high waste loading, moderate thermal expansion and conductivity, high chemical durability, and high radiation stability. The only downside to ceramics is that they are more complex to process than glass. New compositions can be discovered by using an Artificial Neural Network (ANN) to have more options to optimize the composition, loading for performance by analyzing the non-linear relationships between ionic radii, electronegativity, channel size, and a mineral's ability to incorporate radionuclides into its structure. Cesium can be incorporated into hollandite's A-site, while pyrochlore and perovskite can incorporate actinides and lanthanides into their A-site. The ANN is used to predict new compositions based on hollandite's channel size, as well as the A-O bond distances of pyrochlore and perovskite, and determine which ions can be incorporated. These new compositions will provide more options for more experiments to potentially improve chemical and thermodynamic properties, as well as increased waste loading capabilities.
POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
V. King
2000-06-19
The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of themore » Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.« less
Electrochemical incineration of wastes
NASA Technical Reports Server (NTRS)
Kaba, L.; Hitchens, G. D.; Bockris, J. OM.
1989-01-01
The disposal of domestic organic waste in its raw state is a matter of increasing public concern. Earlier, it was regarded as permissible to reject wastes into the apparently infinite sink of the sea but, during the last 20 years, it has become clear that this is environmentally unacceptable. On the other hand, sewage farms and drainage systems for cities and for new housing developments are cumbersome and expensive to build and operate. New technology whereby waste is converted to acceptable chemicals and pollution-free gases at site is desirable. The problems posed by wastes are particularly demanding in space vehicles where it is desirable to utilize treatments that will convert wastes into chemicals that can be recycled. In this situation, the combustion of waste is undesirable due to the inevitable presence of oxides of nitrogen and carbon monoxide in the effluent gases. Here, in particular, electrochemical techniques offer several advantages including the low temperatures which may be used and the absence of any NO and CO in the evolved gases. Work done in this area was restricted to technological papers, and the present report is an attempt to give a more fundamental basis to the early stages of a potentially valuable technology.
NASA Astrophysics Data System (ADS)
Mohammed, Avryl; Ramnath, Kelvin; Dyal, Shyam; Lalla, Francesca; Roopchand, Jaipersad
2007-12-01
The Petroleum Company of Trinidad and Tobago Limited operates in a wide diversity of tropical habitats in South Trinidad one of which is a brackish water environment known as the Godineau Swamp. Historically this field was operated by predecessor multinational companies, who at that time employed operational practices based on the absence of legal requirements, that were not environmentally considerate. Following a detailed environmental audit of the field (also known as the Oropouche Field), seven (7) contaminated sites were found, that presented a risk to the lagoon and its associated mangrove swamp ecology. Remediation of the seven (7) sites was done in two (2) phases; phase 1 being sampling and characterization of the waste inclusive of migration and phase 2 the actual on-site soil remediation. Phase 1 conducted during the period December 2004 to February 2005, indicated a total of 19,484 m3 of contaminated material with TPH being the main contaminant. The average concentration of TPH was 3.25%. Phase 2 remediation was initiated in October 2005 and involved the following three (3) aspects to achieve a TPH concentration of less than 1%: ▪ Preparation of waste remediation sites adjacent to contaminated sites and excavation and spreading onto cells ▪ Bioremediation onsite using naturally occurring bacteria and rototilling ▪ Rehabilitation and closure of the site following accepted lab results. The benefits of conducting this project in the petroleum industry are to ensure compliance to the national Sensitive Areas Rules and Draft Waste Management Rules, conformance to ISO 14001 Certification requirements and conservation of biodiversity in the mangrove swamp.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, Christopher; Kothari, Vijendra; Starr, Ken
2012-07-01
The U.S. Department of Energy (DOE) methods and protocols allow evaluation of remediation and final site conditions to determine if remediated sites remain protective. Two case studies are presented that involve the Niagara Falls Storage Site (NFSS) and associated vicinity properties (VPs), which are being remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are a part of the former Lake Ontario Ordnance Works (LOOW). In response to stakeholders concerns about whether certain remediated NFSS VPs were putting them at risk, DOE met with stakeholders and agreed to evaluate protectiveness. Documentation in the DOE records collection adequatelymore » described assessed and final radiological conditions at the completed VPs. All FUSRAP wastes at the completed sites were cleaned up to meet DOE guidelines for unrestricted use. DOE compiled the results of the investigation in a report that was released for public comment. In conducting the review of site conditions, DOE found that stakeholders were also concerned about waste from the Separations Process Research Unit (SPRU) at the Knolls Atomic Power Laboratory (KAPL) that was handled at LOOW. DOE agreed to determine if SPRU waste remained at that needed to be remediated. DOE reviewed records of waste characterization, historical handling locations and methods, and assessment and remediation data. DOE concluded that the SPRU waste was remediated on the LOOW to levels that pose no unacceptable risk and allow unrestricted use and unlimited exposure. This work confirms the following points as tenets of an effective long-term surveillance and maintenance (LTS and M) program: - Stakeholder interaction must be open and transparent, and DOE must respond promptly to stakeholder concerns. - DOE, as the long-term custodian, must collect and preserve site records in order to demonstrate that remediated sites pose no unacceptable risk. - DOE must continue to maintain constructive relationships with the U.S. Army Corps of Engineers and state and federal regulators. After review of historical site documentation, DOE reports, and USACE radiological data, DOE concluded the following: - DOE had access to adequate documentation to evaluate site conditions at the former LOOW. This is important to confirm now, while institutional knowledge of early FUSRAP work remains available. - DOE remediated the completed VPs to conditions that are protective for unrestricted residential use. Sample and walkover gamma scan results indicate that no wastes remain that exceed cleanup criteria. - Process knowledge and field observations establish that Cs-137 is the predominant radionuclide in the KAPL waste stream. Cs-137, a strong gamma emitter, was used as an indicator for remediation of KAPL waste. Other radionuclides were present in much lower relative concentrations and were likely also removed during remediation of the VPs. - KAPL contaminants were removed during remedial activities at the former LOOW as either co-located or co-mingled with other radionuclides. - For the active VPs (VP-E, VP-E', and VP-G), results of DOE's cleanup of the accessible portions of these properties indicate that KAPL waste does not remain at concentrations greater than the DOE cleanup limit: - Inaccessible areas were not associated with historic KAPL waste handling. Therefore, it is unlikely that KAPL waste remains on the active VPs. - Because gamma activity was used by DOE during remediation/verification activities for excavation control, additional USACE cleanup of FUSRAP wastes on these properties will likely result in the remediation of any co-located residual KAPL wastes to acceptable levels or identification of KAPL waste that is not co-located. - Although USACE has not established a cleanup level for Cs-137 on the active NFSS VPs, DOE assessment and remediation data indicate that assessed Cs-137 was remediated and significant Cs-137 is unlikely to remain. Because of the low likelihood of encountering significant KAPL waste on the active NFSS VPs, additional remediation is not anticipated at these properties. - USACE assessment soil sampling results on the NFSS proper indicate that KAPL waste does not exceed the DOE cleanup level for Cs-137. USACE has not established a cleanup level for Cs-137 on NFSS proper. The USACE cleanup of FUSRAP wastes on the NFSS proper will likely result in the remediation of any co-located residual KAPL wastes or identification of KAPL waste that is not co-located. DOE is drafting a report of the investigation of KAPL waste at LOOW. The report will be released to the public for comment when the draft is complete. DOE responses to stakeholder inquiries resulted in a common understanding of site conditions and site risk. DOE expects additional interaction with stakeholders at the former LOOW as USACE completes remediation of the active VPs and the NFSS proper, and these relationships will hopefully have built trust between DOE and the stakeholders that DOE will perform its duties in an open and transparent manner that includes stakeholders as stewards for remediated FUSRAP sites. (authors)« less
NASA Astrophysics Data System (ADS)
Majumdar, Ankush; Hazra, Tumpa; Dutta, Amit
2017-09-01
This work presents a Multi-criteria Decision Making (MCDM) tool to select a landfill site from three candidate sites proposed for Kolkata Municipal Corporation (KMC) area that complies with accessibility, receptor, environment, public acceptability, geological and economic criteria. Analytical Hierarchy Process has been used to solve the MCDM problem. Suitability of the three sites (viz. Natagachi, Gangajoara and Kharamba) as landfills as proposed by KMC has been checked by Landfill Site Sensitivity Index (LSSI) as well as Economic Viability Index (EVI). Land area availability for disposing huge quantity of Municipal Solid Waste for the design period has been checked. Analysis of the studied sites show that they are moderately suitable for landfill facility construction as both LSSI and EVI scores lay between 300 and 750. The proposed approach represents an effective MCDM tool for siting sanitary landfill in growing metropolitan cities of developing countries like India.
Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickalonis, J.
Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion datamore » were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally, similar coating resins showed acceptable resistance to glycolic acid.« less
Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickalonis, J.
Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion datamore » were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally similar coating resins showed acceptable resistance to glycolic acid.« less
Coulthard, E. James
1994-01-01
An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.
Characterization of the MVST waste tanks located at ORNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.
During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns of the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report onlymore » discusses the analytical characterization data for the MVST waste tanks. The isotopic data presented in this report support the position that fissile isotopes of uranium and plutonium were ``denatured`` as required by administrative controls. In general, MVST sludge was found to be both hazardous by RCRA characteristics and the transuranic alpha activity was well about the limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste requirements for disposal of the waste in WIPP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-12-02
The Welsh Road/Barkman Landfill site in Honey Brook, Pennsylvania was an unpermitted residential and commercial refuse disposal facility that operated from 1963 to sometime in the 1980s. After 1977, the landfill continued to operate in defiance of legal action to support a closure plan. Various investigations conducted in the 1980s revealed that industrial and hazardous waste had been accepted by the site. The environmental contamination on-site consists of copper, lead, 1,2-dichloropropane, toluene, chloroform and methylene chloride in drummed wastes; and mercury, toluene, dichlorofluoromethane, methylene chloride, trichlorofluoromethane, 5-methyl-2-hexanone, trichloroethylene, 1,2-dichloroethane, and 1,3,5-cycloheptatriene in groundwater. One time sampling indicated the presence ofmore » volatile compounds in air (hydrogen chloride and chloroform). The environmental contamination off-site consists of cadmium in sediment; and chloromethane, chloroform, xylenes, dichlorofluoromethane, 1,1-dichloroethane, tetrachloroethylene, p-cresol, toluene, methyl isobutyl ketone, di-n-butyl phthalate, lead, mercury, and zinc in residential well water. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via contaminated groundwater, surface water, soil, sediment, and airborne gases, vapors, and particulate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, Sean B.; Shuman, Robert
2012-04-17
The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requiresmore » that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate or call into question certain aspects of the analyses. For example, if the volumes and activities of waste disposed of during the remainder of the disposal facility's lifetime differ significantly from those projected, the doses projected by the analyses may no longer apply. DOE field sites are required to implement a performance assessment and composite analysis maintenance program. The purpose of this program is to ensure the continued applicability of the analyses through incremental improvement of the level of understanding of the disposal site and facility. Site personnel are required to conduct field and experimental work to reduce the uncertainty in the data and models used in the assessments. Furthermore, they are required to conduct periodic reviews of waste receipts, comparing them to projected waste disposal rates. The radiological inventory for Area G was updated in conjunction with Revision 4 of the performance assessment and composite analysis (Shuman, 2008). That effort used disposal records and other sources of information to estimate the quantities of radioactive waste that have been disposed of at Area G from 1959, the year the facility started receiving waste on a routine basis, through 2007. It also estimated the quantities of LLW that will require disposal from 2008 through 2044, the year in which it is assumed that disposal operations at Area G will cease. This report documents the fourth review of Area G disposal receipts since the inventory was updated and examines information for waste placed in the ground during fiscal years (FY) 2008 through 2011. The primary objective of the disposal receipt review is to ensure that the future waste inventory projections developed for the performance assessment and composite analysis are consistent with the actual types and quantities of waste being disposed of at Area G. Toward this end, the disposal data that are the subject of this review are used to update the future waste inventory projections for the disposal facility. These projections are compared to the future inventory projections that were developed for Revision 4 of the performance assessment and composite analysis. The approach used to characterize the FY 2008 through 2011 waste is generally the same as that used to characterize the inventory for the Revision 4 analyses (Shuman, 2008). This methodology is described in Section 2. The results of the disposal receipt review are presented in Section 3 and discussed in terms of their significance to the Area G analyses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, J.
Every environmentalist and environmental manager dreams of a day when it will be possible to load hazardous waste into one end of a magic machine and retrieve beneficial -- or at least benign -- products from the other end. Two unrelated companies -- Molten Metal Technology Inc., (Waltham, Mass.) and ELI Eco Logic Inc. (Rockwood, Ontario, Canada) -- have developed different technologies that show promise of realizing such dreams. Whether either company`s solution to the problem of effectively managing hazardous wastes proves to be the dream machine remains to be seen, but their stories offer insight into what the futuremore » may hold for hazardous waste management. The Eco Logic Process was demonstrated in 1991 at Hamilton Harbour, Ontario, and later at Bay City, Mich., in cleanups of polychlorinated biphenyls (PCBs) and other soil contaminants. The technology was accepted into the US Environmental Protection Agency`s Superfund Innovative Technology Evaluation (SITE) program in 1992.« less
WIPP waste characterization program sampling and analysis guidance manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
The Waste Isolation Pilot Plant (WIPP) Waste Characterization Program Sampling and Analysis Guidance Manual (Guidance Manual) provides a unified source of information on the sampling and analytical techniques that enable Department of Energy (DOE) facilities to comply with the requirements established in the current revision of the Quality Assurance Program Plan (QAPP) for the WIPP Experimental-Waste Characterization Program (the Program). This Guidance Manual includes all of the sampling and testing methodologies accepted by the WIPP Project Office (DOE/WPO) for use in implementing the Program requirements specified in the QAPP. This includes methods for characterizing representative samples of transuranic (TRU) wastesmore » at DOE generator sites with respect to the gas generation controlling variables defined in the WIPP bin-scale and alcove test plans, as well as waste container headspace gas sampling and analytical procedures to support waste characterization requirements under the WIPP test program and the Resource Conservation and Recovery Act (RCRA). The procedures in this Guidance Manual are comprehensive and detailed and are designed to provide the necessary guidance for the preparation of site specific procedures. The use of these procedures is intended to provide the necessary sensitivity, specificity, precision, and comparability of analyses and test results. The solutions to achieving specific program objectives will depend upon facility constraints, compliance with DOE Orders and DOE facilities' operating contractor requirements, and the knowledge and experience of the TRU waste handlers and analysts. With some analytical methods, such as gas chromatography/mass spectrometry, the Guidance Manual procedures may be used directly. With other methods, such as nondestructive/destructive characterization, the Guidance Manual provides guidance rather than a step-by-step procedure.« less
The mixed low-level waste problem in BE/NWN capsule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, D.C.
1999-07-01
The Boh Environmental, LLC (BE) and Northwest Nuclear, LLC (NWN) program addresses the problem of diminishing capacity in the United States to store mixed waste. A lack of an alternative program has caused the US Department of Energy (DOE) to indefinitely store all of its mixed waste in Resource Conservation and Recovery Act (RCRA) compliant storage facilities. Unfortunately, this capacity is fast approaching the administrative control limit. The combination of unique BE encapsulation and NWN waste characterization technologies provides an effective solution to DOE's mixed-waste dilemma. The BE ARROW-PAK technique encapsulates mixed low-level waste (MLLW) in extra-high molecular weight, high-densitymore » polyethylene, pipe-grade resin cylinders. ARROW-PAK applications include waste treatment, disposal, transportation (per 49 CFR 173), vault encasement, and interim/long-term storage for 100 to 300 yr. One of the first demonstrations of this treatment/storage technique successfully treated 880 mixed-waste debris drums at the DOE Hanford Site in 1997. NWN, deploying the APNea neutron assay technology, provides the screening and characterization capability necessary to ensure that radioactive waste is correctly categorized as either transuranic (TRU) or LLW. MLLW resulting from D and D activities conducted at the Oak Ridge East Tennessee Technology Park will be placed into ARROW-PAK containers following comprehensive characterization of the waste by NWN. The characterized and encapsulated waste will then be shipped to a commercial disposal facility, where the shipments meet all waste acceptance criteria of the disposal facility including treatment criteria.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seitz, Roger; Phifer, Mark; Suttora, Linda
2015-03-17
On-site disposal cells are in use and being considered at several USDOE sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These disposal cells are typically regulated by States and/or the USEPA in addition to having to comply with requirements in DOE Order 435.1, Radioactive Waste Management. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical andmore » policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. One task completed by the working group addressed approaches for considering the performance of covers and liners/leachate collection systems in the context of a performance assessment (PA). A document has been prepared which provides recommendations for a general approach to address covers and liners/leachate collection systems in a PA and how to integrate assessments with defense-in-depth considerations such as design, operations and waste acceptance criteria to address uncertainties. Specific information and references are provided for details needed to address the evolution of individual components of cover and liner/leachate collection systems. This information is then synthesized into recommendations for best practices for cover and liner system design and examples of approaches to address the performance of covers and liners as part of a performance assessment of the disposal system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moak, Don J.; Grondin, Richard L.; Triner, Glen C.
CH2M Hill Plateau Remediation Company (CHRPC) is a prime contractor to the U.S. Department of Energy (DOE) focused on the largest ongoing environmental remediation project in the world at the DOE Hanford Site Central Plateau, i.e. the DOE Hanford Plateau Remediation Contract. The East Tennessee Materials and Energy Corporation (M and EC); a wholly owned subsidiary of Perma-Fix Environmental Services, Inc. (PESI), is a small business team member to CHPRC. Our scope includes project management; operation and maintenance of on-site storage, repackaging, treatment, and disposal facilities; and on-site waste management including waste receipt from generators and delivery to on-site andmore » off-site treatment, storage, and disposal facilities. As part of this scope, M and EC staffs the centralized Waste Support Services organization responsible for all waste characterization and acceptance required to support CHPRC and waste generators across the Hanford Site. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 cubic meters (m{sup 3}) of legacy waste was defined as 'no-path-forward waste'. A significant portion of this waste (7,650 m{sup 3}) comprised wastes with up to 50 grams of special nuclear materials (SNM) in oversized packages recovered during retrieval operations and large glove boxes removed from the Plutonium Finishing Plant (PFP). Through a collaborative effort between the DOE, CHPRC, and Perma-Fix Environmental Services, Inc. (PESI), pathways for these problematic wastes were developed that took advantage of commercial treatment capabilities at a nearby vendor facility, Perma-Fix Northwest (PFNW). In the spring of 2009, CHPRC initiated a pilot program under which they began shipping large package, low gram suspect TRU (<15 g SNM per container), and large package contact and remote handled MLLW to the off-site PFNW facility for treatment. PFNW is restricted by the SNM limits set for the total quantity of SNM allowed at the facility in accordance with the facility's radioactive materials license(s) (RML). While both CHPRC and PFNW maintain waste databases to track all waste movements, it became evident early in the process that a tool was needed that married the two systems to better track SNM inventories and sequence waste from the point of generation, through the PFNW facility, and back to the Hanford site for final disposition. This tool, known as the Treatment Integration and Planning Tool (TIPT), has become a robust planning tool that provides real-time data to support compliant and efficient waste generation, transportation, treatment, and disposition. TIPT is developing into the next generation tool that will change the way in which legacy wastes, retrieval wastes and decontamination and decommissioning operations are conducted on the Plateau Remediation Contract (PRC). The real value of the TIPT is its predictive capability. It allows the W and FMP to map out optimal windows for processing waste through the PFNW facility, or through any process that is in some way resource limited. It allows project managers to identify and focus on problem areas before shipments are affected. It has been modified for use in broader applications to predict turnaround times and identify windows of opportunity for processing higher gram wastes through PFNW and to allow waste generators, site-wide, to accurately predict scope, cost, and schedule for waste generation to optimize processing and eliminate storage, double handling, and related costs and unnecessary safety risks. The TIPT addresses the years old problem of how to effectively predict not only what needs to be done, but when. 'When' is the key planning parameter that has been ignored by the generator and processor for many years, but has proven to be the most important parameter for both parties. While further refinement is a natural part of any development process, the current improvements on the TIPT have shown that prediction is a powerful consideration. Even in lean times expected for the foreseeable future, the improved TIPT continues to play a central role in managing our way through those times to assure facilities remain viable and available. It is recommended that other major remediation projects and waste processing facilities incorporate a tool such as TIPT to improve customer-commercial supplier communications and better optimization of resources. (authors)« less
40 CFR 60.758 - Recordkeeping requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Waste Landfills § 60.758 Recordkeeping requirements. (a) Except as provided in § 60.752(b)(2)(i)(B... triggered § 60.752(b), the current amount of solid waste in-place, and the year-by-year waste acceptance... electronic formats are acceptable. (b) Except as provided in § 60.752(b)(2)(i)(B), each owner or operator of...
40 CFR 60.758 - Recordkeeping requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Waste Landfills § 60.758 Recordkeeping requirements. (a) Except as provided in § 60.752(b)(2)(i)(B... triggered § 60.752(b), the current amount of solid waste in-place, and the year-by-year waste acceptance... electronic formats are acceptable. (b) Except as provided in § 60.752(b)(2)(i)(B), each owner or operator of...
40 CFR 60.758 - Recordkeeping requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Waste Landfills § 60.758 Recordkeeping requirements. (a) Except as provided in § 60.752(b)(2)(i)(B... triggered § 60.752(b), the current amount of solid waste in-place, and the year-by-year waste acceptance... electronic formats are acceptable. (b) Except as provided in § 60.752(b)(2)(i)(B), each owner or operator of...
Developing an institutional strategy for transporting defense transuranic waste materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrero, J.V.; Kresny, H.S.
In late 1988, the US Department of Energy (DOE) expects to begin emplacing transuranic waste materials in the Waste Isolation Pilot Plant (WIPP), an R and D facility to demonstrate the safe disposal of radioactive wastes resulting from defense program activities. Transuranic wastes are production-related materials, e.g., clothes, rags, tools, and similar items. These materials are contaminated with alpha-emitting transuranium radionuclides with half-lives of > 20 yr and concentrations > 100 nCi/g. Much of the institutional groundwork has been done with local communities and the State of New Mexico on the siting and construction of the facility. A key tomore » the success of the emplacement demonstration, however, will be a qualified transportation system together with institutional acceptance of the proposed shipments. The DOE's Defense Transuranic Waste Program, and its contractors, has lead responsibility for achieving this goal. The Joint Integration Office (JIO) of the DOE, located in Albuquerque, New Mexico, is taking the lead in implementing an integrated strategy for assessing nationwide institutional concerns over transportation of defense transuranic wastes and in developing ways to resolve or mitigate these concerns. Parallel prototype programs are under way to introduce both the new packaging systems and the institutional strategy to interested publics and organizations.« less
Development of integrated radioactive waste packaging and conditioning solutions in the UK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sibley, Peter; Butter, Kevin; Zimmerman, Ian
2013-07-01
In order to offer a more cost effective, safer and efficient Intermediate Level Waste (ILW) management service, EnergySolutions EU Ltd. and Gesellschaft fur Nuklear-Service mbH (GNS) have been engaged in the development of integrated radioactive waste retrieval, packaging and conditioning solutions in the UK. Recognising the challenges surrounding regulatory endorsement and on-site implementation in particular, this has resulted in an alternative approach to meeting customer, safety regulator and disposability requirements. By working closely with waste producers and the organisation(s) responsible for endorsing radioactive waste management operations in the UK, our proposed solutions are now being implemented. By combining GNS' off-the-shelf,more » proven Ductile Cast Iron Containers (DCICs) and water removal technologies, with EnergySolutions EU Ltd.'s experience and expertise in waste retrieval, safety case development and disposability submissions, a fully integrated service offering has been developed. This has involved significant effort to overcome technical challenges such as onsite equipment deployment, active commissioning, conditioning success criteria and disposability acceptance. Our experience in developing such integrated solutions has highlighted the importance of working in collaboration with all parties to achieve a successful and viable outcome. Ultimately, the goal is to ensure reliable, safe and effective delivery of waste management solutions. (authors)« less
Secondary Waste Form Down Selection Data Package – Ceramicrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantrell, Kirk J.; Westsik, Joseph H.
2011-08-31
As part of high-level waste pretreatment and immobilized low activity waste processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed in the Integrated Disposal Facility. Currently, four waste forms are being considered for stabilization and solidification of the liquid secondary wastes. These waste forms are Cast Stone, Ceramicrete, DuraLith, and Fluidized Bed Steam Reformer. The preferred alternative will be down selected from these four waste forms. Pacific Northwest National Laboratorymore » is developing data packages to support the down selection process. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilization and solidification of the liquid secondary wastes. The information included will be based on information available in the open literature and from data obtained from testing currently underway. This data package is for the Ceramicrete waste form. Ceramicrete is a relatively new engineering material developed at Argonne National Laboratory to treat radioactive and hazardous waste streams (e.g., Wagh 2004; Wagh et al. 1999a, 2003; Singh et al. 2000). This cement-like waste form can be used to treat solids, liquids, and sludges by chemical immobilization, microencapsulation, and/or macroencapsulation. The Ceramicrete technology is based on chemical reaction between phosphate anions and metal cations to form a strong, dense, durable, low porosity matrix that immobilizes hazardous and radioactive contaminants as insoluble phosphates and microencapsulates insoluble radioactive components and other constituents that do not form phosphates. Ceramicrete is a type of phosphate-bonded ceramic, which are also known as chemically bonded phosphate ceramics. The Ceramicrete binder is formed through an acid-base reaction between calcined magnesium oxide (MgO; a base) and potassium hydrogen phosphate (KH{sub 2}PO{sub 4}; an acid) in aqueous solution. The reaction product sets at room temperature to form a highly crystalline material. During the reaction, the hazardous and radioactive contaminants also react with KH{sub 2}PO{sub 4} to form highly insoluble phosphates. In this data package, physical property and waste acceptance data for Ceramicrete waste forms fabricated with wastes having compositions that were similar to those expected for secondary waste effluents, as well as secondary waste effluent simulants from the Hanford Tank Waste Treatment and Immobilization Plant were reviewed. With the exception of one secondary waste form formulation (25FA+25 W+1B.A. fabricated with the mixed simulant did not meet the compressive strength requirement), all the Ceramicrete waste forms that were reviewed met or exceeded Integrated Disposal Facility waste acceptance criteria.« less
Ramadan, Adham R; Kock, Per; Nadim, Amani
2005-04-01
A facility for the treatment and disposal of industrial hazardous waste has been established in Alexandria, Egypt. Phase I of the facility encompassing a secure landfill and solar evaporation ponds is ready to receive waste, and Phase II encompassing physico-chemical treatment, solidification, and interim storage is underway. The facility, the Nasreya Centre, is the first of its kind in Egypt, and represents the nucleus for the integration, improvement and further expansion of different hazardous waste management practices and services in Alexandria. It has been developed within the overall legal framework of the Egyptian Law for the Environment, and is expected to improve prospects for enforcement of the regulatory requirements specified in this law. It has been developed with the overall aim of promoting the establishment of an integrated industrial hazardous waste management system in Alexandria, serving as a demonstration to be replicated elsewhere in Egypt. For Phase I, the Centre only accepts inorganic industrial wastes. In this respect, a waste acceptance policy has been developed, which is expected to be reviewed during Phase II, with an expansion of the waste types accepted.
Method of draining water through a solid waste site without leaching
Treat, Russell L.; Gee, Glendon W.; Whyatt, Greg A.
1993-01-01
The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.
Method of draining water through a solid waste site without leaching
Treat, R.L.; Gee, G.W.; Whyatt, G.A.
1993-02-02
The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-07-22
The Algoma Landfill Superfund Site is a former municipal landfill which accepted hazardous industrial waste from several area companies. The contaminant of concern is benzene in on-site groundwater. Samples taken from off-site private water supplies in the vicinity of the landfill did not indicate the presence of contaminants. On-site soil and sediment samples revealed low levels of inorganic chemicals. Although soil samples were not analyzed for asbestos it remains a contaminant of concern since asbestos-containing debris was reportedly buried as the site. The Algoma Landfill Superfund Site is a indeterminate public health hazard. There is insufficient data to evaluate workermore » exposure to airborne asbestos in the past when Kalo dust was deposited at the site. The public health assessment recommends that access to the site be restricted to prevent trespassing and disturbance of the soil. Additional groundwater monitoring and characterization is recommended as well as sampling of surface soil for asbestos contamination.« less
Dermol, Urška; Kontić, Branko
2011-01-01
The benefits of strategic environmental considerations in the process of siting a repository for low- and intermediate-level radioactive waste (LILW) are presented. The benefits have been explored by analyzing differences between the two site selection processes. One is a so-called official site selection process, which is implemented by the Agency for radwaste management (ARAO); the other is an optimization process suggested by experts working in the area of environmental impact assessment (EIA) and land-use (spatial) planning. The criteria on which the comparison of the results of the two site selection processes has been based are spatial organization, environmental impact, safety in terms of potential exposure of the population to radioactivity released from the repository, and feasibility of the repository from the technical, financial/economic and social point of view (the latter relates to consent by the local community for siting the repository). The site selection processes have been compared with the support of the decision expert system named DEX. The results of the comparison indicate that the sites selected by ARAO meet fewer suitability criteria than those identified by applying strategic environmental considerations in the framework of the optimization process. This result stands when taking into account spatial, environmental, safety and technical feasibility points of view. Acceptability of a site by a local community could not have been tested, since the formal site selection process has not yet been concluded; this remains as an uncertain and open point of the comparison. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denise Lach; Stephanie Sanford
2006-09-01
A consensus workshop was developed and convened with ten state regulators to characterize concerns regarding emerging bioremediation technology to be used to clean-up radionuclides and heavy metals in mixed wastes at US DOE sites. Two questions were explored: integrated questions: (1) What impact does participation in a consensus workshop have on the knowledge, attitudes, and practices of state regulators regarding bioremediation technology? (2) How effective is a consensus workshop as a strategy for eliciting and articulating regulators’ concerns regarding the use of bioremediation to clean up radionuclides and heavy metals in mixed wastes at U.S. Department of Energy Sites aroundmore » the county? State regulators met together for five days over two months to learn about bioremediation technology and develop a consensus report of their recommendations regarding state regulatory concerns. In summary we found that panel members: - quickly grasped the science related to bioremediation and were able to effectively interact with scientists working on complicated issues related to the development and implementation of the technology; - are generally accepting of in situ bioremediation, but concerned about costs, implementation (e.g., institutional controls), and long-term effectiveness of the technology; - are concerned equally about technological and implementation issues; and - believed that the consensus workshop approach to learning about bioremediation was appropriate and useful. Finally, regulators wanted decision makers at US DOE to know they are willing to work with DOE regarding innovative approaches to clean-up at their sites, and consider a strong relationship between states and the DOE as critical to any effective clean-up. They do not want perceive themselves to be and do not want others to perceive them as barriers to successful clean-up at their sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C.; Edwards, T.
Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-compositionmore » models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository.« less
NASA Astrophysics Data System (ADS)
Beraud, H.; Barroca, B.; Hubert, G.
2012-12-01
A waste management system plays a leading role in the capacity of an area to restart after flooding, as their impact on post-crisis management can be very considerable. Improving resilience, i.e. enabling it to maintain or recover acceptable operating levels after flooding is primordial. To achieve this, we must understand how the system works for bringing any potential dysfunctions to light and taking preventive measures. Functional analysis has been used for understanding the complexity of this type of system. The purpose of this article is to show the interest behind this type of method and the limits in its use for improving resilience of waste management system as well as other urban technical systems1, by means of theoretical modelling and its application on a study site. 1In a systemic vision of the city, urban technical systems combine all the user service systems that are essential for the city to operate (electricity, water supplies, transport, sewerage, etc.). These systems are generally organised in the form of networks (Coutard, 2010; CERTU, 2005).
Hazardous Waste: Cleanup and Prevention.
ERIC Educational Resources Information Center
Vandas, Steve; Cronin, Nancy L.
1996-01-01
Discusses hazardous waste, waste disposal, unsafe exposure, movement of hazardous waste, and the Superfund clean-up process that consists of site discovery, site assessment, clean-up method selection, site clean up, and site maintenance. Argues that proper disposal of hazardous waste is everybody's responsibility. (JRH)
Le, Aurora B; Hoboy, Selin; Germain, Anne; Miller, Hal; Thompson, Richard; Herstein, Jocelyn J; Jelden, Katelyn C; Beam, Elizabeth L; Gibbs, Shawn G; Lowe, John J
2018-02-01
The recent Ebola outbreak led to the development of Ebola virus disease (EVD) best practices in clinical settings. However, after the care of EVD patients, proper medical waste management and disposal was identified as a crucial component to containing the virus. Category A waste-contaminated with EVD and other highly infectious pathogens-is strictly regulated by governmental agencies, and led to only several facilities willing to accept the waste. A pilot survey was administered to determine if U.S. medical waste facilities are prepared to handle or transport category A waste, and to determine waste workers' current extent of training to handle highly infectious waste. Sixty-eight percent of survey respondents indicated they had not determined if their facility would accept category A waste. Of those that had acquired a special permit, 67% had yet to modify their permit since the EVD outbreak. This pilot survey underscores gaps in the medical waste industry to handle and respond to category A waste. Furthermore, this study affirms reports a limited number of processing facilities are capable or willing to accept category A waste. Developing the proper management of infectious disease materials is essential to close the gaps identified so that states and governmental entities can act accordingly based on the regulations and guidance developed, and to ensure public safety. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Nancarrow, D J; White, M M
2004-03-01
A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA of the Environmental Protection Act 1990 to include radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of the radioactive wastes arising from remediation. This is expected to be principally wastes of high volume and low activity (categorised as low level waste (LLW) and very low level waste (VLLW)). The availability problem results from a lack of applications by landfill operators for authorisation to accept LLW wastes for disposal. This is apparently due to perceived adverse publicity associated with the consultation process for authorisation coupled with uncertainty over future liabilities. Disposal of waste as VLLW is limited both by questions over volumes that may be acceptable and, more fundamentally, by the likely alpha activity of wastes (originating from radium and thorium operations). Authorised on-site disposal has had little attention in policy and guidance in recent years, but may have a part to play, especially if considered commercially attractive. Disposal at BNFL's near surface disposal facility for LLW at Drigg is limited to wastes for which there are no practical alternative disposal options (and preference has been given to operational type wastes). Therefore, wastes from the radioactively contaminated land (RCL) regime are not obviously attractive for disposal to Drigg. Illustrative calculations have been performed based on possible volumes and activities of RCL arisings (and assuming Drigg's future volumetric disposal capacity is 950,000 m3). These suggest that wastes arising from implementing the RCL regime, if all disposed to Drigg, would not represent a significant fraction of the volumetric capacity of Drigg, but could have a significant impact on the radiological capacity with respect to 226Ra plus 232Th. The government's decision-making programme for managing solid radioactive wastes in the UK may possibly achieve a general consensus that the use of landfill for LLW from the RCL regime has a fundamental role to play. However, this is unlikely to change the situation within the next few years. No new national facility arising from this programme is likely to be available during the first decade of the operation of a new RCL regime. Hence it appears that Drigg will need to play an important role for some years to come.
Targeted intervention strategies to optimise diversion of BMW in the Dublin, Ireland region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purcell, M., E-mail: mary.purcell@cit.ie; Centre for Water Resources Research, School of Architecture, Landscape and Civil Engineering, University College Dublin, Newstead, Belfield, Dublin 4; Magette, W.L.
Highlights: > Previous research indicates that targeted strategies designed for specific areas should lead to improved diversion. > Survey responses and GIS model predictions from previous research were the basis for goal setting. > Then logic modelling and behavioural research were employed to develop site-specific management intervention strategies. > Waste management initiatives can be tailored to specific needs of areas rather than one size fits all means currently used. - Abstract: Urgent transformation is required in Ireland to divert biodegradable municipal waste (BMW) from landfill and prevent increases in overall waste generation. When BMW is optimally managed, it becomes amore » resource with value instead of an unwanted by-product requiring disposal. An analysis of survey responses from commercial and residential sectors for the Dublin region in previous research by the authors proved that attitudes towards and behaviour regarding municipal solid waste is spatially variable. This finding indicates that targeted intervention strategies designed for specific geographic areas should lead to improved diversion rates of BMW from landfill, a requirement of the Landfill Directive 1999/31/EC. In the research described in this paper, survey responses and GIS model predictions from previous research were the basis for goal setting, after which logic modelling and behavioural research were employed to develop site-specific waste management intervention strategies. The main strategies devised include (a) roll out of the Brown Bin (Organics) Collection and Community Workshops in Dun Laoghaire Rathdown, (b) initiation of a Community Composting Project in Dublin City (c) implementation of a Waste Promotion and Motivation Scheme in South Dublin (d) development and distribution of a Waste Booklet to promote waste reduction activities in Fingal (e) region wide distribution of a Waste Booklet to the commercial sector and (f) Greening Irish Pubs Initiative. Each of these strategies was devised after interviews with both the residential and commercial sectors to help make optimal waste management the norm for both sectors. Strategy (b), (e) and (f) are detailed in this paper. By integrating a human element into accepted waste management approaches, these strategies will make optimal waste behaviour easier to achieve. Ultimately this will help divert waste from landfill and improve waste management practice as a whole for the region. This method of devising targeted intervention strategies can be adapted for many other regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valvoda, Z.; Holub, J.; Kucerka, M.
1996-12-31
In the year 1993, began the Program of Development of the Spent Fuel and High Level Waste Repository in the Conditions of the Czech Republic. During the first phase, the basic concept and structure of the Program has been developed, and the basic design criteria and requirements were prepared. In the conditions of the Czech Republic, only an underground repository in deep geological formation is acceptable. Expected depth is between 500 to 1000 meters and as host rock will be granites. A preliminary variant design study was realized in 1994, that analyzed the radioactive waste and spent fuel flow frommore » NPPs to the repository, various possibilities of transportation in accordance to the various concepts of spent fuel conditioning and transportation to the underground structures. Conditioning and encapsulation of spent fuel and/or radioactive waste is proposed on the repository site. Underground disposal structures are proposed at one underground floor. The repository will have reserve capacity for radioactive waste from NPPs decommissioning and for waste non acceptable to other repositories. Vertical disposal of unshielded canisters in boreholes and/or horizontal disposal of shielded canisters is studied. As the base term of the start up of the repository operation, the year 2035 has been established. From this date, a preliminary time schedule of the Project has been developed. A method of calculating leveled and discounted costs within the repository lifetime, for each of selected 5 variants, was used for economic calculations. Preliminary expected parametric costs of the repository are about 0,1 Kc ($0.004) per MWh, produced in the Czech NPPs. In 1995, the design and feasibility study has gone in more details to the technical concept of repository construction and proposed technologies, as well as to the operational phase of the repository. Paper will describe results of the 1995 design work and will present the program of the repository development in next period.« less
NASA Astrophysics Data System (ADS)
Fleischer, Peter; Bowles, Frederick A.; Richardson, Michael D.
1998-05-01
Identification of optimal sites for the isolation of waste on the abyssal seafloor was performed with two approaches: by the traditional method of map overlays of relevant attributes, and by a specially developed, automated Site-Selection Model (SSM). Five initial, Surrogate Sites, identified with the map-overlay approach, were then compared with the more rigorously produced scores from the SSM. The SSM, a process for optimization of site locations, accepts subjective, expert-based judgments and transforms them into a quantitative, reproducible, and documented product. The SSM is adaptable to any siting scenario. Forty-one factors relevant to the isolation scenario, including 21 weightable factors having a total of 123 scorable categories, have been entered into the SSM. Factors are grouped under project definition, unique environments, anthropogenic, geologic, biologic, weather, oceanographic and distance criteria. The factor scores are linked to a georeferenced database array of all factors, corresponding to 1°×1° latitude-longitude squares. The SSM includes a total of 2241 one-degree squares within 1000 n.m. of the U.S. coasts, including the western North Atlantic, the Gulf of Mexico, and the eastern North Pacific. Under a carefully weighted and scored scenario of isolation, the most favorable sites identified with the SSM are on the Hatteras and Nares Abyssal Plains in the Atlantic. High-scoring sites are also located in the Pacific abyssal hills province between the Murray and Molokai Fracture Zones. Acceptable 1° squares in the Gulf of Mexico are few and of lower quality, with the optimum location on the northern Sigsbee Abyssal Plain. Two of the five Surrogate Site locations, on the Hatteras and Sigsbee Abyssal Plains, correspond to the best SSM sites in each ocean area. Two Pacific and a second Atlantic Surrogate Site are located in low-scoring regions or excluded by the SSM. Site-selection results from the SSM, although robust, are an initial attempt to quantify the site-selection process. The SSM database exposes a significant lack of high-quality information for many areally mappable attributes on the abyssal seafloor, particularly bottom-current speed and measures of biologic productivity and flux. Terminologies and classifications of some measures, such as sediment types, suffer from parochialism and vary by ocean. Considerable research is needed even for a broad understanding of the environmental measures required to make sound societal decisions about use of the abyssal seafloor for disposal or other purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Department of Energy`s (DOE) Rocky Flats Environmental Technology Site (the Site), formerly known as the Rocky Flats Plant, has generated radioactive, hazardous, and mixed waste (waste with both radioactive and hazardous constituents) since it began operations in 1952. Such wastes were the byproducts of the Site`s original mission to produce nuclear weapons components. Since 1989, when weapons component production ceased, waste has been generated as a result of the Site`s new mission of environmental restoration and deactivation, decontamination and decommissioning (D&D) of buildings. It is anticipated that the existing onsite waste storage capacity, which meets the criteria for low-levelmore » waste (LL), low-level mixed waste (LLM), transuranic (TRU) waste, and TRU mixed waste (TRUM) would be completely filled in early 1997. At that time, either waste generating activities must cease, waste must be shipped offsite, or new waste storage capacity must be developed.« less
Moore, Susan A; Polley, Amanda
2007-03-01
Visitors' perceptions of impacts and acceptable standards for environmental conditions can provide essential information for the sustainable management of tourist destinations, especially protected areas. To this end, visitor surveys were administered during the peak visitor season in Cape Range National Park, on the northwest coast of Western Australia and adjacent to the iconic Ningaloo Reef. The central focus was visitors' perceptions regarding environmental conditions and standards for potential indicators. Conditions considered of greatest importance in determining visitors' quality of experience included litter, inadequate disposal of human waste, presence of wildlife, levels of noise, and access to beach and ocean. Standards were determined, based on visitors' perceptions, for a range of site-specific and non-site-specific indicators, with standards for facilities (e.g., acceptable number of parking bays, signs) and for negative environmental impacts (e.g., levels of littering, erosion) sought. The proposed standards varied significantly between sites for the facilities indicators; however, there was no significant difference between sites for environmental impacts. For the facilities, the standards proposed by visitors were closely related to the existing situation, suggesting that they were satisfied with the status quo. These results are considered in the context of current research interest in the efficacy of visitor-derived standards as a basis for protected area management.
Maringer, F J; Suráň, J; Kovář, P; Chauvenet, B; Peyres, V; García-Toraño, E; Cozzella, M L; De Felice, P; Vodenik, B; Hult, M; Rosengård, U; Merimaa, M; Szücs, L; Jeffery, C; Dean, J C J; Tymiński, Z; Arnold, D; Hinca, R; Mirescu, G
2013-11-01
In 2011 the joint research project Metrology for Radioactive Waste Management (MetroRWM)(1) of the European Metrology Research Programme (EMRP) started with a total duration of three years. Within this project, new metrological resources for the assessment of radioactive waste, including their calibration with new reference materials traceable to national standards will be developed. This paper gives a review on national, European and international strategies as basis for science-based metrological requirements in clearance and acceptance of radioactive waste. © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Management
The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When themore » proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.« less
Constraints to healthcare waste treatment in low-income countries - a case study from Somaliland.
Di Bella, Veronica; Ali, Mansoor; Vaccari, Mentore
2012-06-01
In low-income countries, healthcare waste is mixed with the municipal waste stream and rarely receives special attention. This paper presents the lessons learned from a pilot project targeted to improve healthcare waste management in Hargeisa (Somaliland). The interventions were carried out in three of the main hospitals in the city. Consideration was also given to improve the overall situation regarding the management of healthcare waste. Three De Montfort incinerators were built and training was provided to operators, waste workers and healthcare personnel. Although the incinerators were constructed in accordance with the required standards, major constraints were identified in the operational phase: irregular de-ashing procedures, misuse of safety equipment, and ineffective separation of healthcare waste were seen in this phase. The paper concludes that in other small hospitals in the developing world, such as those in Hargeisa, on-site incineration by use of low-cost, small-scale incinerators could be successfully applied as an interim solution, provided that an agreed and acceptable plan of operation and maintenance is in place and responsibilities for the management of the facility are clearly identified. Moreover, when replicating this experience in other settings even greater importance should be given to the technical capacity building of operators and pressure should be exercised on local administrations in order to control and supervise the whole management system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gimpel, Rodney F.; Kruger, Albert A.
2013-12-18
Efforts are being made to increase the efficiency and decrease the cost of vitrifying radioactive waste stored in tanks at the U.S. Department of Energy Hanford Site. The compositions of acceptable and processable high-level waste (HL W) glasses need to be optimized to minimize the waste-form volume and, hence, to reduce cost. A database of glass properties of waste glass and associated simulated waste glasses was collected and documented in PNNL 18501, Glass Property Data and Models for Estimating High-Level Waste Glass Volume and glass property models were curve-fitted to the glass compositions. A routine was developed that estimates HLmore » W glass volumes using the following glass property models: II Nepheline, II One-Percent Crystal Temperature (T1%), II Viscosity (11) II Product Consistency Tests (PCT) for boron, sodium, and lithium, and II Liquidus Temperature (TL). The routine, commonly called the HL W Glass Shell, is presented in this document. In addition to the use of the glass property models, glass composition constraints and rules, as recommend in PNNL 18501 and in other documents (as referenced in this report) were incorporated. This new version of the HL W Glass Shell should generally estimate higher waste loading in the HL W glass than previous versions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greg Shott, Vefa Yucel, Lloyd Desotell
2008-05-01
This Special Analysis (SA) was prepared to assess the potential impact of inadvertent disposal of a limited quantity of transuranic (TRU) waste in classified Trench 4 (T04C) within the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). The Area 5 RWMS is a low-level radioactive waste disposal site in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS is regulated by the U.S. Department of Energy (DOE) under DOE Order 435.1 and DOE Manual (DOE M) 435.1-1. The primary objective of the SA is to evaluate if inadvertent disposal of limitedmore » quantities of TRU waste in a shallow land burial trench at the Area 5 RWMS is in compliance with the existing, approved Disposal Authorization Statement (DAS) issued under DOE M 435.1-1. In addition, supplemental analyses are performed to determine if there is reasonable assurance that the requirements of Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses provide supplemental information regarding the risk to human health and the environment of leaving the TRU waste in T04C. In 1989, waste management personnel reviewing classified materials records discovered that classified materials buried in trench T04C at the Area 5 RWMS contained TRU waste. Subsequent investigations determined that a total of 102 55-gallon drums of TRU waste from Rocky Flats were buried in trench T04C in 1986. The disposal was inadvertent because unclassified records accompanying the shipment indicated that the waste was low-level. The exact location of the TRU waste in T04C was not recorded and is currently unknown. Under DOE M 435.1-1, Chapter IV, Section P.5, low-level waste disposal facilities must obtain a DAS. The DAS specifies conditions that must be met to operate within the radioactive waste management basis, consisting of a performance assessment (PA), composite analysis (CA), closure plan, monitoring plan, waste acceptance criteria, and a PA/CA maintenance plan. The DOE issued a DAS for the Area 5 RWMS in 2000. The Area 5 RWMS DAS was, in part, based on review of a CA as required under DOE M 435.1-1, Chapter IV, Section P.(3). A CA is a radiological assessment required for DOE waste disposed before 26 September 1988 and includes the radiological dose from all sources of radioactive material interacting with all radioactive waste disposed at the Area 5 RWMS. The approved Area 5 RWMS CA, which includes the inventory of TRU waste in T04C, indicates that the Area 5 RWMS waste inventory and all interacting sources of radioactive material can meet the 0.3 mSv dose constraint. The composite analysis maximum annual dose for a future resident at the Area 5 RWMS was estimated to be 0.01 mSv at 1,000 years. Therefore, the inadvertent disposal of TRU in T04C is protective of the public and the environment, and compliant with all the applicable requirements in DOE M 435.1-1 and the DAS. The U.S. Environmental Protection Agency promulgated 40 CFR 191 to establish standards for the planned disposal of spent nuclear fuel, high level, and transuranic wastes in geologic repositories. Although not required, the National Nuclear Security Administration Nevada Site Office requested a supplemental analysis to evaluate the likelihood that the inadvertent disposal of TRU waste in T04C meets the requirements of 40 CFR 191. The SA evaluates the likelihood of meeting the 40 CFR 191 containment requirements (CRs), assurance requirements, individual protection requirements (IPRs), and groundwater protection standards. The results of the SA indicate that there is a reasonable expectation of meeting all the requirements of 40 CFR 191. The conclusion of the SA is that the Area 5 RWMS with the TRU waste buried in T04C is in compliance with all requirements in DOE M 435.1-1 and the DAS. Compliance with the DAS is demonstrated by the results of the Area 5 RWMS CA. Supplemental analyses in the SA indicate there is a reasonable expectation that the TRU in T04C can meet all the requirements of 40 CFR 191. Therefore, inadvertent disposal of a limited quantity of TRU in a shallow land burial trench at the Area 5 RWMS does not pose a significant risk to the public and the environment.« less
Field Test to Evaluate Deep Borehole Disposal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardin, Ernest; Brady, Patrick Vane.; Clark, Andrew Jordan
The U.S. Department of Energy (DOE) has embarked on the Deep Borehole Field Test (DBFT), which will investigate whether conditions suitable for disposal of radioactive waste can be found at a depth of up to 5 km in the earth’s crust. As planned, the DBFT will demonstrate drilling and construction of two boreholes, one for initial scientific characterization, and the other at a larger diameter such as could be appropriate for waste disposal (the DBFT will not involve radioactive waste). A wide range of geoscience activities is planned for the Characterization Borehole, and an engineering demonstration of test package emplacementmore » and retrieval is planned for the larger Field Test Borehole. Characterization activities will focus on measurements and samples that are important for evaluating the long-term isolation capability of the Deep Borehole Disposal (DBD) concept. Engineering demonstration activities will focus on providing data to evaluate the concept’s operational safety and practicality. Procurement of a scientifically acceptable DBFT site and a site management contractor is now underway. The concept of deep borehole disposal (DBD) for radioactive wastes is not new. It was considered by the National Academy of Science (NAS 1957) for liquid waste, studied in the 1980’s in the U.S. (Woodward–Clyde 1983), and has been evaluated by European waste disposal R&D programs in the past few decades (for example, Grundfelt and Crawford 2014; Grundfelt 2010). Deep injection of wastewater including hazardous wastes is ongoing in the U.S. and regulated by the Environmental Protection Agency (EPA 2001). The DBFT is being conducted with a view to use the DBD concept for future disposal of smaller-quantity, DOE-managed wastes from nuclear weapons production (i.e., Cs/Sr capsules and granular solid wastes). However, the concept may also have broader applicability for nations that have a need to dispose of limited amounts of spent fuel from nuclear power reactors. For such nations the cost for disposing of volumetrically limited waste streams could be lower than mined geologic repositories.« less
Accelerator-driven Transmutation of Waste
NASA Astrophysics Data System (ADS)
Venneri, Francesco
1998-04-01
Nuclear waste from commercial power plants contains large quantities of plutonium, other fissionable actinides, and long-lived fission products that are potential proliferation concerns and create challenges for the long-term storage. Different strategies for dealing with nuclear waste are being followed by various countries because of their geologic situations and their views on nuclear energy, reprocessing and non-proliferation. The current United States policy is to store unprocessed spent reactor fuel in a geologic repository. Other countries are opting for treatment of nuclear waste, including partial utilization of the fissile material contained in the spent fuel, prior to geologic storage. Long-term uncertainties are hampering the acceptability and eventual licensing of a geologic repository for nuclear spent fuel in the US, and driving up its cost. The greatest concerns are with the potential for radiation release and exposure from the spent fuel for tens of thousands of years and the possible diversion and use of the actinides contained in the waste for weapons construction. Taking advantage of the recent breakthroughs in accelerator technology and of the natural flexibility of subcritical systems, the Accelerator-driven Transmutation of Waste (ATW) concept offers the United States and other countries the possibility to greatly reduce plutonium, higher actinides and environmentally hazardous fission products from the waste stream destined for permanent storage. ATW does not eliminate the need for, but instead enhances the viability of permanent waste repositories. Far from being limited to waste destruction, the ATW concept also brings to the table new technologies that could be relevant for next-generation power producing reactors. In the ATW concept, spent fuel would be shipped to the ATW site where the plutonium, transuranics and selected long-lived fission products would be destroyed by fission or transmutation in their first and only pass through the facility, using an accelerator-driven subcritical burner cooled by liquid lead/bismuth and limited pyrochemical treatment of the spent fuel and residual waste. This approach contrasts with the present-day practices of aqueous reprocessing (Europe and Japan), in which high purity plutonium is produced and used in the fabrication of fresh mixed oxide fuel (MOX) that is shipped off-site for use in light water reactors.
40 CFR 240.200-3 - Recommended procedures: Operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.200-3 Recommended procedures: Operations. (a) Storage areas for special wastes should be... acceptance of Special Wastes. ...
40 CFR 240.200-3 - Recommended procedures: Operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.200-3 Recommended procedures: Operations. (a) Storage areas for special wastes should be... acceptance of Special Wastes. ...
Small mammal populations at hazardous waste disposal sites near Houston, Texas, USA
Robbins, C.S.
1990-01-01
Small mammals were trapped, tagged and recaptured in 0?45 ha plots at six hazardous industrial waste disposal sites to determine if populations, body mass and age structures were different from paired control site plots. Low numbers of six species of small mammals were captured on industrial waste sites or control sites. Only populations of hispid cotton rats at industrial waste sites and control sites were large enough for comparisons. Overall population numbers, age structure, and body mass of adult male and female cotton rats were similar at industrial waste sites and control sites. Populations of small mammals (particularly hispid cotton rats) may not suffice as indicators of environments with hazardous industrial waste contamination.
36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...
36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...
36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...
36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...
36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...
WRAP low level waste restricted waste management (LLW RWM) glovebox acceptance test report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leist, K.J.
1997-11-24
On April 22, 1997, the Low Level Waste Restricted Waste Management (LLW RWM) glovebox was tested using acceptance test procedure 13027A-87. Mr. Robert L. Warmenhoven served as test director, Mr. Kendrick Leist acted as test operator and test witness, and Michael Lane provided miscellaneous software support. The primary focus of the glovebox acceptance test was to examine glovebox control system interlocks, operator Interface Unit (OIU) menus, alarms, and messages. Basic drum port and lift table control sequences were demonstrated. OIU menus, messages, and alarm sequences were examined, with few exceptions noted. Barcode testing was bypassed, due to the lack ofmore » installed equipment as well as the switch from basic reliance on fixed bar code readers to the enhanced use of portable bar code readers. Bar code testing was completed during performance of the LLW RWM OTP. Mechanical and control deficiencies were documented as Test Exceptions during performance of this Acceptance Test. These items are attached as Appendix A to this report.« less
Donatello, S; Tyrer, M; Cheeseman, C R
2010-01-01
A hazardous waste assessment has been completed on ash samples obtained from seven sewage sludge incinerators operating in the UK, using the methods recommended in the EU Hazardous Waste Directive. Using these methods, the assumed speciation of zinc (Zn) ultimately determines if the samples are hazardous due to ecotoxicity hazard. Leaching test results showed that two of the seven sewage sludge ash samples would require disposal in a hazardous waste landfill because they exceed EU landfill waste acceptance criteria for stabilised non-reactive hazardous waste cells for soluble selenium (Se). Because Zn cannot be proven to exist predominantly as a phosphate or oxide in the ashes, it is recommended they be considered as non-hazardous waste. However leaching test results demonstrate that these ashes cannot be considered as inert waste, and this has significant implications for the management, disposal and re-use of sewage sludge ash.
Existing data on the 216-Z liquid waste sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, K.W.
1981-05-01
During 36 years of operation at the Hanford Site, the ground has been used for disposal of liquid and solid transuranic and/or low-level wastes. Liquid waste was disposed in surface and subsurface cribs, trenches, French drains, reverse wells, ditches and ponds. Disposal structures associated with Z Plant received liquid waste from plutonium finishing and reclamation, waste treatment and laboratory operations. The nineteen 216-Z sites have received 83% of the plutonium discharged to 325 liquid waste facilities at the Hanford Site. The purpose of this document is to support the Hanford Defense Waste Environmental Impact Statement by drawing the existing datamore » together for the 216-Z liquid waste disposal sites. This document provides an interim reference while a sitewide Waste Information Data System (WIDS) is developed and put on line. Eventually these and additional site data for all Hanford waste disposal sites will be available on WIDS. Compilation of existing data is the first step in evaluating the need and developing the technology for long-term management of these waste sites. The scope of this document is confined to data describing the status of the 216-Z waste sites as of December 31, 1979. Information and sketches are taken from existing documents and drawings.« less
Waste Characterization Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, Patrick E.
2014-11-01
The purpose is to provide guidance to the Radiological Characterization Reviewer to complete the radiological characterization of waste items. This information is used for Department of Transportation (DOT) shipping and disposal, typically at the Nevada National Security Site (NNSS). Complete characterization ensures compliance with DOT shipping laws and NNSS Waste Acceptance Criteria (WAC). The fines for noncompliance can be extreme. This does not include possible bad press, and endangerment to the public, employees and the environment. A Radiological Characterization Reviewer has an important role in the organization. The scope is to outline the characterization process, but does not to includemore » every possible situation. The Radiological Characterization Reviewer position requires a strong background in Health Physics; therefore, these concepts are minimally addressed. The characterization process includes many Excel spreadsheets that were developed by Michael Enghauser known as the WCT software suite. New Excel spreadsheets developed as part of this project include the Ra- 226 Decider and the Density Calculator by Jesse Bland, MicroShield Density Calculator and Molecular Weight Calculator by Pat Lambert.« less
Performance assessment for continuing and future operations at Solid Waste Storage Area 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-01
This radiological performance assessment for the continued disposal operations at Solid Waste Storage Area 6 (SWSA 6) on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the requirements of the US DOE. The analysis of SWSA 6 required the use of assumptions to supplement the available site data when the available data were incomplete for the purpose of analysis. Results indicate that SWSA 6 does not presently meet the performance objectives of DOE Order 5820.2A. Changes in operations and continued work on the performance assessment are expected to demonstrate compliance with the performance objectives for continuingmore » operations at the Interim Waste Management Facility (IWMF). All other disposal operations in SWSA 6 are to be discontinued as of January 1, 1994. The disposal units at which disposal operations are discontinued will be subject to CERCLA remediation, which will result in acceptable protection of the public health and safety.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bandt, G.; Spicher, G.; Steyer, St.
2008-07-01
Since the 1998 termination of LLW and ILW emplacement in the Morsleben repository (ERAM), Germany, the treatment, conditioning and documentation of radioactive waste products and packages have been continued on the basis of the waste acceptance requirements as of 1995, prepared for the Konrad repository near Salzgitter in Lower Saxony, Germany. The resulting waste products and packages are stored in interim storage facilities. Due to the Konrad license issued in 2002 the waste acceptance requirements have to be completed by additional requirements imposed by the licensing authority, e. g. for the declaration of chemical waste package constituents. Therefore, documentation ofmore » waste products and packages which are checked by independent experts and are in parts approved by the responsible authority (Office for Radiation Protection, BfS) up to now will have to be checked again for fulfilling the final waste acceptance requirements prior to disposal. In order to simplify these additional checks, databases are used to ensure an easy access to all known facts about the waste packages. A short balance of the existing waste products and packages which are already checked and partly approved by BfS as well as an overview on the established databases ensuring a fast access to the known facts about the conditioning processes is presented. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marietta, Melvin Gary; Anderson, D. Richard; Bonano, Evaristo J.
2011-11-01
Sandia National Laboratories (SNL) is the world leader in the development of the detailed science underpinning the application of a probabilistic risk assessment methodology, referred to in this report as performance assessment (PA), for (1) understanding and forecasting the long-term behavior of a radioactive waste disposal system, (2) estimating the ability of the disposal system and its various components to isolate the waste, (3) developing regulations, (4) implementing programs to estimate the safety that the system can afford to individuals and to the environment, and (5) demonstrating compliance with the attendant regulatory requirements. This report documents the evolution of themore » SNL PA methodology from inception in the mid-1970s, summarizing major SNL PA applications including: the Subseabed Disposal Project PAs for high-level radioactive waste; the Waste Isolation Pilot Plant PAs for disposal of defense transuranic waste; the Yucca Mountain Project total system PAs for deep geologic disposal of spent nuclear fuel and high-level radioactive waste; PAs for the Greater Confinement Borehole Disposal boreholes at the Nevada National Security Site; and PA evaluations for disposal of high-level wastes and Department of Energy spent nuclear fuels stored at Idaho National Laboratory. In addition, the report summarizes smaller PA programs for long-term cover systems implemented for the Monticello, Utah, mill-tailings repository; a PA for the SNL Mixed Waste Landfill in support of environmental restoration; PA support for radioactive waste management efforts in Egypt, Iraq, and Taiwan; and, most recently, PAs for analysis of alternative high-level radioactive waste disposal strategies including repositories deep borehole disposal and geologic repositories in shale and granite. Finally, this report summarizes the extension of the PA methodology for radioactive waste disposal toward development of an enhanced PA system for carbon sequestration and storage systems. These efforts have produced a generic PA methodology for the evaluation of waste management systems that has gained wide acceptance within the international community. This report documents how this methodology has been used as an effective management tool to evaluate different disposal designs and sites; inform development of regulatory requirements; identify, prioritize, and guide research aimed at reducing uncertainties for objective estimations of risk; and support safety assessments.« less
On-site or off-site treatment of medical waste: a challenge
2014-01-01
Treating hazardous-infectious medical waste can be carried out on-site or off-site of health-care establishments. Nevertheless, the selection between on-site and off-site locations for treating medical waste sometimes is a controversial subject. Currently in Iran, due to policies of Health Ministry, the hospitals have selected on-site-treating method as the preferred treatment. The objectives of this study were to assess the current condition of on-site medical waste treatment facilities, compare on-site medical waste treatment facilities with off-site systems and find the best location of medical waste treatment. To assess the current on-site facilities, four provinces (and 40 active hospitals) were selected to participate in the survey. For comparison of on-site and off-site facilities (due to non availability of an installed off-site facility) Analytical Hierarchy Process (AHP) was employed. The result indicated that most on-site medical waste treating systems have problems in financing, planning, determining capacity of installations, operation and maintenance. AHP synthesis (with inconsistency ratio of 0.01 < 0.1) revealed that, in total, the off-site treatment of medical waste was in much higher priority than the on-site treatment (64.1% versus 35.9%). According to the results of study it was concluded that the off-site central treatment can be considered as an alternative. An amendment could be made to Iran’s current medical waste regulations to have infectious-hazardous waste sent to a central off-site installation for treatment. To begin and test this plan and also receive the official approval, a central off-site can be put into practice, at least as a pilot in one province. Next, if it was practically successful, it could be expanded to other provinces and cities. PMID:24739145
Code of Federal Regulations, 2011 CFR
2011-07-01
... to calculate recycling correction factor). Y 98.256(i)(5) Only annual mass of green coke fed, carbon...) All. GG 98.336(b)(7) All. GG 98.336(b)(10) All. HH 98.346(a) Only year in which landfill first accepted waste, last year the landfill accepted waste, capacity of the landfill, and waste disposal...
241-AZ-101 Waste Tank Color Video Camera System Shop Acceptance Test Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
WERRY, S.M.
2000-03-23
This report includes shop acceptance test results. The test was performed prior to installation at tank AZ-101. Both the camera system and camera purge system were originally sought and procured as a part of initial waste retrieval project W-151.
Radiological Characterization Methodology of INEEL Stored RH-TRU Waste from ANL-E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajiv N. Bhatt
2003-02-01
An Acceptable Knowledge (AK)-based radiological characterization methodology is being developed for RH TRU waste generated from ANL-E hot cell operations performed on fuel elements irradiated in the EBR-II reactor. The methodology relies on AK for composition of the fresh fuel elements, their irradiation history, and the waste generation and collection processes. Radiological characterization of the waste involves the estimates of the quantities of significant fission products and transuranic isotopes in the waste. Methods based on reactor and physics principles are used to achieve these estimates. Because of the availability of AK and the robustness of the calculation methods, the AK-basedmore » characterization methodology offers a superior alternative to traditional waste assay techniques. Using this methodology, it is shown that the radiological parameters of a test batch of ANL-E waste is well within the proposed WIPP Waste Acceptance Criteria limits.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuan, P.; Bhatt, R.N.
2003-01-14
An Acceptable Knowledge (AK)-based radiological characterization methodology is being developed for RH TRU waste generated from ANL-E hot cell operations performed on fuel elements irradiated in the EBR-II reactor. The methodology relies on AK for composition of the fresh fuel elements, their irradiation history, and the waste generation and collection processes. Radiological characterization of the waste involves the estimates of the quantities of significant fission products and transuranic isotopes in the waste. Methods based on reactor and physics principles are used to achieve these estimates. Because of the availability of AK and the robustness of the calculation methods, the AK-basedmore » characterization methodology offers a superior alternative to traditional waste assay techniques. Using the methodology, it is shown that the radiological parameters of a test batch of ANL-E waste is well within the proposed WIPP Waste Acceptance Criteria limits.« less
Why consider subseabed disposal of high-level nuclear waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heath, G. R.; Hollister, C. D.; Anderson, D. R.
1980-01-01
Large areas of the deep seabed warrant assessment as potential disposal sites for high-level radioactive waste because: (1) they are far from seismically and tectonically active lithospheric plate boundaries; (2) they are far from active or young volcanos; (3) they contain thick layers of very uniform fine-grained clays; (4) they are devoid of natural resources likely to be exploited in the forseeable future; (5) the geologic and oceanographic processes governing the deposition of sediments in such areas are well understood, and are remarkably insensitive to past oceanographic and climatic changes; and (6) sedmentary records of tens of millions of yearsmore » of slow, uninterrupted deposition of fine grained clay support predictions of the future stability of such sites. Data accumulated to date on the permeability, ion-retardation properties, and mechanical strength of pelagic clay sediments indicate that they can act as a primary barrier to the escape of buried nuclides. Work in progress should determine within the current decade whether subseabed disposal is environmentally acceptable and technically feasible, as well as address the legal, political and social issues raised by this new concept.« less
WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
F. Habashi
2000-06-22
The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from mostmore » of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR Site Layout, Safeguards and Security System, Site Radiological Monitoring System, Site Electrical Power System, Site Compressed Air System, and Waste Treatment Building Ventilation System.« less
Prudic, David E.; Dennehy, Kevin F.; Bedinger, Marion S.; Stevens, Peter R.
1990-01-01
Engineering practices, including the excavation of trenches, placement of waste, nature of waste forms, backfilling procedures and materials, and trench-cover construction and materials at low-level radioactive-waste repository sites greatly affect the geohydrology of the sites. Engineering practices are dominant factors in eventual stability and isolation of the waste. The papers presented relating to Topic I were discussions of the hydrogeologic setting at existing low-level radioactive-waste repository sites and changes in the hydrology induced by site operations. Papers summarizing detailed studies presented at this workshop include those at sites near Sheffield, Ill.; Oak Ridge National Laboratory, Tenn.; West Valley, N.Y.; Maxey Flats, Ky.; Barnwell, S.C.; and Beatty, Nev.
1990-01-01
reporting limit. Acceptable RPD in this case is defined as duplicate values within one detection limit of each other. I I I I I I i I i 2567I88-A1...analysis shois the :aboratory to be in ccn:rol. Results for Sa:Dle No. 88092.739 are reported on a wet weight basis, since percen:age moisture was...describes the remedial actions performed on sites confirmed to contain hazardous waste contamination which endangers the human health. The actions
Comprehensive implementation plan for the DOE defense buried TRU- contaminated waste program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everette, S.E.; Detamore, J.A.; Raudenbush, M.H.
1988-02-01
In 1970, the US Atomic Energy Commission established a transuranic'' (TRU) waste classification. Waste disposed of prior to the decision to retrievably store the waste and which may contain TRU contamination is referred to as buried transuranic-contaminated waste'' (BTW). The DOE reference plan for BTW, stated in the Defense Waste Management Plan, is to monitor it, to take such remedial actions as may be necessary, and to re-evaluate its safety as necessary or in about 10-year periods. Responsibility for management of radioactive waste and byproducts generated by DOE belongs to the Secretary of Energy. Regulatory control for these sites containingmore » mixed waste is exercised by both DOE (radionuclides) and EPA (hazardous constituents). Each DOE Operations Office is responsible for developing and implementing plans for long-term management of its radioactive and hazardous waste sites. This comprehensive plan includes site-by-site long-range plans, site characteristics, site costs, and schedules at each site. 13 figs., 15 tabs.« less
Technology for Waste Treatment at Remote Army Sites
1986-09-01
Management "AD-A.17 6 801 i echnology for Waste Treatment at Remote Army Sites by * Richard J. Scholze James E. Alleinan Steve R. Struss EdD. Smith This...62720 IA896 A 1039 IT TITLE (include Security Classification) Technology for Waste Treatment at Remote Army Sites (Unclassified) 12 PERSONAL...management human wastes 13 02 waste treatment remote sites I I wastes (sanitary engineering)~ 19 ABSTRACT (Continue on reverse if necessary and identify by
Kim, Christopher S; Stack, David H; Rytuba, James J
2012-07-01
As a result of extensive gold and silver mining in the Mojave Desert, southern California, mine wastes and tailings containing highly elevated arsenic (As) concentrations remain exposed at a number of former mining sites. Decades of weathering and erosion have contributed to the mobilization of As-enriched tailings, which now contaminate surrounding communities. Fluvial transport plays an intermittent yet important and relatively undocumented role in the migration and dispersal of As-contaminated mine wastes in semi-arid climates. Assessing the contribution of fluvial systems to tailings mobilization is critical in order to assess the distribution and long-term exposure potential of tailings in a mining-impacted environment. Extensive sampling, chemical analysis, and geospatial mapping of dry streambed (wash) sediments, tailings piles, alluvial fans, and rainwater runoff at multiple mine sites have aided the development of a conceptual model to explain the fluvial migration of mine wastes in semi-arid climates. Intense and episodic precipitation events mobilize mine wastes downstream and downslope as a series of discrete pulses, causing dispersion both down and lateral to washes with exponential decay behavior as distance from the source increases. Accordingly a quantitative model of arsenic concentrations in wash sediments, represented as a series of overlapping exponential power-law decay curves, results in the acceptable reproducibility of observed arsenic concentration patterns. Such a model can be transferable to other abandoned mine lands as a predictive tool for monitoring the fate and transport of arsenic and related contaminants in similar settings. Effective remediation of contaminated mine wastes in a semi-arid environment requires addressing concurrent changes in the amounts of potential tailings released through fluvial processes and the transport capacity of a wash.
Kim, Christopher S.; Slack, David H.; Rytuba, James J.
2012-01-01
As a result of extensive gold and silver mining in the Mojave Desert, southern California, mine wastes and tailings containing highly elevated arsenic (As) concentrations remain exposed at a number of former mining sites. Decades of weathering and erosion have contributed to the mobilization of As-enriched tailings, which now contaminate surrounding communities. Fluvial transport plays an intermittent yet important and relatively undocumented role in the migration and dispersal of As-contaminated mine wastes in semi-arid climates. Assessing the contribution of fluvial systems to tailings mobilization is critical in order to assess the distribution and long-term exposure potential of tailings in a mining-impacted environment. Extensive sampling, chemical analysis, and geospatial mapping of dry streambed (wash) sediments, tailings piles, alluvial fans, and rainwater runoff at multiple mine sites have aided the development of a conceptual model to explain the fluvial migration of mine wastes in semi-arid climates. Intense and episodic precipitation events mobilize mine wastes downstream and downslope as a series of discrete pulses, causing dispersion both down and lateral to washes with exponential decay behavior as distance from the source increases. Accordingly a quantitative model of arsenic concentrations in wash sediments, represented as a series of overlapping exponential power-law decay curves, results in the acceptable reproducibility of observed arsenic concentration patterns. Such a model can be transferable to other abandoned mine lands as a predictive tool for monitoring the fate and transport of arsenic and related contaminants in similar settings. Effective remediation of contaminated mine wastes in a semi-arid environment requires addressing concurrent changes in the amounts of potential tailings released through fluvial processes and the transport capacity of a wash.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-12-31
This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.
Innovative practices for treating waste streams containing heavy metals often involve technologies or systems that either reduce the amount of waste generated or recover reusable resources. With the land disposal of metal treatment residuals becoming less of an accepted waste man...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poet, Torka S.; Timchalk, Chuck
A large number of volatile chemicals have been identified in the headspaces of tanks used to store mixed chemical and radioactive waste at the U.S. Department of Energy (DOE) Hanford Site, and there is concern that vapor releases from the tanks may be hazardous to workers. Contractually established occupational exposure limits (OELs) established by the Occupational Safety and Health Administration (OSHA) and American Conference of Governmental Industrial Hygienists (ACGIH) do not exist for all chemicals of interest. To address the need for worker exposure guidelines for those chemicals that lack OSHA or ACGIH OELs, a procedure for assigning Acceptable Occupationalmore » Exposure Limits (AOELs) for Hanford Site tank farm workers has been developed and applied to a selected group of 57 headspace chemicals.« less
Industrial Program of Waste Management - Cigeo Project - 13033
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butez, Marc; Bartagnon, Olivier; Gagner, Laurent
2013-07-01
The French Planning Act of 28 June 2006 prescribed that a reversible repository in a deep geological formation be chosen as the reference solution for the long-term management of high-level and intermediate-level long-lived radioactive waste. It also entrusted the responsibility of further studies and design of the repository (named Cigeo) upon the French Radioactive Waste Management Agency (Andra), in order for the review of the creation-license application to start in 2015 and, subject to its approval, the commissioning of the repository to take place in 2025. Andra is responsible for siting, designing, implementing, operating the future geological repository, including operationalmore » and long term safety and waste acceptance. Nuclear operators (Electricite de France (EDF), AREVA NC, and the French Commission in charge of Atomic Energy and Alternative Energies (CEA) are technically and financially responsible for the waste they generate, with no limit in time. They provide Andra, on one hand, with waste packages related input data, and on the other hand with their long term industrial experiences of high and intermediate-level long-lived radwaste management and nuclear operation. Andra, EDF, AREVA and CEA established a cooperation agreement for strengthening their collaborations in these fields. Within this agreement Andra and the nuclear operators have defined an industrial program for waste management. This program includes the waste inventory to be taken into account for the design of the Cigeo project and the structural hypothesis underlying its phased development. It schedules the delivery of the different categories of waste and defines associated flows. (authors)« less
Delphi`s DETOXSM process: Preparing to treat high organic content hazardous and mixed wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, D.T.; Rogers, T.W.; Goldblatt, S.D.
1998-12-31
The US Department of Energy (DOE) Federal Energy Technology Center is sponsoring a full-scale technology demonstration of Delphi Research, Inc.`s patented DETOX{sup SM} catalytic wet chemical oxidation waste treatment process at the Savannah River Site (SRS) in South Carolina. The process is being developed primarily to treat hazardous and mixed wastes within the DOE complex as an alternative to incineration, but it has significant potential to treat wastes in the commercial sector. The results of the demonstration will be intensively studied and used to validate the technology. A critical objective in preparing for the demonstration was the successful completion ofmore » a programmatic Operational Readiness Review. Readiness Reviews are required by DOE for all new process startups. The Readiness Review provided the vehicle to ensure that Delphi was ready to start up and operate the DETOX{sup SM} process in the safest manner possible by implementing industry accepted management practices for safe operation. This paper provides an overview of the DETOX{sup SM} demonstration at SRS, and describes the crucial areas of the Readiness Review that marked the first steps in Delphi`s transition from a technology developer to an operating waste treatment services provider.« less
Trends in sustainable landfilling in Malaysia, a developing country.
Fauziah, S H; Agamuthu, P
2012-07-01
In Malaysia, landfills are being filled up rapidly due to the current daily generation of approximately 30,000 tonnes of municipal solid waste. This situation creates the crucial need for improved landfilling practices, as sustainable landfilling technology is yet to be achieved here. The objective of this paper is to identify and evaluate the development and trends in landfilling practices in Malaysia. In 1970, the disposal sites in Malaysia were small and prevailing waste disposal practices was mere open-dumping. This network of relatively small dumps, typically located close to population centres, was considered acceptable for a relatively low population of 10 million in Malaysia. In the 1980s, a national programme was developed to manage municipal and industrial wastes more systematically and to reduce adverse environmental impacts. The early 1990s saw the privatization of waste management in many parts of Malaysia, and the establishment of the first sanitary landfills for MSW and an engineered landfill (called 'secure landfill' in Malaysia) for hazardous waste. A public uproar in 2007 due to contamination of a drinking water source from improper landfilling practices led to some significant changes in the government's policy regarding the country's waste management strategy. Parliament passed the Solid Waste and Public Cleansing Management (SWPCM) Act 2007 in August 2007. Even though the Act is yet to be implemented, the government has taken big steps to improve waste management system further. The future of the waste management in Malaysia seems somewhat brighter with a clear waste management policy in place. There is now a foundation upon which to build a sound and sustainble waste management and disposal system in Malaysia.
Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, G.D.; Beaulieu, D.H.; Wolaver, R.W.
1986-11-01
The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part ofmore » this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-12-31
This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.
Toxicity screening of waste products using cell culture techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petitmermet, M.; Favre, A.; Shah, B.
1995-12-31
More than 600,000 tons of residue from waste incineration plants is produced in Switzerland each year. These residues are slag, fly ashes, and residues from extended flue gas cleaning. Because they are contaminated with heavy metals, they have to be deposited in appropriate landfills. Due to the increasing amount of municipal and industrial waste and the decreasing amount of disposal sites, additional treatment of waste and its by-products is becoming more and more important. To decrease the amount of residuals to be deposited, the heavy metal content of the residues has to be reduced by physical, chemical, or biological methodsmore » to acceptably low levels to obtain products suitable for reuse in the construction industry. The cell reactions due to the presence of residues and their extracts were studied using quantitative and qualitative methods. The results of the applied cell culture techniques showed that fly ash was much more cytotoxic than slag. This finding correlates with the chemical analysis. The washed samples were again less cytotoxic than their corresponding unwashed samples due to the lack of water-soluble compounds. The very sensitive response of the cell cultures to toxic substances was used to classify and validate the applied treatment methods.« less
GIVE THE PUBLIC SOMETHING, SOMETHING MORE INTERESTING THAN RADIOACTIVE WASTE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Codee, Hans D.K.
2003-02-27
In the Netherlands the policy to manage radioactive waste is somewhat different from that in other countries, although the practical outcome is not much different. Long-term, i.e. at least 100 years, storage in above ground engineered structures of all waste types is the first element in the Dutch policy. Second element, but equally important, is that deep geologic disposal is foreseen after the storage period. This policy was brought out in the early eighties and was communicated to the public as a practical, logical and feasible management system for the Dutch situation. Strong opposition existed at that time to deepmore » disposal in salt domes in the Netherlands. Above ground storage at principle was not rejected because the need to do something was obvious. Volunteers for a long term storage site did not automatically emerge. A site selection procedure was followed and resulted in the present site at Vlissingen-Oost. The waste management organization, COVRA, was not really welcomed here , but was tolerated. In the nineties facilities for low and medium level waste were erected and commissioned. In the design of the facilities much attention was given to emotional factors. The first ten operational years were needed to gain trust from the local population. Impeccable conduct and behavior was necessary as well as honesty and full openness to the public Now, after some ten years, the COVRA facilities are accepted. And a new phase is entered with the commissioning of the storage facility for high level waste, the HABOG facility. A visit to that facility will not be very spectacular, activities take place only during loading and unloading. Furthermore it is a facility for waste, so unwanted material will be brought into the community. In order to give the public something more interesting the building itself is transformed into a piece of art and in the inside a special work of art will be displayed. Together with that the attitude of the company will change. We are proud on our work and we like to show that. Our work is necessary and useful for society. We will not hide our activities but show them and make it worth looking at them.« less
Garnett, Kenisha; Cooper, Tim
2014-12-01
The complexity of municipal waste management decision-making has increased in recent years, accompanied by growing scrutiny from stakeholders, including local communities. This complexity reflects a socio-technical framing of the risks and social impacts associated with selecting technologies and sites for waste treatment and disposal facilities. Consequently there is growing pressure on local authorities for stakeholders (including communities) to be given an early opportunity to shape local waste policy in order to encourage swift planning, development and acceptance of the technologies needed to meet statutory targets to divert waste from landfill. This paper presents findings from a research project that explored the use of analytical-deliberative processes as a legitimising tool for waste management decision-making. Adopting a mixed methods approach, the study revealed that communicating the practical benefits of more inclusive forms of engagement is proving difficult even though planning and policy delays are hindering development and implementation of waste management infrastructure. Adopting analytical-deliberative processes at a more strategic level will require local authorities and practitioners to demonstrate how expert-citizen deliberations may foster progress in resolving controversial issues, through change in individuals, communities and institutions. The findings suggest that a significant shift in culture will be necessary for local authorities to realise the potential of more inclusive decision processes. This calls for political actors and civic society to collaborate in institutionalising public involvement in both strategic and local planning structures. Copyright © 2014 Elsevier Ltd. All rights reserved.
Contamination by trace elements at e-waste recycling sites in Bangalore, India.
Ha, Nguyen Ngoc; Agusa, Tetsuro; Ramu, Karri; Tu, Nguyen Phuc Cam; Murata, Satoko; Bulbule, Keshav A; Parthasaraty, Peethmbaram; Takahashi, Shin; Subramanian, Annamalai; Tanabe, Shinsuke
2009-06-01
The recycling and disposal of electronic waste (e-waste) in developing countries is causing an increasing concern due to its effects on the environment and associated human health risks. To understand the contamination status, we measured trace elements (TEs) in soil, air dust, and human hair collected from e-waste recycling sites (a recycling facility and backyard recycling units) and the reference sites in Bangalore and Chennai in India. Concentrations of Cu, Zn, Ag, Cd, In, Sn, Sb, Hg, Pb, and Bi were higher in soil from e-waste recycling sites compared to reference sites. For Cu, Sb, Hg, and Pb in some soils from e-waste sites, the levels exceeded screening values proposed by US Environmental Protection Agency (EPA). Concentrations of Cr, Mn, Co, Cu, In, Sn, Sb, Tl, Pb and Bi in air from the e-waste recycling facility were relatively higher than the levels in Chennai city. High levels of Cu, Mo, Ag, Cd, In, Sb, Tl, and Pb were observed in hair of male workers from e-waste recycling sites. Our results suggest that e-waste recycling and its disposal may lead to the environmental and human contamination by some TEs. To our knowledge, this is the first study on TE contamination at e-waste recycling sites in Bangalore, India.
Waste information management system: a web-based system for DOE waste forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geisler, T.J.; Shoffner, P.A.; Upadhyay, U.
2007-07-01
The implementation of the Department of Energy (DOE) mandated accelerated cleanup program has created significant potential technical impediments that must be overcome. The schedule compression will require close coordination and a comprehensive review and prioritization of the barriers that may impede treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal have now become potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE headquarters in Washington, D.C., need timely waste forecast information regarding the volumes andmore » types of waste that will be generated by DOE sites over the next 25 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needs a common application to allow interested parties to understand and view the complete complex-wide picture. A common application would allow identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the development of this web-based forecast system. (authors)« less
40 CFR 262.57 - Recordkeeping.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Exports of Hazardous Waste § 262.57 Recordkeeping. (a) For all... at least three years from the date the hazardous waste was accepted by the initial transporter; (2...
40 CFR 257.13 - Deadline for making demonstrations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-Hazardous Waste Disposal Units Location Restrictions § 257.13 Deadline for making demonstrations. Existing..., 1998, must not accept CESQG hazardous waste for disposal. Ground-Water Monitoring and Corrective Action ... WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Disposal Standards...
40 CFR 273.55 - Off-site shipments.
Code of Federal Regulations, 2010 CFR
2010-07-01
....55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.55 Off-site... universal waste being shipped off-site meets the Department of Transportation's definition of hazardous...
40 CFR 61.154 - Standard for active waste disposal sites.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...
40 CFR 61.154 - Standard for active waste disposal sites.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...
40 CFR 61.154 - Standard for active waste disposal sites.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...
40 CFR 61.154 - Standard for active waste disposal sites.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...
40 CFR 61.154 - Standard for active waste disposal sites.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...
Development of occupational exposure limits for the Hanford tank farms.
Still, Kenneth R; Gardner, Donald E; Snyder, Robert; Anderson, Thomas J; Honeyman, James O; Timchalk, Charles
2010-04-01
Production of plutonium for the United States' nuclear weapons program from the 1940s to the 1980s generated 53 million gallons of radioactive chemical waste, which is stored in 177 underground tanks at the Hanford site in southeastern Washington State. Recent attempts to begin the retrieval and treatment of these wastes require moving the waste to more modern tanks and result in potential exposure of the workers to unfamiliar odors emanating from headspace in the tanks. Given the unknown risks involved, workers were placed on supplied air respiratory protection. CH2MHILL, the managers of the Hanford site tank farms, asked an Independent Toxicology Panel (ITP) to assist them in issues relating to an industrial hygiene and risk assessment problem. The ITP was called upon to help determine the risk of exposure to vapors from the tanks, and in general develop a strategy for solution of the problem. This paper presents the methods used to determine the chemicals of potential concern (COPCs) and the resultant development of screening values and Acceptable Occupational Exposure Limits (AOELs) for these COPCs. A total of 1826 chemicals were inventoried and evaluated. Over 1500 chemicals were identified in the waste tanks headspaces and more than 600 of these were assigned screening values; 72 of these compounds were recommended for AOEL development. Included in this list of 72 were 57 COPCs identified by the ITP and of these 47 were subsequently assigned AOELs. An exhaustive exposure assessment strategy was developed by the CH2MHILL industrial hygiene department to evaluate these COPCs.
Case study of a solid-waste-scavenger community with respect to health and environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kungskulniti, Nipapun.
1991-01-01
This study was an investigation of a solid waste scavenger community at the On-Nooch Dump Site in Bangkok, Thailand. The purpose was to identify the dimensions of the public health conditions of solid waste scavengers and their community. Cross-sectional field surveys and measurements were undertaken to characterize the distribution and magnitude of health-related problems and environmental conditions. Scavengers were found to be exposed to hazardous conditions due to the waste materials at the dump site. Cuts and punctures from sharp materials were the most common complaints among scavengers. Health symptoms like headache, diarrhea, respiratory illness, skin diseases and back painmore » were also reported. There was a high prevalence of childhood respiratory illness especially among those children of households where cigarette smoking was present. Children had poor nutritional status and were commonly infected by intestinal protozoa and helminths. An appreciable proportion of adult respondents was below the normal range for lung function performance. Seroprevalence of HBV infection was found to be high among male respondents in addition to six respondents that had possible HIV infections. The quality of the community water supply was low. Air pollution measurements showed acceptable ambient air levels except for particulate levels (TSP and RSP). Levels of indoor, outdoor, and personal exposure NO{sub 2} were found to be similar. Data for an inner-city project apartment community named Din-Dang were also collected for comparison. A priority rating index and recommendations for public health condition improvements were presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
1996-07-31
This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the closure of 51 high-level radioactive waste tanks and tank farm ancillary equipment (including transfer lines, evaporators, filters, pumps, etc) at the Savannah River Site (SRS) located near Aiken, South Carolina. The waste tanks are located in the F- and H-Areas of SRS and vary in capacity from 2,839,059 liters (750,000 gallons) to 4,921,035 liters (1,300,000 gallons). These in-ground tanks are surrounded by soil to provide shielding. The F- and H-Area High-Level Waste Tanks are operated under the authoritymore » of Industrial Wastewater Permits No.17,424-IW; No.14520, and No.14338 issued by the South Carolina Department of Health and Environmental Control (SCDHEC). In accordance with the Permit requirements, DOE has prepared a Closure Plan (DOE, 1996) and submitted it to SCDHEC for approval. The Closure Plan identifies all applicable or relevant and appropriate regulations, statutes, and DOE Orders for closing systems operated under the Industrial Wastewater Permits. When approved by SCDHEC, the Closure Plan will present the regulatory process for closing all of the F- and H-Area High Level Waste Tanks. The Closure Plan establishes performance objectives or criteria to be met prior to closing any tank, group of tanks, or ancillary tank farm equipment. The proposed action is to remove the residual wastes from the tanks and to fill the tanks with a material to prevent future collapse and bind up residual waste, to lower human health risks, and to increase safety in and around the tanks. If required, an engineered cap consisting of clay, backfill (soil), and vegetation as the final layer to prevent erosion would be applied over the tanks. The selection of tank system closure method will be evaluated against the following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) criteria described in 40 CFR 300.430(e)(9): ( 1) overall protection of human health and the environment; (2) compliance with applicable or relevant and appropriated requirement: (ARARs); (3) long-term effectiveness and permanence; (4) reduction of toxicity, mobility, or volume through treatment; (5) short-term effectiveness; (6) implementability; (7) cost; (8) state acceptable; and (9) community acceptance. Closure of each tank involves two separate operations after bulk waste removal has been accomplished: (1) cleaning of the tank (i.e., removing the residual contaminants), and (2) the actual closure or filling of the tank with an inert material, (e.g., grout). This process would continue until all the tanks and ancillary equipment and systems have been closed. This is expected to be about year 2028 for Type I, II, and IV tanks and associated systems. Subsequent to that, Type III tanks and systems will be closed.« less
77 FR 72997 - Low-Level Waste Disposal
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
...-2011-0012] RIN 3150-AI92 Low-Level Waste Disposal AGENCY: Nuclear Regulatory Commission. ACTION... Regulatory Commission (NRC) is proposing to amend its regulations that govern low-level radioactive waste... development of criteria for waste acceptance based on the results of these analyses. These amendments will...
DOE Waste Treatability Group Guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkpatrick, T.D.
1995-01-01
This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the solemore » basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.« less
Transuranic solid waste management programs. Progress report, July--December 1975
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-09-01
Progress is reported for three transuranic solid waste management programs funded at the Los Alamos Scientific Laboratory (LASL) by the Energy Research and Development Administration (ERDA) Division of Fuel Cycle and Production (NFCP). Under the Transuranic Waste Research and Development Program, continued studies have shown the potential attractiveness of fiber drums as an acceptable substitute for the current mild steel storage containers. Various fire retardants have been evaluated, with one indicating significant ability to inhibit fire propagation. Continued radiolysis studies, under laboratory and field conditions, continue to reaffirm earlier LASL results indicating no significant hazard from radiolytic reactions, assuming nomore » change in current allowable loadings. Care must be exercised to differentiate between radiolytic and chemical reactions. Other efforts have identified a modification of chemical processing to reduce the amounts of plutonium requiring retrievable storage. Studies are also in progress to enhance the sensitivity of the LASL MEGAS assay system. The Transuranic-Contaminated Solid Waste Treatment Development Facility building was 72 percent complete as of December 31, 1975, which is in accord with the existing schedule. Procurement of process components is also on schedule. Certain modifications to the facility have been made, and various pre-facility experiments on waste container handling and processing have been completed. The program for the Evaluation of Transuranic-Contaminated Radioactive Waste Disposal Areas continued development of various computer modules for simulation of radionuclide transport within the biosphere. In addition, program staff contributed to an ERDA document on radioactive waste management through the preparation of a report on burial of radioactive waste at ERDA-contractor and commercial sites.« less
Final waste forms project: Performance criteria for phase I treatability studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilliam, T.M.; Hutchins, D.A.; Chodak, P. III
1994-06-01
This document defines the product performance criteria to be used in Phase I of the Final Waste Forms Project. In Phase I, treatability studies will be performed to provide {open_quotes}proof-of-principle{close_quotes} data to establish the viability of stabilization/solidification (S/S) technologies. This information is required by March 1995. In Phase II, further treatability studies, some at the pilot scale, will be performed to provide sufficient data to allow treatment alternatives identified in Phase I to be more fully developed and evaluated, as well as to reduce performance uncertainties for those methods chosen to treat a specific waste. Three main factors influence themore » development and selection of an optimum waste form formulation and hence affect selection of performance criteria. These factors are regulatory, process-specific, and site-specific waste form standards or requirements. Clearly, the optimum waste form formulation will require consideration of performance criteria constraints from each of the three categories. Phase I will focus only on the regulatory criteria. These criteria may be considered the minimum criteria for an acceptable waste form. In other words, a S/S technology is considered viable only if it meet applicable regulatory criteria. The criteria to be utilized in the Phase I treatability studies were primarily taken from Environmental Protection Agency regulations addressed in 40 CFR 260 through 265 and 268; and Nuclear Regulatory Commission regulations addressed in 10 CFR 61. Thus the majority of the identified criteria are independent of waste form matrix composition (i.e., applicable to cement, glass, organic binders etc.).« less
2002 Hyperspectral Analysis of Hazardous Waste Sites on the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gladden, J.B.
2003-08-28
Hazardous waste site inspection is a labor intensive, time consuming job, performed primarily on the ground using visual inspection and instrumentation. It is an expensive process to continually monitor hazardous waste and/or landfill sites to determine if they are maintaining their integrity. In certain instances, it may be possible to monitor aspects of the hazardous waste sites and landfills remotely. The utilization of multispectral data was suggested for the mapping of clays and iron oxides associated with contaminated groundwater, vegetation stress, and methane gas emissions (which require longer wavelength detectors). The Savannah River Site (SRS) near Aiken, S.C. is amore » United States Department of Energy facility operated by the Westinghouse Savannah River Company. For decades the SRS was responsible for developing weapons grade plutonium and other materials for the nation's nuclear defense. Hazardous waste was generated during this process. Waste storage site inspection is a particularly important issue at the SRS because there are over 100 hazardous waste sites scattered throughout the 300 mile complex making it difficult to continually monitor all of the facilities. The goal is to use remote sensing technology to identify surface anomalies on the hazardous waste sites as early as possible so that remedial work can take place rapidly to maintain the integrity of the storage sites. The anomalous areas are then targeted for intensive in situ human examination and measurement. During the 1990s, many of the hazardous waste sites were capped with protective layers of polyethelene sheeting and soil, and planted with bahia grass and/or centipede grass. This research investigated hyperspectral remote sensing technology to determine if it can be used to measure accurately and monitor possible indicators of change on vegetated hazardous waste sites. Specifically, it evaluated the usefulness of hyperspectral remote sensing to assess the condition of vegetation on clay- caps on the Mixed Waste Management Facility (MWMF). This report first describes the principles of hyperspectral remote sensing. In situ measurement and hyperspectral remote sensing methods used to analyze hazardous waste sites on the Savannah River Site are then presented.« less
Rattner, B.A.; Flickinger, Edward L.; Hoffman, D.J.
1993-01-01
Male cotton rats (Sigmodon hispidus) were studied at three industrial waste sites near Houston, Texas, to determine whether various morphological, biochemical, and histopathological indices provided evidence of contaminant exposure and toxic insult. Only modest changes were detected in cotton rats residing at waste sites compared with reference sites. No single parameter was consistently altered, except hepatic cytochrome P-450 concentration which was lower ( [Formula: see text] ) at two waste sites, and tended to be lower ( [Formula: see text] ) at a third waste site. Elevated petroleum hydrocarbon concentrations were detected in rats at one waste site, but contaminant burdens of rats from the other sites were unremarkable. Unlike rats captured in summer, those trapped in winter exhibited hepatocellular hypertrophy and up to a 65% increase in liver: body weight ratio, cytochrome P-450 concentration, and activities of aniline hydroxylase, aryl hydrocarbon hydroxylase, and glutathione S-transferase. Although genotoxicity has been previously documented in cotton rats residing at two of the waste sites, biomarkers in the present study provided little evidence of exposure and damage
Geohydrologic aspects for siting and design of low-level radioactive-waste disposal
Bedinger, M.S.
1989-01-01
The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action.Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to minimize transport of waste from the repository. The hydrology of a flow system containing a repository is greatly affected by the engineering of the repository site. Prediction of the performance of the repository is a complex problem, hampered by problems of characterizing the natural and manmade features of the flow system and by the limitations of models to predict flow and geochemical processes in the saturated and unsaturated zones. Disposal in low-permeability unfractured clays in the saturated zone may be feasible where the radionuclide transport is controlled by diffusion rather than advection.
Lessons Learned from Radioactive Waste Storage and Disposal Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esh, David W.; Bradford, Anna H.
2008-01-15
The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. Thismore » paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.« less
LLRW disposal facility siting approaches: Connecticut`s innovative volunteer approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forcella, D.; Gingerich, R.E.; Holeman, G.R.
1994-12-31
The Connecticut Hazardous Waste Management Service (CHWMS) has embarked on a volunteer approach to siting a LLRW disposal facility in Connecticut. This effort comes after an unsuccessful effort to site a facility using a step-wise, criteria-based site screening process that was a classic example of the decide/announce/defend approach. While some of the specific features of the CHWMS` volunteer process reflect the unique challenge presented by the state`s physical characteristics, political structure and recent unsuccessful siting experience, the basic elements of the process are applicable to siting LLRW disposal facilities in many parts of the United States. The CHWMS` volunteer processmore » is structured to reduce the {open_quotes}outrage{close_quotes} dimension of two of the variables that affect the public`s perception of risk. The two variables are the degree to which the risk is taken on voluntarily (voluntary risks are accepted more readily than those that are imposed) and the amount of control one has over the risk (risks under individual control are accepted more readily than those under government control). In the volunteer process, the CHWMS will only consider sites that have been been voluntarily offered by the community in which they are located and the CHWMS will share control over the development and operation of the facility with the community. In addition to these elements which have broad applicability, the CHWMS has tailored the volunteer approach to take advantage of the unique opportunities made possible by the earlier statewide site screening process. Specifically, the approach presents a {open_quotes}win-win{close_quotes} situation for elected officials in many communities if they decide to participate in the process.« less
Bedinger, Marion S.; Stevens, Peter R.
1990-01-01
In the United States, low-level radioactive waste is disposed by shallow-land burial. Low-level radioactive waste generated by non-Federal facilities has been buried at six commercially operated sites; low-level radioactive waste generated by Federal facilities has been buried at eight major and several minor Federally operated sites (fig. 1). Generally, low-level radioactive waste is somewhat imprecisely defined as waste that does not fit the definition of high-level radioactive waste and does not exceed 100 nCi/g in the concentration of transuranic elements. Most low-level radioactive waste generated by non-Federal facilities is generated at nuclear powerplants; the remainder is generated primarily at research laboratories, hospitals, industrial facilities, and universities. On the basis of half lives and concentrations of radionuclides in low-level radioactive waste, the hazard associated with burial of such waste generally lasts for about 500 years. Studies made at several of the commercially and Federally operated low-level radioactive-waste repository sites indicate that some of these sites have not provided containment of waste nor the expected protection of the environment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills § 98.348 Definitions. Except as specified in this... contained in landfill gas. Industrial waste landfill means any landfill other than a municipal solid waste... capacity means the maximum amount of solid waste a landfill can accept. For the purposes of this subpart...
Waste Characterization Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil-Holterman, Luciana R.; Naranjo, Felicia Danielle
2016-02-02
This report discusses ways to classify waste as outlined by LANL. Waste Generators must make a waste determination and characterize regulated waste by appropriate analytical testing or use of acceptable knowledge (AK). Use of AK for characterization requires several source documents. Waste characterization documentation must be accurate, sufficient, and current (i.e., updated); relevant and traceable to the waste stream’s generation, characterization, and management; and not merely a list of information sources.
Fischer, John N.
1986-01-01
In the United States, low-level radioactive waste is disposed of by shallow land burial. Commercial low-level radioactive waste has been buried at six sites, and low-level radioactive waste generated by the Federal Government has been buried at nine major and several minor sites. Several existing low-level radioactive waste sites have not provided expected protection of the environment. These shortcomings are related, at least in part, to an inadequate understanding of site hydrogeology at the time the sites were selected. To better understand the natural systems and the effect of hydrogeologic factors on long-term site performance, the U.S. Geological Survey has conducted investigations at five of the six commercial low-level radioactive waste sites and at three Federal sites. These studies, combined with those of other Federal and State agencies, have identified and confirmed important hydrogeologic factors in the effective disposal of low-level radioactive waste by shallow land burial. These factors include precipitation, surface drainage, topography, site stability, geology, thickness of the host soil-rock horizon, soil and sediment permeability, soil and water chemistry, and depth to the water table.
36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites... NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...
36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...
36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...
36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...
36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...
36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...
36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloom, R.R.
1996-04-01
The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented VAC*TRAX mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses an indirectly heated, batch vacuum dryer to thermally desorb organic compounds from mixed wastes. This process hazards analysis evaluated 102 potential hazards. The three significant hazards identified involved the inclusion of oxygen in a process that also included an ignition source and fuel. Changesmore » to the design of the MTU were made concurrent with the hazard identification and analysis; all hazards with initial risk rankings of 1 or 2 were reduced to acceptable risk rankings of 3 or 4. The overall risk to any population group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.« less
U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1983, 1984, and 1985
Dinwiddie, G.A.; Trask, N.J.
1986-01-01
The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research is described according to whether it is related most directly to: (1) high-level and transuranic wastes, (2) low-level wastes, or (3) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, and to studies of regions or environments where waste-disposal sites might be located. A significant part of the activity is concerned with techniques and methods for characterizing disposal sites and studies of geologic and hydrologic processes related to the transport and (or) retention of waste radionuclides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, M.K.
1994-06-01
The United States Department of Energy (DOE) faces the major task of cleaning up hundreds of waste sites across the nation, which will require completion of a large number of remedial investigation/feasibility studies (RI/FSs). The intent of each RI/FS is to characterize the waste problems and environmental conditions at the operable unit level, segment the remediation problem into manageable medium-specific and contaminant-specific pieces, define corresponding remediation objectives, and identify remedial response actions to satisfy those objectives. The RI/FS team can then identify combinations of remediation technologies that will meet the remediation objectives. Finally, the team must evaluate these remedial alternativesmore » in terms of effectiveness, implementability, cost, and acceptability. The Remedial Action Assessment System (RAAS) is being developed by Pacific Northwest Laboratory (PNL) to support DOE in this effort.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-04-01
This Closure Report summarizes the corrective actions which were completed at the Corrective Action Sites within Corrective Action Unit 211 Area 15 Farm Waste Sties at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms.
Journey to the Nevada Test Site Radioactive Waste Management Complex
None
2018-01-16
Journey to the Nevada Test Site Radioactive Waste Management Complex begins with a global to regional perspective regarding the location of low-level and mixed low-level waste disposal at the Nevada Test Site. For decades, the Nevada National Security Site (NNSS) has served as a vital disposal resource in the nation-wide cleanup of former nuclear research and testing facilities. State-of-the-art waste management sites at the NNSS offer a safe, permanent disposal option for U.S. Department of Energy/U.S. Department of Defense facilities generating cleanup-related radioactive waste.
40 CFR 35.928-1 - Approval of the industrial cost recovery system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... treatment works or (2) the charges to be collected by the grantee in providing waste water treatment... accepting waste-waters from other municipalities, the subscribers receiving waste treatment services from... municipalities contributing wastes to the treatment works. The public shall be consulted prior to adoption of the...
40 CFR 35.928-1 - Approval of the industrial cost recovery system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... treatment works or (2) the charges to be collected by the grantee in providing waste water treatment... accepting waste-waters from other municipalities, the subscribers receiving waste treatment services from... municipalities contributing wastes to the treatment works. The public shall be consulted prior to adoption of the...
40 CFR 60.757 - Reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... current amount of solid waste-in-place and the estimated waste acceptance rate for each year of the 5...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Municipal Solid Waste... areas where solid waste may be landfilled according to the permit issued by the State, local, or tribal...
40 CFR 60.757 - Reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... current amount of solid waste-in-place and the estimated waste acceptance rate for each year of the 5...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Municipal Solid Waste... areas where solid waste may be landfilled according to the permit issued by the State, local, or tribal...
40 CFR 60.757 - Reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... current amount of solid waste-in-place and the estimated waste acceptance rate for each year of the 5...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Municipal Solid Waste... areas where solid waste may be landfilled according to the permit issued by the State, local, or tribal...
40 CFR 60.757 - Reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... current amount of solid waste-in-place and the estimated waste acceptance rate for each year of the 5...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Municipal Solid Waste... areas where solid waste may be landfilled according to the permit issued by the State, local, or tribal...
40 CFR 60.757 - Reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... current amount of solid waste-in-place and the estimated waste acceptance rate for each year of the 5...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Municipal Solid Waste... areas where solid waste may be landfilled according to the permit issued by the State, local, or tribal...
DEPOT: A Database of Environmental Parameters, Organizations and Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
CARSON,SUSAN D.; HUNTER,REGINA LEE; MALCZYNSKI,LEONARD A.
2000-12-19
The Database of Environmental Parameters, Organizations, and Tools (DEPOT) has been developed by the Department of Energy (DOE) as a central warehouse for access to data essential for environmental risk assessment analyses. Initial efforts have concentrated on groundwater and vadose zone transport data and bioaccumulation factors. DEPOT seeks to provide a source of referenced data that, wherever possible, includes the level of uncertainty associated with these parameters. Based on the amount of data available for a particular parameter, uncertainty is expressed as a standard deviation or a distribution function. DEPOT also provides DOE site-specific performance assessment data, pathway-specific transport data,more » and links to environmental regulations, disposal site waste acceptance criteria, other environmental parameter databases, and environmental risk assessment models.« less
Hanford Site Waste Management Units Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shearer, Jeffrey P.
2012-02-29
The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2012 version of the HSWMUR contains a comprehensive inventory of themore » 3389 sites and 540 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.« less
Hanford Site Waste Management Units Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shearer, Jeffrey P.
2014-02-19
The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of themore » 3438 sites and 569 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.« less
Hanford Site Waste Management Units Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shearer, Jeffrey P.
2013-02-13
The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of themore » 3427 sites and 564 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.« less
CONCEPTUAL BASIS FOR NATURAL ATTENUATION (NA) ...
As used in enforcement actions at hazardous waste sites by U.S. EPA, monitored natural attenuation is a remedy fully equivalent to any other remedy. The acceptance of MNA is based on three lines of evidence: historical ground water and/or soil chemistry data that demonstrates a trend of declining contaminant concentration, 2. hydrogeologic and geochemical data that demonstrate NA processes and rates, and 3. Field or microcosm studies. MNA is appropriate as remedial approach only where it can be demonstrated to achieve remedial objectives within reasonable time frame, and meets the applicable remedy selection criteria for the particular regulatory program. To inform the public.
40 CFR 270.110 - What must I include in my application for a RAP?
Code of Federal Regulations, 2010 CFR
2010-07-01
... EPA identification number of the remediation waste management site; (b) The name, address, and... States Geological Survey (USGS) or county map showing the location of the remediation waste management site; (e) A scaled drawing of the remediation waste management site showing: (1) The remediation waste...
Configuration management at an environmental restoration DOE facility (Fernald)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckett, C.; Pasko, W.; Kupinski, T.
This report contains information about a meeting held to discuss the decontamination and decommissioning of the Fernald site in Ohio. This site contains two major types of waste. First is the legacy waste. This waste consists of the wastes which were left over from production which is stored in various drums and containers across the site. Second is the waste generated from the remedial activities.
DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobdell, D.; Geimer, R.; Larsen, P.
2003-02-27
The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best managemore » lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost.« less
Evaluation of a Novel Approach for Reducing Emissions of Pharmaceuticals to the Environment
NASA Astrophysics Data System (ADS)
Bean, Thomas G.; Bergstrom, Ed; Thomas-Oates, Jane; Wolff, Amy; Bartl, Peter; Eaton, Bob; Boxall, Alistair B. A.
2016-10-01
Increased interest over the levels of pharmaceuticals detected in the environment has led to the need for new approaches to manage their emissions. Inappropriate disposal of unused and waste medicines and release from manufacturing plants are believed to be important pathways for pharmaceuticals entering the environment. In situ treatment technologies, which can be used on-site in pharmacies, hospitals, clinics, and at manufacturing plants, might provide a solution. In this study we explored the use of Pyropure, a microscale combined pyrolysis and gasification in situ treatment system for destroying pharmaceutical wastes. This involved selecting 17 pharmaceuticals, including 14 of the most thermally stable compounds currently in use and three of high environmental concern to determine the technology's success in waste destruction. Treatment simulation studies were done on three different waste types and liquid, solid, and gaseous emissions from the process were analyzed for parent pharmaceutical and known active transformation products. Gaseous emissions were also analyzed for NOx, particulates, dioxins, furans, and metals. Results suggest that Pyropure is an effective treatment process for pharmaceutical wastes: over 99 % of each study pharmaceutical was destroyed by the system without known active transformation products being formed during the treatment process. Emissions of the other gaseous air pollutants were within acceptable levels. Future uptake of the system, or similar in situ treatment approaches, by clinics, pharmacists, and manufacturers could help to reduce the levels of pharmaceuticals in the environment and reduce the economic and environmental costs of current waste management practices.
Critical management practices influencing on-site waste minimization in construction projects.
Ajayi, Saheed O; Oyedele, Lukumon O; Bilal, Muhammad; Akinade, Olugbenga O; Alaka, Hafiz A; Owolabi, Hakeem A
2017-01-01
As a result of increasing recognition of effective site management as the strategic approach for achieving the required performance in construction projects, this study seeks to identify the key site management practices that are requisite for construction waste minimization. A mixed methods approach, involving field study and survey research were used as means of data collection. After confirmation of construct validity and reliability of scale, data analysis was carried out through a combination of Kruskal-Wallis test, descriptive statistics and exploratory factor analysis. The study suggests that site management functions could significantly reduce waste generation through strict adherence to project drawings, and by ensuring fewer or no design changes during construction process. Provision of waste skips for specific materials and maximisation of on-site reuse of materials are also found to be among the key factors for engendering waste minimization. The result of factor analysis suggests four factors underlying on-site waste management practices with 96.093% of total variance. These measures include contractual provisions for waste minimization, waste segregation, maximisation of materials reuse and effective logistic management. Strategies through which each of the underlying measures could be achieved are further discussed in the paper. Findings of this study would assist construction site managers and other site operatives in reducing waste generated by construction activities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cover design for radioactive and AMD-producing mine waste in the Ronneburg area, eastern Thuringia.
Gatzweiler, R; Jahn, S; Neubert, G; Paul, M
2001-01-01
At the former uranium mining site of Ronneburg, large scale underground and open pit mining for nearly 40 years resulted in a production of about 113,000 tonnes of uranium and about 200 million cubic metres of mine waste. In their present state, these materials cause risks to human health and strong environmental impacts and therefore demand remedial action. The remediation options available are relocation of mine spoil into the open pit and on site remediation by landscaping/contouring, placement of a cover and revegetation. A suitable vegetated cover system combined with a surface water drainage system provides long-term stability against erosion and reduces acid generation thereby meeting the main remediation objectives which are long-term reduction of radiological exposure and contaminant emissions and recultivation. The design of the cover system includes the evaluation of geotechnical, radiological, hydrological, geochemical and ecological criteria and models. The optimized overall model for the cover system has to comply with general conditions as, e.g. economic efficiency, public acceptance and sustainability. Most critical elements for the long-term performance of the cover system designed for the Beerwalde dump are the barrier system and its long-term integrity and a largely self-sustainable vegetation.
Wilderer, P A
2005-01-01
Installation of advanced urban water management systems is one of the most important first steps in the attempt to overcome poverty on earth, outbreak of diseases, crime and even terrorism. Because world wide application of traditional water supply, sewerage and wastewater treatment technology requires financial resources which are basically not available within a reasonable short time frame novel solutions must be found, developed and implemented. The combination of high-tech on-site treatment of the various waste streams generated in households, enterprises and industrial sites, and reuse of the valuable materials obtained from the treatment plants, including the purified water, is one of the options which is investigated by various groups of researchers and technology developers, nowadays. This concept may help meeting the UN Millennium Development Goals, provided people are ready to accept this new way of dealing with household wastes. Education is necessary to build up the foundation which modern water technology can be based upon. In parallel, tailored modifications are to be considered to satisfy the specific demands of local communities. In this context, female participation appears to be extremely important in the decision making process.
Ollson, Christopher A; Whitfield Aslund, Melissa L; Knopper, Loren D; Dan, Tereza
2014-01-01
The regions of Durham and York in Ontario, Canada have partnered to construct an energy-from-waste (EFW) thermal treatment facility as part of a long term strategy for the management of their municipal solid waste. In this paper we present the results of a comprehensive ecological risk assessment (ERA) for this planned facility, based on baseline sampling and site specific modeling to predict facility-related emissions, which was subsequently accepted by regulatory authorities. Emissions were estimated for both the approved initial operating design capacity of the facility (140,000 tonnes per year) and the maximum design capacity (400,000 tonnes per year). In general, calculated ecological hazard quotients (EHQs) and screening ratios (SRs) for receptors did not exceed the benchmark value (1.0). The only exceedances noted were generally due to existing baseline media concentrations, which did not differ from those expected for similar unimpacted sites in Ontario. This suggests that these exceedances reflect conservative assumptions applied in the risk assessment rather than actual potential risk. However, under predicted upset conditions at 400,000 tonnes per year (i.e., facility start-up, shutdown, and loss of air pollution control), a potential unacceptable risk was estimated for freshwater receptors with respect to benzo(g,h,i)perylene (SR=1.1), which could not be attributed to baseline conditions. Although this slight exceedance reflects a conservative worst-case scenario (upset conditions coinciding with worst-case meteorological conditions), further investigation of potential ecological risk should be performed if this facility is expanded to the maximum operating capacity in the future. © 2013.
40 CFR 227.8 - Limitations on the disposal rates of toxic wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.8 Limitations on the disposal rates of toxic wastes. No wastes will be deemed acceptable for ocean dumping unless such wastes can be dumped so as not to exceed the limiting permissible...
40 CFR 227.8 - Limitations on the disposal rates of toxic wastes.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.8 Limitations on the disposal rates of toxic wastes. No wastes will be deemed acceptable for ocean dumping unless such wastes can be dumped so as not to exceed the limiting permissible...
40 CFR 227.8 - Limitations on the disposal rates of toxic wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.8 Limitations on the disposal rates of toxic wastes. No wastes will be deemed acceptable for ocean dumping unless such wastes can be dumped so as not to exceed the limiting permissible...
40 CFR 227.8 - Limitations on the disposal rates of toxic wastes.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.8 Limitations on the disposal rates of toxic wastes. No wastes will be deemed acceptable for ocean dumping unless such wastes can be dumped so as not to exceed the limiting permissible...
40 CFR 227.8 - Limitations on the disposal rates of toxic wastes.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Environmental Impact § 227.8 Limitations on the disposal rates of toxic wastes. No wastes will be deemed acceptable for ocean dumping unless such wastes can be dumped so as not to exceed the limiting permissible...
Yucca Mountain Project Subsurface Facilities Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Linden; R.S. Saunders; R.J. Boutin
2002-11-19
Four units of the Topopah Springs formation (volcanic tuff) are considered for the proposed repository: the upper lithophysal, the middle non-lithophysal, the lower lithophysal, and the lower non-lithophysal. Yucca Mountain was recently designated the site for a proposed repository to dispose of spent nuclear fuel and high-level radioactive waste. Work is proceeding to advance the design of subsurface facilities to accommodate emplacing waste packages in the proposed repository. This paper summarized recent progress in the design of subsurface layout of the proposed repository. The original Site Recommendation (SR) concept for the subsurface design located the repository largely within the lowermore » lithophysal zone (approximately 73%) of the Topopah The Site Recommendation characterized area suitable for emplacement consisted of the primary upper block, the lower block and the southern upper block extension. The primary upper block accommodated the mandated 70,000 metric tons of heavy metal (MTHM) at a 1.45 kW/m hear heat load. Based on further study of the Site Recommendation concept, the proposed repository siting area footprint was modified to make maximum use of available site characterization data, and thus, reduce uncertainties associated with performance assessment. As a result of this study, a modified repository footprint has been proposed and is presently being review for acceptance by the DOE. A panel design concept was developed to reduce overall costs and reduce the overall emplacement schedule. This concept provides flexibility to adjust the proposed repository subsurface layout with time, as it makes it unnecessary to ''commit'' to development of a large single panel at the earliest stages of construction. A description of the underground layout configuration and influencing factors that affect the layout configuration are discussed in the report.« less
40 CFR 265.1 - Purpose, scope, and applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
....1 Section 265.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... establish minimum national standards that define the acceptable management of hazardous waste during the...
Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feo, Giovanni De, E-mail: g.defeo@unisa.it; Gisi, Sabino De
Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. Wemore » wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.« less
The purpose of this paper is to provide RPMs and others investigating hazardous waste sites a summary of the technical issues that need to be considered when determining if a site (i.e., hazardous waste site/area of concern) has elevated levels of ...
U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1986-1990
Trask, N.J.; Stevens, P.R.
1991-01-01
The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research efforts are categorized according to whether they are related most directly to: (1) high-level wastes, (2) transuranic wastes, (3) low-level and mixed low-level and hazardous wastes, or (4) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, to development of techniques and methods for characterizing disposal sites, and to studies of geologic and hydrologic processes related to the transport and/or retention of waste radionuclides.
Summary of the study of disposal of nuclear waste into space
NASA Technical Reports Server (NTRS)
Rom, F. E.
1973-01-01
The space shuttle together with expendable and nonexpendable orbital stages such as the space tug or Centaur can safely dispose of waste material by ejecting it from the solar system. The safety problems associated with all phases of launching and operation (normal, emergency, and accident) of such a system are being examined. It appears that solutions can be found that should make the risks acceptable when compared to the benefits to be obtained from the disposal of the nuclear waste. The techniques proposed to make such a system acceptable need to be carefully verified by further study and experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C. M.; Edwards, T. B.; Trivelpiece, C. L.
Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-compositionmore » models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. This report documents the development of revised TiO 2, Na 2O, Li 2O and Fe 2O 3 coefficients in the SWPF liquidus model and revised coefficients (a, b, c, and d).« less
Sasaki, Shunsuke; Araki, Tetsuya
2014-06-01
This article presents informal recycling contributions made by scavengers in the surrounding area of Bantar Gebang final disposal site for municipal solid waste generated in Jakarta. Preliminary fieldwork was conducted through daily conversations with scavengers to identify recycling actors at the site, and then quantitative field surveys were conducted twice. The first survey (n = 504 households) covered 33% of all households in the area, and the second survey (n = 69 households) was conducted to quantify transactions of recyclables among scavengers. Mathematical equations were formulated with assumptions made to estimate the possible range of recycling rates achieved by dump waste pickers. Slightly over 60% of all respondents were involved in informal recycling and over 80% of heads of households were waste pickers, normally referred to as live-in waste pickers and live-out waste pickers at the site. The largest percentage of their spouses were family workers, followed by waste pickers and housewives. Over 95% of all households of respondents had at least one waste picker or one small boss who has a coequal status of a waste picker. Average weight of recyclables collected by waste pickers at the site was estimated to be approximately 100 kg day(-1) per household on the net weight basis. The recycling rate of solid wastes collected by all scavengers at the site was estimated to be in the range of 2.8-7.5% of all solid wastes transported to the site. © The Author(s) 2014.
Waste Information Management System: One Year After Web Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoffner, P.A.; Geisler, T.J.; Upadhyay, H.
2008-07-01
The implementation of the Department of Energy (DOE) mandated accelerated cleanup program created significant potential technical impediments. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal were potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast information regarding the volumes and types of waste that would be generated by DOEmore » sites over the next 30 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needed a common application to allow interested parties to understand and view the complete complex-wide picture. A common application allows identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the deployment of this fully operational, web-based forecast system. New functional modules and annual waste forecast data updates have been added to ensure the long-term viability and value of this system. In conclusion: WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. WIMS has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different database and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made over the year since its web deployment include the addition of new DOE sites, an updated data set, and the ability to easily print the forecast data tables, the disposition maps, and the GIS maps. Future enhancements will include a high-level waste summary, a display of waste forecast by mode of transportation, and a user help module. The waste summary display module will provide a high-level summary view of the waste forecast data based on the selection of sites, facilities, material types, and forecast years. The waste summary report module will allow users to build custom filtered reports in a variety of formats, such as MS Excel, MS Word, and PDF. The user help module will provide a step-by-step explanation of various modules, using screen shots and general tutorials. The help module will also provide instructions for printing and margin/layout settings to assist users in using their local printers to print maps and reports. (authors)« less
Pyrolysis production of fruit peel biochar for potential use in treatment of palm oil mill effluent.
Lam, Su Shiung; Liew, Rock Keey; Cheng, Chin Kui; Rasit, Nazaitulshila; Ooi, Chee Kuan; Ma, Nyuk Ling; Ng, Jo-Han; Lam, Wei Haur; Chong, Cheng Tung; Chase, Howard A
2018-05-01
Fruit peel, an abundant waste, represents a potential bio-resource to be converted into useful materials instead of being dumped in landfill sites. Palm oil mill effluent (POME) is a harmful waste that should also be treated before it can safely be released to the environment. In this study, pyrolysis of banana and orange peels was performed under different temperatures to produce biochar that was then examined as adsorbent in POME treatment. The pyrolysis generated 30.7-47.7 wt% yield of a dark biochar over a temperature ranging between 400 and 500 °C. The biochar contained no sulphur and possessed a hard texture, low volatile content (≤34 wt%), and high amounts of fixed carbon (≥72 wt%), showing durability in terms of high resistance to chemical reactions such as oxidation. The biochar showed a surface area of 105 m 2 /g and a porous structure containing mesopores, indicating its potential to provide many adsorption sites for use as an adsorbent. The use of the biochar as adsorbent to treat the POME showed a removal efficiency of up to 57% in reducing the concentration of biochemical oxygen demand (BOD), chemical oxygen demand COD, total suspended solid (TSS) and oil and grease (O&G) of POME to an acceptable level below the discharge standard. Our results indicate that pyrolysis shows promise as a technique to transform banana and orange peel into value-added biochar for use as adsorbent to treat POME. The recovery of biochar from fruit waste also shows advantage over traditional landfill approaches in disposing this waste. Copyright © 2018 Elsevier Ltd. All rights reserved.
Development of Occupational Exposure Limits for the Hanford Tank Farms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Still, Kenneth; Gardner, Donald; Snyder, Robert
Production of plutonium for the United States’ nuclear weapons program from the 1940’s to the 1980’s generated 53 million gallons of radioactive chemical waste, which is storedin 177 underground tanks at the Hanford Site in southeastern W 18 ashington State. Recent 19 attempts to begin the retrieval and treatment of these wastes require moving the waste to 20 more modern tanks results in potential exposure of the workers to unfamiliar odors 21 emanating from headspace in the tanks. Given the unknown risks involved, workers 22 were placed on supplied air respiratory protection. CH2M HILL, the managers of the 23 Hanfordmore » Site Tank Farms, asked an Independent Toxicology Panel (ITP) to assist them in issues relating to an Industrial Hygiene and risk assessment problem. The ITP was called upon to help determine the risk of exposure to vapors from the tanks, and in general develop a strategy for solution of the problem. This paper presents the methods used to determine the chemicals of potential concern (COPC) and the resultant development of screening values and Acceptable Occupational Exposure Limits (AOELs) for these COPCs. A total of 1,826 chemicals were inventoried and evaluated. Over 1,500 chemicals were identified in the waste tanks headspaces and more than 600 of these were assigned screening values; 72 of these compounds were recommended for AOEL development. Included in this list of 72 were 57 COPCs identified by the ITP and of these 47 were subsequently assigned AOELs. An exhaustive exposure assessment strategy was developed by the CH2M HILL industrial hygiene department to evaluate these COPCs.« less
Beneficial reuse and sustainability: the fate of organic compounds in land-applied waste.
Overcash, Michael; Sims, Ronald C; Sims, Judith L; Nieman, J Karl C
2005-01-01
Land application systems, also referred to as beneficial reuse systems, are engineered systems that have defined and permitted application areas based on site and waste characteristics to determine the land area size requirement. These terrestrial systems have orders of magnitude greater microbial capability and residence time to achieve decomposition and assimilation compared with aquatic systems. In this paper we focus on current information and information needs related to terrestrial fate pathways in land treatment systems. Attention is given to conventional organic chemicals as well as new estrogenic and pharmaceutical chemicals of commerce. Specific terrestrial fate pathways addressed include: decomposition, bound residue formation, leaching, runoff, and crop uptake. Molecular decomposition and formation of bound residues provide the basis for the design and regulation of land treatment systems. These mechanisms allow for assimilation of wastes and nondegradation of the environment and accomplish the goal of sustainable land use. Bound residues that are biologically produced are relatively immobile, degrade at rates similar to natural soil materials, and should present a significantly reduced risk to the environment as opposed to parent contaminants. With regard to leaching and runoff pathways, no comprehensive summary or mathematical model of organic chemical migration from land treatment systems has been developed. For the crop uptake pathway, a critical need exists to develop information for nonagricultural chemicals and to address full-scale performance and monitoring at more land application sites. The limited technology choices for treatment of biosolids, liquids, and other wastes implies that acceptance of some risks and occurrence of some benefits will continue to characterize land application practices that contribute directly to the goal of beneficial reuse and sustainability.
Interpretation of standard leaching test BS EN 12457-2: is your sample hazardous or inert?
Zandi, Mohammad; Russell, Nigel V; Edyvean, Robert G J; Hand, Russell J; Ward, Philip
2007-12-01
A slag sample from a lead refiner has been obtained and given to two analytical laboratories to determine the release of trace elements from the sample according to BS EN 12457-2. Samples analysed by one laboratory passed waste acceptance criteria, leading it to be classified as an inert material; samples of the same material analysed by the other laboratory failed waste acceptance criteria and were classified as hazardous. It was found that the sample preparation procedure is the critical step in the leaching analysis and that the effects of particle size on leachability should be taken into account when using this standard. The purpose of this paper is to open a debate on designing a better defined standard leaching test and making current waste acceptance criteria more flexible.
Process for treating waste water having low concentrations of metallic contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looney, Brian B; Millings, Margaret R; Nichols, Ralph L
A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.
Hazardous Waste Handling Should be Defined
ERIC Educational Resources Information Center
Steigman, Harry
1972-01-01
An examination of the handling, storage and disposition of hazardous wastes from municipal and industrial sources, with a plea for the development of a uniform national hazardous waste code or listing that would be acceptable and useful to all state and federal agencies. (LK)
Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
2009-07-31
Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) andmore » the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was implemented. (6) At CAS 09-23-01, Area 9 Gravel Gertie, a UR was implemented. (7) At CAS 09-34-01, Underground Detection Station, no work was performed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neill, Robert H.
Since all efforts to date to dispose of HLW in the US have been unsuccessful, the following specific actions need to be taken if we are serious about such disposal: - The requirement in the EPA environmental radiation protection standards to predict the behavior of these unwanted residuals for one million years is meaningless. The Standards must be revisited. - Characterize two sites. There are myriad ways a site can be found to be unacceptable. Additionally, the existing HLW inventory requires a second repository. - Congress should specify incentives to states under consideration for a site. Perhaps 5% of totalmore » cost would be appropriate. - An independent technical review group should be established in such states to evaluate a proposed repository similar to the New Mexico Environmental Evaluation Group (EEG) for the WIPP Project because the state's interests are not necessarily the same as DOE's. - Acceptance or rejection of a proposed site should be based on technical issues, not social ones. Professionals in this field should present papers identifying the merits of HLW disposal in their own state. The scarcity of such research suggests Not In My Back Yard (NIMBY) syndrome. - Medical diagnostic ionizing radiation exposure to the US public is now 8,000 times greater than radiation exposure from nuclear energy. People accept this believing the benefits outweigh any risks. A major effort needs to focus on both benefits as well as risks of radioactive waste disposal. - DOE needs to announce preferences of host rock formations, incentives for states, and potential consequences should we fail to act. (author)« less
Increased Rate of Hospitalization for Diabetes and Residential Proximity of Hazardous Waste Sites
Kouznetsova, Maria; Huang, Xiaoyu; Ma, Jing; Lessner, Lawrence; Carpenter, David O.
2007-01-01
Background Epidemiologic studies suggest that there may be an association between environmental exposure to persistent organic pollutants (POPs) and diabetes. Objective The aim of this study was to test the hypothesis that residential proximity to POP-contaminated waste sites result in increased rates of hospitalization for diabetes. Methods We determined the number of hospitalized patients 25–74 years of age diagnosed with diabetes in New York State exclusive of New York City for the years 1993–2000. Descriptive statistics and negative binomial regression were used to compare diabetes hospitalization rates in individuals who resided in ZIP codes containing or abutting hazardous waste sites containing POPs (“POP” sites); ZIP codes containing hazardous waste sites but with wastes other than POPs (“other” sites); and ZIP codes without any identified hazardous waste sites (“clean” sites). Results Compared with the hospitalization rates for diabetes in clean sites, the rate ratios for diabetes discharges for people residing in POP sites and “other” sites, after adjustment for potential confounders were 1.23 [95% confidence interval (CI), 1.15–1.32] and 1.25 (95% CI, 1.16–1.34), respectively. In a subset of POP sites along the Hudson River, where there is higher income, less smoking, better diet, and more exercise, the rate ratio was 1.36 (95% CI, 1.26–1.47) compared to clean sites. Conclusions After controlling for major confounders, we found a statistically significant increase in the rate of hospitalization for diabetes among the population residing in the ZIP codes containing toxic waste sites. PMID:17366823
Chemical and radiological risk factors associated with waste from energy production.
Christensen, T; Fuglestvedt, J; Benestad, C; Ehdwall, H; Hansen, H; Mustonen, R; Stranden, E
1992-04-01
We have tried to estimate the toxic potential of waste from nuclear power plants and from power plants burning fossil fuels. The potential risks have been expressed as 'risk potentials' or 'person equivalents.' These are purely theoretical units and represent only an attempt to quantify the potential impact of different sources and substances on human health. Existing concentration limits for effects on human health are used. The philosophy behind establishing limits for several carcinogenic chemicals is based on a linear dose-effect curve. That is, no lower concentration of no effect exists and one has to accept a certain small risk by accepting the concentration limit. This is in line with the establishment of limits for radiation. Waste products from coal combustion have the highest potential risk among the fossil fuel alternatives. The highest risk is caused by metals, and the fly ash represents the effluent stream giving the largest contribution to the potential risk. The waste from nuclear power production has a lower potential risk than coal if today's limit values re used. If one adjusts the limits for radiation dose and the concentration limit values so that a similar risk is accepted by the limits, nuclear waste seems to have a much higher potential risk than waste from fossil fuel. The possibility that such risk estimates may be used as arguments for safe storage of the different types of waste is discussed. In order to obtain the actual risk from the potential risk, the dispersion of the waste in the environment and its uptake and effects in man have to be taken into account.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pires, Richard P.; Westsik, Joseph H.; Serne, R. Jeffrey
2011-07-14
Screening tests are being conducted to evaluate waste forms for immobilizing secondary liquid wastes from the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Plans are underway to add a stabilization treatment unit to the Effluent Treatment Facility to provide the needed capacity for treating these wastes from WTP. The current baseline is to use a Cast Stone cementitious waste form to solidify the wastes. Through a literature survey, DuraLith alkali-aluminosilicate geopolymer, fluidized-bed steam reformation (FBSR) granular product encapsulated in a geopolymer matrix, and a Ceramicrete phosphate-bonded ceramic were identified both as candidate waste forms and alternatives to the baseline.more » These waste forms have been shown to meet waste disposal acceptance criteria, including compressive strength and universal treatment standards for Resource Conservation and Recovery Act (RCRA) metals (as measured by the toxicity characteristic leaching procedure [TCLP]). Thus, these non-cementitious waste forms should also be acceptable for land disposal. Information is needed on all four waste forms with respect to their capability to minimize the release of technetium. Technetium is a radionuclide predicted to be in the secondary liquid wastes in small quantities, but the Integrated Disposal Facility (IDF) risk assessment analyses show that technetium, even at low mass, produces the largest contribution to the estimated IDF disposal impacts to groundwater.« less
Watkins: Store spent fuel at federal sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tompkins, B.
If the Department of Energy under the Clinton Administration decides to follow the strategy of departing Energy Secretary James Watkins, spent nuclear fuel (SNF) from utilities would be stored at federal sites starting in 1998. In what amounts to an admission that a monitored retrievable storage (MRS) facility will not be ready to accept SNF by 1998, Watkins proposed in a December 17 letter to Senator J. Bennett Johnston that current work on an MRS be terminated, and that efforts be redirected toward standardized spent-fuel container design. According to the DOE's Samantha Williams, however, the Waste Negotiator's Office will continuemore » its activities, and the new strategy is intended to supplement the ongoing MRS work. She also said that DOE Undersecretary Hugo Pomrehn confirmed this in a statement to the Nuclear Waste TEchnical Review Board during its meeting on January 5. The motivation for the new strategic actions is in part related to the passage of the National Energy Policy Act of 1992, which envisions the continued use of nuclear power in the overall US energy plan. Watkins points out, however, that in order for nuclear power to remain a viable alternative, the management and disposal of spent commercial nuclear fuel is essential to avoid premature and unwarranted shutdowns of operating nuclear plants, to permit renewals of existing plant licenses to provide life extensions from 40 to 60 years, and to enable new orders of advanced-design nuclear plants. In addition, the new strategy is required, according to Watkins, because the Office of the Nuclear Waste Negotiator has been unsuccessful in identifying a voluntary host site for an MRS after two years of efforts to that end. David Leroy, the Negotiator, disagrees with this statement, and has noted that it still may be possible to present a candidate host site for the MRS to Congress by June 1993.« less
Waste Information Management System with 2012-13 Waste Streams - 13095
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, H.; Quintero, W.; Lagos, L.
2013-07-01
The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that wouldmore » be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)« less
Wu, Jiang-Ping; Mo, Ling; Zhi, Hui; Peng, Ying; Tao, Lin; Ren, Zi-He; Luo, Xiao-Jun; Mai, Bi-Xian
2016-06-01
The health effects of exposure to electronic waste (e-waste)-derived pollutants are an important issue. The authors explored the association between the hepatic levels of e-waste-derived halogenated contaminants (including polychlorinated biphenyls [PCBs], polybrominated diphenyl ethers [PBDEs], and polybrominated biphenyls [PBBs]) and hepatic ethoxyresorufin-O-deethylase (EROD) activity of the common kingfisher (Alcedo atthis) from an e-waste site and 2 reference sites in South China. The summed concentrations of PCBs, PBDEs, and PBBs ranged from 620 ng/g to 15 000 ng/g, 25 ng/g to 900 ng/g, and 14 ng/g to 49 ng/g wet weight, respectively, in the kingfishers from the e-waste site, and these values were significantly greater (2-3 orders of magnitude) than those obtained at the 2 reference sites. Correspondingly, significant hepatic EROD induction was observed in the kingfishers from the e-waste site compared with the reference sites. The EROD activity was significantly correlated to the levels of most of the PCB and PBDE congeners examined as well as PBB 153, suggesting that EROD induction may be evoked by these e-waste-derived pollutants. Environ Toxicol Chem 2016;35:1594-1599. © 2015 SETAC. © 2015 SETAC.
The U.S. Department of Energy's Carlsbad Field Office (DOE/CBFO) provided the U.S. Environmental Protection Agency (EPA) this Notification of Planned Change to accept remote-handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP).
1998-01-01
(79) Waste, by definition, has no benefit. It should be viewed as one aspect of the beneficial practice that gave rise to it. Furthermore, radioactive waste management should be placed in the context of the management of society's waste in general. (80) A major issue in evaluating the acceptability of a disposal system for long-lived solid radioactive waste is that doses or risks may arise from exposures in the distant future. There is uncertainty surrounding any estimate of these doses or risks due to lack of knowledge about future conditions. Such exposures are treated as potential exposures as their magnitude depends on future processes and conditions that have probabilities associated with them. (81) Nevertheless, the Commission recognises a basic principle that individuals and populations in the future should be afforded at least the same level of protection from the action of disposing of radioactive waste today as is the current generation. This implies use of the current quantitative dose and risk criteria derived from considering associated health detriment. Therefore, protection of future generations should be achieved by applying these dose or risk criteria to the estimated future doses or risks in appropriately defined critical groups. These estimates should not be regarded as measures of health detriment beyond times of around several hundreds of years into the future. In the case of these longer time periods, they represent indicators of the protection afforded by the disposal system. (82 Constrained optimisation is the central approach to evaluating the radiological acceptability of a waste disposal system; dose or risk constraints are used rather than dose or risk limits. By this transition from limitation to optimisation, the needs of practical application of the radiological protection system to the disposal of long-lived solid waste disposal are met: determination of acceptability now for exposures that may occur in the distant future. Optimisation should be applied in an iterative manner during the disposal system development process and should particularly cover both site selection and repository design. (83) Two broad categories of exposure situations should be considered: natural processes and human intrusion. The latter only refers to intrusion that is inadvertent. The radiological implications of deliberate intrusion into a repository are the responsibility of the intruder. Assessed doses or risks arising from natural processes should be compared with a dose constraint of 0.3 mSv per year or its risk equivalent of around 10(-5) per year. With regard to human intrusion, the consequences from one or more plausible stylized scenarios should be considered in order to evaluate the resilience of the repository to such events. (84) The Commission considers that in circumstances where human intrusion could lead to doses to those living around the site sufficiently high that intervention on current criteria would almost always be justified, reasonable efforts should be made at the repository development stage to reduce the probability of human intrusion or to limit its consequences. In this respect, the Commission has previously advised that an existing annual dose of around 10 mSv per year may be used as a generic reference level below which intervention is not likely to be justifiable. Conversely, an existing annual dose of around 100 mSv per year may be used as a generic reference level above which intervention should be considered almost always justifiable. Similar considerations apply in situations where the thresholds for deterministic effects in relevant organs are exceeded. (85) Compliance with the constraints can be assessed by utilising either an aggregated risk-oriented approach, with a risk constraint, or a disaggregated dose/probability approach, with a dose constraint, or a combination of both. A similar level of protection can be achieved by any of these approaches; however, more information may
40 CFR 270.60 - Permits by rule.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.60 Permits by... operator of a barge or other vessel which accepts hazardous waste for ocean disposal, if the owner or...
40 CFR 270.60 - Permits by rule.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.60 Permits by... operator of a barge or other vessel which accepts hazardous waste for ocean disposal, if the owner or...
40 CFR 98.340 - Definition of the source category.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills § 98.340 Definition of the source category. (a) This source category applies to municipal solid waste (MSW) landfills that accepted... of the following sources at municipal solid waste (MSW) landfills: Landfills, landfill gas collection...
40 CFR 62.1351 - Identification of sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.1351 Identification of sources. The plan applies to all existing municipal solid waste landfills for which construction, reconstruction, or modification was commenced before May 30, 1991 that accepted waste at any time since November...
Periodic Verification of the Scaling Factor for Radwastes in Korean NPPs - 13294
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Yong Joon; Ahn, Hong Joo; Song, Byoung Chul
2013-07-01
According to the acceptance criteria for a low and intermediate level radioactive waste (LILW) listed in Notice No. 2012-53 of the Nuclear Safety and Security Commission (NSSC), specific concentrations of radionuclides inside a drum has to be identified and quantified. In 5 years of effort, scaling factors were derived through destructive radiochemical analysis, and the dry active waste, spent resin, concentration bottom, spent filter, and sludge drums generated during 2004 ∼ 2008 were evaluated to identify radionuclide inventories. Eventually, only dry active waste among LILWs generated from Korean NPPs were first shipped to a permanent disposal facility on December 2010.more » For the LILWs generated after 2009, the radionuclides are being radiochemically quantified because the Notice clarifies that the certifications of the scaling factors should be verified biennially. During the operation of NPP, the radionuclides designated in the Notice are formed by neutron activation of primary coolant, reactor structural materials, corrosion products, and fission products released into primary coolant through defects or failures in fuel cladding. Eventually, since the radionuclides released into primary coolant are transported into the numerous auxiliary and support systems connected to primary system, the LILWs can be contaminated, and the radionuclides can have various concentration distributions. Thus, radioactive wastes, such as spent resin and dry active waste generated at various Korean NPP sites, were sampled at each site, and the activities of the regulated radionuclides present in the sample were determined using radiochemical methods. The scaling factors were driven on the basis of the activity ratios between a or β-emitting nuclides and γ-emitting nuclides. The resulting concentrations were directly compared with the established scaling factors' data using statistical methods. In conclusions, the established scaling factors were verified with a reliability of within 2σ, and the scaling factors will be applied for newly analyzed LILWs to evaluate the radionuclide inventories. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Army Creek Landfill (ACL), formerly known as the Llangollen Landfill, is located approximately two miles southwest of New Castle, Delaware, and is adjacent to the Delaware Sand and Gravel Landfill Superfund site. The County operated this 44-acre landfill, which accepted municipal wastes, from 1960 until its closure in 1968 when it was filled to capacity. In late 1971, water in a residential well downgradient of the site developed quality problems. Results from a subsequent investigation showed that leachate, most likely originating from the Army Creek and Delaware Sand and Gravel Landfills, was contaminating local aquifers. This lead to themore » installation of a ground water recovery system designed to maintain a ground water divide between the landfills and the Artesian Water Company Wellfield located downgradient of the landfills. The primary contaminants of concern include: VOCs, inorganics, heavy metals, benzene, and chromium.« less
40 CFR 240.205-3 - Recommended procedures: Operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended... excessive emissions, appropriate adjustments should be made to lower the emission to acceptable levels. ...
Chooz A, First Pressurized Water Reactor to be Dismantled in France - 13445
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boucau, Joseph; Mirabella, C.; Nilsson, Lennart
2013-07-01
Nine commercial nuclear power plants have been permanently shut down in France to date, of which the Chooz A plant underwent an extensive decommissioning and dismantling program. Chooz Nuclear Power Station is located in the municipality of Chooz, Ardennes region, in the northeast part of France. Chooz B1 and B2 are 1,500 megawatt electric (MWe) pressurized water reactors (PWRs) currently in operation. Chooz A, a 305 MWe PWR implanted in two caves within a hill, began operations in 1967 and closed in 1991, and will now become the first PWR in France to be fully dismantled. EDF CIDEN (Engineering Centermore » for Dismantling and Environment) has awarded Westinghouse a contract for the dismantling of its Chooz A reactor vessel (RV). The project began in January 2010. Westinghouse is leading the project in a consortium with Nuvia France. The project scope includes overall project management, conditioning of the reactor vessel (RV) head, RV and RV internals segmentation, reactor nozzle cutting for lifting the RV out of the pit and seal it afterwards, dismantling of the RV thermal insulation, ALARA (As Low As Reasonably Achievable) forecast to ensure acceptable doses for the personnel, complementary vacuum cleaner to catch the chips during the segmentation work, needs and facilities, waste characterization and packaging, civil work modifications, licensing documentation. The RV and RV internals will be segmented based on the mechanical cutting technology that Westinghouse applied successfully for more than 13 years. The segmentation activities cover the cutting and packaging plan, tooling design and qualification, personnel training and site implementation. Since Chooz A is located inside two caves, the project will involve waste transportation from the reactor cave through long galleries to the waste buffer area. The project will end after the entire dismantling work is completed, and the waste storage is outside the caves and ready to be shipped either to the ANDRA (French National Radioactive Waste Management Agency) waste disposal facilities - (for low-level waste [LLW] and very low-level waste [VLLW], which are considered short lived) - or to the EDF Interim Storage Facility planned to be built on another site - (for low- and intermediate-level waste [LILW], which is considered long lived). The project has started with a detailed conceptual study that determines the step-by-step approach for dismantling the reactor and eventually supplying the packed containers ready for final disposal. All technical reports must be verified and approved by EDF and the French Nuclear Safety Authority before receiving the authorization to start the site work. The detailed conceptual study has been completed to date and equipment design and manufacturing is ongoing. This paper will present the conceptual design of the reactor internals segmentation and packaging process that will be implemented at Chooz A, including the planning, methodology, equipment, waste management, and packaging strategy. (authors)« less
NASA Astrophysics Data System (ADS)
Abed Gatea, Mezher; Ahmed, Anwar A.; jundee kadhum, Saad; Ali, Hasan Mohammed; Hussein Muheisn, Abbas
2018-05-01
The Safety Assessment Framework (SAFRAN) software has implemented here for radiological safety analysis; to verify that the dose acceptance criteria and safety goals are met with a high degree of confidence for dismantling of Tammuz-2 reactor core at Al-tuwaitha nuclear site. The activities characterizing, dismantling and packaging were practiced to manage the generated radioactive waste. Dose to the worker was considered an endpoint-scenario while dose to the public has neglected due to that Tammuz-2 facility is located in a restricted zone and 30m berm surrounded Al-tuwaitha site. Safety assessment for dismantling worker endpoint-scenario based on maximum external dose at component position level in the reactor pool and internal dose via airborne activity while, for characterizing and packaging worker endpoints scenarios have been done via external dose only because no evidence for airborne radioactivity hazards outside the reactor pool. The in-situ measurements approved that reactor core components are radiologically activated by Co-60 radioisotope. SAFRAN results showed that the maximum received dose for workers are (1.85, 0.64 and 1.3mSv/y) for activities dismantling, characterizing and packaging of reactor core components respectively. Hence, the radiological hazards remain below the low level hazard and within the acceptable annual dose for workers in radiation field
Study on detecting leachate leakage of municipal solid waste landfill site.
Liu, Jiangang; Cao, Xianxian; Ai, Yingbo; Zhou, Dongdong; Han, Qiting
2015-06-01
The article studies the detection of the leakage passage of leachate in a waste landfill dam. The leachate of waste landfill has its own features, like high conductivity, high chroma and an increasing temperature, also, the horizontal flow velocity of groundwater on the leakage site increases. This article proposes a comprehensive tracing method to identify the leakage site of an impermeable membrane by using these features. This method has been applied to determine two leakage sites of the Yahu municipal solid waste landfill site in Pingshan District, Shenzhen, China, which shows that there are two leachate leakage passages in the waste landfill dam A between NZK-2 and NZK-3, and between NZK-6 and NZK-7. © The Author(s) 2015.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ENERGY STANDARD CONTRACT FOR DISPOSAL OF SPENT NUCLEAR FUEL AND/OR HIGH-LEVEL RADIOACTIVE WASTE General... owns or generates spent nuclear fuel or high-level radioactive waste, of domestic origin, generated in... part will commit DOE to accept title to, transport, and dispose of such spent fuel and waste. In...
Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal.
De Feo, Giovanni; De Gisi, Sabino
2014-11-01
The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a "land use map of potentially suitable areas" for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the "Priority Scale") in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ericson, Bret; Caravanos, Jack; Chatham-Stephens, Kevin; Landrigan, Philip; Fuller, Richard
2013-02-01
In the developing world, environmental chemical exposures due to hazardous waste sites are poorly documented. We describe the approach taken by the Blacksmith Institute's Toxic Sites Identification Program in documenting environmental chemical exposures due to hazardous waste sites globally, identifying sites of concern and quantifying pathways, populations, and severity of exposure. A network of local environmental investigators was identified and trained to conduct hazardous waste site investigations and assessments. To date, 2,095 contaminated sites have been identified within 47 countries having an estimated population at risk of 71,500,000. Trained researchers and investigators have visited 1,400 of those sites. Heavy metals are the leading primary exposures, with water supply and ambient air being the primary routes of exposure. Even though chemical production has occurred largely in the developed world to date, many hazardous waste sites in the developing world pose significant hazards to the health of large portions of the population. Further research is needed to quantify potential health and economic consequences and identify cost-effective approaches to remediation.
WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.C. Khamamkar
2000-06-23
The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will bemore » designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations Monitoring and Control System for supervisory monitoring and control signals. The system interfaces with all facility support loads such as heating, ventilation, and air conditioning, office, fire protection, monitoring and control, safeguards and security, and communications subsystems.« less
Bosompem, Christian; Stemn, Eric; Fei-Baffoe, Bernard
2016-10-01
The increase in the quantity of municipal solid waste generated as a result of population growth in most urban areas has resulted in the difficulty of locating suitable land areas to be used as landfills. To curb this, waste transfer stations are used. The Kumasi Metropolitan Area, even though it has an engineered landfill, is faced with the problem of waste collection from the generation centres to the final disposal site. Thus in this study, multi-criteria decision analysis incorporated into a geographic information system was used to determine potential waste transfer station sites. The key result established 11 sites located within six different sub-metros. This result can be used by decision makers for site selection of the waste transfer stations after taking into account other relevant ecological and economic factors. © The Author(s) 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeMonia, Brian; Dunning, Don; Hampshire John
2013-07-01
Department of Energy (DOE) requirements for the release of non-real property, including solid waste, containing low levels of residual radioactive materials are specified in DOE Order 458.1 and associated guidance. Authorized limits have been approved under the requirements of DOE Order 5400.5, predecessor to DOE Order 458.1, to permit disposal of solid waste containing low levels of residual radioactive materials at solid waste landfills located within the DOE Oak Ridge Reservation (ORR). Specifically, volumetric concentration limits for disposal of solid waste at Industrial Landfill V and at Construction/Demolition Landfill VII were established in 2003 and 2007, respectively, based on themore » requirements in effect at that time, which included: an evaluation to ensure that radiation doses to the public would not exceed 25 mrem/year and would be as low as reasonably achievable (ALARA), with a goal of a few mrem/year or less (in fact, these authorized limits actually were derived to meet a dose constraint of 1 mrem/year); an evaluation of compliance with groundwater protection requirements; and reasonable assurance that the proposed disposal is not likely to result in a future requirement for remediation of the landfill. Prior to approval as DOE authorized limits, these volumetric concentration limits were coordinated with the Tennessee Department of Environment and Conservation (TDEC) and documented in a Memorandum of Understanding (MOU) between the TDEC Division of Radiological Health and the TDEC Division of Solid Waste Management. These limits apply to the disposal of soil and debris waste generated from construction, maintenance, environmental restoration, and decontamination and decommissioning (D and D) activities on the DOE Oak Ridge Reservation. The approved site-specific authorized limits were incorporated in the URS/CH2M Oak Ridge LLC (UCOR) waste profile system that authorizes disposal of special wastes at either of the RCRA Subtitle D landfills. However, a recent DOE assessment found that implementation of the site-specific authorized limits for volumetrically contaminated waste was potentially limited due in part to confusion regarding the applicability of volumetric concentration limits and/or surface activity limits to specific wastes. This paper describes recent efforts to update the authorized limits for Industrial Landfill V and Construction/Demolition Landfill VII and to improve the procedures for implementation of these criteria. The approved authorized limits have been evaluated and confirmed to meet the current requirements of DOE Order 458.1, which superseded DOE Order 5400.5 in February 2011. In addition, volumetric concentration limits have been developed for additional radionuclides, and site-specific authorized limits for wastes with surface contamination have been developed. Implementing procedures have been revised to clarify the applicability of volumetric concentration limits and surface activity limits, and to allow the use of non-destructive waste characterization methods. These changes have been designed to promote improved utilization of available disposal capacity of the onsite disposal facilities within the DOE Oak Ridge Reservation. In addition, these changes serve to bring the waste acceptance requirements at these DOE onsite landfills into greater consistency with the requirements for commercial/ public landfills under the TDEC Bulk Survey for Release (BSFR) program, including two public RCRA Subtitle D landfills in close proximity to the DOE Oak Ridge Reservation. (authors)« less
Spatial analysis of hazardous waste data using geostatistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zirschky, J.H.
1984-01-01
The objective of this investigation was to determine if geostatistics could be a useful tool for evaluating hazardous waste sites. Three sites contaminated by dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)) were investigated. The first site evaluated was a creek into which TCDD-contaminated soil had eroded. The second site was a town in which TCDD-contaminated wastes had been sprayed onto the streets. Finally, the third site was a highway of which the shoulders were contaminated by dust deposition from a nearby hazardous waste site. The distribution of TCDD at the first and third sites were investigated using kriging, an optimal estimation technique. By usingmore » kriging, the areas of both sites requiring cleanup were successfully identified. At the second site, the town, satisfactory results were not obtained. The distribution of contamination in this town is believed to be very heterogeneous; thus, reasonable estimates could not be obtained. Additional sampling was therefore recommended at this site. Based upon this research, geostatistics appears to be a very useful tool for evaluating a hazardous waste site if the distribution of contaminants at the site is homogeneous, or can be divided into homogeneous areas.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... design capacity, the calculation must include a site-specific density. If the design capacity is within... process that can reasonably be expected to change the site-specific waste density, the site-specific waste density must be redetermined and the design capacity must be recalculated based on the new waste density...
Code of Federal Regulations, 2012 CFR
2012-07-01
... design capacity, the calculation must include a site-specific density. If the design capacity is within... process that can reasonably be expected to change the site-specific waste density, the site-specific waste density must be redetermined and the design capacity must be recalculated based on the new waste density...
Burden of disease from toxic waste sites in India, Indonesia, and the Philippines in 2010.
Chatham-Stephens, Kevin; Caravanos, Jack; Ericson, Bret; Sunga-Amparo, Jennifer; Susilorini, Budi; Sharma, Promila; Landrigan, Philip J; Fuller, Richard
2013-07-01
Prior calculations of the burden of disease from toxic exposures have not included estimates of the burden from toxic waste sites due to the absence of exposure data. We developed a disability-adjusted life year (DALY)-based estimate of the disease burden attributable to toxic waste sites. We focused on three low- and middle-income countries (LMICs): India, Indonesia, and the Philippines. Sites were identified through the Blacksmith Institute's Toxic Sites Identification Program, a global effort to identify waste sites in LMICs. At least one of eight toxic chemicals was sampled in environmental media at each site, and the population at risk estimated. By combining estimates of disease incidence from these exposures with population data, we calculated the DALYs attributable to exposures at each site. We estimated that in 2010, 8,629,750 persons were at risk of exposure to industrial pollutants at 373 toxic waste sites in the three countries, and that these exposures resulted in 828,722 DALYs, with a range of 814,934-1,557,121 DALYs, depending on the weighting factor used. This disease burden is comparable to estimated burdens for outdoor air pollution (1,448,612 DALYs) and malaria (725,000 DALYs) in these countries. Lead and hexavalent chromium collectively accounted for 99.2% of the total DALYs for the chemicals evaluated. Toxic waste sites are responsible for a significant burden of disease in LMICs. Although some factors, such as unidentified and unscreened sites, may cause our estimate to be an underestimate of the actual burden of disease, other factors, such as extrapolation of environmental sampling to the entire exposed population, may result in an overestimate of the burden of disease attributable to these sites. Toxic waste sites are a major, and heretofore underrecognized, global health problem.
Performance of on-site Medical waste disinfection equipment in hospitals of Tabriz, Iran
Taghipour, Hassan; Alizadeh, Mina; Dehghanzadeh, Reza; Farshchian, Mohammad Reza; Ganbari, Mohammad; Shakerkhatibi, Mohammad
2016-01-01
Background: The number of studies available on the performance of on-site medical waste treatment facilities is rare, to date. The aim of this study was to evaluate the performance of onsite medical waste treatment equipment in hospitals of Tabriz, Iran. Methods: A various range of the on-site medical waste disinfection equipment (autoclave, chemical disinfection, hydroclave, and dry thermal treatment) was considered to select 10 out of 22 hospitals in Tabriz to be included in the survey. The apparatus were monitored mechanically, chemically, and biologically for a six months period in all of the selected hospitals. Results: The results of the chemical monitoring (Bowie-Dick tests) indicated that 38.9% of the inspected autoclaves had operational problems in pre-vacuum, air leaks, inadequate steam penetration into the waste, and/or vacuum pump. The biological indicators revealed that about 55.55% of the samples were positive. The most of applied devices were not suitable for treating anatomical, pharmaceutical, cytotoxic, and chemical waste. Conclusion: Although on-site medical waste treating facilities have been installed in all the hospitals, the most of infectious-hazardous medical waste generated in the hospitals were deposited into a municipal solid waste landfill, without enough disinfection. The responsible authorities should stringently inspect and evaluate the operation of on-site medical waste treating equipment. An advanced off-site central facility with multi-treatment and disinfection equipment and enough capacity is recommended as an alternative. PMID:27766238
Performance of on-site Medical waste disinfection equipment in hospitals of Tabriz, Iran.
Taghipour, Hassan; Alizadeh, Mina; Dehghanzadeh, Reza; Farshchian, Mohammad Reza; Ganbari, Mohammad; Shakerkhatibi, Mohammad
2016-01-01
Background: The number of studies available on the performance of on-site medical waste treatment facilities is rare, to date. The aim of this study was to evaluate the performance of onsite medical waste treatment equipment in hospitals of Tabriz, Iran. Methods: A various range of the on-site medical waste disinfection equipment (autoclave, chemical disinfection, hydroclave, and dry thermal treatment) was considered to select 10 out of 22 hospitals in Tabriz to be included in the survey. The apparatus were monitored mechanically, chemically, and biologically for a six months period in all of the selected hospitals. Results: The results of the chemical monitoring (Bowie-Dick tests) indicated that 38.9% of the inspected autoclaves had operational problems in pre-vacuum, air leaks, inadequate steam penetration into the waste, and/or vacuum pump. The biological indicators revealed that about 55.55% of the samples were positive. The most of applied devices were not suitable for treating anatomical, pharmaceutical, cytotoxic, and chemical waste. Conclusion: Although on-site medical waste treating facilities have been installed in all the hospitals, the most of infectious-hazardous medical waste generated in the hospitals were deposited into a municipal solid waste landfill, without enough disinfection. The responsible authorities should stringently inspect and evaluate the operation of on-site medical waste treating equipment. An advanced off-site central facility with multi-treatment and disinfection equipment and enough capacity is recommended as an alternative.
40 CFR 273.18 - Off-site shipments.
Code of Federal Regulations, 2011 CFR
2011-07-01
....18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.18 Off-site shipments. (a) A small quantity handler of universal waste is prohibited from sending or...
40 CFR 273.38 - Off-site shipments.
Code of Federal Regulations, 2012 CFR
2012-07-01
....38 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.38 Off-site shipments. (a) A large quantity handler of universal waste is prohibited from sending or...
40 CFR 273.38 - Off-site shipments.
Code of Federal Regulations, 2011 CFR
2011-07-01
....38 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.38 Off-site shipments. (a) A large quantity handler of universal waste is prohibited from sending or...
40 CFR 273.18 - Off-site shipments.
Code of Federal Regulations, 2012 CFR
2012-07-01
....18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.18 Off-site shipments. (a) A small quantity handler of universal waste is prohibited from sending or...
40 CFR 273.18 - Off-site shipments.
Code of Federal Regulations, 2010 CFR
2010-07-01
....18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.18 Off-site shipments. (a) A small quantity handler of universal waste is prohibited from sending or...
40 CFR 273.38 - Off-site shipments.
Code of Federal Regulations, 2010 CFR
2010-07-01
....38 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.38 Off-site shipments. (a) A large quantity handler of universal waste is prohibited from sending or...
40 CFR 273.38 - Off-site shipments.
Code of Federal Regulations, 2014 CFR
2014-07-01
....38 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.38 Off-site shipments. (a) A large quantity handler of universal waste is prohibited from sending or...
40 CFR 273.18 - Off-site shipments.
Code of Federal Regulations, 2014 CFR
2014-07-01
....18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.18 Off-site shipments. (a) A small quantity handler of universal waste is prohibited from sending or...
40 CFR 273.38 - Off-site shipments.
Code of Federal Regulations, 2013 CFR
2013-07-01
....38 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.38 Off-site shipments. (a) A large quantity handler of universal waste is prohibited from sending or...
40 CFR 273.18 - Off-site shipments.
Code of Federal Regulations, 2013 CFR
2013-07-01
....18 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.18 Off-site shipments. (a) A small quantity handler of universal waste is prohibited from sending or...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-11-01
This report presents the results of the Site Investigation (SI) conducted at IRP Sites No. 1, No. 2, and No. 3 at the 106th Civil Engineering Flight (CEF) located at Roslyn Air National Guard Station (ANGS), Roslyn, Long Island, New York. A Preliminary Assessment (PA) (AD-A238 847) of the 106th CEF resulted in the identification of two potentially contaminated waste holding areas and a waste sludge application site. These sites were identified as IRP Site No. 1 (Access Road to Aerospace Ground Equipment `AGE` Shop), IRP Site No. 2 (Old Waste Holding Area No. 1), and IRP Site No. 3more » (Old Waste Holding Area No. 2) and recommended for further investigation under the Installation Restoration Program (IRP).« less
Extractive waste management: A risk analysis approach.
Mehta, Neha; Dino, Giovanna Antonella; Ajmone-Marsan, Franco; Lasagna, Manuela; Romè, Chiara; De Luca, Domenico Antonio
2018-05-01
Abandoned mine sites continue to present serious environmental hazards because the heavy metals associated with extractive waste are continuously released into the environment, where they threaten human life and the environment. Remediating and securing extractive waste are complex, lengthy and costly processes. Thus, in most European countries, a site is considered for intervention when it poses a risk to human health and the surrounding environment. As a consequence, risk analysis presents a viable decisional approach towards the management of extractive waste. To evaluate the effects posed by extractive waste to human health and groundwater, a risk analysis approach was used for an abandoned nickel extraction site in Campello Monti in North Italy. This site is located in the Southern Italian Alps. The area consists of large and voluminous mafic rocks intruded by mantle peridotite. The mining activities in this area have generated extractive waste. A risk analysis of the site was performed using Risk Based Corrective Action (RBCA) guidelines, considering the properties of extractive waste and water for the properties of environmental matrices. The results showed the presence of carcinogenic risk due to arsenic and risks to groundwater due to nickel. The results of the risk analysis form a basic understanding of the current situation at the site, which is affected by extractive waste. Copyright © 2017 Elsevier B.V. All rights reserved.
Andraski, Brian J.; Prudic, David E.; ,
1997-01-01
The suitability of a waste-burial site depends on hydrologic processes that can affect the near-surface water balance. In addition, the loss of burial trench integrity by erosion and subsidence of trench covers may increase the likelihood of infiltration and percolation, thereby reducing the effectiveness of the site in isolating waste. Although the main components of the water balance may be defined, direct measurements can be difficult, and actual data for specific locations are seldom available. A prevalent assumption is that little or no precipitation will percolate to buried wastes at an arid site. Thick unsaturated zones, which are common to arid regions, are thought to slow water movement and minimize the risk of waste migration to the underlying water table. Thus, reliance is commonly placed on the natural system to isolate contaminants at waste-burial sites in the arid West.Few data are available to test assumptions about the natural soil-water flow systems at arid sites, and even less is known about how the natural processes are altered by construction of a waste-burial facility. The lack of data is the result of technical complexity of hydraulic characterization of the dry, stony soils, and insufficient field studies that account for the extreme temporal and spatial variations in precipitation, soils, and plants in arid regions. In 1976, the U.S. Geological Survey (USGS) began a long-term study at a waste site in the Mojave Desert. This paper summarizes the findings of ongoing investigations done under natural-site and waste-burial conditions, and discusses how this information may be applied to the design of surface barriers for waste sites in arid environments.The waste-burial site is in one of the most arid parts of the United States and is about 40 km northeast of Death Valley, near Beatty, Nev. (Figure 1). Precipitation averaged 108 mm/yr during 1981-1992. The water table is 85-115 m below land surface (Fischer, 1992). Sediments are largely alluvial and fluvial deposits (Nichols, 1987). Vegetation is sparse; creosote bush is the dominant species. The waste facility has been used for burial of low-level radioactive waste (1962-1992) and hazardous chemical waste (1970 to present). Burial-trench construction includes excavation of native soil, emplacement of waste, and backfilling with previously stockpiled soil. Only the most recently closed hazardous-waste trench (1991) incorporates a plastic liner in the cover. The surfaces of completed burial trenches and perimeter areas are kept free of vegetation.
TRU waste absorbent addition project at the Idaho National Engineering and Environmental Laboratory.
Colson, R Griff; Auman, Laurence E
2003-08-01
ABSTRACT In order to meet a commitment to ship 3,100 m3 of transuranic waste to the Waste Isolation Pilot Plant (WIPP), the Idaho National Engineering and Environmental Laboratory (INEEL) developed a process to add absorbent to TRU waste drums that did not meet WIPP waste acceptance criteria. The development, implementation, and safe completion of this project contributed to the INEEL's success in meeting the commitment three months early.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Sai, E-mail: liangsai09@gmail.com; Zhang Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn
Highlights: Black-Right-Pointing-Pointer Impacts of solid waste recycling on Suzhou's urban metabolism in 2015 are analyzed. Black-Right-Pointing-Pointer Sludge recycling for biogas is regarded as an accepted method. Black-Right-Pointing-Pointer Technical levels of reusing scrap tires and food wastes should be improved. Black-Right-Pointing-Pointer Other fly ash utilization methods should be exploited. Black-Right-Pointing-Pointer Secondary wastes from reusing food wastes and sludge should be concerned. - Abstract: Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impactsmore » of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned.« less
Dunn, James E; Davis, Wayne T; Calcagno, James A; Allen, Marshall W
2002-01-01
A field study to evaluate the performance of three commercially available particulate matter (PM) continuous emission monitors (CEMs) was conducted in 1999-2000 at the US Department of Energy (DOE) Toxic Substances Control Act (TSCA) Incinerator. This study offers unique features that are believed to enhance the collective US experience with PM CEMs. The TSCA Incinerator is permitted to treat PCB-contaminated RCRA hazardous low-level radioactive wastes. The air pollution control system utilizes MACT control technology and is comprised of a rapid quench, venturi scrubber, packed bed scrubber, and two ionizing wet scrubbers in series, which create a saturated flue gas that must be conditioned by the CEMs prior to measurement. The incinerator routinely treats a wide variety of wastes including high and low BTU organic liquids, aqueous, and solid wastes. The various possible combinations for treating liquid and solid wastes may present a challenge in establishing a single, acceptable correlation relationship for individual CEMs. The effect of low-level radioactive material present in the waste is a unique site-specific factor not evaluated in previous tests. The three systems chosen for evaluation were two beta gauge devices and a light scattering device. The performance of the CEMs was evaluated using the requirements in draft Environmental Protection Agency (EPA) Performance Specification 11 (PS11) and Procedure 2. The results of Reference Method 5i stack tests for establishing statistical correlations between the reference method data and the CEMs responses are discussed.
40 CFR 240.204-3 - Recommended procedures: Operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended... acceptable levels. (b) In the event of an accidental spill, the local regulatory agency should be notified...
Waste certification program plan for Oak Ridge National Laboratory. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1997-09-01
This document defines the waste certification program (WCP) developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the WCP is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements for mixed (both radioactive and hazardous) and hazardous [including polychlorinated biphenyls (PCB)] waste. Program activities will be conducted according to ORNL Level 1 document requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste generator site will be conveyed in a letter from the Administrator's authorized representative to... transmittal to the WIPP Waste Information System database of waste characterization data, in accordance with... will be conveyed in a letter from the Administrator's authorized representative to DOE. EPA will not...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste generator site will be conveyed in a letter from the Administrator's authorized representative to... transmittal to the WIPP Waste Information System database of waste characterization data, in accordance with... will be conveyed in a letter from the Administrator's authorized representative to DOE. EPA will not...
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste generator site will be conveyed in a letter from the Administrator's authorized representative to... transmittal to the WIPP Waste Information System database of waste characterization data, in accordance with... will be conveyed in a letter from the Administrator's authorized representative to DOE. EPA will not...
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste generator site will be conveyed in a letter from the Administrator's authorized representative to... transmittal to the WIPP Waste Information System database of waste characterization data, in accordance with... will be conveyed in a letter from the Administrator's authorized representative to DOE. EPA will not...
Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-09-01
DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km)more » (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).« less
Langlois, Peter H; Brender, Jean D; Suarez, Lucina; Zhan, F Benjamin; Mistry, Jatin H; Scheuerle, Angela; Moody, Karen
2009-07-01
Most studies of the relationship between maternal residential proximity to sources of environmental pollution and congenital cardiovascular malformations have combined heart defects into one group or broad subgroups. The current case-control study examined whether risk of conotruncal heart defects, including subsets of specific defects, was associated with maternal residential proximity to hazardous waste sites and industrial facilities with recorded air emissions. Texas Birth Defects Registry cases were linked to their birth or fetal death certificate. Controls without birth defects were randomly selected from birth certificates. Distances from maternal addresses at delivery to National Priority List (NPL) waste sites, state superfund waste sites, and Toxic Release Inventory (TRI) facilities were determined for 1244 cases (89.5% of those eligible) and 4368 controls (88.0%). Living within 1 mile of a hazardous waste site was not associated with risk of conotruncal heart defects [adjusted odds ratio (aOR) = 0.83, 95% confidence interval (CI) = 0.54, 1.27]. This was true whether looking at most types of defects or waste sites. Only truncus arteriosus showed statistically elevated ORs with any waste site (crude OR: 2.80, 95% CI 1.19, 6.54) and with NPL sites (crude OR: 4.63, 95% CI 1.18, 13.15; aOR 4.99, 95% CI 1.26, 14.51), but the latter was based on only four exposed cases. There was minimal association between conotruncal heart defects and proximity to TRI facilities (aOR = 1.10, 95% CI = 0.91, 1.33). Stratification by maternal age or race/ethnic group made little difference in effect estimates for waste sites or industrial facilities. In this study population, maternal residential proximity to waste sites or industries with reported air emissions was not associated with conotruncal heart defects or its subtypes in offspring, with the exception of truncus arteriosus.
Organic Separation Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.
2014-09-22
Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations,more » could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.« less
Impact of informal electronic waste recycling on metal concentrations in soils and dusts.
Ohajinwa, Chimere May; van Bodegom, Peter M; Vijver, Martina G; Peijnenburg, Willie J G M
2018-07-01
Electronic and electrical equipment contains over 1000 different substances, including metals. During informal e-waste recycling some of these substances such as metals, are released into the environment causing environmental pollution. This study assessed the impact of different informal e-waste recycling activities (burning, dismantling, and repairing) on metal concentrations in top soils and various dust. A comparative cross-sectional study design was adopted to assess metal concentrations in top soils and in various dust samples from multiple e-waste recycling sites. Metal concentrations at e-waste recycling sites were compared to the concentrations at control sites in three study locations in Nigeria (Lagos, Ibadan, and Aba). In the three study locations, mean metal concentrations at the e-waste recycling sites exceeded the concentrations at the control sites and the Nigerian standard guideline values by 100 s to 1000 s times. Burning sites showed the highest pollution level, followed by dismantling sites, then repair sites. Our findings show serious environmental and public health concerns. The metal concentrations were also higher than levels reported in other studies at the same locations in Nigeria, indicating that the situation is worsening. This study provides scientific evidence for an urgent need to develop effective strategies to strengthen enforcement of existing e-waste regulations in Nigeria. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Joseph V.; Freedman, Vicky L.
2016-09-28
Approximately 50 million gallons of high-level radioactive mixed waste has accumulated in 177 buried single- and double-shell tanks at the Hanford Site in southeastern Washington State as a result of the past production of nuclear materials, primarily for defense uses. The United States Department of Energy (DOE) is proceeding with plans to permanently dispose of this waste. Plans call for separating the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, which will be vitrified at the Hanford Waste Treatment and Immobilization Plant (WTP). Principal radionuclides of concern in LAW are 99Tc, 129I, and U, while non-radioactive contaminantsmore » of concern are Cr and nitrate/nitrite. HLW glass will be sent off-site to an undetermined federal site for deep geological disposal while the much larger volume of immobilized low-activity waste will be placed in the on-site, near-surface Integrated Disposal Facility (IDF).« less
Local negotiation on compensation siting of the spent nuclear fuel repository in Finland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojo, Matti
The aim of the paper is to analyse the local negotiation process between the Municipality of Eurajoki and the nuclear power company Teollisuuden Voima (TVO) and the nuclear waste management company Posiva Oy. The aim of the negotiations was to find an acceptable form of compensation for siting a spent nuclear fuel repository in Olkiluoto, Finland. The paper includes background information on the siting process in Finland, the local political setting in the Municipality of Eurajoki and a description of the negotiation process. The analysis of the negotiations on compensation is important for better understanding the progress of the Finnishmore » siting process. The paper describes the picture of the contest to host the spent nuclear fuel repository. It also provides more information on the relationship between the Municipality of Eurajoki and the power company TVO. The negotiations on compensation and the roles of various players in the negotiations have not been studied in detail because the minutes of the Vuojoki liaison group were not available before the decision of the Supreme Administrative Court in May 2006. (author)« less
Ofungwu, Joseph; Eget, Steven
2006-07-01
Redevelopment of landfill sites in the New Jersey-New York metropolitan area for recreational (golf courses), commercial, and even residential purposes seems to be gaining acceptance among municipal planners and developers. Landfill gas generation, which includes methane and potentially toxic nonmethane compounds usually continues long after closure of the landfill exercise phase. It is therefore prudent to evaluate potential health risks associated with exposure to gas emissions before redevelopment of the landfill sites as recreational, commercial, and, especially, residential properties. Unacceptably high health risks would call for risk management measures such as limiting the development to commercial/recreational rather than residential uses, stringent gas control mechanisms, interior air filtration, etc. A methodology is presented for applying existing models to estimate residual landfill hazardous compounds emissions and to quantify associated health risks. Besides the toxic gas constituents of landfill emissions, other risk-related issues concerning buried waste, landfill leachate, and explosive gases were qualitatively evaluated. Five contiguously located landfill sites in New Jersey intended for residential and recreational redevelopment were used to exemplify the approach.
Petrovic, Igor
2016-09-01
The most viable option for biostabilisation of old sanitary landfills, filled with raw municipal solid waste, is the so-called bioreactor landfill. Even today, bioreactor landfills are viable options in many economically developing countries. However, in order to reduce the biodegradable component of landfilled waste, mechanical and biological treatment has become a widely accepted waste treatment technology, especially in more prosperous countries. Given that mechanical and biological treatment alters the geotechnical properties of raw waste material, the design of sanitary landfills which accepts mechanically and biologically treated waste, should be carried out with a distinct set of geotechnical parameters. However, under the assumption that 'waste is waste', some design engineers might be tempted to use geotechnical parameters of untreated raw municipal solid waste and mechanical and biological pre-treated municipal solid waste interchangeably. Therefore, to provide guidelines for use and to provide an aggregated source of this information, this mini-review provides comparisons of geotechnical parameters of mechanical and biological pre-treated waste and raw untreated waste at various decomposition stages. This comparison reveals reasonable correlations between the hydraulic conductivity values of untreated and mechanical and biological pre-treated municipal solid waste. It is recognised that particle size might have a significant influence on the hydraulic conductivity of both municipal solid waste types. However, the compression ratios and shear strengths of untreated and pre-treated municipal solid waste do not show such strong correlations. Furthermore, another emerging topic that requires appropriate attention is the recovery of resources that are embedded in old landfills. Therefore, the presented results provide a valuable tool for engineers designing landfills for mechanical and biological pre-treated waste or bioreactor landfills for untreated raw waste as well as planning landfill mining projects. © The Author(s) 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowry, R.C.
1998-12-31
The combined effects of federalism and interest group pluralism pose particularly difficult problems for hazardous waste siting and cleanup decisions. Most national environmental groups have only limited involvement in local hazardous waste politics, while local grass-roots advocates have very different interests and sometimes are pitted against one another. Both the Environmental protection Agency and the Department of energy recently have begun to use site-specific citizen advisory boards at cleanup sites. This approach appears to improve communications at some sites, but does not address the issues of ``not in my back yard`` politics and alleged inequitable exposure to hazardous wastes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, J.C.; Hochreitner, J.J.
Investigations of potential sources of groundwater contamination conducted by various regulatory agencies and consultants at four industrial sites in Logan Township, New Jersey found groundwater contamination at all four sites and at properties adjoining two of the sites. The four sites directly overlie the Potomac-Raritan-Magothy aquifer system, the Township's sole source of potable water. One site was a waste-oil processing and storage facility. The major source of groundwater contamination at the site is a lagoon containing waste oil. Groundwater within 1,000 ft of the lagoon is contaminated. The second site is used to maintain, dispatch, and clean chemical-transportation tanks. Potentialmore » sources of groundwater contamination at the site include former wastewater lagoons, leaking storage drums, and leaking tank trucks. Groundwater at and immediately north of the property is contaminated. Organic compounds are manufactured at the third site. Potential sources of groundwater contamination at this site include landfilled industrial wastes. Groundwater underlying the property is contaminated, but there is no evidence of offsite groundwater contamination from this source. The fourth site is used to treat and dispose of hazardous wastes. The major source of groundwater contamination at this site is landfilled residue from waste-treatment processes. Groundwater underlying the property is contaminated, but there is no evidence of off-site groundwater contamination from this source.« less
Assessment and evaluation of engineering options at a low-level radioactive waste storage site
NASA Astrophysics Data System (ADS)
Kanehiro, B. Y.; Guvanasen, V.
1982-09-01
Solutions to hydrologic and geotechnical problems associated with existing disposal sites were sought and the efficiency of engineering options that were proposed to improve the integrity of such sites were evaluated. The Weldon Spring site is generally like other low-level nuclear waste sites, except that the wastes are primarily in the form of residues and contaminated rubble from the processing of uranium and thorium ores rather than industrial isotopes or mill tailings.
Gidarakos, Evangelos; Anastasiadou, Kalliopi; Koumantakis, Emmanuil; Nikolaos, Stappas
2008-05-30
Although, according to European legislation the use of Asbestos Containing Materials is forbidden, many buildings in Greece still contain asbestos products, which must be removed at some point in the near future. Therefore, suitable disposal sites must be found within Greece, so that the unverified disposal of asbestos waste in municipal waste Landfills is brought to an end. In the present work, an innovative approach to the disposal problem of asbestos wastes in Greece has been examined, through a risk assessment analysis of the inactive asbestos mine of Northern Greece and an evaluation of its suitability as a disposal site for asbestos wastes in the future. According to the research carried out, two areas (Site 1 and Site 2) inside the mine area are suitable for the construction of a disposal site for asbestos wastes. The geological investigations showed that in Site 1 and Site 2 ultrabasic rocks of ophiolite complex were prevalent, which have been intensely serpentinized and converted into the fibrous shape of serpentine (asbestos). Concentrations of hazardous substances such as heavy metals in the soil of Site 1 and Site 2 oscillate at low levels, with the exception of the concentrations of nickel and chrome which are high. The investigative work also included the collection of meteorological data and the monitoring of the water level of the artificial lake, which has developed inside the open mine. The main aim is to safely dispose asbestos wastes inside the mine, to minimize any pollution of the wider vicinity of the mine, as well as to engage in restoration activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz, C.; Givens, C.; Bhatt, R.
2003-02-24
Idaho National Engineering and Environmental Laboratory (INEEL) is conducting an effort to characterize approximately 620 drums of remote-handled (RH-) transuranic (TRU) waste currently in its inventory that were generated at the Argonne National Laboratory-East (ANL-E) Alpha Gamma Hot Cell Facility (AGHCF) between 1971 and 1995. The waste was generated at the AGHCF during the destructive examination of irradiated and unirradiated fuel pins, targets, and other materials from reactor programs at ANL-West (ANL-W) and other Department of Energy (DOE) reactors. In support of this effort, Shaw Environmental and Infrastructure (formerly IT Corporation) developed an acceptable knowledge (AK) collection and management programmore » based on existing contact-handled (CH)-TRU waste program requirements and proposed RH-TRU waste program requirements in effect in July 2001. Consistent with Attachments B-B6 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) and th e proposed Class 3 permit modification (Attachment R [RH-WAP] of this permit), the draft AK Summary Report prepared under the AK procedure describes the waste generating process and includes determinations in the following areas based on AK: physical form (currently identified at the Waste Matrix Code level); waste stream delineation; applicability of hazardous waste numbers for hazardous waste constituents; and prohibited items. In addition, the procedure requires and the draft summary report contains information supporting determinations in the areas of defense relationship and radiological characterization.« less
Data Quality Objectives Process for Designation of K Basins Debris
DOE Office of Scientific and Technical Information (OSTI.GOV)
WESTCOTT, J.L.
2000-05-22
The U.S. Department of Energy has developed a schedule and approach for the removal of spent fuels, sludge, and debris from the K East (KE) and K West (KW) Basins, located in the 100 Area at the Hanford Site. The project that is the subject of this data quality objective (DQO) process is focused on the removal of debris from the K Basins and onsite disposal of the debris at the Environmental Restoration Disposal Facility (ERDF). This material previously has been dispositioned at the Hanford Low-Level Burial Grounds (LLBGs) or Central Waste Complex (CWC). The goal of this DQO processmore » and the resulting Sampling and Analysis Plan (SAP) is to provide the strategy for characterizing and designating the K-Basin debris to determine if it meets the Environmental Restoration Disposal Facility Waste Acceptance Criteria (WAC), Revision 3 (BHI 1998). A critical part of the DQO process is to agree on regulatory and WAC interpretation, to support preparation of the DQO workbook and SAP.« less
40 CFR 761.345 - Form of the waste to be sampled.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.345 Form of the waste to be sampled. PCB bulk product waste and PCB remediation waste destined for off-site disposal must be in the form of either flattened...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garnett, Kenisha, E-mail: k.garnett@cranfield.ac.uk; Cooper, Tim, E-mail: t.h.cooper@ntu.ac.uk
2014-12-15
Highlights: • A review of public engagement in waste management decision-making is undertaken. • Enhanced public engagement is explored as a means to legitimise waste decisions. • Analytical–deliberative processes are explored as a tool for effective dialogue. • Considerations for integrating public values with technical analysis are outlined. • Insights into the design of appropriate public engagement processes are provided. - Abstract: The complexity of municipal waste management decision-making has increased in recent years, accompanied by growing scrutiny from stakeholders, including local communities. This complexity reflects a socio-technical framing of the risks and social impacts associated with selecting technologies andmore » sites for waste treatment and disposal facilities. Consequently there is growing pressure on local authorities for stakeholders (including communities) to be given an early opportunity to shape local waste policy in order to encourage swift planning, development and acceptance of the technologies needed to meet statutory targets to divert waste from landfill. This paper presents findings from a research project that explored the use of analytical–deliberative processes as a legitimising tool for waste management decision-making. Adopting a mixed methods approach, the study revealed that communicating the practical benefits of more inclusive forms of engagement is proving difficult even though planning and policy delays are hindering development and implementation of waste management infrastructure. Adopting analytical–deliberative processes at a more strategic level will require local authorities and practitioners to demonstrate how expert-citizen deliberations may foster progress in resolving controversial issues, through change in individuals, communities and institutions. The findings suggest that a significant shift in culture will be necessary for local authorities to realise the potential of more inclusive decision processes. This calls for political actors and civic society to collaborate in institutionalising public involvement in both strategic and local planning structures.« less
Monitoring household waste recycling centres performance using mean bin weight analyses.
Maynard, Sarah; Cherrett, Tom; Waterson, Ben
2009-02-01
This paper describes a modelling approach used to investigate the significance of key factors (vehicle type, compaction type, site design, temporal effects) in influencing the variability in observed nett amenity bin weights produced by household waste recycling centres (HWRCs). This new method can help to quickly identify sites that are producing significantly lighter bins, enabling detailed back-end analyses to be efficiently targeted and best practice in HWRC operation identified. Tested on weigh ticket data from nine HWRCs across West Sussex, UK, the model suggests that compaction technique, vehicle type, month and site design explained 76% of the variability in the observed nett amenity weights. For each factor, a weighting coefficient was calculated to generate a predicted nett weight for each bin transaction and three sites were subsequently identified as having similar characteristics but returned significantly different mean nett bin weights. Waste and site audits were then conducted at the three sites to try and determine the possible sources of the remaining variability. Significant differences were identified in the proportions of contained waste (bagged), wood, and dry recyclables entering the amenity waste stream, particularly at one site where significantly less contaminated waste and dry recyclables were observed.
Conversion of transuranic waste to low level waste by decontamination: a site specific update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, R.P.; Hazelton, R.F.
1985-09-01
As a followup to an FY-1984 cost/benefit study, a program was conducted in FY-1985 to transfer to the relevant DOE sites the information and technology for the direct conversion of transuranic (TRU) waste to low-level waste (LLW) by decontamination. As part of this work, the economic evaluation of the various TRUW volume reduction and conversion options was updated and expanded to include site-specific factors. The results show, for the assumptions used, that size reduction, size reduction followed by decontamination, or in situ decontamination are cost effective compared with the no-processing option. The technology transfer activities included site presentations and discussionsmore » with operations and waste management personnel to identify application opportunities and site-specific considerations and constraints that could affect the implementation of TRU waste conversion principles. These discussions disclosed definite potential for the beneficial application of these principles at most of the sites, but also confirmed the existence of site-specific factors ranging from space limitations to LLW disposal restrictions that could preclude particular applications or diminish expected benefits. 8 refs., 2 figs., 4 tabs.« less
Potential for Gulls to Transport Bacteria from Human Waste Sites to Beaches
Contamination of recreational beaches due to fecal waste from gulls complicates beach monitoring and may pose a risk to public health. Gulls that feed at human waste sites may ingest human-associated fecal microorganisms associated with that waste. If these gulls also visit beach...
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. M. Dittmer
2008-01-31
The 116-C-3 waste site consisted of two underground storage tanks designed to receive mixed waste from the 105-C Reactor Metals Examination Facility chemical dejacketing process. Confirmatory evaluation and subsequent characterization of the site determined that the southern tank contained approximately 34,000 L (9,000 gal) of dejacketing wastes, and that the northern tank was unused. In accordance with this evaluation, the verification sampling and modeling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrate that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils.more » The results also show that residual contaminant concentrations are protective of groundwater and the Columbia River.« less
40 CFR 761.218 - Certificate of disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.218 Certificate of disposal. (a) For each shipment of manifested PCB waste that the owner or operator of a disposal facility accepts by signing the manifest, the... certifying the fact of disposal of the identified PCB waste, including the date(s) of disposal, and...
40 CFR 761.218 - Certificate of disposal.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.218 Certificate of disposal. (a) For each shipment of manifested PCB waste that the owner or operator of a disposal facility accepts by signing the manifest, the... certifying the fact of disposal of the identified PCB waste, including the date(s) of disposal, and...
40 CFR 761.218 - Certificate of disposal.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.218 Certificate of disposal. (a) For each shipment of manifested PCB waste that the owner or operator of a disposal facility accepts by signing the manifest, the... certifying the fact of disposal of the identified PCB waste, including the date(s) of disposal, and...
40 CFR 761.218 - Certificate of disposal.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.218 Certificate of disposal. (a) For each shipment of manifested PCB waste that the owner or operator of a disposal facility accepts by signing the manifest, the... certifying the fact of disposal of the identified PCB waste, including the date(s) of disposal, and...
Duggan, J; Bates, M P; Phillips, C A
2001-06-01
The use of poultry waste as a fertiliser on arable land is an accepted method of waste treatment. However, run-off from such practices may result in contamination of the watercourse by human pathogens. In this study the effectiveness of using constructed wetlands as an alternative treatment for poultry manure waste was evaluated. Enumeration of Campylobacter spp., Escherichia coli, total coliforms and total aerobes were carried out on influent and effluent samples from reed beds loaded with poultry waste. For both sequential loading and continuous loading there was a statistically significant mean log reduction of 3.56 and 4.25 for E. coli, 3.2 and 3.88 for coliforms, 3.85 and 4.2 for total aerobic counts and 3.13 and 2.96 for Campylobacter spp., respectively. This method, which has been previously recognised as cost-effective and environmentally acceptable, provides an efficient method for reducing numbers of these bacteria in poultry waste and therefore an effective alternative treatment for such waste or waters containing run off from land previously spread with poultry manure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, A.; Crawford, C.; Fox, K.
More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in Washington State. The HLW will be vitrified in the HLW facility for ultimate disposal at an offsite federal repository. A portion (~35%) of the LAW will be vitrified in the LAW vitrification facility for disposal onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize all of the wastes destined for those facilities. However, a second facility will be needed for themore » expected volume of LAW requiring immobilization. Cast Stone, a cementitious waste form, is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. A testing program was developed in fiscal year (FY) 2012 describing in detail the work needed to develop and qualify Cast Stone as a waste form for the solidification of Hanford LAW. A statistically designed test matrix was used to evaluate the effects of key parameters on the properties of the Cast Stone as it is initially prepared and after curing. For the processing properties, the water-to-dry-blend mix ratio was the most significant parameter in affecting the range of values observed for each property. The single shell tank (SST) Blend simulant also showed differences in measured properties compared to the other three simulants tested. A review of the testing matrix and results indicated that an additional set of tests would be beneficial to improve the understanding of the impacts noted in the Screening Matrix tests. A set of Cast Stone formulations were devised to augment the original screening test matrix and focus on the range of the test conditions. Fly ash and blast furnace slag were limited to either northwest or southeast and the salt solutions were narrowed to the Average and the SST Blend at the 7.8M Na concentration. To fill in the matrix, a mix ratio of 0.5 was added. In addition, two admixtures, Xypex Admix C-500 and Rheomac SF100 (silica fume), were added as an additional dry material binder in select compositions. As in the Screening Matrix, both fresh and cured properties were evaluated for the formulations. In this study, properties that were influenced by the W/DM ratio in the Screening Matrix; flow diameter, plastic viscosity, density, and compressive strength, showed consistent behavior with respect to W/DM. The leach index for highly soluble components, sodium and nitrate, were not influenced by changes in formulation or the admixtures. The leach index for both iodine and Tc-99 show an influence from the addition of the admixture, Xypex Admix C-500. Additional testing should be performed to further evaluate the influence of Xypex Admix C-500 on the leach index over a range of admixture concentrations, Cast Stone formulations, and curing and storage conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.
A preliminary evaluation of removing spent nuclear fuel (SNF) from 13 shutdown nuclear power reactor sites was conducted. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, San Onofre, and Vermont Yankee. The evaluation was divided into four components: (1) characterization of the SNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory, (2) a description of the on-site infrastructure and conditionsmore » relevant to transportation of SNF and GTCC waste, (3) an evaluation of the near-site transportation infrastructure and experience relevant to shipping transportation casks containing SNF and GTCC waste, including identification of gaps in information, and (4) an evaluation of the actions necessary to prepare for and remove SNF and GTCC waste. Every site was found to have at least one off-site transportation mode option for removing its SNF and GTCC waste; some have multiple options. Experience removing large components during reactor decommissioning provided an important source of information used to identify the transportation mode options for the sites. Especially important in conducting the evaluation were site visits, through which information was obtained that would not have been available otherwise. Extensive photographs taken during the site visits proved to be particularly useful in documenting the current conditions at or near the sites. It is expected that additional site visits will be conducted to add to the information presented in the evaluation.« less
Wiersma, Bruce J.
2014-02-08
The Savannah River Site produced weapons-grade materials for nearly 35 years between 1953 and 1988. The legacy of this production is nearly 37 million gallons of radioactive waste. Since the 1950s, the liquid waste has been stored in large, underground carbon steel waste tanks. During the past 20 years, the site has begun to process the waste so that it may be stored in vitrified and grout forms, which are more suitable for long-term storage. Over the history of the site, some tanks have experienced leakage of the waste to the secondary containment. This article is a review of themore » instances of leakage and corrosion degradation that the tanks and associated equipment have experienced since the first tanks were built. Furthermore, the activities that the site has taken to mitigate the degradation and manage the service life of the tank for its anticipated lifetime are reviewed.« less
Bread enriched in lycopene and other bioactive compounds by addition of dry tomato waste.
Nour, Violeta; Ionica, Mira Elena; Trandafir, Ion
2015-12-01
The tomato processing industry generates high amounts of waste, mainly tomato skins and seeds, which create environmental problems. These residues are attractive sources of valuable bioactive components and pigments. A relatively simple recovery technology could consist of production of powders to be directly incorporated into foods. Tomato waste coming from a Romanian tomato processing unit were analyzed for the content of several bioactive compounds like ascorbic acid, β-carotene, lycopene, total phenolics, mineral and trace elements. In addition, its antioxidant capacity was assayed. Results revealed that tomato waste (skins and seeds) could be successfully utilized as functional ingredient for the formulation of antioxidant rich functional foods. Dry tomato processing waste were used to supplement wheat flour at 6 and 10 % levels (w/w flour basis) and the effects on the bread's physicochemical, baking and sensorial characteristics were studied. The following changes were observed: increase in moisture content, titratable acidity and bread crumb elasticity, reduction in specific volume and bread crumb porosity. The addition of dry tomato waste at 6 % resulted in bread with good sensory characteristics and overall acceptability but as the amount of dry tomato waste increased to 10 %, bread was less acceptable.
NASA Astrophysics Data System (ADS)
Card, D. H.; Hunter, P. H.; Barg, D.; Desouza, F.; Felthauser, K.; Winkler, V.; White, R.
1982-02-01
The ramifications of constructing a nuclear energy center in an arid western region were studied. The alternatives for disposing of the low level waste on the site are compared with the alternative of transporting the waste to the nearest commercial waste disposal site for permanent disposal. Both radiological and nonradiological impacts on the local socioeconomic infrastructure and the environment are considered. Disposal on the site was found to cost considerably less than off site disposal with only negligible impacts associated with the disposal option on either mankind or the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, Will E.; Mehta, S.; Nell, R. M.
This annual review provides the projected dose estimates of radionuclide inventories disposed in the active 200 East Area Low-Level Waste Burial Grounds (LLBGs) since September 26, 1988. The estimates are calculated using the original dose methodology developed in the performance assessment (PA) analysis (WHC-SD-WM-TI-7301). The estimates are compared with performance objectives defined in U.S. Department of Energy (DOE) requirements (DOE O 435.1 Chg 1,2 and companion documents DOE M 435.1-1 Chg 13 and DOE G 435.1-14). All performance objectives are currently satisfied, and operational waste acceptance criteria (HNF-EP-00635) and waste acceptance practices continue to be sufficient to maintain compliance withmore » performance objectives. Inventory estimates and associated dose estimates from future waste disposal actions are unchanged from previous years’ evaluations, which indicate potential impacts well below performance objectives. Therefore, future compliance with DOE O 435.1 Chg 1 is expected.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, Will E; Nell, R. M.; Mehta, S.
This annual review provides the projected dose estimates of radionuclide inventories disposed in the active 200 West Area Low-Level Waste Burial Grounds (LLBGs) since September 26, 1988. These estimates are calculated using the original dose methodology developed in the performance assessment (PA) analysis (WHC-EP-06451). These estimates are compared with performance objectives defined in U.S. Department of Energy (DOE) requirements (DOE O 435.1 Chg 12 and its companion documents DOE M 435.1-1 Chg 13 and DOE G 435.1-14). All performance objectives are currently satisfied, and operational waste acceptance criteria (HNF-EP-00635) and waste acceptance practices continue to be sufficient to maintain compliancemore » with performance objectives. Inventory estimates and associated dose estimates from future waste disposal actions are unchanged from previous years’ evaluations, which indicate potential impacts well below performance objectives. Therefore, future compliance with DOE O 435.1 Chg 1 is expected.« less
Rani, D Amutha; Boccaccini, A R; Deegan, D; Cheeseman, C R
2008-11-01
Current disposal options for APC residues in the UK and alternative treatment technologies developed world-wide have been reviewed. APC residues are currently landfilled in the UK where they undergo in situ solidification, although the future acceptability of this option is uncertain because the EU waste acceptance criteria (WAC) introduce strict limits on leaching that are difficult to achieve. Other APC residue treatment processes have been developed which are reported to reduce leaching to below relevant regulatory limits. The Ferrox process, the VKI process, the WES-PHix process, stabilisation/solidification using cementitious binders and a range of thermal treatment processes are reviewed. Thermal treatment technologies convert APC residues combined with other wastes into inert glass or glass-ceramics that encapsulate heavy metals. The waste management industry will inevitably use the cheapest available option for treating APC residues and strict interpretation and enforcement of waste legislation is required if new, potentially more sustainable technologies are to become commercially viable.
Shemya Air Force Base, Alaska No Further Action Decision document for Hg-1. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-03-05
This document is being prepared to document that a No Further Action Decision (NFAD) document is appropriate for the Hg-1 site at Shemya Air Force Base (AFB), Alaska, under the Air Force Installation Restoration Program (IRP). The IRP is a Department of Defense (DOD) program established to identify and remediate hazardous waste problems on DOD property that result from past practices. The Alaska Department of Environmental Conservation (ADEC) draft document {open_quotes}No Further Action Criteria for DOD Military/FUD Sites{close_quotes} has been used as a guide in preparing this document. Air Force personnel have stated that the Hg-1 site may have beenmore » used to store mercury and PCB-contaminated material. The site was added to the IRP in 1987, and later that year a field investigation was conducted at the site. Soil samples were collected and analyzed for mercury, EP toxicity, polychlorinated biphenyls (PCBs), and dioxin. All concentrations of contaminants found in Area Hg-1 are below regulatory action levels for PCBs (40 CFR 761) and mercury (55 FR 30798) or below detection levels for dioxin/furans. Therefore, leaving these soils in place is acceptable.« less
Shemya Air Force Base, Alaska No Further Action Decision document for Hg-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-03-05
This document is being prepared to document that a No Further Action Decision (NFAD) document is appropriate for the Hg-1 site at Shemya Air Force Base (AFB), Alaska, under the Air Force Installation Restoration Program (IRP). The IRP is a Department of Defense (DOD) program established to identify and remediate hazardous waste problems on DOD property that result from past practices. The Alaska Department of Environmental Conservation (ADEC) draft document [open quotes]No Further Action Criteria for DOD Military/FUD Sites[close quotes] has been used as a guide in preparing this document. Air Force personnel have stated that the Hg-1 site maymore » have been used to store mercury and PCB-contaminated material. The site was added to the IRP in 1987, and later that year a field investigation was conducted at the site. Soil samples were collected and analyzed for mercury, EP toxicity, polychlorinated biphenyls (PCBs), and dioxin. All concentrations of contaminants found in Area Hg-1 are below regulatory action levels for PCBs (40 CFR 761) and mercury (55 FR 30798) or below detection levels for dioxin/furans. Therefore, leaving these soils in place is acceptable.« less
McDonald, M.G.
1980-01-01
Muskegon County, Michigan, disposes of wastewater by spray irrigating farmland on its waste-disposal site. Buried drains in the highly permeable unconfined aquifer at the site control the level of the water table. Hydraulic conductivity of the aquifer and drain-leakance, the reciprocal of resistance to flow into the drains, was determined at a representative irrigation circle while calibrating a model of the groundwater flow system. Hydraulic conductivity is 0.00055 m/sec, in the north zone of the circle, and 0.00039 m/sec in the south zone. Drain leakance -6 -6 is low in both zones: 2.9 x 10m/sec in the north and 9.5 x 10 m/sec in the south. Low drain leakance is responsible for waterlogging when irrigation rates are maintained at design levels. The capacity of the study circle to accept wastewater is 35 percent less than design capacity.
SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. C. Khamankar
2000-06-20
The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated wastemore » is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW packages as well as any mixed waste packages. The buildings house the system and provide shielding and support for the components. The system is ventilated by and connects to the ventilation systems in the buildings to prevent buildup and confine airborne radioactivity via the high efficiency particulate air filters. The Monitored Geologic Repository Operations Monitoring and Control System will provide monitoring and supervisory control facilities for the system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nolan, L. M.
2006-07-01
This paper describes the development of a Waste Information Management System (WMIS) to support the waste designation, transportation, and disposal processes used by Washington Closure Hanford, LLC to support cleanup of the Columbia River Corridor. This waste, primarily consisting of remediated burial sites and building demolition debris, is disposed at the Environmental Restoration Disposal Facility (ERDF), which is located in the center of the Hanford Site (an approximately 1460 square kilometers site). WMIS uses a combination of bar-code scanning, hand-held computers, and strategic employment of a radio frequency identification (RFID) tag system to track each waste shipment from waste generationmore » to disposal. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong-Sang
2015-03-02
The legacy nuclear wastes stored in underground tanks at the US Department of Energy’s Hanford site is planned to be separated into high-level waste and low-activity waste fractions and vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. The property models with associated uncertainties and combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification processmore » control and waste form qualification at the planned waste vitrification plant. This paper provides an overview of current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford site.« less
Compost: Brown gold or toxic trouble?
Kovacic, D.A.; Cahill, R.A.; Bicki, T.J.
1992-01-01
Limited data are available regarding the occurrence of potentially hazardous constituents in raw, uncomposted yard wastes, partially composted yard wastes, and finished compost (15, 16). Environmental monitoring at composting operations or facilities is lacking, and currently published research on the environmental fate of composted yard waste constituents is extremely limited. The cost of thoroughly investigating the fate of toxicants in yard waste may seem needlessly expensive, but it is much less than the cost of cleaning up contaminated sites and groundwater. Could yard waste compost sites become Superfund sites? The cost of a thorough testing program throughout the United States may be several million dollars, but that is only a fraction of the funds spent initiating and developing yard waste composting facilities, let alone the potentially much greater cost of environmental remediation. There is still time to address these problems and to develop sound state and federal guidelines for siting and operating yard waste compost facilities. The rush to implement landfill alternatives such as composting should not be the major driving force in determining legislation governing solid waste management. ?? 1991 American Chemical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jardine, L J
2005-06-15
ISTC Partner Project No.2377, ''Development of a General Research and Survey Plan to Create an Underground RW Isolation Facility in Nizhnekansky Massif'', funded a group of key Russian experts in geologic disposal, primarily at Federal State Unitary Enterprise All-Russian Design and Research Institute of Engineering Production (VNIPIPT) and Mining Chemical Combine Krasnoyarsk-26 (MCC K-26) (Reference 1). The activities under the ISTC Partner Project were targeted to the creation of an underground research laboratory which was to justify the acceptability of the geologic conditions for ultimate isolation of high-level waste in Russia. In parallel to this project work was also undermore » way with Minatom's financial support to characterize alternative sections of the Nizhnekansky granitoid rock massif near the MCC K-26 site to justify the possibility of creating an underground facility for long-term or ultimate isolation of radioactive waste (RW) and spent nuclear fuel (SNF). (Reference 2) The result was a synergistic, integrated set of activities several years that advanced the geologic repository site characterization and development of a proposed underground research laboratory better than could have been expected with only the limited funds from ISTC Partner Project No.2377 funded by the U.S. DOE-RW. There were four objectives of this ISTC Partner Project 2377 geologic disposal work: (1) Generalize and analyze all research work done previously at the Nizhnekansky granitoid massif by various organizations; (2) Prepare and issue a declaration of intent (DOI) for proceeding with an underground research laboratory in a granite massif near the MCC K-26 site. (The DOI is similar to a Record of Decision in U.S. terminology). (3) Proceeding from the data obtained as a result of scientific research and exploration and design activities, prepare a justification of investment (JOI) for an underground research laboratory in as much detail as the available site characterization data allow. Consider the possibility of the substantiated selection of a specific site for the underground laboratory at this stage. (The JOI is similar to an advanced conceptual design or preliminary design in U.S. terminology). (4) Perform a preliminary safety assessment of the geologic isolation of radioactive waste and unreprocessable spent nuclear fuel (SNF) in the Nizhnekansky massif. Significant progress has been made toward fulfilling the joint project objectives. The results were documented in a series of quarterly reports and one final report over a period of {approx}2 3/4 years.« less
Early testing of new sanitation technology for urban slums: The case of the Blue Diversion Toilet.
Tobias, Robert; O'Keefe, Mark; Künzle, Rahel; Gebauer, Heiko; Gründl, Harald; Morgenroth, Eberhard; Pronk, Wouter; Larsen, Tove A
2017-01-15
The toilets used most in informal urban settlements have detrimental consequences for the environment and human health due to the lack of proper collection and treatment of toilet waste. Concepts for safe, sustainable and affordable sanitation systems exist, but their feasibility and acceptance have to be investigated at an early stage of development, which is difficult due to the high costs of building working models. In this paper, we present an approach to estimate acceptance in a valid and representative form with only one working model, and apply it to test an innovative zero-emission toilet with recycling of wash water. Four basic principles were specified for investigation and nine hypotheses formulated to test the feasibility and acceptance of these principles: source separation of urine and feces with subsequent collection for resource recovery; provision of wash water in a separate cycle with on-site recovery through a membrane bioreactor; a convenient and attractive overall design; and a financially sustainable business plan. In Kampala (Uganda), in 2013, data was collected from 22 regular users, 308 one-time users and a representative sample of 1538 participants. Qualitative data was collected from the users, who evaluated their likes, perceived benefits, social norms and expected ease of use based on verbal and visual information. Most of the hypotheses were confirmed, indicating the feasibility and acceptance of the basic principles. Source separation and on-site water recovery were found to be feasible and accepted, provided users can be convinced that the emptying service and water recovery process work reliably. In the survey, the toilet was evaluated favorably and 51% of the participants agreed to be placed on a bogus waiting list. However, some design challenges were revealed, such as the size of the toilet, hiding feces from view and improving the separation of urine and water. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Burden of Disease from Toxic Waste Sites in India, Indonesia, and the Philippines in 2010
Caravanos, Jack; Ericson, Bret; Sunga-Amparo, Jennifer; Susilorini, Budi; Sharma, Promila; Landrigan, Philip J.; Fuller, Richard
2013-01-01
Background: Prior calculations of the burden of disease from toxic exposures have not included estimates of the burden from toxic waste sites due to the absence of exposure data. Objective: We developed a disability-adjusted life year (DALY)-based estimate of the disease burden attributable to toxic waste sites. We focused on three low- and middle-income countries (LMICs): India, Indonesia, and the Philippines. Methods: Sites were identified through the Blacksmith Institute’s Toxic Sites Identification Program, a global effort to identify waste sites in LMICs. At least one of eight toxic chemicals was sampled in environmental media at each site, and the population at risk estimated. By combining estimates of disease incidence from these exposures with population data, we calculated the DALYs attributable to exposures at each site. Results: We estimated that in 2010, 8,629,750 persons were at risk of exposure to industrial pollutants at 373 toxic waste sites in the three countries, and that these exposures resulted in 828,722 DALYs, with a range of 814,934–1,557,121 DALYs, depending on the weighting factor used. This disease burden is comparable to estimated burdens for outdoor air pollution (1,448,612 DALYs) and malaria (725,000 DALYs) in these countries. Lead and hexavalent chromium collectively accounted for 99.2% of the total DALYs for the chemicals evaluated. Conclusions: Toxic waste sites are responsible for a significant burden of disease in LMICs. Although some factors, such as unidentified and unscreened sites, may cause our estimate to be an underestimate of the actual burden of disease, other factors, such as extrapolation of environmental sampling to the entire exposed population, may result in an overestimate of the burden of disease attributable to these sites. Toxic waste sites are a major, and heretofore underrecognized, global health problem. PMID:23649493
Assessment of remote sensing technologies to discover and characterize waste sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-03-11
This report presents details about waste management practices that are being developed using remote sensing techniques to characterize DOE waste sites. Once the sites and problems have been located and characterized and an achievable restoration and remediation program have been established, efforts to reclaim the environment will begin. Special problems to be considered are: concentrated waste forms in tanks and pits; soil and ground water contamination; ground safety hazards for workers; and requirement for long-term monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deju, R.A.
1982-10-01
The Basalt Waste Isolation Project's mission is to assess whether or not a nuclear waste repository can be sited in the basalts beneath the Hanford Site. Dr. Deju summarizes the results of the siting studies, the activities connected with waste package development, and ongoing engineering studies. In addition, he gives a glimpse of past technical reviews of the project and comments on major technical activities planned in the near future.
Eguchi, Akifimi; Isobe, Tomohiko; Ramu, Karri; Tue, Nguyen Minh; Sudaryanto, Agus; Devanathan, Gnanasekaran; Viet, Pham Hung; Tana, Rouch Seang; Takahashi, Shin; Subramanian, Annamalai; Tanabe, Shinsuke
2013-03-01
In Asian developing countries, large amounts of municipal wastes are dumped into open dumping sites each day without adequate management. This practice may cause several adverse environmental consequences and increase health risks to local communities. These dumping sites are contaminated with many chemicals including brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs). BFRs may be released into the environment through production processes and through the disposal of plastics and electronic wastes that contain them. The purpose of this study was to elucidate the status of BFR pollution in municipal waste dumping sites in Asian developing countries. Soil samples were collected from six open waste dumping sites and five reference sites in Cambodia, India, Indonesia, Malaysia, and Vietnam from 1999 to 2007. The results suggest that PBDEs are the dominant contaminants in the dumping sites in Asian developing countries, whereas HBCD contamination remains low. Concentrations of PBDEs and HBCDs ranged from ND to 180 μg/kg dry wt and ND to 1.4 μg/kg dry wt, respectively, in the reference sites and from 0.20 to 430 μg/kg dry wt and ND to 2.5 μg/kg dry wt, respectively, in the dumping sites. Contamination levels of PBDEs in Asian municipal dumping sites were comparable with those reported from electronic waste dismantling areas in Pearl River delta, China. Copyright © 2012 Elsevier Ltd. All rights reserved.
Section 10: Ground Water - Waste Characteristics & Targets
HRS Training. The waste characteristics factor category in the ground water pathway is made up of two components: the toxicity/mobility of the most hazardous substance associated with the site and the hazardous waste quantity at the site.
(Low-level waste disposal facility siting and site characterization)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mezga, L.J.; Ketelle, R.H.; Pin, F.G.
A US team consisting of representatives of Oak Ridge National Laboratory (ORNL), Savannah River Plant (SRP), Savannah river Laboratory (SRL), and the Department of Energy Office of Defense Waste and Byproducts Management participated in the fourth meeting held under the US/French Radioactive Waste Management Agreement between the US Department of Energy and the Commissariat a l'Energie Atomique. This meeting, held at Agence Nationale pour les Gestion des Dechets Radioactifs' (ANDRA's) Headquarters in Paris, was a detailed, technical topical workshop focusing on Low-Level Waste Disposal Facility Siting and Site Characterization.'' The meeting also included a visit to the Centre de lamore » Manche waste management facility operated by ANDRA to discuss and observe the French approach to low-level waste management. The final day of the meeting was spent at the offices of Societe Generale pour les Techniques Nouvelles (SGN) discussing potential areas of future cooperation and exchange. 20 figs.« less
Cleanup Verification Package for the 300 VTS Waste Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. W. Clark and T. H. Mitchell
2006-03-13
This cleanup verification package documents completion of remedial action for the 300 Area Vitrification Test Site, also known as the 300 VTS site. The site was used by Pacific Northwest National Laboratory as a field demonstration site for in situ vitrification of soils containing simulated waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-06-01
The pilot plant is developed for ERDA low-level contact-handled transuranic waste, ERDA remote-handled intermediate-level transuranic waste, and for high-level waste experiments. All wastes placed in the WIPP arrive at the site processed and packaged; no waste processing is done at the WIPP. All wastes placed into the WIPP are retrievable. The proposed site for WIPP lies 26 miles east of Carlsbad, New Mexico. This document includes the executive summary and a detailed description of the facilities and systems. (DLC)
Opinion: Taking phytoremediation from proven technology to accepted practice.
Gerhardt, Karen E; Gerwing, Perry D; Greenberg, Bruce M
2017-03-01
Phytoremediation is the use of plants to extract, immobilize, contain and/or degrade contaminants from soil, water or air. It can be an effective strategy for on site and/or in situ removal of various contaminants from soils, including petroleum hydrocarbons (PHC), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), solvents (e.g., trichloroethylene [TCE]), munitions waste (e.g., 2,4,6-trinitrotoluene [TNT]), metal(loid)s, salt (NaCl) and radioisotopes. Commercial phytoremediation technologies appear to be underutilized globally. The primary objective of this opinion piece is to discuss how to take phytoremediation from a proven technology to an accepted practice. An overview of phytoremediation of soil is provided, with the focus on field applications, to provide a frame of reference for the subsequent discussion on better utilization of phytoremediation. We consider reasons why phytoremediation is underutilized, despite clear evidence that, under many conditions, it can be applied quite successfully in the field. We offer suggestions on how to gain greater acceptance for phytoremediation by industry and government. A new paradigm of phytomanagement, with a specific focus on using phytoremediation as a "gentle remediation option" (GRO) within a broader, long-term management strategy, is also discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyacke, M.
1993-08-01
This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placedmore » in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.« less
NASA Astrophysics Data System (ADS)
Setiawan, B.; Prihastuti, S.; Moersidik, S. S.
2018-02-01
The operational of near surface disposal facility during waste packages loading activity into the facility, or in a monitoring activity around disposal facility at Karawang area is predicted to give a radiological risk to radiation workers. The thickness of disposal facility cover system affected the number of radiological risk of workers. Due to this reason, a radiological risk estimation needs to be considered. RESRAD onsite code is applied for this purpose by analyse the individual accepted dose and radiological risk data of radiation workers. The obtained results and then are compared with radiation protection reference in accordance with national regulation. In this case, the data from the experimental result of Karawang clay as host of disposal facility such as Kd value of 137Cs was used. Results showed that the thickness of the cover layer of disposal facility affected to the radiological risk which accepted by workers in a near surface disposal facility.
40 CFR 761.208 - Use of the manifest.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.208 Use of the manifest. (a)(1) The generator of PCB... dilution. (ii) The PCB waste is accepted by the transporter for transport only to a storage or disposal... disposal facility listed on the manifest. (ii) The next designated transporter of PCB waste. (8) If the PCB...
40 CFR 761.208 - Use of the manifest.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.208 Use of the manifest. (a)(1) The generator of PCB... dilution. (ii) The PCB waste is accepted by the transporter for transport only to a storage or disposal... disposal facility listed on the manifest. (ii) The next designated transporter of PCB waste. (8) If the PCB...
Waste treatability guidance program. User`s guide. Revision 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, C.
1995-12-21
DOE sites across the country generate and manage radioactive, hazardous, mixed, and sanitary wastes. It is necessary for each site to find the technologies and associated capacities required to manage its waste. One role of DOE HQ Office of Environmental Restoration and Waste Management is to facilitate the integration of the site- specific plans into coherent national plans. DOE has developed a standard methodology for defining and categorizing waste streams into treatability groups based on characteristic parameters that influence waste management technology needs. This Waste Treatability Guidance Program automates the Guidance Document for the categorization of waste information into treatabilitymore » groups; this application provides a consistent implementation of the methodology across the National TRU Program. This User`s Guide provides instructions on how to use the program, including installations instructions and program operation. This document satisfies the requirements of the Software Quality Assurance Plan.« less
NASA Astrophysics Data System (ADS)
Gaël, Dumont; Tanguy, Robert; Nicolas, Marck; Frédéric, Nguyen
2017-10-01
In this study, we tested the ability of geophysical methods to characterize a large technical landfill installed in a former sand quarry. The geophysical surveys specifically aimed at delimitating the deposit site horizontal extension, at estimating its thickness and at characterizing the waste material composition (the moisture content in the present case). The site delimitation was conducted with electromagnetic (in-phase and out-of-phase) and magnetic (vertical gradient and total field) methods that clearly showed the transition between the waste deposit and the host formation. Regarding waste deposit thickness evaluation, electrical resistivity tomography appeared inefficient on this particularly thick deposit site. Thus, we propose a combination of horizontal to vertical noise spectral ratio (HVNSR) and multichannel analysis of the surface waves (MASW), which successfully determined the approximate waste deposit thickness in our test landfill. However, ERT appeared to be an appropriate tool to characterize the moisture content of the waste, which is of prior information for the organic waste biodegradation process. The global multi-scale and multi-method geophysical survey offers precious information for site rehabilitation studies, water content mitigation processes for enhanced biodegradation or landfill mining operation planning.
SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM: TECHNOLOGY WITH AN IMPACT
SITE promotes the development and implementation of innovative technologies for remediating hazardous waste sites and for evaluating the nature and extent of hazardous waste site contamination through four component segments. The SITE Program is a key element in EPA's efforts...
Waste Information Management System-2012 - 12114
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, H.; Quintero, W.; Shoffner, P.
2012-07-01
The Waste Information Management System (WIMS) -2012 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that wouldmore » be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. It has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different databases and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast and transportation information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made since its initial deployment include the addition of new DOE sites and facilities, an updated waste and transportation information, and the ability to easily display and print customized waste forecast, the disposition maps, GIS maps and transportation information. The system also allows users to customize and generate reports over the web. These reports can be exported to various formats, such as Adobe{sup R} PDF, Microsoft Excel{sup R}, and Microsoft Word{sup R} and downloaded to the user's computer. Future enhancements will include database/application migration to the next level. A new data import interface will be developed to integrate 2012-13 forecast waste streams. In addition, the application is updated on a continuous basis based on DOE feedback. (authors)« less
BIOLOGICAL TREATMENT OF HAZARDOUS AQUEOUS WASTES
Studies have been conducted with a rotating biological contractor (RBC) to evaluate the treatability of leachates from the Stringfellow and New Lyme hazardous waste sites. The leachates were transported from the waste sites to Cincinnati at the United States Environmental Protect...
NASA Astrophysics Data System (ADS)
Mohammedshum, A. A.; Gebresilassie, M. A.; Rulinda, C. M.; Kahsay, G. H.; Tesfay, M. S.
2014-11-01
Identifying solid waste disposal sites and appropriately managing them is a challenging task to many developing countries. This is a critical problem too in Ethiopia in general and in Wukro town in particular. The existing site for Wukro town is not sufficient in its capacity and it is damaging the environment due to its location, and the type of waste dumped, while the surrounding area is being irrigated. Due to the swift expansion and urbanization developments in Wukro town, it badly needs to develop controlled solid waste dumping site to prevent several contamination problems. This study was conducted first, to assess the existing waste management strategies in Wukro town; and second, to find out the potential waste disposal sites for the town, using GIS and Remote Sensing techniques. The study exploited the Multi-Criteria Evaluation (MCE) methods to combine necessary factors considered for dumping site selection. The selected method also uses various geographical data including remote sensing data, with GIS spatial analysis tools. Accordingly, site suitability maps for each of the factors were developed in a GIS environment. Results indicate that 12 dumping sites were appropriate and they were further ranked against their suitability in terms of wind direction, proximity to settlement area and distance from the center of the town. Finally, two sites are the best suitable for dumping site. This study indicated that the application of Geographic Information System and Remote Sensing techniques are efficient and low cost tools to study and select appropriate dumping site so as to facilitate decision making processes.
USEPA'S SITE PROGRAM IMPACT ON THE DEVELOPMENT AND USE OF INNOVATIVE HAZARDOUS WASTE TREATMENT
The USEPA's SITE Program was created to meet the increased demand for innovative technologies for hazardous waste treatment. The primary mission of the SITe Program is to expedite the cleanup of sites on the NPL. The SITE Program has two components: The Demonstration Program and ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tietze-Jaensch, Holger; Schneider, Stephan; Aksyutina, Yuliya
2012-07-01
The German product quality control is inter alia responsible for control of two radioactive waste forms of heat generating waste: a) homogeneous vitrified HLW and b) heterogeneous compacted hulls, end-pieces and technological metallic waste. In either case, significantly different metrology is employed at the site of the conditioning plant for the obligatory nuclide inventory declaration. To facilitate an independent evaluation and checking of the accompanying documentation numerical simulations are carried out. The physical and chemical properties of radioactive waste residues are used to assess the data consistency and uncertainty margins, as well as to predict the long-term behavior of themore » radioactive waste. This is relevant for repository acceptance and safety considerations. Our new numerical approach follows a bottom-up simulation starting from the burn-up behavior of the fuel elements in the reactor core. The output of these burn-up calculations is then coupled with a program that simulates the material separation in the subsequent dissolution and extraction processes normalized to the mass balance. Follow-up simulations of the separated reprocessing lines of a) the vitrification of highly-active liquid and b) the compaction of residual intermediate-active metallic hulls remaining after fuel pellets dissolution, end-pieces and technological waste, allows calculating expectation values for the various repository relevant properties of either waste stream. The principles of the German product quality control of radioactive waste residues from the spent fuel reprocessing have been introduced and explained. Namely, heat generating homogeneous vitrified HLW and heterogeneous compacted metallic MLW have been discussed. The advantages of a complementary numerical property simulation have been made clear and examples of benefits are presented. We have compiled a new program suite to calculate the physical and radio-chemical properties of common nuclear waste residues. The immediate benefit is the independent assessment of radio-active inventory declarations and much facilitated product quality control of waste residues that need to be returned to Germany and submitted to a German HLW-repository requirements. Wherever possible, internationally accepted standard programs are used and embedded. The innovative coupling of burn-up calculations (SCALE) with neutron and gamma transport codes (MCPN-X) allows an application in the world of virtual waste properties. If-then-else scenarios of hypothetical waste material compositions and distributions provide valuable information of long term nuclide property propagation under repository conditions over a very long time span. Benchmarking the program with real residue data demonstrates the power and remarkable accuracy of this numerical approach, boosting the reliability of the confidence aforementioned numerous applications, namely the proof tool set for on-the-spot production quality checking and data evaluation and independent verification. Moreover, using the numerical bottom-up approach helps to avoid the accumulation of fake activities that may gradually build up in a repository from the so-called conservative or penalizing nuclide inventory declarations. The radioactive waste properties and the hydrolytic and chemical stability can be predicted. The interaction with invasive chemicals can be assessed and propagation scenarios can be developed from reliable and sound data and HLW properties. Hence, the appropriate design of a future HLW repository can be based upon predictable and quality assured waste characteristics. (authors)« less
Chemical Composition Measurements of LAWA44 Glass Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, K.; Edwards, T.; Riley, W.
2016-11-15
DOE is building the Hanford Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is temporarily stored in 177 underground tanks. Both low-activity and high-level wastes will then be vitrified into borosilicate glass using Joule-heated ceramic melters. Efforts are being made to increase the loading of Hanford tank wastes in the glass. One area of work is enhancing waste glass composition/property models and broadening the compositional regions over which those models are applicable. In this report, the Savannah River National Laboratory provides chemical analysis results for severalmore » samples of a simulated low-activity waste glass, LAWA44, provided by the Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 97.9 to 102.6 wt %, indicating acceptable recovery of the glass components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %. It was noted that the measured B 2O 3 concentrations are somewhat above the targeted values for the study glasses. No obvious trends were observed with regard to the multiple melting steps used to prepare the study glasses, indicating that any potential effects of volatility were below measurable thresholds.« less
36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.
Code of Federal Regulations, 2012 CFR
2012-07-01
... within new additions to the National Park System. 6.6 Section 6.6 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...
36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.
Code of Federal Regulations, 2014 CFR
2014-07-01
... within new additions to the National Park System. 6.6 Section 6.6 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...
36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.
Code of Federal Regulations, 2013 CFR
2013-07-01
... within new additions to the National Park System. 6.6 Section 6.6 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...
Hu, Howard; Shine, James; Wright, Robert O
2007-02-01
In the United States, many of the millions of tons of hazardous wastes that have been produced since World War II have accumulated in sites throughout the nation. Citizen concern about the extent of this problem led Congress to establish the Superfund Program in 1980 to locate, investigate, and clean up the worst sites nationwide. Most such waste exists as a complex mixture of many substances. This article discusses the issue of toxic mixtures and children's health by focusing on the specific example of mining waste at the Tar Creek Superfund Site in Northeast Oklahoma.
Fisher, Jeffrey M.; Bedinger, Marion S.; Stevens, Peter R.
1990-01-01
Shallow-land burial in arid areas is considered the best method for isolating low-level radioactive waste from the environment (Nichols and Goode, this report; Mercer and others, 1983). A major threat to waste isolation in shallow trenches is ground-water percolation. Repository sites in arid areas are believed to minimize the risk of ground-water contamination because such sites receive minimal precipitation and are underlain by thick unsaturated zones. Unfortunately, few data are available on rates of water percolation in an arid environment.
Cleanup Verification Package for the 300-18 Waste Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. M. Capron
This cleanup verification package documents completion of remedial action for the 300-18 waste site. This site was identified as containing radiologically contaminated soil, metal shavings, nuts, bolts, and concrete.
10 CFR 60.18 - Review of site characterization activities. 2
Code of Federal Regulations, 2011 CFR
2011-01-01
... developed, and on the progress of waste form and waste package research and development. The semiannual... of site characterization will be established. Other topics related to site characterization shall...
10 CFR 60.18 - Review of site characterization activities. 2
Code of Federal Regulations, 2012 CFR
2012-01-01
... developed, and on the progress of waste form and waste package research and development. The semiannual... of site characterization will be established. Other topics related to site characterization shall...
10 CFR 60.18 - Review of site characterization activities. 2
Code of Federal Regulations, 2013 CFR
2013-01-01
... developed, and on the progress of waste form and waste package research and development. The semiannual... of site characterization will be established. Other topics related to site characterization shall...
10 CFR 60.18 - Review of site characterization activities. 2
Code of Federal Regulations, 2014 CFR
2014-01-01
... developed, and on the progress of waste form and waste package research and development. The semiannual... of site characterization will be established. Other topics related to site characterization shall...
Solid waste management complex site development plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greager, T.M.
1994-09-30
The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30more » years so that future facilities and infrastructure will be properly integrated.« less
Code of Federal Regulations, 2012 CFR
2012-01-01
... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION... Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public health... facilities for the temporary storage of highlevel radioactive wastes, may be located on privately owned...
Code of Federal Regulations, 2013 CFR
2013-01-01
... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION... Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public health... facilities for the temporary storage of highlevel radioactive wastes, may be located on privately owned...
Code of Federal Regulations, 2014 CFR
2014-01-01
... and Related Waste Management Facilities F Appendix F to Part 50 Energy NUCLEAR REGULATORY COMMISSION... Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities 1. Public health... facilities for the temporary storage of highlevel radioactive wastes, may be located on privately owned...
Mo, Ling; Wu, Jiang-Ping; Luo, Xiao-Jun; Sun, Yu-Xin; Zheng, Xiao-Bo; Zhang, Qiang; Zou, Fa-Shen; Mai, Bi-Xian
2013-03-01
Dechlorane Plus (DP) isomers were examined in common kingfishers (Alcedo atthis) and their prey fishes collected from an electronic waste (e-waste) recycling site and a reference site in South China, to investigate the possible influence of DP residue levels on the isomeric compositions. ∑DP (sum of syn-DP and anti-DP) concentrations in kingfishers from the e-waste recycling site ranged from 29 to 150 (median of 58) ng/g lipid weight (lw), which were one order of magnitude greater than those from the reference site (median = 3.9 ng/g lw). The isomer fractions of anti-DP (f(anti)) in kingfishers from the e-waste recycling site (mean of 0.65) were significantly smaller than those from the reference site (0.76). Additionally, the f(anti) values were negatively correlated to logarithm of ∑DP concentrations in the kingfishers (r(2) = 0.41, p < 0.0001). These results suggested that DP residue levels could influence its isomeric composition in the piscivorous bird. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.
This report describes the results from grout formulation and cementitious waste form qualification testing performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). These results are part of a screening test that investigates three grout formulations proposed for wide-range treatment of different waste stream compositions expected for the Hanford Effluent Management Facility (EMF) evaporator bottom waste. This work supports the technical development need for alternative disposition paths for the EMF evaporator bottom wastes and future direct feed low-activity waste (DFLAW) operations at the Hanford Site. High-priority activities included simulant production, grout formulation, and cementitious wastemore » form qualification testing. The work contained within this report relates to waste form development and testing, and does not directly support the 2017 Integrated Disposal Facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY 2017 and future waste form development efforts. The provided results and data should be used by (1) cementitious waste form scientists to further the understanding of cementitious leach behavior of contaminants of concern (COCs), (2) decision makers interested in off-site waste form disposal, and (3) the U.S. Department of Energy, their Hanford Site contractors and stakeholders as they assess the IDF PA program at the Hanford Site. The results reported help fill existing data gaps, support final selection of a cementitious waste form for the EMF evaporator bottom waste, and improve the technical defensibility of long-term waste form risk estimates.« less
Geological considerations in hazardouswaste disposal
NASA Astrophysics Data System (ADS)
Cartwright, K.; Gilkeson, R. H.; Johnson, T. M.
1981-12-01
Present regulations assume that long-term isolation of hazardous wastes — including toxic chemical, biological, radioactive, flammable and explosive wastes — may be effected by disposal in landfills that have liners of very low hydraulic conductivity. In reality, total isolation of wastes in humid areas is not possible; some migration of leachate from wastes buried in the gound will always occur. Regulations should provide performance standards applicable on a site-by-site basis rather than rigid criteria for site selection and design. The performance standards should take into account several factors: (1) the categories, segregation, degradation and toxicity of the wastes; (2) the site hydrogeology, which governs the direction and rate of contaminant transport; (3) the attenuation of contaminants by geochemical interactions with geologic materials; and (4) the release rate of unattenuated pollutants to surface or groundwater. An adequate monitoring system is essential. The system should both test the extent to which the operation of the site meets performance standards and provide sufficient warning of pollution problems to allow implementation of remedial measures. In recent years there has been a trend away from numerous, small disposal sites toward fewer and larger sites. The size of a disposal site should be based on the attenuation capacity of the geologic material, which has a finite, though generally not well-defined, limit. For slowly degradable wastes, engineered sites with leachate-collection systems appear to be only a temporary solution since the leachate collected will also require final disposal.
Geological considerations in hazardouswaste disposal
Cartwright, K.; Gilkeson, R.H.; Johnson, T.M.
1981-01-01
Present regulations assume that long-term isolation of hazardous wastes - including toxic chemical, biological, radioactive, flammable and explosive wastes - may be effected by disposal in landfills that have liners of very low hydraulic conductivity. In reality, total isolation of wastes in humid areas is not possible; some migration of leachate from wastes buried in the gound will always occur. Regulations should provide performance standards applicable on a site-by-site basis rather than rigid criteria for site selection and design. The performance standards should take into account several factors: (1) the categories, segregation, degradation and toxicity of the wastes; (2) the site hydrogeology, which governs the direction and rate of contaminant transport; (3) the attenuation of contaminants by geochemical interactions with geologic materials; and (4) the release rate of unattenuated pollutants to surface or groundwater. An adequate monitoring system is essential. The system should both test the extent to which the operation of the site meets performance standards and provide sufficient warning of pollution problems to allow implementation of remedial measures. In recent years there has been a trend away from numerous, small disposal sites toward fewer and larger sites. The size of a disposal site should be based on the attenuation capacity of the geologic material, which has a finite, though generally not well-defined, limit. For slowly degradable wastes, engineered sites with leachate-collection systems appear to be only a temporary solution since the leachate collected will also require final disposal. ?? 1981.
ENERGY CONSERVATION AND PRODUCTION AT WASTE CLEANUP SITES (ISSUE PAPER)
Saving energy used by hazardous waste cleanup remediation systems should interest those people working on waste cleanup sites. Presidential Executive Order 13123, "Greening the Government Through Efficient Energy Management", states that each agency shall strive to expand the us...
Field scale manure born animal waste management : GIS application
USDA-ARS?s Scientific Manuscript database
Intensive beef backgrounding often accumulate manure born soil nutrients, microbes, and pharmaceuticals at different site locations. Unless properly managed, such waste materials can pollute surrounding soil and water sources. Soil sampling from these sites helps determining waste material levels bu...
Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site
NASA Astrophysics Data System (ADS)
Kanmani, S.; Gandhimathi, R.
2013-03-01
The concentration of heavy metals was studied in the soil samples collected around the municipal solid waste (MSW) open dumpsite, Ariyamangalam, Tiruchirappalli, Tamilnadu to understand the heavy metal contamination due to leachate migration from an open dumping site. The dump site receives approximately 400-470 tonnes of municipal solid waste. Solid waste characterization was carried out for the fresh and old municipal solid waste to know the basic composition of solid waste which is dumped in the dumping site. The heavy metal concentration in the municipal solid waste fine fraction and soil samples were analyzed. The heavy metal concentration in the collected soil sample was found in the following order: Mn > Pb > Cu > Cd. The presence of heavy metals in soil sample indicates that there is appreciable contamination of the soil by leachate migration from an open dumping site. However, these pollutants species will continuously migrated and attenuated through the soil strata and after certain period of time they might contaminate the groundwater system if there is no action to be taken to prevent this phenomenon.
Assessment of medical waste management in seven hospitals in Lagos, Nigeria.
Awodele, Olufunsho; Adewoye, Aishat Abiodun; Oparah, Azuka Cyril
2016-03-15
Medical waste (MW) can be generated in hospitals, clinics and places where diagnosis and treatment are conducted. The management of these wastes is an issue of great concern and importance in view of potential public health risks associated with such wastes. The study assessed the medical waste management practices in selected hospitals and also determined the impact of Lagos Waste Management Authority (LAWMA) intervention programs. A descriptive cross-sectional survey method was used. Data were collected using three instrument (questionnaire, site visitation and in -depth interview). Two public (hospital A, B) and five private (hospital C, D, E, F and G) which provide services for low, middle and high income earners were used. Data analysis was done with SPSS version 20. Chi-squared test was used to determine level of significance at p < 0.05. The majority 56 (53.3%) of the respondents were females with mean age of 35.46 (±1.66) years. The hospital surveyed, except hospital D, disposes both general and medical waste separately. All the facilities have the same process of managing their waste which is segregation, collection/on-site transportation, on-site storage and off-site transportation. Staff responsible for collecting medical waste uses mainly hand gloves as personal protective equipment. The intervention programs helped to ensure compliance and safety of the processes; all the hospitals employ the services of LAWMA for final waste disposal and treatment. Only hospital B offered on-site treatment of its waste (sharps only) with an incinerator while LAWMA uses hydroclave to treat its wastes. There are no policies or guidelines in all investigated hospitals for managing waste. An awareness of proper waste management amongst health workers has been created in most hospitals through the initiative of LAWMA. However, hospital D still mixes municipal and hazardous wastes. The treatment of waste is generally done by LAWMA using hydroclave, to prevent environmental hazards except hospital B that treats its sharp with an incinerator. In order to enhance uniform and appropriate waste management practices in the entire State, there is need for capacity building at all levels and also policies and guidelines formulations.
Waste certification program plan for Oak Ridge National Laboratory. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrin, R.C.
1997-05-01
This document defines the waste certification program developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the waste certification program is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements outlined in US Department of Energy (DOE) Order 5820.2A, Radioactive Waste Management, and ensures that 40 CFR documentation requirements for waste characterization are met for mixed (both radioactive and hazardous) and hazardous (including polychlorinated biphenyls)more » waste. Program activities will be conducted according to ORNL Level 1 document requirements.« less
Human health risk assessment case study: an abandoned metal smelter site in Poland.
Wcisło, Eleonora; Ioven, Dawn; Kucharski, Rafal; Szdzuj, Jerzy
2002-05-01
United States Environmental Protection Agency methodologies for human health risk assessment (HRA) were applied in a Brownfields Demonstration Project on the Warynski smelter site (WSS), an abandoned industrial site at Piekary Slaskie town, Upper Silesia, Poland. The HRA included the baseline risk assessment (BRA) and the development of risk-based preliminary remedial goals (RBPRGs). The HRA focused on surface area covered with waste materials, which were evaluated with regard to the potential risks they may pose to humans. Cadmium, copper, iron, manganese, lead, and zinc were proposed as the contaminants of potential concern (COPCs) at WSS based on archive data on chemical composition of waste located on WSS. For the defined future land use patterns, the industrial (I) and recreational (II) exposure scenarios were assumed and evaluated. The combined hazard index for all COPCs was 3.1E+00 for Scenario I and 3.2E+00 for Scenario II. Regarding potential carcinogenic risks associated with the inhalation route, only cadmium was a contributor, with risks of 1.6E-06 and 2.6E-07 for Scenario I and Scenario II, respectively. The results of the BRA indicated that the potential health risks at WSS were mainly associated with waste material exposure to cadmium (industrial and recreational scenarios) and lead (industrial scenario). RBPRGs calculated under the industrial scenario were 1.17E+03 and 1.62E+03 mg/kg for cadmium and lead, respectively. The RBPRG for cadmium was 1.18E+03 mg/kg under the recreational scenario. The BRA results, as well as RBCs, are comparable for both scenarios, so it is impossible to prioritize land use patterns for WSS based on these results. For choosing a future land use pattern or an appropriate redevelopment option, different factors would be decisive in the decision-making process, e.g., social, market needs, technical feasibility and costs of redevelopment actions or acceptance of local community.
Canadian Innovations in Siting Hazardous Waste Management Facilities
Kuhn; Ballard
1998-07-01
/ Siting hazardous waste facilities is an extremely complex and difficult endeavor. Public aversion to the construction of these facilities in or near their community often results in concerted opposition, referred to as the NIMBY syndrome. For the most part, siting processes do not fail because of inadequate environmental or technical considerations, but because of the adversarial decision-making strategies employed by the proponents. Innovative siting processes used in the provinces of Alberta and Manitoba offer tangible evidence of the successful application of an innovative siting approach based on the principles of decentralization of decision-making authority and full and meaningful public involvement. The purpose of this paper is to evaluate four Canadian siting processes from the perspective of public participation and access to decision-making authority. Examples of siting processes related to hazardous waste management facilities are provided from the provinces of Alberta, Manitoba, British Columbia, and Ontario. Siting has evolved from approaches dominated by top-down decision making to increasing decentralized and pluralistic approaches. Focusing on social and political concerns of potentially affected communities and on the process of decision making itself are fundamental to achieving siting success. In Alberta initially, and later in Manitoba, this new "open approach" to siting has resulted in the construction of the first two comprehensive hazardous waste treatment facilities in Canada.KEY WORDS: Hazardous waste facilities; Siting methodologies; Public participation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C. M.; Edwards, T. B.; Trivelpiece, C. L.
Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the DWPF since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it has been poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than relying on statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models formmore » the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to determine, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). One of the process models within PCCS is known as the Thermodynamic Hydration Energy Reaction MOdel (THERMO™). The DWPF will soon be receiving increased concentrations of TiO 2-, Na 2O-, and Cs 2O-enriched wastes from the Salt Waste Processing Facility (SWPF). The SWPF has been built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to validate the existing TiO 2 term in THERMO™ beyond 2.0 wt% in the DWPF, new durability data were developed over the target range of 2.00 to 6.00 wt% TiO 2 and evaluated against the 1995 durability model. The durability was measured by the 7-day Product Consistency Test. This study documents the adequacy of the existing THERMO™ terms. It is recommended that the modified THERMO™ durability models and the modified property acceptable region limits for the durability constraints be incorporated in the next revision of the technical bases for PCCS and then implemented into PCCS. It is also recommended that an reduction of constraints of 4 wt% Al 2O 3 be implemented with no restrictions on the amount of alkali in the glass for TiO 2 values ≥2 wt%. The ultimate limit on the amount of TiO 2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge batch, the waste loading of the sludge batch, and the frit used for vitrification.« less
Fujimori, Takashi; Takigami, Hidetaka; Agusa, Tetsuro; Eguchi, Akifumi; Bekki, Kanae; Yoshida, Aya; Terazono, Atsushi; Ballesteros, Florencio C
2012-06-30
We report concentrations, enrichment factors, and hazard indicators of 11 metals (Ag, As, Cd, Co, Cu, Fe, In, Mn, Ni, Pb, and Zn) in soil and dust surface matrices from formal and informal electronic waste (e-waste) recycling sites around Metro Manila, the Philippines, referring to soil guidelines and previous data from various e-waste recycling sites in Asia. Surface dust from e-waste recycling sites had higher levels of metal contamination than surface soil. Comparison of formal and informal e-waste recycling sites (hereafter, "formal" and "informal") revealed differences in specific contaminants. Formal dust contained a mixture of serious pollutant metals (Ni, Cu, Pb, and Zn) and Cd (polluted modestly), quite high enrichment metals (Ag and In), and crust-derived metals (As, Co, Fe, and Mn). For informal soil, concentration levels of specific metals (Cd, Co, Cu, Mn, Ni, Pb, and Zn) were similar among Asian recycling sites. Formal dust had significantly higher hazardous risk than the other matrices (p<0.005), excluding informal dust (p=0.059, almost significant difference). Thus, workers exposed to formal dust should protect themselves from hazardous toxic metals (Pb and Cu). There is also a high health risk for children ingesting surface matrices from informal e-waste recycling sites. Copyright © 2012 Elsevier B.V. All rights reserved.
Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska
Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.
1975-01-01
Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.
Nuclear waste disposal: Gambling on Yucca Mountain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginsburg, S.
1995-05-01
This document describes the historical aspects of nuclear energy ,nuclear weapons usage, and development of the nuclear bureaucracy in the United States, and discusses the selection and siting of Yucca Mountain, Nevada for a federal nuclear waste repository. Litigation regarding the site selection and resulting battles in the political arena and in the Nevada State Legislature are also presented. Alternative radioactive waste disposal options, risk assessments of the Yucca Mountain site, and logistics regarding the transportation and storage of nuclear waste are also presented. This document also contains an extensive bibliography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-12-01
This document contains twelve papers on various aspects of low-level radioactive waste management. Topics of this volume include: performance assessment methodology; remedial action alternatives; site selection and site characterization procedures; intruder scenarios; sensitivity analysis procedures; mathematical models for mixed waste environmental transport; and risk assessment methodology. Individual papers were processed separately for the database. (TEM)
Ground Water Issue: Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites
2001-02-01
Development Ground Water Issue Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites National Risk Management Research... Phytoremediation , the use of plants in remediation, is one such technology. This issue paper focuses on the processes and applications of phytoremediation ...of phytoremediation as a cleanup or containment technique for remediation of hazardous waste sites. Introductory material on plant processes is
An investigation into waste charges in Ireland, with emphasis on public acceptability.
Dunne, Louise; Convery, Frank J; Gallagher, Louise
2008-12-01
There are 34 local authorities in Ireland with legal responsibility to deal with waste arising in their jurisdictions. In 2003 the National government introduced legislation that allows local authorities to recover the costs of waste collection and disposal, and to do so by 'executive function', i.e., not requiring support or agreement by the relevant local political representatives. The year 2005 was set as the date by which implementation of a pay by weight or volume was to be introduced. The local authorities were given autonomy as to how they addressed this challenge, so we have - in theory - 34 potentially different experiences from which to learn. This paper examines the pay-as-you-throw (PAYT) waste system in Ireland as it develops in line with EU and National demands, with a view to assessing economic and environmental efficiency. All local authorities were surveyed and thirteen responded. While this only represents about 38% of the total number, it includes jurisdictions that contribute in total more than 50% of waste arising. Key figures in the policy and business community were also interviewed in order to identify how the charging schemes were implemented, and to what effect. These insights and parallel investigations are used to review the potential for problems regarding public acceptability of environmental taxes and examine the evidence for economic and environmental efficiency, as well as problem areas, using data from each of the responding local authority jurisdictions. Concentrating on the incentives and drivers across households, municipalities and private waste contractors, the variations in charging system, annual charges and landfill charges are compared where information was available. The various jurisdictions are also examined in terms of relative successes and problems encountered in the transition from fixed charge or free waste collection to PAYT systems. The Irish situation is placed in the context of the international literature on PAYT, the growing waste crisis, environmental attitudes vs. behaviours, and the acceptability of environmental taxes generally.
Perkins, Devin N; Brune Drisse, Marie-Noel; Nxele, Tapiwa; Sly, Peter D
2014-01-01
Waste from end-of-life electrical and electronic equipment, known as e-waste, is a rapidly growing global problem. E-waste contains valuable materials that have an economic value when recycled. Unfortunately, the majority of e-waste is recycled in the unregulated informal sector and results in significant risk for toxic exposures to the recyclers, who are frequently women and children. The aim of this study was to document the extent of the problems associated with inappropriate e-waste recycling practices. This was a narrative review that highlighted where e-waste is generated, where it is recycled, the range of adverse environmental exposures, the range of adverse health consequences, and the policy frameworks that are intended to protect vulnerable populations from inappropriate e-waste recycling practices. The amount of e-waste being generated is increasing rapidly and is compounded by both illegal exportation and inappropriate donation of electronic equipment, especially computers, from developed to developing countries. As little as 25% of e-waste is recycled in formal recycling centers with adequate worker protection. The health consequences of both direct exposures during recycling and indirect exposures through environmental contamination are potentially severe but poorly studied. Policy frameworks aimed at protecting vulnerable populations exist but are not effectively applied. E-waste recycling is necessary but it should be conducted in a safe and standardized manor. The acceptable risk thresholds for hazardous, secondary e-waste substances should not be different for developing and developed countries. However, the acceptable thresholds should be different for children and adults given the physical differences and pronounced vulnerabilities of children. Improving occupational conditions for all e-waste workers and striving for the eradication of child labor is non-negotiable. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
77 FR 10485 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-22
... Status EM/National Nuclear Security Administration Integration Ecological Surveys Ground Water Waste Area... and site management in the areas of environmental restoration, waste management, and related... Idaho Cleanup Project (ICP) Workforce Reductions Advanced Mixed Waste Cleanup Project (AMWTP) Workforce...
Using the Triad Approach to Improve the Cost-effectiveness of Hazardous Waste Site Cleanups
U.S. EPA's Office of Solid Waste and Emergency Response is promoting more effective strategies for characterizing, monitoring, and cleaning up hazardous waste sites. In particular, a paradigm based on using an integrated triad of systematic planning...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Hazardous chemicals in the environment have received ever increasing attention in recent years. In response to ongoing problems with hazardous waste management, Congress enacted the Resource Conservation and Recovery Act (RCRA) in 1976. In 1980, Congress adopted the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA), commonly called Superfund to provide for emergency spill response and to clean up closed or inactive hazardous waste sites. Scientists and engineers have begun to respond to the hazardous waste challenge with research and development on treatment of waste streams as well as cleanup of polluted areas. The magnitude of the problem is justmore » now beginning to be understood. The U.S. Environmental Protection Agency (USEPA) National Priorities List as of September 13 1985, contained 318 proposed sites and 541 final sites (USEPA, 1985). Estimates of up to 30,000 sites containing hazardous wastes (1,200 to 2,000 of which present a serious threat to public health) have been made (Public Law 96-150). In addition to the large number of sites, the costs of cleanup using available technology are phenomenal. For example, a 10-acre toxic waste site in Ohio is to be cleaned up by removing chemicals from the site and treating the contaminated groundwater. The federal government has already spent more than $7 million to remove the most hazardous wastes and the groundwater decontamination alone is expected to take at least 10 years and cost $12 million. Another example of cleanup costs comes from the State of California Commission for Economic Development which predicts a bright economic future for the state except for the potential outlay of $40 billion for hazardous waste cleanup mandated by federal and state laws.« less
Radioactive waste management in Poland status and strategy for the future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wlodarski, J.
1995-12-01
Site selection for a new radioactive waste repository in Poland has been started. The repository will contain low- and intermediate-level radioactive wastes and spent fuel. Superficial, shallow underground and deep underground disposal options were considered; 39 potential sites have been selected. Issues to be resolved regarding waste management in Poland are also outlined in this paper.
40 CFR 63.1095 - What specific requirements must I comply with?
Code of Federal Regulations, 2012 CFR
2012-07-01
... according to any of the options in 40 CFR 61.342(c)(1) through (e) or transfer waste off-site. If you elect... Systems and Waste Operations Waste Requirements § 63.1095 What specific requirements must I comply with? For waste that is not transferred off-site, you must comply with the requirements in paragraph (a) of...
40 CFR 63.1095 - What specific requirements must I comply with?
Code of Federal Regulations, 2014 CFR
2014-07-01
... according to any of the options in 40 CFR 61.342(c)(1) through (e) or transfer waste off-site. If you elect... Systems and Waste Operations Waste Requirements § 63.1095 What specific requirements must I comply with? For waste that is not transferred off-site, you must comply with the requirements in paragraph (a) of...
Cleanup Verification Package for the 618-2 Burial Ground
DOE Office of Scientific and Technical Information (OSTI.GOV)
W. S. Thompson
2006-12-28
This cleanup verification package documents completion of remedial action for the 618-2 Burial Ground, also referred to as Solid Waste Burial Ground No. 2; Burial Ground No. 2; 318-2; and Dry Waste Burial Site No. 2. This waste site was used primarily for the disposal of contaminated equipment, materials and laboratory waste from the 300 Area Facilities.
Sustainable Development Strategy Of Domestic Waste Infrastructure In The City Of Surakarta
NASA Astrophysics Data System (ADS)
Rezagama, Arya; Purwono; Damayanti, Verika
2018-02-01
Shifting from traditional system to large, centralised infrastructure domestic waste is widely complex challenge. Most of fhe sanitary system on household in Surakarta use on site septictank, 17% sewerage system reached and16,0% stll open defecations. Sanitation development sustained aims to develop policy and strategies waste management domestic Surakarta in the long term (20 years). The projection use quantitative method and institutional condition approach by SWOT analysis. Surakarta City get priority sanitation urban planning from Indonesian government in Presiden Joko Widodo era. The domestic waste management systems that is Surakarta divided into system on-site and system off site. Waste Water Treatment Plant (WWTP) mojosongo, WWTP pucangsawit and WWTP Semanggi will be developed to treat 30% domestic waste of Surakarta Residence. While on-site system will are served 70% residence by service programs Regular Cleaning Septictank. The toughest challenge is how to increase community participation in waste management and improve the company"s financial condition. Sanitation sustainable development is going to happen if supported by facility development also good, institutional development, the arrangement that oversees, and the public participation.
On the prevailing construction waste recycling practices: a South East Queensland study.
Tam, Vivian W Y; Kotrayothar, Duangthidar; Loo, Yew-Chaye
2009-03-01
Waste generated from construction and building demolition work constitutes about 68% of all solid waste generated each year in South East Queensland. Consequently, it has created a serious waste management problem. The State Governments of Victoria and New South Wales have been encouraging the use of recycled materials from construction and related waste; they have also promulgated specifications for their use. In Queensland, however, similar regulations are not anticipated in the near future, which explains the lack of funded research conducted in this important arena. This paper presents an evaluation of the prevailing waste recycling practices in Queensland. Nine sites were visited, including two construction sites, three demolition sites, three recycling plants and one landfill in South East Queensland. The difficulties encountered by the recycling programme operators and their associates at these sites are described and the benefits of recycling construction materials are presented. One of the major barriers is that the local councils disallow the use of recycled materials in new construction work. To help rectify these impediments to recycling, recommendations are given to increase the use of recycled construction waste in South East Queensland.
Characterizing the environmental impact of metals in construction and demolition waste.
Yu, Danfeng; Duan, Huabo; Song, Qingbin; Li, Xiaoyue; Zhang, Hao; Zhang, Hui; Liu, Yicheng; Shen, Weijun; Wang, Jinben
2018-05-01
Large quantities of construction and demolition (C&D) waste are generated in China every year, but their potential environmental impacts on the surrounding areas are rarely assessed. This study focuses on metals contained in C&D waste, characterizing the metal concentrations and their related environmental risks. C&D waste samples were collected in Shenzhen City, China, from building demolition sites, renovation areas undergoing refurbishment, landfill sites, and recycling companies (all located in Shenzhen city) that produce recycled aggregate, in order to identify pollution levels of the metals As, Cd, Cr, Cu, Pb, Ni, and Zn. The results showed that (1) the metal concentrations in most demolition and renovation waste samples were below the soil environmental quality standard for agricultural purposes (SQ-Agr.) in China; (2) Cd, Cu, and Zn led to relatively higher environmental risks than other metals, especially for Zn (DM5 tile sample, 360 mg/kg; R4 tile sample, 281 mg/kg); (3) non-inert C&D waste such as wall insulation and foamed plastic had high concentrations of As and Cd, so that these materials required special attention for sound waste management; and (4) C&D waste collected from landfill sites had higher concentrations of Cd and Cu than did waste collected from demolition and refurbishment sites.
Basic repository environmental assessment design basis, Lavender Canyon site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-01-01
This study examines the engineering factors and costs associated with the construction, operation, and decommissioning of a high-level nuclear waste repository in salt in the Paradox Basin in Lavender Canyon, Utah. The study assumes a repository capacity of 36,000 metric tons of heavy metal (MTHM) of unreprocessed spent fuel and 36,000 MTHM of commercial high-level reprocessing waste, along with 7020 canisters of defense high-level reprocessing waste and associated quantities of remote- and contact-handled transuranic waste (TRU). With the exception of TRU, all the waste forms are placed in 300- to 1000-year-life carbon-steel waste packages in a collocated waste handling andmore » packaging facility (WHPF), which is also described. The construction, operation, and decommissioning of the proposed repository is estimated to cost approximately $5.51 billion. Costs include those for the collocated WHPP, engineering, and contingency, but exclude waste form assembly and shipment to the site and waste package fabrication and shipment to the site. These costs reflect the relative average wage rates of the region and the relatively sound nature of the salt at this site. Construction would require an estimated 7.75 years. Engineering factors and costs are not strongly influenced by environmental considerations. 51 refs., 24 figs., 20 tabs.« less
Inventory Data Package for Hanford Assessments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kincaid, Charles T.; Eslinger, Paul W.; Aaberg, Rosanne L.
2006-06-01
This document presents the basis for a compilation of inventory for radioactive contaminants of interest by year for all potentially impactive waste sites on the Hanford Site for which inventory data exist in records or could be reasonably estimated. This document also includes discussions of the historical, current, and reasonably foreseeable (1944 to 2070) future radioactive waste and waste sites; the inventories of radionuclides that may have a potential for environmental impacts; a description of the method(s) for estimating inventories where records are inadequate; a description of the screening method(s) used to select those sites and contaminants that might makemore » a substantial contribution to impacts; a listing of the remedial actions and their completion dates for waste sites; and tables showing the best estimate inventories available for Hanford assessments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, R.E.
1994-11-02
This document provides the software development plan for the Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store, and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.
Waste treatment in silicon production operations
NASA Technical Reports Server (NTRS)
Coleman, Larry M. (Inventor); Tambo, William (Inventor)
1985-01-01
A battery of special burners, each adapted for the treatment of a particular range of waste material formed during the conversion of metallurgical grade silicon to high purity silane and silicon, is accompanied by a series arrangement of filters to recover fumed silica by-product and a scrubber to recover muriatic acid as another by-product. All of the wastes are processed, during normal and plant upset waste load conditions, to produce useful by-products in an environmentally acceptable manner rather than waste materials having associated handling and disposal problems.
Solid rocket propellant waste disposal/ingredient recovery study
NASA Technical Reports Server (NTRS)
Mcintosh, M. J.
1976-01-01
A comparison of facility and operating costs of alternate methods shows open burning to be the lowest cost incineration method of waste propellant disposal. The selection, development, and implementation of an acceptable alternate is recommended. The recovery of ingredients from waste propellant has the probability of being able to pay its way, and even show a profit, when large consistent quantities of composite propellant are available. Ingredients recovered from space shuttle waste propellant would be worth over $1.5 million. Open and controlled burning are both energy wasteful.
Mission analysis for cross-site transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riesenweber, S.D.; Fritz, R.L.; Shipley, L.E.
1995-11-01
The Mission Analysis Report describes the requirements and constraints associated with the Transfer Waste Function as necessary to support the Manage Tank Waste, Retrieve Waste, and Process Tank Waste Functions described in WHC-SD-WM-FRD-020, Tank Waste Remediation System (TWRS) Functions and Requirements Document and DOE/RL-92-60, Revision 1, TWRS Functions and Requirements Document, March 1994. It further assesses the ability of the ``initial state`` (or current cross-site transfer system) to meet the requirements and constraints.
Wastewater and Hazardous Waste Survey, Homestead AFB Florida.
1988-03-01
tank into the sanitary sewer. 16. Bilge waste from the Water Survival School is currently placed in 55-gallon drums and stored on site. At the time...plant. W0’I; • ,. =% . Fiue5. AGE Accumulation Site , 30 7. A disposal contract for waste bilge water is needed for the Water Survival School. Currently...eliminate all pesticide wastes from S this shop. 16. The Water Survival School can possibly eliminate bilge water waste by having Civil Engineering
Thirty-year solid waste generation forecast for facilities at SRS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-07-01
The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis ofmore » future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.« less
Geological problems in radioactive waste isolation - A world wide review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witherspoon, P.A.
1991-06-01
The problem of isolating radioactive wastes from the biosphere presents specialists in the earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high-level waste (HLW), which must be isolated in the underground and away from the biosphere for thousands of years. The most widely accepted method of doing this is to seal the radioactive materials in metal canisters that are enclosed by a protective sheath and placed underground in a repository that has been carefully constructed in an appropriate rock formation. Much new technology is being developed to solve the problemsmore » that have been raised, and there is a continuing need to publish the results of new developments for the benefit of all concerned. Table 1 presents a summary of the various formations under investigation according to the reports submitted for this world wide review. It can be seen that in those countries that are searching for repository sites, granitic and metamorphic rocks are the prevalent rock type under investigation. Six countries have developed underground research facilities that are currently in use. All of these investigations are in saturated systems below the water table, except the United States project, which is in the unsaturated zone of a fractured tuff.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humme, J.T.; Tanaka, M.T.; Yokota, M.H.
1979-07-01
The purpose of this study was to determine the feasibility of geothermal resource utilization at the Puna Sugar Company cane sugar processing plant, located in Keaau, Hawaii. A proposed well site area was selected based on data from surface exploratory surveys. The liquid dominated well flow enters a binary thermal arrangement, which results in an acceptable quality steam for process use. Hydrogen sulfide in the well gases is incinerated, leaving sulfur dioxide in the waste gases. The sulfur dioxide in turn is recovered and used in the cane juice processing at the sugar factory. The clean geothermal steam from themore » binary system can be used directly for process requirements. It replaces steam generated by the firing of the waste fibrous product from cane sugar processing. The waste product, called bagasse, has a number of alternative uses, but an evaluation clearly indicated it should continue to be employed for steam generation. This steam, no longer required for process demands, can be directed to increased electric power generation. Revenues gained by the sale of this power to the utility, in addition to other savings developed through the utilization of geothermal energy, can offset the costs associated with hydrothermal utilization.« less
Potential for gulls to transport bacteria from human waste sites to beaches.
Alm, Elizabeth W; Daniels-Witt, Quri R; Learman, Deric R; Ryu, Hodon; Jordan, Dustin W; Gehring, Thomas M; Santo Domingo, Jorge
2018-02-15
Contamination of recreational beaches due to fecal waste from gulls complicates beach monitoring and may pose a risk to public health. Gulls that feed at human waste sites may ingest human fecal microorganisms associated with that waste. If these gulls also visit beaches, they may serve as vectors, transporting fecal microorganisms to the beach where they may subsequently contaminate sand and water. In this study, samples collected from landfills, treated wastewater storage lagoons, and public beaches demonstrated a spatial and temporal overlap of markers for gull and human-associated microorganisms. In addition, markers for gull, fecal indicator bacteria, and the human-associated marker, HF183, were detected in gull feces and cloacae samples. Further, HF183 was detected in cloacae samples from gulls that were documented by radio-telemetry traveling between human waste sites and public beaches. This study highlights the potential for gulls that visit human waste sites to disperse human-associated microorganisms in the beach landscape. Copyright © 2017 Elsevier B.V. All rights reserved.