Science.gov

Sample records for situ reaction study

  1. In situ analytical electron microscopy studies of redox reactions at a YSZ/Pt interface.

    PubMed

    Tavabi, Amir Hossein; Arai, Shigeo; Tanji, Takayoshi

    2012-06-01

    Redox reactions were studied at a single yttria-stabilized zirconia (YSZ)/Pt electrode interface, in parallel with pure YSZ with no catalyst electrode, by in situ analytical electron microscopy at elevated temperatures and in an oxygen atmosphere. In situ electron holography showed that the oxide underwent reduction at elevated temperatures in a vacuum and was consequently reoxidized upon exposure to an oxygen flux at the same temperature. In situ energy loss spectroscopy measurements were in agreement with in situ electron holography observations and indicated that the oxidation state of the host cation zirconium was altered in the reduced state of the YSZ to the metastable state Zr(3+).

  2. Combined in-situ dilatometer and contact angle studies of interfacial reaction kinetics in brazing.

    SciTech Connect

    Dave, V. R.; Javernick, D. A.; Thoma, D. J.; Cola, M. J.; Hollis, K. J.; Smith, F. M.; Dauelsberg, L. B.

    2001-01-01

    Multi-component dissimilar material braze joints as shown in Figure 1 consisting of dissimilar base materials, filler materials and wetting agents are of tantamount importance in a wide variely of applications. This work combines dilatometry and contact angle measurements to characterize in-situ the multiple interfacial reaction pathways that occur in such systems. Whereas both of these methods are commonly used tools in metallurgical investigation, their combined use within the context of brazing studies is new and offers considerable additional insight. Applications are discussed to joints made between Beryllium and Monel with TiH{sub 2} as the wetting agent and Cu-28%Ag as the filler material.

  3. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions

    PubMed Central

    Lu, Yi-Chun; Crumlin, Ethan J.; Veith, Gabriel M.; Harding, Jonathon R.; Mutoro, Eva; Baggetto, Loïc; Dudney, Nancy J.; Liu, Zhi; Shao-Horn, Yang

    2012-01-01

    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+xTi5O12/LiPON/LixV2O5 cell and examine in situ the chemistry of Li-O2 reaction products on LixV2O5 as a function of applied voltage under ultra high vacuum (UHV) and at 500 mtorr of oxygen pressure using ambient pressure X-ray photoelectron spectroscopy (APXPS). Under UHV, lithium intercalated into LixV2O5 while molecular oxygen was reduced to form lithium peroxide on LixV2O5 in the presence of oxygen upon discharge. Interestingly, the oxidation of Li2O2 began at much lower overpotentials (~240 mV) than the charge overpotentials of conventional Li-O2 cells with aprotic electrolytes (~1000 mV). Our study provides the first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O2 chemistry. PMID:23056907

  4. Theoretical study of piezoelectrochemical reactions in molecular compression chambers: In-situ generation of molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Pichierri, Fabio

    2016-09-01

    Nitrogen-containing molecular compression chambers (MCCs) undergo stepwise protonation followed by a 2-electron reduction step which affords molecular hydrogen in situ. This piezoelectrochemical reaction is favored by the high compression that characterizes the molecular skeleton of MCC and its fluorinated analogue. Besides H2, the MCCs are also capable of trapping molecular fluorine and the small monoatomic gases helium and neon. A topological analysis of the electronic charge density reveals the presence of closed-shell interactions between hosts and guests.

  5. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis.

    PubMed

    Nguyen, Luan; Tao, Franklin Feng

    2016-06-01

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  6. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis.

    PubMed

    Nguyen, Luan; Tao, Franklin Feng

    2016-06-01

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily. PMID:27370473

  7. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis

    NASA Astrophysics Data System (ADS)

    Nguyen, Luan; Tao, Franklin Feng

    2016-06-01

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  8. Reactions of graphene supported Co3O4 nanocubes with lithium and magnesium studied by in situ transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Luo, Langli; Wu, Jinsong; Li, Qianqian; Dravid, Vinayak P.; Poeppelmeier, Kenneth R.; Rao, Qunli; Xu, Junming

    2016-02-01

    Reaction beyond intercalation and the utilization of metal ions beyond lithium-ions are two promising approaches for developing the next generation of high capacity and low cost energy storage materials. Here, we use graphene supported Co3O4 nanocubes and study their reaction with lithium, magnesium and aluminum using in situ transmission electron microscopy. On lithiation, the Co3O4 nanocubes decompose to Co metal nanoparticles (2 to 3 nm) and embed in as-formed Li2O matrix; conversely, the CoO nanoparticles form on the Co site accompanying the decomposition of Li2O in the delithiation process. The lithiation process is dominated by surface diffusion of Li+, and graphene sheets enhance the Li+ diffusion. However, upon charge with magnesium, the Mg2+ diffusion is sluggish, and there is no sign of conversion reaction between Mg and Co3O4 at room temperature. Instead, a thin film consisting of metal Mg nanoparticles is formed on the surface of graphene due to a process similar to metal plating. The Al3+ diffusion is even more sluggish and no reaction between Al and Co3O4 is observed. These findings provide insights to tackle the reaction mechanism of multivalent ions with electrode materials.

  9. In Situ Study on Current Density Distribution and Its Effect on Interfacial Reaction in a Soldering Process

    NASA Astrophysics Data System (ADS)

    Qu, Lin; Zhao, Ning; Ma, Haitao; Zhao, Huijing; Huang, Mingliang

    2015-01-01

    The interfacial reaction in Cu/Sn/Cu solder joint during liquid-solid eletromigration (EM) was in situ studied using synchrotron radiation real-time imaging technology. The current density distribution in the solder joint was analyzed with the finite element method (FEM). The relationships among solder shape, current density distribution, Cu dissolution, and the formation and dissolution of interfacial intermetallic compound (IMC) were revealed. The current promoted dissolution of the cathode IMC and growth of the anode IMC and suppressed the dissolution of anode Cu. The change of interfacial IMC had little effect on the current density distribution; however, the dissolution of cathode Cu, which changed the solder shape, had a significant effect on the current density distribution. The dissolution of cathode Cu under forward current and cathode IMC under reverse current and the growth of anode IMC under forward current was faster where the current density was higher. The synchrotron radiation real-time imaging technology can not only in situ observe the change of solder shape, the dissolution and growth behavior of interfacial IMC and the dissolution behavior of substrate in a soldering process but also provide data needed for numerical simulation of current density distribution in a solder joint.

  10. Study on the Electrochemical Reaction Mechanism of ZnFe2O4 by In Situ Transmission Electron Microscopy

    PubMed Central

    Su, Qingmei; Wang, Shixin; Yao, Libing; Li, Haojie; Du, Gaohui; Ye, Huiqun; Fang, Yunzhang

    2016-01-01

    A family of mixed transition–metal oxides (MTMOs) has great potential for applications as anodes for lithium ion batteries (LIBs). However, the reaction mechanism of MTMOs anodes during lithiation/delithiation is remain unclear. Here, the lithiation/delithiation processes of ZnFe2O4 nanoparticles are observed dynamically using in situ transmission electron microscopy (TEM). Our results suggest that during the first lithiation process the ZnFe2O4 nanoparticles undergo a conversion process and generate a composite structure of 1–3 nm Fe and Zn nanograins within Li2O matrix. During the delithiation process, volume contraction and the conversion of Zn and Fe take place with the disappearance of Li2O, followed by the complete conversion to Fe2O3 and ZnO not the original phase ZnFe2O4. The following cycles are dominated by the full reversible phase conversion between Zn, Fe and ZnO, Fe2O3. The Fe valence evolution during cycles evidenced by electron energy–loss spectroscopy (EELS) techniques also exhibit the reversible conversion between Fe and Fe2O3 after the first lithiation, agreeing well with the in situ TEM results. Such in situ TEM observations provide valuable phenomenological insights into electrochemical reaction of MTMOs, which may help to optimize the composition of anode materials for further improved electrochemical performance. PMID:27306189

  11. A reaction cell with sample laser heating for in situ soft X-ray absorption spectroscopy studies under environmental conditions.

    PubMed

    Escudero, Carlos; Jiang, Peng; Pach, Elzbieta; Borondics, Ferenc; West, Mark W; Tuxen, Anders; Chintapalli, Mahati; Carenco, Sophie; Guo, Jinghua; Salmeron, Miquel

    2013-05-01

    A miniature (1 ml volume) reaction cell with transparent X-ray windows and laser heating of the sample has been designed to conduct X-ray absorption spectroscopy studies of materials in the presence of gases at atmospheric pressures. Heating by laser solves the problems associated with the presence of reactive gases interacting with hot filaments used in resistive heating methods. It also facilitates collection of a small total electron yield signal by eliminating interference with heating current leakage and ground loops. The excellent operation of the cell is demonstrated with examples of CO and H2 Fischer-Tropsch reactions on Co nanoparticles.

  12. In situ spatial and time-resolved studies of electrochemical reactions by scanning transmission X-ray microscopy.

    PubMed

    Guay, Daniel; Stewart-Ornstein, Jacob; Zhang, Xuerong; Hitchcock, Adam P

    2005-06-01

    The first in situ measurements with scanning transmission X-ray microscopy (STXM) of an active electrochemical cell are reported. An electrochemical wet cell, consisting of an electrodeposited polyaniline thin film on a thin Au film covered by an overlayer of 1 M HCl solution sitting between two X-ray transparent silicon nitride windows, was assembled. X-ray absorption images and spatial and time-resolved spectra of this system under potential control were examined using the beamline 5.3.2 STXM at the Advanced Light Source. The chemical state of the polyaniline film was reversibly converted between reduced (leucoemeraldine) and oxidized (emeraldine chloride) states by changing the applied potential. The electrochemical changes were monitored by spatially resolved C 1s and N 1s X-ray absorption spectroscopy and chemical-state selective imaging. Comparison of differences between images at two energies at different potentials provided electrochemical contrast with a resolution better than 50 nm, thereby monitoring that component of the polyaniline film that was electrochemically active. Kinematic studies in the subsecond regime are demonstrated.

  13. An in situ sample environment reaction cell for spatially resolved x-ray absorption spectroscopy studies of powders and small structured reactors

    SciTech Connect

    Zhang, Chu; Gustafson, Johan; Merte, Lindsay R.; Evertsson, Jonas; Norén, Katarina; Carlson, Stefan; Svensson, Håkan; Carlsson, Per-Anders

    2015-03-15

    An easy-to-use sample environment reaction cell for X-ray based in situ studies of powders and small structured samples, e.g., powder, pellet, and monolith catalysts, is described. The design of the cell allows for flexible use of appropriate X-ray transparent windows, shielding the sample from ambient conditions, such that incident X-ray energies as low as 3 keV can be used. Thus, in situ X-ray absorption spectroscopy (XAS) measurements in either transmission or fluorescence mode are facilitated. Total gas flows up to about 500 ml{sub n}/min can be fed while the sample temperature is accurately controlled (at least) in the range of 25–500 °C. The gas feed is composed by a versatile gas-mixing system and the effluent gas flow composition is monitored with mass spectrometry (MS). These systems are described briefly. Results from simultaneous XAS/MS measurements during oxidation of carbon monoxide over a 4% Pt/Al{sub 2}O{sub 3} powder catalyst are used to illustrate the system performance in terms of transmission XAS. Also, 2.2% Pd/Al{sub 2}O{sub 3} and 2% Ag − Al{sub 2}O{sub 3} powder catalysts have been used to demonstrate X-ray absorption near-edge structure (XANES) spectroscopy in fluorescence mode. Further, a 2% Pt/Al{sub 2}O{sub 3} monolith catalyst was used ex situ for transmission XANES. The reaction cell opens for facile studies of structure-function relationships for model as well as realistic catalysts both in the form of powders, small pellets, and coated or extruded monoliths at near realistic conditions. The applicability of the cell for X-ray diffraction measurements is discussed.

  14. An in situ sample environment reaction cell for spatially resolved x-ray absorption spectroscopy studies of powders and small structured reactors

    NASA Astrophysics Data System (ADS)

    Zhang, Chu; Gustafson, Johan; Merte, Lindsay R.; Evertsson, Jonas; Norén, Katarina; Carlson, Stefan; Svensson, Hâkan; Carlsson, Per-Anders

    2015-03-01

    An easy-to-use sample environment reaction cell for X-ray based in situ studies of powders and small structured samples, e.g., powder, pellet, and monolith catalysts, is described. The design of the cell allows for flexible use of appropriate X-ray transparent windows, shielding the sample from ambient conditions, such that incident X-ray energies as low as 3 keV can be used. Thus, in situ X-ray absorption spectroscopy (XAS) measurements in either transmission or fluorescence mode are facilitated. Total gas flows up to about 500 mln/min can be fed while the sample temperature is accurately controlled (at least) in the range of 25-500 °C. The gas feed is composed by a versatile gas-mixing system and the effluent gas flow composition is monitored with mass spectrometry (MS). These systems are described briefly. Results from simultaneous XAS/MS measurements during oxidation of carbon monoxide over a 4% Pt/Al2O3 powder catalyst are used to illustrate the system performance in terms of transmission XAS. Also, 2.2% Pd/Al2O3 and 2% Ag - Al2O3 powder catalysts have been used to demonstrate X-ray absorption near-edge structure (XANES) spectroscopy in fluorescence mode. Further, a 2% Pt/Al2O3 monolith catalyst was used ex situ for transmission XANES. The reaction cell opens for facile studies of structure-function relationships for model as well as realistic catalysts both in the form of powders, small pellets, and coated or extruded monoliths at near realistic conditions. The applicability of the cell for X-ray diffraction measurements is discussed.

  15. Combined temperature-programmed reaction and in-situ x-ray scattering studies of size-selected silver clusters under realistic reaction conditions in the epoxidation of propene.

    SciTech Connect

    Vajda, S.; Lee, S.; Sell, K.; Barke, I.; Kleibert, A.; von Oeynhausen, V.; Meiwes-Broer, K. H.; Rodriguez, A. F.; Elam, J. W.; Pellin, M. M.; Lee, B.; Seifert, S.; Winans, R. W.; Yale Univ.; Univ. Rostock; Swiss Light Source

    2009-09-28

    The catalytic activity and dynamical shape changes in size-selected nanoclusters at work are studied under realistic reaction conditions by using a combination of simultaneous temperature-programmed reaction with in situ grazing-incidence small angle x-ray scattering. This approach allows drawing a direct correlation between nanocatalyst size, composition, shape, and its function under realistic reaction conditions for the first time. The approach is illustrated in a chemical industry highly relevant selective partial oxidation of propene on a monodisperse silver nanocatalyst. The shape of the catalyst undergoes rapid change already at room temperature upon the exposure to the reactants, followed by a complex evolution of shape with increasing temperature. Acrolein formation is observed around 50 C while the formation of the propylene oxide exhibits a sharp onset at 80 C and is leveling off at 150 C. At lower temperatures acrolein is produced preferentially to propylene oxide; at temperatures above 100 C propylene oxide is favored.

  16. Aberration corrected environmental STEM (AC ESTEM) for dynamic in-situ gas reaction studies of nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Boyes, E. D.; Gai, P. L.

    2014-06-01

    Environmental scanning transmission electron microscopy (ESTEM) with aberration correction (AC) has recently been added to the capabilities of the more established ETEM for analysis of heterogeneous nanoparticle based catalysts. It has helped to reveal the importance and potentially unique properties of individual atoms as active sites in their own right as well as pathways between established nanoparticles. A new capability is introduced for dynamic in-situ experiments under controlled conditions of specimen temperature and gas environment related to real world conditions pertinent to a range of industrial and societal priorities for new and improved chemical processes, materials, fuels, pharmaceutical products and processes, and in control or remediation of environmental emissions.

  17. In situ reaction mechanism studies on ozone-based atomic layer deposition of Al(2)O(3) and HfO(2).

    PubMed

    Rose, Martin; Niinistö, Jaakko; Endler, Ingolf; Bartha, Johann W; Kücher, Peter; Ritala, Mikko

    2010-02-01

    The mechanisms of technologically important atomic layer deposition (ALD) processes, trimethylaluminium (TMA)/ozone and tetrakis(ethylmethylamino)hafnium (TEMAH)/ozone, for the growth of Al(2)O(3) and HfO(2) thin films are studied in situ by a quadrupole mass spectrometer coupled with a 300 mm ALD reactor. In addition to released CH(4) and CO(2), water was detected as one of the reaction byproduct in the TMA/O(3) process. In the TEMAH/O(3) process, the surface after the ozone pulse consisted of chemisorpted active oxygen and -OH groups, leading to the release of H(2)O, CO(2), and HNEtMe during the metal precursor pulse.

  18. Novel MEMS-based gas-cell/heating specimen holder provides advanced imaging capabilities for in situ reaction studies.

    PubMed

    Allard, Lawrence F; Overbury, Steven H; Bigelow, Wilbur C; Katz, Michael B; Nackashi, David P; Damiano, John

    2012-08-01

    In prior research, specimen holders that employ a novel MEMS-based heating technology (Aduro™) provided by Protochips Inc. (Raleigh, NC, USA) have been shown to permit sub-Ångström imaging at elevated temperatures up to 1,000°C during in situ heating experiments in modern aberration-corrected electron microscopes. The Aduro heating devices permit precise control of temperature and have the unique feature of providing both heating and cooling rates of 10⁶°C/s. In the present work, we describe the recent development of a new specimen holder that incorporates the Aduro heating device into a "closed-cell" configuration, designed to function within the narrow (2 mm) objective lens pole piece gap of an aberration-corrected JEOL 2200FS STEM/TEM, and capable of exposing specimens to gases at pressures up to 1 atm. We show the early results of tests of this specimen holder demonstrating imaging at elevated temperatures and at pressures up to a full atmosphere, while retaining the atomic resolution performance of the microscope in high-angle annular dark-field and bright-field imaging modes.

  19. In situ study on the effect of thermomigration on intermetallic compounds growth in liquid-solid interfacial reaction

    SciTech Connect

    Qu, Lin; Zhao, Ning; Ma, Haitao Zhao, Huijing; Huang, Mingliang

    2014-05-28

    Synchrotron radiation real-time imaging technology was carried out in situ to observe and characterize the effect of thermomigration on the growth behavior of interfacial intermetallic compounds (IMCs) in Cu/Sn/Cu solder joint during soldering. The thermomigration resulted in asymmetrical formation and growth of the interfacial IMCs. Cu{sub 6}Sn{sub 5} and Cu{sub 3}Sn IMCs formed at the cold end and grew rapidly during the whole soldering process. However, only Cu{sub 6}Sn{sub 5} IMC formed at the hot end and remained relatively thin until solidification. The IMCs at the cold end were nearly seven times thicker than that at the hot end after solidification. The Cu dissolution at the cold end was significantly restrained, while that at the hot end was promoted, which supplied Cu atoms to diffuse toward the cold end under thermomigration to feed the rapid IMC growth. Moreover, the thermomigration also caused asymmetrical morphology of the interfacial IMCs at the cooling stage, i.e., the Cu{sub 6}Sn{sub 5} IMC at the cold end transformed into facet structure, while that at the hot end remained scallop-type. The asymmetrical growth behavior of the interfacial IMCs was analyzed from the view point of kinetics.

  20. Application of fluid-rock reaction studies to in situ recovery from oil sand deposits, Alberta, Canada - I. Aqueous phase results for an experimental-statistical study of water-bitumen-shale reactions

    NASA Astrophysics Data System (ADS)

    Boon, J. A.; Hitchon, Brian

    1983-02-01

    In situ recovery operations in oil sand deposits effectively represent man-imposed low to intermediate temperature metamorphism of the sediments in the deposit. In order to evaluate some of the reactions which occur, a factorial experiment was earned out in which a shale from the Lower Cretaceous McMurray Formation in the Athabasca oil sand deposit of Alberta, in the presence or absence of bitumen, was subjected to hydrothermal treatment with aqueous fluids of varying pH and salinity, at two different temperatures, for periods up to 92 hours. The aqueous fluid was analyzed and the analytical data subjected to statistical factor analysis and analysis of variance, which enabled identification of the main processes, namely, cation exchange, the production of two types of colloidal material, and the dissolution of quartz There is also saturation of the aqueous phase by. as yet unidentified, "total organic carbon" and complete conversion and removal of all nitrogen in the shale to the aqueous phase. These reactions have implications with regards to the economics of the in situ recovery process, specifically with respect to the reuse and/or disposal of the produced water and the plugging of the pore space and hence of reduction of permeability between the injection and production wells. As a result of these experiments it is suggested that monitoring of the composition of the produced water from in situ recovery operations in oil sand deposits would be advisable.

  1. The reaction of ceria coatings on mica with H{sub 2}S An in-situ X-ray diffraction study

    SciTech Connect

    Bertaux, S.; Reynders, P.; Schweda, E

    2004-05-05

    Thin layers of ceria were deposited on the surface of mica platelets in solution. The reaction of such particles with hydrogen sulfide yields a red colored special effect pigment. The ceria layer reacts with H{sub 2}S to produce a variety of sulfide and oxysulfide phases. The reaction path discovered in situ by time and temperature resolved X-ray diffraction is CeO{sub 2}{yields}CeS{sub 2}{yields}C-Ce{sub 2}S{sub 3}{yields}Ce{sub 10}S{sub 14}O. The reaction itself is extremely variable depending on gas flow, heating rates and decomposition atmospheres. Effects on the thin film are recorded by scanning electron microscopy (SEM) and revealed a destruction of the layer once red Ce{sub 10}S{sub 14}O was formed. The product layer then reveals the typical nonwetting behaviour of a liquid on a surface.

  2. In situ analysis of copper electrodeposition reaction using unilateral NMR sensor.

    PubMed

    Gomes, B F; Nunes, L M S; Lobo, C M S; Carvalho, A S; Cabeça, L F; Colnago, L A

    2015-12-01

    The uses of high-resolution NMR spectroscopy and imaging (MRI) to study electrochemical reactions in situ have greatly increased in the last decade. However, most of these applications are limited to specialized NMR laboratories and not feasible for routine analysis. Recently we have shown that a bench top, time domain NMR spectrometer can be used to monitor in situ copper electrodeposition reaction and the effect of Lorentz force in the reaction rate. However these spectrometers limit the cell size to the magnet gap and cannot be used with standard electrochemical cells. In this paper we are demonstrating that unilateral NMR sensor (UNMR), which does not limit sample size/volume, can be used to monitor electrodeposition of paramagnetic ions in situ. The copper electrodeposition reaction was monitored remotely and in situ, placing the electrochemical cell on top of the UNMR sensor. The Cu(2+) concentration was measured during three hours of the electrodeposition reactions, by using the transverse relaxation rate (R2) determined with the Carr-Purcell-Meiboom-Gill pulse sequence. The reaction rate increased fourfold when the reaction was performed in the presence of a magnetic field (in situ), in comparison to the reactions in the absence of the magnetic field (ex situ). The increase of reaction rate, in the presence of the UNMR magnet, was related to the magneto hydrodynamic force (FB) and magnetic field gradient force (F∇B). F∇B was calculated to be one order of magnitude stronger than FB. The UNMR sensor has several advantages for in situ measurements when compared to standard NMR spectrometers. It is a low cost, portable, open system, which does not limit sample size/volume and can be easily be adapted to standard electrochemical cells or large industrial reactors.

  3. In situ analysis of copper electrodeposition reaction using unilateral NMR sensor

    NASA Astrophysics Data System (ADS)

    Gomes, B. F.; Nunes, L. M. S.; Lobo, C. M. S.; Carvalho, A. S.; Cabeça, L. F.; Colnago, L. A.

    2015-12-01

    The uses of high-resolution NMR spectroscopy and imaging (MRI) to study electrochemical reactions in situ have greatly increased in the last decade. However, most of these applications are limited to specialized NMR laboratories and not feasible for routine analysis. Recently we have shown that a bench top, time domain NMR spectrometer can be used to monitor in situ copper electrodeposition reaction and the effect of Lorentz force in the reaction rate. However these spectrometers limit the cell size to the magnet gap and cannot be used with standard electrochemical cells. In this paper we are demonstrating that unilateral NMR sensor (UNMR), which does not limit sample size/volume, can be used to monitor electrodeposition of paramagnetic ions in situ. The copper electrodeposition reaction was monitored remotely and in situ, placing the electrochemical cell on top of the UNMR sensor. The Cu2+ concentration was measured during three hours of the electrodeposition reactions, by using the transverse relaxation rate (R2) determined with the Carr-Purcell-Meiboom-Gill pulse sequence. The reaction rate increased fourfold when the reaction was performed in the presence of a magnetic field (in situ), in comparison to the reactions in the absence of the magnetic field (ex situ). The increase of reaction rate, in the presence of the UNMR magnet, was related to the magneto hydrodynamic force (FB) and magnetic field gradient force (F∇B). F∇B was calculated to be one order of magnitude stronger than FB. The UNMR sensor has several advantages for in situ measurements when compared to standard NMR spectrometers. It is a low cost, portable, open system, which does not limit sample size/volume and can be easily be adapted to standard electrochemical cells or large industrial reactors.

  4. In situ microcosms in aquifer bioremediation studies.

    PubMed

    Mandelbaum, R T; Shati, M R; Ronen, D

    1997-07-01

    The extent to which aquifer microbiota can be studied under laboratory or simulated conditions is limited by our inability to authentically duplicate natural conditions in the laboratory. Therefore, extrapolation of laboratory results to real aquifer situations is often criticized, unless validation of the data is performed in situ. Reliable data acquisition is critical for the estimation of chemical and biological reaction rates of biodegradation processes in groundwater and as input data for mathematical models. Typically, in situ geobiochemical studies relied on the injection of groundwater spiked with compounds or bacteria of interest into the aquifer, followed by monitoring the changes over time and space. In situ microcosms provide a more confined study site for measurements of microbial reactions, yet closer to natural conditions than laboratory microcosms. Two basic types of in situ aquifer microcosm have been described in recent years, and both originated from in situ instruments initially designed for geochemical measurements. Gillham et al. [Ground Water 28 (1990) 858-862] constructed an instrument that isolates a portion of an aquifer for in situ biochemical rate measurements. More recently Shati et al. [Environ. Sci. Technol. 30 (1996) 2646-2653] modified a multilayer sampler for studying the activity of inoculated bacteria in a contaminated aquifer Keeping in mind recent advances in environmental microbiology methodologies such as immunofluorescence direct counts, oligonucleotide and PCR probes, fatty acid methyl esther analysis for the detection and characterization of bacterial communities, measurement of mRNA and expression of proteins, it is evident that much new information can now be gained from in situ work. Using in situ microcosms to study bioremediation efficiencies, the fate of introduced microorganisms and general geobiochemical aquifer processes can shed more realistic light on the microbial underworld. The aim of this paper is to

  5. Preparation of samples for polymerase chain reaction in situ.

    PubMed

    Nuovo, G J

    1996-01-01

    The purpose of this paper is to describe the key variables in sample and reagent preparation needed for successful polymerase chain reaction (PCR) in situ. Tissue or cell preparations should be fixed in a cross linking fixative, such as 10% buffered formalin, preferably from 15 to 48 hours. Tissues should be embedded in paraffin; cell preparations can be fixed when near confluence, then physically removed and processed. When possible three samples (4 microM tissue sections or 1-5000 cells) should be placed on silane coated glass slides. Digestion in pepsin (2 mg/ml) for 30 min is adequate for DNA detection by PCR in situ hybridization whereas optimal protease digestion time is variable and related to formalin fixation time for reverse transcriptase (RT) in situ PCR. RT in situ PCR requires an overnight digestion with DNase. The amplifying solution should contain 4.5 mM MgCl2, 0.05% bovine serum albumin, and, for RNA analysis, the reporter nucleotide. A false positive signal would be evident with incorporation of the reporter nucleotide for DNA targets due to DNA repair; this can be avoided with frozen, fixed tissues and the hot start maneuver. Otherwise, one needs to use a labeled probe and a hybridization step to detect amplified DNA targets in paraffin embedded tissues.

  6. In situ study of an oxidation reaction on a Pt/C electrode by ambient pressure hard X-ray photoelectron spectroscopy

    SciTech Connect

    Takagi, Yasumasa Uemura, Yohei; Yokoyama, Toshihiko; Wang, Heng; Ikenaga, Eiji; Ohashi, Haruhiko; Senba, Yasunori; Yumoto, Hirokatsu; Yamazaki, Hiroshi; Goto, Shunji; Sekizawa, Oki; Iwasawa, Yasuhiro; Uruga, Tomoya; Tada, Mizuki

    2014-09-29

    We have constructed an ambient pressure X-ray photoelectron spectroscopy instrument that uses hard X-ray radiation at the high-performance undulator beamline BL36XU of SPring-8. The dependence of the Au 4f peak intensity from Au foil on the ambient N{sub 2} pressure was measured. At a photon energy of 7.94 keV, the Au 4f peak intensity maintained 40% at 3000 Pa compared with that at high vacuum. We designed a polymer electrolyte fuel cell that allows us to perform X-ray photoelectron spectroscopy measurements of an electrode under working conditions. The oxidized Pt peaks were observed in the Pt 3d{sub 5/2} level of Pt nanoparticles in the cathode, and the peaks clearly depended on the applied voltage between the anode and cathode. Our apparatus can be applied as a valuable in situ tool for the investigation of the electronic states and adsorbed species of polymer electrolyte fuel cell electrode catalysts under the reaction conditions.

  7. In-situ Studies of the Reactions of Bifunctional and Heterocyclic Molecules over Noble Metal Single Crystal and Nanoparticle Catalysts Studied with Kinetics and Sum-Frequency Generation Vibrational Spectroscopy

    SciTech Connect

    Kliewer, Christopher J.

    2009-06-30

    Sum frequency generation surface vibrational spectroscopy (SFG-VS) in combination with gas chromatography (GC) was used in-situ to monitor surface bound reaction intermediates and reaction selectivities for the hydrogenation reactions of pyrrole, furan, pyridine, acrolein, crotonaldehyde, and prenal over Pt(111), Pt(100), Rh(111), and platinum nanoparticles under Torr reactant pressures and temperatures of 300K to 450K. The focus of this work is the correlation between the SFG-VS observed surface bound reaction intermediates and adsorption modes with the reaction selectivity, and how this is affected by catalyst structure and temperature. Pyrrole hydrogenation was investigated over Pt(111) and Rh(111) single crystals at Torr pressures. It was found that pyrrole adsorbs to Pt(111) perpendicularly by cleaving the N-H bond and binding through the nitrogen. However, over Rh(111) pyrrole adsorbs in a tilted geometry binding through the {pi}-aromatic orbitals. A surface-bound pyrroline reaction intermediate was detected over both surfaces with SFG-VS. It was found that the ring-cracking product butylamine is a reaction poison over both surfaces studied. Furan hydrogenation was studied over Pt(111), Pt(100), 10 nm cubic platinum nanoparticles and 1 nm platinum nanoparticles. The product distribution was observed to be highly structure sensitive and the acquired SFG-VS spectra reflected this sensitivity. Pt(100) exhibited more ring-cracking to form butanol than Pt(111), while the nanoparticles yielded higher selectivities for the partially saturated ring dihydrofuran. Pyridine hydrogenation was investigated over Pt(111) and Pt(100). The α-pyridyl surface adsorption mode was observed with SFG-VS over both surfaces. 1,4-dihydropyridine was seen as a surface intermediate over Pt(100) but not Pt(111). Upon heating the surfaces to 350K, the adsorbed pyridine changes to a flat-lying adsorption mode. No evidence was found for the pyridinium cation. The hydrogenation of the

  8. Nuclear reaction studies

    SciTech Connect

    Alexander, J.M.; Lacey, R.A.

    1994-11-01

    Research focused on the statistical and dynamical properties of ``hot`` nuclei formed in symmetric heavy-ion reactions. Theses included ``flow`` measurements and the mechanism for multifragment disassembly. Model calculations are being performed for the reactions C+C, Ne+Al, Ar+Sc, Kr+Nb, and Xe+La. It is planned to study {sup 40}Ar reactions from 27 to 115 MeV/nucleon. 2 figs., 41 refs.

  9. In–situ Spatiotemporal Chemical Reactions at Water-Solid Interfacial Processes using Microelectrode Techniques: from Biofilm to Metal Corrosion

    EPA Science Inventory

    Recent developments in microscale sensors allows the non-destructive and in–situ measurement of both the absolute and changes in chemical concentrations in engineered and natural aquatic systems. Microelectrodes represent a unique tool for studying in–situ chemical reactions in b...

  10. In situ alkali-silica reaction observed by x-ray microscopy

    SciTech Connect

    Kurtis, K.E.; Monteiro, P.J.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-04-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction.

  11. Operando and in situ Raman studies of alumina-supported vanadium phosphate catalysts in propane ammoxidation reaction: activity, selectivity and active phase formation.

    PubMed

    Mikolajska, Ewelina; Rasmussen, Søren B; Lewandowska, Anna E; Bañares, Miguel A

    2012-02-21

    Alumina-supported VPO materials are efficient catalysts for acrylonitrile production by the propane ammoxidation reaction. In order to understand the structure-activity relationship and the nature of active sites, operando Raman-GC analyses follow the states of vanadium and phosphorous species on an alumina support during ammoxidation. These oxides were supported on γ-alumina by incipient wetness impregnation at a total V + P loading of two monolayers, which led to incipient formation of nanoscaled VPO crystallites possessing a high surface-to-volume ratio. Since catalysis occurs at the catalyst surface, which is related to the surface and outermost layers, this approach allows studying surface species phase transformations near the surface, and relates changes in activity and selectivity to variations in composition and structure. Dispersed surface V(5+) species appear selective to acetonitrile and V(4+) species would promote selectivity to acrylonitrile. This study suggests that V(3+) is probably involved in redox processes during propane ammoxidation and that the balance between these vanadium species would be determined by activation process. PMID:21993840

  12. In-situ Scanning Transmission X-ray Microscopy of catalytic materials under reaction conditions

    NASA Astrophysics Data System (ADS)

    de Smit, Emiel; Creemer, J. Fredrik; Zandbergen, Henny W.; Weckhuysen, Bert M.; de Groot, Frank M. F.

    2009-11-01

    In-situ Scanning X-ray Transmission Microscopy (STXM) allows the measurement of the soft X-ray absorption spectra with 10 to 30 nm spatial resolution under realistic reaction conditions. We show that STXM-XAS in combination with a micromachined nanoreactor can image a catalytic system under relevant reaction conditions, and provide detailed information on the morphology and composition of the catalyst material. The nanometer resolution combined with powerful chemical speciation by XAS and the ability to image materials under realistic conditions opens up new opportunities to study many chemical processes.

  13. Cu(II)-Gd(III) cryogenic magnetic refrigerants and Cu8Dy9 single-molecule magnet generated by in situ reactions of picolinaldehyde and acetylpyridine: experimental and theoretical study.

    PubMed

    Liu, Jun-Liang; Lin, Wei-Quan; Chen, Yan-Cong; Gómez-Coca, Silvia; Aravena, Daniel; Ruiz, Eliseo; Leng, Ji-Dong; Tong, Ming-Liang

    2013-12-16

    A series of heterometallic [Ln(III)(x)Cu(II)(y)] complexes, [Gd2Cu2]n (1), [Gd4Cu8] (2), [Ln9Cu8] (Ln=Gd, 3·Gd; Ln=Dy, 3·Dy), were successfully synthesized by a one-pot route at room temperature with three kinds of in situ carbonyl-related reactions: Cannizzaro reaction, aldol reaction, and oxidation. This strategy led to dysprosium analogues that behaved as single-molecule magnets (SMMs) and gadolinium analogues that showed significant magnetocaloric effect (MCE). In this study a numerical DFT approach is proposed by using pseudopotentials to calculate the exchange coupling constants in three polynuclear [Gd(x)Cu(y)] complexes; with these values exact diagonalization or quantum Monte Carlo simulations have been performed to calculate the variation of the magnetic entropy involved in the MCE. For the [Dy9Cu8] complexes, local magnetic properties of the Dy(III) centers have been determined by using the CASSCF+RASSI method.

  14. In Situ Raman Monitoring of Silver(I)-Aided Laser-Driven Cleavage Reaction of Cyclobutane.

    PubMed

    Chen, Dengtai; Han, Xijiang; Du, Yunchen; Wang, Hsing-Lin; Xu, Ping

    2016-01-01

    The cyclobutane cleavage reaction is an important process and has received continuous interest. Herein, we demonstrate the visible laser-driven cleavage reaction of cyclobutane in crystal form by using in situ Raman spectroscopy. Silver(I) coordination-induced strain and thermal effects from the laser irradiation are the two main driving forces for the cleavage of cyclobutane crystals. This work may open up a new avenue for studying cyclobutane cleavage reactions, as compared to the conventional routes using ex situ techniques. PMID:26510491

  15. In situ reaction kinetic analysis of dental restorative materials

    NASA Astrophysics Data System (ADS)

    Younas, Basma; Samad Khan, Abdul; Muzaffar, Danish; Hussain, Ijaz; Chaudhry, Aqif Anwar; Rehman, Ihtesham Ur

    2013-12-01

    The objective of this study was to evaluate in situ structural and thermal changes of dental restorative materials at periodical time intervals. The commercial materials included zinc oxide eugenol (ZOE), zinc phosphate type I (ZnPO4), glass ionomer cement type II (GIC) and resin-based nano-omposite (Filtek Z350 XT). These materials were processed according to manufacturer's instructions. For the structural analysis Fourier transform infrared spectroscopy (FTIR) was used at high resolution. TGA was used to evaluate thermal weight-loss. The FTIR spectra were collected at periodic time intervals. FTIR spectra showed that with time passing all materials exhibited an increase in peak intensities and a new appearance of shoulders and shifting of peaks for example, ZnPO4 (P-O), ZOE (C═O, C═N, C-O-C), GIC (COO-, C-H, Si-OH), composites (C═O, C═C, C═N, C-N-H). The peaks were replaced by bands and these bands became broader with time interval. Composites showed a degree of conversion and new peaks corresponded to the cross-linking of polymer composites. TGA analysis showed that significant changes in weight loss of set materials were observed after 24 h, where ZOE showed continuous changes in thermal degradation. The spectral changes and thermal degradation with time interval elucidated in situ setting behaviour and understanding of their bonding compatibility with tooth structure and change in relation to time.

  16. In situ DNA-hybridization chain reaction (HCR): a facilitated in situ HCR system for the detection of environmental microorganisms.

    PubMed

    Yamaguchi, Tsuyoshi; Kawakami, Shuji; Hatamoto, Masashi; Imachi, Hiroyuki; Takahashi, Masanobu; Araki, Nobuo; Yamaguchi, Takashi; Kubota, Kengo

    2015-07-01

    In situ detection of microorganisms by fluorescence in situ hybridization (FISH) is a powerful tool for environmental microbiology, but analyses can be hampered by low rRNA content in target organisms, especially in oligotrophic environments. Here, we present a non-enzymatic, hybridization chain reaction (HCR)-based signal amplified in situ whole-cell detection technique (in situ DNA-HCR). The components of the amplification buffer were optimized to polymerize DNA amplifier probes for in situ DNA-HCR. In situ hybridization of initiator probes followed by signal amplification via HCR produced bright signals with high specificity and probe permeation into cells. The detection rates for Bacteria in a seawater sample and Archaea in anaerobic sludge samples were comparable with or greater than those obtained by catalyzed reporter deposition (CARD)-FISH or standard FISH. Detection of multiple organisms (Bacteria, Archaea and Methanosaetaceae) in an anaerobic sludge sample was achieved by simultaneous in situ DNA-HCR. In summary, in situ DNA-HCR is a simple and easy technique for detecting single microbial cells and enhancing understanding of the ecology and behaviour of environmental microorganisms in situ.

  17. An in situ heating TEM analysis method for an interface reaction.

    PubMed

    Tanigaki, Toshiaki; Ito, Katsuji; Nagakubo, Yasuhira; Asakawa, Takayuki; Kanemura, Takashi

    2009-10-01

    In order to analyze the thermal property of nano-sized materials, an in situ observation technique that allows highly sensitive energy dispersive x-ray spectroscopic (EDX) analyses and high-resolution in situ heating observation of precision specimens is required. A method for the in situ observation of the interface reaction using an analytical transmission electron microscopy (TEM) and a specimen-heating holder was developed. The specimen holder used in this study was a direct-heating type having a fine tungsten wire heater. For sensitive analyses including an EDX map of composition changes during the interface reaction, a space toward the EDX detector with a take-off angle of 20 degrees was made in the specimen holder. Samples were prepared by attaching a micro-sample directly to the heater using the focused ion beam (FIB) micro-sampling technique. It was confirmed that the sensitive EDX map and electron diffraction analyses were possible during the reaction, and that the resolution of this technique was of the order of 0.223 nm at 550 degrees C. PMID:19376815

  18. Studying Reaction Intermediates Formed at Graphenic Surfaces

    NASA Astrophysics Data System (ADS)

    Sarkar, Depanjan; Sen Gupta, Soujit; Narayanan, Rahul; Pradeep, Thalappil

    2014-03-01

    We report in-situ production and detection of intermediates at graphenic surfaces, especially during alcohol oxidation. Alcohol oxidation to acid occurs on graphene oxide-coated paper surface, driven by an electrical potential, in a paper spray mass spectrometry experiment. As paper spray ionization is a fast process and the time scale matches with the reaction time scale, we were able to detect the intermediate, acetal. This is the first observation of acetal formed in surface oxidation. The process is not limited to alcohols and the reaction has been extended to aldehydes, amines, phosphenes, sugars, etc., where reaction products were detected instantaneously. By combining surface reactions with ambient ionization and mass spectrometry, we show that new insights into chemical reactions become feasible. We suggest that several other chemical transformations may be studied this way. This work opens up a new pathway for different industrially and energetically important reactions using different metal catalysts and modified substrate.

  19. Following the Transient Reactions in Lithium-Sulfur Batteries Using In an In Situ Nuclear Magnetic Resonance Technique

    SciTech Connect

    Xiao, Jie; Hu, Jian Z.; Chen, Honghao; Vijayakumar, M.; Zheng, Jianming; Pan, Huilin; Walter, Eric D.; Hu, Mary Y.; Deng, Xuchu; Feng, Ju; Liaw, Bor Yann; Gu, Meng; Deng, Zhiqun; Lu, Dongping; Xu, Suochang; Wang, Chong M.; Liu, Jun

    2015-05-13

    Li-S batteries hold great potential for next-generation, large-format power source applications; yet, the fundamental understanding of the electrochemical reaction pathways remains lacking to enable their functionality as promised. Here, in situ NMR technique employing a specially designed cylindrical micro battery was used to monitor the chemical environments around Li+ ions during repetitive charge-discharge process and track the transient electrochemical and chemical reactions occurring in the whole Li-S system. The in situ NMR provides real time, quantitative information related to the temporal concentration variations of the polysulfides with various chain lengths, providing important clues for the reaction pathways during both discharge and charge processes. The in-situ technique also reveals that redox reactions may involve transient species that are difficult to detect in ex-situ NMR study. Intermediate species such as charged free radicals may play an important role in the formation of the polysulfide products. Additionally, in situ NMR measurement simultaneously reveals vital information on the 7Li chemical environments in the electrochemical and parasitic reactions on the lithium anode that promotes the understanding of the failure mechanism in the Li-S system. These new insights could help design effective strategies to accelerate the development of Li-S battery technology.

  20. In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles.

    PubMed

    Sutter, E; Jungjohann, K; Bliznakov, S; Courty, A; Maisonhaute, E; Tenney, S; Sutter, P

    2014-09-11

    Galvanic replacement reactions provide an elegant way of transforming solid nanoparticles into complex hollow morphologies. Conventionally, galvanic replacement is studied by stopping the reaction at different stages and characterizing the products ex situ. In situ observations by liquid-cell electron microscopy can provide insight into mechanisms, rates and possible modifications of galvanic replacement reactions in the native solution environment. Here we use liquid-cell electron microscopy to investigate galvanic replacement reactions between silver nanoparticle templates and aqueous palladium salt solutions. Our in situ observations follow the transformation of the silver nanoparticles into hollow silver-palladium nanostructures. While the silver-palladium nanocages have morphologies similar to those obtained in ex situ control experiments the reaction rates are much higher, indicating that the electron beam strongly affects the galvanic-type process in the liquid-cell. By using scavengers added to the aqueous solution we identify the role of radicals generated via radiolysis by high-energy electrons in modifying galvanic reactions.

  1. In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Sutter, E.; Jungjohann, K.; Bliznakov, S.; Courty, A.; Maisonhaute, E.; Tenney, S.; Sutter, P.

    2014-09-01

    Galvanic replacement reactions provide an elegant way of transforming solid nanoparticles into complex hollow morphologies. Conventionally, galvanic replacement is studied by stopping the reaction at different stages and characterizing the products ex situ. In situ observations by liquid-cell electron microscopy can provide insight into mechanisms, rates and possible modifications of galvanic replacement reactions in the native solution environment. Here we use liquid-cell electron microscopy to investigate galvanic replacement reactions between silver nanoparticle templates and aqueous palladium salt solutions. Our in situ observations follow the transformation of the silver nanoparticles into hollow silver-palladium nanostructures. While the silver-palladium nanocages have morphologies similar to those obtained in ex situ control experiments the reaction rates are much higher, indicating that the electron beam strongly affects the galvanic-type process in the liquid-cell. By using scavengers added to the aqueous solution we identify the role of radicals generated via radiolysis by high-energy electrons in modifying galvanic reactions.

  2. Electrochemical in-situ reaction cell for X-ray scattering, diffraction and spectroscopy

    SciTech Connect

    Braun, Artur; Granlund, Eric; Cairns, Elton J.

    2003-01-27

    An electrochemical in-situ reaction cell for hard X-ray experiments with battery electrodes is described. Applications include the small angle scattering, diffraction, and near-edge spectroscopy of lithium manganese oxide electrodes.

  3. In situ infrared spectroscopy study on imidization reaction and imidization-induced refractive index and thickness variations in microscale thin films of a poly(amic ester).

    PubMed

    Shin, Tae Joo; Ree, Moonhor

    2005-06-21

    Poly(amic ester) (PAE) is a soluble precursor of polyimide that has attracted interest from both the microelectronic and the flat-panel display industries because of its several important advantages, including excellent solubility, high hydrolytic stability, and solvent-free film formation, over the polyimide precursor, poly(amic acid), for which monomer-polymer equilibration always occurs in solution due to its carboxylic acid groups. In this study, poly(3,4'-oxydiphenylene pyromellitamic diethyl ester) (PMDA-3,4'-ODA PAE) was chosen as a PAE precursor, and its thermal imidization behavior in microscale thin films was investigated quantitatively for the first time using time-resolved infrared (IR) spectroscopy. In addition, the variations of the film refractive index and thickness with temperature and time were determined in detail from the time-resolved IR spectra and are fully interpreted in this paper by considering the imidization kinetics of the precursor.

  4. In Situ Catalyst Modification in Atom Transfer Radical Reactions with Ruthenium Benzylidene Complexes.

    PubMed

    Lee, Juneyoung; Grandner, Jessica M; Engle, Keary M; Houk, K N; Grubbs, Robert H

    2016-06-01

    Ruthenium benzylidene complexes are well-known as olefin metathesis catalysts. Several reports have demonstrated the ability of these catalysts to also facilitate atom transfer radical (ATR) reactions, such as atom transfer radical addition (ATRA) and atom transfer radical polymerization (ATRP). However, while the mechanism of olefin metathesis with ruthenium benzylidenes has been well-studied, the mechanism by which ruthenium benzylidenes promote ATR reactions remains unknown. To probe this question, we have analyzed seven different ruthenium benzylidene complexes for ATR reactivity. Kinetic studies by (1)H NMR revealed that ruthenium benzylidene complexes are rapidly converted into new ATRA-active, metathesis-inactive species under typical ATRA conditions. When ruthenium benzylidene complexes were activated prior to substrate addition, the resulting activated species exhibited enhanced kinetic reactivity in ATRA with no significant difference in overall product yield compared to the original complexes. Even at low temperature, where the original intact complexes did not catalyze the reaction, preactivated catalysts successfully reacted. Only the ruthenium benzylidene complexes that could be rapidly transformed into ATRA-active species could successfully catalyze ATRP, whereas other complexes preferred redox-initiated free radical polymerization. Kinetic measurements along with additional mechanistic and computational studies show that a metathesis-inactive ruthenium species, generated in situ from the ruthenium benzylidene complexes, is the active catalyst in ATR reactions. Based on data from (1) H, (13)C, and (31)P NMR spectroscopy and X-ray crystallography, we suspect that this ATRA-active species is a RuxCly(PCy3)z complex.

  5. In-situ observations of catalytic surface reactions with soft x-rays under working conditions

    NASA Astrophysics Data System (ADS)

    Toyoshima, Ryo; Kondoh, Hiroshi

    2015-03-01

    Catalytic chemical reactions proceeding on solid surfaces are an important topic in fundamental science and industrial technologies such as energy conversion, pollution control and chemical synthesis. Complete understanding of the heterogeneous catalysis and improving its efficiency to an ultimate level are the eventual goals for many surface scientists. Soft x-ray is one of the prime probes to observe electronic and structural information of the target materials. Most studies in surface science using soft x-rays have been performed under ultra-high vacuum conditions due to the technical limitation, though the practical catalytic reactions proceed under ambient pressure conditions. However, recent developments of soft x-ray based techniques operating under ambient pressure conditions have opened a door to the in-situ observation of materials under realistic environments. The near-ambient-pressure x-ray photoelectron spectroscopy (NAP-XPS) using synchrotron radiation enables us to observe the chemical states of surfaces of condensed matters under the presence of gas(es) at elevated pressures, which has been hardly conducted with the conventional XPS technique. Furthermore, not only the NAP-XPS but also ambient-pressure compatible soft x-ray core-level spectroscopies, such as near-edge absorption fine structure (NEXAFS) and x-ray emission spectroscopy (XES), have been significantly contributing to the in-situ observations. In this review, first we introduce recent developments of in-situ observations using soft x-ray techniques and current status. Then we present recent new findings on catalytically active surfaces using soft x-ray techniques, particularly focusing on the NAP-XPS technique. Finally we give a perspective on the future direction of this emerging technique.

  6. In Situ Vitrification Treatability Study Work Plan

    SciTech Connect

    Charboneau, B.L.; Landon, J.L.

    1989-03-01

    The Buried Waste Program was established in October, 1987 to accelerate the studies needed to develop a recommended long-term management plan for the buried mixed waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The In Situ Vitrification Project is being conducted in a Comprehensive Environmental Response, Compensation, and Liability Act Feasibility Study format to identify methods for the long-term management of the mixed waste buried. This In Situ Vitrification Treatability Study Work Plan gives a brief description of the site, work breakdown structure, and project organization: the in situ vitrification technology; the purpose of the tests and demonstrations; and the equipment and materials required for the tests and demonstration. 5 refs., 6 figs., 3 tabs.

  7. Following the transient reactions in lithium-sulfur batteries using an in situ nuclear magnetic resonance technique.

    PubMed

    Xiao, Jie; Hu, Jian Zhi; Chen, Honghao; Vijayakumar, M; Zheng, Jianming; Pan, Huilin; Walter, Eric D; Hu, Mary; Deng, Xuchu; Feng, Ju; Liaw, Bor Yann; Gu, Meng; Deng, Zhiqun Daniel; Lu, Dongping; Xu, Suochang; Wang, Chongmin; Liu, Jun

    2015-05-13

    A fundamental understanding of electrochemical reaction pathways is critical to improving the performance of Li-S batteries, but few techniques can be used to directly identify and quantify the reaction species during disharge/charge cycling processes in real time. Here, an in situ (7)Li NMR technique employing a specially designed cylindrical microbattery was used to probe the transient electrochemical and chemical reactions occurring during the cycling of a Li-S system. In situ NMR provides real time, semiquantitative information related to the temporal evolution of lithium polysulfide allotropes during both discharge/charge processes. This technique uniquely reveals that the polysulfide redox reactions involve charged free radicals as intermediate species that are difficult to detect in ex situ NMR studies. Additionally, it also uncovers vital information about the (7)Li chemical environments during the electrochemical and parasitic reactions on the Li metal anode. These new molecular-level insights about transient species and the associated anode failure mechanism are crucial to delineating effective strategies to accelerate the development of Li-S battery technologies. PMID:25785550

  8. Following the transient reactions in lithium-sulfur batteries using an in situ nuclear magnetic resonance technique.

    PubMed

    Xiao, Jie; Hu, Jian Zhi; Chen, Honghao; Vijayakumar, M; Zheng, Jianming; Pan, Huilin; Walter, Eric D; Hu, Mary; Deng, Xuchu; Feng, Ju; Liaw, Bor Yann; Gu, Meng; Deng, Zhiqun Daniel; Lu, Dongping; Xu, Suochang; Wang, Chongmin; Liu, Jun

    2015-05-13

    A fundamental understanding of electrochemical reaction pathways is critical to improving the performance of Li-S batteries, but few techniques can be used to directly identify and quantify the reaction species during disharge/charge cycling processes in real time. Here, an in situ (7)Li NMR technique employing a specially designed cylindrical microbattery was used to probe the transient electrochemical and chemical reactions occurring during the cycling of a Li-S system. In situ NMR provides real time, semiquantitative information related to the temporal evolution of lithium polysulfide allotropes during both discharge/charge processes. This technique uniquely reveals that the polysulfide redox reactions involve charged free radicals as intermediate species that are difficult to detect in ex situ NMR studies. Additionally, it also uncovers vital information about the (7)Li chemical environments during the electrochemical and parasitic reactions on the Li metal anode. These new molecular-level insights about transient species and the associated anode failure mechanism are crucial to delineating effective strategies to accelerate the development of Li-S battery technologies.

  9. Spectroscopic detection of aqueous contaminants using in situ corona reactions.

    PubMed

    Johnson, M

    1997-04-01

    An apparently novel technique to aid the detection of a variety of inorganic and organic compounds in environmental and drinking water samples is described. Background absorbance due to optical scattering, cell fouling, and a variety of contaminants is suppressed by combining UV spectroscopy with chemical reactions initiated by reactive species generated in a high-voltage corona discharge. Injection of the reactive species takes place through a free water surface from the "corona wind". Initial measurements on aqueous chlorine in drinking water and BTEX (benzene, toluene, ethylbenzene, and xylene) in unfiltered river water down to parts-per-million concentration are given which show, by comparison with a conventional UV absorption measurement, good background suppression. The experimental arrangement is simpler than that in typical fluorescence detection systems, and the geometrical flexibility means that corona "dosing" can be applied also to Raman and other spectroscopies, to electrochemical detection schemes, and to planar and windowless geometries. PMID:9105172

  10. Laboratory real-time and in situ monitoring of mechanochemical milling reactions by Raman spectroscopy.

    PubMed

    Gracin, Davor; Štrukil, Vjekoslav; Friščić, Tomislav; Halasz, Ivan; Užarević, Krunoslav

    2014-06-10

    Mechanistic understanding of mechanochemical reactions is sparse and has been acquired mostly by stepwise ex situ analysis. We describe herein an unprecedented laboratory technique to monitor the course of mechanochemical transformations at the molecular level in situ and in real time by using Raman spectroscopy. The technique, in which translucent milling vessels are used that enable the collection of a Raman scattering signal from the sample as it is being milled, was validated on mechanochemical reactions to form coordination polymers and organic cocrystals. The technique enabled the assessment of the reaction dynamics and course under different reaction conditions as well as, for the first time, direct insight into the behavior of liquid additives during liquid-assisted grinding.

  11. Photocatalytic removal of soot: unravelling of the reaction mechanism by EPR and in situ FTIR spectroscopy.

    PubMed

    Smits, Marianne; Ling, Yun; Lenaerts, Silvia; Van Doorslaer, Sabine

    2012-12-21

    Photocatalytic soot oxidation is studied on P25 TiO(2) as an important model reaction for self-cleaning processes by means of electron paramagnetic resonance (EPR) and Fourier transform infrared (FTIR) spectroscopy. Contacting of carbon black with P25 leads on the one hand to a reduction of the local dioxygen concentration in the powder. On the other hand, the weakly adsorbed radicals on the carbon particles are likely to act as alternative traps for the photogenerated conduction-band electrons. We find furthermore that the presence of dioxygen and oxygen-related radicals is vital for the photocatalytic soot degradation. The complete oxidation of soot to CO(2) is evidenced by in situ FTIR spectroscopy, no intermediate CO is detected during the photocatalytic process. PMID:23150192

  12. In Situ Catalyst Modification in Atom Transfer Radical Reactions with Ruthenium Benzylidene Complexes.

    PubMed

    Lee, Juneyoung; Grandner, Jessica M; Engle, Keary M; Houk, K N; Grubbs, Robert H

    2016-06-01

    Ruthenium benzylidene complexes are well-known as olefin metathesis catalysts. Several reports have demonstrated the ability of these catalysts to also facilitate atom transfer radical (ATR) reactions, such as atom transfer radical addition (ATRA) and atom transfer radical polymerization (ATRP). However, while the mechanism of olefin metathesis with ruthenium benzylidenes has been well-studied, the mechanism by which ruthenium benzylidenes promote ATR reactions remains unknown. To probe this question, we have analyzed seven different ruthenium benzylidene complexes for ATR reactivity. Kinetic studies by (1)H NMR revealed that ruthenium benzylidene complexes are rapidly converted into new ATRA-active, metathesis-inactive species under typical ATRA conditions. When ruthenium benzylidene complexes were activated prior to substrate addition, the resulting activated species exhibited enhanced kinetic reactivity in ATRA with no significant difference in overall product yield compared to the original complexes. Even at low temperature, where the original intact complexes did not catalyze the reaction, preactivated catalysts successfully reacted. Only the ruthenium benzylidene complexes that could be rapidly transformed into ATRA-active species could successfully catalyze ATRP, whereas other complexes preferred redox-initiated free radical polymerization. Kinetic measurements along with additional mechanistic and computational studies show that a metathesis-inactive ruthenium species, generated in situ from the ruthenium benzylidene complexes, is the active catalyst in ATR reactions. Based on data from (1) H, (13)C, and (31)P NMR spectroscopy and X-ray crystallography, we suspect that this ATRA-active species is a RuxCly(PCy3)z complex. PMID:27186790

  13. In situ gellable sugar beet pectin via enzyme-catalyzed coupling reaction of feruloyl groups for biomedical applications.

    PubMed

    Takei, Takayuki; Sugihara, Kotaro; Ijima, Hiroyuki; Kawakami, Koei

    2011-11-01

    In situ gellable hydrogels are more attractive in many biomedical and biopharmaceutical applications than pre-formed hydrogels because they can be implanted simply by injection and allow homogeneous incorporation of bioactive materials. In this study, the potential suitability of in situ gellable sugar beet pectin (SBP) for biomedical and biopharmaceutical applications was investigated. SBP aqueous solution gelled within 1 min after addition of appropriate amounts of horseradish peroxidase (HRP) and H₂O₂ via HRP-catalyzed oxidative coupling reaction of feruloyl groups on SBP molecules. The resultant gels gradually degraded under simulated physiological condition. L929 fibroblast cells encapsulated in the gels were scarcely damaged during the gelation process. A subcutaneously injected mixture of SBP, HRP and H₂O₂ solutions successfully gelled, and the gel did not induce necrosis in the surrounding tissue 1 week after implantation. These results demonstrate that the in situ gellable SBP gels are useful for biomedical and biopharmaceutical applications.

  14. Design and Operation of an In Situ High Pressure Reaction Cell for X-Ray Absorption Spectroscopy

    SciTech Connect

    Bare, Simon R.; Mickelson, G. E.; Modica, F. S.; Yang, N.; Kelly, S. D.

    2007-02-02

    The design and initial operation of an in situ catalysis reaction cell for x-ray absorption spectroscopy measurements at high pressure is described. The design is based on an x-ray transparent tube fabricated from beryllium. This forms a true plug flow reactor for catalysis studies. The reactor is coupled to a portable microprocessor-controlled versatile feed system, and incorporates on-line analysis of reaction products. XAFS data recorded during the reduction of a NiRe/carbon catalyst at 4 bar are used to illustrate the performance of the reactor.

  15. Design and operation of an in situ high pressure reaction cell for x-ray absorption spectroscopy.

    SciTech Connect

    Bare, S. R.; Yang, N.; Kelly, S. D.; Mickelson, G. E.; Modica, F. S.; UOP LLC; EXAFS Analysis

    2007-01-01

    The design and initial operation of an in situ catalysis reaction cell for x-ray absorption spectroscopy measurements at high pressure is described. The design is based on an x-ray transparent tube fabricated from beryllium. This forms a true plug flow reactor for catalysis studies. The reactor is coupled to a portable microprocessor-controlled versatile feed system, and incorporates on-line analysis of reaction products. XAFS data recorded during the reduction of a NiRe/carbon catalyst at 4 bar are used to illustrate the performance of the reactor.

  16. In situ characterization of catalysts and membranes in a microchannel under high-temperature water gas shift reaction conditions

    NASA Astrophysics Data System (ADS)

    Cavusoglu, G.; Dallmann, F.; Lichtenberg, H.; Goldbach, A.; Dittmeyer, R.; Grunwaldt, J.-D.

    2016-05-01

    Microreactor technology with high heat transfer in combination with stable catalysts is a very attractive approach for reactions involving major heat effects such as methane steam reforming and to some extent, also the high temperature water gas shift (WGS) reaction. For this study Rh/ceria catalysts and an ultrathin hydrogen selective membrane were characterized in situ in a microreactor specially designed for x-ray absorption spectroscopic measurements under WGS conditions. The results of these experiments can serve as a basis for further development of the catalysts and membranes.

  17. Michael-type addition reactions for the in situ formation of poly(vinyl alcohol)-based hydrogels.

    PubMed

    Tortora, Mariarosaria; Cavalieri, Francesca; Chiessi, Ester; Paradossi, Gaio

    2007-01-01

    Michael-type addition reactions offer the possibility to obtain in situ formation of polymeric hydrogels in the absence of a radical mechanism for the networking process. We explored such a synthetic route for obtaining a poly(vinyl alcohol) (PVA)-based hydrogel as a potential biomaterial for applications in vitro-retinal replacement surgery. The presence of radicals in the reaction medium can represent a risk for in situ surgical treatment. To circumvent this problem we have applied nucleophilic addition to ad hoc modified PVA macromers. The gel formation has been studied with respect to the timing required in this surgery and in terms of the structural characteristics of the obtained network.

  18. Observing Metal-Catalyzed Chemical Reactions in Situ Using Surface-Enhanced Raman Spectroscopy on Pd–Au Nanoshells

    PubMed Central

    Heck, Kimberly N.; Janesko, Benjamin G.; Scuseria, Gustavo E.

    2016-01-01

    Insight into the nature of transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions is obtainable from a number of surface spectroscopic techniques. Carrying out these investigations under actual reaction conditions is preferred but remains challenging, especially for catalytic reactions that occur in water. Here, we report the direct spectroscopic study of the catalytic hydrodechlorination of 1,1-dichloroethene in H2O using surface-enhanced Raman spectroscopy (SERS). With Pd islands grown on Au nanoshell films, this reaction can be followed in situ using SERS, exploiting the high enhancements and large active area of Au nanoshell SERS substrates, the transparency of Raman spectroscopy to aqueous solvents, and the catalytic activity enhancement of Pd by the underlying Au metal. The formation and subsequent transformation of several adsorbate species was observed. These results provide the first direct evidence of the room-temperature catalytic hydrodechlorination of a chlorinated solvent, a potentially important pathway for groundwater cleanup, as a sequence of dechlorination and hydrogenation steps. More broadly, the results highlight the exciting prospects of studying catalytic processes in water in situ, like those involved in biomass conversion and proton-exchange membrane fuel cells. PMID:19554693

  19. Real-time and in situ monitoring of mechanochemical milling reactions.

    PubMed

    Friščić, Tomislav; Halasz, Ivan; Beldon, Patrick J; Belenguer, Ana M; Adams, Frank; Kimber, Simon A J; Honkimäki, Veijo; Dinnebier, Robert E

    2013-01-01

    Chemical and structural transformations have long been carried out by milling. Such mechanochemical steps are now ubiquitous in a number of industries (such as the pharmaceutical, chemical and metallurgical industries), and are emerging as excellent environmentally friendly alternatives to solution-based syntheses. However, mechanochemical transformations are typically difficult to monitor in real time, which leaves a large gap in the mechanistic understanding required for their development. We now report the real-time study of mechanochemical transformations in a ball mill by means of in situ diffraction of high-energy synchrotron X-rays. Focusing on the mechanosynthesis of metal-organic frameworks, we have directly monitored reaction profiles, the formation of intermediates, and interconversions of framework topologies. Our results reveal that mechanochemistry is highly dynamic, with reaction rates comparable to or greater than those in solution. The technique also enabled us to probe directly how catalytic additives recently introduced in the mechanosynthesis of metal-organic frameworks, such as organic liquids or ionic species, change the reactivity pathways and kinetics.

  20. Rapid and sensitive identification of marine bacteria by an improved in situ DNA hybridization chain reaction (quickHCR-FISH).

    PubMed

    Yamaguchi, Tsuyoshi; Fuchs, Bernhard Maximilian; Amann, Rudolf; Kawakami, Shuji; Kubota, Kengo; Hatamoto, Masashi; Yamaguchi, Takashi

    2015-09-01

    Catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) with rRNA-targeted oligonucleotide probes has significantly improved the identification of microorganisms in various environmental samples. However, one of the major constraints of CARD-FISH is the low probe penetration due to the high molecular weight of the horseradish peroxidase (HRP) label. Recently, this limitation has been overcome by a novel signal amplification approach termed in situ DNA-hybridization chain reaction (in situ DNA-HCR). In this study, we present an improved and accelerated in situ DNA-HCR protocol (quickHCR-FISH) with increased signal intensity, which was approximately 2 times higher than that of standard in situ DNA-HCR. In addition, the amplification time was only 15 min for the extension of amplifier probes from the initiator probe compared to 2h in the original protocol. The quickHCR-FISH was successfully tested for the quantification of marine bacteria with low rRNA contents in both seawater and sediment samples. It was possible to detect the same number of marine bacteria with quickHCR-FISH compared to CARD-FISH within only 3h. Thus, this newly developed protocol could be an attractive alternative to CARD-FISH for the detection and visualization of microorganisms in their environmental context.

  1. Viability of in-situ liquid reactions inside a transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Kaustav

    Atomic resolution scanning transmission electron microscope (STEM) analysis of bismuth nanoparticles was conducted using a single tilt holder and a fluid sample holder. There was a good correlation of the average size of the nanoparticles seen in the single tilt holder (11 +/- 2nm) and those viewed in the fluid stage were (10 +/- 3nm). The smallest particle viewed in the fluid stage was ˜6nm. An in-situ TEM reaction involving the growth of PbSe nanowires was successfully performed using the fluid stage. Nanostructures were observed during the reaction. Post-mortem analysis of SiN windows revealed the formation of crystalline nano-clusters and nano-tubular structures having an average diameter of 4.02 +/- 0.4nm. Energy-dispersive X-ray (EDX) spectroscopy from the SiN windows that make up the cell in the fluid stage showed the presence of Pb and Se which proves that the fluid stage is capable of performing in-situ TEM chemical reactions. With that evidence, controlled in-situ TEM reactions can be carried out to further expand the capabilities (such as resolution) of the fluid stage.

  2. Mechanistic studies of malonic acid-mediated in situ acylation.

    PubMed

    Chandra, Koushik; Naoum, Johnny N; Roy, Tapta Kanchan; Gilon, Chaim; Gerber, R Benny; Friedler, Assaf

    2015-09-01

    We have previously introduced an easy to perform, cost-effective and highly efficient acetylation technique for solid phase synthesis (SPPS). Malonic acid is used as a precursor and the reaction proceeds via a reactive ketene that acetylates the target amine. Here we present a detailed mechanistic study of the malonic acid-mediated acylation. The influence of reaction conditions, peptide sequence and reagents was systematically studied. Our results show that the methodology can be successfully applied to different types of peptides and nonpeptidic molecules irrespective of their structure, sequence, or conformation. Using alkyl, phenyl, and benzyl malonic acid, we synthesized various acyl peptides with almost quantitative yields. The ketenes obtained from the different malonic acid derived precursors were characterized by in situ (1) H-NMR. The reaction proceeded in short reaction times and resulted in excellent yields when using uronium-based coupling agents, DIPEA as a base, DMF/DMSO/NMP as solvents, Rink amide/Wang/Merrifield resins, temperature of 20°C, pH 8-12 and 5 min preactivation at inert atmosphere. The reaction was unaffected by Lewis acids, transition metal ions, surfactants, or salt. DFT studies support the kinetically favorable concerted mechanism for CO2 and ketene formation that leads to the thermodynamically stable acylated products. We conclude that the malonic acid-mediated acylation is a general method applicable to various target molecules. PMID:25846609

  3. Addition of CFCl3 to Aromatic Aldehydes via in Situ Grignard Reaction

    DOE PAGES

    Barkakaty, Balaka; Talukdar, Bandana; Lokitz, Bradley

    2015-08-18

    In the case of synthetic modification of trichlorofluoromethane (CFCl3) to non-volatile and useful fluorinated precursors, we realized that it is a cost-effective and an environmentally benign strategy for the safe consumption/destruction of the ozone depleting potential of the reagent. In our report, we present a novel method for in situ Grignard reaction using magnesium powder and CFCl3 for synthesis of dichlorofluoromethyl aromatic alcohols.

  4. Addition of CFCl3 to Aromatic Aldehydes via in Situ Grignard Reaction

    SciTech Connect

    Barkakaty, Balaka; Talukdar, Bandana; Lokitz, Bradley

    2015-08-18

    In the case of synthetic modification of trichlorofluoromethane (CFCl3) to non-volatile and useful fluorinated precursors, we realized that it is a cost-effective and an environmentally benign strategy for the safe consumption/destruction of the ozone depleting potential of the reagent. In our report, we present a novel method for in situ Grignard reaction using magnesium powder and CFCl3 for synthesis of dichlorofluoromethyl aromatic alcohols.

  5. Addition of CFCl3 to Aromatic Aldehydes via in Situ Grignard Reaction.

    PubMed

    Barkakaty, Balaka; Talukdar, Bandana; Lokitz, Bradley S

    2015-01-01

    Synthetic modification of trichlorofluoromethane (CFCl3) to non-volatile and useful fluorinated precursors is a cost-effective and an environmentally benign strategy for the safe consumption/destruction of the ozone depleting potential of the reagent. In this report, we present a novel method for in situ Grignard reaction using magnesium powder and CFCl3 for synthesis of dichlorofluoromethyl aromatic alcohols. PMID:26295221

  6. Study of char gasification reactions

    SciTech Connect

    Ballal, G.D.

    1986-01-01

    A Texas lignite, an anthracite and two bituminous coals, Pittsburgh number8 and Illinois number6, were pyrolyzed in a nitrogen atmosphere to prepare chars. Optical microscopy, mercury porosimetry and gas adsorption techniques using nitrogen, CO/sub 2/ and CO, were employed for pore structure characterization. The lignite char exhibited the fastest rates of gaseous diffusion, followed in order of decreasing diffusivities by the Illinois number6, Pittsburgh number8 and anthracite chars. The changes in reactivities and pore structures of chars were measured experimentally during their reaction with oxygen (400-550C) and CO/sub 2/ (800-1000C). For a particular char-gas system, the normalized rate-conversion pattern was invariant with respect to temperature and gaseous concentration. In the case of lignite and Pittsburgh number8 chars, the rate-conversion pattern was similar during reaction with oxygen and CO/sub 2/. Adsorption experiments on partially reacted chars indicated that the micropores in the lignite char were accessible to both reactants. The micropores in the Illinois number6 char were, however, not accessible during its reaction with oxygen. The evolution of pore structure during reaction was modeled by using a probabilistic approach which accounts for overlapping pores with different shapes and sizes. The kinetics of gasification of the lignite and the Pittsburgh number8 chars was studied using a Langmuir-Hinshelwood type kinetic expression to correlate the experimental data. CO was found to inhibit the reaction substantially. The effect of a potassium carbonate catalyst on the reaction of these two chars was also investigated. Substantial increases in reaction rates were observed, and the enhancement was approximately proportional to the catalyst loading.

  7. Four unexpected lanthanide coordination polymers involving in situ reaction of solvent N, N-Dimethylformamide

    SciTech Connect

    Jin, Jun-Cheng; Tong, Wen-Quan; Fu, Ai-Yun; Xie, Cheng-Gen; Chang, Wen-Gui; Wu, Ju; Xu, Guang-Nian; Zhang, Ya-Nan; Li, Jun; Li, Yong; Yang, Peng-Qi

    2015-05-15

    Four unexpected 2D lanthanide coordination polymers have been synthesized through in situ reactions of DMF solvent under solvothermal conditions. The isostructural complexes 1–3 contain four types of 2{sub 1} helical chains. While the Nd(III) ions are bridged through μ{sub 2}-HIDC{sup 2−} and oxalate to form a 2D sheet along the bc plane without helical character in 4. Therefore, complex 1 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature. - Graphical abstract: Four unexpected 2D lanthanide coordination polymers have been synthesized through in situ reactions of solvent DMF to formate acid or oxalic acid under solvothermal conditions. The isostructural complexes 1–3 contain four types of different 2{sub 1} helical chains in the 2D layer and 1 exhibits bright red solid-state phosphorescence upon UV radiation. - Highlights: • Four unexpected 2D lanthanide coordination compounds have been synthesized through in situ reactions under solvothermal conditions. • The complexes 1–3 contain four types of 2{sub 1} helical chains in the layer. • Complex 1 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature.

  8. Mechanisms and reaction pathways for simultaneous oxidation of NOx and SO₂ by ozone determined by in situ IR measurements.

    PubMed

    Sun, Chenglang; Zhao, Nan; Zhuang, Zhuokai; Wang, Haiqiang; Liu, Yue; Weng, Xiaole; Wu, Zhongbiao

    2014-06-15

    Ozone (O3) oxidation combined with wet scrubbing is a promising method for the simultaneous removal of SO2 and NOx in flue gas. In this study, the O3 oxidation processes of NO and SO2, as well as their coexistence, were investigated using an in situ IR spectrometer. Experimental results showed that the O3 concentration and the reaction temperature played critical roles in the O3 oxidation process of NO. Around 80°C, when inlet molar ratio of O3/NO was less than 1, NO was mainly oxidized to NO2, while when the ratio was greater than 1, NO would be further oxidized to NO3, N2O5, and HNO3. NO3 was the key intermediate product for the formation of N2O5 and HNO3. However, the subsequent reactions of NO3 were temperature dependence. With the increase of reaction temperature above 100°C, the concentration of NO2 increased whereas the concentrations of N2O5 and HNO3 decreased. The oxidation of SO2 by O3 was negligible and SO2 had little influence on the oxidation of NO in the simultaneous oxidation of NO and SO2. Finally, based on the in situ IR results, the oxidation mechanism is discussed and the reaction pathways are proposed. PMID:24801895

  9. Mechanisms and reaction pathways for simultaneous oxidation of NOx and SO₂ by ozone determined by in situ IR measurements.

    PubMed

    Sun, Chenglang; Zhao, Nan; Zhuang, Zhuokai; Wang, Haiqiang; Liu, Yue; Weng, Xiaole; Wu, Zhongbiao

    2014-06-15

    Ozone (O3) oxidation combined with wet scrubbing is a promising method for the simultaneous removal of SO2 and NOx in flue gas. In this study, the O3 oxidation processes of NO and SO2, as well as their coexistence, were investigated using an in situ IR spectrometer. Experimental results showed that the O3 concentration and the reaction temperature played critical roles in the O3 oxidation process of NO. Around 80°C, when inlet molar ratio of O3/NO was less than 1, NO was mainly oxidized to NO2, while when the ratio was greater than 1, NO would be further oxidized to NO3, N2O5, and HNO3. NO3 was the key intermediate product for the formation of N2O5 and HNO3. However, the subsequent reactions of NO3 were temperature dependence. With the increase of reaction temperature above 100°C, the concentration of NO2 increased whereas the concentrations of N2O5 and HNO3 decreased. The oxidation of SO2 by O3 was negligible and SO2 had little influence on the oxidation of NO in the simultaneous oxidation of NO and SO2. Finally, based on the in situ IR results, the oxidation mechanism is discussed and the reaction pathways are proposed.

  10. Salmonellae in fish feces analyzed by in situ hybridization and quantitative polymerase chain reaction.

    PubMed

    Sha, Qiong; Forstner, Michael R J; Bonner, Timothy H; Hahn, Dittmar

    2013-09-01

    The potential of fish to transfer salmonellae from heterogeneous aquatic biofilms into feces was assessed in controlled aquarium studies with Suckermouth Catfish Hypostomus plecostomus and with biofilms inoculated with salmonellae. Neither the presence of catfish nor inoculation with salmonellae had detectable effects on the abundance of the microbial community. Densities of the microbial community were about 10(5) cells/mL in the water during a 1-week period, whereas densities of the microbial community increased 10-fold (10(6) to 10(7) cells/mg) in catfish feces during the same period. Salmonellae were detected by both quantitative polymerase chain reaction (qPCR) and situ hybridization in water samples immediately after inoculation, in numbers of about 10(4) cells/mL, representing up to 20% of the cells of the microbial community. Numbers decreased by three orders of magnitude within the first 3 d of the study, which represented only 0.01% of the community, and became undetectable after day 5. In catfish feces, numbers of Salmonella initially increased to up to 6% of the cells of the community but then declined. These results suggest that Salmonella are not biomagnified during gut passage, and thus, fish only provide a means for the translocation of this pathogen.

  11. In Situ Imidazole Activation of Ribonucleotides for Abiotic RNA Oligomerization Reactions

    NASA Astrophysics Data System (ADS)

    Burcar, Bradley T.; Jawed, Mohsin; Shah, Hari; McGown, Linda B.

    2015-06-01

    The hypothesis that RNA played a significant role in the origin of life requires effective and efficient abiotic pathways to produce RNA oligomers. The most successful abiotic oligomerization reactions to date have utilized high-energy, modified, or pre-activated ribonucleotides to generate strands of RNA up to 50-mers in length. In spite of their success, these modifications and pre-activation reactions significantly alter the ribonucleotides in ways that are highly unlikely to have occurred on a prebiotic Earth. This research seeks to address this problem by exploring an aqueous based method for activating the canonical ribonucleotides in situ using 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and imidazole. The reactions were run with and without a montmorillonite clay catalyst and compared to reactions that used ribonucleotides that were pre-activated with imidazole. The effects of pH and ribonucleotide concentration were also investigated. The results demonstrate the ability of in situ activation of ribonucleotides to generate linear RNA oligomers in solution, providing an alternative route to produce RNA for use in prebiotic Earth scenarios.

  12. Hybrid Photopatterned Enzymatic Reaction (HyPER) for In situ Cell Manipulation

    PubMed Central

    Griffin, Donald R; Borrajo, Jacob; Soon, Allyson; Acosta-Vélez, Giovanny F.; Oshita, Victor; Darling, Nicole; Mack, Julia; Barker, Thomas; Iruela-Arispe, M. Luisa; Segura, Tatiana

    2014-01-01

    The ability to design artificial extracellular matrices as cell instructive scaffolds has opened the door to technologies capable of studying cell fate in vitro and to guide tissue repair in vivo. One main component of the design of artificial extracellular matrices is the incorporation of biochemical cues to guide cell phenotype and multicellular organization. The extracellular matrix is composed of a heterogeneous mixture of proteins that present a variety of spatially discrete signals to residing cell populations. In contrast, most engineered ECMs do not mimic this heterogeneity. In recent years the use of photodeprotection has been used to achieve spatial immobilization of signals. However, these approaches have been limited mostly to small peptides. Here we combine photodeprotection with enzymatic reaction to achieve spatially controlled immobilization of active bioactive signals that range from small molecules to large proteins. A peptide substrate for transglutaminase factor XIII (FXIIIa) is caged with a photodeprotectable group, which is then immobilized to the bulk of a cell compatible hydrogel. With the use of focused light the substrate can be deprotected and used to immobilize patterned bioactive signals. This approach offers an innovative strategy to immobilize delicate bioactive signals, such as growth factors, without loss of activity and enables In situ cell manipulation of encapsulated cells. PMID:24399784

  13. Interfacial Reaction Studies Using ONIOM

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    2003-01-01

    In this report, we focus on the calculations of the energetics and chemical kinetics of heterogeneous reactions for Organometallic vapor phase epitaxy (OMVPE). The work described in this report builds upon our own previous thermochemical and chemical kinetics studies. The first of these articles refers to the prediction of thermochemical properties, and the latter one deals with the prediction of rate constants for gaseous homolytic dissociation reactions. The calculations of this investigation are at the microscopic level. The systems chosen consisted of a gallium nitride (GaN) substrate, and molecular nitrogen (N2) and ammonia (NH3) as adsorbants. The energetics for the adsorption and the adsorbant dissociation processes were estimated, and reaction rate constants for the dissociation reactions of free and adsorbed molecules were predicted. The energetics for substrate decomposition was also computed. The ONIOM method, implemented in the Gaussian98 program, was used to perform the calculations. This approach has been selected since it allows dividing the system into two layers that can be treated at different levels of accuracy. The atoms of the substrate were modeled using molecular mechanics6 with universal force fields, whereas the adsorbed molecules were approximated using quantum mechanics, based on density functional theory methods with B3LYP functionals and 6-311G(d,p) basis sets. Calculations for the substrate were performed in slabs of several unit cells in each direction. The N2 and NH3 adsorbates were attached to a central location at the Ga-lined surface.

  14. In Situ Evaluation of Water-Rock Reactions during Carbon Dioxide Injection in Basaltic and Metasedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Matter, J. M.; Assayag, N.; Goldberg, D.; Takahashi, T.

    2006-12-01

    Large differences between laboratory and field derived mineral reaction rates underscore the importance of evaluating mineral-fluid reactions under in situ conditions in a natural environment. This study investigates the extent of in situ water-rock reactions in basaltic and metasedimentary rocks (rich in Ca, Mg silicates) after the injection of CO2 enriched water, with the objective of providing information pertinent to permanent storage of anthropogenic CO2 in geologic reservoirs. CO2 injections were conducted using a single-well push-pull testing strategy. CO2 saturated water (pH 3.5) was injected into a hydraulically isolated and permeable aquifer in a 300-m experimental borehole. Water samples were retrieved after the CO2 injection. Mass transfer terms for Ca, Mg, Na, and Si were determined by using the measured ion concentrations. Using the mass balance, the weeks-long incubation time of the injected solution, and geometric estimates of the reactive surface area of the host rocks, in situ bulk rock dissolution rates of aquifer material were estimated. In addition, δ13C data coupled with total CO2 concentration were used as a tracer to quantitatively evaluate processes such as carbonate dissolution and precipitation, oxidation of organic matter and biological activity within the aquifer. Results show that the injected CO2 was neutralized within several days by two processes; mixing with aquifer water, and rock-water reactions. Calculated bulk rock dissolution rates decrease with increasing pH. The pH dependence of the dissolution rate for Ca is twice as large as for Mg, strongly favoring Ca release and possibly suggesting an additional source of Ca besides silicate minerals. Analyses of δ13C on water and rock samples confirm dissolution of calcium carbonates within the aquifer.

  15. Monitoring of galvanic replacement reaction between silver nanowires and HAuCl4 by in situ transmission X-ray microscopy.

    PubMed

    Sun, Yugang; Wang, Yuxin

    2011-10-12

    Galvanic replacement reaction between silver nanowires and an aqueous solution of HAuCl(4) has been successfully monitored in real time by using in situ transmission X-ray microscopy (TXM) in combination with a flow cell reactor. The in situ observations clearly show the morphological evolution of the solid silver nanowires to hollow gold nanotubes in the course of the reaction. Careful analysis of the images reveals that the galvanic replacement reaction on the silver nanowires involves multiple steps: (i) local initiation of pitting process; (ii) anisotropic etching of the silver nanowires and uniform deposition of the resulting gold atoms on the surfaces of the nanowires; and (iii) reconstruction of the nanotube walls via an Ostwald ripening process. The in situ TXM represents a promising approach for studying dynamic processes involved in the growth and chemical transformation of nanomaterials in solutions, in particular for nanostructures with dimensions larger than 50 nm. PMID:21894944

  16. Monitoring of galvanic replacement reaction between silver nanowires and HAuCl4 by in situ transmission X-ray microscopy.

    PubMed

    Sun, Yugang; Wang, Yuxin

    2011-10-12

    Galvanic replacement reaction between silver nanowires and an aqueous solution of HAuCl(4) has been successfully monitored in real time by using in situ transmission X-ray microscopy (TXM) in combination with a flow cell reactor. The in situ observations clearly show the morphological evolution of the solid silver nanowires to hollow gold nanotubes in the course of the reaction. Careful analysis of the images reveals that the galvanic replacement reaction on the silver nanowires involves multiple steps: (i) local initiation of pitting process; (ii) anisotropic etching of the silver nanowires and uniform deposition of the resulting gold atoms on the surfaces of the nanowires; and (iii) reconstruction of the nanotube walls via an Ostwald ripening process. The in situ TXM represents a promising approach for studying dynamic processes involved in the growth and chemical transformation of nanomaterials in solutions, in particular for nanostructures with dimensions larger than 50 nm.

  17. Fundamental studies of high-temperature corrosion reactions. Fifth annual progress report

    SciTech Connect

    Rapp, R.A.

    1980-02-01

    The in-situ study of metal oxidation reactions and the mechanism of the sulfidation of molybdenum by sulfur gases were studied. Equipment including a SEM microscope, heater and power supply which were used is described. (FS)

  18. In situ Regeneration of NADH via Lipoamide Dehydrogenase-catalyzed Electron Transfer Reaction Evidenced by Spectroelectrochemistry

    SciTech Connect

    Tam, Tsz Kin; Chen, Baowei; Lei, Chenghong; Liu, Jun

    2012-08-01

    NAD/NADH is a coenzyme found in all living cells, carrying electrons from one reaction to another. We report on characterizations of in situ regeneration of NADH via lipoamide dehydrogenase (LD)-catalyzed electron transfer reaction to regenerate NADH using UV-vis spectroelectrochemistry. The Michaelis-Menten constant (Km) and maximum velocity (Vmax) of NADH regeneration were measured as 0.80 {+-} 0.15 mM and 1.91 {+-} 0.09 {micro}M s-1 in a 1-mm thin-layer spectroelectrochemical cell using gold gauze as the working electrode at the applied potential -0.75 V (vs. Ag/AgCl). The electrocatalytic reduction of the NAD system was further coupled with the enzymatic conversion of pyruvate to lactate by lactate dehydrogenase to examine the coenzymatic activity of the regenerated NADH. Although the reproducible electrocatalytic reduction of NAD into NADH is known to be difficult compared to the electrocatalytic oxidation of NADH, our spectroelectrochemical results indicate that the in situ regeneration of NADH via LD-catalyzed electron transfer reaction is fast and sustainable and can be potentially applied to many NAD/NADH-dependent enzyme systems.

  19. Vaginal micropapillary lesions are not related to human papillomavirus infection: in situ hybridization and polymerase chain reaction detection techniques.

    PubMed

    Garzetti, G G; Ciavattini, A; Goteri, G; Menzo, S; De Nictolis, M; Clementi, M; Brugia, M; Romanini, C

    1994-01-01

    The objective of this study was to assess the human papillomavirus DNA presence in vaginal papillary lesions, with particular regard to micropapillomatosis to better define their clinical significance. Prospective study: the study population was composed of 62 women who were recruited consecutively from the Colposcopy Centre of the Ancona University, Department of Obstetrics and Gynecology, on the grounds of vaginal papillomatosis or/and typical acuminata warts. Biopsies for routine histology, and for human papillomavirus (HPV) DNA detection by means of in situ hybridization and polymerase chain reaction (PCR) were taken from the papillary lesions and from 24 healthy women, who were selected as controls. Macroscopically, vaginal micropapillomatosis was ascertained in 51 cases (82.3%), while in 11 cases (17.7%) the colposcopic diagnosis was condyloma acuminatum. During in situ hybridization, HPV DNA positivity was observed in 8 (9.4%) out of 85 samples of squamous papillae and in 11 (64.7%) out of 17 samples of condylomata; in control specimens, HPV DNA was detected in 2 (8.3%) out of 24 bioptic samples. The correspondence between in situ hybridization and PCR was 96.1%, with 17.4% more diagnosis obtained by PCR. Vaginal micropapillomatosis may be regarded as a variation in the normal anatomy of the lower genital tract without any significant relationship with HPV infection, and as a lesion easily distinguishable from condylomata acuminata by clinical examination alone. PMID:7959342

  20. Adsorption, Coadsorption and Reaction of Acetaldehyde and NO₂ on Na-Y,FAU: an in situ FTIR Investigation

    SciTech Connect

    Szanyi, Janos; Kwak, Ja Hun; Moline, Ryan A.; Peden, Charles HF

    2004-11-04

    The adsorption of acetaldehyde and its co-adsorption and reaction with NO₂ were investigated on a Na-Y, FAU zeolite using in situ FTIR spectroscopy. Acetaldehyde adsorbs strongly over Na-Y and desorbs molecularly at around 400K with very limited extent of condensation or polymerization. Reaction between CH₃CHO and NO₂ takes place in co-adsorption experiments even at 300K. In the initial step, acetaldehyde is oxidized to acetic acid accompanied by the formation of NO, which can be observed as N2O₃ formed via a further reaction between NO and NO₂. The key intermediates in the overall NOx reduction in this process are nitro- and nitrosomethane, which form in the next step. Their decomposition and further reaction with adsorbed NOx species lead to the formation of HCN, HNCO, N₂O, CO₂ and organic nitrile species identified by their characteristic IR vibrational signatures. At 473K, the reaction between adsorbed CH₃CHO and NO₂ is very fast. The results seem to suggest a mechanism in which N-N bond formation takes place among ionic nitrogen containing species (NO⁺ and CN⁻ or NCO⁻). No evidence has been found to suggest the participation of NHx⁺NOy⁻ type species in the N⁻N bond formation under the experimental conditions of this study.

  1. In situ visualization of metallurgical reactions in nanoscale Cu/Sn diffusion couples

    DOE PAGES

    Yin, Qiyue; Stach, Eric A.; Gao, Fan; Zhou, Guangwen; Gu, Zhiyong

    2015-02-10

    The Cu–Sn metallurgical soldering reaction in two-segmented Cu–Sn nanowires is visualized by in-situ transmission electron microscopy. By varying the relative lengths of Cu and Sn segments, we show that the metallurgical reaction starts at ~ 200 ° with the formation of a Cu–Sn solid solution for the Sn/Cu length ratio smaller than 1:5 while the formation of Cu–Sn intermetallic compounds (IMCs) for larger Sn/Cu length ratios. Upon heating the nanowires up to ~ 500 °C, two phase transformation pathways occur, η-Cu₆Sn₅ → ε-Cu₃Sn → δ-Cu₄₁Sn₁₁ for nanowires with a long Cu segment and η-Cu₆Sn₅ → ε-Cu₃Sn → γ-Cu₃Sn with amore » short Cu segment. The dynamic in situ TEM visualization of the evolution of Kirkendall voids demonstrates that Cu diffuses faster both in Sn and IMCs than that of Sn in Cu₃ and IMCs, which is the underlying cause of the dependence of the IMC formation and associated phase evolution on the relative lengths of the Cu and Sn segments.« less

  2. In situ visualization of metallurgical reactions in nanoscale Cu/Sn diffusion couples

    SciTech Connect

    Yin, Qiyue; Stach, Eric A.; Gao, Fan; Zhou, Guangwen; Gu, Zhiyong

    2015-02-10

    The Cu–Sn metallurgical soldering reaction in two-segmented Cu–Sn nanowires is visualized by in-situ transmission electron microscopy. By varying the relative lengths of Cu and Sn segments, we show that the metallurgical reaction starts at ~ 200 ° with the formation of a Cu–Sn solid solution for the Sn/Cu length ratio smaller than 1:5 while the formation of Cu–Sn intermetallic compounds (IMCs) for larger Sn/Cu length ratios. Upon heating the nanowires up to ~ 500 °C, two phase transformation pathways occur, η-Cu₆Sn₅ → ε-Cu₃Sn → δ-Cu₄₁Sn₁₁ for nanowires with a long Cu segment and η-Cu₆Sn₅ → ε-Cu₃Sn → γ-Cu₃Sn with a short Cu segment. The dynamic in situ TEM visualization of the evolution of Kirkendall voids demonstrates that Cu diffuses faster both in Sn and IMCs than that of Sn in Cu₃ and IMCs, which is the underlying cause of the dependence of the IMC formation and associated phase evolution on the relative lengths of the Cu and Sn segments.

  3. Synthesis of porous zinc gallate prisms composed of highly oriented nanoparticles by an in situ conversion reaction.

    PubMed

    Zhou, Wenli; Yang, Xianfeng; Huang, Lin; Wang, Jing; Tang, Jinke; Liang, Hongbin

    2012-04-23

    Porous ZnGa(2)O(4) prisms assembled by highly oriented nanoparticles have been fabricated by an in situ chemical conversion approach. We report, for the first time, that a solid α-Ga(2)O(3) precursor can be directly converted into ZnGa(2)O(4) rather than through the intermediate GaOOH. Based on a detailed study of the evolution of ZnGa(2)O(4) prisms, a growth mechanism is proposed for the in situ conversion reaction. During this conversion process, the precursor morphology can be highly retained, which is attributed to the similar atomic arrangements of the Ga and O atoms and excellent matching of the lattice spacing between the α-Ga(2)O(3) and ZnGa(2)O(4) prisms. The direct reaction between the precursor α-Ga(2)O(3) and Zn(2+) ions is more efficient than that between the byproduct GaOOH and Zn(2+) ions. Moreover, the photoluminescent color of the ZnGa(2)O(4) phosphor can be tuned by doping with Mn(2+) ions. Efficient energy transfer (ET) from the host lattice to the Mn(2+) centers is observed, whereas ET from the defects to the Mn(2+) ions is prohibited. The fabricated ZnGa(2)O(4) products have potential in the field of display applications.

  4. On-line reaction monitoring of lithiation of halogen substituted acetanilides via in situ calorimetry, ATR spectroscopy, and endoscopy.

    PubMed

    Godany, Tamas A; Neuhold, Yorck-Michael; Hungerbühler, Konrad

    2011-01-01

    Lithiation of N-(4-chlorophenyl)-pivalamide (NCP) and two additional substituted acetanilides: 4-fluoroacetanilide (4-F) and 4-chloroacetanilide (4-Cl) has been monitored by means of calorimetry, on-line ATR-IR and UV/vis spectroscopy and endoscopy. The combined on-line monitoring revealed the differences between the reaction paths of the chosen substrates. Thus the product structure and the reaction times for the individual reaction steps can be determined in situ.

  5. In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy

    PubMed Central

    Sun, Mengtao; Zhang, Zhenglong; Zheng, Hairong; Xu, Hongxing

    2012-01-01

    With strong surface plasmons excited at the metallic tip, tip-enhanced Raman spectroscopy (TERS) has both high spectroscopic sensitivity and high spatial resolution, and is becoming an essential tool for chemical analysis. It is a great challenge to combine TERS with a high vacuum system due to the poor optical collection efficiency. We used our innovatively designed home-built high vacuum TERS (HV-TERS) to investigate the plasmon-driven in-situ chemical reaction of 4-nitrobenzenethiol dimerizing to dimercaptoazobenzene. The chemical reactions can be controlled by the plasmon intensity, which in turn can be controlled by the incident laser intensity, tunneling current and bias voltage. The temperature of such a chemical reaction can also be obtained by the clearly observed Stokes and Anti-Stokes HV-TERS peaks. Our findings offer a new way to design a highly efficient HV-TERS system and its applications to chemical catalysis and synthesis of molecules, and significantly extend the studies of chemical reactions. PMID:22970339

  6. In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Mengtao; Zhang, Zhenglong; Zheng, Hairong; Xu, Hongxing

    2012-09-01

    With strong surface plasmons excited at the metallic tip, tip-enhanced Raman spectroscopy (TERS) has both high spectroscopic sensitivity and high spatial resolution, and is becoming an essential tool for chemical analysis. It is a great challenge to combine TERS with a high vacuum system due to the poor optical collection efficiency. We used our innovatively designed home-built high vacuum TERS (HV-TERS) to investigate the plasmon-driven in-situ chemical reaction of 4-nitrobenzenethiol dimerizing to dimercaptoazobenzene. The chemical reactions can be controlled by the plasmon intensity, which in turn can be controlled by the incident laser intensity, tunneling current and bias voltage. The temperature of such a chemical reaction can also be obtained by the clearly observed Stokes and Anti-Stokes HV-TERS peaks. Our findings offer a new way to design a highly efficient HV-TERS system and its applications to chemical catalysis and synthesis of molecules, and significantly extend the studies of chemical reactions.

  7. Nuclear Structure and Reaction Mechanism Studies with Multinucleon Reactions

    SciTech Connect

    Regan, P. H.; Jones, G. A.; Podolyak, Zs.; Abdullah, M.; Gelletly, W.; Langdown, S. D.; Wollel, G.; De Angelis, G.; Gadea, A.; Kroell, Th.; Marginean, N.; Martinez, T.; Napoli, D. R.; Rusu, C.; Tonev, D.; Zhang, Y. H.; Ur, C. A.; Axiotis, M.; Bazzacco, D.; Farnea, E.

    2006-08-14

    This contribution reports on the results of an experiment to study the near-yrast states in selenium- and osmium-like nuclei, following their population in thick-target, multinucleon transfer reactions between an 82Se beam and a 192Os target. The experimental results for the level scheme for 84Se are presented together with investigations into the use of multi-dimensional gamma-ray energy gating to investigate angular momentum population in such heavy-ion binary reactions.

  8. Identifying reaction intermediates and catalytic active sites through in situ characterization techniques

    SciTech Connect

    Foster, Andrew J.; Lobo, Raul F

    2010-01-01

    This tutorial review centers on recent advances and applications of experimental techniques that help characterize surface species and catalyst structures under in situ conditions. We start by reviewing recent applications of IR spectroscopy of working catalysis, emphasizing newer approaches such as Sum Frequency Generation and Polarization Modulation-infrared reflection absorption spectroscopy. This is followed by a section on solid-state NMR spectroscopy for the detection of surface species and reaction intermediates. These two techniques provide information mainly about the concentration and identity of the prevalent surface species. The following sections center on methods that provide structural and chemical information about the catalyst surface. The increasingly important role of high-pressure X-ray photoelectron spectroscopy in catalyst characterization is evident from the new and interesting information obtained on supported catalysts as presented in recent reports. X-Ray absorption spectroscopy (XANES and EXAFS) is used increasingly under reaction conditions to great advantage, although is inherently limited to systems where the bulk of the species in the sample are surface species. However, the ability of X-rays to penetrate the sample has been used cleverly by a number of groups to understand how changing reaction conditions change the structure and composition of surface atoms on supported catalyst.

  9. LONG TERM IN SITU DISPOSAL ENGINEERING STUDY

    SciTech Connect

    ADAMS; CARLSON; BROCKMAN

    2003-07-23

    Patent application pulled per Ken Norris (FH General Counsel). The objective of this study is to devise methods, produce conceptual designs, examine and select alternatives, and estimate costs for the demonstration of long-term (300-year) in situ disposal of an existing waste disposal site. The demonstration site selected is the 216-A-24 Crib near the 200 East Area. The site contains a fission product inventory and has experienced plant, animal, and inadvertent than intrusion. Of the potential intrusive events and transport pathways at the site, potential human intrusion has been given primary consideration in barrier design. Intrusion by wind, plants, and animals has been given secondary consideration. Groundwater modeling for a number of barrier configurations has been carried out to help select a barrier that will minimize water infiltration and waste/water contact time. The estimated effective lifetime and cost of 20 barrier schemes, using a variety of materials, have been evaluated. The schemes studied include single component surface barriers, multicomponent barriers, and massively injected grout barriers. Five barriers with high estimated effective lifetimes and relatively low costs have been selected for detailed evaluation. They are basalt riprap barriers, massive soil barriers, salt basin barriers, multi-component fine/coarse barriers, and cemented basalt barriers. A variety of materials and configurations for marking the site have also been considered. A decision analysis was completed to select a barrier scheme for demonstration. The analysis indicated that the basalt riprap alternative would be the preferred choice for a full-scale demonstration. The recommended approach is to demonstrate the basalt riprap barrier at the 216-A-24 Crib as soon as possible. Methods and costs of assessing effectiveness of the demonstration are also described. Preliminary design modifications and costs for applying the five selected barrier schemes to other site types are

  10. In situ surface characterization and oxygen reduction reaction on shape-controlled gold nanoparticles.

    PubMed

    Hernández, J; Solla-Gullón, J; Herrero, E; Feliu, J M; Aldaz, A

    2009-04-01

    Gold nanoparticles of different shapes/surface structures were synthesized and electrochemically characterized. An in-situ surface characterization of the Au nanoparticles, which was able to obtain qualitative information about the type and relative sizes of the different facets present in the surface of the Au nanoparticles, was carried out by using Pb Under Potential Deposition (UPD) in alkaline solutions as a surface sensitive tool. The results obtained show that the final atomic arrangement on the surface can be different from that expected from the bulk structure of the well-defined shape Au nanoparticles. In this way, the development of precise in-situ methods to measure the distribution of the different sites on the nanoparticle surface, as lead UPD on gold surfaces, is highlighted. Oxygen Reduction Reaction (ORR) was performed on the different Au nanoparticles. In agreement with the particular sensitivity of the oxygen reduction to the presence of Au(100) surface domains, cubic Au nanoparticles show much better electrocatalytic activity for ORR than small spherical particles and long nanorods, in agreement with the presence of a great fraction of (100) terrace sites on the surface of cubic gold nanoparticles. PMID:19437963

  11. In situ generation of electron acceptor for photoelectrochemical biosensing via hemin-mediated catalytic reaction.

    PubMed

    Zang, Yang; Lei, Jianping; Zhang, Lei; Ju, Huangxian

    2014-12-16

    A novel photoelectrochemical sensing strategy is designed for DNA detection on the basis of in situ generation of an electron acceptor via the catalytic reaction of hemin toward H2O2. The photoelectrochemical platform was established by sequential assembly of near-infrared CdTe quantum dots, capture DNA, and a hemin-labeled DNA probe to form a triple-helix molecular beacon (THMB) structure on an indium tin oxide electrode. According to the highly catalytic capacity of hemin toward H2O2, a photoelectrochemical mechanism was then proposed, in which the electron acceptor of O2 was in situ-generated on the electrode surface, leading to the enhancement of the photocurrent response. The utilization of CdTe QDs can extend the absorption edge to the near-infrared band, resulting in an increase in the light-to-electricity efficiency. After introducing target DNA, the THMB structure is disassembled and releases hemin and, thus, quenches the photocurrent. Under optimized conditions, this biosensor shows high sensitivity with a linear range from 1 to 1000 pM and detection limit of 0.8 pM. Moreover, it exhibits good performance of excellent selectivity, high stability, and acceptable fabrication reproducibility. This present strategy opens an alternative avenue for photoelectrochemical signal transduction and expands the applications of hemin-based materials in photoelectrochemical biosensing and clinical diagnosis.

  12. Experimental Study of Serpentinization Reactions

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Brearley, A. J.; Ganguly, J.; Liermann, H.-P.; Keil, K.

    2004-01-01

    Current carbonaceous chondrite parent-body thermal models [1-3] produce scenarios that are inconsistent with constraints on aqueous alteration conditions based on meteorite mineralogical evidence, such as phase stability relationships within the meteorite matrix minerals [4] and isotope equilibration arguments [5, 6]. This discrepancy arises principally because of the thermal runaway effect produced by silicate hydration reactions (here loosely called serpentinization, as the principal products are serpentine minerals), which are so exothermic as to produce more than enough heat to melt more ice and provide a self-sustaining chain reaction. One possible way to dissipate the heat of reaction is to use a very small parent body [e.g., 2] or possibly a rubble pile model. Another possibility is to release this heat more slowly, which depends on the alteration reaction path and kinetics.

  13. Optimizing Metalloporphyrin-Catalyzed Reduction Reactions for In Situ Remediation of DOE Contaminants

    SciTech Connect

    Schlautman, Mark A.

    2013-07-14

    Past activities have resulted in a legacy of contaminated soil and groundwater at Department of Energy facilities nationwide. Uranium and chromium are among the most frequently encountered and highest-priority metal and radionuclide contaminants at DOE installations. Abiotic chemical reduction of uranium and chromium at contaminated DOE sites can be beneficial because the reduced metal species are less soluble in water, less mobile in the environment, and less toxic to humans and ecosystems. Although direct biological reduction has been reported for U(VI) and Cr(VI) in laboratory studies and at some field sites, the reactions can sometimes be slow or even inhibited due to unfavorable environmental conditions. One promising approach for the in-situ remediation of DOE contaminants is to develop electron shuttle catalysts that can be delivered precisely to the specific subsurface locations where contaminants reside. Previous research has shown that reduction of oxidized organic and inorganic contaminants often can be catalyzed by electron shuttle systems. Metalloporphyrins and their derivatives are well known electron shuttles for many biogeochemical systems, and thus were selected to study their catalytic capabilities for the reduction of chromium and uranium in the presence of reducing agents. Zero valent iron (ZVI) was chosen as the primary electron donor in most experimental systems. Research proceeded in three phases and the key findings of each phase are reported here. Phase I examined Cr(VI) reduction and utilized micro- and nano-sized ZVI as the electron donors. Electron shuttle catalysts tested were cobalt- and iron-containing metalloporphyrins and Vitamin B12. To aid in the recycle and reuse of the nano-sized ZVI and soluble catalysts, sol-gels and calcium-alginate gel beads were tested as immobilization/support matrices. Although the nano-sized ZVI could be incorporated within the alginate gel beads, preliminary attempts to trap it in sol-gels were not

  14. Monitoring plasmon-driven surface catalyzed reactions in situ using time-dependent surface-enhanced Raman spectroscopy on single particles of hierarchical peony-like silver microflowers

    NASA Astrophysics Data System (ADS)

    Tang, Xianghu; Cai, Wenya; Yang, Liangbao; Liu, Jinhuai

    2014-07-01

    Investigating the kinetics of catalytic reactions with surface-enhanced Raman scattering (SERS) on a single particle remains a significant challenge. In this study, the single particle of the constructed hierarchical peony-like silver microflowers (SMFs) with highly roughened surface led to the coupling of high catalytic activity with a strong SERS effect, which acts as an excellent bifunctional platform for in situ monitoring of surface catalytic reactions. The kinetics of the reaction of 4-nitrothiophenol (4-NTP) dimerizing into 4,4'-dimercaptoazobenzene (DMAB) was investigated and comparatively studied by using the SERS technique on a single particle of different morphologies of SMFs. The results indicate that a fully developed nanostructure of a hierarchical SMF has both larger SERS enhancement and apparent reaction rate constant k, which may be useful for monitoring and understanding the mechanism of plasmon-driven surface catalyzed reactions.Investigating the kinetics of catalytic reactions with surface-enhanced Raman scattering (SERS) on a single particle remains a significant challenge. In this study, the single particle of the constructed hierarchical peony-like silver microflowers (SMFs) with highly roughened surface led to the coupling of high catalytic activity with a strong SERS effect, which acts as an excellent bifunctional platform for in situ monitoring of surface catalytic reactions. The kinetics of the reaction of 4-nitrothiophenol (4-NTP) dimerizing into 4,4'-dimercaptoazobenzene (DMAB) was investigated and comparatively studied by using the SERS technique on a single particle of different morphologies of SMFs. The results indicate that a fully developed nanostructure of a hierarchical SMF has both larger SERS enhancement and apparent reaction rate constant k, which may be useful for monitoring and understanding the mechanism of plasmon-driven surface catalyzed reactions. Electronic supplementary information (ESI) available: Fig. S1-S12. See DOI

  15. Kinetic studies of elementary chemical reactions

    SciTech Connect

    Durant, J.L. Jr.

    1993-12-01

    This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

  16. In situ study of the magnetoelectrolysis phenomenon during copper electrodeposition using time domain NMR relaxometry.

    PubMed

    Gomes, Bruna Ferreira; Nunes, Luiza Maria Silva; Lobo, Carlos Manuel Silva; Cabeça, Luís Fernando; Colnago, Luiz Alberto

    2014-10-01

    Although the effect of magnetic field (B) on electrochemical reactions (magnetoelectrolysis phenomenon) has been long known, it has not been considered in electrochemical reactions analyzed in situ by magnetic resonance methods, such as nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and magnetic resonance imaging (MRI), which are intrinsically performed in the presence of B. In this report, the effect of B on the copper electrodeposition reaction, measured by a low-field (0.23 T) NMR spectrometer, was demonstrated. As expected, an enhancement in the reaction rate in comparison to the ex situ electrodeposition reaction was observed. Such enhancement was not dependent on electrodes/magnetic field orientations. Parallel and perpendicular orientations showed similar electrodeposition rates, which is explained by the cyclotron flows generated by distortions in electric and magnetic field lines near the electrode and the electrode edge. Therefore, NMR spectroscopy is not a passive analytical method, as assumed in preceding in situ spectroelectrochemical studies. Although the magnetoelectrolysis phenomenon demonstrated in this report used a paramagnetic ion, it can also be observed for diamagnetic species, since the magnetoelectrolysis phenomenon is independent of the nature of the species. Consequently, similar convection effects may occur in other electrochemical nuclear magnetic resonance (EC-NMR) experiments, such as the electrochemical reaction of organic molecules, as well as in electrocatalysis/fuel cells, lithium-ion batteries, and experiments that use electrochemical electron paramagnetic resonance (EC-EPR) and electrochemical magnetic resonance imaging (EC-MRI).

  17. In situ study of the magnetoelectrolysis phenomenon during copper electrodeposition using time domain NMR relaxometry.

    PubMed

    Gomes, Bruna Ferreira; Nunes, Luiza Maria Silva; Lobo, Carlos Manuel Silva; Cabeça, Luís Fernando; Colnago, Luiz Alberto

    2014-10-01

    Although the effect of magnetic field (B) on electrochemical reactions (magnetoelectrolysis phenomenon) has been long known, it has not been considered in electrochemical reactions analyzed in situ by magnetic resonance methods, such as nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and magnetic resonance imaging (MRI), which are intrinsically performed in the presence of B. In this report, the effect of B on the copper electrodeposition reaction, measured by a low-field (0.23 T) NMR spectrometer, was demonstrated. As expected, an enhancement in the reaction rate in comparison to the ex situ electrodeposition reaction was observed. Such enhancement was not dependent on electrodes/magnetic field orientations. Parallel and perpendicular orientations showed similar electrodeposition rates, which is explained by the cyclotron flows generated by distortions in electric and magnetic field lines near the electrode and the electrode edge. Therefore, NMR spectroscopy is not a passive analytical method, as assumed in preceding in situ spectroelectrochemical studies. Although the magnetoelectrolysis phenomenon demonstrated in this report used a paramagnetic ion, it can also be observed for diamagnetic species, since the magnetoelectrolysis phenomenon is independent of the nature of the species. Consequently, similar convection effects may occur in other electrochemical nuclear magnetic resonance (EC-NMR) experiments, such as the electrochemical reaction of organic molecules, as well as in electrocatalysis/fuel cells, lithium-ion batteries, and experiments that use electrochemical electron paramagnetic resonance (EC-EPR) and electrochemical magnetic resonance imaging (EC-MRI). PMID:25162751

  18. Oxidation reaction by xanthine oxidase: theoretical study of reaction mechanism.

    PubMed

    Amano, Tatsuo; Ochi, Noriaki; Sato, Hirofumi; Sakaki, Shigeyoshi

    2007-07-01

    The oxidation process by molybdenum-containing enzyme, xanthine oxidase, is theoretically studied with a model complex representing the reaction center and a typical benchmark substrate, formamide. Comparisons were systematically made among reaction mechanisms proposed previously. In the concerted and stepwise mechanisms that were theoretically discussed previously, the oxidation reaction takes place with a moderate activation barrier. However, the product is less stable than the reactant complex, which indicates that these mechanisms are unlikely. Moreover, the product of the concerted mechanism is not consistent with the isotope experimental result. In addition to those mechanisms, another mechanism initiated by the deprotonation of the active site was newly investigated here. In the transition state of this reaction, the carbon atom of formamide interacts with the oxo ligand of the Mo center and the hydrogen atom is moving from the carbon atom to the thioxo ligand. This reaction takes place with a moderate activation barrier and considerably large exothermicity. Furthermore, the product by this mechanism is consistent with the isotope experimental result. Also, our computations clearly show that the deprotonation of the active site occurs with considerable exothermicity in the presence of glutamic acid and substrate. The intermediate of the stepwise mechanism could not be optimized in the case of the deprotonated active site. From all these results, it should be concluded that the one-step mechanism with the deprotonated active site is the most plausible.

  19. Investigation of CaO-CO₂ reaction kinetics by in-situ XRD using synchrotron radiation

    SciTech Connect

    Biasin, A.; Segre, C. U.; Salviulo, G.; Zorzi, F.; Strumendo, M.

    2015-02-05

    In this work, in-situ synchrotron radiation x-ray powder diffraction (SR-XRPD), performed at the Advanced Photon Source (APS) facilities of the Argonne National Laboratory, was applied to investigate the CaO–CO2 reaction. A set of CO2 absorption experiments were conducted in a high temperature reaction capillary with a controlled atmosphere (CO2 partial pressure of 1 bar), in the temperature range between 450 °C and 750 °C using CaO based sorbents obtained by calcination of commercial calcium carbonate. The evolution of the crystalline phases during CO2 uptake by the CaO solid sorbents was monitored for a carbonation time of 20 min as a function of the carbonation temperature and of the calcination conditions. The Rietveld refinement method was applied to estimate the calcium oxide conversion during the reaction progress and the average size of the initial (at the beginning of carbonation) calcium oxide crystallites. The measured average initial carbonation rate (in terms of conversion time derivative) of 0.280 s-1 (±13.2% standard deviation) is significantly higher than the values obtained by thermo-gravimetric analysis and reported thus far in the literature. Additionally, a dependence of the conversion versus time curves on the initial calcium oxide crystallite size was observed and a linear relationship between the initial CaO crystallite size and the calcium oxide final conversion was identified.

  20. In-situ synchrotron x-ray spectroscopy of ruthenium nanoparticles modified with selenium for oxygen reduction reaction.

    SciTech Connect

    Inukai, J.; Cao, D.; Wieckowski, A.; Chang, K.-C.; Menzel, A.; Komanicky, V.; You, H.; Materials Science Division; Univ. of Illinois; Univ. of Yamanashi

    2007-11-15

    We used in situ Se K-edge X-ray spectroscopy to characterize Ru nanoparticles chemically modified with submonolayers of selenium (Se/Ru) [Cao et al. J. Electrochem. Soc. 2006, 153, A869]. X-ray powder diffraction verified that the Se/Ru catalyst had metallic Ru cores. The in situ X-ray absorption near edge structure taken at the open circuit potential showed that there were both elemental and oxidized selenium on the as-prepared Se/Ru samples. All selenium oxide was reduced to the elemental form of selenium by applying negative potentials. By applying positive potentials, selenium was subsequently reoxidized. The analysis of the extended X-ray absorption fine structure shows the appearance of selenium hydration (Se-OH{sub 2}) in a deaerated solution, which was not observed during the oxygen reduction reaction. We present evidence that Se-free Ru atoms play an important role in the ORR activity of the Se/Ru catalyst studied in this paper.

  1. In situ synchrotron x-ray spectroscopy of ruthenium nanoparticles modified with selenium for an oxygen reduction reaction.

    SciTech Connect

    Inukai, J.; Cao, D.; Wieckowski, A.; Chang, K.-C.; Menzel, A.; Komanicky, V.; You, H.; Univ. Illinois; Univ. Yamanashi

    2007-11-15

    We used in situ Se K-edge X-ray spectroscopy to characterize Ru nanoparticles chemically modified with submonolayers of selenium (Se/Ru) [Cao et al. J. Electrochem. Soc. 2006, 153, A869]. X-ray powder diffraction verified that the Se/Ru catalyst had metallic Ru cores. The in situ X-ray absorption near edge structure taken at the open circuit potential showed that there were both elemental and oxidized selenium on the as-prepared Se/Ru samples. All selenium oxide was reduced to the elemental form of selenium by applying negative potentials. By applying positive potentials, selenium was subsequently reoxidized. The analysis of the extended X-ray absorption fine structure shows the appearance of selenium hydration (Se-OH{sub 2}) in a deaerated solution, which was not observed during the oxygen reduction reaction. We present evidence that Se-free Ru atoms play an important role in the ORR activity of the Se/Ru catalyst studied in this paper.

  2. In situ monitoring of the Li-O2 electrochemical reaction on nanoporous gold using electrochemical AFM.

    PubMed

    Wen, Rui; Byon, Hye Ryung

    2014-03-11

    The lithium-oxygen (Li-O2) electrochemical reaction on nanoporous gold (NPG) is observed using in situ atomic force microscopy (AFM) imaging coupled with potentiostatic measurement. Dense Li2O2 nanoparticles form a film at 2.5 V, which is decomposed at 3.8-4.0 V in an ether-based electrolyte.

  3. In situ monitoring of the Li-O2 electrochemical reaction on nanoporous gold using electrochemical AFM.

    PubMed

    Wen, Rui; Byon, Hye Ryung

    2014-03-11

    The lithium-oxygen (Li-O2) electrochemical reaction on nanoporous gold (NPG) is observed using in situ atomic force microscopy (AFM) imaging coupled with potentiostatic measurement. Dense Li2O2 nanoparticles form a film at 2.5 V, which is decomposed at 3.8-4.0 V in an ether-based electrolyte. PMID:24469227

  4. Controlling the Formation of Nanocavities in Kirkendall Nanoobjects through Sequential Thermal Ex Situ Oxidation and In Situ Reduction Reactions.

    PubMed

    Mel, Abdel-Aziz El; Tessier, Pierre-Yves; Buffiere, Marie; Gautron, Eric; Ding, JunJun; Du, Ke; Choi, Chang-Hwan; Konstantinidis, Stephanos; Snyders, Rony; Bittencourt, Carla; Molina-Luna, Leopoldo

    2016-06-01

    Controlling the porosity, the shape, and the morphology of Kirkendall hollow nanostructures is the key factor to tune the properties of these tailor-made nanomaterials which allow in turn broadening their applications. It is shown that by applying a continuous oxidation to copper nanowires following a temperature ramp protocol, one can synthesize cuprous oxide nanotubes containing periodic copper nanoparticles. A further oxidation of such nanoobjects allows obtaining cupric oxide nanotubes with a bamboo-like structure. On the other hand, by applying a sequential oxidation and reduction reactions to copper nanowires, one can synthesize hollow nanoobjects with complex shapes and morphologies that cannot be obtained using the Kirkendall effect alone, such as necklace-like cuprous oxide nanotubes, periodic solid copper nanoparticles or hollow cuprous oxide nanospheres interconnected with single crystal cuprous oxide nanorods, and aligned and periodic hollow nanospheres embedded in a cuprous oxide nanotube. The strategy demonstrated in this study opens new avenues for the engineering of hollow nanostructures with potential applications in gas sensing, catalysis, and energy storage.

  5. Microbial Studies Supporting Implementation of In Situ Bioremediation at TAN

    SciTech Connect

    Barnes, Joan Marie; Matthern, Gretchen Elise; Rae, Catherine; Ely, R. L.

    2000-11-01

    The Idaho National Engineering and Environmental Laboratory is evaluating in situ bioremediation of contaminated groundwater at its Test Area North Facility. To determine feasibility, microcosm and bioreactor studies were conducted to ascertain the ability of indigenous microbes to convert trichloroethene and dichloroethene to non-hazardous byproducts under aerobic and anaerobic conditions, and to measure the kinetics of microbial reactions associated with the degradation process. Microcosms were established from core samples and groundwater obtained from within the contaminant plume. These microcosms were amended with nutrients, under aerobic and anaerobic conditions, to identify electron donors capable of stimulating the degradation process. Results of the anaerobic microcosm studies showed that lactate, acetate and propionate amendments stimulated indigenous cell growth and functioned as effective substrates for reductive degradation of chloroethenes. Bioreactors inoculated with cultures from these anaerobic microcosms were operated under a batch mode for 42 days then converted to a fed-batch mode and operated at a 53-day hydraulic residence time. It was demonstrated that indigenous microbes capable of complete anaerobic reductive dechlorination are present in the subject well. It was also demonstrated that aerobic microbes capable of oxidizing chlorinated compounds produced by anaerobic reductive dechlorination are present. Kinetic data suggest that controlling the type and concentration of electron donors can increase trichlorethene conversion rates. In the event that complete mineralization of trichlorethene does not occur following stimulation, and anaerobic/aerobic treatment scheme is feasible.

  6. MEMS Lubrication by In-Situ Tribochemical Reactions From the Vapor Phase.

    SciTech Connect

    Dugger, Michael Thomas; Asay, David B.; Kim, Seong H.

    2008-01-01

    Vapor Phase Lubrication (VPL) of silicon surfaces with pentanol has been demonstrated. Two potential show stoppers with respect to application of this approach to real MEMS devices have been investigated. Water vapor was found to reduce the effectiveness of VPL with alcohol for a given alcohol concentration, but the basic reaction mechanism observed in water-free environments is still active, and devices operated much longer in mixed alcohol and water vapor environments than with chemisorbed monolayer lubricants alone. Complex MEMS gear trains were successfully lubricated with alcohol vapors, resulting in a factor of 104 improvement in operating life without failure. Complex devices could be made to fail if operated at much higher frequencies than previously used, and there is some evidence that the observed failure is due to accumulation of reaction products at deeply buried interfaces. However, if hypothetical reaction mechanisms involving heated surfaces are valid, then the failures observed at high frequency may not be relevant to operation at normal frequencies. Therefore, this work demonstrates that VPL is a viable approach for complex MEMS devices in conventional packages. Further study of the VPL reaction mechanisms are recommended so that the vapor composition may be optimized for low friction and for different substrate materials with potential application to conventionally fabricated, metal alloy parts in weapons systems. Reaction kinetics should be studied to define effective lubrication regimes as a function of the partial pressure of the vapor phase constituent, interfacial shear rate, substrate composition, and temperature.

  7. In situ measurement of molecular diffusion during catalytic reaction by pulsed-field gradient NMR spectroscopy

    SciTech Connect

    Hong, Y.; Kaerger, J.; Hunger, B. ); Feoktistova, N.N.; Zhdanov, S.P. )

    1992-09-01

    Pulsed-field gradient (PFG) NMR spectroscopy is applied to study the intracrystalline diffusivity of the reactant and product molecules during the conversion of cyclopropane to propene in Zeolite X. The diffusivities are found to be large enough that any influence of intracrystalline diffusion on the overall reaction in flow reactors may be excluded.

  8. Adsorption and oxidation of formaldehyde on a polycrystalline Pt film electrode: An in situ IR spectroscopy search for adsorbed reaction intermediates.

    PubMed

    Jusys, Zenonas; Behm, R Jürgen

    2014-01-01

    As part of a mechanistic study of the electrooxidation of C1 molecules we have systematically investigated the dissociative adsorption/oxidation of formaldehyde on a polycrystalline Pt film electrode under experimental conditions optimizing the chance for detecting weakly adsorbed reaction intermediates. Employing in situ IR spectroscopy in an attenuated total reflection configuration (ATR-FTIRS) with p-polarized IR radiation to further improve the signal-to-noise ratio, and using low reaction temperatures (3 °C) and deuterium substitution to slow down the reaction kinetics and to stabilize weakly adsorbed reaction intermediates, we could detect an IR absorption band at 1660 cm(-1) characteristic for adsorbed formyl intermediates. This assignment is supported by an isotope shift in wave number. Effects of temperature, potential and deuterium substitution on the formation and disappearance of different adsorbed species (COad, adsorbed formate, adsorbed formyl), are monitored and quantified. Consequences on the mechanism for dissociative adsorption and oxidation of formaldehyde are discussed.

  9. Single-Molecule Imaging of Iron-Phthalocyanine-Catalyzed Oxygen Reduction Reaction by in Situ Scanning Tunneling Microscopy.

    PubMed

    Gu, Jing-Ying; Cai, Zhen-Feng; Wang, Dong; Wan, Li-Jun

    2016-09-27

    We report herein an in situ electrochemical scanning tunneling microscopy (ECSTM) investigation of iron-phthalocyanine (FePc)-catalyzed oxygen reduction reaction (ORR). A highly ordered FePc adlayer is revealed on a Au(111) electrode. The center ions in the FePc adlayer show uniform high contrast in an oxygen-saturated electrolyte, which is attributed to the formation of an FePc-O2 complex. In situ STM results reveal the sharp contrast change upon shifting the electrode potential to trigger the ORR. Theoretical simulation has supplied further evidence for the contrast difference of the adsorbed FePc species. PMID:27508323

  10. Single-Molecule Imaging of Iron-Phthalocyanine-Catalyzed Oxygen Reduction Reaction by in Situ Scanning Tunneling Microscopy.

    PubMed

    Gu, Jing-Ying; Cai, Zhen-Feng; Wang, Dong; Wan, Li-Jun

    2016-09-27

    We report herein an in situ electrochemical scanning tunneling microscopy (ECSTM) investigation of iron-phthalocyanine (FePc)-catalyzed oxygen reduction reaction (ORR). A highly ordered FePc adlayer is revealed on a Au(111) electrode. The center ions in the FePc adlayer show uniform high contrast in an oxygen-saturated electrolyte, which is attributed to the formation of an FePc-O2 complex. In situ STM results reveal the sharp contrast change upon shifting the electrode potential to trigger the ORR. Theoretical simulation has supplied further evidence for the contrast difference of the adsorbed FePc species.

  11. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures

    NASA Astrophysics Data System (ADS)

    Shen, Chenfei; Ge, Mingyuan; Luo, Langli; Fang, Xin; Liu, Yihang; Zhang, Anyi; Rong, Jiepeng; Wang, Chongmin; Zhou, Chongwu

    2016-08-01

    In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.

  12. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures.

    PubMed

    Shen, Chenfei; Ge, Mingyuan; Luo, Langli; Fang, Xin; Liu, Yihang; Zhang, Anyi; Rong, Jiepeng; Wang, Chongmin; Zhou, Chongwu

    2016-08-30

    In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.

  13. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures

    PubMed Central

    Shen, Chenfei; Ge, Mingyuan; Luo, Langli; Fang, Xin; Liu, Yihang; Zhang, Anyi; Rong, Jiepeng; Wang, Chongmin; Zhou, Chongwu

    2016-01-01

    In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires. PMID:27571919

  14. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures.

    PubMed

    Shen, Chenfei; Ge, Mingyuan; Luo, Langli; Fang, Xin; Liu, Yihang; Zhang, Anyi; Rong, Jiepeng; Wang, Chongmin; Zhou, Chongwu

    2016-01-01

    In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires. PMID:27571919

  15. Externally controlled pressure and temperature microreactor for in situ x-ray diffraction, visual and spectroscopic reaction investigations under supercritical and subcritical conditions

    SciTech Connect

    Diefenbacher, Jason; McKelvy, Michael; Chizmeshya, Andrew V.G.; Wolf, George H.

    2005-01-01

    A microreactor has been developed for in situ, spectroscopic investigations of materials and reaction processes with full external pressure and temperature control from ambient conditions to 400 deg. C and 310 bar. The sample chamber is in direct contact with an external manifold, whereby gases, liquids or fluids can be injected and their activities controlled prior to and under investigation conditions. The microreactor employs high strength, single crystal moissanite windows which allow direct probe beam interaction with a sample to investigate in situ reaction processes and other materials properties. The relatively large volume of the cell, along with full optical accessibility and external temperature and pressure control, make this reaction cell well suited for experimental investigations involving any combination of gas, fluid, and solid interactions. The microreactor's capabilities are demonstrated through an in situ x-ray diffraction study of the conversion of a meta-serpentine sample to magnesite under high pressure and temperature. Serpentine is one of the mineral candidates for the implementation of mineral carbonation, an intriguing carbon sequestration candidate technology.

  16. Externally controlled pressure and temperature microreactor for in situ x-ray diffraction, visual and spectroscopic reaction investigations under supercritical and subcritial conditions

    SciTech Connect

    Diefenbacher, J.; McKelvy, M.; Chizemeshya, A.V.; Wolf, G.H.

    2010-07-13

    A microreactor has been developed for in situ, spectroscopic investigations of materials and reaction processes with full external pressure and temperature control from ambient conditions to 400 C and 310 bar. The sample chamber is in direct contact with an external manifold, whereby gases, liquids or fluids can be injected and their activities controlled prior to and under investigation conditions. The microreactor employs high strength, single crystal moissanite windows which allow direct probe beam interaction with a sample to investigate in situ reaction processes and other materials properties. The relatively large volume of the cell, along with full optical accessibility and external temperature and pressure control, make this reaction cell well suited for experimental investigations involving any combination of gas, fluid, and solid interactions. The microreactor's capabilities are demonstrated through an in situ x-ray diffraction study of the conversion of a meta-serpentine sample to magnesite under high pressure and temperature. Serpentine is one of the mineral candidates for the implementation of mineral carbonation, an intriguing carbon sequestration candidate technology.

  17. In situ transmission electron microscopy of light-induced photocatalytic reactions.

    PubMed

    Cavalca, F; Laursen, A B; Kardynal, B E; Dunin-Borkowski, R E; Dahl, S; Wagner, J B; Hansen, T W

    2012-02-24

    Transmission electron microscopy (TEM) makes it possible to obtain insight into the structure, composition and reactivity of photocatalysts, which are of fundamental interest for sustainable energy research. Such insight can be used for further material optimization. Here, we combine conventional TEM analysis of photocatalysts with environmental TEM (ETEM) and photoactivation using light. Two novel types of TEM specimen holder that enable in situ illumination are developed to study light-induced phenomena in photoactive materials, systems and photocatalysts at the nanoscale under working conditions. The technological development of the holders is described and two representative photo-induced phenomena are studied: the photodegradation of Cu₂O and the photodeposition of Pt onto a GaN:ZnO photocatalyst.

  18. In-situ nanoelectrospray for high-throughput screening of enzymes and real-time monitoring of reactions.

    PubMed

    Yang, Yuhan; Han, Feifei; Ouyang, Jin; Zhao, Yunling; Han, Juan; Na, Na

    2016-01-01

    The in-situ and high-throughput evaluation of enzymes and real-time monitoring of enzyme catalyzed reactions in liquid phase is quite significant in the catalysis industry. In-situ nanoelectrospray, the direct sampling and ionization method for mass spectrometry, has been applied for high-throughput evaluation of enzymes, as well as the on-line monitoring of reactions. Simply inserting a capillary into a liquid system with high-voltage applied, analytes in liquid reaction system can be directly ionized at the capillary tip with small volume consumption. With no sample pre-treatment or injection procedure, different analytes such as saccharides, amino acids, alkaloids, peptides and proteins can be rapidly and directly extracted from liquid phase and ionized at the capillary tip. Taking irreversible transesterification reaction of vinyl acetate and ethanol as an example, this technique has been used for the high-throughput evaluation of enzymes, fast optimizations, as well as real-time monitoring of reaction catalyzed by different enzymes. In addition, it is even softer than traditional electrospray ionization. The present method can also be used for the monitoring of other homogenous and heterogeneous reactions in liquid phases, which will show potentials in the catalysis industry.

  19. In Situ EXAFS Studies on Ni2P Hydrodesulfurization Catalysts in the Presence of High Pressure and High Temperature Oil

    SciTech Connect

    Kawai, Toshihide; Asakura, Kiyotaka; Bando, Kyoko K.; Lee, Yong-Kul; Oyama, S. Ted.; Chun, Wang-Jae

    2007-02-02

    A Ni2P/SiO2 catalyst that is highly active for hydrodesulfurization (HDS) reaction was studied by in situ extended x-ray absorption fine structure (EXAFS) under the real reaction conditions. The measurements were conducted at realistic conditions of high pressure (3 MPa) and high temperature (613 K) in the presence of model oil. We used a low-volume cell with cubic boron nitride windows. The obtained spectra revealed that the bulk Ni2P structure was stable at reaction conditions and that the active surface had Ni-S bonds under reaction conditions, which played an important role for HDS reactions.

  20. In situ Scanning Electron Microscopy of Silicon Anode Reactions in Lithium-Ion Batteries during Charge/Discharge Processes

    PubMed Central

    Chen, Chih-Yao; Sano, Teruki; Tsuda, Tetsuya; Ui, Koichi; Oshima, Yoshifumi; Yamagata, Masaki; Ishikawa, Masashi; Haruta, Masakazu; Doi, Takayuki; Inaba, Minoru; Kuwabata, Susumu

    2016-01-01

    A comprehensive understanding of the charge/discharge behaviour of high-capacity anode active materials, e.g., Si and Li, is essential for the design and development of next-generation high-performance Li-based batteries. Here, we demonstrate the in situ scanning electron microscopy (in situ SEM) of Si anodes in a configuration analogous to actual lithium-ion batteries (LIBs) with an ionic liquid (IL) that is expected to be a functional LIB electrolyte in the future. We discovered that variations in the morphology of Si active materials during charge/discharge processes is strongly dependent on their size and shape. Even the diffusion of atomic Li into Si materials can be visualized using a back-scattering electron imaging technique. The electrode reactions were successfully recorded as video clips. This in situ SEM technique can simultaneously provide useful data on, for example, morphological variations and elemental distributions, as well as electrochemical data. PMID:27782200

  1. Geochemical reactions resulting from in situ oxidation of PCE-DNAPL by KMnO4 in a sandy aquifer.

    PubMed

    Nelson, M D; Parker, B L; Al, T A; Cherry, J A; Loomer, D

    2001-03-15

    Although the potential for KMnO4 to destroy chlorinated ethenes in situ was first recognized more than a decade ago, the geochemical processes that accompany the oxidation have not previously been examined. In this study, aqueous KMnO4 solutions (10-30 g/L) were injected into an unconfined sand aquifer contaminated by the dense non-aqueous-phase liquid (DNAPL) tetrachloroethylene (PCE). The effects of the injections were monitored using depth-specific, multilevel groundwater samplers, and continuous cores. Two distinct geochemical zones evolved within several days after injection. In one zone where DNAPL is present, reactions between KMnO4 and dissolved PCE resulted in the release of abundant chloride and hydrogen ions to the water. Calcite and dolomite dissolved, buffering the pH in the range of 5.8-6.5, releasing Ca, Mg, and CO2 to the pore water. In this zone, the aqueous Ca/Cl concentration ratio is close to 5:12, consistent with the following reaction for the oxidation of PCE in a carbonate-rich aquifer: 3C2Cl4 + 5CaCO3(s) + 4KMnO4 + 2H+ --> 11CO2 + 4MnO2(s) + H2O + 12Cl- + 5Ca2+ + 4K+. In addition to Mg from dolomite dissolution, increases in the concentration of Mg as well as Na may result from exchange with K at cation-exchange sites. In the second zone, where lesser amounts of PCE were present, KMnO4 persisted in the aquifer for more than 14 months, and the porewater pH increased graduallyto between 9 and 10 as a resultof reaction between KMnO4 and H2O. A small increase in SO4 concentrations in the zones invaded by KMnO4 suggests that KMnO4 injections caused oxidation of sulfide minerals. There are important benefits of carbonate mineral buffering during DNAPL remediation by in situ oxidation. In a carbonate-buffered system, Mn(VII) is reduced to Mn(IV) and is immobilized in the groundwater by precipitating as insoluble manganese oxide. Energy-dispersive X-ray spectroscopy analyses of the manganese oxide coatings on aquifer mineral grains have detected the

  2. Intermediates in the cation reactions in solution probed by an in situ surface enhanced Raman scattering method

    NASA Astrophysics Data System (ADS)

    Tan, Chih-Shan; Chen, Hung-Ying; Chen, Hsueh-Szu; Gwo, Shangjr; Chen, Lih-Juann

    2015-09-01

    For chemical reactions in liquid state, such as catalysis, understanding of dynamical changes is conducive to practical applications. Solvation of copper salts in aqueous solution has implications for life, the environment, and industry. In an ongoing research, the question arises that why the color of aqueous CuCl2 solution changes with solution concentration? In this work, we have developed a convenient and efficient in situ surface enhanced Raman scattering technique to probe the presence of many intermediates, some of them are responsible for color change, in crystallization of aqueous copper chloride solution. The versatility of the novel technique was confirmed in the identification of five intermediates states in the transition from CdS to MoS2 nanowires in solution. The facile in situ method is expected to be widely applicable in probing intermediate states in a variety of chemical reactions in solution.

  3. Intermediates in the cation reactions in solution probed by an in situ surface enhanced Raman scattering method.

    PubMed

    Tan, Chih-Shan; Chen, Hung-Ying; Chen, Hsueh-Szu; Gwo, Shangjr; Chen, Lih-Juann

    2015-01-01

    For chemical reactions in liquid state, such as catalysis, understanding of dynamical changes is conducive to practical applications. Solvation of copper salts in aqueous solution has implications for life, the environment, and industry. In an ongoing research, the question arises that why the color of aqueous CuCl2 solution changes with solution concentration? In this work, we have developed a convenient and efficient in situ surface enhanced Raman scattering technique to probe the presence of many intermediates, some of them are responsible for color change, in crystallization of aqueous copper chloride solution. The versatility of the novel technique was confirmed in the identification of five intermediates states in the transition from CdS to MoS2 nanowires in solution. The facile in situ method is expected to be widely applicable in probing intermediate states in a variety of chemical reactions in solution. PMID:26333518

  4. Intermediates in the cation reactions in solution probed by an in situ surface enhanced Raman scattering method

    PubMed Central

    Tan, Chih-Shan; Chen, Hung-Ying; Chen, Hsueh-Szu; Gwo, Shangjr; Chen, Lih-Juann

    2015-01-01

    For chemical reactions in liquid state, such as catalysis, understanding of dynamical changes is conducive to practical applications. Solvation of copper salts in aqueous solution has implications for life, the environment, and industry. In an ongoing research, the question arises that why the color of aqueous CuCl2 solution changes with solution concentration? In this work, we have developed a convenient and efficient in situ surface enhanced Raman scattering technique to probe the presence of many intermediates, some of them are responsible for color change, in crystallization of aqueous copper chloride solution. The versatility of the novel technique was confirmed in the identification of five intermediates states in the transition from CdS to MoS2 nanowires in solution. The facile in situ method is expected to be widely applicable in probing intermediate states in a variety of chemical reactions in solution. PMID:26333518

  5. Solvothermal in situ metal/ligand reactions: a new bridge between coordination chemistry and organic synthetic chemistry.

    PubMed

    Chen, Xiao-Ming; Tong, Ming-Liang

    2007-02-01

    Several important solvothermal (including hydrothermal) in situ metal/ligand reactions and their mechanisms, including dehydrogenative carbon-carbon coupling, hydroxylation of aromatic rings, cycloaddition of organic nitriles with azide and ammonia, transformation of inorganic and organic sulfur, as well as the CuII to CuI reduction, are outlined in this Account. The current progress clearly demonstrates the important potential of such reactions in the crystal engineering of functional coordination compounds and one-pot synthesis of some unusual organic ligands that are inaccessible or not easily obtainable via conventional methods, thereby substantiating our expectation that a new bridge has been created between coordination chemistry and synthetic organic chemistry.

  6. Grain rotation and lattice deformation during photoinduced chemical reactions revealed by in situ X-ray nanodiffraction.

    PubMed

    Huang, Zhifeng; Bartels, Matthias; Xu, Rui; Osterhoff, Markus; Kalbfleisch, Sebastian; Sprung, Michael; Suzuki, Akihiro; Takahashi, Yukio; Blanton, Thomas N; Salditt, Tim; Miao, Jianwei

    2015-07-01

    In situ X-ray diffraction (XRD) and transmission electron microscopy (TEM) have been used to investigate many physical science phenomena, ranging from phase transitions, chemical reactions and crystal growth to grain boundary dynamics. A major limitation of in situ XRD and TEM is a compromise that has to be made between spatial and temporal resolution. Here, we report the development of in situ X-ray nanodiffraction to measure high-resolution diffraction patterns from single grains with up to 5 ms temporal resolution. We observed, for the first time, grain rotation and lattice deformation in chemical reactions induced by X-ray photons: Br(-) + hv → Br + e(-) and e(-) + Ag(+) → Ag(0). The grain rotation and lattice deformation associated with the chemical reactions were quantified to be as fast as 3.25 rad s(-1) and as large as 0.5 Å, respectively. The ability to measure high-resolution diffraction patterns from individual grains with a temporal resolution of several milliseconds is expected to find broad applications in materials science, physics, chemistry and nanoscience.

  7. Grain rotation and lattice deformation during photoinduced chemical reactions revealed by in situ X-ray nanodiffraction

    NASA Astrophysics Data System (ADS)

    Huang, Zhifeng; Bartels, Matthias; Xu, Rui; Osterhoff, Markus; Kalbfleisch, Sebastian; Sprung, Michael; Suzuki, Akihiro; Takahashi, Yukio; Blanton, Thomas N.; Salditt, Tim; Miao, Jianwei

    2015-07-01

    In situ X-ray diffraction (XRD) and transmission electron microscopy (TEM) have been used to investigate many physical science phenomena, ranging from phase transitions, chemical reactions and crystal growth to grain boundary dynamics. A major limitation of in situ XRD and TEM is a compromise that has to be made between spatial and temporal resolution. Here, we report the development of in situ X-ray nanodiffraction to measure high-resolution diffraction patterns from single grains with up to 5 ms temporal resolution. We observed, for the first time, grain rotation and lattice deformation in chemical reactions induced by X-ray photons: Br- + hv --> Br + e- and e- + Ag+ --> Ag0. The grain rotation and lattice deformation associated with the chemical reactions were quantified to be as fast as 3.25 rad s-1 and as large as 0.5 Å, respectively. The ability to measure high-resolution diffraction patterns from individual grains with a temporal resolution of several milliseconds is expected to find broad applications in materials science, physics, chemistry and nanoscience.

  8. In Situ Transmission Electron Microscopy And Spectroscopy Studies Of Rechargeable Batteries Under Dynamic Operating Conditions: A Retrospective And Perspective View

    SciTech Connect

    Wang, Chong M.

    2015-02-14

    Since the advent of the transmission electron microscope (TEM), continuing efforts have been made to image material under native and reaction environments that typically involve liquids, gases, and external stimuli. With the advances of aberration-corrected TEM for improving the imaging resolution, steady progress has been made on developing methodologies that allow imaging under dynamic operating conditions, or in situ TEM imaging. The success of in situ TEM imaging is closely associated with advances in microfabrication techniques that enable manipulation of nanoscale objects around the objective lens of the TEM. This paper summarizes and highlights recent progress involving in situ TEM studies of energy storage materials, especially rechargeable batteries. The paper is organized to cover both the in situ TEM techniques and the scientific discoveries made possible by in situ TEM imaging.

  9. In situ and real-time monitoring of mechanochemical milling reactions using synchrotron X-ray diffraction.

    PubMed

    Halasz, Ivan; Kimber, Simon A J; Beldon, Patrick J; Belenguer, Ana M; Adams, Frank; Honkimäki, Veijo; Nightingale, Richard C; Dinnebier, Robert E; Friščić, Tomislav

    2013-09-01

    We describe the only currently available protocol for in situ, real-time monitoring of mechanochemical reactions and intermediates by X-ray powder diffraction. Although mechanochemical reactions (inducing transformations by mechanical forces such as grinding and milling) are normally performed in commercially available milling assemblies, such equipment does not permit direct reaction monitoring. We now describe the design and in-house modification of milling equipment that allows the reaction jars of the operating mill to be placed in the path of a high-energy (∼90 keV) synchrotron X-ray beam while the reaction is taking place. Resulting data are analyzed using conventional software, such as TOPAS. Reaction intermediates and products are identified using the Cambridge Structural Database or Inorganic Crystal Structure Database. Reactions are analyzed by fitting the time-resolved diffractograms using structureless Pawley refinement for crystalline phases that are not fully structurally characterized (such as porous frameworks with disordered guests), or the Rietveld method for solids with fully determined crystal structures (metal oxides, coordination polymers).

  10. In situ electrochemical-electron spin resonance investigations of multi-electron redox reaction for organic radical cathodes

    NASA Astrophysics Data System (ADS)

    Huang, Qian; Walter, Eric D.; Cosimbescu, Lelia; Choi, Daiwon; Lemmon, John P.

    2016-02-01

    The multi-electron redox reaction of an organic radical based composite cathode comprised of poly(2,2,6,6- tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA)-Ketjenblack is investigated using an in situ electrochemical-electron spin resonance (ESR) methodology. The experiments allow each electrochemical state to be associated with the chemical state (or environment) of the radical species upon the cell cycling. In situ ESR spectra of the composite cathode demonstrate a two-electron redox reaction of PTMA that is from an aminoxy anion (n-type, at 2.5-2.6 V vs. Li/Li+) via a radical (at 3.2-3.5 V vs. Li/Li+) to an oxoammonium cation (p-type, at 3.7-4.0 V vs. Li/Li+). In particular, an adjustable n-type doping process of PTMA is first observed during the discharging process. Moreover, two different local environments of radical species are found in the PTMA-Ketjenblack composite electrode that includes both concentrated and isolated radicals. These two types of radical species, showing similarities during the redox reaction process while behaving quite different in the non-faradic reaction of ion sorption/desorption on the electrode surface, govern the electrochemical behavior of PTMA based composite electrode.

  11. Alpha resonant scattering for astrophysical reaction studies

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.; Kahl, D.; Nakao, T.; Wakabayashi, Y.; Kubano, S.; Hashimoto, T.; Hayakawa, S.; Kawabata, T.; Iwasa, N.; Teranishi, T.; Kwon, Y. K.; Binh, D. N.; Khiem, L. H.; Duy, N. G.

    2014-05-01

    Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator), which is a low-energy RI beam separator at Center for Nuclear Study (CNS) of the University of Tokyo. One of the methods to study them is the α resonant scattering using the thick-target method in inverse kinematics. Among the recent studies at CRIB, the measurement of 7Be+α resonant scattering is discussed. Based on the result of the experiment, we evaluated the contributions of high-lying resonances for the 7Be(α,γ) reaction, and proposed a new cluster band in 11C.

  12. Alpha resonant scattering for astrophysical reaction studies

    SciTech Connect

    Yamaguchi, H.; Kahl, D.; Nakao, T.; Wakabayashi, Y.; Kubano, S.; Hashimoto, T.; Hayakawa, S.; Kawabata, T.; Iwasa, N.; Teranishi, T.; Kwon, Y. K.; Binh, D. N.; Khiem, L. H.; Duy, N. G.

    2014-05-02

    Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator), which is a low-energy RI beam separator at Center for Nuclear Study (CNS) of the University of Tokyo. One of the methods to study them is the α resonant scattering using the thick-target method in inverse kinematics. Among the recent studies at CRIB, the measurement of {sup 7}Be+α resonant scattering is discussed. Based on the result of the experiment, we evaluated the contributions of high-lying resonances for the {sup 7}Be(α,γ) reaction, and proposed a new cluster band in {sup 11}C.

  13. Electrochemical titrations and reaction time courses monitored in situ by magnetic circular dichroism spectroscopy.

    PubMed

    Bradley, Justin M; Butt, Julea N; Cheesman, Myles R

    2011-12-15

    Magnetic circular dichroism (MCD) spectra, at ultraviolet-visible or near-infrared wavelengths (185-2000 nm), contain the same transitions observed in conventional absorbance spectroscopy, but their bisignate nature and more stringent selection rules provide greatly enhanced resolution. Thus, they have proved to be invaluable in the study of many transition metal-containing proteins. For mainly technical reasons, MCD has been limited almost exclusively to the measurement of static samples. But the ability to employ the resolving power of MCD to follow changes at transition metal sites would be a potentially significant advance. We describe here the development of a cuvette holder that allows reagent injection and sample mixing within the 50-mm-diameter ambient temperature bore of an energized superconducting solenoid. This has allowed us, for the first time, to monitor time-resolved MCD resulting from in situ chemical manipulation of a metalloprotein sample. Furthermore, we report the parallel development of an electrochemical cell using a three-electrode configuration with physically separated working and counter electrodes, allowing true potentiometric titration to be performed within the bore of the MCD solenoid.

  14. Hyaluronic Acid Hydrogels Formed in Situ by Transglutaminase-Catalyzed Reaction.

    PubMed

    Ranga, Adrian; Lutolf, Matthias P; Hilborn, Jöns; Ossipov, Dmitri A

    2016-05-01

    Enzymatically cross-linked hydrogels can be formed in situ and permit highly versatile and selective tethering of bioactive molecules, thereby allowing for a wealth of applications in cell biology and tissue engineering. While a number of studies have reported the bioconjugation of extracellular matrix (ECM) proteins and peptides into such matrices, the site-specific incorporation of biologically highly relevant polysaccharides such as hyaluronic acid (HA) has thus far not been reported, limiting our ability to reconstruct this key feature of the in vivo ECM. Here we demonstrate a novel strategy for transglutaminase-mediated covalent linking of HA moieties to a synthetic poly(ethylene glycol) (PEG) macromer resulting in the formation of hybrid HA-PEG hydrogels. We characterize the ensuing matrix properties and demonstrate how these cytocompatible gels can serve to modulate the cellular phenotype of human mammary cancer epithelial cells as well as mouse myoblasts. The use of HA as a novel building block in the increasingly varied library of synthetic PEG-based artificial ECMs should have applications as a structural as well as a signaling component and offers significant potential as an injectable matrix for regenerative medicine. PMID:27014785

  15. Theoretical studies of chemical reaction dynamics

    SciTech Connect

    Schatz, G.C.

    1993-12-01

    This collaborative program with the Theoretical Chemistry Group at Argonne involves theoretical studies of gas phase chemical reactions and related energy transfer and photodissociation processes. Many of the reactions studied are of direct relevance to combustion; others are selected they provide important examples of special dynamical processes, or are of relevance to experimental measurements. Both classical trajectory and quantum reactive scattering methods are used for these studies, and the types of information determined range from thermal rate constants to state to state differential cross sections.

  16. Time-resolved in situ Studies of Apatite Formation in Aqueous Solutions

    SciTech Connect

    Borkiewicz, O.; Rakovan, J; Cahill, C

    2010-01-01

    Formation of hydroxylapatite through the precipitation and evolution of calcium phosphate precursor phases under varying conditions of temperature (25-90 C), pH (6.5-9.0), and calcium to phosphorus ratio (1.0, 1.33, 1.5, and 1.67) comparable to those found in many sediments and soils were studied. The products of low-temperature precipitation were analyzed by ex situ X-ray diffraction and SEM, as well as time-resolved in situ synchrotron X-ray diffraction. Rietveld refinement was used for quantitative evaluation of relative abundances during phase evolution. The results of ex situ investigations conducted at ambient temperature and near-neutral pH indicate formation of amorphous calcium phosphate, which over the course of experiments transforms to brushite and ultimately hydroxylapatite. The results of in situ X-ray diffraction experiments suggest a more complex pathway of phase development under the same conditions. Some of the initially formed amorphous calcium phosphate and/or crystalline brushite transformed to octacalcium phosphate. In the later stage of the reactions, octacalcium phosphate transforms quite rapidly to hydroxylapatite. This is accompanied or followed by the transformation of the remaining brushite to monetite. Hydroxylapatite and monetite coexist in the sample throughout the remainder of the experiments. In contrast to the near-neutral pH experiments, the results from ex situ and in situ diffraction investigations performed at higher pH yield similar results. The precipitate formed in the initial stages in both types of experiments was identified as amorphous calcium phosphate, which over the course of the reaction quite rapidly transformed to hydroxylapatite without any apparent intermediate phases. This is the first application of time-resolved in situ synchrotron X-ray diffraction to precipitation reactions in the Ca(OH){sub 2}-H{sub 3}PO{sub 4}-H{sub 2}O system. The results indicate that precursors are likely to occur during the natural or

  17. In situ probing of the active site geometry of ultrathin nanowires for the oxygen reduction reaction

    DOE PAGES

    Liu, Haiqing; Wong, Stanislaus S.; An, Wei; Li, Yuanyuan; Frenkel, Anatoly I.; Sasaki, Kotaro; Koenigsmann, Christopher; Su, Dong; Anderson, Rachel M.; Crooks, Richard M.; et al

    2015-09-24

    To create truly effective electrocatalysts for the cathodic reaction governing proton exchange membrane fuel cells (PEMFC), namely the oxygen reduction reaction (ORR), necessitates an accurate and detailed structural understanding of these electrocatalysts, especially at the nanoscale, and to precisely correlate that structure with demonstrable performance enhancement. To address this key issue, we have combined and interwoven theoretical calculations with experimental, spectroscopic observations in order to acquire useful structural insights into the active site geometry with implications for designing optimized nanoscale electrocatalysts with rationally predicted properties. Specifically, we have probed ultrathin (~2 nm) core–shell Pt~Pd9Au nanowires, which have been previously shownmore » to be excellent candidates for ORR in terms of both activity and long-term stability, from the complementary perspectives of both DFT calculations and X-ray absorption spectroscopy (XAS). The combination and correlation of data from both experimental and theoretical studies has revealed for the first time that the catalytically active structure of our ternary nanowires can actually be ascribed to a PtAu~Pd configuration, comprising a PtAu binary shell and a pure inner Pd core. Moreover, we have plausibly attributed the resulting structure to a specific synthesis step, namely the Cu underpotential deposition (UPD) followed by galvanic replacement with Pt. Thus, the fundamental insights gained into the performance of our ultrathin nanowires from our demonstrated approach will likely guide future directed efforts aimed at broadly improving upon the durability and stability of nanoscale electrocatalysts in general.« less

  18. In situ probing of the active site geometry of ultrathin nanowires for the oxygen reduction reaction

    SciTech Connect

    Liu, Haiqing; Wong, Stanislaus S.; An, Wei; Li, Yuanyuan; Frenkel, Anatoly I.; Sasaki, Kotaro; Koenigsmann, Christopher; Su, Dong; Anderson, Rachel M.; Crooks, Richard M.; Adzic, Radoslav R.; Liu, Ping

    2015-09-24

    To create truly effective electrocatalysts for the cathodic reaction governing proton exchange membrane fuel cells (PEMFC), namely the oxygen reduction reaction (ORR), necessitates an accurate and detailed structural understanding of these electrocatalysts, especially at the nanoscale, and to precisely correlate that structure with demonstrable performance enhancement. To address this key issue, we have combined and interwoven theoretical calculations with experimental, spectroscopic observations in order to acquire useful structural insights into the active site geometry with implications for designing optimized nanoscale electrocatalysts with rationally predicted properties. Specifically, we have probed ultrathin (~2 nm) core–shell Pt~Pd9Au nanowires, which have been previously shown to be excellent candidates for ORR in terms of both activity and long-term stability, from the complementary perspectives of both DFT calculations and X-ray absorption spectroscopy (XAS). The combination and correlation of data from both experimental and theoretical studies has revealed for the first time that the catalytically active structure of our ternary nanowires can actually be ascribed to a PtAu~Pd configuration, comprising a PtAu binary shell and a pure inner Pd core. Moreover, we have plausibly attributed the resulting structure to a specific synthesis step, namely the Cu underpotential deposition (UPD) followed by galvanic replacement with Pt. Thus, the fundamental insights gained into the performance of our ultrathin nanowires from our demonstrated approach will likely guide future directed efforts aimed at broadly improving upon the durability and stability of nanoscale electrocatalysts in general.

  19. Reactions of atomic hydrogen with formic acid and carbon monoxide in solid parahydrogen II: Deuterated reaction studies.

    PubMed

    Wonderly, William R; Anderson, David T

    2014-09-11

    It is difficult to determine whether the measured rate constant for reaction of atomic hydrogen with formic acid reported in Part 1 reflects the H atom quantum diffusion rate or the rate constant for the tunneling reaction step. In Part 2 of this series, we present kinetic studies of the postphotolysis H atom reactions with deuterated formic acid (DCOOD) to address this ambiguity. Short duration 193 nm in situ photolysis of DCOOD trapped in solid parahydrogen results in partial depletion of the DCOOD precursor and photoproduction of primarily CO, CO2, DOCO, HCO and mobile H atoms. At 1.9 K we observe post-irradiation growth in the concentrations of DOCO and HCO that can be explained by H atom tunneling reactions with DCOOD and CO, respectively. Conducting experiments with different deuterium isotopomers of formic acid (DCOOD, DCOOH, HCOOD and HCOOH) provides strong circumstantial evidence the reaction involves H atom abstraction from the alkyl group of formic acid. Further, the anomalous temperature dependence measured for the H + HCOOH reaction in Part 1 is also observed for the analogous reactions with deuterated formic acid. The rate constants extracted for H atom reactions with DCOOD and HCOOH are equivalent to within experimental uncertainty. This lack of a kinetic isotope effect in the measured rate constant is interpreted as evidence the reactions are diffusion limited; the measured rate constant reflects the H atom diffusion rate and not the tunneling reaction rate. Whether or not H atom reactions with chemical species in solid parahydrogen are diffusion limited is one of the outstanding questions in this field, and this work makes significant strides toward showing the reaction kinetics with formic acid are diffusion limited.

  20. In-Situ Cure Monitoring of the Immidization Reaction of PMR-15

    NASA Technical Reports Server (NTRS)

    Cossins, Sheryl; Kellar, Jon J.; Winter, Robb M.

    1997-01-01

    Glass fiber reinforced polymer composites are becoming widely used in industry. With this increase in production, an in-situ method of quality control for the curing of the polymer is desirable. This would allow for the production of high-quality parts having more uniform properties.' Recently, in-situ fiber optic monitoring of polymer curing has primarily focused on epoxy resins and has been performed by Raman or fluorescence methods. In addition, some infrared (IR) investigations have been performed using transmission or ATR cells. An alternate IR approach involves using optical fibers as a sensor by utilizing evanescent wave spectroscopy.

  1. Single-Tube Reaction Using Perfluorocarbons: A Prerequisite Step Leading to the Whole-Slide In Situ Technique on Histopathological Slides

    PubMed Central

    Chen, Yi-Chang; Teng, Tsung-Han; Tsai, Jane S.-C.; Huang, Hsien-Da; Chang, Yih-Leong

    2016-01-01

    Developing a robust, novel method for performing multiple reactions in a single tube is not only time- and cost-saving but also critical for future high-throughput whole-slide in situ techniques on diseased tissues. In this study, we introduce the use of perfluorocarbons and compound-coated magnetic particles to create pseudochambers in a single tube, allowing different reactions to be performed in different phases. Perfluorocarbons also serve as cell lysis buffer and polymerase chain reaction (PCR) buffer owing to their highly penetrating, repellent and emulsifiable properties. Using this method, nucleic acids can be isolated and purified from various sample types and sizes, followed by PCR, real-time PCR, or multiplex PCR in the same tube. No incubation or enzyme digesting time is needed and the risk of cross-contamination is reduced. Tests can be performed in microemulsions (water-in-oil droplets) containing sequence-specific captures and probes for further high-throughput detection. We present a simple, quick, and robust procedure as a prerequisite step to future high-throughput in situ techniques. PMID:27336363

  2. Single-Tube Reaction Using Perfluorocarbons: A Prerequisite Step Leading to the Whole-Slide In Situ Technique on Histopathological Slides.

    PubMed

    Chen, Yi-Chang; Teng, Tsung-Han; Tsai, Jane S-C; Huang, Hsien-Da; Chang, Yih-Leong; Liang, Cher-Wei

    2016-01-01

    Developing a robust, novel method for performing multiple reactions in a single tube is not only time- and cost-saving but also critical for future high-throughput whole-slide in situ techniques on diseased tissues. In this study, we introduce the use of perfluorocarbons and compound-coated magnetic particles to create pseudochambers in a single tube, allowing different reactions to be performed in different phases. Perfluorocarbons also serve as cell lysis buffer and polymerase chain reaction (PCR) buffer owing to their highly penetrating, repellent and emulsifiable properties. Using this method, nucleic acids can be isolated and purified from various sample types and sizes, followed by PCR, real-time PCR, or multiplex PCR in the same tube. No incubation or enzyme digesting time is needed and the risk of cross-contamination is reduced. Tests can be performed in microemulsions (water-in-oil droplets) containing sequence-specific captures and probes for further high-throughput detection. We present a simple, quick, and robust procedure as a prerequisite step to future high-throughput in situ techniques. PMID:27336363

  3. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth

    DOE PAGES

    Sutter, Eli A.; Sutter, Peter W.

    2014-11-19

    In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important as they provide direct insight into processes in liquids, such as solution growth of nanoparticles among others. In liquid cell TEM/STEM redox reaction experiments the hydrated electrons e⁻aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e⁻aq generated by the electron beam during in-situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the rate of Pdmore » deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e⁻aq]. In addition, by comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e⁻aq] but also the rate of reduction of a metal-ion complex to zero-valent metal atoms in solution.« less

  4. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth

    SciTech Connect

    Sutter, Eli A.; Sutter, Peter W.

    2014-11-19

    In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important as they provide direct insight into processes in liquids, such as solution growth of nanoparticles among others. In liquid cell TEM/STEM redox reaction experiments the hydrated electrons e⁻aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e⁻aq generated by the electron beam during in-situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the rate of Pd deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e⁻aq]. In addition, by comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e⁻aq] but also the rate of reduction of a metal-ion complex to zero-valent metal atoms in solution.

  5. The samarium Grignard reaction. In situ formation and reactions of primary and secondary alkylsamarium(III) reagents

    SciTech Connect

    Curran, D.P.; Totleben, M.J.

    1992-07-15

    This work shows that primary and secondary radicals are rapidly reduced in THF/HMPA to form primary- and secondary-alkylsamarium reagents. The primary- and secondary-radicals can be formed either by direct SmI{sup 2} reductions of primary- and secondary-halides or by a previous rapid radical cyclization. The samarium reagents have moderate stability in solution, and they react with a variety of typical electrophiles, including aldehydes and ketones. The work further shows that organosamarium intermediates can be involved in the traditional samarium Barbier reaction of aldehydes and ketones conducted in THF/HMPA. A new procedure called the {open_quotes}samarium Grignard{close_quotes} method is introduced, and it is suggested that this new procedure will have considerably more scope and generality than the samarium Barbier reaction. 37 refs., 4 tabs.

  6. GEOCHEMICAL AND MICROBIAL REACTIONS AFFECTING THE LONG-TERM PERFORMANCE OF IN SITU 'IRON BARRIERS'

    EPA Science Inventory

    The in situ application of granular iron (Fe0) has become popular for the destruction of halogenated organic compounds for the immobilization of specific metals in groundwater. However, a knowledge gap exists concerning the long-term performance of the Fe0-barriers. The corrosi...

  7. In situ reaction mechanism studies on the Ti(NMe{sub 2}){sub 2}(O{sup i}Pr){sub 2}-D{sub 2}O and Ti(O{sup i}Pr){sub 3}[MeC(N{sup i}Pr){sub 2}]-D{sub 2}O atomic layer deposition processes

    SciTech Connect

    Tomczak, Yoann Knapas, Kjell; Leskelä, Markku; Ritala, Mikko

    2014-01-15

    Reaction mechanisms in the Ti(NMe{sub 2}){sub 2}(O{sup i}Pr){sub 2}-D{sub 2}O and Ti(O{sup i}Pr){sub 3}[MeC(N{sup i}Pr){sub 2}] [also written Ti(O{sup i}Pr){sub 3}(N{sup i}Pr-Me-amd)]-D{sub 2}O atomic layer deposition processes were studied in situ with quartz crystal microbalance (QCM) and quadrupole mass spectrometry (QMS) at 275 °C. For the Ti(NMe{sub 2}){sub 2}(O{sup i}Pr){sub 2}-D{sub 2}O process, both QCM and QMS results indicated adsorption of the Ti(NMe{sub 2}){sub 2}(O{sup i}Pr){sub 2} molecule through an exchange of at least one of its –NMe{sub 2} ligands with surface hydroxyl groups. Regarding the Ti(O{sup i}Pr){sub 3}(N{sup i}Pr-Me-amd)-D{sub 2}O process, a mismatch between the QCM and QMS results revealed more complex reactions: the decomposition of the [MeC(N{sup i}Pr){sub 2}] [also written (N{sup i}Pr-Me-amd)] ligand is suggested by the shape of the QCM data and the intensity of the QMS signals belonging to fragments of the [MeC(N{sup i}Pr){sub 2}] [also written (N{sup i}Pr-Me-amd)] ligand. A simple calculation model associating the growth rate per cycle of a crystalline film and the surface area taken by the ligands remaining after saturation was also used to support the decomposition of the [MeC(N{sup i}Pr){sub 2}] [also written (N{sup i}Pr-Me-amd)] ligand. The observed high growth rate is incompatible with the whole [MeC(N{sup i}Pr){sub 2}] (also written [N{sup i}Pr-Me-amd)] ligand remaining on the surface.

  8. Underwater microscopy for in situ studies of benthic ecosystems.

    PubMed

    Mullen, Andrew D; Treibitz, Tali; Roberts, Paul L D; Kelly, Emily L A; Horwitz, Rael; Smith, Jennifer E; Jaffe, Jules S

    2016-01-01

    Microscopic-scale processes significantly influence benthic marine ecosystems such as coral reefs and kelp forests. Due to the ocean's complex and dynamic nature, it is most informative to study these processes in the natural environment yet it is inherently difficult. Here we present a system capable of non-invasively imaging seafloor environments and organisms in situ at nearly micrometre resolution. We overcome the challenges of underwater microscopy through the use of a long working distance microscopic objective, an electrically tunable lens and focused reflectance illumination. The diver-deployed instrument permits studies of both spatial and temporal processes such as the algal colonization and overgrowth of bleaching corals, as well as coral polyp behaviour and interspecific competition. By enabling in situ observations at previously unattainable scales, this instrument can provide important new insights into micro-scale processes in benthic ecosystems that shape observed patterns at much larger scales. PMID:27403715

  9. Underwater microscopy for in situ studies of benthic ecosystems

    PubMed Central

    Mullen, Andrew D.; Treibitz, Tali; Roberts, Paul L. D.; Kelly, Emily L. A.; Horwitz, Rael; Smith, Jennifer E.; Jaffe, Jules S.

    2016-01-01

    Microscopic-scale processes significantly influence benthic marine ecosystems such as coral reefs and kelp forests. Due to the ocean's complex and dynamic nature, it is most informative to study these processes in the natural environment yet it is inherently difficult. Here we present a system capable of non-invasively imaging seafloor environments and organisms in situ at nearly micrometre resolution. We overcome the challenges of underwater microscopy through the use of a long working distance microscopic objective, an electrically tunable lens and focused reflectance illumination. The diver-deployed instrument permits studies of both spatial and temporal processes such as the algal colonization and overgrowth of bleaching corals, as well as coral polyp behaviour and interspecific competition. By enabling in situ observations at previously unattainable scales, this instrument can provide important new insights into micro-scale processes in benthic ecosystems that shape observed patterns at much larger scales. PMID:27403715

  10. Underwater microscopy for in situ studies of benthic ecosystems

    NASA Astrophysics Data System (ADS)

    Mullen, Andrew D.; Treibitz, Tali; Roberts, Paul L. D.; Kelly, Emily L. A.; Horwitz, Rael; Smith, Jennifer E.; Jaffe, Jules S.

    2016-07-01

    Microscopic-scale processes significantly influence benthic marine ecosystems such as coral reefs and kelp forests. Due to the ocean's complex and dynamic nature, it is most informative to study these processes in the natural environment yet it is inherently difficult. Here we present a system capable of non-invasively imaging seafloor environments and organisms in situ at nearly micrometre resolution. We overcome the challenges of underwater microscopy through the use of a long working distance microscopic objective, an electrically tunable lens and focused reflectance illumination. The diver-deployed instrument permits studies of both spatial and temporal processes such as the algal colonization and overgrowth of bleaching corals, as well as coral polyp behaviour and interspecific competition. By enabling in situ observations at previously unattainable scales, this instrument can provide important new insights into micro-scale processes in benthic ecosystems that shape observed patterns at much larger scales.

  11. In-situ x-ray absorption study of copper films in ground watersolutions

    SciTech Connect

    Kvashnina, K.O.; Butorin, S.M.; Modin, A.; Soroka, I.; Marcellini, M.; Nordgren, J.; Guo, J.-H.; Werme, L.

    2007-10-29

    This study illustrates how the damage from copper corrosion can be reduced by modifying the chemistry of the copper surface environment. The surface modification of oxidized copper films induced by chemical reaction with Cl{sup -} and HCO{sub 3}{sup -} in aqueous solutions was monitored by in situ X-ray absorption spectroscopy. The results show that corrosion of copper can be significantly reduced by adding even a small amount of sodium bicarbonate. The studied copper films corroded quickly in chloride solutions, whereas the same solution containing 1.1 mM HCO{sub 3}{sup -} prevented or slowed down the corrosion processes.

  12. Molecular beam studies of reaction dynamics

    SciTech Connect

    Lee, Y.T.

    1993-12-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.

  13. Envisioning an enzymatic Diels-Alder reaction by in situ acid-base catalyzed diene generation.

    PubMed

    Linder, Mats; Johansson, Adam Johannes; Manta, Bianca; Olsson, Philip; Brinck, Tore

    2012-06-01

    We present and evaluate a new and potentially efficient route for enzyme-mediated Diels-Alder reactions, utilizing general acid-base catalysis. The viability of employing the active site of ketosteroid isomerase is demonstrated.

  14. A novel fluorescence detection method for in situ hybridization, based on the alkaline phosphatase-fast red reaction.

    PubMed

    Speel, E J; Schutte, B; Wiegant, J; Ramaekers, F C; Hopman, A H

    1992-09-01

    We have used naphthol-ASMX-phosphate and Fast Red TR in combination with alkaline phosphatase (APase) to produce fluorescent precipitated reaction products in a non-radioactive in situ hybridization (ISH) method. To obtain optimal and discrete localization of the strongly red fluorescent ISH signals, the enzyme precipitation procedure was optimized. The optimal reaction time and the concentrations of substrate and capture agent were determined. Furthermore, polyvinyl alcohol (PVA) was used to increase the viscosity of the reaction mixture and thus to reduce diffusion of the reaction product. Our results show that the APase-Fast Red detection method has at least the same sensitivity as currently observed in other immunofluorescent detection systems. A single copy DNA sequence of 15.8 KB could be localized with high efficiency in metaphase spreads and in interphase nuclei. Double labeling procedures, in which the FITC- and azo-dye fluorescence are combined, are also feasible. The red fluorescent ISH signals showed hardly any fading as compared with FITC fluorescence on exposure to either light from the mercury-arc lamp or laser light. Therefore, these red fluorescent signals with a virtually permanent character allow a better analysis and three-dimensional localization of such cytochemically detected genomic fractions by means of confocal scanning laser microscopy as compared with the use of FITC, TRITC, or Texas Red as label. PMID:1506667

  15. XAFS characterization of industrial catalysts: in situ study of phase transformation of nickel sulfide

    NASA Astrophysics Data System (ADS)

    Wang, J.; Jia, Z.; Wang, Q.; Zhao, S.; Xu, Z.; Yang, W.; Frenkel, A. I.

    2016-05-01

    The online sulfiding process for nickel-contained catalyst often ends up with a nickel sulfide mixture in refinery plant. To elucidate the local environment of nickel and its corresponding sulfur species, a model catalyst (nickel sulfide) and model thermal process were employed to explore the possibilities for characterization of real catalysts in industrial conditions. The present investigation shows effectiveness of in situ XANES and EXAFS measurements for studying the phase stability and phase composition in these systems, which could be used to simulate real sulfiding process in industrial reactions, such as hydrodesulfurizations of oil.

  16. Studies on reactions of ozone with alkenes.

    PubMed

    Protczak, Agnieszka; Trzeszczynski, Jerzy

    2002-01-01

    In the last years, a continuous increase of the O3 concentration has been recorded in the lower atmospheric layers. Photochemical reactions with NO(x), CO and organic compounds are the main sources of O3 in the troposphere. In this work, an attempt was made to determine the impact of alkenes on the O3 concentration in the troposphere. A study on the gas-phase reactions of 03 with 1-hexene, 1-heptene and 1-nonene was made. The reactions were carried out at room temperature under atmospheric pressure. Ozone was formed by the ultraviolet radiation emitted by a mercury lamp, in order to simulate the atmospheric conditions. The changes with time in the concentration of O3, 1-alkenes and formed aldehydes were investigated. Qualitative and quantitative analyses were done by means of the gas chromatography and colorimetry. The following products were identified: pentanal from 1-hexene; hexanal from 1-heptene; oktanal from 1-nonene. For each of the reactions, HCHO was also determined as a product. The reaction rate constants were calculated and obtained in units of 10(-17) cm(-3) molecule(-1) s(-1): 1.94-0.99 for 1-hexene, 5.54-4.51 for 1-heptene and 1.54-0.76 for 1-nonene. Based on the results obtained, an explanation of O3 concentration variations in the planetary boundary layer can be given. Last year a considerable increase of O3 concentration on the roads of Western Europe was recorded. This increase could have resulted from the decrease of alkene concentration in the air due to common use of the catalytic converters in cars. The unsaturated hydrocarbons rapidly oxidize on the catalyst. In Eastern Europe, where the amount of cars equipped with catalytic converters is smaller than in Western Europe, the alkene content in the exhaust fumes results in a decrease of the O3 concentration in the troposphere.

  17. Early age hydration and pozzolanic reaction in natural zeolite blended cements: Reaction kinetics and products by in situ synchrotron X-ray powder diffraction

    SciTech Connect

    Snellings, R.; Mertens, G.; Cizer, O.; Elsen, J.

    2010-12-15

    The in situ early-age hydration and pozzolanic reaction in cements blended with natural zeolites were investigated by time-resolved synchrotron X-ray powder diffraction with Rietveld quantitative phase analysis. Chabazite and Na-, K-, and Ca-exchanged clinoptilolite materials were mixed with Portland cement in a 3:7 weight ratio and hydrated in situ at 40 {sup o}C. The evolution of phase contents showed that the addition of natural zeolites accelerates the onset of C{sub 3}S hydration and precipitation of CH and AFt. Kinetic analysis of the consumption of C{sub 3}S indicates that the enveloping C-S-H layer is thinner and/or less dense in the presence of alkali-exchanged clinoptilolite pozzolans. The zeolite pozzolanic activity is interpreted to depend on the zeolite exchangeable cation content and on the crystallinity. The addition of natural zeolites alters the structural evolution of the C-S-H product. Longer silicate chains and a lower C/S ratio are deduced from the evolution of the C-S-H b-cell parameter.

  18. Small-volume, ultrahigh-vacuum-compatible high-pressure reaction cell for combined kinetic and in situ IR spectroscopic measurements on planar model catalysts

    NASA Astrophysics Data System (ADS)

    Zhao, Z.; Diemant, T.; Häring, T.; Rauscher, H.; Behm, R. J.

    2005-12-01

    We describe the design and performance of a high-pressure reaction cell for simultaneous kinetic and in situ infrared reflection (IR) spectroscopic measurements on model catalysts at elevated pressures, between 10-3 and 103mbars, which can be operated both as batch reactor and as flow reactor with defined gas flow. The cell is attached to an ultrahigh-vacuum (UHV) system, which is used for sample preparation and also contains facilities for sample characterization. Specific for this design is the combination of a small cell volume, which allows kinetic measurements with high sensitivity under batch or continuous flow conditions, the complete isolation of the cell from the UHV part during UHV measurements, continuous temperature control during both UHV and high-pressure operation, and rapid transfer between UHV and high-pressure stage. Gas dosing is performed by a designed gas-handling system, which allows operation as flow reactor with calibrated gas flows at adjustable pressures. To study the kinetics of reactions on the model catalysts, a quadrupole mass spectrometer is connected to the high-pressure cell. IR measurements are possible in situ by polarization-modulation infrared reflection-absorption spectroscopy, which also allows measurements at elevated pressures. The performance of the setup is demonstrated by test measurements on the kinetics for CO oxidation and the CO adsorption on a Au /TiO2/Ru(0001) model catalyst film at 1-50 mbar total pressure.

  19. Studies of in-situ calcium-based sorbents in advanced pressurized coal conversion systems

    SciTech Connect

    Katta, S.; Shires, P.J.; O'Donnell, J.J.

    1992-01-01

    The overall objective of the project is to obtain experimental data on the reactions of calcium-based sorbents in gasification systems and to evaluate or develop kinetic models applicable to the commercial design of such systems. Both air-blown coal gasification systems and second generation fluid bed combustion systems (partial gasification) will be investigated, as well as subsequent stabilization of the solid wastes (calcium sulfide/ash) produced. More specifically, the objectives are to: Develop data on kinetics of in-situ desulfurization reactions; study the effect of calcium on the kinetics of carbon conversion rate; study kinetics of oxidation of CaS to CaSO[sup 4]; Develop and identify viable techniques to stabilize CaS; and, carry out further development work on most promising method and determine its commercial economics.

  20. Studies of in-situ calcium-based sorbents in advanced pressurized coal conversion systems

    SciTech Connect

    Katta, S.; Shires, P.J.; O`Donnell, J.J.

    1992-11-01

    The overall objective of the project is to obtain experimental data on the reactions of calcium-based sorbents in gasification systems and to evaluate or develop kinetic models applicable to the commercial design of such systems. Both air-blown coal gasification systems and second generation fluid bed combustion systems (partial gasification) will be investigated, as well as subsequent stabilization of the solid wastes (calcium sulfide/ash) produced. More specifically, the objectives are to: Develop data on kinetics of in-situ desulfurization reactions; study the effect of calcium on the kinetics of carbon conversion rate; study kinetics of oxidation of CaS to CaSO{sup 4}; Develop and identify viable techniques to stabilize CaS; and, carry out further development work on most promising method and determine its commercial economics.

  1. Theoretical Study of OH Reaction with Toluene

    NASA Astrophysics Data System (ADS)

    Suh, I.; Zhang, D.; Zhang, R.; Molina, L. T.; Molina, M. J.

    2001-12-01

    Aromatic hydrocarbons constitute a major faction of total volatile organic compounds (VOCs) in the urban and regional atmosphere, and are emitted primarily from anthropogenic sources, i.e. emission from automobiles, fuel-based vehicles, and industry. In addition to their important role in gas-phase chemistry of urban air pollution, oxidation of aromatic hydrocarbons leads to formation of various non-volatile and semi-volatile organic compounds, which are responsible for the formation of secondary organic aerosols. Toluene is the most abundant aromatic hydrocarbon. Reactions of toluene in the atmosphere are mainly initiated by attack from hydroxyl radical OH. In this study, we report a theoretical study of the reaction of toluene with OH. Density functional theory (DFT) and ab initio calculations have been employed to investigate the OH-toluene adduct isomers. The geometries and energetics of the four isomers of the OH-toluene adduct radicals as well as their corresponding transition states are presented. The DFT and ab initio theories applicable to the OH-toluene reaction system are evaluated. We also present calculations of the rate constants and isomeric branching ratios of the formation of the OH-toluene adduct isomers.

  2. Adsorption and oxidation of formaldehyde on a polycrystalline Pt film electrode: An in situ IR spectroscopy search for adsorbed reaction intermediates

    PubMed Central

    Behm, R Jürgen

    2014-01-01

    Summary As part of a mechanistic study of the electrooxidation of C1 molecules we have systematically investigated the dissociative adsorption/oxidation of formaldehyde on a polycrystalline Pt film electrode under experimental conditions optimizing the chance for detecting weakly adsorbed reaction intermediates. Employing in situ IR spectroscopy in an attenuated total reflection configuration (ATR-FTIRS) with p-polarized IR radiation to further improve the signal-to-noise ratio, and using low reaction temperatures (3 °C) and deuterium substitution to slow down the reaction kinetics and to stabilize weakly adsorbed reaction intermediates, we could detect an IR absorption band at 1660 cm−1 characteristic for adsorbed formyl intermediates. This assignment is supported by an isotope shift in wave number. Effects of temperature, potential and deuterium substitution on the formation and disappearance of different adsorbed species (COad, adsorbed formate, adsorbed formyl), are monitored and quantified. Consequences on the mechanism for dissociative adsorption and oxidation of formaldehyde are discussed. PMID:24991512

  3. ALDOL- AND MANNICH-TYPE REACTIONS VIA IN SITU OLEFIN MIGRATION IN IONIC LIQUID

    EPA Science Inventory


    An aldol-type and a Mannich-type reaction via the cross-coupling of aldehydes and imines with allylic alcohols catalyzed by RuCl2(PPh3)3 was developed with ionic liquid as the solvent. The solvent/catalyst system could be reused for at least five times with no loss of reactiv...

  4. Combined in situ XRD and in situ XANES studies on the reduction behavior of a rhenium promoted cobalt catalyst.

    PubMed

    Kumar, Nitin; Payzant, E A; Jothimurugesan, K; Spivey, J J

    2011-08-28

    A 10% Co-4% Re/(2% Zr/SiO(2)) catalyst was prepared by co-impregnation using a silica support modified by 2% Zr. The catalyst was characterized by temperature programmed reduction (TPR), in situ XRD and in situ XANES analysis where it was simultaneously exposed to H(2) using a temperature programmed ramp. The results showed the two step reduction of large crystalline Co(3)O(4) with CoO as an intermediate. TPR results showed that the reduction of highly dispersed Co(3)O(4) was facilitated by reduced rhenium by a H(2)-spillover mechanism. In situ XRD results showed the presence of both, Co-hcp and Co-fcc phases in the reduced catalyst at 400 °C. However, the Co-hcp phase was more abundant, which is thought to be the more active phase as compared to the Co-fcc phase for CO hydrogenation. CO hydrogenation at 270 °C and 5 bar pressure produces no detectable change in the phases during the time of experiment. In situ XANES results showed a decrease in the metallic cobalt in the presence of H(2)/CO, which can be attributed due to oxidation of the catalyst by reaction under these conditions. PMID:21743918

  5. In situ x-ray photoelectron spectroscopy for electrochemical reactions in ordinary solvents

    SciTech Connect

    Masuda, Takuya; Yoshikawa, Hideki; Kobata, Masaaki; Kobayashi, Keisuke; Noguchi, Hidenori; Kawasaki, Tadahiro; Uosaki, Kohei

    2013-09-09

    In situ electrochemical X-ray photoelectron spectroscopy (XPS) apparatus, which allows XPS at solid/liquid interfaces under potential control, was constructed utilizing a microcell with an ultra-thin Si membrane, which separates vacuum and a solution. Hard X-rays from a synchrotron source penetrate into the Si membrane surface exposed to the solution. Electrons emitted at the Si/solution interface can pass through the membrane and be analyzed by an analyzer placed in vacuum. Its operation was demonstrated for potential-induced Si oxide growth in water. Effect of potential and time on the thickness of Si and Si oxide layers was quantitatively determined at sub-nanometer resolution.

  6. Calcite dissolution: an in situ study in the Panama Basin

    SciTech Connect

    Thunell, R.C.; Keir, R.S.; Honjo, S.

    1981-05-08

    The results of an in situ study of calcite dissolution in the Panama Basin indicate that the rate of dissolution in the water column increases suddenly below a water depth of about 2800 meters. This coincides with the depth at which the calcium carbonate content of surface sediments begins to decrease rapidly or the sedimentary lysocline. Since this level of increased dissolution both in the water column and on the sea floor does not appear to be related to the transition from supersaturation to undersaturation with respect to carbonate, there may be a kinetic origin for the lysocline in this region.

  7. In situ studies of grain growth in thin metal films

    SciTech Connect

    Nichols, C.S.; Mansuri, C.M. . Dept. of Materials Science and Engineering); Townsend, S.J. . Dept. of Physics); Smith, D.A. . T.J. Watson Research Center)

    1993-06-01

    Grain growth in thin films of aluminum has been studied using in situ transmission electron microscopy and a heating stage. Videotapes taken during grain growth were analyzed with the intent of searching for the predominant local rearrangement processes responsible for growth. Evolution of a soap froth can be decomposed into only two elementary local topology rearranging events. The authors have found numerous exceptions to prevailing theories that compare grain growth in thin films to the evolution of such froths. These observations suggest that a more complete picture of grain growth is necessary and that such a theory must include more complex local rearrangement processes.

  8. Fluorescent labelling of in situ hybridisation probes through the copper-catalysed azide-alkyne cycloaddition reaction.

    PubMed

    Hesse, Susann; Manetto, Antonio; Cassinelli, Valentina; Fuchs, Jörg; Ma, Lu; Raddaoui, Nada; Houben, Andreas

    2016-09-01

    In situ hybridisation is a powerful tool to investigate the genome and chromosome architecture. Nick translation (NT) is widely used to label DNA probes for fluorescence in situ hybridisation (FISH). However, NT is limited to the use of long double-stranded DNA and does not allow the labelling of single-stranded and short DNA, e.g. oligonucleotides. An alternative technique is the copper(I)-catalysed azide-alkyne cycloaddition (CuAAC), at which azide and alkyne functional groups react in a multistep process catalysed by copper(I) ions to give 1,4-distributed 1,2,3-triazoles at a high yield (also called 'click reaction'). We successfully applied this technique to label short single-stranded DNA probes as well as long PCR-derived double-stranded probes and tested them by FISH on plant chromosomes and nuclei. The hybridisation efficiency of differently labelled probes was compared to those obtained by conventional labelling techniques. We show that copper(I)-catalysed azide-alkyne cycloaddition-labelled probes are reliable tools to detect different types of repetitive sequences on chromosomes opening new promising routes for the detection of single copy gene. Moreover, a combination of FISH using such probes with other techniques, e.g. immunohistochemistry (IHC) and cell proliferation assays using 5-ethynyl-deoxyuridine, is herein shown to be easily feasible. PMID:27095480

  9. Quasi-in-situ single-grain photoelectron microspectroscopy of Co/PPy nanocomposites under oxygen reduction reaction.

    PubMed

    Bocchetta, Patrizia; Amati, Matteo; Bozzini, Benedetto; Catalano, Massimo; Gianoncelli, Alessandra; Gregoratti, Luca; Taurino, Antonietta; Kiskinova, Maya

    2014-11-26

    This paper reports an investigation into the aging of pyrolyzed cobalt/polypyrrole (Co/PPy) oxygen reduction reaction (ORR) electrocatalysts, based on quasi-in-situ photoelectron microspectroscopy. The catalyst precursor was prepared by potentiostatic reverse-pulse coelectrodeposition from an acetonitrile solution on graphite. Accelerated aging was obtained by quasi-in-situ voltammetric cycling in an acidic electrolyte. Using photoelectron imaging and microspectroscopy of single Co/PPy grains at a resolution of 100 nm, we tracked the ORR-induced changes in the morphology and chemical state of the pristine material, consisting of uniformly distributed ∼20 nm nanoparticles, initially consisting of a mixture of Co(II) and Co(III) oxidation states in almost equal amounts. The evolution of the Co 2p, O 1s, and N 1s spectra revealed that the main effects of aging are a gradual loss of the Co present at the surface and the reduction of Co(III) to Co(II), accompanied by the emergence and growth of a N 1s signal, corresponding to electrocatalytically active C-N sites. PMID:25369153

  10. Reaction rate kinetics for in situ combustion retorting of Michigan Antrim oil shale

    USGS Publications Warehouse

    Rostam-Abadi, M.; Mickelson, R.W.

    1984-01-01

    The intrinsic reaction rate kinetics for the pyrolysis of Michigan Antrim oil shale and the oxidation of the carbonaceous residue of this shale have been determined using a thermogravimetric analysis method. The kinetics of the pyrolysis reaction were evaluated from both isothermal and nonisothermal rate data. The reaction was found to be second-order with an activation energy of 252.2 kJ/mole, and with a frequency factor of 9.25 ?? 1015 sec-1. Pyrolysis kinetics were not affected by heating rates between 0.01 to 0.67??K/s. No evidence of any reactions among the oil shale mineral constituents was observed at temperatures below 1173??K. However, it was found that the presence of pyrite in oil shale reduces the primary devolatilization rate of kerogen and increases the amount of residual char in the spent shale. Carbonaceous residues which were prepared by heating the oil shale at a rate of 0.166??K/s to temperatures between 923??K and 1073??K, had the highest reactivities when oxidized at 0.166??K/s in a gas having 21 volume percent oxygen. Oxygen chemisorption was found to be the initial precursor to the oxidation process. The kinetics governing oxygen chemisorption is (Equation Presented) where X is the fractional coverage. The oxidation of the carbonaceous residue was found also to be second-order. The activation energy and the frequency factor determined from isothermal experiments were 147 kJ/mole and 9.18??107 sec-1 respectively, while the values of these parameters obtained from a nonisothermal experiment were 212 kJ/mole and 1.5??1013 sec-1. The variation in the rate constants is attributed to the fact that isothermal and nonisothermal analyses represent two different aspects of the combustion process.

  11. In situ generated highly active copper oxide catalysts for the oxygen evolution reaction at low overpotential in alkaline solutions.

    PubMed

    Liu, Xiang; Cui, Shengsheng; Qian, Manman; Sun, Zijun; Du, Pingwu

    2016-04-25

    Developing efficient water oxidation catalysts made up of earth-abundant elements has attracted much attention as a step toward for future clean energy production. Herein we report a simple one-step method to generate a low cost copper oxide catalyst film in situ from a copper(ii) ethylenediamine complex. The resulting catalyst has excellent activity toward the oxygen evolution reaction in alkaline solutions. A catalytic current density of 1.0 mA cm(-2) and 10 mA cm(-2) for the catalyst film requires the overpotentials of only ∼370 mV and ∼475 mV in 1.0 M KOH, respectively. This catalytic performance shows that the new catalyst is one of the best Cu-based heterogeneous OER catalysts to date. PMID:27020763

  12. In situ observation of ninhydrin and phenylhydrazine reaction in solution by FTIR

    NASA Astrophysics Data System (ADS)

    Turhan, Onur; Tezbaşaran, Elif

    2013-09-01

    The current work was performed for hydrazone formation reaction of ninhydrin with phenylhydrazine in chloroform by using “background defining method” in FTIR liquid cell. The method allowed following the consumption and formation of the reagent and product at the same time. Negative absorption bands are based on reagent consumption and positive absorbances are based on product formation. The method was applied for two different mol ratios (1:1, 1:3) of reagent. Both ratios resulted in same product (1,2,3-tris-phenylhydrazonoindan). The results showed that, phenylhydrazine react with all of the carbonyl groups in ninhydrin at both run.

  13. In situ temperature measurements of reaction spaces under microwave irradiation using photoluminescent probes.

    PubMed

    Ano, Taishi; Kishimoto, Fuminao; Sasaki, Ryo; Tsubaki, Shuntaro; Maitani, Masato M; Suzuki, Eiichi; Wada, Yuji

    2016-05-11

    We demonstrate two novel methods for the measurement of the temperatures of reaction spaces locally heated by microwaves, which have been applied here to two example systems, i.e., BaTiO3 particles covered with a SiO2 shell (BaTiO3-SiO2) and layered tungstate particles. Photoluminescent (PL) probes showing the temperature-sensitivity in their PL lifetimes are located in the nanospaces of the above systems. In the case of BaTiO3-SiO2 core-shell particles, rhodamine B is loaded into the mesopores of the SiO2 shell covering the BaTiO3 core, which generates the heat through the dielectric loss of microwaves. The inner nanospace temperature of the SiO2 shell is determined to be 28 °C higher than the bulk temperature under microwave irradiation at 24 W. On the other hand, Eu(3+) is immobilized in the interlayer space of layered tungstate as the PL probe, showing that the nanospace temperature of the interlayer is only 4 °C higher than the bulk temperature. This method for temperature-measurement is powerful for controlling microwave heating and elucidates the ambiguous mechanisms of microwave special effects often observed in chemical reactions, contributing greatly to the practical application of microwaves in chemistry and materials sciences. PMID:27136754

  14. In situ loading of well-dispersed silver nanoparticles on nanocrystalline magnesium oxide for real-time monitoring of catalytic reactions by surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Kaige; Li, Gongke; Hu, Yuling

    2015-10-01

    The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn2+ linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real-time monitoring of the catalytic reaction process of 4-nitrothiophenol to 4-aminothiophenol in an aqueous medium by observing the SERS signals of the reactant, intermediate and final products. The intrinsic reaction kinetics and reaction mechanism of this reaction were also investigated. This SERS-based synergy technique provides a novel approach for quantitative in situ monitoring of catalytic chemical reaction processes.The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn2+ linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real

  15. Experimental studies of gas-aerosol reactions

    NASA Astrophysics Data System (ADS)

    Gupta, Anand

    1991-05-01

    The aqueous phase oxidation of SO2 by H2O2 is believed to the principle mechanism for atmospheric sulfate formation in cloud droplets. However, no studies in noncloud aerosol systems have been reported. The objective is to quantify the importance of the noncloud liquid phase reactions of SO2 by H2O2 in the atmosphere. Growth rates of submicron droplets exposed to SO2 and H2O2 were measured using the tandem differential mobility analyzer (TDMA) technique (Rader and McMurry, 1986). The technique uses differential mobility analyzers (DMA's) to generate monodisperse particles and to measure particle size after the reaction. To facilitate submicron monodisperse droplet production with the DMA, a low-ion-concentration charter capable of generating singly charged particles up to 1.0 microns was developed and experimentally evaluated. The experiments were performed using dry and deliquesced (NH4)2SO4 particles with SO2 and H2O2 concentrations from 0-860 ppb and 0-150 ppb, respectively. No growth was observed for dry particles. For droplets greater than or equal to 0.3 microns, the fractional diameter growth was independent of particle size and for droplets less than or equal to 0.2 microns, it decreased as particle size decreased. The observed decrease is due to NH3 evaporation. As ammonia evaporates, droplet pH decreases causing the oxidation rate to decrease, leading to a lower growth rate. To predict the size-dependent growth rates, a theoretical model was developed using solution thermodynamics, gas/particle equilibrium, and chemical kinetics. The experimental and theoretical results are in reasonable agreement. For dry (NH4)2SO4 particles exposed to SO2, H2O2, NH3, and H2O vapor, surface reaction-controlled growth was observed. Particle growth was very sensitive to particle composition. No growth was observed for Polystyrene latex particles, whereas (NH4)2SO4 particles doped with catalysts (Fe(2+), Fe(3+), Mn(2+) and Cu(2+)) in a molar ratio of 1:500 grew slower than

  16. Monitoring Adverse Drug Reactions: A Preliminary Study

    PubMed Central

    Reynolds, J. L.

    1981-01-01

    The feasibility of family physicians functioning as monitors of adverse drug reactions (ADR) was examined over one month in ten practices. This was done as a preliminary trial, before attempting to use the 200 family physicians of the National Reporting System of the College of Family Physicians of Canada to monitor ADRs on a national basis. Both of these trials were designed to examine the feasibility of family physicians acting as prospective monitors of ADRs in newly marketed drugs and to identify a drug group suitable for monitoring. This study examined the detection of ADRs, prescribing and practice profiles. No firm conclusion could be reached as to the value of family doctors monitoring ADRs. This study supports the evidence that older patients receive more drugs and are at even greater risk of an ADR. Antibiotics, cardiovascular, anti-inflammatory or antidepressant drugs are suggested as those most suitable for prospective monitoring in a family practice setting. PMID:21289786

  17. Adsorption, Coadsorption, and Reaction of Acetaldehyde and NO2 on Na-Y,FAU: An In Situ FTIR Investigation

    SciTech Connect

    János, Szanyi; Ja Hun, Kwak; Ryan A.,Moline; Charles H. F.,Peden

    2004-11-01

    The adsorption of acetaldehyde and its coadsorption and reaction with NO2 were investigated on a Na-Y,FAU zeolite using in situ FTIR spectroscopy. Acetaldehyde adsorbs strongly over Na-Y and desorbs molecularly at around 400 K with very limited extent of condensation or polymerization. Reaction between CH3CHO and NO2 takes place in coadsorption experiments even at 300 K. In the initial step, acetaldehyde is oxidized to acetic acid accompanied by the formation of NO, which can be observed as N2O3 formed via a further reaction between NO and NO2. The key intermediates in the overall NOx reduction in this process are nitromethane and, possibly, nitrosomethane, which form in the next step. Their decomposition and further reaction with adsorbed NOx species lead to the formation of HCN, HNCO, N2O, CO2, and organic nitrile species identified by their characteristic IR vibrational signatures. At 473 K, the reaction between adsorbed CH3CHO and NO2 is very fast. The results seem to suggest a mechanism in which N-N bond formation takes place among ionic nitrogen containing species (NO+ and CN- or NCO-). Finally, no evidence has been found to suggest the participation of NHx+NOy- type species in the N-N bond formation under the experimental conditions of this study, although their role in the overall N2 formation process cannot be ruled out under realistic catalytic conditions.

  18. In situ measurements of atmospheric nitrous acid by chemical ionization mass spectrometry using chloride ion transfer reactions.

    PubMed

    Hirokawa, Jun; Kato, Takehiro; Mafuné, Fumitaka

    2009-10-15

    Recently, chemical ionization mass spectrometry (CIMS) has been widely applied to the in situ measurements of atmospheric trace species. In this article, we propose a new chemical ionization scheme using a chloride ion transfer reaction from SO(2)Cl(-) as the reagent ion and discuss the applicability of this technique to the detection of nitrous acid (HONO) in the atmosphere. From laboratory investigations, the detection sensitivity was found to depend on the flow rate of SO(2) introduced into the ion source region and the pressure inside the chemical ionization region, which suggests that the chemical ionization reaction is reversible. The detection sensitivity was well described in terms of the forward and backward rates. The present limit of detection is estimated to be 60 parts per trillion by volume (pptv) for an integration time of 1 min. Improvement of the CIMS instrument would enable the measurements of the daytime level of HONO, which might be less than 50 pptv. In addition, the possibility of the interference is discussed from thermodynamic considerations based on ab initio calculations, and the effects of the sampling artifacts are experimentally quantified.

  19. Interphase fluorescence in situ hybridization and reverse transcription polymerase chain reaction as a diagnostic aid for synovial sarcoma.

    PubMed Central

    Shipley, J.; Crew, J.; Birdsall, S.; Gill, S.; Clark, J.; Fisher, C.; Kelsey, A.; Nojima, T.; Sonobe, H.; Cooper, C.; Gusterson, B.

    1996-01-01

    Identification of the t(X;18)(p11.2;q11.2) that is associated with a high proportion of synovial sarcoma can be a useful diagnostic aid. The translocation results in fusion of the SYT gene on chromosome 18 to either the SSX1 or the SSX2 gene, two homologous genes within Xp11.2. Two-color interphase fluorescence in situ hybridization and reverse transcription polymerase chain reaction were assessed as approaches to identify the rearrangement in well characterized cases. The presence of the translocation, and the specific chromosome X gene disrupted, were inferred from the configuration of signals from chromosome-specific centromere probes, paints, and markers flanking each gene in preparations of interphase nuclei. Rearrangement was found in two cell lines and eight of nine tumor samples, including analysis of five touch imprints. This was consistent with cytogenetic data in four cases and reverse transcription polymerase chain reaction analysis using primers known to amplify both SYT-SSX1 and SYT-SSX2 transcripts. The transcripts were distinguished by restriction with LspI and SmaI. Contrary to previous suggestions, there was no obvious correlation between histological subtype and involvement of the SSX1 or SSX2 gene. These approaches could also be applied to the identification of tumor-free margins and metastatic disease. Images Figure 1 Figure 3 PMID:8579118

  20. In situ measurements of atmospheric nitrous acid by chemical ionization mass spectrometry using chloride ion transfer reactions.

    PubMed

    Hirokawa, Jun; Kato, Takehiro; Mafuné, Fumitaka

    2009-10-15

    Recently, chemical ionization mass spectrometry (CIMS) has been widely applied to the in situ measurements of atmospheric trace species. In this article, we propose a new chemical ionization scheme using a chloride ion transfer reaction from SO(2)Cl(-) as the reagent ion and discuss the applicability of this technique to the detection of nitrous acid (HONO) in the atmosphere. From laboratory investigations, the detection sensitivity was found to depend on the flow rate of SO(2) introduced into the ion source region and the pressure inside the chemical ionization region, which suggests that the chemical ionization reaction is reversible. The detection sensitivity was well described in terms of the forward and backward rates. The present limit of detection is estimated to be 60 parts per trillion by volume (pptv) for an integration time of 1 min. Improvement of the CIMS instrument would enable the measurements of the daytime level of HONO, which might be less than 50 pptv. In addition, the possibility of the interference is discussed from thermodynamic considerations based on ab initio calculations, and the effects of the sampling artifacts are experimentally quantified. PMID:19746928

  1. Effects of sulfation level on the desulfation behavior of pre-sulfated Pt BaO/Al2O3 lean NOx trap catalysts: a combined H2 Temperature-Programmed Reaction, in-situ sulfur K-edge X-ray Absorption Near-Edge Spectroscopy, X-ray Photoelectron Spectroscopy, and Time-Resolved X-ray Diffraction Study

    SciTech Connect

    Kim, Do Heui; Szanyi, Janos; Kwak, Ja Hun; Wang, Xianqin; Hanson, Jonathan C.; Engelhard, Mark H.; Peden, Charles HF

    2009-04-03

    Desulfation by hydrogen of pre-sulfated Pt(2wt%) BaO(20wt%)/Al2O3 with various sulfur loading (S/Ba = 0.12, 0.31 and 0.62) were investigated by combining H2 temperature programmed reaction (TPRX), x-ray photoelectron spectroscopy (XPS), in-situ sulfur K-edge x-ray absorption near-edge spectroscopy (XANES), and synchrotron time-resolved x-ray diffraction (TR-XRD) techniques. We find that the amount of H2S desorbed during the desulfation in the H2 TPRX experiments is not proportional to the amount of initial sulfur loading. The results of both in-situ sulfur K-edge XANES and TR-XRD show that at low sulfur loadings, sulfates were transformed to a BaS phase and remained in the catalyst, rather than being removed as H2S. On the other hand, when the deposited sulfur level exceeded a certain threshold (at least S/Ba = 0.31) sulfates were reduced to form H2S, and the relative amount of the residual sulfide species in the catalyst was much less than at low sulfur loading. Unlike samples with high sulfur loading (e.g., S/Ba = 0.62), H2O did not promote the desulfation for the sample with S/Ba of 0.12, implying that the formed BaS species originating from the reduction of sulfates at low sulfur loading are more stable to hydrolysis. The results of this combined spectroscopy investigation provide clear evidence to show that sulfates at low sulfur loadings are less likely to be removed as H2S and have a greater tendency to be transformed to BaS on the material, leading to the conclusion that desulfation behavior of Pt BaO/Al2O3 lean NOx trap catalysts is markedly dependent on the sulfation levels.

  2. In situ AFM imaging of Li-O2 electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte.

    PubMed

    Wen, Rui; Hong, Misun; Byon, Hye Ryung

    2013-07-24

    Understanding the lithium-oxygen (Li-O2) electrochemical reaction is of importance to improve reaction kinetics, efficiency, and mitigate parasitic reactions, which links to the strategy of enhanced Li-O2 battery performance. Many in situ and ex situ analyses have been reported to address chemical species of reduction intermediate and products, whereas details of the dynamic Li-O2 reaction have not as yet been fully unraveled. For this purpose, visual imaging can provide straightforward evidence, formation and decomposition of products, during the Li-O2 electrochemical reaction. Here, we present real-time and in situ views of the Li-O2 reaction using electrochemical atomic force microscopy (EC-AFM). Details of the reaction process can be observed at nano-/micrometer scale on a highly oriented pyrolytic graphite (HOPG) electrode with lithium ion-containing tetraglyme, representative of the carbon cathode and ether-based electrolyte extensively employed in the Li-O2 battery. Upon oxygen reduction reaction (ORR), rapid growth of nanoplates, having axial diameter of hundreds of nanometers, length of micrometers, and ~5 nm thickness, at a step edge of HOPG can be observed, which eventually forms a lithium peroxide (Li2O2) film. This Li2O2 film is decomposed during the oxygen evolution reaction (OER), for which the decomposition potential is related to a thickness. There is no evidence of byproduct analyzed by X-ray photoelectron spectroscopy (XPS) after first reduction and oxidation reaction. However, further cycles provide unintended products such as lithium carbonate (Li2CO3), lithium acetate, and fluorine-related species with irregular morphology due to the degradation of HOPG electrode, tetraglyme, and lithium salt. These observations provide the first visualization of Li-O2 reaction process and morphological information of Li2O2, which can allow one to build strategies to prepare the optimum conditions for the Li-O2 battery.

  3. In situ AFM imaging of Li-O2 electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte.

    PubMed

    Wen, Rui; Hong, Misun; Byon, Hye Ryung

    2013-07-24

    Understanding the lithium-oxygen (Li-O2) electrochemical reaction is of importance to improve reaction kinetics, efficiency, and mitigate parasitic reactions, which links to the strategy of enhanced Li-O2 battery performance. Many in situ and ex situ analyses have been reported to address chemical species of reduction intermediate and products, whereas details of the dynamic Li-O2 reaction have not as yet been fully unraveled. For this purpose, visual imaging can provide straightforward evidence, formation and decomposition of products, during the Li-O2 electrochemical reaction. Here, we present real-time and in situ views of the Li-O2 reaction using electrochemical atomic force microscopy (EC-AFM). Details of the reaction process can be observed at nano-/micrometer scale on a highly oriented pyrolytic graphite (HOPG) electrode with lithium ion-containing tetraglyme, representative of the carbon cathode and ether-based electrolyte extensively employed in the Li-O2 battery. Upon oxygen reduction reaction (ORR), rapid growth of nanoplates, having axial diameter of hundreds of nanometers, length of micrometers, and ~5 nm thickness, at a step edge of HOPG can be observed, which eventually forms a lithium peroxide (Li2O2) film. This Li2O2 film is decomposed during the oxygen evolution reaction (OER), for which the decomposition potential is related to a thickness. There is no evidence of byproduct analyzed by X-ray photoelectron spectroscopy (XPS) after first reduction and oxidation reaction. However, further cycles provide unintended products such as lithium carbonate (Li2CO3), lithium acetate, and fluorine-related species with irregular morphology due to the degradation of HOPG electrode, tetraglyme, and lithium salt. These observations provide the first visualization of Li-O2 reaction process and morphological information of Li2O2, which can allow one to build strategies to prepare the optimum conditions for the Li-O2 battery. PMID:23808397

  4. Identification of the origin of marker chromosomes by two-color fluorescence in situ hybridization and polymerase chain reaction in azoospermic patients.

    PubMed

    Wei, C L; Cheng, J L; Yang, W C; Li, L Y; Cheng, H C; Fu, J J

    2015-11-19

    Y chromosomal microdeletions at the azoospermia factor locus and chromosome abnormalities have been implicated as the major causes of idiopathic male infertility. A marker chromosome is a structurally abnormal chromosome in which no part can be identified by cytogenetics. In this study, to identify the origin of the marker chromosomes and to perform a genetic diagnosis of patients with azoospermia, two-color fluorescence in situ hybridization (FISH) and polymerase chain reaction (PCR) techniques were carried out. The marker chromosomes for the two patients with azoospermia originated in the Y chromosome; it was ascertained that the karyotype of both patients was 46,X, ish del(Y)(q11)(DYZ3+, DXZ1-). The combination of two-color FISH and PCR techniques is an important method for the identification of the origin of marker chromosomes. Thus, genetic counseling and a clear genetic diagnosis of patients with azoospermia before intracytoplasmic sperm injection or other clinical managements are important.

  5. Comparative Reactivity Study of Forsterite and Antigorite in Wet Supercritical CO2 by In Situ Infrared Spectroscopy

    SciTech Connect

    Thompson, Christopher J.; Loring, John S.; Rosso, Kevin M.; Wang, Zheming

    2013-10-01

    The carbonation reactions of forsterite (Mg2SiO4) and antigorite [Mg3Si2O5(OH)4], representatives of olivine and serpentine minerals, in dry and wet supercritical carbon dioxide (scCO2) at conditions relevant to geologic carbon sequestration (35 °C and 100 bar) were studied by in-situ Fourier transform infrared (FT-IR) spectroscopy. Our results confirm that water plays a critical role in the reactions between metal silicate minerals and scCO2. For neat scCO2, no reaction was observed in 24 hr for either mineral. When water was added to the scCO2, a thin water film formed on the minerals’ surfaces, and the reaction rates and extents increased as the water saturation level was raised from 54% to 116% (excess water). For the first time, the presence of bicarbonate, a key reaction intermediate for metal silicate reactions with scCO2, was observed in a heterogeneous system where mineral solids, an adsorbed water film, and bulk scCO2 co-exist. In excess-water experiments, approximately 4% of forsterite and less than 2% of antigorite transformed into hydrated Mg-carbonates. A precipitate similar to nesquehonite (MgCO3•3H2O) was observed for forsterite within 6 hr of reaction time, but no such precipitate was formed from antigorite until after water was removed from the scCO2 following a 24-hr reaction period. The reduced reactivity and carbonate-precipitation behavior of antigorite was attributed to slower, incongruent dissolution of the mineral and lower concentrations of Mg2+ and HCO3- in the water film. The in situ measurements employed in this work make it possible to quantify metal carbonate precipitates and key reaction intermediates such as bicarbonate for the investigation of carbonation reaction mechanisms relevant to geologic carbon sequestration.

  6. Remote and in situ sensing products in chemical reaction using a flexible terahertz pipe waveguide.

    PubMed

    You, Borwen; Lu, Ja-Yu

    2016-08-01

    The feasibility of remote chemical detection is experimentally demonstrated by using a Teflon pipe as a scanning arm in a continuous-terahertz wave sensing and imaging system. Different tablets with distinct mixed ratios of aluminum and polyethylene powders are well distinguished by measuring the power reflectivities of 0.4 THz wave associated with their distinct terahertz refractive indices. Given its refractive index sensitivity and fast response, the reflective terahertz sensing system can be used to real-time trace and quantitatively analyze the ammonium-chloride aerosols produced by the chemical reaction between hydrochloric acid and ammonia vapors. With a tightly focusing terahertz beam spot, the spatial and concentration distributions of the generated chemical product are successfully mapped out by the 1D scan of the flexible pipe probe. In consideration of the responsitivity, power stability, and focused spot size of the system, its detection limit for the ammonium-chloride aerosol is estimated to be approximately 165 nmol/mm2. The reliable and compact terahertz pipe scan system is potentially suitable for practical applications, such as biomedical or industrial fiber endoscopy. PMID:27505768

  7. Remote and in situ sensing products in chemical reaction using a flexible terahertz pipe waveguide.

    PubMed

    You, Borwen; Lu, Ja-Yu

    2016-08-01

    The feasibility of remote chemical detection is experimentally demonstrated by using a Teflon pipe as a scanning arm in a continuous-terahertz wave sensing and imaging system. Different tablets with distinct mixed ratios of aluminum and polyethylene powders are well distinguished by measuring the power reflectivities of 0.4 THz wave associated with their distinct terahertz refractive indices. Given its refractive index sensitivity and fast response, the reflective terahertz sensing system can be used to real-time trace and quantitatively analyze the ammonium-chloride aerosols produced by the chemical reaction between hydrochloric acid and ammonia vapors. With a tightly focusing terahertz beam spot, the spatial and concentration distributions of the generated chemical product are successfully mapped out by the 1D scan of the flexible pipe probe. In consideration of the responsitivity, power stability, and focused spot size of the system, its detection limit for the ammonium-chloride aerosol is estimated to be approximately 165 nmol/mm2. The reliable and compact terahertz pipe scan system is potentially suitable for practical applications, such as biomedical or industrial fiber endoscopy.

  8. Electrophilic Reaction of 2,2,2-Trifluorodiazoethane with the in Situ Generated N-Heterocyclic Carbenes: Access to N-Aminoguanidines.

    PubMed

    Guo, Ran; Zheng, Yan; Ma, Jun-An

    2016-09-01

    A facile and efficient electrophilic reaction of 2,2,2-trifluorodiazoethane (CF3CHN2) with the in situ generated N-heterocyclic carbenes is reported. Under basic conditions, a series of trifluoromethylated N-aminoguanidines were obtained in good to high yields. Furthermore, this protocol was applied in the synthesis of the agrochemical Imidacloprid analogue. PMID:27540867

  9. Photocurrent enhancement for Ti-doped Fe₂O₃ thin film photoanodes by an in situ solid-state reaction method.

    PubMed

    Miao, Chunhui; Shi, Tongfei; Xu, Guoping; Ji, Shulin; Ye, Changhui

    2013-02-01

    In this work, a higher concentration of Ti ions are incorporated into hydrothermally grown Ti-doped (2.2% by atomic ratio) micro-nanostructured hematite films by an in situ solid-state reaction method. The doping concentration is improved from 2.2% to 19.7% after the in situ solid-state reaction. X-ray absorption analysis indicates the substitution of Fe ions by Ti ions, without the generation of Fe²⁺ defects. Photoelectrochemical impedance spectroscopy reveals the dramatic improvement of the electrical conductivity of the hematite film after the in situ solid-state reaction. As a consequence, the photocurrent density increases 8-fold (from 0.15 mA/cm² to 1.2 mA/cm²), and it further increases up to ∼1.5 mA/cm² with the adsorption of Co ions. Our findings demonstrate that the in situ solid-state reaction is an effective method to increase the doping level of Ti ions in hematite films with the retention of the micro-nanostructure of the films and enhance the photocurrent.

  10. Detection of Newcastle disease virus RNA by reverse transcription polymerase chain reaction using formalin-fixed, paraffin-embedded tissue and comparison with immunohistochemistry and in situ hybridization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The usefulness of reverse transcription polymerase chain reaction (RT-PCR) from formalin-fixed, paraffin-embedded (FFPE) tissues was examined and compared to the immunohistochemistry (IHC) and in situ hybridization (ISH) assays for detection of Newcastle disease virus (NDV). Spleen and lung tissues...

  11. A theoretical guide for fabricating a conductive molecular wire on a silicon surface via an in situ surface polymerization reaction

    NASA Astrophysics Data System (ADS)

    Yao, Xiaojing; Wang, Jinlan; Yuan, Shijun; Zhang, Xiuyun; Wu, Gang; Wang, Xiaobai; Yang, Shuo-Wang

    2015-09-01

    It has been a long-standing goal to make conductive molecular wires or linear polymer chains on traditional semiconductors or insulator substrates to satisfy the ongoing miniaturization in electronic devices. Here, we have proposed a surface in situ polymerization reaction for a pre-absorbed molecule, 4-hydrazinyl-3-(pyridin-4-ylmethyl)-benzaldehyde (HPyMB), to produce a conductive molecular wire on a silicon surface. Our first-principles calculations show that HPyMB molecules can absorb alternatively on the exposed Si atoms created via ultrahigh vacuum scanning tunneling microscopy on a hydrogen passivated H-Si(001)2 × 1 surface along the [110] direction. The adsorption is exothermic and its generated energy is sufficient for the following intermolecular dehydration polymerization reaction to overcome the activation energy barriers and thereafter form a molecular wire on the surface. This polymerized molecular wire is mechanically stable since it is chemically bonded onto the surface. After polymerization, the system becomes conductive due to the charge transfer from the molecule-surface bonds to their pyridine rings. More importantly, by removing 1.1 electrons from the system, the surface polymer chain is the sole conductive channel. Furthermore, its conducting nature remains robust even under a large external electric field. Our findings open a new window for the fabrication of conductive molecular wires or polymer chains on semiconductor surfaces, and provide insights into the mechanism behind the molecular wire conductivity.It has been a long-standing goal to make conductive molecular wires or linear polymer chains on traditional semiconductors or insulator substrates to satisfy the ongoing miniaturization in electronic devices. Here, we have proposed a surface in situ polymerization reaction for a pre-absorbed molecule, 4-hydrazinyl-3-(pyridin-4-ylmethyl)-benzaldehyde (HPyMB), to produce a conductive molecular wire on a silicon surface. Our first

  12. Active phase of a Pd-Cu/ZSM-5 catalyst for benzene hydroxylation: In-situ XAFS studies

    NASA Astrophysics Data System (ADS)

    Cho, Kye-Sung; Lee, Yong-Kul

    2012-07-01

    The gas-phase hydroxylation of benzene by using a mixture of oxygen and hydrogen has been carried out over Cu/ZSM-5 catalysts modified with palladium. In-situ X-ray absorption studies employed in the course of H2-tempereature programmed reduction (H2-TPR) followed by benzene hydroxylation confirmed that the oxidic phase of Cu2+ was transformed to Cu+ during the reaction. The addition of Pd to Cu/ZSM-5 noticeably improved the reducibility of the oxidic Cu phase, which resulted in an increase in the activity of the reaction.

  13. Chromogenic in situ hybridization: a multicenter study comparing silver in situ hybridization with FISH.

    PubMed

    Bartlett, J M S; Campbell, Fiona M; Ibrahim, Merdol; Wencyk, Peter; Ellis, Ian; Kay, Elaine; Connolly, Yvonne; O'Grady, Anthony; Di Palma, Silvana; Starczynski, Jane; Morgan, John M; Jasani, Bharat; Miller, Keith

    2009-10-01

    Our purposes were to perform a robust assessment of a new HER2 chromogenic in situ hybridization test and report on concordance of silver in situ hybridization (SISH) data with fluorescence in situ hybridization (FISH) data and on intraobserver and interlaboratory scoring consistency. HER2 results were scored from 45 breast cancers in 7 laboratories using the Ventana (Tucson, AZ) INFORM HER-2 SISH assay and in 1 central laboratory using a standard FISH assay. Overall, 94.8% of cases were successfully analyzed by SISH across the 6 participating laboratories that reported data. Concordance for diagnosis of HER2 amplification by SISH compared with FISH was high (96.0% overall). Intraobserver variability (8.0%) and intersite variability (12.66%) of absolute HER2/chromosome 17 ratios appear to be tightly controlled across all 6 participating laboratories. The Ventana INFORM HER-2 SISH assay is robust and reproducible, shows good concordance with a standard FISH assay, and complies with requirements in national guidelines for performance of diagnostic tests.

  14. In situ loading of well-dispersed silver nanoparticles on nanocrystalline magnesium oxide for real-time monitoring of catalytic reactions by surface enhanced Raman spectroscopy.

    PubMed

    Zhang, Kaige; Li, Gongke; Hu, Yuling

    2015-10-28

    The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn(2+) linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real-time monitoring of the catalytic reaction process of 4-nitrothiophenol to 4-aminothiophenol in an aqueous medium by observing the SERS signals of the reactant, intermediate and final products. The intrinsic reaction kinetics and reaction mechanism of this reaction were also investigated. This SERS-based synergy technique provides a novel approach for quantitative in situ monitoring of catalytic chemical reaction processes.

  15. In Situ Materials Study in Hot Hydrothermal Vent Fluid

    NASA Astrophysics Data System (ADS)

    Holland, P. M.; Schindele, W. J.; Holland, C. E.; Lilley, M. D.; Olson, E. J.

    2004-12-01

    We are developing methods and technology for in situ sampling and analysis of volatiles from hot hydrothermal vent fluids inside the mixing boundary. These fluids can reach temperatures of up to 400° C and are known to be corrosive to most materials. While titanium has been the material of choice for contact with these fluids, we wanted to assess whether other materials, such as Hastelloy or nickel might be suitable for in situ sampling from hydrothermal vents. For the present study, small (1/16" o.d.) tubes of chemically pure titanium, Hastelloy C, and Nickel 200 were prepared, using 316 stainless steel as a control. These were placed in an assembly with other test items, and inserted into the hydrothermal vent Sully in the Main Endeavor Field on the Juan de Fuca Plate in June 2003 by the Jason II ROV operated from the R/V Thompson. The assembly was retrieved 46 days later after exposure to approximately 360° C hydrothermal vent fluid at a depth of 2200 m. Inspection showed the stainless steel to be completely eroded away and nickel to be extensively corroded, however both the Hastelloy and titanium tubes were in excellent condition with the 0.030" i.d. passages in the tubes remaining open. Other test items included a miniature titanium filtered inlet fitting containing an 80 mesh titanium screen made of 0.004" (0.1 mm) chemically pure titanium wire, an Inconel washer and a sapphire ball. Apart from some discoloration, there appeared to be no significant degradation in these materials apart from signs of etching on the sapphire.

  16. Versatile method for AFM-tip functionalization with biomolecules: fishing a ligand by means of an in situ click reaction.

    PubMed

    Kumar, Rakesh; Ramakrishna, Shivaprakash N; Naik, Vikrant V; Chu, Zonglin; Drew, Michael E; Spencer, Nicholas D; Yamakoshi, Yoko

    2015-04-21

    A facile and universal method for the functionalization of an AFM tip has been developed for chemical force spectroscopy (CFS) studies of intermolecular interactions of biomolecules. A click reaction between tripod-acetylene and an azide-linker-ligand molecule was successfully carried out on the AFM tip surface and used for the CFS study of ligand-receptor interactions.

  17. In-situ early-age hydration study of sulfobelite cements by synchrotron powder diffraction

    SciTech Connect

    Álvarez-Pinazo, G.; Cuesta, A.; García-Maté, M.; Santacruz, I.; Losilla, E.R.; Fauth, F.; Aranda, M.A.G.; De la Torre, A.G.

    2014-02-15

    Eco-friendly belite calcium sulfoaluminate (BCSA) cement hydration behavior is not yet well understood. Here, we report an in-situ synchrotron X-ray powder diffraction study for the first hours of hydration of BCSA cements. Rietveld quantitative phase analysis has been used to establish the degree of reaction (α). The hydration of a mixture of ye'elimite and gypsum revealed that ettringite formation (α ∼ 70% at 50 h) is limited by ye'elimite dissolution. Two laboratory-prepared BCSA cements were also studied: non-active-BCSA and active-BCSA cements, with β- and α′{sub H}-belite as main phases, respectively. Ye'elimite, in the non-active-BCSA system, dissolves at higher pace (α ∼ 25% at 1 h) than in the active-BCSA one (α ∼ 10% at 1 h), with differences in the crystallization of ettringite (α ∼ 30% and α ∼ 5%, respectively). This behavior has strongly affected subsequent belite and ferrite reactivities, yielding stratlingite and other layered phases in non-active-BCSA. The dissolution and crystallization processes are reported and discussed in detail. -- Highlights: •Belite calcium sulfoaluminate cements early hydration mechanism has been determined. •Belite hydration strongly depends on availability of aluminum hydroxide. •Orthorhombic ye’elimite dissolved at a higher pace than cubic one. •Ye’elimite larger reaction degree yields stratlingite formation by belite reaction. •Rietveld method quantified gypsum, anhydrite and bassanite dissolution rates.

  18. Oxidation Induced Doping of Nanoparticles Revealed by in Situ X-ray Absorption Studies.

    PubMed

    Kwon, Soon Gu; Chattopadhyay, Soma; Koo, Bonil; Dos Santos Claro, Paula Cecilia; Shibata, Tomohiro; Requejo, Félix G; Giovanetti, Lisandro J; Liu, Yuzi; Johnson, Christopher; Prakapenka, Vitali; Lee, Byeongdu; Shevchenko, Elena V

    2016-06-01

    Doping is a well-known approach to modulate the electronic and optical properties of nanoparticles (NPs). However, doping at nanoscale is still very challenging, and the reasons for that are not well understood. We studied the formation and doping process of iron and iron oxide NPs in real time by in situ synchrotron X-ray absorption spectroscopy. Our study revealed that the mass flow of the iron triggered by oxidation is responsible for the internalization of the dopant (molybdenum) adsorbed at the surface of the host iron NPs. The oxidation induced doping allows controlling the doping levels by varying the amount of dopant precursor. Our in situ studies also revealed that the dopant precursor substantially changes the reaction kinetics of formation of iron and iron oxide NPs. Thus, in the presence of dopant precursor we observed significantly faster decomposition rate of iron precursors and substantially higher stability of iron NPs against oxidation. The same doping mechanism and higher stability of host metal NPs against oxidation was observed for cobalt-based systems. Since the internalization of the adsorbed dopant at the surface of the host NPs is driven by the mass transport of the host, this mechanism can be potentially applied to introduce dopants into different oxidized forms of metal and metal alloy NPs providing the extra degree of compositional control in material design. PMID:27152970

  19. SISGR - In situ characterization and modeling of formation reactions under extreme heating rates in nanostructured multilayer foils

    SciTech Connect

    Hufnagel, Todd C.

    2014-06-09

    Materials subjected to extreme conditions, such as very rapid heating, behave differently than materials under more ordinary conditions. In this program we examined the effect of rapid heating on solid-state chemical reactions in metallic materials. One primary goal was to develop experimental techniques capable of observing these reactions, which can occur at heating rates in excess of one million degrees Celsius per second. One approach that we used is x-ray diffraction performed using microfocused x-ray beams and very fast x-ray detectors. A second approach is the use of a pulsed electron source for dynamic transmission electron microscopy. With these techniques we were able to observe how the heating rate affects the chemical reaction, from which we were able to discern general principles about how these reactions proceed. A second thrust of this program was to develop computational tools to help us understand and predict the reactions. From atomic-scale simulations were learned about the interdiffusion between different metals at high heating rates, and about how new crystalline phases form. A second class of computational models allow us to predict the shape of the reaction front that occurs in these materials, and to connect our understanding of interdiffusion from the atomistic simulations to measurements made in the laboratory. Both the experimental and computational techniques developed in this program are expected to be broadly applicable to a wider range of scientific problems than the intermetallic solid-state reactions studied here. For example, we have already begun using the x-ray techniques to study how materials respond to mechanical deformation at very high rates.

  20. Study of char gasification in a reaction/adsorption apparatus

    SciTech Connect

    Sotirchos, S.V.; Crowley, J.A.

    1987-09-01

    The reaction of an activated carbon (coconut char) with CO/sub 2/ was studied in a reaction/adsorption apparatus which allows successive reactivity and physical adsorption measurements to be made on the same solid sample. Reaction and surface area evolution data were obtained in the temperature range from 800 to 900/sup 0/C. All reaction rate trajectories obtained in this study showed a maximum in the reaction rate, 2-3 times higher than the initial rate, at about 85% conversion. There was no correlation between these results and the evolution of the internal surface area although the reaction appeared to take place initially in the kinetically controlled regime.

  1. Studies of photoredox reactions on nanosize semiconductors

    SciTech Connect

    Wilcoxon, J.P.; Parsapour, F.; Kelley, D.F.

    1997-08-01

    Light induced electron transfer (ET) from nanosize semiconductors of MoS{sub 2} to organic electron acceptors such as 2,2{prime}-bipyridine (bpy) and methyl substituted 4,4{prime},5,5{prime}-tetramethyl-2,2{prime}-bipyridine (tmb) was studied by static and time resolved photoluminescence spectroscopy. The kinetics of ET were varied by changing the nanocluster size (the band gap), the electron acceptor, and the polarity of the solvent. MoS{sub 2} is an especially interesting semiconductor material as it is an indirect semiconductor in bulk form, and has a layered covalent bonding arrangement which is highly resistant to photocorrosion. Et occurs following photoexcitation of the direct band gap. Quantum confinement results in the smaller nanoclusters having higher conduction band energies, and therefore larger ET driving forces. The ET reaction energies may be varied by changing the electron acceptor, by varying the size of the MoS{sub 2} nanocluster or by varying the polarity of the solvent. In addition, varying the polarity of the solvent affects the reorganization energy and the barrier to electron transfer. TMB is harder to reduce, and thus has a smaller ET driving force than bpy. The solvent polarity is varied by varying the composition of acetonitrile/benzene mixed solvents.

  2. Comparison of procedures for the detection of enteroviruses in murine heart samples by in situ polymerase chain reaction.

    PubMed

    Berger, M M; See, D M; Redl, B; Aymard, M; Lina, B

    1997-01-01

    A protocol for the in situ polymerase chain reaction (IS-PCR) detection of viral nucleic acid in the heart tissue of four-to-five-week-old CD1 mice infected with coxsackievirus B3 (CBV3) Nancy strain is described. To compare the effects of formalin concentration on the IS-PCR process, two different concentrations (10 and 37%) were employed. Using 37% formalin, 25 PCR cycles were sufficient and a permeabilization step could be omitted. However, postfixation of tissues with 4% paraformaldehyde and 100% ethanol after the deparaffinization, reverse transcriptase and amplification steps was required in order to minimize artefacts. When the tissues were fixed in 10% formalin, postfixation with 4% paraformaldehyde was not required, but a permeabilization step had to be employed and 40 cycles of PCR amplification were needed. To detect the PCR product in the 10% formalin-fixed samples, incubation with 0.3 U/ml of an anti-digoxigenin antibody conjugated to alkaline phosphatase was performed for 90 min. When 37% formalin-fixed samples were used, the concentration of the antibody conjugate had to be increased to 3 U/ml and the exposure time was decreased to 30 min. Enterovirus (EV) nucleic acid was detected in the cytoplasm of myocytes. Thus, IS-PCR was successful in localizing EV nucleic acid in the cytoplasm of myocytes in mice infected with a cardiotropic strain of CBV3. Using this technique, 10% formalin-fixed tissues gave better results than 37% formalin-fixed tissues.

  3. Characteristics of vestibulosensory reactions studied by experimental caloric test

    NASA Technical Reports Server (NTRS)

    Kapranov, V. Z.

    1980-01-01

    Vestibulo-sensory reactions were studied in 135 workers who were in contact with nitroethers, by the method of an experimental caloric test. The response vestibulo-sensory reactions were recorded by means of an electroencephalograph. The changes in the sensory reaction depended on the duration of the workers' contact with toxic agents. A study of illusion reactions by the labyrinth calorization widens diagnostic possibilities in the examination of functional condition of the vestibular analyser considerably.

  4. In situ transmission electron microscopy investigation of the interfacial reaction between Ni and Al during rapid heating in a nanocalorimeter

    SciTech Connect

    Grapes, Michael D. E-mail: david.lavan@nist.gov; LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H.; Woll, Karsten; LaVan, David A. E-mail: david.lavan@nist.gov; Weihs, Timothy P. E-mail: david.lavan@nist.gov

    2014-11-01

    The Al/Ni formation reaction is highly exothermic and of both scientific and technological significance. In this report, we study the evolution of intermetallic phases in this reaction at a heating rate of 830 K/s. 100-nm-thick Al/Ni bilayers were deposited onto nanocalorimeter sensors that enable the measurement of temperature and heat flow during rapid heating. Time-resolved transmission electron diffraction patterns captured simultaneously with thermal measurements allow us to identify the intermetallic phases present and reconstruct the phase transformation sequence as a function of time and temperature. The results show a mostly unaltered phase transformation sequence compared to lower heating rates.

  5. Experimental evaluation of in situ CO2-water-rock reactions during CO2 injection in basaltic rocks: Implications for geological CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Matter, Juerg M.; Takahashi, Taro; Goldberg, David

    2007-02-01

    Deep aquifers are potential long-term storage sites for anthropogenic CO2 emissions. The retention time and environmental safety of the injected CO2 depend on geologic and physical factors and on the chemical reactions between the CO2, the aquifer water, and the host rocks. The pH buffer capacity of the aquifer water and the acid neutralization potential of the host rocks are important factors for the permanent stabilization of the injected CO2. Mafic rocks, such as basalt, which primarily consists of Ca, Mg silicate minerals, have a high acid neutralization capacity by providing alkaline earth elements that form stable carbonate minerals. The carbonate minerals formed thus sequester CO2 in a chemically stable and environmentally benign form. In this study, we present results from a small-scale CO2 injection test in mafic and metasedimentary rocks. The injection test was conducted using a single-well push-pull test strategy. CO2 saturated water (pH = 3.5) was injected into a hydraulically isolated and permeable aquifer interval to study the acid neutralization capacity of Ca, Mg silicate rocks and to estimate in situ cation release rates. Release rates for Ca, Mg, and Na were calculated by use of solute compositions of water samples retrieved after the CO2 injection, the incubation time of the injected solution within the aquifer, and geometric estimates of the reactive surface area of the host rocks. Our results confirm rapid acid neutralization rates and water-rock reactions sufficient for safe and permanent storage of CO2. Carbonic acid was neutralized within hours of injection into a permeable mafic aquifer by two processes: mixing between the injected solution and the aquifer water, and water-rock reactions. Calculated cation release rates decrease with increasing pH that is confirmed by laboratory-based experiments. Large differences between release rates obtained from the field and laboratory experiments may be mainly due to uncertainties in the estimation

  6. Single-Molecule Nanocatalysis Shows In Situ Deactivation of Pt/C Electrocatalysts during the Hydrogen-Oxidation Reaction.

    PubMed

    Zhang, Yuwei; Chen, Tao; Alia, Shaun; Pivovar, Bryan S; Xu, Weilin

    2016-02-24

    By coupling a Pt-catalyzed fluorogenic reaction with the Pt-electrocatalyzed hydrogen-oxidation reaction (HOR), we combine single-molecule fluorescence microscopy with traditional electrochemical methods to study the real-time deactivation kinetics of a Pt/C electrocatalyst at single-particle level during electrocatalytic hydrogen-oxidation reaction. The decay of the catalytic performance of Pt/C could be mainly attributed to the electrocatalysis-induced etching or dissolution of Pt nanoparticles. Spontaneous regeneration of activity and incubation period of the Pt electrocatalyst were also observed at single-particle level. All these new insights are practically useful for the understanding and rational design of highly efficient electrocatalysts for application in fuel cells. PMID:26821777

  7. In situ Raman spectroscopy study of oxidation of nanostructured carbons

    NASA Astrophysics Data System (ADS)

    Osswald, Sebastian

    The ability to synthesize carbon nanostructures, such as fullerenes, carbon nanotubes, nanodiamond, and mesoporous carbon; functionalize their surface; or assemble them into three-dimensional networks has opened new avenues for material design. Carbon nanostructures possess tunable optical, electrical or mechanical properties, making them ideal candidates for numerous applications ranging from composite structures and chemical sensors to electronic devices and medical implants. Unfortunately, current synthesis techniques typically lead to a mixture of different types of carbon rather than a particular nanostructure with defined size and properties. In order to fully exploit the great potential of carbon nanostructures, one needs to provide purification procedures that allow a selective separation of carbon nanostructures, and methods which enable a control of size and surface functionalization. Oxidation is a frequently used method for purification of carbon materials, but it can also damage or destroy the sample. In situ Raman spectroscopy during heating in a controlled environment allows a time-resolved investigation of the oxidation kinetics and can identify the changes in material structure and composition, thus helping to accurately determine optimal purification conditions. However, while carbon allotropes such as graphite and diamond show unique Raman signals and allow a fast and straightforward identification, the interpretation of Raman spectra recorded from nanostructures containing mixtures of sp, sp2 and sp3 bonded carbon is more complex and the origin of some peaks in Raman spectra of nanocarbons is not yet fully understood. In this study we applied in situ Raman spectroscopy to determine conditions for selective oxidation of carbon nanostructures, such as nanodiamond, nanotubes, carbide-derived carbon and carbon onions; accurately measure and control the crystal size; and improve the fundamental understanding of effects of temperature, quantum

  8. Versatile and Amplified Biosensing through Enzymatic Cascade Reaction by Coupling Alkaline Phosphatase in Situ Generation of Photoresponsive Nanozyme.

    PubMed

    Jin, Lu-Yi; Dong, Yu-Ming; Wu, Xiu-Ming; Cao, Gen-Xia; Wang, Guang-Li

    2015-10-20

    The alkaline phosphatase (ALP) biocatalysis followed by the in situ enzymatic generation of a visible light responsive nanozyme is coupled to elucidate a novel amplification strategy by enzymatic cascade reaction for versatile biosensing. The enzymatic hydrolysis of o-phosphonoxyphenol (OPP) to catechol (CA) by ALP is allowed to coordinate on the surface of TiO2 nanoparticles (NPs) due to the specificity and high affinity of enediol ligands to Ti(IV). Upon the stimuli by CA generated from ALP, the inert TiO2 NPs is activated, which demonstrates highly efficient oxidase mimicking activity for catalyzing the oxidation of the typical substrate of 3,3',5,5'-tetramethylbenzidine (TMB) under visible light (λ ≥ 400 nm) irradiation utilizing dissolved oxygen as an electron acceptor. On the basis of the cascade reaction of ALP and the nanozyme of CA coordinated TiO2 (TiO2-CA) NPs, we design exquisitely colorimetric biosensors for probing ALP activity and its inhibitor of 2, 4-dichlorophenoxyacetic acid (2,4-DA). Quantitative probing of ALP activity in a wide linear range from 0.01 to 150 U/L with the detection limit of 0.002 U/L is realized, which endows the methodology with sufficiently high sensitivity for potentially practical applications in real samples of human serum (ALP level of 40-190 U/L for adults). In addition, a novel immunoassay protocol by taking mouse IgG as an example is validated using the ALP/nanozyme cascade amplification reaction as the signal transducer. A low detection limit of 2.0 pg/mL is attained for mouse IgG, which is 4500-fold lower than that of the standard enzyme-linked immuno-sorbent assay (ELISA) kit. Although only mouse IgG is used as a proof-of-concept in our experiment, we believe that this approach is generalizable to be readily extended to other ELISA systems. This methodology opens a new horizon for amplified and versatile biosensing including probing ALP activity and following ALP-based ELISA immunoassays. PMID:26419907

  9. Versatile and Amplified Biosensing through Enzymatic Cascade Reaction by Coupling Alkaline Phosphatase in Situ Generation of Photoresponsive Nanozyme.

    PubMed

    Jin, Lu-Yi; Dong, Yu-Ming; Wu, Xiu-Ming; Cao, Gen-Xia; Wang, Guang-Li

    2015-10-20

    The alkaline phosphatase (ALP) biocatalysis followed by the in situ enzymatic generation of a visible light responsive nanozyme is coupled to elucidate a novel amplification strategy by enzymatic cascade reaction for versatile biosensing. The enzymatic hydrolysis of o-phosphonoxyphenol (OPP) to catechol (CA) by ALP is allowed to coordinate on the surface of TiO2 nanoparticles (NPs) due to the specificity and high affinity of enediol ligands to Ti(IV). Upon the stimuli by CA generated from ALP, the inert TiO2 NPs is activated, which demonstrates highly efficient oxidase mimicking activity for catalyzing the oxidation of the typical substrate of 3,3',5,5'-tetramethylbenzidine (TMB) under visible light (λ ≥ 400 nm) irradiation utilizing dissolved oxygen as an electron acceptor. On the basis of the cascade reaction of ALP and the nanozyme of CA coordinated TiO2 (TiO2-CA) NPs, we design exquisitely colorimetric biosensors for probing ALP activity and its inhibitor of 2, 4-dichlorophenoxyacetic acid (2,4-DA). Quantitative probing of ALP activity in a wide linear range from 0.01 to 150 U/L with the detection limit of 0.002 U/L is realized, which endows the methodology with sufficiently high sensitivity for potentially practical applications in real samples of human serum (ALP level of 40-190 U/L for adults). In addition, a novel immunoassay protocol by taking mouse IgG as an example is validated using the ALP/nanozyme cascade amplification reaction as the signal transducer. A low detection limit of 2.0 pg/mL is attained for mouse IgG, which is 4500-fold lower than that of the standard enzyme-linked immuno-sorbent assay (ELISA) kit. Although only mouse IgG is used as a proof-of-concept in our experiment, we believe that this approach is generalizable to be readily extended to other ELISA systems. This methodology opens a new horizon for amplified and versatile biosensing including probing ALP activity and following ALP-based ELISA immunoassays.

  10. Density functional study of chemical reaction equilibrium for dimerization reactions in slit and cylindrical nanopores.

    PubMed

    Malijevský, Alexandr; Lísal, Martin

    2009-04-28

    We present a theoretical study of the effects of confinement on chemical reaction equilibrium in slit and cylindrical nanopores. We use a density functional theory (DFT) to investigate the effects of temperature, pore geometry, bulk pressure, transition layering, and capillary condensation on a dimerization reaction that mimics the nitric oxide dimerization reaction, 2NO <==> (NO)(2), in carbonlike slit and cylindrical nanopores in equilibrium with a vapor reservoir. In addition to the DFT calculations, we also utilize the reaction ensemble Monte Carlo method to supplement the DFT results for reaction conversion. This work is an extension of the previous DFT study by Tripathi and Chapman [J. Chem. Phys. 118, 7993 (2003)] on the dimerization reactions confined in the planar slits.

  11. In situ Raman spectroscopy study of metal-enhanced hydrogenation and dehydrogenation of VO2.

    PubMed

    Wu, Hao; Fu, Qiang; Bao, Xinhe

    2016-11-01

    Vanadium dioxide (VO2) has a phase transition from insulator to metal at 340 K, and this transition can be strongly modified by hydrogenation. In this work, two dimensional (2D) VO2 sheets have been grown on Si(1 1 1) surfaces through chemical vapor deposition, and metal (Au, Pt) thin films were deposited on VO2 surfaces by sputtering. The hydrogenation and dehydrogenation of VO2 and metal-decorated VO2 structures in H2 and in air were in situ studied by Raman. We found that hydrogenation and dehydrogenation temperatures have been significantly decreased with the VO2 surface decorated by Au and Pt. The enhanced hydrogenation and dehydrogenation reactions can be attributed to catalytic dissociation of H2 and O2 molecules on metal surfaces and subsequent spillover of dissociated H and O atoms to the oxide surfaces. PMID:27603090

  12. In situ Raman spectroscopy study of metal-enhanced hydrogenation and dehydrogenation of VO2

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Fu, Qiang; Bao, Xinhe

    2016-11-01

    Vanadium dioxide (VO2) has a phase transition from insulator to metal at 340 K, and this transition can be strongly modified by hydrogenation. In this work, two dimensional (2D) VO2 sheets have been grown on Si(1 1 1) surfaces through chemical vapor deposition, and metal (Au, Pt) thin films were deposited on VO2 surfaces by sputtering. The hydrogenation and dehydrogenation of VO2 and metal-decorated VO2 structures in H2 and in air were in situ studied by Raman. We found that hydrogenation and dehydrogenation temperatures have been significantly decreased with the VO2 surface decorated by Au and Pt. The enhanced hydrogenation and dehydrogenation reactions can be attributed to catalytic dissociation of H2 and O2 molecules on metal surfaces and subsequent spillover of dissociated H and O atoms to the oxide surfaces.

  13. EXAFS investigations of metal organic molecules with the goal of studying homogeneously catalytic systems in situ

    NASA Astrophysics Data System (ADS)

    Ertel, T. S.; Hörner, W.; Hückmann, S.; Kolb, U.; Abraham, I.; Bertagnolli, H.

    1995-02-01

    The investigations of Grignard compounds are very instructive for understanding the principles of getting structural information on highly complex and simultaneously metal activated systems by means of EXAFS spectroscopy. The structural investigations of a model system for Friedel-Crafts alkylation and some metal complexes (metal = Zr, Mo, W, Re), which activate carbonyl groups selectively with respect to the subsequent ring cleavage of axially prosterogenic biaryl lactones, are reported. As an actual field of metal organic research temperature dependent in situ EXAFS studies of the CH-activation of substituted olefins are presented. It was possible to observe the course of the rearrangement reaction of an iridium olefin complex to the corresponding hydrido (vinyl) iridium complex.

  14. Soot Reaction Properties (Ground-Based Study)

    NASA Technical Reports Server (NTRS)

    Dai, Z.; El-Leathy, A. M.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    Three major soot reaction processes are needed to predict soot properties in flame environments: soot growth, or the formation of soot on soot nuclei and soot particles; soot oxidation, or the reaction of soot with oxidizing species to yield the combustion products of soot oxidation; and soot nucleation, or the formation of soot nuclei from soot precursors having large molecular weights (generally thought to be large and particularly stable PAH molecules in flame environments, called stabilomers). These processes are addressed in the following, considering soot growth, oxidation and nucleation, in turn, by exploiting the soot and flame structure results for premixed and diffusion flames already discussed in Section 2.

  15. Staff Reactions to Challenging Behaviour: An Observation Study

    ERIC Educational Resources Information Center

    Lambrechts, Greet; Van Den Noortgate, Wim; Eeman, Lieve; Maes, Bea

    2010-01-01

    Staff reactions play an important role in the development and maintaining of clients' challenging behaviour. Because there is a paucity of research on staff reactions in naturalistic settings, this study examined sequential associations between challenging behaviour and staff reactions by means of a descriptive analysis. We analysed video…

  16. Kinetic Study of the Heck Reaction: An Interdisciplinary Experiment

    ERIC Educational Resources Information Center

    Gozzi, Christel; Bouzidi, Naoual

    2008-01-01

    The aim of this experiment is to study and calculate the kinetic constant of a Heck reaction: the arylation of but-3-en-2-ol by iodobenzene catalyzed by palladium acetate in presence of triethylamine in DMF. The reaction leads to a mixture of two ketones. Students use GC analysis to quantify reagents and products of reaction. They control the…

  17. In situ time resolved synchrotron powder diffraction study of thaumasite

    NASA Astrophysics Data System (ADS)

    Martucci, Annalisa; Cruciani, Giuseppe

    2006-12-01

    Structural changes during dehydration and subsequent decomposition in thaumasite Ca3Si(SO4)(CO3)(OH)6·12 H2O were studied by in situ synchrotron powder diffraction between 303 and 1,098 K. Evolution of the crystal structure was observed through 28 structure refinements, by full profile Rietveld analysis performed in the P63 space group, between 300 and 417 K, whereupon the thaumasite structure was observed to breakdown. Within this temperature range, the cell parameters of thaumasite increased as a function of temperature in a nearly linear fashion up to about 393 K, at which temperature, a slight slope change was observed. Above 400 K, the thermogravimetric analysis revealed that the dehydration process proceeded very rapidly while the refined occupancy of water molecules dropped below a critical level, leading to instability in the thaumasite structure. At a same time, a remarkable change in the unit cell parameters occurring at about 417 K indicated that the crystal structure of thaumasite collapsed on losing the crystallization water and it turned amorphous. This result indicated that the dehydration/decomposition of thaumasite was induced by the departure of the crystallization water. At about 950 K, anhydrite and cristobalite crystallized from the thaumasite glass.

  18. Atomic force microscope chamber for in situ studies of ice

    NASA Astrophysics Data System (ADS)

    Zepeda, Salvador; Yeh, Yin; Orme, Christine A.

    2001-11-01

    To investigate the surface morphologies of biological systems in a controlled gaseous environment (e.g., the temperature, humidity and composition), most commercial atomic force microscopes require modification. We have designed a double-jacketed environmental chamber specifically for a Nanoscope IIIa (Digital Instruments, Santa Barbara, CA) force microscope. We use cold nitrogen and thermoelectric devices to control the temperature in the chamber; the nitrogen simultaneously serves to create an inert environment. We have also designed a temperature controlled sample stage utilizing thermoelectric devices for fine temperature regulation. A variation of this sample stage allows us to image samples in fluids at cold temperatures with an O-ringless configuration. The relative humidity within the chamber is also measured with commercially available relative humidity sensors. We investigate the surface morphology of ice Ih in its pure phase and shall extend the study to ice in the presence of biological molecules, such as antifreeze proteins. We present a detailed description of our design and our first images of polycrystalline ice and single crystals of ice grown in situ from the vapor.

  19. In situ studies of a platform for metastable inorganic crystal growth and materials discovery

    PubMed Central

    Shoemaker, Daniel P.; Hu, Yung-Jin; Chung, Duck Young; Halder, Gregory J.; Chupas, Peter J.; Soderholm, L.; Mitchell, J. F.; Kanatzidis, Mercouri G.

    2014-01-01

    Rapid shifts in the energy, technological, and environmental demands of materials science call for focused and efficient expansion of the library of functional inorganic compounds. To achieve the requisite efficiency, we need a materials discovery and optimization paradigm that can rapidly reveal all possible compounds for a given reaction and composition space. Here we provide such a paradigm via in situ X-ray diffraction measurements spanning solid, liquid flux, and recrystallization processes. We identify four new ternary sulfides from reactive salt fluxes in a matter of hours, simultaneously revealing routes for ex situ synthesis and crystal growth. Changing the flux chemistry, here accomplished by increasing sulfur content, permits comparison of the allowable crystalline building blocks in each reaction space. The speed and structural information inherent to this method of in situ synthesis provide an experimental complement to computational efforts to predict new compounds and uncover routes to targeted materials by design. PMID:25024201

  20. In Situ Fabrication of PtCo Alloy Embedded in Nitrogen-Doped Graphene Nanopores as Synergistic Catalyst for Oxygen Reduction Reaction

    SciTech Connect

    Zhong, Xing; Wang, Lei; Zhou, Hu; Qin, Yingying; Xu, Wenlei; Jiang, Yu; Sun, Youyi; Shi, Zheqi; Zhuang, Guilin; Li, Xiaonian; Mei, Donghai; Wang, Jian-guo

    2015-11-23

    A novel PtCo alloy in situ etched and embedded in graphene nanopores (PtCo/NPG) as a high-performance catalyst for ORR was reported. Graphene nanopores were fabricated in situ while forming PtCo nanoparticles that were uniformly embedded in the graphene nanopores. Given the synergistic effect between PtCo alloy and nanopores, PtCo/NPG exhibited 11.5 times higher mass activity than that of the commercial Pt/C cathode electrocatalyst. DFT calculations indicated that the nanopores in NPG cannot only stabilize PtCo nanoparticles but can also definitely change the electronic structures, thereby change its adsorption abilities. This enhancement can lead to a favorable reaction pathway on PtCo/NPG for ORR. This study showed that PtCo/NPG is a potential candidate for the next generation of Pt-based catalysts in fuel cells. This study also offered a promising alternative strategy and enabled the fabrication of various kinds of metal/graphene nanopore nanohybrids with potential applications in catalysts and potential use for other technological devices. The authors acknowledge the financial support from the National Basic Research Program (973 program, No. 2013CB733501), Zhejiang Provincial Education Department Research Program (Y201326554) and the National Natural Science Foundation of China (No. 21306169, 21101137, 21136001, 21176221 and 91334013). D. Mei acknowledges the support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC).

  1. The Saturn Ring Observer: In situ studies of planetary rings

    NASA Astrophysics Data System (ADS)

    Nicholson, P. D.; Tiscareno, M. S.; Spilker, L. J.

    2010-12-01

    As part of the Planetary Science Decadal Survey recently undertaken by the NRC's Space Studies Board for the National Academy of Sciences, studies were commissioned for a number of potential missions to outer planet targets. One of these studies examined the technological feasibility of a mission to carry out in situ studies of Saturn's rings, from a spacecraft placed in a circular orbit above the ring plane: the Saturn Ring Observer. The technical findings and background are discussed in a companion poster by T. R. Spilker et al. Here we outline the science goals of such a mission. Most of the fundamental interactions in planetary rings occur on spatial scales that are unresolved by flyby or orbiter spacecraft. Typical particle sizes in the rings of Saturn are in the 1 cm - 10 m range, and average interparticle spacings are a few meters. Indirect evidence indicates that the vertical thickness of the rings is as little as 5 - 10 m, which implies a velocity dispersion of only a few mm/sec. Theories of ring structure and evolution depend on the unknown characteristics of interparticle collisions and on the size distribution of the ring particles. The SRO could provide direct measurements of both the coefficient of restitution -- by monitoring individual collisions -- and the particles’ velocity dispersion. High-resolution observations of individual ring particles should also permit estimates of their spin states. Numerical simulations of Saturn’s rings incorporating both collisions and self-gravity predict that the ring particles are not uniformly distributed, but are instead clustered into elongated structures referred to as “self-gravity wakes”, which are continually created and destroyed on an orbital timescale. Theory indicates that the average separation between wakes in the A ring is of order 30-100 m. Direct imaging of self-gravity wakes, including their formation and subsequent dissolution, would provide critical validation of these models. Other

  2. Experimental Study of Stellar Reactions at CNS

    SciTech Connect

    Kubono, S.; Yamaguchi, H.; Wakabayashi, Y.; Amadio, G.; Hayakawa, S.; He, J. J.; Saito, A.; Teranishi, T.; Nishimura, S.; Fukunishi, N.; Iwasa, N.; Inafuku, K.; Kato, S.; Tanaka, M. H.; Fuchi, Y.; Moon, J. Y.; Kwon, K.; Lee, C. S.; Khiem, Le Hong; Chen, A.

    2006-11-02

    After a brief review on low-energy RI beam production technology, nuclear astrophysics programs at CNS are presented including a scope of the field in the Wako campus. The CRIB project involves a total development of the whole facility to maximize the low-energy RI beam intensities, including the ion source, the AVF cyclotron and the low-energy RI beam separator CRIB, Some recent nuclear astrophysics experiments performed with the RI beams were discussed, including the measurement of the 14O({alpha},p)17F reaction, the key stellar reaction for the onset of the high-temperature rp-process. The first experiment performed with a newly installed high-resolution magnetic spectrograph PA of CNS was also presented. Collaboration possibilities for nuclear astrophysics in the RIKEN campus are also touched.

  3. Experimental Study of Stellar Reactions at CNS

    NASA Astrophysics Data System (ADS)

    Kubono, S.; Yamaguchi, H.; Wakabayashi, Y.; Amadio, G.; Hayakawa, S.; He, J. J.; Saito, A.; Teranishi, T.; Nishimura, S.; Fukunishi, N.; Iwasa, N.; Inafuku, K.; Kato, S.; Tanaka, M. H.; Fuchi, Y.; Moon, J. Y.; Kwon, K.; Lee, C. S.; Khiem, Le Hong; Chen, A.; Pearson, J.

    2006-11-01

    After a brief review on low-energy RI beam production technology, nuclear astrophysics programs at CNS are presented including a scope of the field in the Wako campus. The CRIB project involves a total development of the whole facility to maximize the low-energy RI beam intensities, including the ion source, the AVF cyclotron and the low-energy RI beam separator CRIB, Some recent nuclear astrophysics experiments performed with the RI beams were discussed, including the measurement of the 14O(α,p)17F reaction, the key stellar reaction for the onset of the high-temperature rp-process. The first experiment performed with a newly installed high-resolution magnetic spectrograph PA of CNS was also presented. Collaboration possibilities for nuclear astrophysics in the RIKEN campus are also touched.

  4. Theoretical study of chemical reactions in solution

    SciTech Connect

    Yokogawa, D.

    2015-12-31

    Quantum chemical calculations in solution are becoming more and more important in chemistry. Reference interaction site model self-consistent field (RISM-SCF) is one of the powerful approaches to perform quantum chemical calculations in solution. In this work, we developed a new generation of RISM-SCF, where a robust fitting method was newly introduced. We applied the new method to tautomerization reaction of cytosine in aqueous phase. Our calculation reproduced experimentally obtained relative stabilities and relative free energies correctly.

  5. A laser flash photolysis kinetics study of the reaction OH + H2O2 yields HO2 + H2O

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Semmes, D. H.; Ravishankara, A. R.

    1981-01-01

    Absolute rate constants for the reaction are reported as a function of temperature over the range 273-410 K. OH radicals are produced by 266 nm laser photolysis of H2O2 and detected by resonance fluorescence. H2O2 concentrations are determined in situ in the slow flow system by UV photometry. The results confirm the findings of two recent discharge flow-resonance fluorescence studies that the title reaction is considerably faster, particularly at temperatures below 300 K, than all earlier studies had indicated. A table giving kinetic data from the reaction is included.

  6. Room temperature reaction of oxygen with gold: an in situ ambient-pressure X-ray photoelectron spectroscopy investigation

    SciTech Connect

    Jiang, Peng; Porsgaard, Soeren; Borondics, Ferenc; Kober, Mariana; Caballero, Alfonso; Bluhm, Hendrik; Besenbacher, Flemming; Salmeron, Miquel

    2010-02-01

    Gold is commonly regarded as the most inert element.1 However, the discovery of the exceptional catalytic properties of gold nanoparticles (NPs) for low temperature CO oxidation2 initiated great interest due to its promising applications and spawned a large number of studies devoted to the understanding of the reaction mechanism.3-6 Nevertheless, no consistent and conclusive picture has arisen.7-13

  7. Localization of Herpes Simplex Virus Type 1 DNA in Latently Infected BALB/c Mice Neurons Using in situ Polymerase Chain Reaction

    PubMed Central

    Khansarinejad, Behzad; Soleimanjahi, Hoorieh; Ghaemi, Amir; Tiraihi, Taki; Pour Beiranvand, Shahram

    2010-01-01

    Background: Herpes simplex virus type-1 (HSV-1) establishes a lifelong latent infection in neurons following primary infection. The existence of latent HSV-1 DNA in the trigeminal ganglia of infected BALB/c mice was examined using a direct in situ PCR technique, based on Digoxigenin-11-dUTP detection system with anti-digoxigenin-peroxidase and 3,3'-diaminobenzidine (DAB) substrate. Methods: Eight-week-old male BALB/c mice were inoculated via the eye by 104 plaque forming unit of wild type Iranian isolates of HSV-1. After establishment of latency, trigeminal ganglia were removed and examined using in situ PCR to detect HSV-1 genome. Finally, the results of in situ PCR were verified by a two-round PCR method, using amplification cocktail of in situ reaction, as a template for a conventional gel base PCR. Results and Conclusion: The results suggest that a direct in situ PCR method using a peroxidase and DAB detection system is a useful means for detection of latent HSV-1 DNA in the latently infected ganglia. PMID:21079658

  8. Degradation of Bimetallic Model Electrocatalysts ___ an in situ XAS Study

    SciTech Connect

    Friebel, Daniel

    2011-06-22

    One of the major challenges in the development of clean energy fuel cells is the performance degradation of the electrocatalyst, which, apart from poisoning effects, can suffer from corrosion due to its exposure to a harsh environment under high potentials. In this communication, we demonstrate how interactions of Pt with a transition metal support affect not only, as commonly intended, the catalytic activity, but also the reactivity of Pt towards oxide formation or dissolution. We use two well-defined single-crystal model systems, Pt/Rh(111) and Pt/Au(111) and a unique x-ray spectroscopy technique with enhanced energy resolution to monitor the potential-dependent oxidation state of Pt, and find two markedly different oxidation mechanisms on the two different substrates. This information can be of great significance for future design of more active and more stable catalysts. We have studied the potential-induced degradation of Pt monolayer model electrocatalysts on Rh(111) and Au(111) single-crystal substrates. The anodic formation of Pt oxides was monitored using in situ high energy resolution fluorescence detection x-ray absorption spectroscopy (HERFD XAS). Although Pt was deposited on both substrates in a three-dimensional island growth mode, we observed remarkable differences during oxide formation that can only be understood in terms of strong Pt-substrate interactions throughout the Pt islands. Anodic polarization of Pt/Rh(111) up to +1.6 V vs. RHE (reversible hydrogen electrode) leads to formation an incompletely oxidized passive layer, whereas formation of PtO2 and partial Pt dissolution is observed for Pt/Au(111).

  9. Probing the Reaction Pathway of Dehydrogenation of the LiNH2 + LiH Mixture Using In Situ 1H NMR Spectroscopy

    SciTech Connect

    Hu, Jian Zhi; Kwak, Ja Hun; Yang, Zhenguo; osborn, william; Markmaitree, Tippawan; Shaw, Leonard D.

    2008-06-15

    Using variable temperature in situ 1H NMR spectroscopy on a mixture of LiNH2 + LiH that was mechanically activated using high energy ball milling, the dehydrogenation of the LiNH2 + LiH to Li2NH + H2 was investigated. The analysis indicates NH3 release at a temperature as low as 300C and rapid reaction between NH3 and LiH at ~ 1500C. The transition from NH3 release to H2 appearance accompanied by disappearance of NH3 confirms unambiguously the two-step elementary reaction pathway proposed by other workers.

  10. Detection of human papillomavirus DNA by in situ hybridization and polymerase chain reaction in human papillomavirus equivocal and dysplastic cervical biopsies.

    PubMed

    Shroyer, K R; Lovelace, G S; Abarca, M L; Fennell, R H; Corkill, M E; Woodard, W D; Davilla, G H

    1993-09-01

    One hundred twenty-one paraffin-embedded cervical biopsy specimens were tested for the presence of human papillomavirus (HPV) DNA by in situ hybridization and polymerase chain reaction. By in situ hybridization using probes for HPV types 6/11, 16/18, 31/33/35, 42/43/44, 51/52, and 45/56, HPV DNA was found in none of 20 normal/squamous metaplasia biopsy specimens, in one of 76 HPV equivocal biopsy specimens, in seven of 12 condyloma/mild dysplasia biopsy specimens, and in 12 of 13 moderate/severe dysplasia biopsy specimens. Polymerase chain reaction using HPV L1 consensus sequence primers followed by filter hybridization of the amplification products was positive for HPV DNA in two of 20 normal/squamous metaplasia biopsy specimens, in 23 of 76 HPV equivocal biopsy specimens, in eight of 12 condyloma/mild dysplasia biopsy specimens, and in 12 of 13 moderate/severe dysplasia biopsy specimens. Among biopsies that tested positive by polymerase chain reaction but that were negative by in situ hybridization, the most commonly identified HPV was type 16. We conclude that although HPV equivocal biopsy specimens contain HPV DNA more frequently than histologically normal tissue, the majority of biopsy specimens in this category test negative for HPV DNA. The clinical significance of a positive test for HPV, in the absence of unequivocal histologic changes, remains to be determined.

  11. Low temperature hydrogen plasma-assisted atomic layer deposition of copper studied using in situ infrared reflection absorption spectroscopy

    SciTech Connect

    Chaukulkar, Rohan P.; Rai, Vikrant R.; Agarwal, Sumit; Thissen, Nick F. W.

    2014-01-15

    Atomic layer deposition (ALD) is an ideal technique to deposit ultrathin, conformal, and continuous metal thin films. However, compared to the ALD of binary materials such as metal oxides and metal nitrides, the surface reaction mechanisms during metal ALD are not well understood. In this study, the authors have designed and implemented an in situ reflection-absorption infrared spectroscopy (IRAS) setup to study the surface reactions during the ALD of Cu on Al{sub 2}O{sub 3} using Cu hexafluoroacetylacetonate [Cu(hfac){sub 2}] and a remote H{sub 2} plasma. Our infrared data show that complete ligand-exchange reactions occur at a substrate temperature of 80 °C in the absence of surface hydroxyl groups. Based on infrared data and previous studies, the authors propose that Cu(hfac){sub 2} dissociatively chemisorbs on the Al{sub 2}O{sub 3} surface, where the Al-O-Al bridge acts as the surface reactive site, leading to surface O-Cu-hfac and O-Al-hfac species. Surface saturation during the Cu(hfac){sub 2} half-cycle occurs through blocking of the available chemisorption sites. In the next half-reaction cycle, H radicals from an H{sub 2} plasma completely remove these surface hfac ligands. Through this study, the authors have demonstrated the capability of in situ IRAS as a tool to study surface reactions during ALD of metals. While transmission and internal reflection infrared spectroscopy are limited to the first few ALD cycles, IRAS can be used to probe all stages of metal ALD starting from initial nucleation to the formation of a continuous film.

  12. Neutron-induced reaction studies using stored ions

    NASA Astrophysics Data System (ADS)

    Glorius, Jan; Litvinov, Yuri A.; Reifarth, René

    2015-11-01

    Storage rings provide unique possibilities for investigations of nuclear reactions. Radioactive ions can be stored if the ring is connected to an appropriate facility and reaction studies are feasible at low beam intensities because of the recycling of beam particles. Using gas jet or droplet targets, charged particle-induced reactions on short-lived isotopes can be studied in inverse kinematics. In such a system a high-flux reactor could serve as a neutron target extending the experimental spectrum to neutron-induced reactions. Those could be studied over a wide energy range covering the research fields of nuclear astrophysics and reactor safety, transmutation of nuclear waste and fusion.

  13. [Reaction mechanism studies of heavy ion induced nuclear reactions]. Annual progress report, [January 1992--February 1993

    SciTech Connect

    Mignerey, A.C.

    1993-02-01

    Completed work is summarized on the topics of excitation energy division in deep-inelastic reactions and the onset of multifragmentation in La-induced reactions at E/A = 45 MeV. Magnetic fields are being calculated for the PHOBOS detector system, a two-arm multiparticle spectrometer for studying low-transverse-momentum particles produced at the Relativistic Heavy Ion Collider. The Maryland Forward Array is being developed for detection of the reaction products from very peripheral collisions; it consists of two individual units of detectors: the annular silicon detector in front and the plastic phoswich detector at back.

  14. Towards microfluidic reactors for in situ synchrotron infrared studies

    NASA Astrophysics Data System (ADS)

    Silverwood, I. P.; Al-Rifai, N.; Cao, E.; Nelson, D. J.; Chutia, A.; Wells, P. P.; Nolan, S. P.; Frogley, M. D.; Cinque, G.; Gavriilidis, A.; Catlow, C. R. A.

    2016-02-01

    Anodically bonded etched silicon microfluidic devices that allow infrared spectroscopic measurement of solutions are reported. These extend spatially well-resolved in situ infrared measurement to higher temperatures and pressures than previously reported, making them useful for effectively time-resolved measurement of realistic catalytic processes. A data processing technique necessary for the mitigation of interference fringes caused by multiple reflections of the probe beam is also described.

  15. Holographic microscopy for in situ studies of microorganism motility

    NASA Astrophysics Data System (ADS)

    Nadeau, J.; Hu, S.; Jericho, S.; Lindensmith, C.

    2011-12-01

    Robust technologies for the detection and identification of microorganisms at low concentrations in complex liquid media are needed for numerous applications: environmental and medical microbiology, food safety, and for the search for microbial life elsewhere in the Solar System. The best current method for microbial enumeration is specific labeling with fluorescent dyes followed by high-resolution light microscopy. However, fluorescent techniques are difficult to use in situ in extreme environments (such as the Arctic and Antarctic or the open ocean) due to the fragility of the instruments and their high power demands. In addition, light microscopic techniques rarely provide insight into microbial motility behaviors. Tracking single cells would provide important insight into the physics of micron-scale motility as well as into key microbial phenomena such as surface attachment and invasiveness. An alternative to traditional light microscopy that is attracting increasing attention is holographic microscopy. Holographic microscopy works by illuminating the object of interest with coherent light from a laser. The light reflected from (or transmitted through) the object is then combined with a coherent reference beam to create an interference pattern that contains the phase and intensity information required to reconstruct a three dimensional image of the object. The interference pattern is recorded on a high resolution detector and can be used to computationally reconstruct a 3D image of the object. The lateral resolution of the image depends upon the wavelength of the light used, the laser power, camera quality, and external noise sources (vibration, stray light, and so forth). Although the principle is simple, technological barriers have prevented wider use of holographic microscopy. Laser sources and CCD cameras with the appropriate properties have only very recently become affordable. In addition, holographic microscopy leads to large data sets that are

  16. Evolving Technologies for In-Situ Studies of Mars Ice

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Hecht, M. H.

    2003-01-01

    Icy sites on Mars continue to be of high scientific importance. These sites include the polar caps, the southern mid-latitude subsurface permafrost, and the seasonal frost. These sites have interest due to their roles in climate processes, past climates, surface and near-surface water, astrobiology, geomorphology, and other topics. As is the case for many planetary features, remote sensing, while of great value, cannot answer all questions; in-situ examination is essential, and the motivation for in-situ observations generally leads to the subsurface, which, fortunately, is accessible on Mars. It is clear in fact that a Mars polar cap subsurface mission is both scientifically compelling and practical. Recent data from orbiting platforms has provided a remarkable level of information about the Mars ice caps; we know, for example, the size, shape and annual cycle of the cap topography as well as we know that of Earth, and we have more information on stratification that we have of, for example, the ice of East Antarctica. To understand the roles that the Mars polar caps play, it is necessary to gather information on the ice cap surface, strata, composition and bed. In this talk the status of in-situ operations and observations will be summarized, and, since we have conveniently at hand another planet with polar caps, permafrost and ice, the role of testing and validation of experimental procedures on Earth will be addressed.

  17. Versatile method for AFM-tip functionalization with biomolecules: fishing a ligand by means of an in situ click reaction

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Ramakrishna, Shivaprakash N.; Naik, Vikrant V.; Chu, Zonglin; Drew, Michael E.; Spencer, Nicholas D.; Yamakoshi, Yoko

    2015-04-01

    A facile and universal method for the functionalization of an AFM tip has been developed for chemical force spectroscopy (CFS) studies of intermolecular interactions of biomolecules. A click reaction between tripod-acetylene and an azide-linker-ligand molecule was successfully carried out on the AFM tip surface and used for the CFS study of ligand-receptor interactions.A facile and universal method for the functionalization of an AFM tip has been developed for chemical force spectroscopy (CFS) studies of intermolecular interactions of biomolecules. A click reaction between tripod-acetylene and an azide-linker-ligand molecule was successfully carried out on the AFM tip surface and used for the CFS study of ligand-receptor interactions. Electronic supplementary information (ESI) available: Experimental details with synthesis and characterization of compounds. Procedures for modifications of Au surfaces and AFM tips. AFM images and full PM-IRRAS spectra of modified surfaces. Detailed procedure for QCM measurement. A table showing ligand-receptor interaction probability. NMR, IR and MS charts. See DOI: 10.1039/c5nr01495f

  18. In situ construction of three anion-dependent cu(i) coordination networks as promising heterogeneous catalysts for azide-alkyne "click" reactions.

    PubMed

    Xu, Zhenghu; Han, Lu Lu; Zhuang, Gui Lin; Bai, Jing; Sun, Di

    2015-05-18

    Three Cu(I) coordination networks, namely, {[Cu2(bpz)2(CN)X]·CH3CN}n, (X = Cl, 1; I, 3), {[Cu6(bpz)6(CH3CN)3(CN)3Br]·2OH·14CH3CN}n, (2, bpz = 3,3',5,5'-tetramethyl-4,4'-bipyrazole), were prepared by using solvothermal method. The cyanide ligands in these networks were generated in situ by cleavage of C-C bond of MeCN under solvothermal condition. The structures of these networks are dependent on halogen anions. Complex 1 is a ladderlike structure with μ2-CN(-) as rung and μ2-bpz as armrest. The Cl(-) in 1 is at terminal position but does not extend the one-dimensional (1D) ladder to higher dimensionalities. Complex 2 is a three-dimensional (3D) framework comprised of novel planar [Cu3Br] triangle and single Cu nodes, which are extended by μ2-bpz and μ2-CN(-) to form a novel (3,9)-connected gfy network. Density functional theory calculations showed that single-electron delocalization of Br atom induces the plane structure of [Cu3Br]. Complex 3 also possesses a similar ladderlike subunit as in 1, but the I(-) acts as bidentate bridge to extend the ladder to 3D framework with a four-connected sra topology. The three networks show notable catalytic activity on the click reaction. The compared catalytic results demonstrate that complex 2 possesses the best catalysis performance among three complexes, which is ascribed to the largest solvent-accessible void (porosity: 2 (29.4%) > 1 (25.7%) > 3 (17.6%)) and the more Cu(I) active sites in 2. The present combined structure-property studies provide not only a new synthetic route to obtain a new kind of catalyst for click reaction but also the new insights on catalyst structure-function relationships. PMID:25941881

  19. In situ construction of three anion-dependent cu(i) coordination networks as promising heterogeneous catalysts for azide-alkyne "click" reactions.

    PubMed

    Xu, Zhenghu; Han, Lu Lu; Zhuang, Gui Lin; Bai, Jing; Sun, Di

    2015-05-18

    Three Cu(I) coordination networks, namely, {[Cu2(bpz)2(CN)X]·CH3CN}n, (X = Cl, 1; I, 3), {[Cu6(bpz)6(CH3CN)3(CN)3Br]·2OH·14CH3CN}n, (2, bpz = 3,3',5,5'-tetramethyl-4,4'-bipyrazole), were prepared by using solvothermal method. The cyanide ligands in these networks were generated in situ by cleavage of C-C bond of MeCN under solvothermal condition. The structures of these networks are dependent on halogen anions. Complex 1 is a ladderlike structure with μ2-CN(-) as rung and μ2-bpz as armrest. The Cl(-) in 1 is at terminal position but does not extend the one-dimensional (1D) ladder to higher dimensionalities. Complex 2 is a three-dimensional (3D) framework comprised of novel planar [Cu3Br] triangle and single Cu nodes, which are extended by μ2-bpz and μ2-CN(-) to form a novel (3,9)-connected gfy network. Density functional theory calculations showed that single-electron delocalization of Br atom induces the plane structure of [Cu3Br]. Complex 3 also possesses a similar ladderlike subunit as in 1, but the I(-) acts as bidentate bridge to extend the ladder to 3D framework with a four-connected sra topology. The three networks show notable catalytic activity on the click reaction. The compared catalytic results demonstrate that complex 2 possesses the best catalysis performance among three complexes, which is ascribed to the largest solvent-accessible void (porosity: 2 (29.4%) > 1 (25.7%) > 3 (17.6%)) and the more Cu(I) active sites in 2. The present combined structure-property studies provide not only a new synthetic route to obtain a new kind of catalyst for click reaction but also the new insights on catalyst structure-function relationships.

  20. The design and construction of a cell for the in situ monitoring of copolymerisation reactions using FT-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Haigh, J.; Brookes, A.; Hendra, P. J.; Strawn, A.; Nicholas, C.; Purbrick, M.

    1997-01-01

    The copolymerisation of styrene and vinyl imidazole was studied online using a unique Raman cell. The copolymerisation parameters, r1 and r2, were obtained and compared with values obtained from NMR and elemental analysis. The problems associated with the technique and the data processing are discussed. Although there was poor correlation between techniques it was concluded that Raman has great potential as a much faster method therefore enabling much more data to be collected and giving information on the progress of copolymerisation reactions.

  1. Techniques used to study the DNA polymerase reaction pathway

    PubMed Central

    Joyce, Catherine M.

    2009-01-01

    Summary A minimal reaction pathway for DNA polymerases was established over 20 years ago using chemical quench methods. Since that time there has been considerable interest in noncovalent steps in the reaction pathway, conformational changes involving the polymerase or its DNA substrate that may play a role in substrate specificity. Fluorescence-based assays have been devised in order to study these conformational transitions and the results obtained have added new detail to the reaction pathway. PMID:19665596

  2. Rheological study of in-situ crosslinkable hydrogels based on hyaluronanic acid, collagen and sericin.

    PubMed

    Vulpe, Raluca; Le Cerf, Didier; Dulong, Virginie; Popa, Marcel; Peptu, Catalina; Verestiuc, Liliana; Picton, Luc

    2016-12-01

    The elaboration of chemically crosslinked hydrogels based on collagen (C), hyaluronanic acid (HA) and sericin (S) with different polymer ratios was investigated by in-situ rheology. This reaction was performed via amide or ester bond reaction activated by carbodiimide, in pure water. Prior to molecule crosslinking, the rheological behaviour of the biopolymers (alone or in mixture) was characterized in a semi-dilute concentration regime. Both flow and dynamic measurements showed that uncrosslinked collagen alone appears to be rather elastic with yield stress properties, whereas uncrosslinked HA alone appears to be rather shear thinning and viscoelastic in agreement with entangled polymer behaviour. Sericin exhibited Newtonian low viscosity behaviour according to its very low molar mass. Before crosslinking, HA exhibited viscoelastic behaviour at concentrations above the critical entangled concentration (C*) in the mixtures, thus HA shows promise as a matrix for future crosslinked networks, whereas sericin did not significantly modify the rheology. During the reaction, followed by rheology, the kinetics were slower for pure HA systems compared with the mixtures (i.e., with added collagen and/or to a lesser extent sericin). At the same time, the final network of hydrogels (i.e., the elastic modulus) was more structured in the mixture based systems. This result is explained by ester bonds (the only possibility for pure HA systems), which are less favourable and reactive than amide bonds (possible with sericin and collagen). The presence of collagen in the HA matrix reinforced the hydrogel network. SEM studies confirmed the structure of the hydrogels, and in vitro degradability was globally consistent with the effect of the selected enzyme according to the hydrogel composition. All the elaborated hydrogels were non-cytotoxic in vitro. PMID:27612727

  3. Studies of hypersensitivity reactions to foods in infants and children.

    PubMed

    Bock, S A; Lee, W Y; Remigio, L K; May, C D

    1978-12-01

    In order to extend previous investigations of adverse reactions to foods performed at this institution, 68 children, aged 5 mo to 15 yr, were studied. All subjects reported a history of adverse reaction to ingestion of one or more of the 14 foods under study. Sixteen of 43 subjects, 3 yr of age or older, had 22 adverse reactions during 94 food challenges with one or more of the 14 foods. All reactions confirmed were to peanut or other nuts, milk, egg, and soy. Skin testing with 1:20 weight/volume concentrations of food extracts applied by the puncture technique produced a net wheal reaction 3 mm or greater in all subjects 3 yr of age or older in whom double-blind food challenges confirmed the history of adverse reaction. Thirteen of 25 children less than 3 yr of age manifested adverse reactions during 49 food challenges. Skin testing by puncture technique produced a net wheal 3 mm or greater in 9 children less than 3 yr of age in whom food challenge elicited a clinical response within 2 hr. One of 4 subjects less than 3 yr of age in whom the adverse reaction occurred more than 4 hr after food challenge exhibited a wheal to puncture skin test of 3 mm or greater. These studies suggest that at present double-blind food challenge is an indispensible tool for the unequivocal evaluation of adverse reactions to foods.

  4. Matrix isolation as a tool for studying interstellar chemical reactions

    NASA Technical Reports Server (NTRS)

    Ball, David W.; Ortman, Bryan J.; Hauge, Robert H.; Margrave, John L.

    1989-01-01

    Since the identification of the OH radical as an interstellar species, over 50 molecular species were identified as interstellar denizens. While identification of new species appears straightforward, an explanation for their mechanisms of formation is not. Most astronomers concede that large bodies like interstellar dust grains are necessary for adsorption of molecules and their energies of reactions, but many of the mechanistic steps are unknown and speculative. It is proposed that data from matrix isolation experiments involving the reactions of refractory materials (especially C, Si, and Fe atoms and clusters) with small molecules (mainly H2, H2O, CO, CO2) are particularly applicable to explaining mechanistic details of likely interstellar chemical reactions. In many cases, matrix isolation techniques are the sole method of studying such reactions; also in many cases, complexations and bond rearrangements yield molecules never before observed. The study of these reactions thus provides a logical basis for the mechanisms of interstellar reactions. A list of reactions is presented that would simulate interstellar chemical reactions. These reactions were studied using FTIR-matrix isolation techniques.

  5. A study to identify and compare airborne systems for in-situ measurements of launch vehicle effluents

    NASA Technical Reports Server (NTRS)

    Thomas, T. J.; Chace, A. S.

    1974-01-01

    An in-situ system for monitoring the concentration of HCl, CO, CO2, and Al2O3 in the cloud of reaction products that form as a result of a launch of solid propellant launch vehicle is studied. A wide array of instrumentation and platforms are reviewed to yield the recommended system. An airborne system suited to monitoring pollution concentrations over urban areas for the purpose of calibrating remote sensors is then selected using a similar methodology to yield the optimal configuration.

  6. In-situ RBS Studies on Dissolution of Pb Atoms from the SiO2 Surface into Water Solutions

    SciTech Connect

    Morita, K.; Yuhara, J.; Ishigami, R.; Tsuchiya, B.; Ishikawa, D.; Soda, K.; Saitoh, K.; Ohnuki, T.; Narumi, K.; Naramoto, H.; Yamamoto, S.; Aoki, Y.

    2003-08-26

    An in-situ RBS system has been developed to study the dissolution of Pb layers deposited physically on the SiO2 surface of Si(100) crystal into water solutions with different pH values. It is found that Pb atoms are not dissolved into alkaline water, but into acid water, and that the dissolution in the latter case is the zero-th order reaction kinetics and the rate constant is 0.67x1013 atoms cm-2s-1, which corresponds to 1.04x10-11 mol. cm-2s-1. The dissolution mechanism is discussed based on the experimental results.

  7. In situ ESEM study of the thermal decomposition of chrysotile asbestos in view of safe recycling of the transformation product.

    PubMed

    Gualtieri, Alessandro F; Gualtieri, Magdalena Lassinantti; Tonelli, Massimo

    2008-08-15

    The thermal transformation of asbestos into non-hazardous crystalline phases and their recycling is a promising solution for the "asbestos problem". The most common asbestos-containing industrial material produced worldwide is cement-asbestos. Knowledge of the kinetics of thermal transformation of asbestos fibers in cement-asbestos is of paramount importance for the optimization of the firing process at industrial scale. Here, environmental scanning electron microscopy (ESEM) was used for the first time to follow in situ the thermal transformation of chrysotile fibers present in cement-asbestos. It was found that the reaction kinetics of thermal transformation of chrysotile was highly slowed down in the presence of water vapor in the experimental chamber with respect to He. This was explained by chemisorbed water on the surface of the fibers which affected the dehydroxylation reaction and consequently the recrystallization into Mg-silicates. In the attempt to investigate alternative and faster firing routes for the decomposition of asbestos, a low melting glass was mixed with cement-asbestos and studied in situ to assess to which extent the decomposition of asbestos is favored. It was found that the addition of a low melting glass to cement-asbestos greatly improved the decomposition reaction and decreased the transformation temperatures. PMID:18234421

  8. The importance of fixation procedures on DNA template and its suitability for solution-phase polymerase chain reaction and PCR in situ hybridization.

    PubMed

    O'Leary, J J; Browne, G; Landers, R J; Crowley, M; Healy, I B; Street, J T; Pollock, A M; Murphy, J; Johnson, M I; Lewis, F A

    1994-04-01

    Conventional solution-phase polymerase chain reaction (PCR) and in situ PCR/PCR in situ hybridization are powerful tools for retrospective analysis of fixed paraffin wax-embedded material. Amplification failure using these techniques is now encountered in some centres using archival fixed tissues. Such 'failures' may not only be due to absent target DNA sequences in the tissues, but may be a direct effect of the type of fixative, fixation time and/or fixation temperature used. The type of nucleic acid extraction procedure applied will also influence amplification results. This is particularly true with in situ PCR/PCR in situ hybridization. To examine these effects in solution-phase PCR, beta-globin gene was amplified in 100 mg pieces of tonsillar tissue fixed in Formal saline, 10% formalin, neutral buffered formaldehyde, Carnoy's Bouin's, buffered formaldehyde sublimate, Zenker's, Helly's and glutaraldehyde at 0 to 4 degrees C, room temperature and 37 degrees C fixation temperatures and for fixation periods of 6, 24, 48 and 72 hours and 1 week. DNA extraction procedures used were simple boiling and 5 days' proteinase K digestion at 37 degrees C. Amplified product was visible primarily yet variably from tissue fixed in neutral buffered formaldehyde and Carnoy's, whereas fixation in mercuric chloride-based fixatives produced consistently negative results. Room temperature and 37 degrees C fixation temperature appeared most conducive to yielding amplifiable DNA template. Fixation times of 24 and 48 hours in neutral buffered formaldehyde and Carnoy's again favoured amplification.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Transverse flow reactor studies of the dynamics of radical reactions

    SciTech Connect

    Macdonald, R.G.

    1993-12-01

    Radical reactions are in important in combustion chemistry; however, little state-specific information is available for these reactions. A new apparatus has been constructed to measure the dynamics of radical reactions. The unique feature of this apparatus is a transverse flow reactor in which an atom or radical of known concentration will be produced by pulsed laser photolysis of an appropriate precursor molecule. The time dependence of individual quantum states or products and/or reactants will be followed by rapid infrared laser absorption spectroscopy. The reaction H + O{sub 2} {yields} OH + O will be studied.

  10. Staff reactions to challenging behaviour: an observation study.

    PubMed

    Lambrechts, Greet; Van Den Noortgate, Wim; Eeman, Lieve; Maes, Bea

    2010-01-01

    Staff reactions play an important role in the development and maintaining of clients' challenging behaviour. Because there is a paucity of research on staff reactions in naturalistic settings, this study examined sequential associations between challenging behaviour and staff reactions by means of a descriptive analysis. We analysed video recordings of the reactions of 10 staff members towards challenging behaviour of clients with severe or profound intellectual disabilities who displayed self-injurious behaviour, stereotyped behaviour and/or aggressive/destructive behaviour. As expected, the staff members used much verbal behaviours after challenging behaviour and often immediately tried to stop the challenging behaviour. Furthermore, staff often gave attention to challenging behaviour whereas offering or taking away material or tasks were less frequently observed reactions. Reactions to aggressive/destructive behaviour and self-injurious behaviour were quite similar. After stereotyped behaviour, not that many reactions occurred significantly more. Although this study has clinical implications and made a valuable contribution to research on staff reactions to challenging behaviour, more research is needed, more specifically, about the effectiveness of these staff reactions.

  11. IN SITU INFRARED STUDY OF CATALYTIC DECOMPOSITION OF NO

    SciTech Connect

    KHALID ALMUSAITEER; RAM KRISHNAMURTHY; STEVEN S.C. CHUANG

    1998-08-18

    The growing concerns for the environment and increasingly stringent standards for NO emission have presented a major challenge to control NO emissions from electric utility plants and automobiles. Catalytic decomposition of NO is the most attractive approach for the control of NO emission for its simplicity. Successful development of an effective catalyst for NO decomposition will greatly decrease the equipment and operation cost of NO control. Due to lack of understanding of the mechanism of NO decomposition, efforts on the search of an effective catalyst have been unsuccessful. Scientific development of an effective catalyst requires fundamental understanding of the nature of active site, the rate-limiting step, and an approach to prolong the life of the catalyst. Research is proposed to study the reactivity of adsorbates for the direct NO decomposition and to investigate the feasibility of two novel approaches for improving catalyst activity and resistance to sintering. The first approach is the use of silanation to stabilize metal crystallites and supports for Cu-ZSM-5 and promoted Pt catalysts; the second is utilization of oxygen spillover and desorption to enhance NO decomposition activity. An innovative infrared reactor system will be used to observe and determine the dynamic behavior and the reactivity of adsorbates during NO decomposition, oxygen spillover, and silanation. A series of experiments including X-ray diffraction, temperature programmed desorption, temperature programmed reaction, X-ray photoelectron spectroscopy will be used to characterized the catalysts. The information obtained from this study will provide a scientific basis for developing an effective catalyst for the NO decomposition under practical flue gas conditions.

  12. In Situ Infrared Study of Catalytic Decomposition of NO

    SciTech Connect

    Cher-Dip Tan; Steven S.C. Chuang

    1997-07-17

    The growing concerns for the environment and increasingly stringent standards for NO emission have presented a major challenge to control NO emmissions from electric utility plants and automobiles. Catalytic decomposition of NO is the most attractive approach for the control of NO emission for its simplicity. Successful development of an effective catalyst for NO decomposition will greatly decrease the equipment and operation cost of NO control. Due to lack of understanding of the mechanism of NO decomposition, efforts on the search of an effective catalyst have been unsuccesful. Scientific development of an effective catalyst requires fundamental understanding of the nature of active site, the rate-limiting step, and an approach to prolong the life of the catalyst. Research is proposed to study the reactivity of adsorbates for the direct NO decomposition and to investigate the feasibility of two novel approaches for improving catalyst activity and resistance to sintering. The first approach is the use of silanation to stabilize metal crystallites and supports for Cu-ZSM-5 and promoted Pt catalysts; the second is utilization of oxygen spillover and desorption to enhance NO decomposition activity. An innovative infrared reactor system will be used to observe and determine the dynamic behavior and the reactivity of adsorbates during NO decomposition, oxygen spillover, and silanation. A series of experiments including X-ray diffraction, temperature programmed desorption, temperature programmed reaction, X-ray photoelectron spectroscopy will be used to characterized the catalysts. The information obtained from this study will provide a scientific basis for developing an effective catalyst for the NO decomposition under practical flue gas conditions.

  13. High-temperature dehydration of talc: a kinetics study using in situ X-ray powder diffraction

    NASA Astrophysics Data System (ADS)

    Wang, Duojun; Yi, Li; Huang, Bojin; Liu, Chuanjiang

    2015-06-01

    High-temperature in situ X-ray powder diffraction patterns were used to study the dehydration kinetics of natural talc with a size of 10-15 µm. The talc was annealed from 1073 to 1223 K, and the variations in the characteristic peaks corresponding to talc with the time were recorded to determine the reaction progress. The decomposition of talc occurred, and peaks corresponding to talc and peaks corresponding to enstatite and quartz were observed. The enstatite and talc exhibited a topotactic relationship. The dehydration kinetics of talc was studied as a function of temperature between 1073 and 1223 K. The kinetics data could be modeled using an Avrami equation that considers nucleation and growth processes ? where n varies from 0.4 to 0.8. The rate constant (k) equation for the natural talc is ? The reaction mechanism for the dehydration of talc is a heterogeneous nucleation and growth mechanism.

  14. Electromagnetic studies of nuclear structure and reactions

    SciTech Connect

    Hersman, F.W.; Dawson, J.F.; Heisenberg, J.H.; Calarco, J.R.

    1990-06-01

    This report contains papers on the following topics: giant resonance studies; deep inelastic scattering studies; high resolution nuclear structure work; and relativistic RPA; and field theory in the Schroedinger Representation.

  15. Assessing denitrification in groundwater using natural gradient tracer tests with 15N: In situ measurement of a sequential multistep reaction

    USGS Publications Warehouse

    Smith, R.L.; Böhlke, J.K.; Garabedian, S.P.; Revesz, K.M.; Yoshinari, T.

    2004-01-01

    Denitrification was measured within a nitrate-contaminated aquifer on Cape Cod, Massachusetts, using natural gradient tracer tests with 15N nitrate. The aquifer contained zones of relatively high concentrations of nitrite (up to 77 ??M) and nitrous oxide (up to 143 ??M) and has been the site of previous studies examining ground water denitrification using the acetylene block technique. Small-scale (15-24 m travel distance) tracer tests were conducted by injecting 15N nitrate and bromide as tracers into a depth interval that contained nitrate, nitrite, nitrous oxide, and excess nitrogen gas. The timing of the bromide breakthrough curves at down-gradient wells matched peaks in 15N abundance above background for nitrate, nitrite, nitrous oxide, and nitrogen gas after more than 40 days of travel. Results were simulated with a one-dimensional transport model using linked reaction kinetics for the individual steps of the denitrification reaction pathway. It was necessary to include within the model spatial variations in background concentrations of all nitrogen oxide species. The model indicated that nitrite production (0.036-0.047 ??mol N (L aquifer)-1 d -1) was faster than the subsequent denitrification steps (0.013-0.016 ??mol N (L aquifer)-1 d-1 for nitrous oxide and 0.013-0.020 ??mol N (L aquifer)-1 d-1 for nitrogen gas) and that the total rate of reaction was slower than indicated by both acetylene block tracer tests and laboratory incubations. The rate of nitrate removal by denitrification was much slower than the rate of transport, indicating that nitrate would migrate several kilometers down-gradient before being completely consumed.

  16. In situ XPS study of methanol reforming on PdGa near-surface intermetallic phases

    PubMed Central

    Rameshan, Christoph; Stadlmayr, Werner; Penner, Simon; Lorenz, Harald; Mayr, Lukas; Hävecker, Michael; Blume, Raoul; Rocha, Tulio; Teschner, Detre; Knop-Gericke, Axel; Schlögl, Robert; Zemlyanov, Dmitry; Memmel, Norbert; Klötzer, Bernhard

    2012-01-01

    In situ X-ray photoelectron spectroscopy and low-energy ion scattering were used to study the preparation, (thermo)chemical and catalytic properties of 1:1 PdGa intermetallic near-surface phases. Deposition of several multilayers of Ga metal and subsequent annealing to 503–523 K led to the formation of a multi-layered 1:1 PdGa near-surface state without desorption of excess Ga to the gas phase. In general, the composition of the PdGa model system is much more variable than that of its PdZn counterpart, which results in gradual changes of the near-surface composition with increasing annealing or reaction temperature. In contrast to near-surface PdZn, in methanol steam reforming, no temperature region with pronounced CO2 selectivity was observed, which is due to the inability of purely intermetallic PdGa to efficiently activate water. This allows to pinpoint the water-activating role of the intermetallic/support interface and/or of the oxide support in the related supported PdxGa/Ga2O3 systems, which exhibit high CO2 selectivity in a broad temperature range. In contrast, corresponding experiments starting on the purely bimetallic model surface in oxidative methanol reforming yielded high CO2 selectivity already at low temperatures (∼460 K), which is due to efficient O2 activation on PdGa. In situ detected partial and reversible oxidative Ga segregation on intermetallic PdGa is associated with total oxidation of intermediate C1 oxygenates to CO2. PMID:22875996

  17. Xenon Implantation in Nanodiamonds: In Situ Transmission Electron Microscopy Study and Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Shiryaev, A. A.; Hinks, J.; Marks, N.; Greaves, G.; Donnelly, S.; Fisenko, A. V.; Kiwi, M.

    2016-08-01

    We present results of the first investigation of the Xe implantation process into nanodiamonds of various sizes studied in situ in transmission electron microscope (TEM), complemented by advanced molecular dynamics simulations.

  18. In situ identification of T lymphocyte subsets and HLA-DR expressing cells in the human skin tuberculin reaction.

    PubMed Central

    Scheynius, A; Klareskog, L; Forsum, U

    1982-01-01

    T lymphocyte subsets and HLA-DR expressing cells were studied with an immunohistochemical double staining technique in frozen sections of human skin 6, 48 and 96 hr after intradermal PPD injections. The number of lymphocytes reacting with monoclonal Leu 1 antibodies (all mature peripheral T cells) increased with time. The majority of the T lymphocytes at 48 and 96 hr reacted with Leu 3a ('helper/inducer' phenotype) antibodies and a few with Leu 2a ('suppressor/cytotoxic' phenotype) antibodies. Apposition of T lymphocytes of both subsets to HLA-DR expressing cells occurred in the dermis as well as in the epidermis. The study gives a morphological picture of the cell-mediated immune reactions in delayed type of hypersensitivity consistent with in vitro experiments on proliferative responses to soluble antigens. Images p328-a PMID:6751638

  19. Kinetic studies of the infrared-induced reaction between atomic chlorine and solid parahydrogen

    NASA Astrophysics Data System (ADS)

    Raston, Paul L.; Kettwich, Sharon C.; Anderson, David T.

    2015-04-01

    We present Fourier-transform infrared (FTIR) spectroscopic studies of the IR-induced Cl + H2(v = 1) → HCl + H reaction in a parahydrogen (pH2) matrix aimed at distinguishing between two proposed reactions mechanisms; direct-IR and vibron-mediated. The Cl atom reactants are produced via 355 nm in situ photolysis of a Cl2 doped pH2 matrix. After photolysis is complete, a long-pass IR filter in the FTIR beam is removed and we measure the ensuing IR-induced reaction kinetics using rapid scan FTIR spectroscopy. We follow both the decay of the Cl atom reactant and growth of the HCl product using the Cl spin-orbit (SO) + Q1(0) and HCl R1(0) transitions, respectively. We show the IR-induced reaction mechanism depends on the spectral profile of the IR radiation; for IR spectral profiles that have significant IR intensities between 4000 and 5000 cm-1 we observe first-order kinetics that are assigned to a vibron-mediated mechanism and for spectral profiles that have significant IR intensities that include the Cl SO + Q1(0) transition near 5094 cm-1 we observe bi-exponential kinetics that are dominated by the direct-IR mechanism at early reaction times. We can distinguish between the two mechanisms using the observed kinetics. We investigate the reaction kinetics for different FTIR optical setups, for a range of sample conditions, and start and stop the IR-induced reaction to investigate the importance of secondary H atom reactions. We also study the IR-induced reaction in Br/Cl co-doped pH2 samples and show the presence of the Br atom quenches the vibron-mediated reaction kinetics presumably because the Br-atoms serve as efficient vibron traps. This paper indicates that in a highly enriched pH2 matrix the H atoms that are produced by the IR-induced Cl atom reaction likely do not play a significant role in the measured reaction kinetics which implies these secondary H atom reactions are highly selective.

  20. Ultrahigh-vacuum chamber equipped with a reaction cell for studying liquid-phase catalytic reactions

    NASA Astrophysics Data System (ADS)

    Gardin, Denis E.; Somorjai, Gabor A.

    1993-05-01

    We describe the construction and operation of a liquid-phase reaction cell designed in our laboratory that is attached to an ultrahigh-vacuum (UHV) chamber equipped with the traditional surface science techniques for structure and composition analysis. The sample surface can be prepared and characterized in the UHV chamber prior to transfer in the liquid-phase reaction cell. The transfer has been designed so that there is no loss of the UHV chamber vacuum integrity, as few parts as possible come into contact with the liquid, the surface stays clean during the transfer. The liquid-phase reaction cell itself is designed to study liquid-phase hydrogenation reactions at pressures up to 2 atm and temperatures up to 70 °C. A 1-mm-diam liquid jet with a velocity up to 6 m/s is produced by a gear pump that is incident on the sample surface to allow good mass transfer at the liquid-solid interface. The progress of the reaction is followed by gas chromatography. We report the reaction rate data for the hydrogenation of cyclohexene on a platinum foil.

  1. A complex reaction time study (Sternberg) in space flight

    NASA Technical Reports Server (NTRS)

    Thornton, W.; Uri, John; Moore, Tom

    1993-01-01

    Simple and complex (Sternberg) reaction time studies were flown on three and seven day Shuttle flights in 1985. Three subjects did selftesting with an onboard handheld calculator without difficulty. There was little change in simple reaction time. One subject demonstrated a decrease in the processing rate during space motion sickness while a second exhibited an increase in complex reaction time without a change in processing rate during a period of high work load. The population was too small to demonstrate significant changes. This study demonstrates the ease and practicality of such measurements and indicates the potential value of such studies in space.

  2. Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays

    SciTech Connect

    Grunes, Jeffrey Benjamin

    2004-05-15

    In an effort to understand the molecular ingredients of catalytic activity and selectivity toward the end of tuning a catalyst for 100% selectivity, advanced nanolithography techniques were developed and utilized to fabricate well-ordered two-dimensional model catalyst arrays of metal nanostructures on an oxide support for the investigation of reaction selectivity. In-situ and ex-situ surface science techniques were coupled with catalytic reaction data to characterize the molecular structure of the catalyst systems and gain insight into hydrocarbon conversion in heterogeneous catalysis. Through systematic variation of catalyst parameters (size, spacing, structure, and oxide support) and catalytic reaction conditions (hydrocarbon chain length, temperature, pressures, and gas composition), the data presented in this dissertation demonstrate the ability to direct a reaction by rationally adjusting, through precise control, the design of the catalyst system. Electron beam lithography (EBL) was employed to create platinum nanoparticles on an alumina (Al{sub 2}O{sub 3}) support. The Pt nanoparticle spacing (100-150-nm interparticle distance) was varied in these samples, and they were characterized using x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM), both before and after reactions. The TEM studies showed the 28-nm Pt nanoparticles with 100 and 150-nm interparticle spacing on alumina to be polycrystalline in nature, with crystalline sizes of 3-5 nm. The nanoparticle crystallites increased significantly after heat treatment. The nanoparticles were still mostly polycrystalline in nature, with 2-3 domains. The 28-nm Pt nanoparticles deposited on alumina were removed by the AFM tip in contact mode with a normal force of approximately 30 nN. After heat treatment at 500 C in vacuum for 3 hours, the AFM tip, even at 4000 nN, could not remove the platinum nanoparticles. The

  3. Numerical Modeling of In-situ Reaction Barrier by Injection of Ca(OH)2 Solution for CO2 Geological Storage

    NASA Astrophysics Data System (ADS)

    Xu, T.; Ito, T.

    2008-12-01

    Containment of CO2 in the storage reservoir is a very important issue. We present here an in-situ reaction barrier method to reduce the medium permeability along potential leakage paths of a deep CO2 storage reservoir in a saline formation. An aqueous solution will be injected into the fractures and rocks through injection wells. The solution will have a low viscosity and will not impact formation permeability as long as the solution is left as it is, but when the solution encounters dissolved CO2, precipitation will occur due to chemical reaction. As a result, the permeability will be reduced by filling the pores and fractures in the rocks with the precipitates. This concept has been successfully demonstrated previously through a laboratory experiment using Ca(OH)2 solution. The reduction of permeability in the laboratory experiment has been reproduced by reactive transport modeling using TOUGHREACT. The concept of the in-situ reaction barrier has been applied to a 2-D caprock-aquifer system under field physical and chemical conditions using the modeling tool. Calcite precipitation, permeability reduction, and CO2 leakage mitigation was achieved in the numerical experiment. This concept may be also applicable to prevent the leakage through abandoned wells, to mitigate well cement degradation, and to enhance CO2 mineral trapping.

  4. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Bertram, F.; Zhang, F.; Evertsson, J.; Carlà, F.; Pan, J.; Messing, M. E.; Mikkelsen, A.; Nilsson, J.-O.; Lundgren, E.

    2014-07-01

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  5. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    SciTech Connect

    Bertram, F. Evertsson, J.; Messing, M. E.; Mikkelsen, A.; Lundgren, E.; Zhang, F.; Pan, J.; Carlà, F.; Nilsson, J.-O.

    2014-07-21

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  6. MOLAB, a Mobile Laboratory for In Situ Non-Invasive Studies in Arts and Archaeology

    NASA Astrophysics Data System (ADS)

    Brunetti, B. G.; Matteini, Mauro; Miliani, C.; Pezzati, L.; Pinna, D.

    Mobile laboratory (MOLAB) is a unique joint collection of portable equipment for non-destructive in situ measurements. MOLAB activities are carried out within the frame of the Eu-ARTECH Integrated Infrastructure Initiative of the sixth F.P. In situ measurement is quite useful because it eliminates any risk connected to moving artworks or other precious objects to a laboratory. MOLAB instruments are accessible to European researchers through a peer-review selection of proposals. Starting from July 2004, MOLAB enabled non-destructive in situ studies of many precious artworks, such as paintings by Perugino, Raphael and Leonardo.

  7. Direct studies of (α,p) reactions with HELIOS

    NASA Astrophysics Data System (ADS)

    Lai, Jianping; Blackmon, J. C.; Deibel, C. M.; Dimarco, D.; Gardiner, H.; Lauer, A.; Santiago-Gonzalez, D.; Williams, C.; Digiovine, B.; Greene, J.; Rohrer, J.; Helios Group At Argonne National Lab Collaboration

    2014-09-01

    In a variety of astrophysical processes, (α,p) type reactions have significant effects on final energy output and elemental abundances. However, only a handful of reactions have been measured due to technical limitations. Innovative new equipment and techniques, therefore, are necessary to extend measurement limits of these reactions rates. The HELIcal Orbit Spectrometer(HELIOS), serves as an important tool in studying reactions using radioactive ion beams at the Argonne Tandem Linac Accelerator System facility. With a specially designed gas target, we are able to study (α,p) reaction directly. HELIOS can separate protons from reactions with different energy states and the heavy recoils can be detected in coincidence by a high efficiency gas ionization detector. This combination has been successful in our pilot experiments. A series of (α,p) experiments using this setup in HELIOS are planned. We will start with 20Ne(α,p), which is crucial in Type Ia supernovae. A direct measurement of 30S(α,p), a key reaction in X ray burst, is also included in the near future plans and the beam development of 30S is in progress. Preliminary results will be presented. In a variety of astrophysical processes, (α,p) type reactions have significant effects on final energy output and elemental abundances. However, only a handful of reactions have been measured due to technical limitations. Innovative new equipment and techniques, therefore, are necessary to extend measurement limits of these reactions rates. The HELIcal Orbit Spectrometer(HELIOS), serves as an important tool in studying reactions using radioactive ion beams at the Argonne Tandem Linac Accelerator System facility. With a specially designed gas target, we are able to study (α,p) reaction directly. HELIOS can separate protons from reactions with different energy states and the heavy recoils can be detected in coincidence by a high efficiency gas ionization detector. This combination has been successful in our pilot

  8. In-situ photo-polymerization study of Si-(bis-GMA)/TEGDMA by correlations of PA signals

    NASA Astrophysics Data System (ADS)

    Rivera, F.; Navarrete, M.; Vera-Graziano, R.; Sobral, H.

    2005-06-01

    The photo-polymerization reaction of Si-(bis-GMA)/TEGDMA (a bis-GMA modified with silyl groups and mixed with TEDGMA) has been studied by pulsed photoacoustic (PA) and FTIR techniques. The light from a pulsed laser is focused on the surface of the sample for both to activate the chemical reaction and generate PA signals. The in-situ acquisition of the PA signals, during photo-polymerization (PP), in consecutive way, permits to follow changes in its physical properties. The structural changes during polymer formation are recovered by a numerical procedure based on correlation coefficients r_i. This numerical procedure, applied to digitally recorded PA signals, allows the construction of a PP profile dri /dT_i, and permits to detect the phase transitions during the whole process including the gel region. The obtained results are in agreement with those obtained from the FTIR analysis, under similar conditions.

  9. Site Specific Synthesis and in-situ Immobilization of Fluorescent Silver Nanoclusters on DNA Nanoscaffolds Using Tollens Reaction

    SciTech Connect

    Pal, Suchetan; Varghese, R.; Deng, Z.; Zhao, Z.; Kumar, A.; Yan, Hao; Liu, Yan

    2011-04-06

    DNA strands with specific sequences and covalently attached sugar moieties were used for the site-specific incorporation of the sugar units on a DNA origami scaffold. This approach enabled the subsequent site-specific synthesis and in situ immobilization of fluorescent Ag clusters at predefined positions on the DNA nanoscaffold by treatment with the Tollens reagent.

  10. In situ studies of microbial inactivation during high pressure processing

    NASA Astrophysics Data System (ADS)

    Maldonado, Jose Antonio; Schaffner, Donald W.; Cuitiño, Alberto M.; Karwe, Mukund V.

    2016-01-01

    High pressure processing (HPP) has been shown to reduce microbial concentration in foods. The mechanisms of microbial inactivation by HPP have been associated with damage to cell membranes. The real-time response of bacteria to HPP was measured to elucidate the mechanisms of inactivation, which can aid in designing more effective processes. Different pressure cycling conditions were used to expose Enterobacter aerogenes cells to HPP. Propidium iodide (PI) was used as a probe, which fluoresces after penetrating cells with damaged membranes and binding with nucleic acids. A HPP vessel with sapphire windows was used for measuring fluorescence in situ. Membrane damage was detected during pressurization and hold time, but not during depressurization. The drop in fluorescence was larger than expected after pressure cycles at higher pressure and longer times. This indicated possible reversible disassociation of ribosomes resulting in additional binding of PI to exposed RNA under pressure and its release after depressurization.

  11. Jet-A reaction mechanism study for combustion application

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Kundu, Krishna; Acosta, Waldo

    1991-01-01

    Simplified chemical kinetic reaction mechanisms for the combustion of Jet A fuel was studied. Initially, 40 reacting species and 118 elementary chemical reactions were chosen based on a literature review. Through a sensitivity analysis with the use of LSENS General Kinetics and Sensitivity Analysis Code, 16 species and 21 elementary chemical reactions were determined from this study. This mechanism is first justified by comparison of calculated ignition delay time with the available shock tube data, then it is validated by comparison of calculated emissions from the plug flow reactor code with in-house flame tube data.

  12. Jet-A reaction mechanism study for combustion application

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Kundu, Krishna; Acosta, Waldo

    1991-01-01

    Simplified chemical kinetic reaction mechanisms for the combustion of Jet A fuel are studied. Initially 40 reacting species and 118 elementary chemical reactions were chosen based on the literature review of previous works. Through a sensitivity analysis with the use of LSENS General Kinetics and Sensitivity Analysis Code, 16 species and 21 elementary chemical reactions were determined from this study. This mechanism is first justified by comparison of calculated ignition delay time with available shock tube data, then it is validated by comparison of calculated emissions from plug flow reactor code with in-house flame tube data.

  13. Theoretical Studies of Elementary Hydrocarbon Species and Their Reactions

    SciTech Connect

    Allen, Wesley D.; Schaefer, III, Henry F.

    2015-11-14

    This is the final report of the theoretical studies of elementary hydrocarbon species and their reactions. Part A has a bibliography of publications supported by DOE from 2010 to 2016 and Part B goes into recent research highlights.

  14. Advanced sample environments for in situ neutron diffraction studies of nuclear materials

    NASA Astrophysics Data System (ADS)

    Reiche, Helmut Matthias

    Generation IV nuclear reactor concepts, such as the supercritical-water-cooled nuclear reactor (SCWR), are actively researched internationally. Operating conditions above the critical point of water (374°C, 22.1 MPa) and fuel core temperature that potentially exceed 1850°C put a high demand on the surrounding materials. For their safe application, it is essential to characterize and understand the material properties on an atomic scale such as crystal structure and grain orientation (texture) changes as a function of temperature and stress. This permits the refinement of models predicting the macroscopic behavior of the material. Neutron diffraction is a powerful tool in characterizing such crystallographic properties due to their deep penetration depth into condensed matter. This leads to the ability to study bulk material properties, as opposed to surface effects, and allows for complex sample environments to study e.g. the individual contributions of thermo-mechanical processing steps during manufacturing, operating or accident scenarios. I present three sample environments for in situ neutron diffraction studies that provide such crystallographic information and have been successfully commissioned and integrated into the user program of the High Pressure -- Preferred Orientation (HIPPO) diffractometer at the Los Alamos Neutron Science Center (LANSCE) user facility. I adapted a sample changer for reliable and fast automated texture measurements of multiple specimens. I built a creep furnace combining a 2700 N load frame with a resistive vanadium furnace, capable of temperatures up to 1000°C, and manipulated by a pair of synchronized rotation stages. This combination allows following deformation and temperature dependent texture and strain evolutions in situ. Utilizing the presented sample changer and creep furnace we studied pressure tubes made of Zr-2.5wt%Nb currently employed in CANDURTM nuclear reactors and proposed for future SCWRs, acting as the primary

  15. Theoretical Study of Sodium-Water Surface Reaction Mechanism

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR).

  16. Rempi Studies of Molecular Reaction Dynamics.

    NASA Astrophysics Data System (ADS)

    Black, John Forbes

    Available from UMI in association with The British Library. Requires signed TDF. Resonance-Enhanced Multi-Photon Ionisation (REMPI qv.) is used to prepare and probe systems undergoing unimolecular decomposition. It is shown that the highly efficient state selective nature of the REMPI process is well suited to both highly dynamical situations such as the "A-Band" dissociation of MeI at around 280nm and to the slower "Quasi-statistical" dissociations of the mainifold of states of the MeI(+) cation. In the study of the neutral dissociation we attempt to extract the population distributions of the quantum states "by implication" as has been done previously. We demonstrate the failings of the time-of-flight technique in being unable to do this effectively. A comparison with previous studies is made. We report the first rotationally resolved spectrum of a polyatomic (N atoms > 2) photofragment (Me from the "A-Band" photodissociation of MeI) and propose a mechanism to account for the observed differences of the rotational populations in the different dissociation channels. Two-photon linestrength theory incorporating alignment effects is extended to symmetric tops to analyse the data. The pre-dissociation dynamics of a high lying Rydberg state of the methyl radical have been extracted as part of a spectroscopic study performed on CH _3 and CD_3. The dynamics are compared to existing studies on the near-neighbours NH_3 and ND_3 with some apparent correlation. In the dissociations of the A and B states of the MeI(+) cation we are able to provide some more evidence for existing ideas that the A state dissociates by rapid inter-conversion to highly excited levels of the ground state whereas the B state dissociates in a more direct manner. We identify two existing features in the REMPI spectrum of MeI in the "A-Band" region as molecular Rydberg resonances and show that an interesting competition exists between the direct photodissociation and the "virtual" state involved in

  17. [Spectrum characteristics of leaching components from co-contaminated loess in ex-situ column washing reaction].

    PubMed

    Fan, Chun-hui; Zhang, Ying-chao; Du, Bo; He, Lei; Wang, Jia-hong

    2015-02-01

    Soil contamination is regarded as one of the most serious issues to humanity all over the world. It is statistically believed that over one-fifth of the farmland, that is 20 million ha, is found to be contaminated by heavy metals in China. And the related issues, caused by soil contamination, of food safety, human health and eco-environmental quality attract much attention by public with more serious contamination than before. The technological approach for soil remediation is widely investigated. The technology of soil washing is effective for contaminants removal, while the treatment procedure might lead to component leaching from soil system, harmful for soil fertility, physicochemical properties and ecological functions. The study of spectral characteristics on leaching component is significant for decision-making of contaminated sites remediation and ecological function recovery, while the related investigation seems weaker nowadays. The paper mainly revealed the leaching characteristics of component from Pb/Cd contaminated loess in the washing process with Ethylene Diamine Tetraacetic Acid (EDTA) in reaction column, and the research objectives included base cations, loess nutrients, clay minerals and organic matter. The variation of clay minerals was analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM), and 3D-EEM fluorescence spectrum was used for the identification of dissolved organic matter (DOM). The experimental results showed: the leaching component from loess is detected in the washing reaction. The final removal efficiency (240 min) of Pb and Cd from loess are 49. 86% and 62.25%, respectively. The sodium ions and nitrate nitrogen are the most easily leaching component, and little difference of clay minerals is identified before and after washing reaction. The fulvic acid-like (FA-like) material was firstly (10 min) detected around E(ex/em) = 240-250/320-340 and E(ex/em) = 260-290/450-470 in 3D-EEM fluorescence spectrum, and the

  18. [Spectrum characteristics of leaching components from co-contaminated loess in ex-situ column washing reaction].

    PubMed

    Fan, Chun-hui; Zhang, Ying-chao; Du, Bo; He, Lei; Wang, Jia-hong

    2015-02-01

    Soil contamination is regarded as one of the most serious issues to humanity all over the world. It is statistically believed that over one-fifth of the farmland, that is 20 million ha, is found to be contaminated by heavy metals in China. And the related issues, caused by soil contamination, of food safety, human health and eco-environmental quality attract much attention by public with more serious contamination than before. The technological approach for soil remediation is widely investigated. The technology of soil washing is effective for contaminants removal, while the treatment procedure might lead to component leaching from soil system, harmful for soil fertility, physicochemical properties and ecological functions. The study of spectral characteristics on leaching component is significant for decision-making of contaminated sites remediation and ecological function recovery, while the related investigation seems weaker nowadays. The paper mainly revealed the leaching characteristics of component from Pb/Cd contaminated loess in the washing process with Ethylene Diamine Tetraacetic Acid (EDTA) in reaction column, and the research objectives included base cations, loess nutrients, clay minerals and organic matter. The variation of clay minerals was analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM), and 3D-EEM fluorescence spectrum was used for the identification of dissolved organic matter (DOM). The experimental results showed: the leaching component from loess is detected in the washing reaction. The final removal efficiency (240 min) of Pb and Cd from loess are 49. 86% and 62.25%, respectively. The sodium ions and nitrate nitrogen are the most easily leaching component, and little difference of clay minerals is identified before and after washing reaction. The fulvic acid-like (FA-like) material was firstly (10 min) detected around E(ex/em) = 240-250/320-340 and E(ex/em) = 260-290/450-470 in 3D-EEM fluorescence spectrum, and the

  19. Studies of alpha-induced astrophysical reactions at CRIB

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.; Hashimoto, T.; Hayakawa, S.; Binh, D. N.; Kahl, D.; Kubono, S.

    2010-08-01

    CRIB (CNS Radioactive Ion Beam separator ) is a low-energy RI beam separator at the Center for Nuclear Study (CNS) of the University of Tokyo. Using the RI beams at CRIB, many measurements on proton alpha resonance scatterings, (α,p) reactions, and others were performed in recent years mainly for studying astrophysical reactions and exotic nuclear structure. Among them, the results on the 7Li+α resonance scatterings are presented.

  20. Studies of alpha-induced astrophysical reactions at CRIB

    SciTech Connect

    Yamaguchi, H.; Hashimoto, T.; Hayakawa, S.; Binh, D. N.; Kahl, D.; Kubono, S.

    2010-08-12

    CRIB (CNS Radioactive Ion Beam separator) is a low-energy RI beam separator at the Center for Nuclear Study (CNS) of the University of Tokyo. Using the RI beams at CRIB, many measurements on proton alpha resonance scatterings, ({alpha},p) reactions, and others were performed in recent years mainly for studying astrophysical reactions and exotic nuclear structure. Among them, the results on the {sup 7}Li+{alpha} resonance scatterings are presented.

  1. Crossed molecular beam studies of atmospheric chemical reaction dynamics

    SciTech Connect

    Zhang, Jingsong

    1993-04-01

    The dynamics of several elementary chemical reactions that are important in atmospheric chemistry are investigated. The reactive scattering of ground state chlorine or bromine atoms with ozone molecules and ground state chlorine atoms with nitrogen dioxide molecules is studied using a crossed molecular beams apparatus with a rotatable mass spectrometer detector. The Cl + O{sub 3} {yields} ClO + O{sub 2} reaction has been studied at four collision energies ranging from 6 kcal/mole to 32 kcal/mole. The derived product center-of-mass angular and translational energy distributions show that the reaction has a direct reaction mechanism and that there is a strong repulsion on the exit channel. The ClO product is sideways and forward scattered with respect to the Cl atom, and the translational energy release is large. The Cl atom is most likely to attack the terminal oxygen atom of the ozone molecule. The Br + O{sub 3} {yields} ClO + O{sub 2} reaction has been studied at five collision energies ranging from 5 kcal/mole to 26 kcal/mole. The derived product center-of-mass angular and translational energy distributions are quite similar to those in the Cl + O{sub 3} reaction. The Br + O{sub 3} reaction has a direct reaction mechanism similar to that of the Cl + O{sub 3} reaction. The electronic structure of the ozone molecule seems to play the central role in determining the reaction mechanism in atomic radical reactions with the ozone molecule. The Cl + NO{sub 2} {yields} ClO + NO reaction has been studied at three collision energies ranging from 10.6 kcal/mole to 22.4 kcal/mole. The center-of-mass angular distribution has some forward-backward symmetry, and the product translational energy release is quite large. The reaction proceeds through a short-lived complex whose lifetime is less than one rotational period. The experimental results seem to show that the Cl atom mainly attacks the oxygen atom instead of the nitrogen atom of the NO{sub 2} molecule.

  2. Short-range plasmonic nanofocusing within submicron regimes facilitates in situ probing and promoting of interfacial reactions

    NASA Astrophysics Data System (ADS)

    Yu, Chen-Chieh; Lin, Keng-Te; Su, Pao-Yun; Wang, En-Yun; Yen, Yu-Ting; Chen, Hsuen-Li

    2016-02-01

    In this study, a simple configuration, based on high-index dielectric nanoparticles (NPs) and plasmonic nanostructures, is employed for the nanofocusing of submicron-short-range surface plasmon polaritons (SPPs). The excited SPPs are locally bound and focused at the interface between the dielectric NPs and the underlying metallic nanostructures, thereby greatly enhancing the local electromagnetic field. Taking advantage of the surface properties of the dielectric NPs, this system performs various functions. For example, the nanofocusing of submicron-short-range SPPs is used to enhance the Raman signals of gas molecules adsorbed on the dielectric NPs. In addition, the presence of the local strong electromagnetic field accelerates the rates of interfacial reactions on the surfaces of the dielectric NPs. Therefore, the proposed nanofocusing configuration can both promote and probe interfacial reactions simultaneously. Herein, the promotion and probing of the desorption of EtOH vapor are described, as well as the photodegradation of methylene blue. Moreover, the nanofocusing of SPPs is demonstrated on an aluminum surface in both the visible and UV regimes, a process that has not been achieved using conventional tapered waveguide nanofocusing structures. Therefore, the nanofocusing of submicron-short-range SPPs by dielectric NPs on plasmonic nanostructures is not limited to low-loss noble metals. Accordingly, this system has potential for use in light management and on-chip green devices and sensors.In this study, a simple configuration, based on high-index dielectric nanoparticles (NPs) and plasmonic nanostructures, is employed for the nanofocusing of submicron-short-range surface plasmon polaritons (SPPs). The excited SPPs are locally bound and focused at the interface between the dielectric NPs and the underlying metallic nanostructures, thereby greatly enhancing the local electromagnetic field. Taking advantage of the surface properties of the dielectric NPs, this

  3. In situ monitoring of brain tissue reaction of chronically implanted electrodes with an optical coherence tomography fiber system

    NASA Astrophysics Data System (ADS)

    Xie, Yijing; Hassler, Christina; Stieglitz, Thomas; Seifert, Andreas; Hofmann, Ulrich G.

    2014-03-01

    Neural microelectrodes are well established tools for delivering therapeutic electrical pulses, and recording neural electrophysiological signals. However, long term implanted neural probes often become functionally impaired by tissue encapsulation. At present, analyzing this immune reaction is only feasible with post-mortem histology; currently no means for specific in vivo monitoring exist and most applicable imaging modalities provide no sufficient resolution for a cellular measurement in deep brain regions. Optical coherence tomography (OCT) is a well developed imaging modality, providing cellular resolution and up to 1.2 mm imaging depth in brain tissue. Further more, a fiber based spectral domain OCT was shown to be capable of minimally invasive brain intervention. In the present study, we propose to use a fiber based spectral domain OCT to monitor the the progression of the tissue's immune response and scar encapsulation of microprobes in a rat animal model. We developed an integrated OCT fiber catheter consisting of an implantable ferrule based fiber cannula and a fiber patch cable. The fiber cannula was 18.5 mm long, including a 10.5 mm ceramic ferrule and a 8.0 mm long, 125 μm single mode fiber. A mating sleeve was used to fix and connect the fiber cannula to the OCT fiber cable. Light attenuation between the OCT fiber cable and the fiber cannula through the mating sleeve was measured and minimized. The fiber cannula was implanted in rat brain together with a microelectrode in sight used as a foreign body to induce the brain tissue immune reaction. Preliminary data showed a significant enhancement of the OCT backscattering signal during the brain tissue scarring process, while the OCT signal of the flexible microelectrode was getting weaker consequentially.

  4. A theoretical study of the reaction of P + with water . Potential energy surfaces and reaction dynamics

    NASA Astrophysics Data System (ADS)

    Flores, Jesús R.; Redondo, Pilar

    1994-12-01

    Accurate ab initio computations have been carried out on the minima and saddle points involved in the dynamics of the reaction of P + with water using a slightly modified version of G1 and G2 theories (J. Chem. Phys. 94 (1991) 4318). In addition, an approximate classical trajectory method and RRKM theory (Progr. Energy Combust. Sci. 18 (1992) 75) have been employed to study the dynamics of such a reaction. The results indicate that intersystem crossing must take place giving HPOH +( 1A'), which could be the intermediate responsible for the production of both PO + ( 1∑ +) + H 2( 1∑ +g) and POH + ( 2A') + H( 2S).

  5. Palladium(0)/NHC-Catalyzed Reductive Heck Reaction of Enones: A Detailed Mechanistic Study.

    PubMed

    Raoufmoghaddam, Saeed; Mannathan, Subramaniyan; Minnaard, Adriaan J; de Vries, Johannes G; Reek, Joost N H

    2015-12-14

    We have studied the mechanism of the palladium-catalyzed reductive Heck reaction of para-substituted enones with 4-iodoanisole by using N,N-diisopropylethylamine (DIPEA) as the reductant. Kinetic studies and in situ spectroscopic analysis have provided a detailed insight into the reaction. Progress kinetic analysis demonstrated that neither catalyst decomposition nor product inhibition occurred during the catalysis. The reaction is first order in the palladium and aryl iodide, and zero order in the activated alkene, N-heterocyclic carbene (NHC) ligand, and DIPEA. The experiments with deuterated solvent ([D7]DMF) and deuterated base ([D15]Et3N) supported the role of the amine as a reductant in the reaction. The palladium complex [Pd(0)(NHC)(1)] has been identified as the resting state. The kinetic experiments by stopped-flow UV/Vis also revealed that the presence of the second substrate, benzylideneacetone 1, slows down the oxidative addition of 4-iodoanisole through its competing coordination to the palladium center. The kinetic and mechanistic studies indicated that the oxidative addition of the aryl iodide is the rate-determining step. Various scenarios for the oxidative addition step have been analyzed by using DFT calculations (bp86/def2-TZVP) that supported the inhibiting effect of substrate 1 by formation of resting state [Pd(0)(NHC)(1)] species at the cost of further increase in the energy barrier of the oxidative addition step. PMID:26561034

  6. HSV hepatitis in the mouse: a light and electron microscopic study with immunohistology and in situ hybridization.

    PubMed

    Schirmacher, P; Wörsdörfer, M; Lübbe, K; Falke, D; Thoenes, W; Dienes, H P

    1989-01-01

    In order to characterize better the morphology and immune response in acute necrotizing HSV infection, murine HSV hepatitis was examined. BALB/c mice were inoculated intraperitoneally with 10(6) plaque-forming units (PFU) of HSV-1 (Lenette) and HSV-2 (D316). In both groups half the animals were pretreated with silica particles to block macrophage function. Up to 6 days after infection four mice from each group were sacrificed at daily intervals and the livers were examined by light and electron microscopy, immunohistology, in situ hybridization, combined immunohistology/in situ hybridization and titration of viral PFU. HSV-2 infected mice developed severe necrotizing hepatitis with persistence of HSV in the liver tissue until the end of the study. HSV-1 infected mice rapidly eliminated the virus and revealed only small necrotic foci. Early phase alterations and necrotic phase lesions were distinguished and characterized and morphologic evidence of a direct cytopathic effect of HSV was detected. A specific immune reaction in late stages appeared to be mediated by T4-positive T-lymphocytes. In situ hybridization and immunohistochemistry showed a close correlation with virus titration and were valuable in characterizing early phases and in the assessment of prognosis and differential diagnosis.

  7. In Situ Infrared Spectroscopic Study of Forsterite Carbonation in Wet Supercritical CO2

    SciTech Connect

    Loring, John S.; Thompson, Christopher J.; Wang, Zheming; Joly, Alan G.; Sklarew, Deborah S.; Schaef, Herbert T.; Ilton, Eugene S.; Rosso, Kevin M.; Felmy, Andrew R.

    2011-07-19

    Carbonation reactions are central to the prospect of CO2 trapping by mineralization in geologic reservoirs. In contrast to the relevant aqueous-mediated reactions, little is known about the propensity for carbonation in the long-term partner fluid: water-containing supercritical carbon dioxide (‘wet’ scCO2). We employed in situ mid-infrared spectroscopy to follow the reaction of a model silicate mineral (forsterite, Mg2SiO4) for 24 hr with wet scCO2 at 50°C and 180 atm, using water concentrations corresponding to 0%, 55%, 95%, and 136% saturation. Results show a dramatic dependence of reactivity on water concentration and the presence of liquid water on the forsterite particles. Exposure to neat scCO2 showed no detectable carbonation reaction. At 55% and 95% water saturation, a liquid-like thin water film was detected on the forsterite particles; less than 1% of the forsterite transformed, mostly within the first 3 hours of exposure to the fluid. At 136% saturation, where an (excess) liquid water film approximately several nanometers thick was intentionally condensed on the forsterite, the carbonation reaction proceeded continuously for 24 hr with 10% to 15% transformation. Our collective results suggest constitutive links between water concentration, water film formation, reaction rate and extent, and reaction products in wet scCO2.

  8. Experimental studies of reactions relevant for γ-process nucleosynthesis

    SciTech Connect

    Scholz, P.; Endres, J.; Hennig, A.; Mayer, J.; Netterdon, L.; Zilges, A.; Sauerwein, A.

    2014-05-09

    We report on our recent experimental studies of reactions relevant for the γ process nucleosynthesis. Applying the activation method using the Cologne Clover Counting Setup total cross sections of the reactions {sup 168}Yb(α,γ), {sup 168}Yb(α,n), and {sup 187}Re(α,n) could be obtained. Furthermore, the reaction {sup 89}Y(p,γ) was investigated via the in-beam technique with HPGe detectors at the high-efficiency g-ray spectrometer HORUS in Cologne in order to determine partial and total cross sections.

  9. Alterations in juvenile flatfish gill epithelia induced by sediment-bound toxicants: A comparative in situ and ex situ study.

    PubMed

    Martins, Carla; Alves de Matos, António P; Costa, Maria H; Costa, Pedro M

    2015-12-01

    Juvenile Solea senegalensis were exposed in the laboratory (ex situ) and field (in situ) to different sediments of a moderately impacted estuary (the Sado, Portugal) for 28 days. A qualitative histopathological screening yielded scant lesions to gills, albeit alterations such as epithelial hyperplasia being evident and more frequent in fish exposed ex situ. Fully quantitative traits, namely chloride and goblet cell count and size revealed differences between the two bioassay approaches, with ex situ experiments likely enhancing bioavailability of toxicants. Chloride cells endured autolytic processes that could, at least in part, relate to contamination by mixed metals and polycyclic aromatic hydrocarbons (PAHs). Goblet cells did not reveal changes in the chemistry of mucous. Still, their number and size was reduced in fish exposed ex situ to the sediments most contaminated by PAHs, with evidence for adaptation. Also, copper histochemistry revealed the potential role of mucocytes in the regulation of metals.

  10. Alterations in juvenile flatfish gill epithelia induced by sediment-bound toxicants: A comparative in situ and ex situ study.

    PubMed

    Martins, Carla; Alves de Matos, António P; Costa, Maria H; Costa, Pedro M

    2015-12-01

    Juvenile Solea senegalensis were exposed in the laboratory (ex situ) and field (in situ) to different sediments of a moderately impacted estuary (the Sado, Portugal) for 28 days. A qualitative histopathological screening yielded scant lesions to gills, albeit alterations such as epithelial hyperplasia being evident and more frequent in fish exposed ex situ. Fully quantitative traits, namely chloride and goblet cell count and size revealed differences between the two bioassay approaches, with ex situ experiments likely enhancing bioavailability of toxicants. Chloride cells endured autolytic processes that could, at least in part, relate to contamination by mixed metals and polycyclic aromatic hydrocarbons (PAHs). Goblet cells did not reveal changes in the chemistry of mucous. Still, their number and size was reduced in fish exposed ex situ to the sediments most contaminated by PAHs, with evidence for adaptation. Also, copper histochemistry revealed the potential role of mucocytes in the regulation of metals. PMID:26518455

  11. In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework.

    PubMed

    Katsenis, Athanassios D; Puškarić, Andreas; Štrukil, Vjekoslav; Mottillo, Cristina; Julien, Patrick A; Užarević, Krunoslav; Pham, Minh-Hao; Do, Trong-On; Kimber, Simon A J; Lazić, Predrag; Magdysyuk, Oxana; Dinnebier, Robert E; Halasz, Ivan; Friščić, Tomislav

    2015-03-23

    Chemical and physical transformations by milling are attracting enormous interest for their ability to access new materials and clean reactivity, and are central to a number of core industries, from mineral processing to pharmaceutical manufacturing. While continuous mechanical stress during milling is thought to create an environment supporting nonconventional reactivity and exotic intermediates, such speculations have remained without proof. Here we use in situ, real-time powder X-ray diffraction monitoring to discover and capture a metastable, novel-topology intermediate of a mechanochemical transformation. Monitoring the mechanochemical synthesis of an archetypal metal-organic framework ZIF-8 by in situ powder X-ray diffraction reveals unexpected amorphization, and on further milling recrystallization into a non-porous material via a metastable intermediate based on a previously unreported topology, herein named katsenite (kat). The discovery of this phase and topology provides direct evidence that milling transformations can involve short-lived, structurally unusual phases not yet accessed by conventional chemistry.

  12. In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework

    NASA Astrophysics Data System (ADS)

    Katsenis, Athanassios D.; Puškarić, Andreas; Štrukil, Vjekoslav; Mottillo, Cristina; Julien, Patrick A.; Užarević, Krunoslav; Pham, Minh-Hao; Do, Trong-On; Kimber, Simon A. J.; Lazić, Predrag; Magdysyuk, Oxana; Dinnebier, Robert E.; Halasz, Ivan; Friščić, Tomislav

    2015-03-01

    Chemical and physical transformations by milling are attracting enormous interest for their ability to access new materials and clean reactivity, and are central to a number of core industries, from mineral processing to pharmaceutical manufacturing. While continuous mechanical stress during milling is thought to create an environment supporting nonconventional reactivity and exotic intermediates, such speculations have remained without proof. Here we use in situ, real-time powder X-ray diffraction monitoring to discover and capture a metastable, novel-topology intermediate of a mechanochemical transformation. Monitoring the mechanochemical synthesis of an archetypal metal-organic framework ZIF-8 by in situ powder X-ray diffraction reveals unexpected amorphization, and on further milling recrystallization into a non-porous material via a metastable intermediate based on a previously unreported topology, herein named katsenite (kat). The discovery of this phase and topology provides direct evidence that milling transformations can involve short-lived, structurally unusual phases not yet accessed by conventional chemistry.

  13. Study of multi-nucleon transfer reactions with light nuclei

    SciTech Connect

    Benzoni, G.; Montanari, D.; Bracco, A.; Blasi, N.; Camera, F.; Crespi, F. C. L.; Corsi, A.; Leoni, S.; Million, B.; Nicolini, R.; Wieland, O.; Zalite, A.; Zocca, F.; Azaiez, F.; Franchoo, S.; Stefan, I.; Ibrahim, F.; Verney, D.; Battacharyya, S.; De France, G.

    2008-05-12

    Multi-nucleon transfer reactions are useful tools to populate exotic nuclei, particularly the neutron-rich ones. In this view, two different experiments have been performed employing a stable ({sup 22}Ne) and a radioactive ({sup 24}Ne) beam, both impinging on a {sup 208}Pb target. The first reaction has been studied using the CLARA-PRISMA-DANTE set-up at Laboratori Nazionali di Legnaro (Legnaro-Italy), while the second reaction was performed at Ganil (Caen-France) employing a SPIRAL radioactive beam of {sup 24}Ne. In this case recoils and coincident {gamma} rays were detected with the VAMOS-EXOGAM set-up.The data show that MNT reactions can selectively populate states of different nature and, therefore, are a good tool to study nuclear structure further away from stability.

  14. In-situ fiber-optic Raman study of emulsion polymerization

    SciTech Connect

    Al-Khanbashi, A.S.; Hansen, M.G.; Wachter, E.A.

    1996-12-31

    Emulsion polymerization is a major commercial process for the production of various polymers. The unique nature of the reaction offers the possibility of producing products with special properties not easily made by other types of polymerization process. The reaction is heterogeneous, with the reactants and products dispersed as a separate phase in the main aqueous medium. Since water is a weak Raman scatterer and does not interfere with the analytical peak of the reactant, Raman scattering should be an effective method for in-line monitoring of the reaction progress. Recent advances in fiber-optic Raman have attracted great attention in developing methods for monitoring chemical processes in remote and hostile environments. This work describes in-situ monitoring of the emulsion polymerization of vinyl acetate using remote Raman spectroscopy.

  15. Reaction mechanism and product branching ratios of the CH + C₃H₈ reaction: a theoretical study.

    PubMed

    Ribeiro, Joao Marcelo; Mebel, Alexander M

    2014-10-01

    The C4H9 potential energy surface accessed by the reaction of methylidyne radical, CH (X(2)Π), with propane, C3H8, including possible intermediates, transition states and dissociation products, has been studied by ab initio and density functional calculations at the CCSD(T)/CBS//B3LYP/6-311G(d,p) level of theory. The computed relative energies and molecular parameters were utilized to calculate collision-energy-dependent unimolecular rate constants at the zero-pressure limit for isomerization and dissociation channels of the C4H9 adducts formed in the entrance reaction channels. The rate constants were used to evaluate the product branching ratios in the CH + C3H8 reaction under single-collision conditions. The results show that the reaction can produce mostly ethene (C2H4) + ethyl radical (C2H5) and propene (C3H6) + methyl radical (CH3), and up to 14% of various butene isomers (C4H8) + H. The product branching ratios are sensitive to the initial reaction adduct (a butyl radical, C4H9) formed in the entrance channels via barrierless insertion of the CH radical into the terminal and middle C-H bonds of propane or, possibly, into the single C-C bonds. A more definite answer on relative contributions of various available CH insertion channels can be obtained through ab initio quasiclassical trajectory calculations, which are proposed for the future. The results allowed us to conclude that the CH + C3H8 reaction does not result in major amounts in the direct growth of the carbon-skeleton to four-carbon C4H8 products via the CH-for-H exchange because C-C bond cleavages in C4H9 radicals are generally more preferable than C-H bond cleavages.

  16. Ex situ scanning force microscopic observation of growth and dissolution phenomena on {0 1 0} surfaces of potassium hydrogen phthalate crystals (KAP) caused by isomorphic exchange reactions

    NASA Astrophysics Data System (ADS)

    Woensdregt, Cornelis F.; Glikin, Arkady E.

    2005-10-01

    Ex situ scanning force microscopic observations reveal characteristic phenomena of growth and dissolution on {0 1 0} surfaces of potassium hydrogen phthalate crystals (KHC 8H 4O 4 or KAP) in contact with a saturated solution of rubidium hydrogen phthalate (RbHC 8H 4O 4 or RbAP) due to an isomorphic exchange reaction. An array of small torpedo-shaped inclusions elongated parallel to the crystallographic c-axis covers the initially smooth cleaved surfaces in less than 1 s. Even in such a short time, almost simultaneous very tiny acicular crystals crystallize parallel to the borders of the elongated etch pits. Moreover, protuberances on the step edges of these etch pits and isometric crystals on the surface are formed as well. When KAP {0 1 0} surfaces are wetted during 10 s with a saturated solution of RbAP, these phenomena are much better visible. After 15 s of wetting numerous elongated crystals cover the surface and the channels. After 30 s, the {0 1 0} surface becomes almost too rough for SFM observations since the etch pits are overgrown by precipitates. These phenomena of nearly simultaneous dissolution and consequent crystallization are the initial stages of the monocrystalline isomorphic exchange process on nanometric scale. It is a very fast process, which unfortunately could not be followed in situ. Our observations corroborate the importance of the volume effect on the isomorphic exchange reactions.

  17. In situ SEM observation of the Si negative electrode reaction in an ionic-liquid-based lithium-ion secondary battery.

    PubMed

    Tsuda, Tetsuya; Kanetsuku, Tsukasa; Sano, Teruki; Oshima, Yoshifumi; Ui, Koichi; Yamagata, Masaki; Ishikawa, Masashi; Kuwabata, Susumu

    2015-06-01

    By exploiting characteristics such as negligible vapour pressure and ion-conductive nature of an ionic liquid (IL), we established an in situ scanning electron microscope (SEM) method to observe the electrode reaction in the IL-based Li-ion secondary battery (LIB). When 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)amide ([C2mim][FSA]) with lithium bis(trifluoromethanesulfonyl)amide (Li[TFSA]) was used as the electrolyte, the Si negative electrode exhibited a clear morphology change during the charge process, without any solid electrolyte interphase (SEI) layer formation, while in the discharge process, the appearance was slightly changed, suggesting that a morphology change is irreversible in the charge-discharge process. On the other hand, the use of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([C2mim][TFSA]) with Li[TFSA] did not induce a change in the Si negative electrode. It is interesting to note this distinct contrast, which could be attributed to SEI layer formation from the electrochemical breakdown of [C2mim](+) at the Si negative electrode|separator interface in the [C2mim][TFSA]-based LIB. This in situ SEM observation technique could reveal the effect of the IL species electron-microscopically on the Si negative electrode reaction.

  18. Recent Direct Reaction Experimental Studies with Radioactive Tin Beams

    SciTech Connect

    Jones, K. L.; Ahn, S.; Allmond, J. M.; Ayres, A.; Bardayan, D. W.; Baugher, T.; Bazin, D.; Berryman, J. S.; Bey, A.; Bingham, C.; Cartegni, L.; Cerizza, G.; Chae, K. Y.; Cizewski, J. A.; Gade, A.; Galindo-Uribarri, A.; Garcia-Ruiz, R. F.; Grzywacz, R.; Howard, M. E.; Kozub, R. L.; Liang, J. F.; Manning, B.; Matoš, M.; McDaniel, S.; Miller, D.; Nesaraja, C. D.; O'Malley, P. D.; Padgett, S.; Padilla-Rodal, E.; Pain, S. D.; Pittman, S. T.; Radford, D. C.; Ratkiewicz, A.; Schmitt, K. T.; Shore, A.; Smith, M. S.; Stracener, D. W.; Stroberg, S. R.; Tostevin, J.; Varner, R. L.; Weisshaar, D.; Wimmer, K.; Winkler, R.

    2015-01-01

    Direct reaction techniques are powerful tools to study the single-particle nature of nuclei. Performing direct reactions on short-lived nuclei requires radioactive ion beams produced either via fragmentation or the Isotope Separation OnLine (ISOL) method. Some of the most interesting regions to study with direct reactions are close to the magic numbers where changes in shell structure can be tracked. These changes can impact the final abundances of explosive nucleosynthesis. The structure of the chain of tin isotopes is strongly influenced by the Z = 50 proton shell closure, as well as the neutron shell closures lying in the neutron-rich, N = 82, and neutron-deficient, N = 50, regions. Here, we present two examples of direct reactions on exotic tin isotopes. The first uses a one-neutron transfer reaction and a low-energy reaccelerated ISOL beam to study states in Sn-131 from across the N = 82 shell closure. The second example utilizes a one-neutron knockout reaction on fragmentation beams of neutron-deficient Sn-106,108Sn. In conclusion, In both cases, measurements of γ rays in coincidence with charged particles proved to be invaluable.

  19. Recent Direct Reaction Experimental Studies with Radioactive Tin Beams

    DOE PAGES

    Jones, K. L.; Ahn, S.; Allmond, J. M.; Ayres, A.; Bardayan, D. W.; Baugher, T.; Bazin, D.; Berryman, J. S.; Bey, A.; Bingham, C.; et al

    2015-01-01

    Direct reaction techniques are powerful tools to study the single-particle nature of nuclei. Performing direct reactions on short-lived nuclei requires radioactive ion beams produced either via fragmentation or the Isotope Separation OnLine (ISOL) method. Some of the most interesting regions to study with direct reactions are close to the magic numbers where changes in shell structure can be tracked. These changes can impact the final abundances of explosive nucleosynthesis. The structure of the chain of tin isotopes is strongly influenced by the Z = 50 proton shell closure, as well as the neutron shell closures lying in the neutron-rich, Nmore » = 82, and neutron-deficient, N = 50, regions. Here, we present two examples of direct reactions on exotic tin isotopes. The first uses a one-neutron transfer reaction and a low-energy reaccelerated ISOL beam to study states in Sn-131 from across the N = 82 shell closure. The second example utilizes a one-neutron knockout reaction on fragmentation beams of neutron-deficient Sn-106,108Sn. In conclusion, In both cases, measurements of γ rays in coincidence with charged particles proved to be invaluable.« less

  20. Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph

    2010-01-01

    The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.

  1. Experimental study on neptunium migration under in situ geochemical conditions

    NASA Astrophysics Data System (ADS)

    Kumata, M.; Vandergraaf, T. T.

    1998-12-01

    Results are reported for migration experiments performed with Np under in situ geochemical conditions over a range of groundwater flow rates in columns of crushed rock in a specially designed facility at the 240-level of the Underground Research Laboratory (URL) near Pinawa, Manitoba, Canada. This laboratory is situated in an intrusive granitic rock formation, the Lac du Bonnet batholith. Highly altered granitic rock and groundwater were obtained from a major subhorizontal fracture zone at a depth of 250 m in the URL. The granite was wet-crushed and wet-sieved with groundwater from this fracture zone. The 180-850-μm size fraction was selected and packed in 20-cm long, 2.54-cm in diameter Teflon™-lined stainless steel columns. Approximately 30-ml vols of groundwater containing 3HHO and 237Np were injected into the columns at flow rates of 0.3, 1, and 3 ml/h, followed by elution with groundwater, obtained from the subhorizontal fracture, at the same flow rates, for a period of 95 days. Elution profiles for 3HHO were obtained, but no 237Np was detected in the eluted groundwater. After terminating the migration experiments, the columns were frozen, the column material was removed and cut into twenty 1-cm thick sections and each section was analyzed by gamma spectrometry. Profiles of 237Np were obtained for the three columns. A one-dimensional transport model was fitted to the 3HHO breakthrough curves to obtain flow parameters for this experiment. These flow parameters were in turn applied to the 237Np concentration profiles in the columns to produce sorption and dispersion coefficients for Np. The results show a strong dependence of retardation factors ( Rf) on flow rate. The decrease in the retarded velocity of the neptunium ( Vn) varied over one order of magnitude under the geochemical conditions for these experiments.

  2. Revealing Stepwise Mechanisms in Dipolar Cycloaddition Reactions: Computational Study of the Reaction between Nitrones and Isocyanates.

    PubMed

    Darù, Andrea; Roca-López, David; Tejero, Tomás; Merino, Pedro

    2016-01-15

    The mechanism of cycloaddition reactions of nitrones with isocyanates has been studied using density functional theory (DFT) methods at the M06-2X/cc-pVTZ level of theory. The exploration of the potential energy surfaces associated with two reactive channels leading to 1,2,4-oxadiazolidin-5-ones and 1,4,2-dioxazolidines revealed that the cycloaddition reaction takes place through a concerted mechanism in gas phase and in apolar solvents but a stepwise mechanism in polar solvents. In stepwise mechanisms, the first step of the reaction is a rare case in which the nitrone oxygen acts as a nucleophile by attacking the central carbon atom of the isocyanate (interacting with the π-system of the C═O bond) to give an intermediate. The corresponding transition structure is stabilized by an attractive electrostatic interaction favored in a polar medium. The second step of the reaction is the rate-limiting one in which the formation of 1,2,4-oxadiazolidin-5-ones or 1,4,2-dioxazolidines is decided. Calculations indicate that formation of 1,2,4-oxadiazolidin-5-ones is favored both kinetically and thermodynamically independently of the solvent, in agreement with experimental observations. Noncovalent interactions (NCI) and topological analysis of the gradient field of electron localization function (ELF) bonding confirmed the observed interactions.

  3. Revealing Stepwise Mechanisms in Dipolar Cycloaddition Reactions: Computational Study of the Reaction between Nitrones and Isocyanates.

    PubMed

    Darù, Andrea; Roca-López, David; Tejero, Tomás; Merino, Pedro

    2016-01-15

    The mechanism of cycloaddition reactions of nitrones with isocyanates has been studied using density functional theory (DFT) methods at the M06-2X/cc-pVTZ level of theory. The exploration of the potential energy surfaces associated with two reactive channels leading to 1,2,4-oxadiazolidin-5-ones and 1,4,2-dioxazolidines revealed that the cycloaddition reaction takes place through a concerted mechanism in gas phase and in apolar solvents but a stepwise mechanism in polar solvents. In stepwise mechanisms, the first step of the reaction is a rare case in which the nitrone oxygen acts as a nucleophile by attacking the central carbon atom of the isocyanate (interacting with the π-system of the C═O bond) to give an intermediate. The corresponding transition structure is stabilized by an attractive electrostatic interaction favored in a polar medium. The second step of the reaction is the rate-limiting one in which the formation of 1,2,4-oxadiazolidin-5-ones or 1,4,2-dioxazolidines is decided. Calculations indicate that formation of 1,2,4-oxadiazolidin-5-ones is favored both kinetically and thermodynamically independently of the solvent, in agreement with experimental observations. Noncovalent interactions (NCI) and topological analysis of the gradient field of electron localization function (ELF) bonding confirmed the observed interactions. PMID:26682934

  4. Synthesis and structural characterization of three copper coordination polymers with pyridine derivatives from hydro(solvo)thermal in situ decarboxylation reactions of 2,5-dicarboxylpyridine

    SciTech Connect

    Hou Qin; Xu Jianing; Yu Jiehui; Wang Tiegang; Yang Qingfeng; Xu Jiqing

    2010-07-15

    The hydro(solvo)thermal self-assembles of CuI, KI and 2,5-dicarboxylpyridine [2,5-(COOH){sub 2}py] in different molar ratios in H{sub 2}O/alcohol solutions produced three Cu coordination polymers as 2-D [N-C{sub 2}H{sub 5}py][Cu{sub 3}I{sub 4}] 1, 1-D [N-CH{sub 3}py][Cu{sub 2}I{sub 3}] 2 as well as 1-D [Cu(2-COOpy){sub 2}]{center_dot}H{sub 2}O 3 (N-C{sub 2}H{sub 5}py=N-ethylpyridine, N-CH{sub 3}py=N-methylpyridine, 2-COOpy=2-carboxylpyridine). N-C{sub 2}H{sub 5}py in 1 and N-CH{sub 3}py in 2 derived from the solvothermal in situ simultaneous decarboxylation and N-alkylation reactions of 2,5-(COOH){sub 2}py. The semi-decarboxylation reaction of 2,5-(COOH){sub 2}py into 2-COOpy occurred in the preparation of 3. X-ray single-crystal analysis revealed that CuI is transformed into a 2-D [Cu{sub 3}I{sub 4}]{sup -} layer in compound 1 and a 1-D chain in compound 2, templated by [N-C{sub 2}H{sub 5}py]{sup +} and [N-CH{sub 3}py]{sup +}, respectively. Compound 3 is a divalent Cu compound. The Cu(II) centers with a 4+2 geometry are coordinated by {mu}{sub 3}-mode 2-COOpy ligands. All of the title compounds were characterized by CHN analysis, IR spectrum analysis and TG analysis. Compounds 1 and 2 exhibit fluorescence properties with the maximum emissions at 581 nm for 1 and 537 nm for 2. - Graphical abstract: Three compounds were obtained via in situ metal-ligand hydro(solvo)thermal reactions of 2,5-(cooh){sub 2}py with cui. Three types of in situ reactions occurred for 2,5-(cooh){sub 2}py: decarboxylation n-ethylated in 1, n-methylated in 2 and semi-decarboxylation in 3.

  5. Study of transfer and breakup reactions with the plastic box

    SciTech Connect

    Stokstad, R.G.; Albiston, C.R.; Bantel, M.; Chan, Y.; Countryman, P.J.; Gazes, S.; Harvey, B.G.; Homeyer, H.; Murphy, M.J.; Tserruya, I.

    1984-12-01

    The study of transfer reactions with heavy-ion projectiles is complicated by the frequent presence of three or more nuclei in the final state. One prolific source of three-body reactions is the production of a primary ejectile in an excited state above a particle threshold. A subset of transfer reactions, viz., those producing ejectiles in bound states, can be identified experimentally. This has been accomplished with a 4..pi.. detector constructed of one-millimeter-thick scintillator paddles of dimension 20 cm x 20 cm. The paddles are arranged in the form of a cube centered around the target with small entrance and exit apertures for the beam and the projectile-like fragments, (PLF). The detection of a light particle (e.g., a proton or an alpha particle) in coincidence with a PLF indicates a breakup reaction. The absence of any such coincidence indicates a reaction in which all the charge lost by the projectile was transferred to the target. With this technique we have studied the transfer and breakup reactions induced by 220 and 341 MeV /sup 20/Ne ions on a gold target. Ejectiles from Li to Ne have been measured at several scattering angles. The absolute cross sections, angular distributions and energy spectra for the transfer and breakup reactions are presented. Relatively large cross sections are observed for the complete transfer of up to seven units of charge (i.e., a nitrogen nucleus). The relatively large probabilities for ejectiles to be produced in particle-bound states suggest that on the average, most of the excitation energy in a collision resides in the heavy fragment when mass is transferred from the lighter to the heavier fragment. The gross features and trends in the energy spectra for transfer and breakup reactions are similar. 20 references.

  6. Platinum-cobalt catalysts for the oxygen reduction reaction in high temperature proton exchange membrane fuel cells - Long term behavior under ex-situ and in-situ conditions

    NASA Astrophysics Data System (ADS)

    Schenk, Alexander; Grimmer, Christoph; Perchthaler, Markus; Weinberger, Stephan; Pichler, Birgit; Heinzl, Christoph; Scheu, Christina; Mautner, Franz-Andreas; Bitschnau, Brigitte; Hacker, Viktor

    2014-11-01

    Platinum cobalt catalysts (Pt-Co) have attracted much interest as cathode catalysts for proton exchange membrane fuel cells (PEMFCs) due to their high activity toward oxygen reduction reaction (ORR). Many of the reported catalysts show outstanding performance in ex-situ experiments. However, the laborious synthesis protocols of these Pt-Co catalysts disable an efficient and economic production of membrane electrode assemblies (MEAs). We present an economic, flexible and continuous Pt-M/C catalyst preparation method as part of a large scale membrane electrode assembly manufacturing. In comparison, the as-prepared Pt-Co/C based high temperature (HT)-PEM MEA showed an equal performance to a commercially available HT-PEM MEA during 600 h of operation under constant load, although the commercial one had a significantly higher Pt loading at the cathode.

  7. Time-resolved infrared absorption studies of the dynamics of radical reactions.

    SciTech Connect

    Macdonald, R. G.

    2008-01-01

    There is very little information available about the dynamics of radical+radical interactions. These processes are important in combustion being chain termination steps as well as generating new molecular species. To study these processes, a new experimental apparatus has been constructed to investigate radical-radical dynamics. The first radical or atomic species is produced with a known concentration in a microwave discharge flow system. The second is produced by pulsed laser photolysis of a suitable photolyte. The time dependence of individual rovibrational states of the product is followed by absorption of a continuous infrared laser. This approach will allow the reaction of interest to be differentiated from other radical reactions occurring simultaneously. The experimental approach is highly versatile, being able to detect a number of molecular species of particular interest to combustion processes such as water, methane, acetylene etc. at the state specific level. State specific infrared absorption coefficients of radicals can be measured in situ allowing for the determination of the absolute concentrations and hence branching ratios for reactions having multiple reaction pathways.

  8. Study of solid/gas phase photocatalytic reactions by electron ionization mass spectrometry.

    PubMed

    Nuño, Manuel; Ball, Richard J; Bowen, Chris R

    2014-08-01

    This paper describes a novel methodology for the real-time study of solid-gas phase photocatalytic reactions in situ. A novel reaction chamber has been designed and developed to facilitate the investigation of photoactive materials under different gas compositions. UV irradiation in the wavelength of ranges 376-387 and 381-392 nm was provided using specially designed high efficiency light emitting diode arrays. The experiments used air containing 190 ppm NO2 in a moist environment with a relative humidity of 0.1%. Photocatalytic samples consisting of pressed pellets of rutile and anatase crystalline forms of TiO2 were monitored over a period of 150 min. An ultra-high vacuum right angled bleed valve allowed a controlled flow of gas from the main reaction chamber at atmospheric pressure to a residual gas analyser operating at a vacuum of 10(-5)  mbar. The apparatus and methodology have been demonstrated to provide high sensitivity (ppb). The rate of degradation of NO2 attributed to reaction at the TiO2 surface was sensitive to both crystal structures (anatase or rutile) and wavelength of irradiation.

  9. Structural characterizaiton and gas reactions of small metal particles by high-resolution, in-situ TEM and TED

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The existing in-situ transmission electron microscopy (TEM) facility was improved by adding a separately pumped mini-specimen chamber. The chamber contains wire-evaporation sources for three metals and a specimen heater for moderate substrate temperatures. A sample introduction device was constructed, installed, and tested, facilitating rapid introduction of a specimen into the mini-chamber while maintaining the background pressure in that chamber in the 10(-9) millibar range. Small particles and clusters of Pd, grown by deposition from the vapor phase in an in-situ TEM facility on amorphous and crystalline support films of alumina and on ultra-thin carbon films, were analyzed by conventional high-resolution TEM and image analysis in terms of detectability, number density, and size distribution. The smallest particles that could be detected and counted contained no more than 6 atoms; size determinations could be made for particles 1 nm in diameter. The influence of various oxygen plasma treatments, annealing treatments, and of increasing the substrate temperature during deposition was investigated. The TEM technique was employed to demonstrate that under otherwise identica l conditions the lattice parameter of Pd particles in the 1 to 2 nm size range and supported in random orientation on ex-situ prepared mica films is expanded by some 3% when compared to 5 nm size particles. It is believed that this expansion is neither a small-particle diffraction effect nor due to pseudomorphism, but that it is due to a annealing-induced transformation of the small as-deposited particles with predominantly composite crystal structures into larger particles with true f.c.c. structure and thus inherently smaller lattice parameter.

  10. Studies of complex fragment emission in heavy ion reactions

    SciTech Connect

    Charity, R.J.; Sobotka, L.G.

    1992-01-01

    Our work involves the study of intermediate energy heavy-ion nuclear reactions. This work has two foci. On the one hand, we desire to learn about the properties of nuclear matter under abnormal conditions, in this energy domain, predominately low densities. This purpose runs abreast of the second, which is the study of the relevant reaction mechanisms. The two objectives are inexorably linked because our experimental laboratory for studying nuclear matter properties is a dynamic one. We are forced to ask how nuclear matter properties, such as phase transitions, are reflected in the dynamics of the reactions. It may be that irrefutable information about nuclear matter will not be extracted from the reaction work. Nevertheless, we are compelled to undertake this effort not only because it is the only game in town and as yet we do not know that information cannot be extracted, but also because of our second objective. The process leads to an understanding of the reaction mechanism themselves and therefore to the response characteristics of finite, perhaps non-equilibrium, strongly interacting systems. Our program has been: To study energy, mass, and angular momentum deposition by studying incomplete fusion reactions. To gain confidence that we understand how highly excited systems decompose by studying all emissions from the highly excited systems. To push these kinds of studies into the intermediate energy domain, with excitation function studies. And attempt to learn about the dynamics of the decays using particle-particle correlations. In the last effort, we have decided to focus on simple systems, where we believe, definitive statements are possible. These avenues of research share a common theme, large complex fragment production.

  11. In situ microliter-droplet anodic stripping voltammetry of copper stained on the gold label after galvanic replacement reaction enlargement for ultrasensitive immunoassay of proteins.

    PubMed

    Qin, Xiaoli; Xu, Aigui; Wang, Linchun; Liu, Ling; Chao, Long; He, Fang; Tan, Yueming; Chen, Chao; Xie, Qingji

    2016-05-15

    We report a new protocol for ultrasensitive electrochemical sandwich-type immunosensing, on the basis of signal amplification by gold-label/copper-staining, galvanic replacement reactions (GRRs), and in situ microliter-droplet anodic stripping voltammetry (ASV) after an enhanced cathodic preconcentration of copper. First, a sandwich-type immuno-structure is appropriately assembled at a glassy carbon electrode. Second, copper is selectively stained on the catalytic surfaces of second antibody-conjugated Au nanoparticles through CuSO4-ascorbic acid redox reaction, and the GRRs between HAuCl4 and the stained copper are used to amplify the quantity of copper. Finally, the corresponding antigen is determined based on simultaneous chemical-dissolution/cathodic-preconcentration of copper for in-situ ASV analysis directly at the immunoelectrode. Cyclic voltammetry, electrochemical impedance spectroscopy, quartz crystal microbalance and scanning electron microscopy are used for film characterization and/or process monitoring. Under optimized conditions, ultrasensitive analyses of human immunoglobulin G (IgG) and human carbohydrate antigen 125 (CA125) are achieved. The limits of detection are 0.3 fg mL(-1) (equivalent to 7 IgG molecules in the 6 μL sample employed) for IgG (S/N=3) and 1.3 nU mL(-1) for CA125 (S/N=3), respectively, which are amongst the best reported to date for the two proteins. The theoretical feasibility of such a single-molecule-level amperometric immunoassay is also discussed based on the immunological reaction thermodynamics.

  12. Combined In-Situ XRD and In-Situ XANES Studies on the Reduction Behavior of a Rhenium Promoted Cobalt Catalyst

    SciTech Connect

    Kumar, Nitin; Payzant, E Andrew; Jothimurugesan, K; Spivey, James J

    2011-01-01

    A 10% Co 4% Re/(2% Zr/SiO2) catalyst was prepared by co-impregnation using a silica support modified by 2% Zr. The catalyst was characterized by temperature programmed reduction (TPR), in situ XRD and in situ XANES analysis where it was simultaneously exposed to H2 using a temperature programmed ramp. The results showed the two step reduction of large crystalline Co3O4 with CoO as an intermediate. TPR results showed that the reduction of highly dispersed Co3O4 was facilitated by reduced rhenium by a H2-spillover mechanism. In situ XRD results showed the presence of both, Co-hcp and Co-fcc phases in the reduced catalyst at 400 C. However, the Co-hcp phase was more abundant, which is thought to be the more active phase as compared to the Co-fcc phase for CO hydrogenation. CO hydrogenation at 270 C and 5 bar pressure produces no detectable change in the phases during the time of experiment. In situ XANES results showed a decrease in the metallic cobalt in the presence of H2/CO, which can be attributed due to oxidation of the catalyst by reaction under these conditions.

  13. Reaction dynamics studies for the system 7Be+58Ni

    NASA Astrophysics Data System (ADS)

    Torresi, D.; Mazzocco, M.; Acosta, L.; Boiano, A.; Boiano, C.; Diaz-Torres, A.; Fierro, N.; Glodariu, T.; Grilj, L.; Guglielmetti, A.; Keeley, N.; La Commara, M.; Martel, I.; Mazzocchi, C.; Molini, P.; Pakou, A.; Parascandolo, C.; Parkar, V. V.; Patronis, N.; Pierroutsakou, D.; Romoli, M.; Rusek, K.; Sanchez-Benitez, A. M.; Sandoli, M.; Signorini, C.; Silvestri, R.; Soramel, F.; Stiliaris, E.; Strano, E.; Stroe, L.; Zerva, K.

    2015-04-01

    The study of reactions induced by exotic weakly bound nuclei at energies around the Coulomb barrier had attracted a large interest in the last decade, since the features of these nuclei can deeply affect the reaction dynamics. The discrimination between different reaction mechanisms is, in general, a rather difficult task. It can be achieved by using detector arrays covering high solid angle and with high granularity that allow to measure the reaction products and, possibly, coincidences between them, as, for example, recently done for stable weakly bound nuclei [1, 2]. We investigated the collision of the weakly bound nucleus 7Be on a 58Ni target at the beam energy of 1.1 times the Coulomb barrier, measuring the elastic scattering angular distribution and the energy and angular distributions of 3He and 4He. The 7Be radioactive ion beam was produced by the facility EXOTIC at INFN-LNL with an energy of 22 MeV and an intensity of ~3×105 pps. Results showed that the 4He yeld is about 4 times larger than 3He yield, suggesting that reaction mechanisms other than the break-up mostly produce the He isotopes. Theoretical calculations for transfer channels and compound nucleus reactions suggest that complete fusion accounts for (41±5%) of the total reaction cross section extracted from optical model analysis of the elastic scattering data, and that 3He and 4He stripping are the most populated reaction channels among direct processes. Eventually estimation of incomplete fusion contributions to the 3,4He production cross sections was performed through semi-classical calculations with the code PLATYPUS [3].

  14. Molecular beam studies of oxygen atom reactions with unsaturated hydrocarbons

    SciTech Connect

    Schmoltner, A.-M.

    1989-10-01

    The dynamics of several elementary reactions relevant to combustion was investigated. The reactive scattering of ground state oxygen atoms with small unsaturated hydrocarbons was studied using a crossed molecular beam apparatus with a rotatable mass spectrometer detector. The infrared and ultraviolet photodissociation of anisole was studied using a rotating beam source/fixed detector apparatus. 253 refs., 64 figs., 4 tabs.

  15. Chromium Reaction Mechanisms for Speciation using Synchrotron in-Situ High-Temperature X-ray Diffraction.

    PubMed

    Low, Fiona; Kimpton, Justin; Wilson, Siobhan A; Zhang, Lian

    2015-07-01

    We use in situ high-temperature X-ray diffraction (HT-XRD), ex-situ XRD and synchrotron X-ray absorption near edge structure spectroscopy (XANES) to derive fundamental insights into mechanisms of chromium oxidation during combustion of solid fuels. To mimic the real combustion environment, mixtures of pure eskolaite (Cr(3+)2O3), lime (CaO) and/or kaolinite [Al2Si2O5(OH)4] have been annealed at 600-1200 °C in air versus 1% O2 diluted by N2. Our results confirm for the first time that (1) the optimum temperature for Cr(6+) formation is 800 °C for the coexistence of lime and eskolaite; (2) upon addition of kaolinite into oxide mixture, the temperature required to produce chromatite shifts to 1000 °C with a remarkable reduction in the fraction of Cr(6+). Beyond 1000 °C, transient phases are formed that bear Cr in intermediate valence states, which convert to different species other than Cr(6+) in the cooling stage; (3) of significance to Cr mobility from the waste products generated by combustion, chromatite formed at >1000 °C has a glassy disposition that prevents its water-based leaching; and (4) Increasing temperature facilitates the migration of eskolaite particles into bulk lime and enhances the extent to which Cr(3+) is oxidized, thereby completing the oxidation of Cr(3+) to Cr(6+) within 10 min. PMID:26055512

  16. In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials

    DOE PAGES

    Liu, Y.; Wang, H.; Zhang, X.

    2015-11-30

    Though abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. We applied numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction in order to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. We briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. Moreover, in the amorphous CuZrAl, in situ nanoindentationmore » studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.« less

  17. In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials

    SciTech Connect

    Liu, Y.; Wang, H.; Zhang, X.

    2015-11-30

    Though abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. We applied numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction in order to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. We briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. Moreover, in the amorphous CuZrAl, in situ nanoindentation studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.

  18. Studies of cosmogenic in situ produced carbon-14 in polar accumulation and ablation ice

    SciTech Connect

    Lal, D. ); Jull, A.J.T.; Donahue, D.J. )

    1993-01-01

    Polar ice contains a suite of extraneous substances that serve as direct and proxy links to the paleoenvironment. These substances - stable and radioactive isotopes, chemical compounds, and particles - are being studied to delineate different aspects of geophysical and environmental changes in the past. A relatively new addition to the useful tracers is carbon 14. This article summarizes the highlights of the work done thus far on the studies of the in situ produced carbon 14 accumulation and ablation ice and indicate the potential of the in situ carbon 14 as a tracer for ice dynamics. 13 refs.

  19. Singlet Oxygen Reactions with Flavonoids. A Theoretical – Experimental Study

    PubMed Central

    Morales, Javier; Günther, Germán; Zanocco, Antonio L.; Lemp, Else

    2012-01-01

    Detection of singlet oxygen emission, λmax = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, kT, and the reactive reaction rate constant, kr, for the reaction between singlet oxygen and several flavonoids. Values of kT determined in deuterated water, ranging from 2.4×107 M−1s−1 to 13.4×107 M−1s−1, for rutin and morin, respectively, and the values measured for kr, ranging from 2.8×105 M−1s−1 to 65.7×105 M−1s−1 for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid. PMID:22802966

  20. Computational Studies on Cinchona Alkaloid-Catalyzed Asymmetric Organic Reactions.

    PubMed

    Tanriver, Gamze; Dedeoglu, Burcu; Catak, Saron; Aviyente, Viktorya

    2016-06-21

    Remarkable progress in the area of asymmetric organocatalysis has been achieved in the last decades. Cinchona alkaloids and their derivatives have emerged as powerful organocatalysts owing to their reactivities leading to high enantioselectivities. The widespread usage of cinchona alkaloids has been attributed to their nontoxicity, ease of use, stability, cost effectiveness, recyclability, and practical utilization in industry. The presence of tunable functional groups enables cinchona alkaloids to catalyze a broad range of reactions. Excellent experimental studies have extensively contributed to this field, and highly selective reactions were catalyzed by cinchona alkaloids and their derivatives. Computational modeling has helped elucidate the mechanistic aspects of cinchona alkaloid catalyzed reactions as well as the origins of the selectivity they induce. These studies have complemented experimental work for the design of more efficient catalysts. This Account presents recent computational studies on cinchona alkaloid catalyzed organic reactions and the theoretical rationalizations behind their effectiveness and ability to induce selectivity. Valuable efforts to investigate the mechanisms of reactions catalyzed by cinchona alkaloids and the key aspects of the catalytic activity of cinchona alkaloids in reactions ranging from pharmaceutical to industrial applications are summarized. Quantum mechanics, particularly density functional theory (DFT), and molecular mechanics, including ONIOM, were used to rationalize experimental findings by providing mechanistic insights into reaction mechanisms. B3LYP with modest basis sets has been used in most of the studies; nonetheless, the energetics have been corrected with higher basis sets as well as functionals parametrized to include dispersion M05-2X, M06-2X, and M06-L and functionals with dispersion corrections. Since cinchona alkaloids catalyze reactions by forming complexes with substrates via hydrogen bonds and long

  1. Computational Studies on Cinchona Alkaloid-Catalyzed Asymmetric Organic Reactions.

    PubMed

    Tanriver, Gamze; Dedeoglu, Burcu; Catak, Saron; Aviyente, Viktorya

    2016-06-21

    Remarkable progress in the area of asymmetric organocatalysis has been achieved in the last decades. Cinchona alkaloids and their derivatives have emerged as powerful organocatalysts owing to their reactivities leading to high enantioselectivities. The widespread usage of cinchona alkaloids has been attributed to their nontoxicity, ease of use, stability, cost effectiveness, recyclability, and practical utilization in industry. The presence of tunable functional groups enables cinchona alkaloids to catalyze a broad range of reactions. Excellent experimental studies have extensively contributed to this field, and highly selective reactions were catalyzed by cinchona alkaloids and their derivatives. Computational modeling has helped elucidate the mechanistic aspects of cinchona alkaloid catalyzed reactions as well as the origins of the selectivity they induce. These studies have complemented experimental work for the design of more efficient catalysts. This Account presents recent computational studies on cinchona alkaloid catalyzed organic reactions and the theoretical rationalizations behind their effectiveness and ability to induce selectivity. Valuable efforts to investigate the mechanisms of reactions catalyzed by cinchona alkaloids and the key aspects of the catalytic activity of cinchona alkaloids in reactions ranging from pharmaceutical to industrial applications are summarized. Quantum mechanics, particularly density functional theory (DFT), and molecular mechanics, including ONIOM, were used to rationalize experimental findings by providing mechanistic insights into reaction mechanisms. B3LYP with modest basis sets has been used in most of the studies; nonetheless, the energetics have been corrected with higher basis sets as well as functionals parametrized to include dispersion M05-2X, M06-2X, and M06-L and functionals with dispersion corrections. Since cinchona alkaloids catalyze reactions by forming complexes with substrates via hydrogen bonds and long

  2. Bridging the pressure gap: In situ atomic-level investigations of model platinum catalyst surfaces under reaction conditions by scanning tunneling microscopy

    SciTech Connect

    McIntyre, B.J.

    1994-05-01

    Results of this thesis show that STM measurements can provide information about the surfaces and their adsorbates. Stability of Pt(110) under high pressures of H2, O2, and CO was studied (Chap. 4). In situ UHV and high vacuum experiments were carried out for sulfur on Pt(111) (Chap.5). STM studies of CO/S/Pt(111) in high CO pressures showed that the Pt substrate undergoes a stacking-fault-domain reconstruction involving periodic transitions from fcc to hcp stacking of top-layer atoms (Chap.6). In Chap.7, the stability of propylene on Pt(111) and the decomposition products were studied in situ with the HPSTM. Finally, in Chap.8, results are presented which show how the Pt tip of the HPSTM was used to locally rehydrogenate and oxidize carbonaceous clusters deposited on the Pt(111) surface; the Pt tip acted as a catalyst after activation by short voltage pulses.

  3. Antimicrobial effect of chlorhexidine digluconate in dentin: In vitro and in situ study

    PubMed Central

    Borges, Fátima Maria Cavalcante; de Melo, Mary Anne Sampaio; Lima, Juliana Paiva Marques; Zanin, Iriana Carla Junqueria; Rodrigues, Lidiany Karla Azevedo

    2012-01-01

    Aim: The aim of this study was to evaluate a very short-term in vitro and in situ effect of 2% chlorhexidine-digluconate-based (CHX) cavity cleanser on the disinfection of dentin demineralized by cariogenic bacteria. Materials and Methods: Human dentin slabs were randomly allocated and used in 2 distinct phases, in vitro and in situ, for obtaining demineralized dentin. In vitro, the slabs (n=15) were immersed for 5 days in BHI broth inoculated with Streptococcus mutans CTT 3440. In situ, a double-blind design was conducted in one phase of 14 days, during which 20 volunteers wore palatal devices containing two human dental dentin slabs. On 5th day in vitro and 14th day in situ, the slabs were allocated to the two groups: Control group (5 μl of 0.9% NaCl solution) and CHX group (5 μl of 2% chlorhexidine digluconate solution, Cavity Cleanser™ BISCO, Schaumburg, IL, EUA), for 5 minutes. The microbiological analyses were performed immediately before and after the treatments. Results: The log reductions means found for CHX treatment on tested micro organisms were higher when compared to Control group either in vitro or in situ conditions. Conclusions: Our results showed that CHX was effective in reducing the cultivable microbiota in contaminated dentin. Furthermore, although the use of chlorhexidine-digluconate-based cavity disinfectant did not completely eliminate the viable microorganisms, it served as a suitable agent to disinfect tooth preparations. PMID:22368330

  4. How to design in situ studies: an evaluation of experimental protocols

    PubMed Central

    Sung, Young-Hye; Kim, Hae-Young; Son, Ho-Hyun

    2014-01-01

    Objectives Designing in situ models for caries research is a demanding procedure, as both clinical and laboratory parameters need to be incorporated in a single study. This study aimed to construct an informative guideline for planning in situ models relevant to preexisting caries studies. Materials and Methods An electronic literature search of the PubMed database was performed. A total 191 of full articles written in English were included and data were extracted from materials and methods. Multiple variables were analyzed in relation to the publication types, participant characteristics, specimen and appliance factors, and other conditions. Frequencies and percentages were displayed to summarize the data and the Pearson's chi-square test was used to assess a statistical significance (p < 0.05). Results There were many parameters commonly included in the majority of in situ models such as inclusion criteria, sample sizes, sample allocation methods, tooth types, intraoral appliance types, sterilization methods, study periods, outcome measures, experimental interventions, etc. Interrelationships existed between the main research topics and some parameters (outcome measures and sample allocation methods) among the evaluated articles. Conclusions It will be possible to establish standardized in situ protocols according to the research topics. Furthermore, data collaboration from comparable studies would be enhanced by homogeneous study designs. PMID:25110639

  5. In situ transmission electron microscope studies of irradiation-induced and irradiation-enhanced phase changes

    SciTech Connect

    Allen, C.W.

    1991-12-31

    Motivated at least initially by materials needs for nuclear reactor development, extensive irradiation effects studies employing TEMs have been performed for several decades, involving irradiation-induced and irradiation-enhanced, microstructural changes, including phase transformations such as precipitation, dissolution, crystallization, amorphization, and order-disorder phenomena. From the introduction of commercial high voltage electron microscopes (HVEM) in the mid-1960s, studies of electron irradiation effects have constituted a major aspect of HVEM application in materials science. For irradiation effects studies two additional developments have had particularly significant impact: (1) The availability of TEM specimen holders in which specimen temperature can be controlled in the range 10--2200 K; and (2) the interfacing of ion accelerators which allows in situ TEM studies of irradiation effects and the ion beam modification of materials within this broad temperature range. This paper treats several aspects of in situ studies of electron and ion beam-induced and enhanced phase changes, including the current state of in situ ion beam capability internationally, and presents two case studies involving in situ experiments performed in an HVEM to illustrate the dynamics of such an approach in materials research.

  6. In situ transmission electron microscope studies of irradiation-induced and irradiation-enhanced phase changes

    SciTech Connect

    Allen, C.W.

    1991-01-01

    Motivated at least initially by materials needs for nuclear reactor development, extensive irradiation effects studies employing TEMs have been performed for several decades, involving irradiation-induced and irradiation-enhanced, microstructural changes, including phase transformations such as precipitation, dissolution, crystallization, amorphization, and order-disorder phenomena. From the introduction of commercial high voltage electron microscopes (HVEM) in the mid-1960s, studies of electron irradiation effects have constituted a major aspect of HVEM application in materials science. For irradiation effects studies two additional developments have had particularly significant impact: (1) The availability of TEM specimen holders in which specimen temperature can be controlled in the range 10--2200 K; and (2) the interfacing of ion accelerators which allows in situ TEM studies of irradiation effects and the ion beam modification of materials within this broad temperature range. This paper treats several aspects of in situ studies of electron and ion beam-induced and enhanced phase changes, including the current state of in situ ion beam capability internationally, and presents two case studies involving in situ experiments performed in an HVEM to illustrate the dynamics of such an approach in materials research.

  7. Emotional Reactions of Students in Field Education: An Exploratory Study

    ERIC Educational Resources Information Center

    Litvack, Andrea; Mishna, Faye; Bogo, Marion

    2010-01-01

    An exploratory study using qualitative methodology was undertaken with recent MSW graduates (N=12) from 2 graduate social work programs to identify and describe the students' emotional reactions to experiences in field education. Significant and interrelated themes emerged including the subjective and unique definitions of emotionally charged…

  8. Magnetic resonance studies of photo-induced electron transfer reactions

    SciTech Connect

    van Willigen, H.

    1990-12-01

    During the period covered by this report research has been concerned with the application of Fourier Transform Electron Paramagnetic Resonance (FT EPR) in the study of photo-induced electron transfer reactions. Donor molecules used in this investigation have been various porphyrins, whereas quinones were used as acceptor molecules.

  9. Theoretical studies of the dynamics of chemical reactions

    SciTech Connect

    Wagner, A.F.

    1993-12-01

    Recent research effort has focussed on several reactions pertinent to combustion. The formation of the formyl radical from atomic hydrogen and carbon monoxide, recombination of alkyl radicals and halo-alkyl radicals with halogen atoms, and the thermal dissociation of hydrogen cyanide and acetylene have been studied by modeling. In addition, the inelastic collisions of NCO with helium have been investigated.

  10. [The contamination under polymerase chain reaction studies: problems and solutions].

    PubMed

    Titov, V N; Ameliushkina, V A; Rozhkova, T A

    2015-01-01

    The study was carried out to determine risk factors of false positive and false negative results under polymerase chain reaction-analysis of clinical material. The samples with high viral load can be the source of false positive results. The contamination with nucleic acids can occur at any section of polymerase chain reaction analysis. The study data permitted to establish that the most sensitive stage is isolation and purification of nucleic acids especially under manual mode of operation. The detection of positive signal in most samples of one setting indicates total contamination. The cases when only several samples are polluted are special challenge. The presence of sample with high concentration of viral nucleic acid and several samples with low concentration in one setting means necessity of repeated analysis beginning with stage of isolation of nucleic acid. The analysis of curves of accumulation of products of amplification, their forms and positioning on chart is the obligatory stage of polymerase chain reaction study in real time regimen. These actions permit to exclude the readouts of false negative testing results to departments. The study conclusions are equipotent for polymerase chain reaction testing of any nucleic acid targets.

  11. A Study of Illinois Employer Reactions to Training Credentials.

    ERIC Educational Resources Information Center

    Adams, Frank G.; And Others

    A study was conducted in summer 1982 by Project REA to provide employment skill training operators and educators in Illinois with information about the reactions, attitudes, and beliefs of employers toward various forms of accreditation of training, i.e., academic credit, nonacademic credit, certificates, degrees, diplomas, and licenses. The study…

  12. Study of Cold Potassium Atom - Calcium Ion Reactions

    NASA Astrophysics Data System (ADS)

    Egodapitiya, Kisra; Gang, Shu; Clark, Robert; Brown, Kenneth

    2016-05-01

    We report on our progress towards constructing a hybrid system for studying reactions between cold Potassium (K) atoms and cold Calcium (Ca+) ions. Ca+ ions will be trapped and Doppler-cooled inside a linear quadrupole ion trap. Cold K atoms will be created inside a magneto optical trap, such that the ion and the atoms are in an overlapping volume. Trapping and re-pumping beams for the Potassium MOT are derived from the same laser with wavelength 766 nm using two acousto optic modulators. The reaction products will be detected using a time-of- flight mass spectrometer that is designed to detect radially ejected ions. The main objective of this experiment is to study the rate coefficients, and identification of reaction channels between cold K atoms and Ca+ ions. Subsequently this setup will be used to study reactions between cold K atoms and sympathetically cooled molecular ions such as CaO+, and to study internal state quenching of molecular ions.

  13. Study of Daedalus Interstellar Spacecraft Reaction Chamber and Thrust Structure

    NASA Astrophysics Data System (ADS)

    Reddy, S. K.; Benaroya, H.

    Project Daedalus was the 1978 trade study that proved the feasibility of space travel utilizing fusion-based propulsion (Inertial Confinement Fusion). This paper analyzes some of the key structural aspects of the Daedalus spacecraft, in particular, the reaction chamber and thrust structure that is integral to the Daedalus spacecraft, which supports the loads resulting from the fusion reactions. First, the reaction chamber is studied computationally in terms of static loading and vibrational characteristics utilizing the finite element method. Next, a proposed bracing system is integrated into the reaction chamber and the effects are studied. Lastly, the field coils with their supporting truss structure are added to the assembly. Concepts are introduced for actuators and course-correction mechanisms that ensure the spacecraft maintains the required trajectory to rendezvous with the target system. Present-day materials and manufacturing considerations are explored based on the assumptions made in the Daedalus study. Testing, qualification, and assembly of the spacecraft are also discussed. This paper is a summary of the first author's Master's Thesis at Rutgers University.

  14. Nanolithographic Fabrication and Heterogeneous Reaction Studies ofTwo-Dimensional Platinum Model Catalyst Systems

    SciTech Connect

    Contreras, Anthony Marshall

    2006-05-20

    In order to better understand the fundamental components that govern catalytic activity, two-dimensional model platinum nanocatalyst arrays have been designed and fabricated. These catalysts arrays are meant to model the interplay of the metal and support important to industrial heterogeneous catalytic reactions. Photolithography and sub-lithographic techniques such as electron beam lithography, size reduction lithography and nanoimprint lithography have been employed to create these platinum nanoarrays. Both in-situ and ex-situ surface science techniques and catalytic reaction measurements were used to correlate the structural parameters of the system to catalytic activity.

  15. Cerium oxide as a promoter for the electro-oxidation reaction of ethanol: in situ XAFS characterization of the Pt nanoparticles supported on CeO2 nanoparticles and nanorods.

    PubMed

    Corchado-García, Juan; Betancourt, Luis E; Vélez, Carlos A; Senanayake, Sanjaya D; Stacchiola, Dario; Sasaki, Kotaro; Guinel, Maxime J-F; Zhou, Yunyun; Cheung, Chin Li; Cabrera, Carlos R

    2015-12-28

    In this study we probe the electrocatalytic activity of Pt nanoparticles supported on ceria nanoparticles (NPs) and nanorods (NRs) in the ethanol oxidation reaction (EOR) in alkaline media. The goal of this study was to relate morphology, support structure and composition to the EOR catalytic activity by using in situ X-ray absorption fine structure (XAFS) studies. Cyclic voltammetry experiments showed that both ceria supported catalysts (NP vs. NR) had similar peak current densities at fast scan rates, however at slow scan rates, the ceria NR catalyst showed superior catalytic activity. In situ XAFS studies in KOH showed that both ceria supported catalysts had more electron density in their d-band (with the ceria NR having more electron density overall) than ceria - free Pt/Vulcan standard. However, in an ethanol solution the ceria NR catalyst had the least electron density. We propose that this change is due to the increased charge transfer efficiency between the ceria nanorod support and platinum. In the KOH solution, the increased electron density makes the platinum less electrophilic and hinders Pt-OH bond formation. In the EtOH solution, platinum's increased nucleophilicity facilitates the bond formation between Pt and the electron deficient carbon in ethanol which in turn withdraws the electron density from platinum and increases the white line intensity as observed in the XAS measurements.

  16. A model study of sequential enzyme reactions and electrostatic channeling

    NASA Astrophysics Data System (ADS)

    Eun, Changsun; Kekenes-Huskey, Peter M.; Metzger, Vincent T.; McCammon, J. Andrew

    2014-03-01

    We study models of two sequential enzyme-catalyzed reactions as a basic functional building block for coupled biochemical networks. We investigate the influence of enzyme distributions and long-range molecular interactions on reaction kinetics, which have been exploited in biological systems to maximize metabolic efficiency and signaling effects. Specifically, we examine how the maximal rate of product generation in a series of sequential reactions is dependent on the enzyme distribution and the electrostatic composition of its participant enzymes and substrates. We find that close proximity between enzymes does not guarantee optimal reaction rates, as the benefit of decreasing enzyme separation is countered by the volume excluded by adjacent enzymes. We further quantify the extent to which the electrostatic potential increases the efficiency of transferring substrate between enzymes, which supports the existence of electrostatic channeling in nature. Here, a major finding is that the role of attractive electrostatic interactions in confining intermediate substrates in the vicinity of the enzymes can contribute more to net reactive throughput than the directional properties of the electrostatic fields. These findings shed light on the interplay of long-range interactions and enzyme distributions in coupled enzyme-catalyzed reactions, and their influence on signaling in biological systems.

  17. Toluene pyrolysis studies and high temperature reactions of propargyl chloride

    SciTech Connect

    Kern, R.D.; Chen, H.; Qin, Z.

    1993-12-01

    The main focus of this program is to investigate the thermal decompositions of fuels that play an important role in the pre-particle soot formation process. It has been demonstrated that the condition of maximum soot yield is established when the reaction conditions of temperature and pressure are sufficient to establish a radical pool to support the production of polyaromatic hydrocarbon species and the subsequent formation of soot particles. However, elevated temperatures result in lower soot yields which are attributed to thermolyses of aromatic ring structures and result in the bell-shaped dependence of soot yield on temperature. The authors have selected several acyclic hydrocarbons to evaluate the chemical thermodynamic and kinetic effects attendant to benzene formation. To assess the thermal stability of the aromatic ring, the authors have studied the pyrolyses of benzene, toluene, ethylbenzene, chlorobenzene and pyridine. Time-of-flight mass spectrometry (TOF) is employed to analyze the reaction zone behind reflected shock waves. Reaction time histories of the reactants, products, and intermediates are constructed and mechanisms are formulated to model the experimental data. The TOF work is often performed with use of laser schlieren densitometry (LS) to measure density gradients resulting from the heats of various reactions involved in a particular pyrolytic system. The two techniques, TOF and LS, provide independent and complementary information about ring formation and ring rupture reactions.

  18. Kinetic studies of cascade reactions in high-throughput systems.

    PubMed

    Iron, David; Boelens, Hans F M; Westerhuis, Johan A; Rothenberg, Gadi

    2003-12-01

    The application of robotic systems to the study of complex reaction kinetics is considered, using the cascade reaction A --> B --> C as a working example. Practical problems in calculating the rate constants k1 and k2 for the reactions A --> B and B --> C from concentration measurements of CA, CB, or CC are discussed in the light of the symmetry and invertability of the rate equations. A D-optimal analysis is used to determine the points in time and the species that will give the best (i.e., most accurate) results. When exact data are used, the most robust solution results from measuring the pair of concentrations (CA, CC). The system's information function is computed using numeric methods. This function is then used to estimate the amount of information obtainable from a given cascade reaction at any given time. The theoretical findings are compared with experimental results from a set of two-stage cascade experiments monitored using UV-visible spectroscopy. Finally, the pros and cons of using a single reaction sample to estimate both k1 and k2 are discussed. PMID:16465720

  19. Studying the triple - α reaction in hyperspherical harmonic approach

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc; Nunes, Filomena

    2010-11-01

    The triple-α reaction is studied by using hyperspherical harmonic (HH) method [1]. Starting from three body model, we determine the 2^+ state and the 0^+ resonance as well as the quadrupole strength function B(E2). The triple-α reaction rate are calculated. We also carefully consider the contributions of the nonresonant continuum states to the reaction rate at low temperature (T <=10^8 K). The results are compared with [2,3].[4pt] [1] I. J. Thompson, F. M. Nunes, B. V. Danilin, Comput.Phys.Comm. 161, 87-107 (2004).[0pt] [2] K.Ogata, M.Kan, M.Kamimura, Prog. Theor. Phys. 122, 1055 (2009).[0pt] [3] R. de Diego, E. Garrido, D.V. Fedorov, A.S. Jensen, arXiv:1005.5647v1.

  20. Sum Frequency Generation Studies of Hydrogenation Reactions on Platinum Nanoparticles

    SciTech Connect

    Krier, James M.

    2013-08-31

    Sum Frequency Generation (SFG) vibrational spectroscopy is used to characterize intermediate species of hydrogenation reactions on the surface of platinum nanoparticle catalysts. In contrast to other spectroscopy techniques which operate in ultra-high vacuum or probe surface species after reaction, SFG collects information under normal conditions as the reaction is taking place. Several systems have been studied previously using SFG on single crystals, notably alkene hydrogenation on Pt(111). In this thesis, many aspects of SFG experiments on colloidal nanoparticles are explored for the first time. To address spectral interference by the capping agent (PVP), three procedures are proposed: UV cleaning, H2 induced disordering and calcination (core-shell nanoparticles). UV cleaning and calcination physically destroy organic capping while disordering reduces SFG signal through a reversible structural change by PVP.

  1. Cinnamic acid hydrogen bonds to isoniazid and N'-(propan-2-ylidene)isonicotinohydrazide, an in situ reaction product of isoniazid and acetone.

    PubMed

    Sarcevica, Inese; Orola, Liana; Veidis, Mikelis V; Belyakov, Sergey

    2014-04-01

    A new polymorph of the cinnamic acid-isoniazid cocrystal has been prepared by slow evaporation, namely cinnamic acid-pyridine-4-carbohydrazide (1/1), C9H8O2·C6H7N3O. The crystal structure is characterized by a hydrogen-bonded tetrameric arrangement of two molecules of isoniazid and two of cinnamic acid. Possible modification of the hydrogen bonding was investigated by changing the hydrazide group of isoniazid via an in situ reaction with acetone and cocrystallization with cinnamic acid. In the structure of cinnamic acid-N'-(propan-2-ylidene)isonicotinohydrazide (1/1), C9H8O2·C9H11N3O, carboxylic acid-pyridine O-H···N and hydrazide-hydrazide N-H···O hydrogen bonds are formed.

  2. Use of Hybridization Chain Reaction-Fluorescent In Situ Hybridization To Track Gene Expression by Both Partners during Initiation of Symbiosis

    PubMed Central

    Nikolakakis, K.; Lehnert, E.

    2015-01-01

    The establishment of a productive symbiosis between Euprymna scolopes, the Hawaiian bobtail squid, and its luminous bacterial symbiont, Vibrio fischeri, is mediated by transcriptional changes in both partners. A key challenge to unraveling the steps required to successfully initiate this and many other symbiotic associations is characterization of the timing and location of these changes. We report on the adaptation of hybridization chain reaction-fluorescent in situ hybridization (HCR-FISH) to simultaneously probe the spatiotemporal regulation of targeted genes in both E. scolopes and V. fischeri. This method revealed localized, transcriptionally coregulated epithelial cells within the light organ that responded directly to the presence of bacterial cells while, at the same time, provided a sensitive means to directly show regulated gene expression within the symbiont population. Thus, HCR-FISH provides a new approach for characterizing habitat transition in bacteria and for discovering host tissue responses to colonization. PMID:25956763

  3. Photosensitized degradation kinetics of trace halogenated contaminants in natural waters using membrane introduction mass spectrometry as an in situ reaction monitor.

    PubMed

    Letourneau, Dane R; Gill, Chris G; Krogh, Erik T

    2015-11-01

    The photochemically mediated dechlorination of polyhalogenated compounds represents a potential decontamination strategy and a relevant environmental process in chemically reducing media. We report the UV irradiation of natural and artificial waters containing natural dissolved organic matter to effect the photo-sensitized degradation of chlorinated organic compounds, including tetrachloromethane, 1,1,1-tricloroethane, perchloroethene, 1,2-dibromo-3-chloropropane and chlorobenzene at trace (ppb) levels in aqueous solution. The degradation kinetics are followed in situ using membrane introduction mass spectrometry. By re-circulating the reaction mixture in a closed loop configuration over a semi-permeable hollow fiber polydimethylsiloxane membrane in a flow cell interface, volatile and semi-volatile compounds are continuously monitored using a quadrupole ion trap mass spectrometer. The time resolved quantitative information provides useful mechanistic insights, including kinetic data. Pseudo first-order rate constants for the degradation of contaminant mixtures in natural waters are reported. PMID:26439106

  4. Absence of Epstein-Barr virus in medullary carcinoma of the breast as demonstrated by immunophenotyping, in situ hybridization and polymerase chain reaction.

    PubMed

    Lespagnard, L; Cochaux, P; Larsimont, D; Degeyter, M; Velu, T; Heimann, R

    1995-04-01

    Medullary carcinoma of the breast is an epithelial malignant proliferation that shares many characteristics (macroscopic, microscopic, epidemiologic, and prognostic) with lymphoepithelioma-like carcinomas of various sites. The authors hypothesized that they could also share the same etiologic agent, the Epstein-Barr virus (EBV). Epstein-Barr virus, a virus of the herpesvirus family, is to be associated with lymphoepithelioma-like carcinomas of the nasopharynx, stomach, lung, thymus, and salivary gland. Therefore, the authors looked for the virus in a series of 10 medullary carcinomas of the breast. Using immunohistochemistry, in situ hybridization and polymerase chain reaction, this investigation failed to show evidence of EBV. Similar negative results have been reported in lymphoepithelioma-like carcinomas arising in the skin and in the uterine cervix, which like the breast do not originate in the foregut. These results suggest that the pathogenesis of these tumors is not unique, implicating probably different etiopathogenic entities. PMID:7726142

  5. Study of in-situ degradation of thermal control surfaces

    NASA Technical Reports Server (NTRS)

    Gilligan, J. E.; Zerlaut, G. A.

    1972-01-01

    Experimental technique used in study of damage mechanism to semiconductor pigments exposed to ultraviolet radiation can be adapted for investigations of surface chemistry and may be used analytically to determine contamination.

  6. In situ spectroscopic ellipsometry studies of hydrogen ion bombardment of crystalline silicon

    SciTech Connect

    Hu, Y.Z.; Li, M.; Conrad, K.; Andres, J.W.; Irene, E.A.; Denker, M.; Ray, M.; McGuire, G.

    1992-05-01

    Hydrogen-bombardment induced damage in single crystal silicon as a function of the substrate temperature, ion energy, and ion dose was studied using in situ spectroscopic ellipsometry over the photon energy range 2.0-5.5 eV under high vacuum conditions. The incident hydrogen ion energies were 300 and 1000 eV, and the doses were 10{sup 15}-10{sup 18} ions/cm{sup 2}. In situ spectroscopic ellipsometry results showed that the damage layer thicknesses for the samples bombarded at elevated temperatures are smaller than for samples bombarded at room temperature and subsequently annealed at the same elevated temperature. The diffusion coefficient for hydrogen in silicon of 6 x 10{sup {minus}15} cm{sup {minus}2}/s was obtained from the in situ spectroscopic ellipsometry data. 40 refs., 11 figs., 1 tab.

  7. In Situ Potentiometry and Ellipsometry: A Promising Tool to Study Biofouling of Potentiometric Sensors.

    PubMed

    Lisak, Grzegorz; Arnebrant, Thomas; Lewenstam, Andrzej; Bobacka, Johan; Ruzgas, Tautgirdas

    2016-03-15

    In situ potentiometry and null ellipsometry was combined and used as a tool to follow the kinetics of biofouling of ion-selective electrodes (ISEs). The study was performed using custom-made solid-contact K(+)-ISEs consisting of a gold surface with immobilized 6-(ferrocenyl)hexanethiol as ion-to-electron transducer that was coated with a potassium-selective plasticized polymer membrane. The electrode potential and the ellipsometric signal (corresponding to the amount of adsorbed protein) were recorded simultaneously during adsorption of bovine serum albumin (BSA) at the surface of the K(+)-ISEs. This in situ method may become useful in developing sensors with minimized biofouling.

  8. Preparation of multilayered materials in cross-section for in situ TEM tensile deformation studies

    SciTech Connect

    Wall, M. A., LLNL

    1997-05-13

    The success of in-situ transmission electron microscopy experimentation is often dictated by proper specimen preparation. We report here a novel technique permitting the production of cross-sectioned tensile specimens of multilayered films for in-situ deformation studies. Of primary importance in the development of this technique is the production of an electron transparent micro-gauge section using focused ion beam technology. This microgauge section predetermines the position at which plastic deformation is initiated; crack nucleation, growth and failure are then subsequently observed.

  9. Oxygen Reduction Reaction on Graphene in an Electro-Fenton System: In Situ Generation of H2 O2 for the Oxidation of Organic Compounds.

    PubMed

    Chen, Chen-Yu; Tang, Cheng; Wang, Hao-Fan; Chen, Cheng-Meng; Zhang, Xiaoyuan; Huang, Xia; Zhang, Qiang

    2016-05-23

    Fenton oxidation using an aqueous mixture of Fe(2+) and H2 O2 is a promising environmental remediation strategy. However, the difficulty of storage and shipment of concentrated H2 O2 and the generation of iron sludge limit its broad application. Therefore, highly efficient and cost-effective electrocatalysts are in great need. Herein, a graphene catalyst is proposed for the electro-Fenton process, in which H2 O2 is generated in situ by the two-electron reduction of the dissolved O2 on the cathode and then decomposes to generate (.) OH in acidic solution with Fe(2+) . The π bond of the oxygen is broken whereas the σ bond is generally preserved on the metal-free reduced graphene oxide owing to the high free energy change. Consequently, the oxygen is reduced to H2 O2 through a two-electron pathway. The thermally reduced graphene with a high specific surface area (308.8 m(2)  g(-1) ) and a large oxygen content (10.3 at %) exhibits excellent reactivity for the two-electron oxygen reduction reaction to H2 O2 . A highly efficient peroxide yield (64.2 %) and a remarkable decolorization of methylene blue (12 mg L(-1) ) of over 97 % in 160 min are obtained. The degradation of methylene blue with hydroxyl radicals generated in situ is described by a pseudo first-order kinetics model. This provides a proof-of-concept of an environmentally friendly electro-Fenton process using graphene for the oxygen reduction reaction in an acidic solution to generate H2 O2 . PMID:27098063

  10. Transport with Bimolecular Reactions: Applications to In-Situ Chemical Oxidation of DNAPLs by Permanganate in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Arshadi, Masoud

    Chemical oxidation of dense nonaqueous-phase liquids (DNAPLs) by permanganate has emerged as an effective remediation strategy in fractured rock. Our objectives in this research were to carry out a sequence of experimental, computational and theoretical tasks aimed at improving current understanding of permanganate oxidation in fractured rock systems, and also develop modeling tools that can be used for preliminary design of oxidation schemes at field sites. Our research focused on both free-phase entrapped DNAPL in variable-aperture fractures and dissolved DNAPL in the rock matrix. In the first section of our research, we present high-resolution experimental investigations in transparent analog variable-aperture fractures to improve understanding of chemical oxidation of residual entrapped trichloroethylene (TCE) in fractures. Four experiments were performed with different permanganate concentrations, flow rates, and initial TCE phase geometry. The initial aperture field and evolving entrapped-phase geometry were measured quantitatively. We present results on the time-evolution of fracture-scale TCE consumption and DNAPL removal rates for all the experiments. In the next part of this work, we developed theoretical understanding of the reaction front dynamics in the case of chemical oxidation of aqueous-phase DNAPL within fracture-matrix system, backed up by numerical simulations. We also consider the influence of NOD consumption and contaminant sorption to solid aquifer materials in our models. Based on the results from this task we are able to propose simple strategies for remediation design (e.g. the time needed to degrade DNAPL inside the fracture-matrix system and the permanganate injection pattern) for a given set of conditions. Our numerical simulations of diffusion with bimolecular reaction in the rock matrix demonstrated a transition in the spatially integrated reaction rate - increasing with time initially, and transitioning to a decrease with time. We

  11. Thermal decomposition of t-butylamine borane studied by in situ solid state NMR

    SciTech Connect

    Feigerle, J.; Smyrl, N. R.; Morrell, J. S.; Stowe, A. C.

    2010-03-18

    of the amine borane fuel more feasible [22]. In the present study, tert-butylamine borane is investigated by heteronuclear in situ solid state NMR to understand hydrogen release from a hydrocarbon containing amine borane. tbutylamine borane has similar physical properties to amine borane with a melting point of 96 C. A single proton has been replaced with a t-butylamine group resulting in a weakening of the dihydrogen bonding framework. t-butylamine borane has a theoretical gravimetric hydrogen density of 15.1%; however, isobutane can also be evolved rather than hydrogen. If decomposition yields one mole isobutane and two moles hydrogen, 4.5 wt% H2 gas will be evolved. More importantly for the present work, the resulting spent fuel should be comprised of both (BNH)n and (CBNH)n polyimidoboranes.

  12. In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation.

    PubMed

    Rees, Catherine A; Provis, John L; Lukey, Grant C; van Deventer, Jannie S J

    2007-08-14

    The kinetics of geopolymer formation are monitored using a novel in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic technique. Reaction rates are determined from the intensity variation of the bands related to the geopolymer gel network and the unreacted fly ash particles. Comparison with deuterated geopolymer samples provides critical information regarding peak assignments. An initial induction (lag) period is observed to occur for hydroxide-activated geopolymers, followed by gel evolution according to an approximately linear reaction profile. The length of the lag period is reduced by increasing the concentration of NaOH. An increase in the rate of network formation also occurs with increasing NaOH concentration up to a maximum point, beyond which an increased NaOH concentration leads to a reduced rate of network formation. This trend is attributed to the competing effects of increased alkalinity and stronger ion pairing with an increase in NaOH concentration. In situ analysis also shows that the rate of fly ash dissolution is similar for all moderate- to high-alkali geopolymer slurries, which is attributed to the very highly water-deficient nature of these systems and is contrary to predictions from classical glass dissolution chemistry. This provides for the first time detailed kinetic information describing fly ash geopolymer formation kinetics.

  13. In-Situ Chemical Reduction and Oxidation of VOCs in Groundwater: Groundwater Treatability Studies

    NASA Technical Reports Server (NTRS)

    Keith, Amy; Glasgow, Jason; McCaleh, Rececca C. (Technical Monitor)

    2001-01-01

    This paper presents NASA Marshall Space Flight Center's treatability studies for volatile organic compounds in groundwater. In-Situ groundwater treatment technologies include: 1) Chemical Reduction(Ferox); 2) Chemical Oxidation (Fenton Reagents, Permanganate, and Persulfate); and 3) Thermal (Dynamic Underground Stripping, Six-Phase Heating). This paper is presented in viewgraph form.

  14. Real-time studies of battery electrochemical reactions inside a transmission electron microscope.

    SciTech Connect

    Leung, Kevin; Hudak, Nicholas S.; Liu, Yang; Liu, Xiaohua H.; Fan, Hongyou; Subramanian, Arunkumar; Shaw, Michael J.; Sullivan, John Patrick; Huang, Jian Yu

    2012-01-01

    We report the development of new experimental capabilities and ab initio modeling for real-time studies of Li-ion battery electrochemical reactions. We developed three capabilities for in-situ transmission electron microscopy (TEM) studies: a capability that uses a nanomanipulator inside the TEM to assemble electrochemical cells with ionic liquid or solid state electrolytes, a capability that uses on-chip assembly of battery components on to TEM-compatible multi-electrode arrays, and a capability that uses a TEM-compatible sealed electrochemical cell that we developed for performing in-situ TEM using volatile battery electrolytes. These capabilities were used to understand lithiation mechanisms in nanoscale battery materials, including SnO{sub 2}, Si, Ge, Al, ZnO, and MnO{sub 2}. The modeling approaches used ab initio molecular dynamics to understand early stages of ethylene carbonate reduction on lithiated-graphite and lithium surfaces and constrained density functional theory to understand ethylene carbonate reduction on passivated electrode surfaces.

  15. Highly Stretchable and Conductive Silver Nanoparticle Embedded Graphene Flake Electrode Prepared by In situ Dual Reduction Reaction

    PubMed Central

    Yoon, Yeoheung; Samanta, Khokan; Lee, Hanleem; Lee, Keunsik; Tiwari, Anand P.; Lee, JiHun; Yang, Junghee; Lee, Hyoyoung

    2015-01-01

    The emergence of stretchable devices that combine with conductive properties offers new exciting opportunities for wearable applications. Here, a novel, convenient and inexpensive solution process was demonstrated to prepare in situ silver (Ag) or platinum (Pt) nanoparticles (NPs)-embedded rGO hybrid materials using formic acid duality in the presence of AgNO3 or H2PtCl6 at low temperature. The reduction duality of the formic acid can convert graphene oxide (GO) to rGO and simultaneously deposit the positively charged metal ion to metal NP on rGO while the formic acid itself is converted to a CO2 evolving gas that is eco-friendly. The AgNP-embedded rGO hybrid electrode on an elastomeric substrate exhibited superior stretchable properties including a maximum conductivity of 3012 S cm-1 (at 0 % strain) and 322.8 S cm-1 (at 35 % strain). Its fabrication process using a printing method is scalable. Surprisingly, the electrode can survive even in continuous stretching cycles. PMID:26383845

  16. Ammonium transport and reaction in contaminated groundwater: Application of isotope tracers and isotope fractionation studies

    USGS Publications Warehouse

    Böhlke, J.K.; Smith, R.L.; Miller, D.N.

    2006-01-01

    Ammonium (NH4+) is a major constituent of many contaminated groundwaters, but its movement through aquifers is complex and poorly documented. In this study, processes affecting NH4+ movement in a treated wastewater plume were studied by a combination of techniques including large-scale monitoring of NH4+ distribution; isotopic analyses of coexisting aqueous NH4+, NO3-, N2, and sorbed NH 4+; and in situ natural gradient 15NH 4+ tracer tests with numerical simulations of 15NH4+, 15NO3-, and 15N2 breakthrough data. Combined results indicate that the main mass of NH4+ was moving downgradient at a rate about 0.25 times the groundwater velocity. Retardation factors and groundwater ages indicate that much of the NH4+ in the plume was recharged early in the history of the wastewater disposal. NO3- and excess N2 gas, which were related to each other by denitrification near the plume source, were moving downgradient more rapidly and were largely unrelated to coexisting NH 4+. The ??15N data indicate areas of the plume affected by nitrification (substantial isotope fractionation) and sorption (no isotope fractionation). There was no conclusive evidence for NH 4+-consuming reactions (nitrification or anammox) in the anoxic core of the plume. Nitrification occurred along the upper boundary of the plume but was limited by a low rate of transverse dispersive mixing of wastewater NH4+ and O2 from overlying uncontaminated groundwater. Without induced vertical mixing or displacement of plume water with oxic groundwater from upgradient sources, the main mass of NH4+ could reach a discharge area without substantial reaction long after the more mobile wastewater constituents are gone. Multiple approaches including in situ isotopic tracers and fractionation studies provided critical information about processes affecting NH4+ movement and N speciation.

  17. In situ measurement of activation energy for pyrolysis of ethanol as a first reaction in the synthesis of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ohga, Yosuke; Inoue, Shuhei; Matsumura, Yukihiko

    2015-10-01

    Using a quadrupole mass spectrometer we measured the activation energy of ethanol decomposition with various catalysts. In order to quantitatively evaluate the catalysts we subtracted their effect from that of the catalyst-free pyrolysis. As a result we derived the activation energies using iron, cobalt, nickel, and molybdenum catalysts. These metals are typical catalysts in carbon nanotube synthesis, with two of them usually mixed empirically. This empirical preparation and use of catalysts is consistent with our results. Among these catalysts, iron reduced the activation energy most. Conversely, cobalt achieved a reduction of only 0.3 eV compared to the catalyst-free reaction.

  18. Shape-selected nanocrystals for in situ spectro-electrochemistry studies on structurally well defined surfaces under controlled electrolyte transport: A combined in situ ATR-FTIR/online DEMS investigation of CO electrooxidation on Pt

    PubMed Central

    Jusys, Zenonas; Behm, R Jürgen

    2014-01-01

    Summary The suitability and potential of shape selected nanocrystals for in situ spectro-electrochemical and in particular spectro-electrocatalytic studies on structurally well defined electrodes under enforced and controlled electrolyte mass transport will be demonstrated, using Pt nanocrystals prepared by colloidal synthesis procedures and a flow cell set-up allowing simultaneous measurements of the Faradaic current, FTIR spectroscopy of adsorbed reaction intermediates and side products in an attenuated total reflection configuration (ATR-FTIRS) and differential electrochemical mass spectrometry (DEMS) measurements of volatile reaction products. Batches of shape-selected Pt nanocrystals with different shapes and hence different surface structures were prepared and structurally characterized by transmission electron microscopy (TEM) and electrochemical methods. The potential for in situ spectro-electrocatalytic studies is illustrated for COad oxidation on Pt nanocrystal surfaces, where we could separate contributions from two processes occurring simultaneously, oxidative COad removal and re-adsorption of (bi)sulfate anions, and reveal a distinct structure sensitivity in these processes and also in the structural implications of (bi)sulfate re-adsorption on the CO adlayer. PMID:24991511

  19. HfO2 on UV-O3 exposed transition metal dichalcogenides: interfacial reactions study

    NASA Astrophysics Data System (ADS)

    Azcatl, Angelica; KC, Santosh; Peng, Xin; Lu, Ning; McDonnell, Stephen; Qin, Xiaoye; de Dios, Francis; Addou, Rafik; Kim, Jiyoung; Kim, Moon J.; Cho, Kyeongjae; Wallace, Robert M.

    2015-03-01

    The surface chemistry of MoS2, WSe2 and MoSe2 upon ultraviolet (UV)-O3 exposure was studied in situ by x-ray photoelectron spectroscopy (XPS). Differences in reactivity of these transition metal dichalcogenides (TMDs) towards oxidation during UV-O3 were observed and correlated with density functional theory calculations. Also, sequential HfO2 depositions were performed by atomic layer deposition (ALD) while the interfacial reactions were monitored by XPS. It is found that the surface oxides generated on MoSe2 and WSe2 during UV-O3 exposure were reduced by the ALD process (‘self-cleaning effect’). The effectiveness of the oxide reduction on these TMDs is discussed and correlated with the HfO2 film uniformity.

  20. In Situ Study of the Influence of Nickel on the Phase Transformation Kinetics in Austempered Ductile Iron

    NASA Astrophysics Data System (ADS)

    Saal, Patrick; Meier, Leopold; Li, Xiaohu; Hofmann, Michael; Hoelzel, Markus; Wagner, Julia N.; Volk, Wolfram

    2016-02-01

    Phase fractions and austenite carbon contents in austempered ductile iron samples with three different nickel contents were determined by in situ neutron diffraction. The samples were austenitized at 1178 K (905 °C) for 30 minutes and austempered for 3.5 hours at temperatures between 523 K and 723 K (250 °C and 450 °C) using a mirror furnace. Based on the in situ neutron diffraction studies, plateau times were derived, which determine the end of stage I reaction. The austenite contents increase for higher austempering temperatures when the austempering times are selected properly, considering the accelerated phase transformation at higher temperature. Appropriate austempering times were derived for austempering temperatures between 523 K and 723 K (250 °C and 450 °C). Increased nickel contents lead to higher austenite phase fractions. Moreover the retarding effect of nickel on the phase transformation was quantified. The plateau values of phase fraction and the according austempering times were converted to TTT diagrams. The evolution of the austenite carbon content shows a maximum at 623 K (350 °C) austempering temperature. This can be explained by temperature-dependent carbide precipitation and carbon diffusion into lattice defects. Fine carbides within the ferrite could be found by preliminary APT analysis.

  1. In Situ Time-Resolved Characterization of Novel Cu-MoO2 Catalysts During the Water-Gas Shift Reaction

    SciTech Connect

    Wen ,W.; Liu, J.; White, M.; Marinkovic, N.; Hanson, J.; Rodriguez, J.

    2007-01-01

    A novel and active Cu-MoO{sub 2} catalyst was synthesized by partial reduction of a precursor CuMoO{sub 4} mixed-metal oxide with CO or H{sub 2} at 200-250 C. The phase transformations of Cu-MoO{sub 2} during H{sub 2} reduction and the water-gas shift reaction could be followed by In situ time resolved XRD techniques. During the reduction process the diffraction pattern of the CuMoO{sub 4} collapsed and the copper metal lines were observed on an amorphous material background that was assigned to molybdenum oxides. During the first pass of water-gas shift (WGS) reaction, diffraction lines for Cu{sub 6}Mo{sub 5}O{sub 18} and MoO{sub 2} appeared around 350 C and Cu{sub 6}Mo{sub 5}O{sub 18} was further transformed to Cu/MoO{sub 2} at higher temperature. During subsequent passes, significant WGS catalytic activity was observed with relatively stable plateaus in product formation around 350, 400 and 500 C. The interfacial interactions between Cu clusters and MoO{sub 2} increased the water-gas shift catalytic activities at 350 and 400 C.

  2. Inertial confinement fusion reaction chamber and power conversion system study

    SciTech Connect

    Maya, I.; Schultz, K.R.; Battaglia, J.M.; Buksa, J.J.; Creedson, R.L.; Erlandson, O.D.; Levine, H.E.; Roelant, D.F.; Sanchez, H.W.; Schrader, S.A.

    1984-09-01

    GA Technologies has developed a conceptual ICF reactor system based on the Cascade rotating-bed reaction chamber concept. Unique features of the system design include the use of low activation SiC in a reaction chamber constructed of box-shaped tiles held together in compression by prestressing tendons to the vacuum chamber. Circulating Li/sub 2/O granules serve as the tritium breeding and energy transport material, cascading down the sides of the reaction chamber to the power conversion system. The total tritium inventory of the system is 6 kg; tritium recovery is accomplished directly from the granules via the vacuum system. A system for centrifugal throw transport of the hot Li/sub 2/O granules from the reaction chamber to the power conversion system has been developed. A number of issues were evaluated during the course of this study. These include the response of first-layer granules to the intense microexplosion surface heat flux, cost effective fabrication of Li/sub 2/O granules, tritium inventory and recovery issues, the thermodynamics of solids-flow options, vacuum versus helium-medium heat transfer, and the tradeoffs of capital cost versus efficiency for alternate heat exchange and power conversion system option. The resultant design options appear to be economically competitive, safe, and environmentally attractive.

  3. Heterogeneous reactions in a stratospheric box model: A sensitivity study

    NASA Astrophysics Data System (ADS)

    Danilin, Michael Y.; McConnell, John C.

    1994-12-01

    Recent laboratory data concerning the reactions of HCl and HOx on/in sulfuric acid aerosol (Hanson et al., 1994), N2O5 and ClONO2 hydrolysis on the frozen aerosol (Hanson and Ravishankara, 1993a) and the temperature dependence of the HNO3 absorption cross section (Burkholder et al., 1993) indicate that a reevaluation of the role of heterogeneous reactions in the chemical balance of the stratosphere is required. A chemical module prepared for a three-dimensional (3-D) global chemistry transport model (CTM) and a general circulation model (GCM) has been used to carry out a sensitivity study of the effects of heterogeneous reactions on/in the sulfate aerosol and on the polar stratospheric cloud (PSC) particles. We present here results for the latitudes 60°S, 70°S and 75°S at the 50-mbar level. Our findings indicate that (1) the new values of the HNO3 cross sections result in lower mixing ratios for NOx and make ozone more vulnerable to catalytic destruction by ClOx; (2) the effect of the heterogeneous reactions OH + HNO3(a) → H2O + NO3 and HO2 +HO2(a) → H2O2 + O2 are small in comparison with the same gas phase reactions and play a negligible role for the ozone balance; (3) the HCl reactions in the sulfuric acid aerosol at 60°S and 70°S increase the chlorine activation up to 0.53 parts per billion by volume (ppbv) and 0.72 ppbv, respectively, for liquid aerosol and up to 0.87 ppbv for frozen aerosol at 70°S for volcanic conditions and this results in considerable ozone depletion at these latitudes; (4) studying the ozone "hole" phenomenon, we have considered the different initial ratios of ClONO2/HCl, of N2O5, galactic cosmic rays (GCRs), and longer lifetimes for the PSC. We have speculated an existence of the reaction N2O5 + HCl(a) → ClNO2 + HNO3.

  4. Relationship between columnar cell changes and low-grade carcinoma in situ of the breast--a cytogenetic study.

    PubMed

    Go, Edna May L; Tsang, Julia Y S; Ni, Yun-Bi; Yu, Alex M; Mendoza, Paulo; Chan, Siu-Ki; Lam, Christopher C; Lui, Philip C; Tan, Puay-Hoon; Tse, Gary M

    2012-11-01

    Columnar cell lesions of the breast include columnar cell changes without atypia and columnar cell changes with atypia. The latter frequently coexist and share molecular changes with low-grade carcinoma in situ and invasive carcinoma, suggesting that columnar cell changes may be precursors to progression of low-grade advanced lesions. In this study, we assessed chromosomal aberrations at 16q, hallmark for low-grade lesions, in columnar cell changes with or without atypia and their adjacent carcinoma in situ by fluorescent in situ hybridization using 3 region-specific probes spanning the entire chromosomal arm. The results were correlated with the histomorphological features of the corresponding lesions. Forty-four percent of low-grade carcinoma in situ and 31% of high-grade carcinoma in situ were associated with columnar cell changes with atypia, suggesting a link between columnar cell changes with atypia and low-grade carcinoma in situ. For the genetic aberrations, heterozygous deletion of 16q was present in 56% of low-grade carcinoma in situ but only in 19% of high-grade carcinoma in situ. Conversely, aneuploidy was found mostly in high-grade carcinoma in situ (88%). Twenty percent of columnar cell changes with atypia but none of the columnar cell changes without atypia showed heterozygous deletion of 16q. Interestingly, the same changes in 16q were observed in the columnar cell changes and their associated low-grade carcinoma in situ lesions. These findings demonstrated a genetic commonality between columnar cell changes with atypia and low-grade carcinoma in situ and substantiated the precursor role of columnar cell changes with atypia for low-grade carcinoma in situ but not high-grade carcinoma in situ of the breast.

  5. Study on astrophysical reactions using low-energy RI beams

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hidetoshi

    2009-10-01

    In recent years, low-energy RI beams can be produced in a good intensity and they have been used for studying many astrophysical reactions. One of the facilities producing low-energy RI beams is CRIB (CNS Radio-Isotope Beam separator) [1,2], an RI-beam separator of Center for Nuclear Study, University of Tokyo. Taking CRIB as an example, recent improvements on the RI-beam production and experimental results on astrophysical studies are presented. Several experimental approaches have been taken for the studies on astrophysical reactions.The feature of each method are discussed based on real measurements performed at CRIB. One is the direct method, applied for measurements of reactions such as (α,p) [3]. Another is the measurement of proton/alpha resonance scattering using the thick target method in inverse kinematics, by which we can obtain information on the resonances relevant in astrophysical reactions [4,5]. A recent fruitful result was from a measurement of proton resonance scattering using a ^7Be beam [5]. The energy level structure of ^8B, revealed by the experiment, is especially of interest as it is related with the ^7Be(p,γ) ^8B reaction, responsible for the production of ^8B neutrinos in the sun. We successfully determined parameters of resonances in ^8B below 6.7 MeV, which may affect the ^7Be(p,γ)^8B reaction rate at the solar temparature. Indirect methods, such as ANC and the Trojan Horse Method, were also used in some of the measurements.[4pt] [1] S. Kubono et al., Eur. Phys. J. A13 (2002) 217.[0pt] [2] Y. Yanagisawa et al., Nucl. Instrum. Meth. Phys. Res., Sect. A 539 (2005) 74.[0pt] [3] M. Notani et al., Nucl. Phys. A 764 (2004) 113c.[0pt] [4] T. Teranishi et al., Phys. Lett. B 650 (2007) 129.[0pt] [5] H. Yamaguchi et al., Phys. Lett. B 672 (2009) 230.

  6. Crossed-beam studies of the dynamics of radical reactions

    SciTech Connect

    Liu, K.

    1993-12-01

    The objective of this program is to characterize the detailed dynamics of elementary radical reactions and to provide a better understanding of radical reactivity in general. The radical beam is typically generated by a laser photolysis method. After colliding with the reacting molecule in a crossed-beam apparatus, the reaction product state distribution is interrogated by laser spectroscopic techniques. Several radicals of combustion significance, such as O, CH, OH, CN and NCO have been successfully generated and their collisional behavior at the state-to-state integral cross section level of detail has been studied in this manner. During the past year, the detection system has been converted from LIF to REMPI schemes, and the emphasis of this program shifted to investigate the product angular distributions. Both inelastic and reactive processes have been studied.

  7. Studies of the quenching phenomenon in delayed contact hypersensitivity reactions.

    PubMed

    Basketter, D A; Allenby, C F

    1991-09-01

    Studies in guinea pig and man have shown that eugenol can quench non-specifically contact urticarial responses, whereas limonene seems largely ineffective. In a comprehensive series of studies, there was little evidence of quenching of delayed contact hypersensitivity reactions to cinnamic aldehyde or citral, including in 'pre-quenched' material supplied by a perfume/flavour company, and in a similar mixture prepared in this laboratory, in the guinea pig model. In addition, there was no evidence of the quenching by eugenol of allergic reactions to cinnamic aldehyde in a panel of human subjects with a proven history of cinnamic-aldehyde-induced allergic contact dermatitis. Overall, the results lend little credibility to earlier literature reports of quenching phenomena in delayed contact hypersensitivity responses.

  8. Computational studies of polysiloxanes : oxidation potentials and decomposition reactions.

    SciTech Connect

    Assary, R. S.; Curtiss, L. A.; Redfern, P. C.; Zhang, Z.; Amine, K.

    2011-06-23

    Silicon-containing solvents have tremendous potential for application as electrolytes for electrical energy storage devices such as lithium-ion (air) batteries and supercapacitors. Quantum chemical methods were employed to investigate trends in oxidation potentials and decomposition reactions of a series of polysiloxanes. Various electron-donating and -withdrawing substituents can be used to tune the oxidation potential in shorter chain siloxanes but not in longer ones. Decomposition reactions of siloxanes in their oxidized states were investigated and compared against their carbon analogues. These studies suggest that the Si-O group provides added stability for siloxanes over their carbon analogues. Computational studies have also been performed for various disiloxanes and siloxanes with spacer groups to understand their thermochemical stability and oxidation potentials.

  9. A Nuclear Reaction Analysis study of fluorine uptake in flint

    SciTech Connect

    Jin, Jian-Yue; Weathers, D. L.; Picton, F.; Hughes, B. F.; Duggan, J. L.; McDaniel, F. D.; Matteson, S.

    1999-06-10

    Nuclear Reaction Analysis (NRA) using the {sup 19}F(p,{alpha}{gamma}){sup 16}O resonance reaction is a powerful method of fluorine depth profiling. We have used this method to study the fluorine uptake phenomenon in mineral flint, which could potentially develop into a method of dating archeological flint artifacts. Flint samples cut with a rock saw were immersed in aqueous fluoride solutions for different times for the uptake study. The results suggest that fluorine uptake is not a simple phenomenon, but rather a combination of several simultaneous processes. Fluorine surface adsorption appears to play an important role in developing the fluorine profiles. The surface adsorption was affected by several parameters such as pH value and fluorine concentration in the solution, among others. The problem of surface charging for the insulator materials during ion bombardment is also reported.

  10. Reaction Studies with Exotic Nuclei in Storage Rings

    SciTech Connect

    Muenzenberg, Gottfried; Schrieder, Gerhard

    2000-12-31

    The first experiments to explore nuclear ground-state properties of exotic nuclei with heavy-ion storage rings have already proved the research potential of precision experiments with the new experimental technique. In this contribution the perspectives for reaction studies in storage rings with energetic exotic nuclei at internal targets and in a small electron -- heavy ion collider are addressed. The feasibility of such experiments is discussed.

  11. Wear Mechanisms of Carbon-Based Refractory Materials in SiMn Tap-Holes—Part II: In Situ Observation of Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Steenkamp, J. D.; Pistorius, P. Chris; Tangstad, M.

    2015-04-01

    The purpose of the study presented here is to determine to what extent chemical reactions between carbon-based refractory and slag or metal in the tap-hole of a SiMn furnace can contribute to wear of tap-hole refractory. The results of the study are reported in two parts. In Part I, thermodynamic calculations suggested that reaction between silicomanganese slag and carbon-based tap-hole refractory is possible, and experiments with nominally pure materials support this. However, practical refractory materials are by no means pure materials and contain secondary phases and porosity which can be expected to affect reaction with slag. In Part II, such reactions are examined experimentally, in cup and wettability tests, using commercially available carbon block and cold-ramming paste refractory materials and mainly industrial SiMn slag. Clear evidence was found of chemical reaction at approximately 1870 K (approximately 1600 °C), forming SiC and, it appears, metal droplets. Both carbon block and ramming paste refractory reacted with slag, with preferential attack on and penetration into the binder phase rather than aggregate particles. The two types of carbon-based refractory materials showed similar extents of chemical reaction observed as wetting and penetration in the laboratory tests. The differences in refractory life observed practically in industrial furnaces should therefore be attributed to wear mechanisms other than pure chemical wear as studied in this work.

  12. Condensed Matter Deuterium Cluster Target for Study of Pycnonuclear Reactions

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoling; George, Miley

    2009-11-01

    Fusion reactions have two main classes: thermonuclear and the pycnonuclear. Thermonuclear fusion occurs in low density high temperature plasmas, and is very sensitive to the ion temperature due to Columbic repulsion effects. As the density increases, the Columbic potential barrier is depressed by increased electron screening, allowing fusion at lower temperatures. This type of nuclear reaction is termed a pycnonuclear fusion and is the basis for astrophysical fusion. Ichimarua [1] proposed a laboratory study of this process using explosive mechanical compression of H/D to metallic densities, which would be extremely difficult to implement. Instead, our recent research suggests that metallic-like H/D ``clusters'' can be formed in dislocation loops of thin Palladium foils through electrochemical processes. [2] If this technique is used as a laser compression target, the compressed cluster density would allow study of pycnonuclear reactions. This provides a means of studying astrophysical fusion process, and could also lead to an important non-cryogenic ICF target. [2] [4pt] [1] S. Ichimaru, H. Kitamura. Phys. Plasmas, 6, 2649 (1999) [0pt] [2] G. Miley and X. Yang, Deuterium Cluster Target for Ultra-High Density, 18TH TOFE, San Francisco, CA Sep. 28 -- Oct. 2, 2008

  13. Kinetic study of hydrated lime reaction with HCl.

    PubMed

    Yan, Rong; Chin, Terence; Liang, David Tee; Laursen, Karin; Ong, Wan Yean; Yao, Kaiwen; Tay, Joo Hwa

    2003-06-01

    Hydrochloride (HCl) is an acidic pollutant present in the flue gas of most municipal or hazardous waste incinerators. Hydrated lime (Ca(OH)2) is often used as a dry sorbent for injection in a spray reactor to remove HCI. However, due to the short residence time encountered, this control method has generally been found to have low conversion efficiencies which results in the high lime usage and generates large amount of fly ash as solid wastes. A fundamental study was carried outto investigate the kinetics of HCl-lime reaction under simulated flue gas conditions in order to better understand the process thereby providing a basis for an optimized lime usage and reduced fly ash production. The initial reaction rate and conversion of three limes were studied using a thermogravimetric analyzer by varying the gas flow rate, temperature (170-400 degrees C), and HCI concentrations (600-1200 mg/m3) as well as the associated particle size and surface area of the limes. The initial lime conversions were found to rely mostly on the residence time, while the ultimate lime conversions were strongly influenced by temperature and the reaction products. CaOHCI was found to be the primary product in most cases, while for one specific lime, CaCl2 was the ultimate conversion product after an extended time period. The true utilization of lime in flue gas cleanup is thus higher when CaOHCl is considered as the final product than those based on CaCl2 as the final product, which has been commonly used in previous studies. The initial reaction was controlled by diffusion of HCl in gas phase and the subsequent reaction by gaseous diffusion through the developing product layer. Increasing the HCI concentration raised the initial rate as well as conversion. However, overloading the lime with excessive HCI caused clogging at its surface and a drop in the ultimate conversion. Limes with smaller particle diameters and higher surface areas were found to be more reactive. The effect of gas

  14. In-situ Study of Dynamic Phenomena at Metal Nanosolder Interfaces Using Aberration Corrected Scanning Transmission Electron Microcopy.

    SciTech Connect

    Lu, Ping

    2014-10-01

    Controlling metallic nanoparticle (NP) interactions plays a vital role in the development of new joining techniques (nanosolder) that bond at lower processing temperatures but remain viable at higher temperatures. The pr imary objective of this project is t o develop a fundamental understanding of the actual reaction processes, associated atomic mechanisms, and the resulting microstructure that occur during thermally - driven bond formation concerning metal - metal nano - scale (%3C50nm) interfaces. In this LDRD pr oject, we have studied metallic NPs interaction at the elevated temperatures by combining in - situ transmission electron microscopy (TEM ) using an aberration - corrected scanning transmission electron microscope (AC - STEM) and atomic - scale modeling such as m olecular dynamic (MD) simulations. Various metallic NPs such as Ag, Cu and Au are synthesized by chemical routines. Numerous in - situ e xperiments were carried out with focus of the research on study of Ag - Cu system. For the first time, using in - situ STEM he ating experiments , we directly observed t he formation of a 3 - dimensional (3 - D) epitaxial Cu - Ag core - shell nanoparticle during the thermal interaction of Cu and Ag NPs at elevated temperatures (150 - 300 o C). The reaction takes place at temperatures as low as 150 o C and was only observed when care was taken to circumvent the effects of electron beam irradiation during STEM imaging. Atomic - scale modeling verified that the Cu - Ag core - shell structure is energetically favored, and indicated that this phenomenon is a nano - scale effect related to the large surface - to - volume ratio of the NPs. The observation potentially can be used for developing new nanosolder technology that uses Ag shell as the "glue" that stic ks the particles of Cu together. The LDRD has led to several journal publications and numerous conference presentations, and a TA. In addition, we have developed new TEM characterization techniques and phase

  15. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.

    PubMed

    Stacchiola, Darío J

    2015-07-21

    and morphology can be followed during a reaction by a combination of in situ microscopy and spectroscopy. In addition to determining the active phase of a catalyst by in situ methods, the presence of weakly adsorbed surface species or intermediates generated only in the presence of reactants can be detected, allowing in turn the comparison of experimental results with first principle modeling of specific reaction mechanisms. Three reactions are used to exemplify the approach: CO oxidation (CO + 1/2O2 → CO2), water gas shift reaction (WGSR) (CO + H2O → CO2 + H2), and methanol synthesis (CO2 + 3H2 → CH3OH + H2O). During CO oxidation, the full conversion of Cu(0) to Cu(2+) deactivates an initially outstanding catalyst. This can be remedied by the formation of a TiCuOx mixed-oxide that protects the presence of active partially oxidized Cu(+) cations. It is also shown that for the WGSR a switch occurs in the reaction mechanism, going from a redox process on Cu(111) to a more efficient associative pathway at the interface of ceria nanoparticles deposited on Cu(111). Similarly, the activation of CO2 at the ceria/Cu(111) interface allows its facile hydrogenation to methanol. Our combined studies emphasize the need of searching for optimal metal/oxide interfaces, where multifunctional sites can lead to new efficient catalytic reaction pathways.

  16. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.

    PubMed

    Stacchiola, Darío J

    2015-07-21

    and morphology can be followed during a reaction by a combination of in situ microscopy and spectroscopy. In addition to determining the active phase of a catalyst by in situ methods, the presence of weakly adsorbed surface species or intermediates generated only in the presence of reactants can be detected, allowing in turn the comparison of experimental results with first principle modeling of specific reaction mechanisms. Three reactions are used to exemplify the approach: CO oxidation (CO + 1/2O2 → CO2), water gas shift reaction (WGSR) (CO + H2O → CO2 + H2), and methanol synthesis (CO2 + 3H2 → CH3OH + H2O). During CO oxidation, the full conversion of Cu(0) to Cu(2+) deactivates an initially outstanding catalyst. This can be remedied by the formation of a TiCuOx mixed-oxide that protects the presence of active partially oxidized Cu(+) cations. It is also shown that for the WGSR a switch occurs in the reaction mechanism, going from a redox process on Cu(111) to a more efficient associative pathway at the interface of ceria nanoparticles deposited on Cu(111). Similarly, the activation of CO2 at the ceria/Cu(111) interface allows its facile hydrogenation to methanol. Our combined studies emphasize the need of searching for optimal metal/oxide interfaces, where multifunctional sites can lead to new efficient catalytic reaction pathways. PMID:26103058

  17. Simulation Studies of Protein and Small Molecule Interactions and Reaction.

    PubMed

    Yang, L; Zhang, J; Che, X; Gao, Y Q

    2016-01-01

    Computational studies of protein and small molecule (protein-ligand/enzyme-substrate) interactions become more and more important in biological science and drug discovery. Computer modeling can provide molecular details of the processes such as conformational change, binding, and transportation of small molecules/proteins, which are not easily to be captured in experiments. In this chapter, we discussed simulation studies of both protein and small molecules from three aspects: conformation sampling, transportations of small molecules in enzymes, and enzymatic reactions involving small molecules. Both methodology developments and examples of simulation studies in this field were presented.

  18. Simulation Studies of Protein and Small Molecule Interactions and Reaction.

    PubMed

    Yang, L; Zhang, J; Che, X; Gao, Y Q

    2016-01-01

    Computational studies of protein and small molecule (protein-ligand/enzyme-substrate) interactions become more and more important in biological science and drug discovery. Computer modeling can provide molecular details of the processes such as conformational change, binding, and transportation of small molecules/proteins, which are not easily to be captured in experiments. In this chapter, we discussed simulation studies of both protein and small molecules from three aspects: conformation sampling, transportations of small molecules in enzymes, and enzymatic reactions involving small molecules. Both methodology developments and examples of simulation studies in this field were presented. PMID:27497167

  19. Reaction cell for in situ soft x-ray absorption spectroscopy and resonant inelastic x-ray scattering measurements of heterogeneous catalysis up to 1 atm and 250 °C

    SciTech Connect

    Kristiansen, P. T.; Rocha, T. C. R.; Knop-Gericke, A.; Guo, J. H.; Duda, L. C.

    2013-11-15

    We present a novel in situ reaction cell for heterogeneous catalysis monitored in situ by x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS). The reaction can be carried out at a total pressure up to 1 atm, a regime that has not been accessible to comparable in situ techniques and thus closes the pressure gap to many industrial standard conditions. Two alternate catalyst geometries were tested: (A) a thin film evaporated directly onto an x-ray transparent membrane with a flowing reaction gas mixture behind it or (B) a powder placed behind both the membrane and a gap of flowing reaction gas mixture. To illustrate the working principle and feasibility of our reaction cell setup we have chosen ethylene epoxidation over a silver catalyst as a test case. The evolution of incorporated oxygen species was monitored by total electron/fluorescence yield O K-XAS as well as O K-RIXS, which is a powerful method to separate contributions from inequivalent sites. We find that our method can reliably detect transient species that exist during catalytic reaction conditions that are hardly accessible using other spectroscopic methods.

  20. In situ infrared study of catalytic decomposition of NO. Semiannual technical progress report, February 1--August 1, 1996

    SciTech Connect

    Chuang, S.S.C.; Tan, C.D.

    1996-09-20

    During the second semi-annual period, promotion of oxygen desorption to enhance direct NO decomposition over Tb-Pt/Al{sub 2}O{sub 3} catalyst has been studied. Promotion of oxygen desorption at low temperatures holds the key to the development of an effective NO decomposition catalyst. Addition of Tb-oxide to Pt/Al{sub 2}O{sub 3} allows oxygen from dissociated NO to desorb at 593 K which is significantly lower than the reported oxygen desorption temperatures for Pt catalysts. Combined temperature-programmed desorption/reaction with in situ infrared study reveals that desorbed oxygen is produced from decomposition of chelating bidentate nitrato which may be resulted from the reaction of adsorbed oxygen on Pt and adsorbed NO on Tb-oxide. The Tb-promoted Pt/Al{sub 2}O{sub 3} catalyst which possess oxygen desorption capability at low temperatures shows the activity for decomposition of NO to N{sub 2}, N{sub 2}O, and O{sub 2} at 723 K.

  1. Chemical reaction and dust formation studies in laboratory hydrocarbon plasmas.

    NASA Astrophysics Data System (ADS)

    Hippler, Rainer; Majumdar, Abhijit; Thejaswini, H. C.

    Plasma chemical reaction studies with relevance to, e.g., Titan's atmosphere have been per-formed in various laboratory plasmas [1,2]. Chemical reactions in a dielectric barrier discharge at medium pressure of 250-300 mbar have been studied in CH4 /N2 and CH4 /Ar gas mixtures by means of mass spectrometry. The main reaction scheme is production of H2 by fragmenta-tion of CH4 , but also production of larger hydrocarbons like Cn Hm with n up to 10 including formation of different functional CN groups is observed. [1] A. Majumdar and R. Hippler, Development of dielectric barrier discharge plasma processing apparatus for mass spectrometry and thin film deposition, Rev. Sci. Instrum. 78, 075103 (2007) [2] H.T. Do, G. Thieme, M. Frühlich, H. Kersten, and R. Hippler, Ion Molecule and Dust Particle Formation in Ar/CH4 , Ar/C2 H2 and Ar/C3 H6 Radio-frequency Plasmas, Contrib. Plasma Phys. 45, No. 5-6, 378-384 (2005)

  2. A Reactive Oxide Overlayer on Rh Nanoparticles during CO Oxidation and Its Size Dependence Studied by in Situ Ambient Pressure XPS

    SciTech Connect

    Grass, Michael E.; Zhang, Yawen; Butcher, Derek R.; Park, Jeong Y.; Li, Yimin; Bluhm, Hendrik; Bratlie, Kaitlin M.; Zhang, Tianfu; Somorjai, Gabor A.

    2008-09-15

    CO oxidation is one of the most studied heterogeneous reactions, being scientifically and industrially important, particularly for removal of CO from exhaust streams and preferential oxidation for hydrogen purification in fuel cell applications. The precious metals Ru, Rh, Pd, Pt, and Au are most commonly used for this reaction because of their high activity and stability. Despite the wealth of experimental and theoretical data, it remains unclear what is the active surface for CO oxidation under catalytic conditions for these metals. In this communication, we utilize in situ synchrotron ambient pressure X-ray photoelectron spectroscopy (APXPS) to monitor the oxidation state at the surface of Rh nanoparticles during CO oxidation and demonstrate that the active catalyst is a surface oxide, the formation of which is dependent on particle size. The amount of oxide formed and the reaction rate both increase with decreasing particle size.

  3. Materials testing for in situ stabilization treatability study of INEEL mixed wastes soils

    SciTech Connect

    Heiser, J.; Fuhrmann, M.

    1997-09-01

    This report describes the contaminant-specific materials testing phase of the In Situ Stabilization Comprehensive Environment Response, Compensation, and Liability Act (CERCLA) Treatability Study (TS). The purpose of materials testing is to measure the effectiveness of grouting agents to stabilize Idaho National Engineering and Environmental Laboratory (INEEL) Acid Pit soils and select a grout material for use in the Cold Test Demonstration and Acid Pit Stabilization Treatability Study within the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC). Test results will assist the selecting a grout material for the follow-on demonstrations described in Test Plan for the Cold Test Demonstration and Acid Pit Stabilization Phases of the In Situ Stabilization Treatability Study at the Radioactive Waste Management Complex.

  4. In situ DNA hybridized chain reaction (FISH-HCR) as a better method for quantification of bacteria and archaea within marine sediment

    NASA Astrophysics Data System (ADS)

    Buongiorno, J.; Lloyd, K. G.; Shumaker, A.; Schippers, A.; Webster, G.; Weightman, A.; Turner, S.

    2015-12-01

    Nearly 75% of the Earth's surface is covered by marine sediment that is home to an estimated 2.9 x 1029 microbial cells. A substantial impediment to understanding the abundance and distribution of cells within marine sediment is the lack of a consistent and reliable method for their taxon-specific quantification. Catalyzed reporter fluorescent in situ hybridization (CARD-FISH) provides taxon-specific enumeration, but this process requires passing a large enzyme through cell membranes, decreasing its precision relative to general cell counts using a small DNA stain. In 2015, Yamaguchi et al. developed FISH hybridization chain reaction (FISH-HCR) as an in situ whole cell detection method for environmental microorganisms. FISH-HCR amplifies the fluorescent signal, as does CARD-FISH, but it allows for milder cell permeation methods that might prevent yield loss. To compare FISH-HCR to CARD-FISH, we examined bacteria and archaea cell counts within two sediment cores, Lille Belt (~78 meters deep) and Landsort Deep (90 meters deep), which were retrieved from the Baltic Sea Basin during IODP Expedition 347. Preliminary analysis shows that CARD-FISH counts are below the quantification limit for most depths across both cores. By contrast, quantification of cells was possible with FISH-HCR in all examined depths. When quantification with CARD-FISH was above the limit of detection, counts with FISH-HCR were up to 11 fold higher for Bacteria and 3 fold higher for Archaea from the same sediment sample. Further, FISH-HCR counts follow the trends of on board counts nicely, indicating that FISH-HCR may better reflect the cellular abundance within marine sediment than other quantification methods, including qPCR. Using FISH-HCR, we found that archaeal cell counts were on average greater than bacterial cell counts, but within the same order of magnitude.

  5. In situ metathesis reaction combined with liquid-phase microextraction based on the solidification of sedimentary ionic liquids for the determination of pyrethroid insecticides in water samples.

    PubMed

    Hu, Lu; Zhang, Panjie; Shan, Wanyu; Wang, Xuan; Li, Songqing; Zhou, Wenfeng; Gao, Haixiang

    2015-11-01

    A novel dispersion liquid-liquid microextraction method based on the solidification of sedimentary ionic liquids (SSIL-DLLME), in which an in situ metathesis reaction forms an ionic liquid (IL) extraction phase, was developed to determine four pyrethroid insecticides (i.e., permethrin, cyhalothrin, fenpropathrin, and transfluthrin) in water followed by separation using high-performance liquid chromatography. In the developed method, in situ DLLME was used to enhance the extraction efficiency and yield. After centrifugation, the extraction solvent, tributyldodecylphosphonium hexafluorophosphate ([P44412][PF6]), was easily collected by solidification in the bottom of the tube. The effects of various experimental parameters, the quantity of tributyldodecylphosphonium bromide ([P44412]Br), the molar ratio of [P44412]Br to potassium hexafluorophosphate (KPF6), the ionic strength, the temperature of the sample solution, and the centrifugation time, were optimized using a Plackett-Burman design to identify the significant factors that affected the extraction efficiency. These significant factors were then optimized using a central composite design. Under the optimized conditions, the recoveries of the four pyrethroid insecticides at four spiked levels ranged from 87.1% to 101.7%, with relative standard deviations (RSDs) ranging from 0.1% to 5.5%. At concentration levels between 1 and 500 µg/L, good linearity was obtained, with coefficients of determination greater than 0.9995. The limits of detection (LODs) for the four pyrethroid insecticides were in the range of 0.71-1.54 µg/L. The developed method was then successfully used for the determination of pyrethroid insecticides in environmental samples.

  6. Direct reaction experimental studies with beams of radioactive tin ions

    SciTech Connect

    Jones, K. L. Ayres, A.; Bey, A.; Burcher, S.; Cartegni, L.; Cerizza, G.; Ahn, S.; Allmond, J. M.; Beene, J. R.; Galindo-Uribarri, A.; Liang, J. F.; Nesaraja, C. D.; Pain, S. D.; Radford, D. C.; Schmitt, K. T.; Smith, M. S.; Stracener, D. W.; Varner, R. L.; Bardayan, D. W.; Baugher, T.; and others

    2015-10-15

    The tin chain of isotopes provides a unique region in which to investigate the evolution of single-particle structure, spreading from N = 50 at {sup 100}Sn, through 10 stable isotopes and the N = 82 shell closure at {sup 132}Sn out into the r-process path. Direct reactions performed on radioactive ion beams are sensitive spectroscopic tools for studying exotic nuclei. Here we present one experiment knocking out neutrons from tin isotopes that are already neutron deficient and two reactions that add a neutron to neutron-rich {sup 130}Sn. Both techniques rely on selective particle identification and the measurement of γ rays in coincidence with charged ions. We present the goals of the two experiments and the particle identification for the channels of interest. The final results will be presented in future publications.

  7. Direct Reaction Experimental Studies with Beams of Radioactive Tin Ions

    SciTech Connect

    Jones, K. L.; Ahn, S.H.; Allmond, James M; Ayres, A.; Bardayan, Daniel W; Baugher, T.; Bazin, D.; Beene, James R; Berryman, J. S.; Bey, A.; Bingham, C. R.; Cartegni, L.; Chae, K. Y.; Gade, A.; Galindo-Uribarri, Alfredo {nmn}; Garcia-Ruiz, R.F.; Grzywacz, Robert Kazimierz; Howard, Meredith E; Kozub, R. L.; Liang, J Felix; Manning, Brett M; Matos, M.; McDaniel, S.; Miller, D.; Nesaraja, Caroline D; O'Malley, Patrick; Padgett, S; Padilla-Rodal, Elizabeth; Pain, Steven D; Pittman, S. T.; Radford, David C; Ratkiewicz, Andrew J; Schmitt, Kyle; Smith, Michael Scott; Stracener, Daniel W; Stroberg, S.; Tostevin, Jeffrey A; Varner Jr, Robert L; Weisshaar, D.; Wimmer, K.

    2015-01-01

    The tin chain of isotopes provides a unique region in which to investigate the evolution of single-particle structure, spreading from N = 50 at Sn-100, through 10 stable isotopes and the N = 82 shell closure at Sn-132 out into the r-process path. Direct reactions performed on radioactive ion beams are sensitive spectroscopic tools for studying exotic nuclei. Here we present one experiment knocking out neutrons from tin isotopes that are already neutron deficient and two reactions that add a neutron to neutron-rich Sn-130. Both techniques rely on selective particle identification and the measurement of gamma rays in coincidence with charged ions. We present the goals of the two experiments and the particle identification for the channels of interest. The final results will be presented in future publications.

  8. Intramolecular anodic olefin coupling reactions: using competition studies to probe the mechanism of oxidative cyclization reactions.

    PubMed

    Xu, Hai-Chao; Moeller, Kevin D

    2010-04-16

    A competition experiment was designed so that the relative rates of anodic cyclization reactions under various electrolysis conditions can be determined. Reactions with ketene dithioacetal and enol ether-based substrates that use lithium methoxide as a base were shown to proceed through radical cation intermediates that were trapped by a sulfonamide anion. Results for the oxidative coupling of a vinyl sulfide with a sulfonamide anion using the same conditions were consistent with the reaction proceeding through a nitrogen-radical.

  9. Photosystem II thermostability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L.

    PubMed

    Brestic, Marian; Zivcak, Marek; Kalaji, Hazem M; Carpentier, Robert; Allakhverdiev, Suleyman I

    2012-08-01

    Photosystem II (PSII) thermostability and acclimation effects on PSII photochemical efficiency were analyzed in thirty field grown winter wheat (Triticum aestivum L.) genotypes using prompt chlorophyll a fluorescence kinetics before and after dark heat treatment. A gradual increase in temperature caused the appearance of K-bands at 300 μs on the chlorophyll fluorescence induction curve, indicating the impairment of the PSII donor side (even by heat treatment at 38 °C). An increase in basal fluorescence, commonly used as a criterion of PSII thermostability, was observed beyond a temperature threshold of 44 °C. Moreover, an acclimation shift (increase of critical temperature) was observed at the 3.5 °C identified for K-band appearance, but only by 1.1 °C for a steep increase in F(0). The single temperature approach with regular weekly observations completed within two months using dark heat treatment at 40 °C demonstrated that the acclimation effect is not gradual, but occurs immediately and is associated with an increase of daily temperature maxima over 30 °C. The acclimated heat treated samples had less effect on the donor side of PSII, the higher fraction of active Q(A)(-) reducing reaction centers and causing a much lower decrease of connectivity among PSII units compared to non-acclimated samples. In the non-treated plants the reduction of antennae size, increase of PSII connectivity and changes in the acceptor side occurred as a result of heat acclimation. The enhancement of PSII thermostability persisted over several weeks regardless of weather conditions. The genotype comparison identified three groups that differed either in initial PSII thermostability or in acclimation capacity; these groupings were clearly associated with the origin of the genotypes.

  10. Density Functional Theory and Reaction Kinetics Studies of the Water–Gas Shift Reaction on Pt–Re Catalysts

    SciTech Connect

    Carrasquillo-Flores, Ronald; Gallo, Jean Marcel R.; Hahn, Konstanze; Dumesic, James A.; Mavrikakis, Manos

    2013-11-05

    Periodic, self-consistent density functional theory calculations (DFT-GGA-PW91) on Pt(111) and Pt3Re(111) surfaces, reaction kinetics measurements, and microkinetic modeling are employed to study the mechanism of the water–gas shift (WGS) reaction over Pt and Pt–Re catalysts. The values of the reaction rates and reaction orders predicted by the model are in agreement with the ones experimentally determined; the calculated apparent activation energies are matched to within 6% of the experimental values. The primary reaction pathway is predicted to take place through adsorbed carboxyl (COOH) species, whereas formate (HCOO) is predicted to be a spectator species. We conclude that the clean Pt(111) is a good representation of the active site for the WGS reaction on Pt catalysts, whereas the active sites on the Pt–Re alloy catalyst likely contain partially oxidized metal ensembles.

  11. In-situ spectroscopic ellipsometry study of copper selective-area atomic layer deposition on palladium

    SciTech Connect

    Jiang, Xiaoqiang; Wang, Han; Qi, Jie; Willis, Brian G.

    2014-07-01

    Selective area copper atomic layer deposition on palladium seed layers has been investigated with in-situ real-time spectroscopic ellipsometry to probe the adsorption/desorption and reaction characteristics of individual deposition cycles. The reactants are copper bis(2,2,6,6-tetramethyl-3,5-heptanedionate) vapor and hydrogen gas. Self-limiting atomic layer deposition was observed in the temperature range of 135–230 °C in a low pressure reactor. Under optimal conditions, growth occurs selectively on palladium and not on silicon dioxide or silicon nitride layers. Based on in-situ ellipsometry data and supporting experiments, a new mechanism for growth is proposed. In the proposed mechanism, precursor adsorption is reversible, and dissociatively adsorbed hydrogen are the stable surface intermediates between growth cycles. The mechanism is enabled by continuous diffusion of palladium from the seed layer into the deposited copper film and strong H* binding to palladium sites. Less intermixing can be obtained at low growth temperatures and short cycle times by minimizing Cu/Pd inter-diffusion.

  12. A Case Study in Chemical Kinetics: The OH + CO Reaction.

    ERIC Educational Resources Information Center

    Weston, Ralph E., Jr.

    1988-01-01

    Reviews some important properties of the bimolecular reaction between the hydroxyl radical and carbon monoxide. Investigates the kinetics of the reaction, the temperature and pressure dependence of the rate constant, the state-to-state dynamics of the reaction, and the reverse reaction. (MVL)

  13. Neutrino-nucleus reactions based on recent structure studies

    SciTech Connect

    Suzuki, Toshio

    2015-05-15

    Neutrino-nucleus reactions are studied with the use of new shell model Hamiltonians, which have proper tensor components in the interactions and prove to be successful in the description of Gamow-Teller (GT) strengths in nuclei. The new Hamiltonians are applied to obtain new neutrino-nucleus reaction cross sections in {sup 12}C, {sup 13}C, {sup 56}Fe and {sup 56}Ni induced by solar and supernova neutrinos. The element synthesis by neutrino processes in supernova explosions is discussed with the new cross sections. The enhancement of the production yields of {sup 7}Li, {sup 11}B and {sup 55}Mn is obtained while fragmented GT strength in {sup 56}Ni with two-peak structure is found to result in smaller e-capture rates at stellar environments. The monopole-based universal interaction with tensor force of π+ρ meson exchanges is used to evaluate GT strength in {sup 40}Ar and ν-induced reactions on {sup 40}Ar. It is found to reproduce well the experimental GT strength in {sup 40}Ar.

  14. Automated data extraction from in situ protein stable isotope probing studies

    SciTech Connect

    Slysz, Gordon W.; Steinke, Laurey A.; Ward, David M.; Klatt, Christian G.; Clauss, Therese RW; Purvine, Samuel O.; Payne, Samuel H.; Anderson, Gordon A.; Smith, Richard D.; Lipton, Mary S.

    2014-01-27

    Protein stable isotope probing (protein-SIP) has strong potential for revealing key metabolizing taxa in complex microbial communities. While most protein-SIP work to date has been performed under controlled laboratory conditions to allow extensive isotope labeling of the target organism, a key application will be in situ studies of microbial communities under conditions that result in small degrees of partial labeling. One hurdle restricting large scale in situ protein-SIP studies is the lack of algorithms and software for automated data processing of the massive data sets resulting from such studies. In response, we developed Stable Isotope Probing Protein Extraction Resources software (SIPPER) and applied it for large scale extraction and visualization of data from short term (3 h) protein-SIP experiments performed in situ on Yellowstone phototrophic bacterial mats. Several metrics incorporated into the software allow it to support exhaustive analysis of the complex composite isotopic envelope observed as a result of low amounts of partial label incorporation. SIPPER also enables the detection of labeled molecular species without the need for any prior identification.

  15. Electrochemical and in situ spectroscopic studies of materials of relevance to energy storage and electrocatalysis

    NASA Astrophysics Data System (ADS)

    Mo, Yibo

    In situ X-ray absorption (XAS), surface enhanced Raman spectroscopy (SERS) and rotating ring disk electrode techniques have been employed for the characterization of materials of relevance to electrochemical energy storage and electrocatalysis. In particular, analysis of in situ Ir LIII-edge extended X-ray absorption fine structure (EXAFS) of IrO2 films electrodeposited on Au substrates yielded Ir-O bond lengths decreasing in the sequence 2.02, 1.97 and 1.93 A, for Ir3+, Ir4+ and Ir5+ sites, respectively. Although features consistent with the presence of crystalline IrO2 in the highly hydrated films were found from in situ SERS, the lack of intense shells in the FT of the EXAFS function beyond the nearest oxygen neighbors indicates that the films by and large do not display long range order. In similar studies, the Fourier transform of the k3-weighted Ru K-edge EXAFS of electrodeposited RuO2 films recorded in situ were characterized by two shells attributed to Ru-O and Ru-Ru interactions at 1.94(1) and 3.12(2) A, in agreement with results obtained ex situ for Ru4+ in hydrous RuO2, whereas films in the reduced state yielded a single Ru-O interaction shell at 2.02(1) A. Extensions of these in situ XAS to the study of electrocatalysts for the nitrite reduction made it possible to identify and characterize the electronic and structural properties of a nitrosyl iron porphyrin adduct adsorbed on an electrode surface via the analysis of Fe K-edge XAS data. The effects of Se and S ad-atoms on the electrocatalytic activity of Pt electrodes have been examined using RRDE techniques. In acid, within a rather narrow range of coverages, both S- and Se-modified Pt surfaces promote the 2-electron reduction of dioxygen to hydrogen peroxide at ca. 100% faradaic efficiency over a wide potential region. Also developed were methods for immobilizing unsupported dispersed high area Pt particles a glassy carbon (GC) disk of a rotating Pt(ring)/GC(disk) electrode assembly allowing

  16. Studies of a photochromic model system using NMR with ex-situ and in-situ irradiation devices.

    PubMed

    Wolff, Christiane; Kind, Jonas; Schenderlein, Helge; Bartling, Hanna; Feldmeier, Christian; Gschwind, Ruth M; Biesalski, Markus; Thiele, Christina M

    2016-06-01

    The switching behavior of a photochromic model system was investigated in detail via NMR spectroscopy in order to improve understanding of the compound itself and to provide ways to obtain insights into composition trends of a photo switchable (polymeric) material containing spiropyran/merocyanine units. In addition to the classical irradiation performed outside the magnet (ex-situ), a device for irradiation inside the NMR spectrometer (in-situ) was tested. Both setups are introduced, their advantages and disadvantages as well as their limits are described and the setup for future investigations of photochromic materials is suggested. The influence of different sample concentrations, irradiation procedures, and light intensities on the model system was examined as well as the dependence on solvent, temperature, and irradiation wavelengths. Using the recently published LED illumination device, it was even possible to record two-dimensional spectra on this model system with rather short half-life (7 min in DMSO). This way (13) C chemical shifts of the merocyanine form were obtained, which were unknown before. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Studies of a photochromic model system using NMR with ex-situ and in-situ irradiation devices.

    PubMed

    Wolff, Christiane; Kind, Jonas; Schenderlein, Helge; Bartling, Hanna; Feldmeier, Christian; Gschwind, Ruth M; Biesalski, Markus; Thiele, Christina M

    2016-06-01

    The switching behavior of a photochromic model system was investigated in detail via NMR spectroscopy in order to improve understanding of the compound itself and to provide ways to obtain insights into composition trends of a photo switchable (polymeric) material containing spiropyran/merocyanine units. In addition to the classical irradiation performed outside the magnet (ex-situ), a device for irradiation inside the NMR spectrometer (in-situ) was tested. Both setups are introduced, their advantages and disadvantages as well as their limits are described and the setup for future investigations of photochromic materials is suggested. The influence of different sample concentrations, irradiation procedures, and light intensities on the model system was examined as well as the dependence on solvent, temperature, and irradiation wavelengths. Using the recently published LED illumination device, it was even possible to record two-dimensional spectra on this model system with rather short half-life (7 min in DMSO). This way (13) C chemical shifts of the merocyanine form were obtained, which were unknown before. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26891085

  18. Fundamental studies of solution and gaseous reactions at transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Qiu, Siping

    Redox reactions at metal surfaces have many important applications. For example, they are used to remove contaminants from solution for environmental remediation, and are also used for the growth of dielectric thin films. This dissertation investigates surface chemical reactions at the liquid-solid and vapor-solid interfaces. Chemical reactions at the solid-liquid interface were investigated in an effort to bridge the gap between conventional bulk solution chemical studies and UHV gas phase surface reactions studies. Such reactions have not been studied extensively at the fundamental level due to the inherent complexity of the systems. Saline solutions containing selenate, chromate and uranyl contaminant ions were reacted with Fe and Fe oxide surfaces. Scanning tunneling microscopy (STM) images collected in situ were used to monitor the changes in surface morphology during reaction. X-ray photoelectron spectroscopy (XPS) was used to identify the surface products following reaction. The foil surfaces become smoother due to both etching of the substrate and the deposition of material. Selenium and chromium are deposited onto the surface in a partially reduced form, while uranium is deposited without reduction. The amount of material deposited is dependent on the presence of dissolved gases, such as O2 and CO2, in the solution. Gaseous SeF6 was reacted with atomically clean iron and iron oxide surfaces in vacuum in order to model the reduction of selenate. The resulting surfaces were examined with XPS. It was found that SeF6 dissociatively chemisorbs onto iron, i.e., the selenium is completely reduced. In the reaction with a clean Fe surface, a thin film of FeF2 is formed. Surface oxide inhibits the adsorption of SeF6. The growth of the FeF2 film initially follows MottCabrera kinetics, but then abruptly stops. It is suggested that the shutdown is due to the inability of electrons from the substrate to transport through the film when it becomes too thick. These

  19. Demonstration testing and evaluation of in situ soil heating. Treatability study work plan, Revision 1

    SciTech Connect

    Sresty, G.C.

    1994-07-07

    A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. The EM heating process for soil decontamination is based on volumetric heating technologies developed during the `70s for the recovery of fuels from shale and tar sands by IIT Research Institute (IITRI) under a co-operative program with the US Department of Energy (DOE). Additional modifications of the technology developed during the mid `80s are currently used for the production of heavy oil and waste treatment. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 to 95 C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern.

  20. Nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction.

    PubMed

    Tian, Gui-Li; Zhao, Meng-Qiang; Yu, Dingshan; Kong, Xiang-Yi; Huang, Jia-Qi; Zhang, Qiang; Wei, Fei

    2014-06-12

    There is a growing interest in oxygen electrode catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), as they play a key role in a wide range of renewable energy technologies such as fuel cells, metal-air batteries, and water splitting. Nevertheless, the development of highly-active bifunctional catalysts at low cost for both ORR and OER still remains a huge challenge. Herein, we report a new N-doped graphene/single-walled carbon nanotube (SWCNT) hybrid (NGSH) material as an efficient noble-metal-free bifunctional electrocatalyst for both ORR and OER. NGSHs were fabricated by in situ doping during chemical vapor deposition growth on layered double hydroxide derived bifunctional catalysts. Our one-step approach not only provides simultaneous growth of graphene and SWCNTs, leading to the formation of three dimensional interconnected network, but also brings the intrinsic dispersion of graphene and carbon nanotubes and the dispersion of N-containing functional groups within a highly conductive scaffold. Thus, the NGSHs possess a large specific surface area of 812.9 m(2) g(-1) and high electrical conductivity of 53.8 S cm(-1) . Despite of relatively low nitrogen content (0.53 at%), the NGSHs demonstrate a high ORR activity, much superior to two constituent components and even comparable to the commercial 20 wt% Pt/C catalysts with much better durability and resistance to crossover effect. The same hybrid material also presents high catalytic activity towards OER, rendering them high-performance cheap catalysts for both ORR and OER. Our result opens up new avenues for energy conversion technologies based on earth-abundant, scalable, noble-metal-free catalysts.

  1. Nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction.

    PubMed

    Tian, Gui-Li; Zhao, Meng-Qiang; Yu, Dingshan; Kong, Xiang-Yi; Huang, Jia-Qi; Zhang, Qiang; Wei, Fei

    2014-06-12

    There is a growing interest in oxygen electrode catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), as they play a key role in a wide range of renewable energy technologies such as fuel cells, metal-air batteries, and water splitting. Nevertheless, the development of highly-active bifunctional catalysts at low cost for both ORR and OER still remains a huge challenge. Herein, we report a new N-doped graphene/single-walled carbon nanotube (SWCNT) hybrid (NGSH) material as an efficient noble-metal-free bifunctional electrocatalyst for both ORR and OER. NGSHs were fabricated by in situ doping during chemical vapor deposition growth on layered double hydroxide derived bifunctional catalysts. Our one-step approach not only provides simultaneous growth of graphene and SWCNTs, leading to the formation of three dimensional interconnected network, but also brings the intrinsic dispersion of graphene and carbon nanotubes and the dispersion of N-containing functional groups within a highly conductive scaffold. Thus, the NGSHs possess a large specific surface area of 812.9 m(2) g(-1) and high electrical conductivity of 53.8 S cm(-1) . Despite of relatively low nitrogen content (0.53 at%), the NGSHs demonstrate a high ORR activity, much superior to two constituent components and even comparable to the commercial 20 wt% Pt/C catalysts with much better durability and resistance to crossover effect. The same hybrid material also presents high catalytic activity towards OER, rendering them high-performance cheap catalysts for both ORR and OER. Our result opens up new avenues for energy conversion technologies based on earth-abundant, scalable, noble-metal-free catalysts. PMID:24574006

  2. Quantum chemical study of penicillin: Reactions after acylation

    NASA Astrophysics Data System (ADS)

    Li, Rui; Feng, Dacheng; Zhu, Feng

    The density functional theory methods were used on the model molecules of penicillin to determine the possible reactions after their acylation on ?-lactamase, and the results were compared with sulbactam we have studied. The results show that, the acylated-enzyme tetrahedral intermediate can evolves with opening of ?-lactam ring as well as the thiazole ring; the thiazole ring-open products may be formed via ?-lactam ring-open product or from tetrahedral intermediate directly. Those products, in imine or enamine form, can tautomerize via hydrogen migration. In virtue of the water-assisted, their energy barriers are obviously reduced.

  3. Chemical reactions of As complexation by glutathione: an XAFS study

    NASA Astrophysics Data System (ADS)

    Franco, M. W.; Vasconcelos, I. F.; Modolo, L. V.; Barbosa, F. A. R.

    2016-05-01

    In this study, the chemical reactions between As(III) and As(V) with glutathione, which is a target compound in As biochemistry due to its primordial role in As immobilization and intracellular reduction, in various molar ratios were investigated using As K-edge XAFS spectroscopy. Results showed a gradual substitution of As-O bonds in the coordination of aqueous As(III) and As(V) for three As-S bonds in the As+GSH complex. Moreover, the data showed reduction of As(V) to As(III) prior or concomitant to the As+GSH complex formation.

  4. In situ activity recovery of aging biofilm in biological aerated filter: Surfactants treatment and mechanisms study.

    PubMed

    Yu, Qisheng; Huang, Hui; Ren, Hongqiang; Ding, Lili; Geng, Jinju

    2016-11-01

    In situ activity recovery of aging biofilm in the biological aerated filter (BAF) is an important but underappreciated problem. Lab-scaled BAFs were established in this study and three kinds of surfactants containing sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS) and rhamnolipid were employed. Multiple indicators including effluent qualities, dissolved organic matters, biofilm physiology and morphology characteristics were investigated to explore the mechanisms. Results showed that removal rates of effluent COD in test groups significantly recovered to the level before aging. Compared with the control, effluent in SDBS and rhamnolipid-treated groups obtained more protein-like and humic-like substances, respectively. Furthermore, great live cell ratio, smooth surface and low adhesion force of biofilm were observed after rhamnolipid treatment, which was in consistent with good effluent qualities in the same group. This is the first report of applying rhamnolipid for in situ activity recovery of aging biofilm in bioreactors. PMID:27513646

  5. Research study on horizontal well drilling and in-situ remediation: Final program plan

    SciTech Connect

    Kaback, D.S.; Looney, B.B.

    1988-02-22

    Vacuum extraction and air-stripping are new technologies that have broad applications at sites of volatile organic contaminated soils and groundwater. These types of sites are very common across the United States. A research study to test the combined effect of both technologies in an in-situ setting is planned. Vacuum extraction has been demonstrated as an effective technique to remediate the vadose zone both at SRP and at numerous sites across the country. Air stripping has also been demonstrated as an effective technique in an above-ground setting at SRP and across the country. However, to our knowledge it has not been tested as an in-situ method. The proposed research is on the leading edge of groundwater/vadose zone remediation technology and has great potential to impact available technology in this field. 3 refs., 13 figs., 1 tab.

  6. Localization of cytomegalovirus DNA in plastic-embedded sections by in situ hybridization. A methodologic study.

    PubMed Central

    Cao, M.; Beckstead, J. H.

    1989-01-01

    The use of in situ hybridization for the identification of specific nucleic acid sequences in tissue sections has the potential for broad application in pathology. Although this technique has been successfully applied to routine paraffin sections, there have been few studies of the application of in situ hybridization to plastic-embedded tissue sections. The authors adapted techniques developed for paraffin sections to take advantage of the potential for improved morphology and more precise localization inherent in the plastic sections. A commercially available biotinylated DNA probe specific for the cytomegalovirus to develop a practical method for detection of nucleic acid sequences in plastic-embedded tissues was used. Using plastic sections, cytomegalovirus DNA sequences could readily be identified with precise localization of the virus and superb histology. Images Figure 2 Figure 3 Figure 1 Figure 4 PMID:2537020

  7. In Situ Potentiometry and Ellipsometry: A Promising Tool to Study Biofouling of Potentiometric Sensors.

    PubMed

    Lisak, Grzegorz; Arnebrant, Thomas; Lewenstam, Andrzej; Bobacka, Johan; Ruzgas, Tautgirdas

    2016-03-15

    In situ potentiometry and null ellipsometry was combined and used as a tool to follow the kinetics of biofouling of ion-selective electrodes (ISEs). The study was performed using custom-made solid-contact K(+)-ISEs consisting of a gold surface with immobilized 6-(ferrocenyl)hexanethiol as ion-to-electron transducer that was coated with a potassium-selective plasticized polymer membrane. The electrode potential and the ellipsometric signal (corresponding to the amount of adsorbed protein) were recorded simultaneously during adsorption of bovine serum albumin (BSA) at the surface of the K(+)-ISEs. This in situ method may become useful in developing sensors with minimized biofouling. PMID:26864883

  8. In Situ Fourier transform infrared spectroscopic study of the thermal degradation of isotactic poly(propylene).

    PubMed

    He, Peng; Xiao, Yan; Zhang, Puming; Zhu, Na; Zhu, Xinyuan; Yan, Deyue

    2005-01-01

    The conformational change of isotactic poly(propylene) (iPP) during the thermal degradation process has been carefully studied by in situ Fourier transform infrared (FT-IR) spectroscopy. This new method of studying thermal degradation of iPP not only shows the conventional kinetic parameter information of thermal degradation such as the degradation activation energy DeltaE and the degradation factor n, which are in accord with the results of traditional thermogravimetry experiments, but also indicates that many significant molecular structure changes occur during the thermal degradation process that come from some characteristic absorption band changes of in situ FT-IR. A multivariate approach, principal components analysis (PCA), is applied to the analysis of infrared (IR) data, and the results further confirm the multi-step processes of the thermal degradation of iPP. Above all, this is a new application to polymer thermal degradation by in situ FT-IR that connects the intermediate conformational change with final results during thermal degradation.

  9. In situ study of heavy ion irradiation response of immiscible Cu/Fe multilayers

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, N.; Bufford, D. C.; Li, J.; Hattar, K.; Wang, H.; Zhang, X.

    2016-07-01

    Recent studies show that immiscible metallic multilayers with incoherent interfaces can effectively reduce defect density in ion irradiated metals by providing active defect sinks that capture and annihilate radiation induced defect clusters. Although it is anticipated that defect density within the layers should vary as a function of distance to the layer interface, there is, to date, little in situ TEM evidence to validate this hypothesis. In this study monolithic Cu films and Cu/Fe multilayers with individual layer thickness, h, of 100 and 5 nm were subjected to in situ Cu ion irradiation at room temperature to nominally 1 displacement-per-atom inside a transmission electron microscope. Rapid formation and propagation of defect clusters were observed in monolithic Cu, whereas fewer defects with smaller dimensions were generated in Cu/Fe multilayers with smaller h. Furthermore in situ video shows that the cumulative defect density in Cu/Fe 100 nm multilayers indeed varies, as a function of distance to the layer interfaces, supporting a long postulated hypothesis.

  10. Development of an in Situ NMR Photoreactor To Study Environmental Photochemistry.

    PubMed

    Bliumkin, Liora; Dutta Majumdar, Rudraksha; Soong, Ronald; Adamo, Antonio; Abbatt, Jonathan P D; Zhao, Ran; Reiner, Eric; Simpson, André J

    2016-06-01

    Photochemistry is a key environmental process directly linked to the fate, source, and toxicity of pollutants in the environment. This study explores two approaches for integrating light sources with nuclear magnetic resonance (NMR) spectroscopy: sample irradiation using a "sunlight simulator" outside the magnet versus direct irradiation of the sample inside the magnet. To assess their applicability, the in situ NMR photoreactors were applied to a series of environmental systems: an atmospheric pollutant (p-nitrophenol), crude oil extracts, and groundwater. The study successfully illustrates that environmentally relevant aqueous photochemical processes can be monitored in situ and in real time using NMR spectroscopy. A range of intermediates and degradation products were identified and matched to the literature. Preliminary measurements of half-lives were also obtained from kinetic curves. The sunlight simulator was shown to be the most suitable model to explore environmental photolytic processes in situ. Other light sources with more intense UV output hold potential for evaluating UV as a remediation alternative in areas such as wastewater treatment plants or oil spills. Finally, the ability to analyze the photolytic fate of trace chemicals at natural abundance in groundwater, using a cryogenic probe, demonstrates the viability of NMR spectroscopy as a powerful and complementary technique for environmental applications in general.

  11. Development of an in Situ NMR Photoreactor To Study Environmental Photochemistry.

    PubMed

    Bliumkin, Liora; Dutta Majumdar, Rudraksha; Soong, Ronald; Adamo, Antonio; Abbatt, Jonathan P D; Zhao, Ran; Reiner, Eric; Simpson, André J

    2016-06-01

    Photochemistry is a key environmental process directly linked to the fate, source, and toxicity of pollutants in the environment. This study explores two approaches for integrating light sources with nuclear magnetic resonance (NMR) spectroscopy: sample irradiation using a "sunlight simulator" outside the magnet versus direct irradiation of the sample inside the magnet. To assess their applicability, the in situ NMR photoreactors were applied to a series of environmental systems: an atmospheric pollutant (p-nitrophenol), crude oil extracts, and groundwater. The study successfully illustrates that environmentally relevant aqueous photochemical processes can be monitored in situ and in real time using NMR spectroscopy. A range of intermediates and degradation products were identified and matched to the literature. Preliminary measurements of half-lives were also obtained from kinetic curves. The sunlight simulator was shown to be the most suitable model to explore environmental photolytic processes in situ. Other light sources with more intense UV output hold potential for evaluating UV as a remediation alternative in areas such as wastewater treatment plants or oil spills. Finally, the ability to analyze the photolytic fate of trace chemicals at natural abundance in groundwater, using a cryogenic probe, demonstrates the viability of NMR spectroscopy as a powerful and complementary technique for environmental applications in general. PMID:27172272

  12. Photo-redox reactions of dicarboxylates and α-hydroxydicarboxylates at the surface of Fe(III)(hydr)oxides followed with in situ ATR-FTIR spectroscopy.

    PubMed

    Borer, Paul; Hug, Stephan J

    2014-02-15

    Colloidal mineral-phases play an important role in the adsorption, transport and transformation of organic and inorganic compounds in the atmosphere and in aqueous environments. Artificial UV-light and sunlight can induce electron transfer reactions between metal ions of the solid phases and adsorbed compounds, leading to their transformation and degradation. To investigate different possible photo-induced oxidation pathways of dicarboxylates adsorbed on iron(III)(hydr)oxide surfaces, we followed UV-A induced photoreactions of oxalate, malonate, succinate and their corresponding α-hydroxy analogues tartronate and malate with in situ ATR-FTIR spectroscopy in immersed particle layers of lepidocrocite, goethite, maghemite and hematite at pH 4. UV-A light (365 ± 5 nm) lead to fast degradation of oxalate, tartronate and malate, while malonate and succinate were photo-degraded at much slower rates. Efficient generation of OH-radicals can be excluded, as this would lead to fast and indiscriminate degradation of all tested compounds. Rapid photo-degradation of adsorbed oxalate and the α-hydroxydicarboxylates must be induced by direct ligand-to-metal charge transfer (LMCT) or by selectively oxidizing valence band holes, both processes requiring inner-sphere coordination with direct ligand-to-metal bonds to enable efficient electron-transfer. The slow photo-degradation of malonate and succinate can be explained by low-yield production of OH-radicals at the surface of the iron(III)(hydr)oxides.

  13. In situ growth of NixSy controlled by surface treatment of nickel foam as efficient electrocatalyst for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Shang, Xiao; Li, Xiao; Hu, Wen-Hui; Dong, Bin; Liu, Yan-Ru; Han, Guan-Qun; Chai, Yong-Ming; Liu, Yun-Qi; Liu, Chen-Guang

    2016-08-01

    In situ growth of NixSy with different crystal phases supported on different surface-treated (acidification or oxidation) nickel foam (NF) has been successfully achieved by a facile solvothermal process. XRD and SEM results show that crystal phase and morphology of NixSy have been greatly affected by the surface treatment of NF. XRD results show that the mixture crystal phases of NixSy have been obtained on both acid-treated NF (NF(a)) and oxidant treated NF (NF(o)). NixSy/NF(a) contains Ni3S2 and NiS, whereas NixSy/NF(o) has Ni3S2 and NiS2, implying different crystal phases derived from different surface treatment of NF. SEM images also reveal the different morphology of two samples based on pre-treatment support. NixSy/NF(a) displays unique conical agglomeration surrounded by porous structure. NixSy/NF(o) has the disorder stacking structure of nanosheets. Electrochemical measurements for oxygen evolution reaction (OER) show the enhanced performances of NixSy/NF(a) than NixSy/NF(o) and pure Ni3S2/NF as contrast samples, implying that NiS outperforms other types of NixSy. The mechanisms of sulfurization path of different surface-treated NF have been discussed. The facile surface treatment of NF may provide a new strategy to prepare excellent electrocatalysts for OER.

  14. IN SITU MAGIC ANGLE SPINNING NMR FOR STUDYING GEOLOGICAL CO(2) SEQUESTRATION

    SciTech Connect

    Hoyt, David W.; Turcu, Romulus VF; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Kwak, Ja Hun; Felmy, Andrew R.; Hu, Jian Z.

    2011-03-27

    Geological carbon sequestration (GCS) is one of the most promising ways of mitigating atmospheric greenhouse gases (1-3). Mineral carbonation reactions are potentially important to the long-term sealing effectiveness of caprock but remain poorly predictable, particularly in low-water supercritical CO2 (scCO2)-dominated environments where the chemistry has not been adequately explored. In situ probes that provide molecular-level information is desirable for investigating mechanisms and rates of GCS mineral carbonation reactions. MAS-NMR is a powerful tool for obtaining detailed molecular structure and dynamics information of a system regardless whether the system is in a solid, a liquid, a gaseous, or a supercritical state, or a mixture thereof (4,5). However, MAS NMR under scCO2 conditions has never been realized due to the tremendous technical difficulties of achieving and maintaining high pressure within a fast spinning MAS rotor (6,7), where non-metal materials must be used. In this work, we report development of a unique high pressure MAS NMR capability, and its application to mineral carbonation chemistry in scCO2 under geologically relevant temperatures and pressures.

  15. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research

    SciTech Connect

    Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F.C.; Geske, M.; Taha, A.; Pelzer, K.; Schloegl, R.

    2006-05-15

    A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000 deg. C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100 {mu}m sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10 ms. A detection time resolution of up to 20 ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N{sub 2} and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N{sub 2} to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250 deg. C on a Pt catalyst are presented. The detection of CH{sub 3}{center_dot} radicals is successfully demonstrated.

  16. A five-year study of cosmetic reactions.

    PubMed

    Adams, R M; Maibach, H I

    1985-12-01

    During 64 months (1977 to 1983), twelve dermatologists from various sections of the United States studied a total of 713 patients with cosmetic dermatitis out of an estimated total of 13,216 patients with contact dermatitis. The number of patients seen for all causes during this period was 281,100. An important finding was that half of the patients or physicians were unaware that a cosmetic was responsible for their dermatitis. Skin care products, hair preparations (including colors), and facial makeup were responsible for the majority of the reactions. The most important objective was identification of causative ingredients. Eighty-seven percent of the subjects had patch tests. Fragrance, preservatives (Quaternium-15, formaldehyde, imidazolidinyl urea, and parabens), p-phenylenediamine, and glyceryl monothioglycolate were the most frequently identified allergic sensitizers, in that order. In addition to the clinical data, the study permitted assessment of the frequency of cosmetic reactions, although the data may not be entirely representative of the country at large because of the special interests of the dermatologists involved.

  17. Photosynthetic reaction center of green sulfur bacteria studied by EPR

    SciTech Connect

    Nitschke, W.; Rutherford, A.W. ); Fieler, U. )

    1990-04-24

    Membrane preparations of two species of the green sulfur bacteria Chlorobium have been studied be EPR. Three signals were detected which were attributed to iron-sulfur centers acting as electron acceptors in the photosynthetic reaction center. (1) A signal from a center designated F{sub B}, was photoinduced at 4K. (2) A similar signal, F{sub A}, was photoinduced in addition to the F{sub B} signal upon a short period of illumination at 200 K. (3) Further illumination at 200 K resulted in the appearance of a broad feature at g=1.78. This is attributed to the g{sub x} component of an iron-sulfur center designated F{sub X}. The designations of these signals as F{sub B}, F{sub A}, and F{sub X} are based on their spectroscopic similarities to signals in photosystem I (PS I). The orientation dependence of these EPR signals in ordered Chlorobium membrane multilayers is remarkably similar to that of their PS I homologues. A magnetic interaction between the reduced forms of F{sub B} and F{sub A} occurs, which is also very similar to that seen in PS I. The triplet state of P{sub 840}, the primary electron donor, could be photoinduced at 4 K in samples which had been preincubated with sodium dithionite and methyl viologen and then preilluminated at 200 K. The preillumination reduces the iron-sulfur centers while the preincubation is thought to result in the inactivation of an earlier electron acceptor. Orientation studies of the triplet signal in ordered multilayers indicate that the bacteriochlorophylls which act as the primary electron donor in Chlorobium are arranged with a structural geometry almost identical with that of the special pair in purple bacteria. The Chlorobium reaction center appears to be similar in some respects to both PS I and to the purple bacterial reaction center. This is discussed with regard to the evolution of the different types of reaction centers from a common ancestor.

  18. Recombination reaction of rhodopsin in situ studied by photoconversion of "indicator yellow".

    PubMed

    Kolesnikov, A V; Shukolyukov, S A; Cornwall, M C; Govardovskii, V I

    2006-05-01

    We measured the kinetics of recombination of 11-cis-retinal with opsin in intact frog rod outer segment (ROS). The rhodopsin in ROS was bleached and allowed to decay to "indicator yellow," a photoproduct where all-trans-retinal is partly free, and partly bound to non-specific amino groups of disk membranes. By briefly illuminating the "indicator yellow" by an intense 465 or 380-nm flash, we then photoconverted all-trans-retinal to (mostly) the 11-cis- form thus introducing into ROS a certain amount of cis-chromophore. The recombination of cis-retinal with opsin and the formation of rhodopsin were followed by fast single-cell microspectrophotometry. Regeneration proceeded with a time constant of approximately 3.5 min; up to 27% of bleached visual pigment was restored. The regenerated pigment consisted of 91% rhodopsin (11-cis-chromophore) and 9% of presumably isorhodopsin (9-cis-chromophore). The recombination of 11-cis-retinal with opsin inside the ROS proceeds substantially faster than rhodopsin regeneration in the intact eye and, hence, is not the rate-limiting step in the visual cycle.

  19. In situ SEM Study of Lithium Intercalation in individual V2O5 Nanowires

    DOE PAGES

    Strelcov, Evgheni; Cothren, Joshua E.; Leonard, Donovan N.; Borisevich, Albina Y.; Kolmakov, Andrei

    2015-01-08

    Progress in rational engineering of Li-ion batteries requires better understanding of the electrochemical processes and accompanying transformations in the electrode materials on multiple length scales. In spite of recent progress in utilizing transmission electron microscopy (TEM) to analyze these materials, in situ scanning electron microscopy (SEM) was mostly overlooked as a powerful tool that allows probing these phenomena on the nano and mesoscale. In this paper, we report on in situ SEM study of lithiation in a V2O5-based single-nanobelt battery with ionic liquid electrolyte. Coupled with cyclic voltammetry measurements, in situ SEM revealed the peculiarities of subsurface intercalation, formation ofmore » solid-electrolyte interface (SEI) and electromigration of liquid. We observed that single-crystalline vanadia nanobelts do not undergo large-scale amorphization or fracture during electrochemical cycling, but rather transform topochemically with only a slight shape distortion. Lastly, the SEI layer seems to have significant influence on the lithium ion diffusion and overall capacity of the single-nanobelt battery.« less

  20. An in situ approach to study trace element partitioning in the laser heated diamond anvil cell

    SciTech Connect

    Petitgirard, S.; Mezouar, M.; Borchert, M.; Appel, K.; Liermann, H.-P.; Andrault, D.

    2012-01-15

    Data on partitioning behavior of elements between different phases at in situ conditions are crucial for the understanding of element mobility especially for geochemical studies. Here, we present results of in situ partitioning of trace elements (Zr, Pd, and Ru) between silicate and iron melts, up to 50 GPa and 4200 K, using a modified laser heated diamond anvil cell (DAC). This new experimental set up allows simultaneous collection of x-ray fluorescence (XRF) and x-ray diffraction (XRD) data as a function of time using the high pressure beamline ID27 (ESRF, France). The technique enables the simultaneous detection of sample melting based to the appearance of diffuse scattering in the XRD pattern, characteristic of the structure factor of liquids, and measurements of elemental partitioning of the sample using XRF, before, during and after laser heating in the DAC. We were able to detect elements concentrations as low as a few ppm level (2-5 ppm) on standard solutions. In situ measurements are complimented by mapping of the chemical partitions of the trace elements after laser heating on the quenched samples to constrain the partitioning data. Our first results indicate a strong partitioning of Pd and Ru into the metallic phase, while Zr remains clearly incompatible with iron. This novel approach extends the pressure and temperature range of partitioning experiments derived from quenched samples from the large volume presses and could bring new insight to the early history of Earth.

  1. First principle kinetic studies of zeolite-catalyzed methylation reactions.

    PubMed

    Van Speybroeck, Veronique; Van der Mynsbrugge, Jeroen; Vandichel, Matthias; Hemelsoet, Karen; Lesthaeghe, David; Ghysels, An; Marin, Guy B; Waroquier, Michel

    2011-02-01

    Methylations of ethene, propene, and butene by methanol over the acidic microporous H-ZSM-5 catalyst are studied by means of state of the art computational techniques, to derive Arrhenius plots and rate constants from first principles that can directly be compared with the experimental data. For these key elementary reactions in the methanol to hydrocarbons (MTH) process, direct kinetic data became available only recently [J. Catal.2005, 224, 115-123; J. Catal.2005, 234, 385-400]. At 350 °C, apparent activation energies of 103, 69, and 45 kJ/mol and rate constants of 2.6 × 10(-4), 4.5 × 10(-3), and 1.3 × 10(-2) mol/(g h mbar) for ethene, propene, and butene were derived, giving following relative ratios for methylation k(ethene)/k(propene)/k(butene) = 1:17:50. In this work, rate constants including pre-exponential factors are calculated which give very good agreement with the experimental data: apparent activation energies of 94, 62, and 37 kJ/mol for ethene, propene, and butene are found, and relative ratios of methylation k(ethene)/k(propene)/k(butene) = 1:23:763. The entropies of gas phase alkenes are underestimated in the harmonic oscillator approximation due to the occurrence of internal rotations. These low vibrational modes were substituted by manually constructed partition functions. Overall, the absolute reaction rates can be calculated with near chemical accuracy, and qualitative trends are very well reproduced. In addition, the proposed scheme is computationally very efficient and constitutes significant progress in kinetic modeling of reactions in heterogeneous catalysis.

  2. Kinetic Study of the Austempering Reactions in Ductile Irons

    NASA Astrophysics Data System (ADS)

    Pérez, M. J.; Cisneros, M. M.; Almanza, E.; Haro, S.

    2012-11-01

    Kinetics of the reaction that occur during the austempering heat treatment in unalloyed and alloyed ductile irons with 1Cu-0.25Mo, 1Ni-0.25Mo, and 0.7Cu-1Ni-0.25Mo, was studied. The austenitization and austempering cycles were achieved by isothermal dilatometry in cylindrical samples of 2 mm in diameter and 12 mm in length. The specimens were austenitized at 870 °C for 120 min, followed by isothermal holding for 300 min at temperatures between 270 and 420 °C. Kinetic parameters such as the order of reaction " n" and the rate of reaction " k" were calculated using the Johnson-Mehl equation while the empirical activation energy was calculated by means of the Arrhenius equation. It was found that the values of " k" decreased with the addition of Cu, Ni, and Mo as well as with the reduction of the isothermal temperature. The activation energy changes with the austempering temperature, in the range 30,348-58,250 J/mol when the heat treatment was carried out between 370 and 420 °C and 10,336-26,683 J/mol when the temperature varied from 270 to 350 °C. The microstructures in samples austempered at 370 and 315 °C were observed by transmission electron microscopy. No carbides precipitation was observed on samples heat treated at 370 °C for less than 120 min, while at 315 °C carbides of hexagonal structure ɛ(Fe2.4C) were found from the beginning of the transformation. The smallest value of activation energy and a slower kinetic transformation seem to be related with the presence of a carbide phase. Additionally, the time results obtained for transformation fractions of 0.05 and 0.95 by the dilatometry analysis were used to build the temperature-time-transformation diagrams for the irons.

  3. Chemistry at high pressures and temperatures: in-situ synthesis and characterization of {beta}-Si{sub 3}N{sub 4} by DAC X-ray/laser-heating studies

    SciTech Connect

    Yoo, C.-S.; Akella, J.; Nicol, M.

    1996-01-01

    We have developed in-situ XRD technique at high pressures and temperatures by integrating the angle-resolved synchrotron XRD method, laser-heating system, and diamond anvil cell together. Using this technique, we have studied the direct elementary reactions of nitrogen with Si, yielding technologically important {beta}-Si{sub 3}N{sub 4}. These reactions do not occur at ambient temperatures at high pressures up to 50 GPa, but proceed exothermically at high temperatures at moderate pressures. It implies that the reaction is kinetically limited by a large activation barrier.

  4. Identification of intermediates in zeolite-catalyzed reactions by in situ UV/Vis microspectroscopy and a complementary set of molecular simulations.

    PubMed

    Hemelsoet, Karen; Qian, Qingyun; De Meyer, Thierry; De Wispelaere, Kristof; De Sterck, Bart; Weckhuysen, Bert M; Waroquier, Michel; Van Speybroeck, Veronique

    2013-12-01

    The optical absorption properties of (poly)aromatic hydrocarbons occluded in a nanoporous environment were investigated by theoretical and experimental methods. The carbonaceous species are an essential part of a working catalyst for the methanol-to-olefins (MTO) process. In situ UV/Vis microscopy measurements on methanol conversion over the acidic solid catalysts H-SAPO-34 and H-SSZ-13 revealed the growth of various broad absorption bands around 400, 480, and 580 nm. The cationic nature of the involved species was determined by interaction of ammonia with the methanol-treated samples. To determine which organic species contribute to the various bands, a systematic series of aromatics was analyzed by means of time-dependent density functional theory (TDDFT) calculations. Static gas-phase simulations revealed the influence of structurally different hydrocarbons on the absorption spectra, whereas the influence of the zeolitic framework was examined by using supramolecular models within a quantum mechanics/molecular mechanics framework. To fully understand the origin of the main absorption peaks, a molecular dynamics (MD) study on the organic species trapped in the inorganic host was essential. During such simulation the flexibility is fully taken into account and the effect on the UV/Vis spectra is determined by performing TDDFT calculations on various snapshots of the MD run. This procedure allows an energy absorption scale to be provided and the various absorption bands determined from in situ UV/Vis spectra to be assigned to structurally different species. PMID:24281808

  5. Pulsed supercritical synthesis of anatase TiO2 nanoparticles in a water-isopropanol mixture studied by in situ powder X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Eltzholtz, Jakob Rostgaard; Tyrsted, Christoffer; Jensen, Kirsten Marie Ørnsbjerg; Bremholm, Martin; Christensen, Mogens; Becker-Christensen, Jacob; Iversen, Bo Brummerstedt

    2013-02-01

    A new step in supercritical nanoparticle synthesis, the pulsed supercritical synthesis reactor, is investigated in situ using synchrotron powder X-ray diffraction (PXRD) to understand the formation of nanoparticles in real time. This eliminates the common problem of transferring information gained during in situ studies to subsequent laboratory reactor conditions. As a proof of principle, anatase titania nanoparticles were synthesized in a 50/50 mixture of water and isopropanol near and above the critical point of water (P = 250 bar, T = 300, 350, 400, 450, 500 and 550 °C). The evolution of the reaction product was followed by sequentially recording PXRD patterns with a time resolution of less than two seconds. The crystallite size of titania is found to depend on both temperature and residence time, and increasing either parameter leads to larger crystallites. A simple adjustment of either temperature or residence time provides a direct method for gram scale production of anatase nanoparticles of average crystallite sizes between 7 and 35 nm, thus giving the option of synthesizing tailor-made nanoparticles. Modeling of the in situ growth curves using an Avrami growth model gave an activation energy of 66(19) kJ mol-1 for the initial crystallization. The in situ PXRD data also provide direct information about the size dependent macrostrain in the nanoparticles and with decreasing crystallite size the unit cell contracts, especially along the c-direction. This agrees well with previous ex situ results obtained for hydrothermal synthesis of titania nanoparticles.A new step in supercritical nanoparticle synthesis, the pulsed supercritical synthesis reactor, is investigated in situ using synchrotron powder X-ray diffraction (PXRD) to understand the formation of nanoparticles in real time. This eliminates the common problem of transferring information gained during in situ studies to subsequent laboratory reactor conditions. As a proof of principle, anatase titania

  6. In Situ Study of the Formation of Silicide Phases in Amorphous Co–Si Mixed Layers

    SciTech Connect

    Van Bockstael, C.; De Keyser, K; Demeulemeester, J; Vantomme, A; Van Meirhaeghe, R; Detavernier, C; Jordan-Sweet, J; Lavoie, C

    2010-01-01

    We investigate Co silicide phase formation when extra Si is added within an as deposited 50 nm Co film. The addition of Si is investigated for both the Co/SiO{sub 2} and Co/Si(1 0 0) system. A series of 10 Co-Si mixed films with a Si content varying from 21 to 59 at.% was prepared and investigated during annealing with in situ X-ray diffraction. The oxide system is used as reference system to identify phases that initially crystallize in an amorphous mixture of a given composition. Multiple phases can nucleate, and the temperature of crystallization depends on the Co-Si atomic ratio. Upon heating of the Co(Si)/Si system, the first reaction is a similar crystallization reaction of the Co(Si) mixture. Once the first phase is formed, one has the normal system of a silicide phase in contact with an unlimited amount of Si from the substrate, and the sequential phase formation towards CoSi{sub 2} is established. For deposited layers of composition ranging from 48%Si to 52%Si, the CoSi is the first phase to form and increasing the amount of Si leads to a remarkable improvement of the thermal stability of CoSi on Si(1 0 0). CoSi{sub 2} nucleation was extensively delayed by 150 C compared to the reaction observed from a pure Co film on Si(1 0 0). Electron backscatter diffraction measurements reveal that in this range, the gradual Si increase systematically leads to bigger CoSi grains (up to 20 {micro}m). This shows that the grain size of the CoSi precursor strongly affects the nucleation of the following CoSi{sub 2} phase. Laser-light scattering measurements suggest that adding more than 42%Si reduces the roughness of the CoSi{sub 2} layer.

  7. Surface studies of lithium-oxygen redox reactions over HOPG

    NASA Astrophysics Data System (ADS)

    Marchini, Florencia; Herrera, Santiago E.; Calvo, Ernesto J.; Williams, Federico J.

    2016-04-01

    The O2/Li2O2 electrode reaction has been studied on low surface area HOPG electrodes in 0.1 M LiPF6 in dimethyl sulfoxide (DMSO) electrolyte. Studies were performed using electrochemical cells coupled to a XPS spectrometer and to an AFM microscope. AFM images after electrochemical treatment at cathodic potentials exhibited 20 to 100 nm in height features, whereas anodic treatment showed a thin film of about 1 nm thickness deposited over the HOPG electrode. XPS spectra after electrochemical treatment showed surface species due to DMSO and LiPF6 decomposition. These findings indicate the high reactivity of oxygen reduction products towards the electrolyte and the solvent. The unwanted deposits formed under electrochemical operation cannot be completely eliminated from the surface even after applying high anodic potentials. This highlights the known loss of capacity of Li-air batteries, issue that must be overcome for successful applications.

  8. CO(2)-selective methanol steam reforming on In-doped Pd studied by in situ X-ray photoelectron spectroscopy.

    PubMed

    Rameshan, Christoph; Lorenz, Harald; Mayr, Lukas; Penner, Simon; Zemlyanov, Dmitry; Arrigo, Rosa; Haevecker, Michael; Blume, Raoul; Knop-Gericke, Axel; Schlögl, Robert; Klötzer, Bernhard

    2012-11-01

    In situ X-ray photoelectron spectroscopy (in situ XPS) was used to study the structural and catalytic properties of Pd-In near-surface intermetallic phases in correlation with previously studied PdZn and PdGa.Room temperature deposition of ∼4 monolayer equivalents (MLEs) of In metal on Pd foil and subsequent annealing to 453 K in vacuum yields a ∼1:1 Pd/In near-surface multilayer intermetallic phase. This Pd(1)In(1) phase exhibits a similar "Cu-like" electronic structure and indium depth distribution as its methanol steam reforming (MSR)-selective multilayer Pd(1)Zn(1) counterpart.Catalytic characterization of the multilayer Pd(1)In(1) phase in MSR yielded a CO(2)-selectivity of almost 100% between 493 and 550 K. In contrast to previously studied In(2)O(3)-supported PdIn nanoparticles and pure In(2)O(3), intermediate formaldehyde is only partially converted to CO(2) using this Pd(1)In(1) phase. Strongly correlated with PdZn, on an In-diluted PdIn intermetallic phase with "Pd-like" electronic structure, prepared by thermal annealing at 623 K, methanol steam reforming is suppressed and enhanced CO formation via full methanol dehydrogenation is observed.To achieve CO(2)-TOF values on the isolated Pd(1)In(1) intermetallic phase as high as on supported PdIn/In(2)O(3), at least 593 K reaction temperature is required. A bimetal-oxide synergism, with both bimetallic and oxide synergistically contributing to the observed catalytic activity and selectivity, manifests itself by accelerated formaldehyde-to-CO(2) conversion at markedly lowered temperatures as compared to separate oxide and bimetal. Combination of suppression of full methanol dehydrogenation to CO on Pd(1)In(1) inhibited inverse water-gas-shift reaction on In(2)O(3) and fast water activation/conversion of formaldehyde is the key to the low-temperature activity and high CO(2)-selectivity of the supported catalyst. PMID:23226689

  9. CO2-selective methanol steam reforming on In-doped Pd studied by in situ X-ray photoelectron spectroscopy

    PubMed Central

    Rameshan, Christoph; Lorenz, Harald; Mayr, Lukas; Penner, Simon; Zemlyanov, Dmitry; Arrigo, Rosa; Haevecker, Michael; Blume, Raoul; Knop-Gericke, Axel; Schlögl, Robert; Klötzer, Bernhard

    2012-01-01

    In situ X-ray photoelectron spectroscopy (in situ XPS) was used to study the structural and catalytic properties of Pd–In near-surface intermetallic phases in correlation with previously studied PdZn and PdGa. Room temperature deposition of ∼4 monolayer equivalents (MLEs) of In metal on Pd foil and subsequent annealing to 453 K in vacuum yields a ∼1:1 Pd/In near-surface multilayer intermetallic phase. This Pd1In1 phase exhibits a similar “Cu-like” electronic structure and indium depth distribution as its methanol steam reforming (MSR)-selective multilayer Pd1Zn1 counterpart. Catalytic characterization of the multilayer Pd1In1 phase in MSR yielded a CO2-selectivity of almost 100% between 493 and 550 K. In contrast to previously studied In2O3-supported PdIn nanoparticles and pure In2O3, intermediate formaldehyde is only partially converted to CO2 using this Pd1In1 phase. Strongly correlated with PdZn, on an In-diluted PdIn intermetallic phase with “Pd-like” electronic structure, prepared by thermal annealing at 623 K, methanol steam reforming is suppressed and enhanced CO formation via full methanol dehydrogenation is observed. To achieve CO2-TOF values on the isolated Pd1In1 intermetallic phase as high as on supported PdIn/In2O3, at least 593 K reaction temperature is required. A bimetal-oxide synergism, with both bimetallic and oxide synergistically contributing to the observed catalytic activity and selectivity, manifests itself by accelerated formaldehyde-to-CO2 conversion at markedly lowered temperatures as compared to separate oxide and bimetal. Combination of suppression of full methanol dehydrogenation to CO on Pd1In1 inhibited inverse water–gas-shift reaction on In2O3 and fast water activation/conversion of formaldehyde is the key to the low-temperature activity and high CO2-selectivity of the supported catalyst. PMID:23226689

  10. Cationic Pd(II)-catalyzed C–H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies

    PubMed Central

    Nishikata, Takashi; Abela, Alexander R; Huang, Shenlin

    2016-01-01

    Summary Cationic palladium(II) complexes have been found to be highly reactive towards aromatic C–H activation of arylureas at room temperature. A commercially available catalyst [Pd(MeCN)4](BF4)2 or a nitrile-free cationic palladium(II) complex generated in situ from the reaction of Pd(OAc)2 and HBF4, effectively catalyzes C–H activation/cross-coupling reactions between aryl iodides, arylboronic acids and acrylates under milder conditions than those previously reported. The nature of the directing group was found to be critical for achieving room temperature conditions, with the urea moiety the most effective in promoting facile coupling reactions at an ortho C–H position. This methodology has been utilized in a streamlined and efficient synthesis of boscalid, an agent produced on the kiloton scale annually and used to control a range of plant pathogens in broadacre and horticultural crops. Mechanistic investigations led to a proposed catalytic cycle involving three steps: (1) C–H activation to generate a cationic palladacycle; (2) reaction of the cationic palladacycle with an aryl iodide, arylboronic acid or acrylate, and (3) regeneration of the active cationic palladium catalyst. The reaction between a cationic palladium(II) complex and arylurea allowed the formation and isolation of the corresponding palladacycle intermediate, characterized by X-ray analysis. Roles of various additives in the stepwise process have also been studied. PMID:27340491

  11. A Discrete Model to Study Reaction-Diffusion-Mechanics Systems

    PubMed Central

    Weise, Louis D.; Nash, Martyn P.; Panfilov, Alexander V.

    2011-01-01

    This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects. PMID:21804911

  12. A discrete model to study reaction-diffusion-mechanics systems.

    PubMed

    Weise, Louis D; Nash, Martyn P; Panfilov, Alexander V

    2011-01-01

    This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.

  13. The human sunburn reaction: histologic and biochemical studies

    SciTech Connect

    Gilchrest, B.A.; Soter, N.A.; Stoff, J.S.; Mihm, M.C. Jr.

    1981-01-01

    The ultraviolet-induced erythema reaction was investigated histologically and biochemically in four subjects, utilizing suction blister aspirates, analyzed for histamine and prostaglandin E2 (PGE2), and Epon-embedded 1-mu skin biopsy sections from control skin and from irradiated skin at intervals for 72 hours after exposure to a Hanovia lamp. Major histologic alterations in the epidermis included dyskeratotic and vacuolated keratinocytes (sunburn cells), and disappearance of Langerhans cells. In the dermis the major changes were vascular, involving both the superficial and deep venular plexuses. Endothelial cell enlargement was first apparent within 30 minutes of irradiation, peaked at 24 hours, and persisted throughout the 72-hour study period. Mast cell degranulation and associated perivenular edema were first apparent at 1 hour and striking at the onset of erythema, 3 to 4 hours postirradiation; edema was absent and mast cells were again normal in number and granule content at 24 hours. Histamine levels rose approximately fourfold above control values immediately after the onset of erythema and returned to baseline within 24 hours. PGE2 levels were statistically elevated even before the onset of erythema and reached approximately 150% of the control value at 24 hours. These data provide the first evidence that histamine may mediate the early phase of the human sunburn reaction and increase our understanding of its complex histologic and biochemical sequelae.

  14. Space shuttle orbiter reaction control system jet interaction study

    NASA Technical Reports Server (NTRS)

    Rausch, J. R.

    1975-01-01

    The space shuttle orbiter has forward mounted and rear mounted Reaction Control Systems (RCS) which are used for orbital maneuvering and also provide control during entry and abort maneuvers in the atmosphere. The effects of interaction between the RCS jets and the flow over the vehicle in the atmosphere are studied. Test data obtained in the NASA Langley Research Center 31 inch continuous flow hypersonic tunnel at a nominal Mach number of 10.3 is analyzed. The data were obtained with a 0.01 scale force model with aft mounted RCS nozzles mounted on the sting off of the force model balance. The plume simulations were accomplished primarily using air in a cold gas simulation through scaled nozzles, however, various cold gas mixtures of Helium and Argon were also tested. The effect of number of nozzles was tested as were limited tests of combined controls. The data show that RCS nozzle exit momentum ratio is the primary correlating parameter for effects where the plume impinges on an adjacent surface and mass flow ratio is the parameter where the plume interaction is primarily with the external stream. An analytic model of aft mounted RCS units was developed in which the total reaction control moments are the sum of thrust, impingement, interaction, and cross-coupling terms.

  15. A study of the Sabatier-methanation reaction kinetics

    NASA Technical Reports Server (NTRS)

    Verostko, C. E.; Forsythe, R. K.

    1974-01-01

    The kinetics of the Sabatier methanation reaction, the reduction of carbon dioxide with hydrogen to methane and water, was investigated for 58 percent nickel on kieselguhr catalyst and 20 percent ruthenium on alumina catalyst. Differential rate data from an experimental program were correlated with a power function rate equation both for forward and reverse reactions. The kinetic parameters of activation energy, frequency rate constant and reaction order were determined for the rate equation. The values of these parameters were obtained from an Arrhenius plot of the experimental differential rate data. Also the carbon monoxide side reaction effect was measured and included in the correlation of parameters. The reaction was found to fit the rate equation experimentally within the temperature range 421 K, where the reaction effectively begins, the 800 K where the reaction rate drops and departs from the rate equation form.

  16. In situ high temperature crystallization study of sputter deposited amorphous W-Fe-C films

    SciTech Connect

    Trindade, B.; Vieira, M.T. . Dept. de Engenharia Mecanica); Grosse, E.B. . Lab. de Sciences et Genie des Surfaces)

    1995-01-01

    The structural behavior of amorphous W[sub 46]Fe[sub 13]C[sub 41] and W[sub 36]Fe[sub 31]C[sub 33] films produced by sputtering have been studied in situ during annealing up to [approximately] 950 C by means of hot stage transmission electron microscopy. Differential thermal analysis and X-ray diffraction were used as complementary experimental techniques. The results are presented and correlated with the equilibrium phases anticipated from the W-Fe-C ternary phase diagram and with previous studied on similar films deposited and annealed onto substrates.

  17. A plant chamber system with downstream reaction chamber to study the effects of pollution on biogenic emissions.

    PubMed

    Timkovsky, J; Gankema, P; Pierik, R; Holzinger, R

    2014-01-01

    A system of two plant chambers and a downstream reaction chamber has been set up to investigate the emission of biogenic volatile organic compounds (BVOCs) and possible effects of pollutants such as ozone. The system can be used to compare BVOC emissions from two sets of differently treated plants, or to study the photochemistry of real plant emissions under polluted conditions without exposing the plants to pollutants. The main analytical tool is a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) which allows online monitoring of biogenic emissions and chemical degradation products. The identification of BVOCs and their oxidation products is aided by cryogenic trapping and subsequent in situ gas chromatographic analysis.

  18. [Reaction mechanism studies of heavy ion induced nuclear reactions]. [Dept. of Chemistry and Biochemistry, Univ. of Maryland, College Park, Maryland

    SciTech Connect

    Mignerey, A.C.

    1993-02-01

    Completed work is summarized on the topics of excitation energy division in deep-inelastic reactions and the onset of multifragmentation in La-induced reactions at E/A = 45 MeV. Magnetic fields are being calculated for the PHOBOS detector system, a two-arm multiparticle spectrometer for studying low-transverse-momentum particles produced at the Relativistic Heavy Ion Collider. The Maryland Forward Array is being developed for detection of the reaction products from very peripheral collisions; it consists of two individual units of detectors: the annular silicon detector in front and the plastic phoswich detector at back.

  19. Computational Chemistry in the Undergraduate Laboratory: A Mechanistic Study of the Wittig Reaction

    ERIC Educational Resources Information Center

    Albrecht, Birgit

    2014-01-01

    The Wittig reaction is one of the most useful reactions in organic chemistry. Despite its prominence early in the organic chemistry curriculum, the exact mechanism of this reaction is still under debate, and this controversy is often neglected in the classroom. Introducing a simple computational study of the Wittig reaction illustrates the…

  20. Reaction between Chromium(III) and EDTA Ions: an Overlooked Mechanism of Case Study Reaction of Chemical Kinetics.

    PubMed

    Cerar, Janez

    2015-01-01

    Widely cited and accepted explanation of reaction mechanism of the case study reaction of chemical kinetics between Cr(III) ions and ethylenediaminetetraacetic acid (EDTA) contradicts modern chromium(III) coordination chemistry data. Absorption UV and visible light spectra were recorded during the reaction between aqueous solution of Cr(NO(3))(3) and EDTA in order to obtain new information about this reaction. Analysis of the spectra showed that only very small fraction of intermediates may be present in solution during the course of the reaction. The reaction scheme was established and according to it calculations based on a simplified model were carried out. Literature data for constants were used if known, otherwise, adjusted values of their sound estimates were applied. Reasonable agreement of the model calculations with the experimental data was obtained for pH values 3.8 and 4.5 but the model failed to reproduce measured rate of reaction at pH 5.5, probably due to the use of the oversimplified model. PMID:26454587

  1. Reaction between Chromium(III) and EDTA Ions: an Overlooked Mechanism of Case Study Reaction of Chemical Kinetics.

    PubMed

    Cerar, Janez

    2015-01-01

    Widely cited and accepted explanation of reaction mechanism of the case study reaction of chemical kinetics between Cr(III) ions and ethylenediaminetetraacetic acid (EDTA) contradicts modern chromium(III) coordination chemistry data. Absorption UV and visible light spectra were recorded during the reaction between aqueous solution of Cr(NO(3))(3) and EDTA in order to obtain new information about this reaction. Analysis of the spectra showed that only very small fraction of intermediates may be present in solution during the course of the reaction. The reaction scheme was established and according to it calculations based on a simplified model were carried out. Literature data for constants were used if known, otherwise, adjusted values of their sound estimates were applied. Reasonable agreement of the model calculations with the experimental data was obtained for pH values 3.8 and 4.5 but the model failed to reproduce measured rate of reaction at pH 5.5, probably due to the use of the oversimplified model.

  2. a Study of 97Mo from the (t, p) Reaction

    NASA Astrophysics Data System (ADS)

    Rahman, M. A.; Chowdhury, M. S.

    The 97Mo nucleus has been studied with the reaction 95Mo (t, p) 97Mo using a multichannel magnetic spectrograph. The isotopically enriched thin target 95Mo was bombarded with the 12 MeV triton beam obtained from the tandem Van de Graaff accelerator at the Atomic Weapon Research Establishment, Aldermaston. Proton spectra are obtained at 12 different angles from 5° to 87.5° at an interval of 7.5° and are detected in nuclear emulsion plates. Forty-eight levels in the energy range from 0.000 to 3.189 MeV have been observed. Absolute differential cross-sections for these levels have been measured. The angular distributions are compared with the theoretical distorted-wave Born approximation calculations to determine L and Jπ values. The nuclear properties of 97Mo are compared with previous experimental results and model predictions.

  3. Kinetic study of the reactions between chloramine disinfectants and hydrogen peroxide: temperature dependence and reaction mechanism.

    PubMed

    McKay, Garrett; Sjelin, Brittney; Chagnon, Matthew; Ishida, Kenneth P; Mezyk, Stephen P

    2013-09-01

    The temperature-dependent kinetics for the reaction between hydrogen peroxide and chloramine water disinfectants (NH2Cl, NHCl2, and NCl3) have been determined using stopped flow-UV/Vis spectrophotometry. Rate constants for the mono- and dichloramine-peroxide reaction were on the order of 10(-2)M(-1)s(-1) and 10(-5)M(-1)s(-1), respectively. The reaction of trichloramine with peroxide was negligibly slow compared to its thermal and photolytically-induced decomposition. Arrhenius expressions of ln(kH2O2-NH2Cl)=(17.3±1.5)-(51500±3700)/RT and ln(kH2O2-NHCl2)=(18.2±1.9)-(75800±5100)/RT were obtained for the mono- and dichloramine peroxide reaction over the temperature ranges 11.4-37.9 and 35.0-55.0°C, respectively. Both monochloramine and hydrogen peroxide were first-order in the rate-limiting kinetic step and concomitant measurements made using a chloride ion selective electrode showed that the chloride was produced quantitatively. These data will aid water utilities in predicting chloramine concentrations (and thus disinfection potential) throughout the water distribution system.

  4. Study of Exotic Nuclear Structures via Total Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Takechi, Maya

    2009-10-01

    Nuclear radius is one of the most basic physical quantities to study unknown exotic nuclei. A number of radii for unstable nuclei were studied through measurements of interaction cross sections (σI) at high energies, using the Glauber-type calculation (Optical-Limit approximation (OLA) of Glauber theory) to investigate halo and skin structures of exotic nuclei. On the other hand, it was indicated that reaction cross sections (σR) at intermediate energies (from several tens to hundreds of MeV/nucleon) were more sensitive to dilute nucleon density distribution owing to large nucleon-nucleon total cross sections (σNN) compared to high-energy region. Recently, we developed a new method to deduce nucleon density distributions from the energy dependences of σ R, through the precise measurements of σ R for various nuclei and some modifications of Glauber-type calculation. Using this method, we studied nucleon density distributions of light nuclei by measuring σ R for those nuclei at HIMAC (Heavy ion Medical Accelerator in CHIBA), NIRS (National Institute of Radiological Sciences). And very recently, we deduced nuclear radii of neutron-rich Ne isotopes (^28-32Ne) which are in the island-of-inversion region by measuring σI using BigRIPS at RIBF (RI Beam Factory) to study nuclear structures of those isotopes using our method. In this workshop, results of nucleon density distributions obtained at HIMAC and results of the studies of Ne isotopes at RIBF will be introduced and discussed.

  5. Comparative Reactivity Study of Natural Silicate Minerals in Wet Supercritical CO2 By In Situ Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Thompson, C.; Schaef, T.; Miller, Q. R.; Loring, J. S.; Wang, Z.; Johnson, K. T.; McGrail, P.

    2012-12-01

    Long-term storage of CO2 in deep geologic reservoirs is one of the strategies being developed and implemented for reducing anthropogenic emissions of CO2 into the atmosphere. Reservoirs containing basalt or peridotite have the potential to permanently entrap the CO2 as silicate minerals react with the CO2 and formation waters to form stable carbonate minerals. Although the relevant reactions have been well studied in the aqueous phase, comparatively little work has focused on silicate mineral reactivity in the CO2-rich fluid containing dissolved water at conditions relevant to geologic carbon sequestration. In this study, we used in situ infrared spectroscopy to investigate the carbonation of naturally occurring samples of San Carlos olivine (Mg2SiO4), Bramble enstatite (MgSiO3), and a Hawaiian picritic basalt rich in olivine. To enhance reactivity, subsamples were micronized to obtain higher surface area materials, in the range of 14 to 23 m2g-1. Experiments were carried out at 50 °C and 91 bar by circulating a stream of dry or wet supercritical CO2 (scCO2) past a sample overlayer deposited on the window of a high-pressure infrared flow cell. Water concentrations ranged from 0% to 135% relative to saturation, and transmission-mode absorbance spectra were recorded as a function of time for 24 hours. In experiments with excess water, a controlled temperature gradient was used to intentionally condense a film of liquid water on the overlayers' surfaces. No discernible reaction was detected when the samples were exposed to dry scCO2. When water was added to the scCO2, a thin film of liquid-like water formed on the surfaces of each sample, followed by spectral evidence of carbonation. The extents of reaction were dependent on both the thickness of the water films and the materials being tested. The thinnest water film was associated with the Bramble enstatite, which also appeared minimally reactive. The Hawaiian picritic basalt was slightly more reactive but contained

  6. Equilibrium and kinetic studies of in situ generation of ammonia from urea in a batch reactor for flue gas conditioning of thermal power plants

    SciTech Connect

    Sahu, J.N.; Patwardhan, A.V.; Meikap, B.C.

    2009-03-15

    Ammonia has long been known to be useful in the treatment of flue/tail/stack gases from industrial furnaces, incinerators, and electric power generation industries. In this study, urea hydrolysis for production of ammonia, in different application areas that require safe use of ammonia at in situ condition, was investigated in a batch reactor. The equilibrium and kinetic study of urea hydrolysis was done in a batch reactor at reaction pressure to investigate the effect of reaction temperature, initial feed concentration, and time on ammonia production. This study reveals that conversion increases exponentially with an increase in temperature but with increases in initial feed concentration of urea the conversion decreases marginally. Further, the effect of time on conversion has also been studied; it was found that conversion increases with increase in time. Using collision theory, the temperature dependency of forward rate constant developed from which activation energy of the reaction and the frequency factor has been calculated. The activation energy and frequency factor of urea hydrolysis reaction at atmospheric pressure was found to be 73.6 kJ/mol and 2.89 x 10{sup 7} min{sup -1}, respectively.

  7. In-Situ X-Ray Diffraction Observations of Low Temperature Ag-Nanoink Sintering and High Temperature Eutectic Reaction with Copper

    SciTech Connect

    Elmer, J. W.; Specht, Eliot D

    2012-01-01

    Nanoinks, which contain nm sized metallic particles suspended in an organic dispersant fluid, are finding numerous microelectronic applications. Nanoinks sinter at much lower temperatures than bulk metals due to their high surface area to volume ratio and small radius of curvature, which reduces their melting points significantly below their bulk values. The unusually low melting and sintering temperatures have unique potential for materials joining since their melting points increase dramatically after initial sintering. In this paper Ag nanoink is studied using in-situ synchrotron based x-ray diffraction to follow the kinetics of the initial sintering step by analysis of diffraction patterns, and to directly observe the high remelt temperature of sintered nanoinks. Ag nanoink is further explored as a possible eutectic bonding medium with copper by tracking phase transformations to high temperatures where melting occurs at the Ag-Cu eutectic temperature, demonstrating nanoinks as a viable eutectic bonding medium.

  8. Electro-deposition of Cu studied with in situ electrochemical scanning transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hitchcock, A. P.; Qin, Z.; Rosendahl, S. M.; Lee, V.; Reynolds, M.; Hosseinkhannazer, H.

    2016-01-01

    Soft X-ray scanning transmission X-ray microscopy (STXM) was used to investigate Cu deposition onto, and stripping from a Au surface. Cu 2p spectromicroscopy was used to analyze initial and final states (ex situ processing) and follow the processes in situ. The in situ experiments were carried out using a static electrochemical cell with an electrolyte layer thickness of ˜1 μm. A new apparatus for in situ electrochemical STXM is described.

  9. A novel cobalt tetranitrophthalocyanine/graphene composite assembled by an in situ solvothermal synthesis method as a highly efficient electrocatalyst for the oxygen reduction reaction in alkaline medium.

    PubMed

    Lv, Guojun; Cui, Lili; Wu, Yanying; Liu, Ying; Pu, Tao; He, Xingquan

    2013-08-21

    A novel micro/nano-composite, based on cobalt(II) tetranitrophthalocyanine (CoTNPc) grown on poly(sodium-p-styrenesulfonate) modified graphene (PGr), as a non-noble-metal catalyst for the oxygen reduction reaction (ORR), is fabricated by an in situ solvothermal synthesis method. The CoTNPc/PGr is characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), respectively. The electrocatalytic activity of the CoTNPc/PGr composite toward the ORR is evaluated using cyclic voltammetry and linear sweep voltammetry methods. The CoTNPc/PGr composite exhibits an unexpected, surprisingly high ORR activity compared to CoTNPc or PGr. The onset potential for ORR on CoTNPc/PGr is found to be around -0.10 V vs. SCE in 0.1 M NaOH solution, which is 30 mV and 70 mV more positive than that on PGr and CoTNPc, respectively. The peak current density on CoTNPc/PGr is about 2 times than that on PGr and CoTNPc, respectively. Rotating disk electrode (RDE) measurements reveal that the ORR mechanism is nearly via a four-electron pathway on CoTNPc/PGr. The current density for ORR on CoTNPc/PGr still remains 69.9% of its initial value after chronoamperometric measurements for 24 h. Pt/C catalyst, on the other hand, only retains 13.3% of its initial current. The peak potential shifts slightly and current barely changes when 3 M methanol is added. The fabricated composite catalyst for ORR displays high activity, good stability and excellent tolerance to the crossover effect, which may be used as a promising Pt-free catalyst in alkaline direct methanol fuel cells (DMFCs). PMID:23820483

  10. Silicate Carbonation in Supercritical CO2 Containing Dissolved H2O: An in situ High Pressure X-Ray Diffraction Study

    SciTech Connect

    Schaef, Herbert T.; Miller, Quin RS; Thompson, Christopher J.; Loring, John S.; Bowden, Mark E.; Arey, Bruce W.; McGrail, B. Peter; Rosso, Kevin M.

    2013-06-30

    Technological advances have been significant in recent years for managing environmentally harmful emissions (mostly CO2) resulting from combustion of fossil fuels. Deep underground geologic formations are emerging as reasonable options for long term storage of CO2 but mechanisms controlling rock and mineral stability in contact with injected supercritical fluids containing water are relatively unknown. In this paper, we discuss mineral transformation reactions occurring between supercritical CO2 containing water and the silicate minerals forsterite (Mg2SiO4), wollastonite (CaSiO3), and enstatite (MgSiO3). This study utilizes newly developed in situ high pressure x-ray diffraction (HXRD) and in situ infra red (IR) to examine mineral transformation reactions. Forsterite and enstatite were selected as they are important minerals present in igneous and mafic rocks and have been the subject of a large number of aqueous dissolution studies that can be compared with non-aqueous fluid tests in this study. Wollastonite, classified as a pyroxenoid (similar to a pyroxene), was chosen as a suitably fast reacting proxy for examining silicate carbonation processes associated with a wet scCO2 fluid as related to geologic carbon sequestration. The experiments were conducted under modest pressures (90 to 160 bar), temperatures between 35° to 70° C, and varying concentrations of dissolved water. Under these conditions scCO2 contains up to 3,500 ppm dissolved water.

  11. In situ microscopy as a tool for the monitoring of filamentous bacteria: a case study in an industrial activated sludge system dominated by M. parvicella.

    PubMed

    Dunkel, Thiemo; Dias, Philipe Ambrozio; de León Gallegos, Erika Lizette; Tacke, Viola; Schielke, Andreas; Hesse, Tobias; Fajado, Diego Andrés Sierra; Suhr, Hajo; Wiedemann, Philipp; Denecke, Martin

    2016-01-01

    The present study demonstrates the application of in situ microscopy for monitoring the growth of filamentous bacteria which can induce disturbances in an industrial activated sludge process. An in situ microscope (ISM) is immersed directly into samples of activated sludge with Microthrix parvicella as dominating species. Without needing further preparatory steps, the automatic evaluation of the ISM-images generates two signals: the number of individual filaments per image (ISM-filament counting) and the total extended filament length (TEFL) per image (ISM-online TEFL). In this first version of the image-processing algorithm, closely spaced crossing filament-segments or filaments within bulk material are not detected. The signals show highly linear correlation both with the standard filament index and the TEFL. Correlations were further substantiated by comparison with real-time polymerase chain reaction (real-time PCR) measurements of M. parvicella and of the diluted sludge volume index. In this case study, in situ microscopy proved to be a suitable tool for straightforward online-monitoring of filamentous bacteria in activated sludge systems. With future adaptation of the system to different filament morphologies, including cross-linking filaments, bundles, and attached growth, the system will be applicable to other wastewater treatment plants.

  12. In situ microscopy as a tool for the monitoring of filamentous bacteria: a case study in an industrial activated sludge system dominated by M. parvicella.

    PubMed

    Dunkel, Thiemo; Dias, Philipe Ambrozio; de León Gallegos, Erika Lizette; Tacke, Viola; Schielke, Andreas; Hesse, Tobias; Fajado, Diego Andrés Sierra; Suhr, Hajo; Wiedemann, Philipp; Denecke, Martin

    2016-01-01

    The present study demonstrates the application of in situ microscopy for monitoring the growth of filamentous bacteria which can induce disturbances in an industrial activated sludge process. An in situ microscope (ISM) is immersed directly into samples of activated sludge with Microthrix parvicella as dominating species. Without needing further preparatory steps, the automatic evaluation of the ISM-images generates two signals: the number of individual filaments per image (ISM-filament counting) and the total extended filament length (TEFL) per image (ISM-online TEFL). In this first version of the image-processing algorithm, closely spaced crossing filament-segments or filaments within bulk material are not detected. The signals show highly linear correlation both with the standard filament index and the TEFL. Correlations were further substantiated by comparison with real-time polymerase chain reaction (real-time PCR) measurements of M. parvicella and of the diluted sludge volume index. In this case study, in situ microscopy proved to be a suitable tool for straightforward online-monitoring of filamentous bacteria in activated sludge systems. With future adaptation of the system to different filament morphologies, including cross-linking filaments, bundles, and attached growth, the system will be applicable to other wastewater treatment plants. PMID:27003073

  13. In situ study through electrical resistance of growth rate of trifluoroacetate-based solution-derived YBa2Cu3O7 films

    NASA Astrophysics Data System (ADS)

    Sánchez-Valdés, C. F.; Puig, T.; Obradors, X.

    2015-02-01

    In this work, we have studied by means of in situ electrical measurements the nucleation, growth and sintering stages of epitaxial YBa2Cu3O6+δ (YBCO) superconducting thin films prepared using a chemical solution deposition approach based on metal-organic trifluoroacetate-based (TFA) precursors. Single crystal substrates (LaAlO3 and CeO2/YSZ) were used in this study. Analysis of isothermal time dependences, at different temperatures, of in situ electrical resistance of films allowed to evidence that the growth rate G is strongly temperature dependent, i.e. G is enhanced by a factor ˜15 when going from 700 to 810 °C. Additionally, we demonstrate that adding Ag-TFA in the solution may enhance the growth rate by as much as 50%, as compared to pure YBCO, thus confirming previous assessments of the strong influence of Ag doping on YBCO film growth and microstructure. In situ electrical resistance measurements show as well that an incubation time exists and we infer the origin of its temperature dependence. Finally, a thermodynamic analysis allows proposing a single equation for the growth rate of YBCO films integrating all the relevant processing parameters. Our analysis has validated the solid-gas reaction-diffusion model describing the growth of YBCO films from TFA precursors and thus enlarges the knowledge required to enhance the control of the microstructure and superconducting properties of solution-derived YBCO films.

  14. In situ study of atomic layer deposition Al2O3 on GaP (100)

    NASA Astrophysics Data System (ADS)

    Dong, H.; Brennan, B.; Qin, X.; Zhernokletov, D. M.; Hinkle, C. L.; Kim, J.; Wallace, R. M.

    2013-09-01

    The interfacial chemistry of atomic layer deposition (ALD) of Al2O3 on chemically treated GaP (100) has been studied using in situ X-ray photoelectron spectroscopy. A "self-cleaning" effect for Ga-oxide upon exposure to trimethylaluminum is seen to be efficient on the native oxide and chemically treated surfaces. The phosphorus oxide chemical states are seen to change during the ALD process, but the total concentration of P-oxides is seen to remain constant throughout the ALD process.

  15. Application of in-situ bioassays with macrophytes in aquatic mesocosm studies.

    PubMed

    Coors, Anja; Kuckelkorn, Jochen; Hammers-Wirtz, Monika; Strauss, Tido

    2006-10-01

    Aquatic mesocosm studies assess ecotoxicological effects of chemicals by using small artificial ponds as models of lentic ecosystems. In this study, methods of controlled insertion of macrophytes within an outdoor mesocosm study were explored. Although analytically confirmed concentrations of the model herbicide terbuthylazine were high enough to expect direct effects on phytoplankton, functional parameters and dominant taxa abundance indicated only minor and transient effects. In-situ assays with Lemna minor, Myriophyllum spicatum, Potamogeton lucens and Chara globularis revealed adverse effects at concentrations in accordance with literature data. Complex interactions such as nutrient limitation and competition were possible reasons for the observed growth promotion at the lower concentration of about 5 microg/l terbuthylazine. The approach of macrophyte in-situ bioassays within a mesocosm study proved to be applicable. Presumed advantages are simultaneous acquisition of toxicity data for several species of aquatic plants under more realistic conditions compared to laboratory tests and inclusion of macrophytes as important structural and functional components in mesocosms while limiting their domination of the model ecosystem. PMID:16960660

  16. Mechanism of ceroid formation in atherosclerotic plaque: in situ studies using a combination of Raman and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Haka, Abigail S.; Kramer, John R.; Dasari, Ramachandra R.; Fitzmaurice, Maryann

    2011-01-01

    Accumulation of the lipid-protein complex ceroid is a characteristic of atherosclerotic plaque. The mechanism of ceroid formation has been extensively studied, because the complex is postulated to contribute to plaque irreversibility. Despite intensive research, ceroid deposits are defined through their fluorescence and histochemical staining properties, while their composition remains unknown. Using Raman and fluorescence spectral microscopy, we examine the composition of ceroid in situ in aorta and coronary artery plaque. The synergy of these two types of spectroscopy allows for identification of ceroid via its fluorescence signature and elucidation of its chemical composition through the acquisition of a Raman spectrum. In accordance with in vitro predictions, low density lipoprotein (LDL) appears within the deposits primarily in its peroxidized form. The main forms of modified LDL detected in both coronary artery and aortic plaques are peroxidation products from the Fenton reaction and myeloperoxidase-hypochlorite pathway. These two peroxidation products occur in similar concentrations within the deposits and represent ~40 and 30% of the total LDL (native and peroxidized) in the aorta and coronary artery deposits, respectively. To our knowledge, this study is the first to successfully employ Raman spectroscopy to unravel a metabolic pathway involved in disease pathogenesis: the formation of ceroid in atherosclerotic plaque.

  17. Study of the pd→pdη reaction

    NASA Astrophysics Data System (ADS)

    Upadhyay, N. J.; Khemchandani, K. P.; Jain, B. K.; Kelkar, N. G.

    2007-05-01

    A study of the pd→pdη reaction in the energy range where the recent data from Uppsala are available is done in the two-step model of η production including the final state interaction. The η-d final state interaction is incorporated through the solution of the Lippmann Schwinger equation using an elastic scattering matrix element, Tηd→ηd, which is required to be half off-shell. It is written in a factorized form, with an off-shell form factor multiplying an on-shell part given by an effective range expansion up to the fourth power in momentum. The parameters of this expansion have been taken from an existing recent relativistic Faddeev equation solution for the ηNN system corresponding to different η-N scattering amplitudes. Calculations have also been done using few body equations within a finite rank approximation to generate Tηd→ηd. The p-d final state interaction is included in the spirit of the Watson-Migdal prescription by multiplying the matrix element by the inverse of the Jost function. The η-d interaction is found to be dominant in the region of small invariant η-d mass, Mηd. The p-d interaction enhances the cross section in the whole region of Mηd, but is larger for large Mηd. We find nearly isotropic angular distributions of the proton and the deuteron in the final state. All the above observations are in agreement with the data. The production mechanism for the entire range of the existing data on the pd→pdη reaction seems to be dominated by the two-step model of η production.

  18. In situ studies on controlling an atomically-accurate formation process of gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Cheng, Hao; Jiang, Yong; Huang, Ting; Bao, Jie; Sun, Zhihu; Jiang, Zheng; Ma, Jingyuan; Sun, Fanfei; Liu, Qinghua; Yao, Tao; Deng, Huijuan; Wang, Shuxin; Zhu, Manzhou; Wei, Shiqiang

    2015-08-01

    Knowledge of the molecular formation mechanism of metal nanoclusters is essential for developing chemistry for accurate control over their synthesis. Herein, the ``top-down'' synthetic process of monodisperse Au13 nanoclusters via HCl etching of polydisperse Aun clusters (15 <= n <= 65) is traced by a combination of in situ X-ray/UV-vis absorption spectroscopy and time-dependent mass spectrometry. It is revealed experimentally that the HCl-induced synthesis of Au13 is achieved by accurately controlling the etching process with two distinctive steps, in sharp contrast to the traditional thiol-etching mechanism through release of the Au(i) complex. The first step involves the direct fragmentation of the initial larger Aun clusters into metastable intermediate Au8-Au13 smaller clusters. This is a critical step, which allows for the secondary size-growth step of the intermediates toward the atomically monodisperse Au13 clusters via incorporating the reactive Au(i)-Cl species in the solution. Such a secondary-growth pathway is further confirmed by the successful growth of Au13 through reaction of isolated Au11 clusters with AuClPPh3 in the HCl environment. This work addresses the importance of reaction intermediates in guiding the way towards controllable synthesis of metal nanoclusters.Knowledge of the molecular formation mechanism of metal nanoclusters is essential for developing chemistry for accurate control over their synthesis. Herein, the ``top-down'' synthetic process of monodisperse Au13 nanoclusters via HCl etching of polydisperse Aun clusters (15 <= n <= 65) is traced by a combination of in situ X-ray/UV-vis absorption spectroscopy and time-dependent mass spectrometry. It is revealed experimentally that the HCl-induced synthesis of Au13 is achieved by accurately controlling the etching process with two distinctive steps, in sharp contrast to the traditional thiol-etching mechanism through release of the Au(i) complex. The first step involves the direct

  19. In Situ Synchrotron X-ray Study of Ultrasound Cavitation and Its Effect on Solidification Microstructures

    NASA Astrophysics Data System (ADS)

    Mi, Jiawei; Tan, Dongyue; Lee, Tung Lik

    2015-08-01

    Considerable progress has been made in studying the mechanism and effectiveness of using ultrasound waves to manipulate the solidification microstructures of metallic alloys. However, uncertainties remain in both the underlying physics of how microstructures evolve under ultrasonic waves, and the best technological approach to control the final microstructures and properties. We used the ultrafast synchrotron X-ray phase contrast imaging facility housed at the Advanced Photon Source, Argonne National Laboratory, US to study in situ the highly transient and dynamic interactions between the liquid metal and ultrasonic waves/bubbles. The dynamics of ultrasonic bubbles in liquid metal and their interactions with the solidifying phases in a transparent alloy were captured in situ. The experiments were complemented by the simulations of the acoustic pressure field, the pulsing of the bubbles, and the associated forces acting onto the solidifying dendrites. The study provides more quantitative understanding on how ultrasonic waves/bubbles influence the growth of dendritic grains and promote the grain multiplication effect for grain refinement.

  20. Quantification of cuttlefish (Sepia officinalis) camouflage: a study of color and luminance using in situ spectrometry.

    PubMed

    Akkaynak, Derya; Allen, Justine J; Mäthger, Lydia M; Chiao, Chuan-Chin; Hanlon, Roger T

    2013-03-01

    Cephalopods are renowned for their ability to adaptively camouflage on diverse backgrounds. Sepia officinalis camouflage body patterns have been characterized spectrally in the laboratory but not in the field due to the challenges of dynamic natural light fields and the difficulty of using spectrophotometric instruments underwater. To assess cuttlefish color match in their natural habitats, we studied the spectral properties of S. officinalis and their backgrounds on the Aegean coast of Turkey using point-by-point in situ spectrometry. Fifteen spectrometry datasets were collected from seven cuttlefish; radiance spectra from animal body components and surrounding substrates were measured at depths shallower than 5 m. We quantified luminance and color contrast of cuttlefish components and background substrates in the eyes of hypothetical di- and trichromatic fish predators. Additionally, we converted radiance spectra to sRGB color space to simulate their in situ appearance to a human observer. Within the range of natural colors at our study site, cuttlefish closely matched the substrate spectra in a variety of body patterns. Theoretical calculations showed that this effect might be more pronounced at greater depths. We also showed that a non-biological method ("Spectral Angle Mapper"), commonly used for spectral shape similarity assessment in the field of remote sensing, shows moderate correlation to biological measures of color contrast. This performance is comparable to that of a traditional measure of spectral shape similarity, hue and chroma. This study is among the first to quantify color matching of camouflaged cuttlefish in the wild.

  1. The Mukaiyama aldol reaction of in situ generated nitrosocarbonyl compounds: selective C-N bond formation and N-O bond cleavage in one-pot for α-amination of ketones.

    PubMed

    Ramakrishna, Isai; Grandhi, Gowri Sankar; Sahoo, Harekrishna; Baidya, Mahiuddin

    2015-09-21

    A practical protocol for the α-amination of ketones (up to 99% yield) has been developed via the Mukaiyama aldol reaction of in situ generated nitrosocarbonyl compounds. The reaction with silyl enol ethers having a disilane (-SiMe2TMS) backbone proceeded not only with perfect N-selectivity but concomitant N-O bond cleavage was also accomplished. Such a cascade of C-N bond formation and N-O bond cleavage in a single step was heretofore unknown in the field of nitrosocarbonyl chemistry. A very high diastereoselectivity (dr = 19 : 1) was accomplished using (-)-menthol derived chiral nitrosocarbonyl compounds. PMID:26245149

  2. Thermal degradation reaction mechanism of xylose: A DFT study

    NASA Astrophysics Data System (ADS)

    Huang, Jinbao; He, Chao; Wu, Longqin; Tong, Hong

    2016-08-01

    The thermal degradation reaction mechanism of xylose as hemicellulose model compound was investigated by using density functional theory methods M062X with the 6-31++G(d,p) basis set. Eight possible pyrolytic reaction pathways were proposed and the standard kinetic and thermodynamic parameters in all reaction pathways were calculated at different temperatures. In reaction pathway (1), xylose is first transformed into acyclic containing-carbonyl isomer, and then the isomer further decomposes through four possible pyrolysis pathways (1-1)-(1-4). Pathways (2) and (3) depict an immediate ring-opening process through the simultaneous breaking of C-O and C-C bonds. Pathways (4)-(7) describe the pyrolysis processes of various anhydro-xyloses through a direct ring-opening process. Pathway (8) gives the evolutionary process of pyranones. The calculation results show that reaction pathways (1), (2) and (5) are the major reaction channels and reaction pathways (3), (4), and (6)-(8) are the competitive reaction channels in pyrolysis of xylose. The major products of xylose pyrolysis are low molecular products such as 2-furaldehyde, glycolaldehyde, acetaldehyde, methylglyoxal and acetone, and the main competitive products are formaldehyde, formic acid, acetic acid, CO2, CH4, acetol, pyranone, and so on.

  3. Labile Cu(I) catalyst/spectator Cu(II) species in copper-catalyzed C-C coupling reaction: operando IR, in situ XANES/EXAFS evidence and kinetic investigations.

    PubMed

    He, Chuan; Zhang, Guanghui; Ke, Jie; Zhang, Heng; Miller, Jeffrey T; Kropf, Arthur J; Lei, Aiwen

    2013-01-01

    Insights toward the Cu-catalyzed C-C coupling reaction were investigated through operando IR and in situ X-ray absorption near-edge structure/extended X-ray absorption fine structure. It was found that the Cu(I) complex formed from the reaction of CuI with β-diketone nucleophile was liable under the cross-coupling conditions, which is usually considered as active catalytic species. This labile Cu(I) complex could rapidly disproportionate to the spectator Cu(II) and Cu(0) species under the reaction conditions, which was an off-cycle process. In this copper-catalyzed C-C coupling reaction, β-diketone might act both as the substrate and the ligand. PMID:23214954

  4. Direct coupling between stress, strain and adsorption reactions - A study on coal-CO2 systems

    NASA Astrophysics Data System (ADS)

    Hol, S.; Peach, C. J.; Spiers, C. J.

    2012-12-01

    Though it is well-known that adsorption reactions frequently assist deformation of porous rocks, very little understanding exists on the direct coupling with stress state and strain. One of the materials in which adsorption plays a large role is coal, as is observed in the particular case of Enhanced Coalbed Methane Production (ECBM), which involves the geological storage of CO2 and the recovery of CH4. In this case, adsorption and the associated swelling cause significant injectivity problems, which is experienced in almost all pilot field projects to date. This suggests that indeed a strong fundamental coupling exists between CO2 sorption, changes in the mechanical state of the coal matrix and changes in the transport properties of the system, and illustrates the need to understand coupled stress-strain-sorption behaviour. In this contribution, we describe several important observations made on coal-CO2 systems that can learn us about many other natural, stressed adsorbate-adsorbent systems. In our experiments, first of all, the adsorption of CO2 in the coal matrix gave rise to swelling. Although this is well-known, we found that the total volumetric strain occurring under unconfined conditions can be realistically modelled (up to at least 100 MPa) as the sum of an adsorption-related expansion term and an elastic compression term. Second, effective in situ stresses will directly reduce the sorption capacity, and associated swelling of the coal matrix significantly. Our general thermodynamic model for the effect of a 3D stress state on adsorbed CO2 concentration supports this observation, and also shows that "self-stressing", as a result of CO2 adsorption occurring under conditions of restricted or zero strain (i.e. fully constrained conditions), will more than double the expected in situ stresses. A constitutive equation was developed to describe the full coupling between stress state, total strain (i.e. combined strain of adsorption processes and poroelasticity

  5. Studies of the Atmospheric Chemsitry of Energy-Related Volatile Organic Compounds and of their Atmospheric Reaction Products

    SciTech Connect

    Roger Atkinson; Janet Arey

    2007-04-14

    The focus of this contract was to investigate selected aspects of the atmospheric chemistry of volatile organic compounds (VOCs) emitted into the atmosphere from energy-related sources as well as from biogenic sources. The classes of VOCs studied were polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs, the biogenic VOCs isoprene, 2-methyl-3-buten-2-ol and cis-3-hexen-1-ol, alkenes (including alkenes emitted from vegetation) and their oxygenated atmospheric reaction products, and a series of oxygenated carbonyl and hydroxycarbonyl compounds formed as atmospheric reaction products of aromatic hydrocarbons and other VOCs. Large volume reaction chambers were used to investigate the kinetics and/or products of photolysis and of the gas-phase reactions of these organic compounds with hydroxyl (OH) radicals, nitrate (NO3) radicals, and ozone (O3), using an array of analytical instrumentation to analyze the reactants and products (including gas chromatography, in situ Fourier transform infrared spectroscopy, and direct air sampling atmospheric pressure ionization tandem mass spectrometry). The following studies were carried out. The photolysis rates of 1- and 2-nitronaphthalene and of eleven isomeric methylnitronaphthalenes were measured indoors using blacklamp irradiation and outdoors using natural sunlight. Rate constants were measured for the gas-phase reactions of OH radicals, Cl atoms and NO3 radicals with naphthalene, 1- and 2-methylnaphthalene, 1- and 2-ethylnaphthalene and the ten dimethylnaphthalene isomers. Rate constants were measured for the gas-phase reactions of OH radicals with four unsaturated carbonyls and with a series of hydroxyaldehydes formed as atmospheric reaction products of other VOCs, and for the gas-phase reactions of O3 with a series of cycloalkenes. Products of the gas-phase reactions of OH radicals and O3 with a series of biogenically emitted VOCs were identified and quantified. Ambient atmospheric measurements of the concentrations of a

  6. Mechanistic study of atomic layer deposition of Al{sub x}Si{sub y}O thin film via in-situ FTIR spectroscopy

    SciTech Connect

    Cho, Jea; Kim, Taeseung; Seegmiller, Trevor; Chang, Jane P.

    2015-09-15

    A study of surface reaction mechanism on atomic layer deposition (ALD) of aluminum silicate (Al{sub x}Si{sub y}O) was conducted with trimethylaluminum (TMA) and tetraethoxysilane (TEOS) as precursors and H{sub 2}O as the oxidant. In-situ Fourier transform infrared spectroscopy (FTIR) was utilized to elucidate the underlying surface mechanism that enables the deposition of Al{sub x}Si{sub y}O by ALD. In-situ FTIR study revealed that ineffective hydroxylation of the surface ethoxy (–OCH{sub 2}CH{sub 3}) groups prohibits ALD of SiO{sub 2} by TEOS/H{sub 2}O. In contrast, effective desorption of the surface ethoxy group was observed in TEOS/H{sub 2}O/TMA/H{sub 2}O chemistry. The presence of Al-OH* group in vicinity of partially hydroxylated ethoxy (–OCH{sub 2}CH{sub 3}) group was found to propagate disproportionation reaction, which results in ALD of Al{sub x}Si{sub y}O. The maximum thickness from incorporation of SiO{sub x} from alternating exposures of TEOS/H{sub 2}O chemistry in Al{sub x}Si{sub y}O was found to be ∼2 Å, confirmed by high resolution transmission electron microscopy measurements.

  7. In Situ X-ray Diffraction Studies of Cathode Materials in Lithium Batteries

    SciTech Connect

    Yang, X. Q.; Sun, X.; McBreen, J.; Mukerjee, S.; Gao, Yuan; Yakovleva, M. V.; Xing, X. K.; Daroux, M. L.

    1998-11-01

    There is an increasing interest in lithiated transition metal oxides because of their use as cathodes in lithium batteries. LiCoO{sub 2}, LiNiO{sub 2} and LiMn{sub 2}O{sub 4} are the three most widely used and studied materials, At present, although it is relative expensive and toxic, LiCoO{sub 2} is the material of choice in commercial lithium ion batteries because of its ease of manufacture, better thermal stability and cycle life. However, the potential use of lithium ion batteries with larger capacity for power tools and electric vehicles in the future will demand new cathode materials with higher energy density, lower cost and better thermal stability. LiNiO{sub 2} is isostructural with LiCoO{sub 2}. It offers lower cost and high energy density than LiCoO{sub 2}. However, it has much poorer thermal stability than LiCoO{sub 2}, in the charged (delithiated) state. Co, Al, and other elements have been used to partially replace Ni in LiNiO{sub 2} system in order to increase the thermal stability. LiMn{sub 2}O{sub 4} has the highest thermal stability and lowest cost and toxicity. However, the low energy density and poor cycle life at elevated temperature are the major obstacles for this material. In order to develop safer, cheaper, and better performance cathode materials, the in-depth understanding of the relationships between the thermal stability and structure, performance and structure are very important. The performance here includes energy density and cycle life of the cathode materials. X-ray diffraction (XRD) is one of the most powerful tools to study these relationships. The pioneer ex situ XRD work on cathode materials for lithium batteries was done by Ohzuku. His XRD studies on LiMn{sub 2}O{sub 4}, LiCoO{sub 2}, LiNiO{sub 2}, LiNi{sub 0.5}Co{sub 0.5}O{sub 2}, and LiAl{sub x}Ni{sub 1-x}O{sub 2} cathodes at different states of charge have provided important guidelines for the development of these new materials. However, the kinetic nature of the battery

  8. In Situ Studies of Surface Mobility on Noble Metal Model Catalysts Using STM and XPS at Ambient Pressure

    SciTech Connect

    Butcher, Derek Robert

    2010-06-01

    are present on the Pt(100) hex reconstructed phase, but not the (100)-(1x1) surface. The increase in ethylene pressure caused the adsorbate interactions to dominate the crystal morphology and imposed a surface layer structure that matched the ethylidyne binding geometry. The STM results also showed that the surface was reversibly deformed during imaging due to increases in Pt mobility at high pressure. The size dependence on the activity and surface chemistry of Rh nanoparticles was studied using AP-XPS. The activity was found to increase with particle size. The XPS spectra show that in reaction conditions the particle surface has an oxide layer which is chemically distinct from the surface structure formed by heating in oxygen alone. This surface oxide which is stabilized in the catalytically active CO oxidation conditions was found to be more prevalent on the smaller nanoparticles. The reaction-induced surface segregation behavior of bimetallic noble metal nanoparticles was observed with APXPS. Monodisperse 15 nm RhPd and PdPt nanoparticles were synthesized with well controlled Rh/Pd and Pd/Pt compositions. In-situ XPS studies showed that at 300 C in the presence of an oxidizing environment (100 mTorr NO or O2) the surface concentration of the more easily oxidized element (Rh in RhPd and Pd in PdPt) was increased. Switching the gas environment to more reducing conditions (100 mTorr NO and 100 mTorr CO) caused the surface enrichment of the element with the lowest surface energy in its metallic state. Using in-situ characterization, the redox chemistry and the surface composition of bimetallic nanoparticle samples were monitored in reactive conditions. The particle surfaces were shown to reversibly restructure in response to the gas environment at high temperature. The oxidation behavior of the Pt(110) surface was studied using surface sensitive in-situ characterization by APXPS and STM. In the presence of 500 mTorr O2 and temperatures between 25

  9. Transmission Electron Microscopy Study of Graphite under in situ Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Hinks, J. A.; Jones, A. N.; Theodosiou, A.; van den Berg, J. A.; Donnelly, S. E.

    2012-07-01

    Graphite is employed as a moderator and structural component in 18 of the UK's fleet of Magnox and Advanced Gas-cooled Reactors (AGRs). During the operational lifetime of a reactor, graphite undergoes complex physical and mechanical property changes including dimensional modification, owing to the effects of temperature, oxidation and irradiation-induced atomic displacements. In order to safely extend the lifetime of the current fleet of AGRs, and also to develop materials for GenIV concepts such as the Very-High-Temperature Reactor (VHTR), it is important to gain a better understanding of the fundamental atomic processes which underpin the behaviour of graphite under current and future operational conditions. This study has focused on the effects of temperature and displacing radiation on the evolution of Mrozowski cracks in highly-orientated pyrolytic graphite (HOPG) using the new Microscope and Ion Accelerator for Materials Investigations (MIAMI) facility. This instrument allows transmission electron microscopy to be performed in situ whilst simultaneously ion irradiating to radiation damage levels typically reached in a reactor. By using this technique, it is possible to explore the development of radiation damage under a range of different conditions continuously from start-to-finish rather than just observing the end-states accessible in ex situ studies.

  10. Studies of ferroelectric heterostructure thin films and interfaces via in situ analytical techniques.

    SciTech Connect

    Auciello, O.; Dhote, A.; Gao, Y.; Gruen, D. M.; Im, J.; Irene, E. A.; Krauss, A. R.; Mueller, A. H.; Ramesh, R.

    1999-08-30

    The science and technology of ferroelectric thin films has experienced an explosive development during the last ten years. Low-density non-volatile ferroelectric random access memories (NVFRAMs) are now incorporated in commercial products such as ''smart cards'', while high permittivity capacitors are incorporated in cellular phones. However, substantial work is still needed to develop materials integration strategies for high-density memories. We have demonstrated that the implementation of complementary in situ characterization techniques is critical to understand film growth and interface processes, which play critical roles in film microstructure and properties. We are using uniquely integrated time of flight ion scattering and recoil spectroscopy (TOF-ISARS) and spectroscopic ellipsometry (SE) techniques to perform in situ, real-time studies of film growth processes in the high background gas pressure required to growth ferroelectric thin films. TOF-ISARS provides information on surface processes, while SE permits the investigation of buried interfaces as they are being formed. Recent studies on SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) and Ba{sub x}Sr{sub 1{minus}x}TiO{sub 3} (BST) film growth and interface processes are discussed.

  11. In-situ Study of Nanostructure and Electrical Resistance of Nanocluster Films Irradiated with Ion Beams

    SciTech Connect

    Jiang, Weilin; Sundararajan, Jennifer A.; Varga, Tamas; Bowden, Mark E.; Qiang, You; McCloy, John S.; Henager, Charles H.; Montgomery, Robert O.

    2014-08-11

    An in-situ study is reported on the structural evolution in nanocluster films under He+ ion irradiation using an advanced helium ion microscope. The films consist of loosely interconnected nanoclusters of magnetite or iron-magnetite (Fe-Fe3O4) core-shells. The nanostructure is observed to undergo dramatic changes under ion-beam irradiation, featuring grain growth, phase transition, particle aggregation, and formation of nanowire-like network and nano-pores. Studies based on ion irradiation, thermal annealing and election irradiation have indicated that the major structural evolution is activated by elastic nuclear collisions, while both electronic and thermal processes can play a significant role once the evolution starts. The electrical resistance of the Fe-Fe3O4 films measured in situ exhibits a super-exponential decay with dose. The behavior suggests that the nanocluster films possess an intrinsic merit for development of an advanced online monitor for neutron radiation with both high detection sensitivity and long-term applicability, which can enhance safety measures in many nuclear operations.

  12. In situ hybridization method for studies of cell wall deficient M. paratuberculosis in tissue samples.

    PubMed

    Hulten, K; Karttunen, T J; El-Zimaity, H M; Naser, S A; Almashhrawi, A; Graham, D Y; El-Zaatari, F A

    2000-12-20

    Cell wall deficient forms of mycobacteria may be important in the pathogenesis of Crohn's disease and sarcoidosis. However, no method has been available to localize this type of organisms in tissue sections. We developed an in situ hybridization method for the demonstration of Mycobacterium paratuberculosis spheroplasts (cell wall deficient forms) in paraffin embedded tissue sections.M. paratuberculosis spheroplasts were prepared by treatment with glycine and lysozyme. Pieces of beef were injected with the prepared spheroplasts. The samples were fixed in buffered formalin and paraffin embedded. A M. paratuberculosis-specific probe derived from the IS900 gene was used. Specificity was controlled by using an irrelevant probe and by hybridizing sections with spheroplasts from other bacteria. Beef samples injected with M. paratuberculosis spheroplasts were the only samples that hybridized with the probe. Beef samples containing acid-fast or spheroplast forms of M. smegmatis and M. tuberculosis as well as the acid-fast forms of M. paratuberculosis did not hybridize with the probe. Unrelated bacterial controls, i.e. Helicobacter pylori and Escherichia coli were also negative in the assay. In situ hybridization with the IS900 probe provides a specific way to localize M. paratuberculosis spheroplasts in tissue sections and may be useful for studies of the connection between M. paratuberculosis and Crohn's disease and sarcoidosis. The assay may also be valuable for studies on Johne's diseased animals. PMID:11118736

  13. Guar gum coupled microscale ZVI for in situ treatment of CAHs: continuous-flow column study.

    PubMed

    Velimirovic, Milica; Simons, Queenie; Bastiaens, Leen

    2014-01-30

    A column study was performed under in situ conditions to evaluate to which extend the inactivation of the microscale zerovalent iron (mZVI) by guar gum occurs under continuous flow conditions. Five aquifer containing columns were set up under different conditions. Efficient removal of trichloroethene was observed for the column amended by mZVI. Stabilization of the mZVI with guar gum led to slightly reduced activity. More reduced reactivity was observed in the poisoned column containing guar gum stabilized mZVI. This confirms that soil microorganisms can degrade guar gum and that subsequent removal of the oligosaccharides by the groundwater flow (flushing effect) can reactivate the mZVI. After more than six months of continuous operation the columns were dismantled. DNA-based qPCR analysis revealed that mZVI does not significantly affect the bacterial community, while guar gum stabilized mZVI particles can even induce bacterial growth. Overall, this study suggests that the temporarily decreased mZVI reactivity due to guar gum, has a rather limited impact on the performance of in situ reactive zones. The presence of guar gum slightly reduced the reactivity of iron, but also slowed down the iron corrosion rate which prolongs the life time of reactive zone.

  14. Nuclear structure and reaction studies at medium energies

    SciTech Connect

    Hoffmann, G.W.; Ray, R.L.

    1990-10-01

    This document constitutes the (1988--1991) technical progress report for the ongoing medium energy physics research program supported by the US Department of Energy through special Research Grant FG05-88ER40444. The experiments discussed are conducted at the Los Alamos National Laboratory's (LANL) Clinton P. Anderson Meson Physics Facility (LAMPF), the Alternating Gradient Synchrotron (AGS) facility of the Brookhaven National Laboratory (BNL), and at the Fermi National Accelerator Laboratory (FNAL). The overall motivation for the work discussed in this document is driven by three main objectives: (1) provide hadron-nucleon and hadron-nucleus scattering data which serve to facilitate the study of effective two-body interactions, test (and possibly determine) nuclear structure, and help study reaction mechanisms and dynamics;(2) provide unique, first-of-a-kind exploratory'' hadron-nucleus scattering data in the hope that such data will lead to discovery of new phenomena and new physics; and (3) perform precision tests of fundamental interactions, such as rare decay searches, whose observation would imply fundamental new physics.

  15. Next-generation transfer reaction studies with JENSA

    NASA Astrophysics Data System (ADS)

    Chipps, K. A.

    2015-04-01

    Next generation radioactive ion beam facilities are being planned and built across the globe, and with them an incredible new array of exotic isotopes will be available for study. To keep pace with the state of nuclear physics research, both new detector systems and new target systems are needed. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target is one of these new target systems, designed to provide a target of light gas that is localized, dense, and pure. The JENSA gas jet target was originally constructed at Oak Ridge National Laboratory for testing and characterization, and has now moved to the ReA3 reaccelerated beam hall at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University for use with radioactive beams. The availability of a pure, localized target of light gases will enable exceptional scattering and transfer reaction studies with these exotic beams. Some examples will be given, and future plans will be discussed. This work is supported by the US DOE Office of Science (Office of Nuclear Physics) and the NSF.

  16. In Situ Infrared Spectroscopic Study of Brucite Carbonation in Dry to Water-Saturated Supercritical Carbon Dioxide

    SciTech Connect

    Loring, John S.; Thompson, Christopher J.; Zhang, Changyong; Wang, Zheming; Schaef, Herbert T.; Rosso, Kevin M.

    2012-04-25

    In geologic carbon sequestration, while part of the injected carbon dioxide will dissolve into host brine, some will remain as neat to water saturated super critical CO2 (scCO2) near the well bore and at the caprock, especially in the short-term life cycle of the sequestration site. Little is known about the reactivity of minerals with scCO2 containing variable concentrations of water. In this study, we used high-pressure infrared spectroscopy to examine the carbonation of brucite (Mg(OH)2) in situ over a 24 hr reaction period with scCO2 containing water concentrations between 0% and 100% saturation, at temperatures of 35, 50, and 70 °C, and at a pressure of 100 bar. Little or no detectable carbonation was observed when brucite was reacted with neat scCO2. Higher water concentrations and higher temperatures led to greater brucite carbonation rates and larger extents of conversion to magnesium carbonate products. The only observed carbonation product at 35 °C was nesquehonite (MgCO3 • 3H2O). Mixtures of nesquehonite and magnesite (MgCO3) were detected at 50 °C, but magnesite was more prevalent with increasing water concentration. Both an amorphous hydrated magnesium carbonate solid and magnesite were detected at 70 °C, but magnesite predominated with increasing water concentration. The identity of the magnesium carbonate products appears strongly linked to magnesium water exchange kinetics through temperature and water availability effects.

  17. Structural changes in iron oxide and gold catalysts during nucleation of carbon nanotubes studied by in situ transmission electron microscopy.

    PubMed

    Tang, Dai-Ming; Liu, Chang; Yu, Wan-Jing; Zhang, Li-Li; Hou, Peng-Xiang; Li, Jin-Cheng; Li, Feng; Bando, Yoshio; Golberg, Dmitri; Cheng, Hui-Ming

    2014-01-28

    We report a simple, versatile in situ transmission electron microscopy (TEM) approach for investigating the nucleation and growth mechanism of carbon nanotubes (CNTs), by which the composition, phase transition, and physical state of various catalysts can be clearly resolved. In our approach, catalyst nanoparticles (NPs) are placed in a multiwall CNT "tubular furnace" with two open ends, and a high temperature is obtained by Joule heating in the specimen chamber of a TEM. The carbon is supplied by electron irradiation-induced injection of carbon atoms. Comparative studies on the catalytic behavior of traditional iron oxide and recently discovered gold catalysts were performed. It was found that the growth of CNTs from iron oxide involves the reduction of Fe2O3 to Fe3C, nucleation and growth of CNTs from partially liquefied Fe3C, and finally the formation of elemental Fe when the growth stops. In contrast, while changes in shape, size, and orientation were also observed for the fluctuating Au NPs, no chemical reactions or phase transitions occurred during the nucleation of CNTs. These two distinct nucleation and growth processes and mechanisms would be valuable for the structure-controlled growth of CNTs by catalyst design and engineering. PMID:24354297

  18. Azide functional monolayers grafted to a germanium surface: model substrates for ATR-IR studies of interfacial click reactions.

    PubMed

    Zhang, Shuo; Koberstein, Jeffrey T

    2012-01-10

    High-quality azide-functional substrates are prepared by a low temperature reaction of 11-bromoundecyltrichlorosilane with UV-ozone-treated germanium ATR-IR plates followed by nucleophilic substitution of the terminal bromine by addition of sodium azide. The resulting monolayer films are characterized by atomic force microscopy (AFM), contact angle analysis, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance infrared spectroscopy (ATR-IR), and ellipsometry. XPS and ellipsometric thickness data correspond well to the results of molecular model calculations confirming the formation of a densely packed azide-functional monolayer. These azide-functional substrates enable interfacial "click" reactions with complementary alkyne-functional molecules to be studied in situ by ATR-IR. To illustrate their potential utility for kinetic studies we show that, in the presence of copper(I) catalyst, the azide-modified surfaces react rapidly and quantitatively with 5-chloro-pentyne to form triazoles via a 1,3-dipolar cycloaddition reaction. Time-resolved ATR-IR measurements indicate that the interfacial click reaction is initially first order in azide concentration as expected from the reaction mechanism, with a rate constant of 0.034 min(-1), and then transitions to apparent second order dependence, with a rate constant of 0.017 min(-1)/(chains/nm(2)), when the surface azide and triazole concentrations become similar, as predicted by Oyama et al. The reaction achieves an ultimate conversion of 50% consistent with the limit expected due to steric hindrance of the 5-chloro-pentyne reactant at the surface. PMID:22081885

  19. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study.

    PubMed

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu

    2015-09-15

    In situ arsenic removal from groundwater by an aquifer iron coating method has great potential to be a cost effective and simple groundwater remediation technology, especially in rural and remote areas where groundwater is used as the main water source for drinking. The in situ arsenic removal technology was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions. The effectiveness was then evaluated in an actual high-arsenic groundwater environment. The arsenic removal mechanism by the coated iron oxide/hydroxide was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, electron probe microanalysis, and Fourier transformation infrared spectroscopy. Aquifer iron coating method was developed via a 4-step alternating injection of oxidant, iron salt and oxygen-free water. A continuous injection of 5.0 mmol/L FeSO4 and 2.5 mmol/L NaClO for 96 h can form a uniform goethite coating on the surface of quartz sand without causing clogging. At a flow rate of 7.2 mL/min of the injection reagents, arsenic (as Na2HAsO4) and tracer fluorescein sodium to pass through the iron-coated quartz sand column were approximately at 126 and 7 column pore volumes, respectively. The retardation factor of arsenic was 23.0, and the adsorption capacity was 0.11 mol As per mol Fe. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As(V) and Fe(II) reagents. Arsenic fixation resulted from a process of adsorption/co-precipitation with fine goethite particles by way of bidentate binuclear complexes. Therefore, the study results indicate that the high arsenic removal efficiency of the in situ aquifer iron coating technology likely resulted from the expanded specific surface area of the small goethite particles, which enhanced arsenic sorption capability and/or from co-precipitation of arsenic on the surface of goethite particles.

  20. Computational studies of gas phase reactions of carbon chain anions with N and O atoms.

    PubMed

    Yang, Zhibo; Snow, Theodore P; Bierbaum, Veronica M

    2010-10-28

    Experimental studies of gas phase reactions of carbanions with N and O atoms have been reported previously to understand ion chemistry relevant to the interstellar medium. In all cases reactions of anions with O atoms exhibit larger reaction rate constants compared to the corresponding N atom reactions. In addition, the open-shell carbon chain anions exhibit higher reactivities than the corresponding closed-shell species in N atom reactions, whereas similar reactivities were observed for both open and closed-shell anions in O atom reactions. These trends are investigated by the current theoretical study of the reactions of HC(n)(-)(n = 2, 4, and 6) and C(n)(-) (n = 2, 4-7) with N and O atoms. Our results indicate that spin-forbidden processes are the probable pathways in reactions of closed-shell anions HC(n)(-) with N atoms, and spin conversion limits the reaction efficiency. In reactions of open-shell anions C(n)(-) with N atoms, about 50% of the collisions may proceed through spin-allowed barrierless pathways, which results in relatively higher reaction efficiencies than for the closed-shell reactions. For reactions of all anions with O atoms, the spin-allowed barrierless pathways are the only channels, such that all reactions occur with very high efficiencies. This work provides a greater understanding of the influence of spin effects on the reactivities of anion reactions involving N and O atoms that may be important in the interstellar medium.

  1. Combining a coupled FTIR-EGA system and in situ DRIFTS for studying soil organic matter in arable soils

    NASA Astrophysics Data System (ADS)

    Demyan, M. S.; Rasche, F.; Schütt, M.; Smirnova, N.; Schulz, E.; Cadisch, G.

    2013-05-01

    An optimized spectroscopic method combining quantitative evolved gas analysis via Fourier transform infrared spectroscopy (FTIR-EGA) in combination with a qualitative in situ thermal reaction monitoring via diffuse reflectance Fourier transform infrared spectroscopy (in situT DRIFTS) is being proposed to rapidly characterize soil organic matter (SOM) to study its dynamics and stability. A thermal reaction chamber coupled with an infrared gas cell was used to study the pattern of thermal evolution of carbon dioxide (CO2) in order to relate evolved gas (i.e., CO2) to different qualities of SOM. Soil samples were taken from three different arable sites in Germany: (i) the Static Fertilization Experiment, Bad Lauchstädt (Chernozem), from treatments of farmyard manure (FYM), mineral fertilizer (NPK), their combination (FYM + NPK) and control without fertilizer inputs; (ii) Kraichgau; and (iii) Swabian Alb (Cambisols) areas, Southwest Germany. The two latter soils were further fractionated into particulate organic matter (POM), sand and stable aggregates (Sa + A), silt and clay (Si + C), and NaOCl oxidized Si + C (rSOC) to gain OM of different inferred stabilities; respiration was measured from fresh soil samples incubated at 20 °C and 50% water holding capacity for 490 days. A variable long path length gas cell was used to record the mid-infrared absorbance intensity of CO2 (2400 to 2200 cm-1) being evolved during soil heating from 25 to 700 °C with a heating rate of 68 °C min-1 and holding time of 10 min at 700 °C. Separately, the heating chamber was placed in a diffuse reflectance chamber (DRIFTS) for measuring the mid-infrared absorbance of the soil sample during heating. Thermal stability of the bulk soils and fractions was measured via the temperature of maximum CO2 evolution (CO2max). Results indicated that the FYM + NPK and FYM treatments of the Chernozem soils had a lower CO2max as compared to both NPK and CON treatments. On average, CO2max of the Chernozem

  2. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries.

    PubMed

    Bufford, D; Liu, Y; Wang, J; Wang, H; Zhang, X

    2014-01-01

    Nanotwinned metals have been the focus of intense research recently, as twin boundaries may greatly enhance mechanical strength, while maintaining good ductility, electrical conductivity and thermal stability. Most prior studies have focused on low stacking-fault energy nanotwinned metals with coherent twin boundaries. In contrast, the plasticity of twinned high stacking-fault energy metals, such as aluminium with incoherent twin boundaries, has not been investigated. Here we report high work hardening capacity and plasticity in highly twinned aluminium containing abundant Σ3{112} incoherent twin boundaries based on in situ nanoindentation studies in a transmission electron microscope and corresponding molecular dynamics simulations. The simulations also reveal drastic differences in deformation mechanisms between nanotwinned copper and twinned aluminium ascribed to stacking-fault energy controlled dislocation-incoherent twin boundary interactions. This study provides new insight into incoherent twin boundary-dominated plasticity in high stacking-fault energy twinned metals. PMID:25204688

  3. a Model Study of Complex Behavior in the Belousov - Reaction.

    NASA Astrophysics Data System (ADS)

    Lindberg, David Mark

    1988-12-01

    We have studied the complex oscillatory behavior in a model of the Belousov-Zhabotinskii (BZ) reaction in a continuously-fed stirred tank reactor (CSTR). The model consisted of a set of nonlinear ordinary differential equations derived from a reduced mechanism of the chemical system. These equations were integrated numerically on a computer, which yielded the concentrations of the constituent chemicals as functions of time. In addition, solutions were tracked as functions of a single parameter, the stability of the solutions was determined, and bifurcations of the solutions were located and studied. The intent of this study was to use this BZ model to explore further a region of complex oscillatory behavior found in experimental investigations, the most thorough of which revealed an alternating periodic-chaotic (P-C) sequence of states. A P-C sequence was discovered in the model which showed the same qualitative features as the experimental sequence. In order to better understand the P-C sequence, a detailed study was conducted in the vicinity of the P-C sequence, with two experimentally accessible parameters as control variables. This study mapped out the bifurcation sets, and included examination of the dynamics of the stable periodic, unstable periodic, and chaotic oscillatory motion. Observations made from the model results revealed a rough symmetry which suggests a new way of looking at the P-C sequence. Other nonlinear phenomena uncovered in the model were boundary and interior crises, several codimension-two bifurcations, and similarities in the shapes of areas of stability for periodic orbits in two-parameter space. Each earlier model study of this complex region involved only a limited one-parameter scan and had limited success in producing agreement with experiments. In contrast, for those regions of complex behavior that have been studied experimentally, the observations agree qualitatively with our model results. Several new predictions of the model

  4. Pore and Continuum Scale Study of the Effect of Subgrid Transport Heterogeneity on Redox Reaction Rates

    SciTech Connect

    Liu, Yuanyuan; Liu, Chongxuan; Zhang, Changyong; Yang, Xiaofan; Zachara, John M.

    2015-08-01

    A micromodel system with a pore structure for heterogeneous flow and transport was used to investigate the effect of subgrid transport heterogeneity on redox reaction rates. Hematite reductive dissolution by injecting a reduced form of flavin mononucleotide (FMNH2) at variable flow rates was used as an example to probe the variations of redox reaction rates in different subgrid transport domains. Experiments, pore-scale simulations, and macroscopic modeling were performed to measure and simulate in-situ hematite reduction and to evaluate the scaling behavior of the redox reaction rates from the pore to macroscopic scales. The results indicated that the measured pore-scale rates of hematite reduction were consistent with the predictions from a pore scale reactive transport model. A general trend is that hematite reduction followed reductant transport pathways, starting from the advection-dominated pores toward the interior of diffusion-dominated domains. Two types of diffusion domains were considered in the micromodel: a micropore diffusion domain, which locates inside solid grains or aggregates where reactant transport is limited by diffusion; and a macropore diffusion domain, which locates at wedged, dead-end pore spaces created by the grain-grain contacts. The rate of hematite reduction in the advection-dominated domain was faster than those in the diffusion-controlled domains, and the rate in the macropore diffusion domain was faster than that in the micropore domain. The reduction rates in the advection and macropore diffusion domains increased with increasing flow rate, but were affected by different mechanisms. The rate increase in the advection domain was controlled by the mass action effect as a faster flow supplied more reactants, and the rate increase in the macropore domain was more affected by the rate of mass exchange with the advection domain, which increased with increasing flow rate. The hematite reduction rate in the micropore domain was, however

  5. In situ AFM study of interlayer spacing during anion intercalation into HOPG in aqueous electrolyte

    SciTech Connect

    Alliata, D.; Koetz, R.; Haas, O.; Siegenthaler, H.

    1999-11-23

    In the context of ion transfer batteries, highly oriented pyrolytic graphite (HOPG) was studied as a model in aqueous electrolytes to elucidate the mechanism of electrochemical intercalation into graphite. The local time-dependent dimensional changes of the host material occurring during the electrochemical intercalation processes were investigated on the nanometer scale. Atomic force microscopy (AFM), combined with cyclic voltammetry, was used as an in situ analytical tool during the intercalation of perchlorate and hydrogen sulfate ions into and their expulsion from the HOPG electrodes. For the first time, a reproducible, quantitative estimate of the interlayer spacing in HOPG with intercalated perchlorate and hydrogen sulfate ions could be obtained by in situ AFM measurements. The experimental values are in agreement with theoretical expectations, only for relatively low stacks of graphene layers. After formation of stage IV, HOPG expansion upon intercalation typically amounts to 32% when tens of layers are involved but to only 14% when thousands of layers are involved. Blister formation and more dramatic changes in morphology were observed, depending on the kind of electrolyte used, at higher levels of anion intercalation.

  6. Prioritising in situ conservation of crop resources: a case study of African cowpea (Vigna unguiculata).

    PubMed

    Moray, C; Game, E T; Maxted, N

    2014-06-17

    Conserving crop wild relatives (CWR) is critical for maintaining food security. However, CWR-focused conservation plans are lacking, and are often based on the entire genus, even though only a few taxa are useful for crop improvement. We used taxonomic and geographic prioritisation to identify the best locations for in situ conservation of the most important (priority) CWR, using African cowpea (Vigna unguiculata (L.) Walp.) as a case study. Cowpea is an important crop for subsistence farmers in sub-Saharan Africa, yet its CWR are under-collected, under-conserved and under-utilised in breeding. We identified the most efficient sites to focus in situ cowpea CWR conservation and assessed whether priority CWR would be adequately represented in a genus-based conservation plan. We also investigated whether priority cowpea CWR are likely to be found in existing conservation areas and in areas important for mammal conservation. The genus-based method captured most priority CWR, and the distributions of many priority CWR overlapped with established conservation reserves and targets. These results suggest that priority cowpea CWR can be conserved by building on conservation initiatives established for other species.

  7. Er:YAG laser irradiation to control the progression of enamel erosion: an in situ study.

    PubMed

    Scatolin, R S; Colucci, V; Lepri, T P; Alexandria, A K; Maia, L C; Galo, R; Borsatto, M C; Corona, S A M

    2015-07-01

    This in situ study evaluated the effect of Er:YAG laser irradiation in controlling the progression of enamel erosion-like lesions. Fifty-six enamel slabs (330 KHN ± 10 %) with one fourth of the surface covered with resin composite (control area) were submitted to initial erosion-like lesion formation with citric acid. The slabs were divided into two groups: irradiated with Er:YAG laser and non-irradiated. Fourteen volunteers used an intraoral palatal appliance containing two slabs, in two phases of 5 days each. During the intraoral phase, in a crossed-over design, half of the volunteers immersed the appliance in citric acid while the other half used deionized water, both for 5 min, three times per day. Enamel wear was determined by an optical 3D profilometer. ANOVA revealed that when deionized water was used as immersion solution during the intraoral phase, lower values of wear were showed when compared with the groups that were eroded with citric acid, whether irradiated or non-irradiated with Er:YAG laser. When erosion with citric acid was performed, Er:YAG laser was not able to reduce enamel wear. Small changes on enamel surface were observed when it was irradiated with Er:YAG laser. It may be concluded that Er:YAG laser irradiation did not reduce the progression of erosive lesions on enamel submitted to in situ erosion with citric acid.

  8. An experimental system for high temperature X-ray diffraction studies with in situ mechanical loading.

    PubMed

    Oswald, Benjamin B; Schuren, Jay C; Pagan, Darren C; Miller, Matthew P

    2013-03-01

    An experimental system with in situ thermomechanical loading has been developed to enable high energy synchrotron x-ray diffraction studies of crystalline materials. The system applies and maintains loads of up to 2250 N in uniaxial tension or compression at a frequency of up to 100 Hz. The furnace heats the specimen uniformly up to a maximum temperature of 1200 °C in a variety of atmospheres (oxidizing, inert, reducing) that, combined with in situ mechanical loading, can be used to mimic processing and operating conditions of engineering components. The loaded specimen is reoriented with respect to the incident beam of x-rays using two rotational axes to increase the number of crystal orientations interrogated. The system was used at the Cornell High Energy Synchrotron Source to conduct experiments on single crystal silicon and polycrystalline Low Solvus High Refractory nickel-based superalloy. The data from these experiments provide new insights into how stresses evolve at the crystal scale during thermomechanical loading and complement the development of high-fidelity material models. PMID:23556825

  9. In situ disinfection of sewage contaminated shallow groundwater: a feasibility study.

    PubMed

    Bailey, Morgan M; Cooper, William J; Grant, Stanley B

    2011-11-01

    Sewage-contaminated shallow groundwater is a potential cause of beach closures and water quality impairment in marine coastal communities. In this study we set out to evaluate the feasibility of several strategies for disinfecting sewage-contaminated shallow groundwater before it reaches the coastline. The disinfection rates of Escherichia coli (EC) and enterococci bacteria (ENT) were measured in mixtures of raw sewage and brackish shallow groundwater collected from a coastal community in southern California. Different disinfection strategies were explored, ranging from benign (aeration alone, and aeration with addition of brine) to aggressive (chemical disinfectants peracetic acid (PAA) or peroxymonosulfate (Oxone)). Aeration alone and aeration with brine did not significantly reduce the concentration of EC and ENT after 6 h of exposure, while 4-5 mg L(-1) of PAA or Oxone achieved >3 log reduction after 15 min of exposure. Oxone disinfection was more rapid at higher salinities, most likely due to the formation of secondary oxidants (e.g., bromine and chlorine) that make this disinfectant inappropriate for marine applications. Using a Lagrangian modeling framework, we identify several factors that could influence the performance of in-situ disinfection with PAA, including the potential for bacterial regrowth, and the non-linear dependence of disinfection rate upon the residence time of water in the shallow groundwater. The data and analysis presented in this paper provide a framework for evaluating the feasibility of in-situ disinfection of shallow groundwater, and elucidate several topics that warrant further investigation. PMID:21906774

  10. Prioritising in situ conservation of crop resources: a case study of African cowpea (Vigna unguiculata).

    PubMed

    Moray, C; Game, E T; Maxted, N

    2014-01-01

    Conserving crop wild relatives (CWR) is critical for maintaining food security. However, CWR-focused conservation plans are lacking, and are often based on the entire genus, even though only a few taxa are useful for crop improvement. We used taxonomic and geographic prioritisation to identify the best locations for in situ conservation of the most important (priority) CWR, using African cowpea (Vigna unguiculata (L.) Walp.) as a case study. Cowpea is an important crop for subsistence farmers in sub-Saharan Africa, yet its CWR are under-collected, under-conserved and under-utilised in breeding. We identified the most efficient sites to focus in situ cowpea CWR conservation and assessed whether priority CWR would be adequately represented in a genus-based conservation plan. We also investigated whether priority cowpea CWR are likely to be found in existing conservation areas and in areas important for mammal conservation. The genus-based method captured most priority CWR, and the distributions of many priority CWR overlapped with established conservation reserves and targets. These results suggest that priority cowpea CWR can be conserved by building on conservation initiatives established for other species. PMID:24936740

  11. An experimental system for high temperature X-ray diffraction studies with in situ mechanical loading

    PubMed Central

    Oswald, Benjamin B.; Schuren, Jay C.; Pagan, Darren C.; Miller, Matthew P.

    2013-01-01

    An experimental system with in situ thermomechanical loading has been developed to enable high energy synchrotron x-ray diffraction studies of crystalline materials. The system applies and maintains loads of up to 2250 N in uniaxial tension or compression at a frequency of up to 100 Hz. The furnace heats the specimen uniformly up to a maximum temperature of 1200 °C in a variety of atmospheres (oxidizing, inert, reducing) that, combined with in situ mechanical loading, can be used to mimic processing and operating conditions of engineering components. The loaded specimen is reoriented with respect to the incident beam of x-rays using two rotational axes to increase the number of crystal orientations interrogated. The system was used at the Cornell High Energy Synchrotron Source to conduct experiments on single crystal silicon and polycrystalline Low Solvus High Refractory nickel-based superalloy. The data from these experiments provide new insights into how stresses evolve at the crystal scale during thermomechanical loading and complement the development of high-fidelity material models. PMID:23556825

  12. An experimental system for high temperature X-ray diffraction studies with in situ mechanical loading

    SciTech Connect

    Oswald, Benjamin B.; Pagan, Darren C.; Miller, Matthew P.; Schuren, Jay C.

    2013-03-15

    An experimental system with in situ thermomechanical loading has been developed to enable high energy synchrotron x-ray diffraction studies of crystalline materials. The system applies and maintains loads of up to 2250 N in uniaxial tension or compression at a frequency of up to 100 Hz. The furnace heats the specimen uniformly up to a maximum temperature of 1200 Degree-Sign C in a variety of atmospheres (oxidizing, inert, reducing) that, combined with in situ mechanical loading, can be used to mimic processing and operating conditions of engineering components. The loaded specimen is reoriented with respect to the incident beam of x-rays using two rotational axes to increase the number of crystal orientations interrogated. The system was used at the Cornell High Energy Synchrotron Source to conduct experiments on single crystal silicon and polycrystalline Low Solvus High Refractory nickel-based superalloy. The data from these experiments provide new insights into how stresses evolve at the crystal scale during thermomechanical loading and complement the development of high-fidelity material models.

  13. An experimental system for high temperature X-ray diffraction studies with in situ mechanical loading.

    PubMed

    Oswald, Benjamin B; Schuren, Jay C; Pagan, Darren C; Miller, Matthew P

    2013-03-01

    An experimental system with in situ thermomechanical loading has been developed to enable high energy synchrotron x-ray diffraction studies of crystalline materials. The system applies and maintains loads of up to 2250 N in uniaxial tension or compression at a frequency of up to 100 Hz. The furnace heats the specimen uniformly up to a maximum temperature of 1200 °C in a variety of atmospheres (oxidizing, inert, reducing) that, combined with in situ mechanical loading, can be used to mimic processing and operating conditions of engineering components. The loaded specimen is reoriented with respect to the incident beam of x-rays using two rotational axes to increase the number of crystal orientations interrogated. The system was used at the Cornell High Energy Synchrotron Source to conduct experiments on single crystal silicon and polycrystalline Low Solvus High Refractory nickel-based superalloy. The data from these experiments provide new insights into how stresses evolve at the crystal scale during thermomechanical loading and complement the development of high-fidelity material models.

  14. Chemometric Study of the Ex Situ Underground Coal Gasification Wastewater Experimental Data.

    PubMed

    Smoliński, Adam; Stańczyk, Krzysztof; Kapusta, Krzysztof; Howaniec, Natalia

    2012-11-01

    The main goal of the study was the analysis of the parameters of wastewater generated during the ex situ underground coal gasification (UCG) experiments on lignite from Belchatow, and hard coal from Ziemowit and Bobrek coal mines, simulated in the ex situ reactor. The UCG wastewater may pose a potential threat to the groundwater since it contains high concentrations of inorganic (i.e., ammonia nitrogen, nitrites, chlorides, free and bound cyanides, sulfates and trace elements: As, B, Cr, Zn, Al, Cd, Co, Mn, Cu, Mo, Ni, Pb, Hg, Se, Ti, Fe) and organic (i.e., phenolics, benzene and their alkyl derivatives, and polycyclic aromatic hydrocarbons) contaminants. The principal component analysis and hierarchical clustering analysis enabled to effectively explore the similarities and dissimilarities between the samples generated in lignite and hard coal oxygen gasification process in terms of the amounts and concentrations of particular components. The total amount of wastewater produced in lignite gasification process was higher than the amount generated in hard coal gasification experiments. The lignite gasification wastewater was also characterized by the highest contents of acenaphthene, phenanthrene, anthracene, fluoranthene, and pyrene, whereas hard coal gasification wastewater was characterized by relatively higher concentrations of nitrites, As, Cr, Cu, benzene, toluene, xylene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene.

  15. Study of enzyme adsorption and reaction kinetics for cellulose hydrolysis

    SciTech Connect

    Gilbert, I.G.

    1982-01-01

    Enzymatic hydrolysis of cellulose occurs due to the combined catalytic action of two types of cellulase components commonly referred to as C/sub 1/ and C/sub x/. However, before the hydrolysis reaction can begin, it is necessary for these enzymes to first adsorb onto the accessible surfaces of the insoluble cellulose substrate. The objective of the study was to gain a better understanding of the relationships between the adsorption of these enzyme components, the hydrolysis kinetics, the cellulosic surface area accessible to the enzymes, and the cellulose crystallinity. These relationships were investigated by passing a Trichoderma viride cellulase solution through columns of cellulose powder having different accessibility and crystallinity, and then analyzing the quantities of the different enzyme components and the hydrolysis product in the effluent. The amounts of the different cellulase components were analyzed using high-performance anion-exchange chromatography. Additional adsorption and hydrolysis experiments were done using columns of cellulose beads specially developed to provide amodel substrate for this analysis. A mathematical model has been formulated to describe the kinetics of enzyme adsorption and the resultant, initial hydrolysis rate in cellulose column. The analytical solutions obtained have been linearized into a convenient form so that the kinetic parameters of the model can be readily determined from experimental breakthrough curves.

  16. Thermo-Raman spectroscopy in situ monitoring study of solid-state synthesis of NiO-Al 2O 3 nanoparticles and its characterization

    NASA Astrophysics Data System (ADS)

    Ghule, Anil Vithal; Ghule, Kalyani; Tzing, Shin-Hwa; Punde, Tushar H.; Chang, Hua; Ling, Yong Chien

    2009-12-01

    Hyphenation of thermogravimetric analyzer (TGA) and thermo-Raman spectrophotometer for in situ monitoring of solid-state reaction in oxygen atmosphere forming NiO-Al 2O 3 catalyst nanoparticles is investigated. In situ thermo-Raman spectra in the range from 200 to 1400 cm -1 were recorded at every degree interval from 25 to 800 °C. Thermo-Raman spectroscopic studies reveal that, although the onset of formation is around 600 °C, the bulk NiAl 2O 4 forms at temperatures above 800 °C. The X-ray diffraction (XRD) spectra and the scanning electron microscopy (SEM) images of the reaction mixtures were recorded at regular temperature intervals of 100 °C, in the temperature range from 400 to 1000 °C, which could provide information on structural and morphological evolution of NiO-Al 2O 3. Slow controlled heating of the sample enabled better control over morphology and particle size distribution (˜20-30 nm diameter). The observed results were supported by complementary characterizations using TGA, XRD, SEM, transmission electron microscopy, and energy dispersive X-ray analysis.

  17. Studying the effect of graphene-ZnO nanocomposites on polymerase chain reaction

    NASA Astrophysics Data System (ADS)

    Sharma, Vinay; Rajaura, Rajveer; Sharma, Preetam Kumar; Srivastava, Rishabh Ronin; Sharma, Shyam Sundar; Agrawal, Kailash

    2016-05-01

    An emerging area of research is improving the efficiency of the polymerase chain reaction (PCR) by using nanoparticles. With graphene nano-flakes showing promising results, in this paper we report the effect of Graphene-ZnO nanocomposites on Polymerase Chain reaction (PCR) efficiency. G-ZnO nanocomposites were efficiently synthesized via in situ chemical method. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) image confirms the formation of nanocomposites. ZnO nanoparticles of size range ~20-30 nm are uniformly attached on the graphene sheets. No amplification during PCR indicates inhibitory activity of G-ZnO nanocomposites which points the fingers at ZnO moiety of the G-ZnO composite for no amplification during our PCR reaction. Further work should concentrate on finding out the main inhibitory mechanism involved in inhibition of PCR using G-ZnO composites.

  18. In situ soil moisture coupled with extreme temperatures: A study based on the Oklahoma Mesonet

    NASA Astrophysics Data System (ADS)

    Ford, Trent W.; Quiring, Steven M.

    2014-07-01

    The relationship between the observed (in situ) soil moisture and the percent hot days (%HD) in Oklahoma is examined using quantile regression. Consistent with results from previous modeling studies and observational studies using precipitation deficits as proxy, soil moisture is found to most strongly impact air temperature in the upper quantile of the %HD distribution. The utility of soil moisture for forecasting extreme heat events in Oklahoma is also assessed. Our results show that %HD can be predicted with reasonable skill using soil moisture anomalies from the previous month. These soil moisture-based forecasts of extreme temperature events can be used to support public health and water resource planning and mitigation activities in the Southern Great Plain region of the United States.

  19. Manipulating the Assembly of Spray-Deposited Nanocolloids: In Situ Study and Monolayer Film Preparation.

    PubMed

    Zhang, Peng; Santoro, Gonzalo; Yu, Shun; Vayalil, Sarathlal K; Bommel, Sebastian; Roth, Stephan V

    2016-05-01

    Fabrication of nanoparticle arrays on a substrate is one of the most concerned aspects for manipulating assembly of nanoparticles and preparing functional nanocomposites. Here, we studied in situ the assembly kinetics of polystyrene nanocolloids by using grazing incidence small-angle X-ray scattering. The structure formation of the nanoparticle film is monitored during air-brush spraying, which provides a rapid and scalable preparation. By optimizing the substrate temperature, the dispersion of the nanocolloids can be tailored to prepare monolayer film. The success of the monolayer preparations is attributed to the fast solvent evaporation which inhibits the aggregation of the nanocolloids. The present study may open a new avenue for the manufacture-friendly preparation of well-dispersed nanoparticle thin films. PMID:27070283

  20. Study of SGD along the French Mediterranean coastline using airborne TIR images and in situ analyses

    NASA Astrophysics Data System (ADS)

    van Beek, Pieter; Stieglitz, Thomas; Souhaut, Marc

    2015-04-01

    Although submarine groundwater discharge (SGD) has been investigated in many places of the world, very few studies were conducted along the French coastline of the Mediterranean Sea. Almost no information is available on the fluxes of water and chemical elements associated with these SGD and on their potential impact on the geochemical cycling and ecosystems of the coastal zones. In this work, we combined the use of airborne thermal infrared (TIR) images with in situ analyses of salinity, temperature, radon and radium isotopes to study SGD at various sites along the French Mediterranean coastline and in coastal lagoons. These analyses allowed us to detect SGD sites and to quantify SGD fluxes (that include both the fluxes of fresh groundwater and recirculated seawater). In particular, we will show how the Ra isotopes determined in the La Palme lagoon were used to estimate i) the residence time of waters in the lagoon and ii) SGD fluxes.